1 /*
2 * Copyright © 2000 SuSE, Inc.
3 * Copyright © 2007 Red Hat, Inc.
4 *
5 * Permission to use, copy, modify, distribute, and sell this software and its
6 * documentation for any purpose is hereby granted without fee, provided that
7 * the above copyright notice appear in all copies and that both that
8 * copyright notice and this permission notice appear in supporting
9 * documentation, and that the name of SuSE not be used in advertising or
10 * publicity pertaining to distribution of the software without specific,
11 * written prior permission. SuSE makes no representations about the
12 * suitability of this software for any purpose. It is provided "as is"
13 * without express or implied warranty.
14 *
15 * SuSE DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING ALL
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO EVENT SHALL SuSE
17 * BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
18 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
19 * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
20 * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
21 */
22
23 #ifdef HAVE_CONFIG_H
24 #include <config.h>
25 #endif
26
27 #include <stdlib.h>
28 #include <stdio.h>
29 #include <string.h>
30 #include <assert.h>
31
32 #include "pixman-private.h"
33
34 static const pixman_color_t transparent_black = { 0, 0, 0, 0 };
35
36 static void
gradient_property_changed(pixman_image_t * image)37 gradient_property_changed (pixman_image_t *image)
38 {
39 gradient_t *gradient = &image->gradient;
40 int n = gradient->n_stops;
41 pixman_gradient_stop_t *stops = gradient->stops;
42 pixman_gradient_stop_t *begin = &(gradient->stops[-1]);
43 pixman_gradient_stop_t *end = &(gradient->stops[n]);
44
45 switch (gradient->common.repeat)
46 {
47 default:
48 case PIXMAN_REPEAT_NONE:
49 begin->x = INT32_MIN;
50 begin->color = transparent_black;
51 end->x = INT32_MAX;
52 end->color = transparent_black;
53 break;
54
55 case PIXMAN_REPEAT_NORMAL:
56 begin->x = stops[n - 1].x - pixman_fixed_1;
57 begin->color = stops[n - 1].color;
58 end->x = stops[0].x + pixman_fixed_1;
59 end->color = stops[0].color;
60 break;
61
62 case PIXMAN_REPEAT_REFLECT:
63 begin->x = - stops[0].x;
64 begin->color = stops[0].color;
65 end->x = pixman_int_to_fixed (2) - stops[n - 1].x;
66 end->color = stops[n - 1].color;
67 break;
68
69 case PIXMAN_REPEAT_PAD:
70 begin->x = INT32_MIN;
71 begin->color = stops[0].color;
72 end->x = INT32_MAX;
73 end->color = stops[n - 1].color;
74 break;
75 }
76 }
77
78 pixman_bool_t
_pixman_init_gradient(gradient_t * gradient,const pixman_gradient_stop_t * stops,int n_stops)79 _pixman_init_gradient (gradient_t * gradient,
80 const pixman_gradient_stop_t *stops,
81 int n_stops)
82 {
83 return_val_if_fail (n_stops > 0, FALSE);
84
85 /* We allocate two extra stops, one before the beginning of the stop list,
86 * and one after the end. These stops are initialized to whatever color
87 * would be used for positions outside the range of the stop list.
88 *
89 * This saves a bit of computation in the gradient walker.
90 *
91 * The pointer we store in the gradient_t struct still points to the
92 * first user-supplied struct, so when freeing, we will have to
93 * subtract one.
94 */
95 gradient->stops =
96 pixman_malloc_ab (n_stops + 2, sizeof (pixman_gradient_stop_t));
97 if (!gradient->stops)
98 return FALSE;
99
100 gradient->stops += 1;
101 memcpy (gradient->stops, stops, n_stops * sizeof (pixman_gradient_stop_t));
102 gradient->n_stops = n_stops;
103
104 gradient->common.property_changed = gradient_property_changed;
105
106 return TRUE;
107 }
108
109 void
_pixman_image_init(pixman_image_t * image)110 _pixman_image_init (pixman_image_t *image)
111 {
112 image_common_t *common = &image->common;
113
114 pixman_region32_init (&common->clip_region);
115
116 common->alpha_count = 0;
117 common->have_clip_region = FALSE;
118 common->clip_sources = FALSE;
119 common->transform = NULL;
120 common->repeat = PIXMAN_REPEAT_NONE;
121 common->filter = PIXMAN_FILTER_NEAREST;
122 common->filter_params = NULL;
123 common->n_filter_params = 0;
124 common->alpha_map = NULL;
125 common->component_alpha = FALSE;
126 common->ref_count = 1;
127 common->property_changed = NULL;
128 common->client_clip = FALSE;
129 common->destroy_func = NULL;
130 common->destroy_data = NULL;
131 common->dirty = TRUE;
132 }
133
134 pixman_bool_t
_pixman_image_fini(pixman_image_t * image)135 _pixman_image_fini (pixman_image_t *image)
136 {
137 image_common_t *common = (image_common_t *)image;
138
139 common->ref_count--;
140
141 if (common->ref_count == 0)
142 {
143 if (image->common.destroy_func)
144 image->common.destroy_func (image, image->common.destroy_data);
145
146 pixman_region32_fini (&common->clip_region);
147
148 free (common->transform);
149 free (common->filter_params);
150
151 if (common->alpha_map)
152 pixman_image_unref ((pixman_image_t *)common->alpha_map);
153
154 if (image->type == LINEAR ||
155 image->type == RADIAL ||
156 image->type == CONICAL)
157 {
158 if (image->gradient.stops)
159 {
160 /* See _pixman_init_gradient() for an explanation of the - 1 */
161 free (image->gradient.stops - 1);
162 }
163
164 /* This will trigger if someone adds a property_changed
165 * method to the linear/radial/conical gradient overwriting
166 * the general one.
167 */
168 assert (
169 image->common.property_changed == gradient_property_changed);
170 }
171
172 if (image->type == BITS && image->bits.free_me)
173 free (image->bits.free_me);
174
175 return TRUE;
176 }
177
178 return FALSE;
179 }
180
181 pixman_image_t *
_pixman_image_allocate(void)182 _pixman_image_allocate (void)
183 {
184 pixman_image_t *image = malloc (sizeof (pixman_image_t));
185
186 if (image)
187 _pixman_image_init (image);
188
189 return image;
190 }
191
192 static void
image_property_changed(pixman_image_t * image)193 image_property_changed (pixman_image_t *image)
194 {
195 image->common.dirty = TRUE;
196 }
197
198 /* Ref Counting */
199 PIXMAN_EXPORT pixman_image_t *
pixman_image_ref(pixman_image_t * image)200 pixman_image_ref (pixman_image_t *image)
201 {
202 image->common.ref_count++;
203
204 return image;
205 }
206
207 /* returns TRUE when the image is freed */
208 PIXMAN_EXPORT pixman_bool_t
pixman_image_unref(pixman_image_t * image)209 pixman_image_unref (pixman_image_t *image)
210 {
211 if (_pixman_image_fini (image))
212 {
213 free (image);
214 return TRUE;
215 }
216
217 return FALSE;
218 }
219
220 PIXMAN_EXPORT void
pixman_image_set_destroy_function(pixman_image_t * image,pixman_image_destroy_func_t func,void * data)221 pixman_image_set_destroy_function (pixman_image_t * image,
222 pixman_image_destroy_func_t func,
223 void * data)
224 {
225 image->common.destroy_func = func;
226 image->common.destroy_data = data;
227 }
228
229 PIXMAN_EXPORT void *
pixman_image_get_destroy_data(pixman_image_t * image)230 pixman_image_get_destroy_data (pixman_image_t *image)
231 {
232 return image->common.destroy_data;
233 }
234
235 void
_pixman_image_reset_clip_region(pixman_image_t * image)236 _pixman_image_reset_clip_region (pixman_image_t *image)
237 {
238 image->common.have_clip_region = FALSE;
239 }
240
241 /* Executive Summary: This function is a no-op that only exists
242 * for historical reasons.
243 *
244 * There used to be a bug in the X server where it would rely on
245 * out-of-bounds accesses when it was asked to composite with a
246 * window as the source. It would create a pixman image pointing
247 * to some bogus position in memory, but then set a clip region
248 * to the position where the actual bits were.
249 *
250 * Due to a bug in old versions of pixman, where it would not clip
251 * against the image bounds when a clip region was set, this would
252 * actually work. So when the pixman bug was fixed, a workaround was
253 * added to allow certain out-of-bound accesses. This function disabled
254 * those workarounds.
255 *
256 * Since 0.21.2, pixman doesn't do these workarounds anymore, so now
257 * this function is a no-op.
258 */
259 PIXMAN_EXPORT void
pixman_disable_out_of_bounds_workaround(void)260 pixman_disable_out_of_bounds_workaround (void)
261 {
262 }
263
264 static void
compute_image_info(pixman_image_t * image)265 compute_image_info (pixman_image_t *image)
266 {
267 pixman_format_code_t code;
268 uint32_t flags = 0;
269
270 /* Transform */
271 if (!image->common.transform)
272 {
273 flags |= (FAST_PATH_ID_TRANSFORM |
274 FAST_PATH_X_UNIT_POSITIVE |
275 FAST_PATH_Y_UNIT_ZERO |
276 FAST_PATH_AFFINE_TRANSFORM);
277 }
278 else
279 {
280 flags |= FAST_PATH_HAS_TRANSFORM;
281
282 if (image->common.transform->matrix[2][0] == 0 &&
283 image->common.transform->matrix[2][1] == 0 &&
284 image->common.transform->matrix[2][2] == pixman_fixed_1)
285 {
286 flags |= FAST_PATH_AFFINE_TRANSFORM;
287
288 if (image->common.transform->matrix[0][1] == 0 &&
289 image->common.transform->matrix[1][0] == 0)
290 {
291 if (image->common.transform->matrix[0][0] == -pixman_fixed_1 &&
292 image->common.transform->matrix[1][1] == -pixman_fixed_1)
293 {
294 flags |= FAST_PATH_ROTATE_180_TRANSFORM;
295 }
296 flags |= FAST_PATH_SCALE_TRANSFORM;
297 }
298 else if (image->common.transform->matrix[0][0] == 0 &&
299 image->common.transform->matrix[1][1] == 0)
300 {
301 pixman_fixed_t m01 = image->common.transform->matrix[0][1];
302 pixman_fixed_t m10 = image->common.transform->matrix[1][0];
303
304 if (m01 == -pixman_fixed_1 && m10 == pixman_fixed_1)
305 flags |= FAST_PATH_ROTATE_90_TRANSFORM;
306 else if (m01 == pixman_fixed_1 && m10 == -pixman_fixed_1)
307 flags |= FAST_PATH_ROTATE_270_TRANSFORM;
308 }
309 }
310
311 if (image->common.transform->matrix[0][0] > 0)
312 flags |= FAST_PATH_X_UNIT_POSITIVE;
313
314 if (image->common.transform->matrix[1][0] == 0)
315 flags |= FAST_PATH_Y_UNIT_ZERO;
316 }
317
318 /* Filter */
319 switch (image->common.filter)
320 {
321 case PIXMAN_FILTER_NEAREST:
322 case PIXMAN_FILTER_FAST:
323 flags |= (FAST_PATH_NEAREST_FILTER | FAST_PATH_NO_CONVOLUTION_FILTER);
324 break;
325
326 case PIXMAN_FILTER_BILINEAR:
327 case PIXMAN_FILTER_GOOD:
328 case PIXMAN_FILTER_BEST:
329 flags |= (FAST_PATH_BILINEAR_FILTER | FAST_PATH_NO_CONVOLUTION_FILTER);
330
331 /* Here we have a chance to optimize BILINEAR filter to NEAREST if
332 * they are equivalent for the currently used transformation matrix.
333 */
334 if (flags & FAST_PATH_ID_TRANSFORM)
335 {
336 flags |= FAST_PATH_NEAREST_FILTER;
337 }
338 else if (
339 /* affine and integer translation components in matrix ... */
340 ((flags & FAST_PATH_AFFINE_TRANSFORM) &&
341 !pixman_fixed_frac (image->common.transform->matrix[0][2] |
342 image->common.transform->matrix[1][2])) &&
343 (
344 /* ... combined with a simple rotation */
345 (flags & (FAST_PATH_ROTATE_90_TRANSFORM |
346 FAST_PATH_ROTATE_180_TRANSFORM |
347 FAST_PATH_ROTATE_270_TRANSFORM)) ||
348 /* ... or combined with a simple non-rotated translation */
349 (image->common.transform->matrix[0][0] == pixman_fixed_1 &&
350 image->common.transform->matrix[1][1] == pixman_fixed_1 &&
351 image->common.transform->matrix[0][1] == 0 &&
352 image->common.transform->matrix[1][0] == 0)
353 )
354 )
355 {
356 /* FIXME: there are some affine-test failures, showing that
357 * handling of BILINEAR and NEAREST filter is not quite
358 * equivalent when getting close to 32K for the translation
359 * components of the matrix. That's likely some bug, but for
360 * now just skip BILINEAR->NEAREST optimization in this case.
361 */
362 pixman_fixed_t magic_limit = pixman_int_to_fixed (30000);
363 if (image->common.transform->matrix[0][2] <= magic_limit &&
364 image->common.transform->matrix[1][2] <= magic_limit &&
365 image->common.transform->matrix[0][2] >= -magic_limit &&
366 image->common.transform->matrix[1][2] >= -magic_limit)
367 {
368 flags |= FAST_PATH_NEAREST_FILTER;
369 }
370 }
371 break;
372
373 case PIXMAN_FILTER_CONVOLUTION:
374 break;
375
376 case PIXMAN_FILTER_SEPARABLE_CONVOLUTION:
377 flags |= FAST_PATH_SEPARABLE_CONVOLUTION_FILTER;
378 break;
379
380 default:
381 flags |= FAST_PATH_NO_CONVOLUTION_FILTER;
382 break;
383 }
384
385 /* Repeat mode */
386 switch (image->common.repeat)
387 {
388 case PIXMAN_REPEAT_NONE:
389 flags |=
390 FAST_PATH_NO_REFLECT_REPEAT |
391 FAST_PATH_NO_PAD_REPEAT |
392 FAST_PATH_NO_NORMAL_REPEAT;
393 break;
394
395 case PIXMAN_REPEAT_REFLECT:
396 flags |=
397 FAST_PATH_NO_PAD_REPEAT |
398 FAST_PATH_NO_NONE_REPEAT |
399 FAST_PATH_NO_NORMAL_REPEAT;
400 break;
401
402 case PIXMAN_REPEAT_PAD:
403 flags |=
404 FAST_PATH_NO_REFLECT_REPEAT |
405 FAST_PATH_NO_NONE_REPEAT |
406 FAST_PATH_NO_NORMAL_REPEAT;
407 break;
408
409 default:
410 flags |=
411 FAST_PATH_NO_REFLECT_REPEAT |
412 FAST_PATH_NO_PAD_REPEAT |
413 FAST_PATH_NO_NONE_REPEAT;
414 break;
415 }
416
417 /* Component alpha */
418 if (image->common.component_alpha)
419 flags |= FAST_PATH_COMPONENT_ALPHA;
420 else
421 flags |= FAST_PATH_UNIFIED_ALPHA;
422
423 flags |= (FAST_PATH_NO_ACCESSORS | FAST_PATH_NARROW_FORMAT);
424
425 /* Type specific checks */
426 switch (image->type)
427 {
428 case SOLID:
429 code = PIXMAN_solid;
430
431 if (image->solid.color.alpha == 0xffff)
432 flags |= FAST_PATH_IS_OPAQUE;
433 break;
434
435 case BITS:
436 if (image->bits.width == 1 &&
437 image->bits.height == 1 &&
438 image->common.repeat != PIXMAN_REPEAT_NONE)
439 {
440 code = PIXMAN_solid;
441 }
442 else
443 {
444 code = image->bits.format;
445 flags |= FAST_PATH_BITS_IMAGE;
446 }
447
448 if (!PIXMAN_FORMAT_A (image->bits.format) &&
449 PIXMAN_FORMAT_TYPE (image->bits.format) != PIXMAN_TYPE_GRAY &&
450 PIXMAN_FORMAT_TYPE (image->bits.format) != PIXMAN_TYPE_COLOR)
451 {
452 flags |= FAST_PATH_SAMPLES_OPAQUE;
453
454 if (image->common.repeat != PIXMAN_REPEAT_NONE)
455 flags |= FAST_PATH_IS_OPAQUE;
456 }
457
458 if (image->bits.read_func || image->bits.write_func)
459 flags &= ~FAST_PATH_NO_ACCESSORS;
460
461 if (PIXMAN_FORMAT_IS_WIDE (image->bits.format))
462 flags &= ~FAST_PATH_NARROW_FORMAT;
463 break;
464
465 case RADIAL:
466 code = PIXMAN_unknown;
467
468 /*
469 * As explained in pixman-radial-gradient.c, every point of
470 * the plane has a valid associated radius (and thus will be
471 * colored) if and only if a is negative (i.e. one of the two
472 * circles contains the other one).
473 */
474
475 if (image->radial.a >= 0)
476 break;
477
478 /* Fall through */
479
480 case CONICAL:
481 case LINEAR:
482 code = PIXMAN_unknown;
483
484 if (image->common.repeat != PIXMAN_REPEAT_NONE)
485 {
486 int i;
487
488 flags |= FAST_PATH_IS_OPAQUE;
489 for (i = 0; i < image->gradient.n_stops; ++i)
490 {
491 if (image->gradient.stops[i].color.alpha != 0xffff)
492 {
493 flags &= ~FAST_PATH_IS_OPAQUE;
494 break;
495 }
496 }
497 }
498 break;
499
500 default:
501 code = PIXMAN_unknown;
502 break;
503 }
504
505 /* Alpha map */
506 if (!image->common.alpha_map)
507 {
508 flags |= FAST_PATH_NO_ALPHA_MAP;
509 }
510 else
511 {
512 if (PIXMAN_FORMAT_IS_WIDE (image->common.alpha_map->format))
513 flags &= ~FAST_PATH_NARROW_FORMAT;
514 }
515
516 /* Both alpha maps and convolution filters can introduce
517 * non-opaqueness in otherwise opaque images. Also
518 * an image with component alpha turned on is only opaque
519 * if all channels are opaque, so we simply turn it off
520 * unconditionally for those images.
521 */
522 if (image->common.alpha_map ||
523 image->common.filter == PIXMAN_FILTER_CONVOLUTION ||
524 image->common.filter == PIXMAN_FILTER_SEPARABLE_CONVOLUTION ||
525 image->common.component_alpha)
526 {
527 flags &= ~(FAST_PATH_IS_OPAQUE | FAST_PATH_SAMPLES_OPAQUE);
528 }
529
530 image->common.flags = flags;
531 image->common.extended_format_code = code;
532 }
533
534 void
_pixman_image_validate(pixman_image_t * image)535 _pixman_image_validate (pixman_image_t *image)
536 {
537 if (image->common.dirty)
538 {
539 compute_image_info (image);
540
541 /* It is important that property_changed is
542 * called *after* compute_image_info() because
543 * property_changed() can make use of the flags
544 * to set up accessors etc.
545 */
546 if (image->common.property_changed)
547 image->common.property_changed (image);
548
549 image->common.dirty = FALSE;
550 }
551
552 if (image->common.alpha_map)
553 _pixman_image_validate ((pixman_image_t *)image->common.alpha_map);
554 }
555
556 PIXMAN_EXPORT pixman_bool_t
pixman_image_set_clip_region32(pixman_image_t * image,pixman_region32_t * region)557 pixman_image_set_clip_region32 (pixman_image_t * image,
558 pixman_region32_t *region)
559 {
560 image_common_t *common = (image_common_t *)image;
561 pixman_bool_t result;
562
563 if (region)
564 {
565 if ((result = pixman_region32_copy (&common->clip_region, region)))
566 image->common.have_clip_region = TRUE;
567 }
568 else
569 {
570 _pixman_image_reset_clip_region (image);
571
572 result = TRUE;
573 }
574
575 image_property_changed (image);
576
577 return result;
578 }
579
580 PIXMAN_EXPORT pixman_bool_t
pixman_image_set_clip_region(pixman_image_t * image,pixman_region16_t * region)581 pixman_image_set_clip_region (pixman_image_t * image,
582 pixman_region16_t *region)
583 {
584 image_common_t *common = (image_common_t *)image;
585 pixman_bool_t result;
586
587 if (region)
588 {
589 if ((result = pixman_region32_copy_from_region16 (&common->clip_region, region)))
590 image->common.have_clip_region = TRUE;
591 }
592 else
593 {
594 _pixman_image_reset_clip_region (image);
595
596 result = TRUE;
597 }
598
599 image_property_changed (image);
600
601 return result;
602 }
603
604 PIXMAN_EXPORT void
pixman_image_set_has_client_clip(pixman_image_t * image,pixman_bool_t client_clip)605 pixman_image_set_has_client_clip (pixman_image_t *image,
606 pixman_bool_t client_clip)
607 {
608 image->common.client_clip = client_clip;
609 }
610
611 PIXMAN_EXPORT pixman_bool_t
pixman_image_set_transform(pixman_image_t * image,const pixman_transform_t * transform)612 pixman_image_set_transform (pixman_image_t * image,
613 const pixman_transform_t *transform)
614 {
615 static const pixman_transform_t id =
616 {
617 { { pixman_fixed_1, 0, 0 },
618 { 0, pixman_fixed_1, 0 },
619 { 0, 0, pixman_fixed_1 } }
620 };
621
622 image_common_t *common = (image_common_t *)image;
623 pixman_bool_t result;
624
625 if (common->transform == transform)
626 return TRUE;
627
628 if (!transform || memcmp (&id, transform, sizeof (pixman_transform_t)) == 0)
629 {
630 free (common->transform);
631 common->transform = NULL;
632 result = TRUE;
633
634 goto out;
635 }
636
637 if (common->transform &&
638 memcmp (common->transform, transform, sizeof (pixman_transform_t)) == 0)
639 {
640 return TRUE;
641 }
642
643 if (common->transform == NULL)
644 common->transform = malloc (sizeof (pixman_transform_t));
645
646 if (common->transform == NULL)
647 {
648 result = FALSE;
649
650 goto out;
651 }
652
653 memcpy (common->transform, transform, sizeof(pixman_transform_t));
654
655 result = TRUE;
656
657 out:
658 image_property_changed (image);
659
660 return result;
661 }
662
663 PIXMAN_EXPORT void
pixman_image_set_repeat(pixman_image_t * image,pixman_repeat_t repeat)664 pixman_image_set_repeat (pixman_image_t *image,
665 pixman_repeat_t repeat)
666 {
667 if (image->common.repeat == repeat)
668 return;
669
670 image->common.repeat = repeat;
671
672 image_property_changed (image);
673 }
674
675 PIXMAN_EXPORT pixman_bool_t
pixman_image_set_filter(pixman_image_t * image,pixman_filter_t filter,const pixman_fixed_t * params,int n_params)676 pixman_image_set_filter (pixman_image_t * image,
677 pixman_filter_t filter,
678 const pixman_fixed_t *params,
679 int n_params)
680 {
681 image_common_t *common = (image_common_t *)image;
682 pixman_fixed_t *new_params;
683
684 if (params == common->filter_params && filter == common->filter)
685 return TRUE;
686
687 if (filter == PIXMAN_FILTER_SEPARABLE_CONVOLUTION)
688 {
689 int width = pixman_fixed_to_int (params[0]);
690 int height = pixman_fixed_to_int (params[1]);
691 int x_phase_bits = pixman_fixed_to_int (params[2]);
692 int y_phase_bits = pixman_fixed_to_int (params[3]);
693 int n_x_phases = (1 << x_phase_bits);
694 int n_y_phases = (1 << y_phase_bits);
695
696 return_val_if_fail (
697 n_params == 4 + n_x_phases * width + n_y_phases * height, FALSE);
698 }
699
700 new_params = NULL;
701 if (params)
702 {
703 new_params = pixman_malloc_ab (n_params, sizeof (pixman_fixed_t));
704 if (!new_params)
705 return FALSE;
706
707 memcpy (new_params,
708 params, n_params * sizeof (pixman_fixed_t));
709 }
710
711 common->filter = filter;
712
713 if (common->filter_params)
714 free (common->filter_params);
715
716 common->filter_params = new_params;
717 common->n_filter_params = n_params;
718
719 image_property_changed (image);
720 return TRUE;
721 }
722
723 PIXMAN_EXPORT void
pixman_image_set_source_clipping(pixman_image_t * image,pixman_bool_t clip_sources)724 pixman_image_set_source_clipping (pixman_image_t *image,
725 pixman_bool_t clip_sources)
726 {
727 if (image->common.clip_sources == clip_sources)
728 return;
729
730 image->common.clip_sources = clip_sources;
731
732 image_property_changed (image);
733 }
734
735 /* Unlike all the other property setters, this function does not
736 * copy the content of indexed. Doing this copying is simply
737 * way, way too expensive.
738 */
739 PIXMAN_EXPORT void
pixman_image_set_indexed(pixman_image_t * image,const pixman_indexed_t * indexed)740 pixman_image_set_indexed (pixman_image_t * image,
741 const pixman_indexed_t *indexed)
742 {
743 bits_image_t *bits = (bits_image_t *)image;
744
745 if (bits->indexed == indexed)
746 return;
747
748 bits->indexed = indexed;
749
750 image_property_changed (image);
751 }
752
753 PIXMAN_EXPORT void
pixman_image_set_alpha_map(pixman_image_t * image,pixman_image_t * alpha_map,int16_t x,int16_t y)754 pixman_image_set_alpha_map (pixman_image_t *image,
755 pixman_image_t *alpha_map,
756 int16_t x,
757 int16_t y)
758 {
759 image_common_t *common = (image_common_t *)image;
760
761 return_if_fail (!alpha_map || alpha_map->type == BITS);
762
763 if (alpha_map && common->alpha_count > 0)
764 {
765 /* If this image is being used as an alpha map itself,
766 * then you can't give it an alpha map of its own.
767 */
768 return;
769 }
770
771 if (alpha_map && alpha_map->common.alpha_map)
772 {
773 /* If the image has an alpha map of its own,
774 * then it can't be used as an alpha map itself
775 */
776 return;
777 }
778
779 if (common->alpha_map != (bits_image_t *)alpha_map)
780 {
781 if (common->alpha_map)
782 {
783 common->alpha_map->common.alpha_count--;
784
785 pixman_image_unref ((pixman_image_t *)common->alpha_map);
786 }
787
788 if (alpha_map)
789 {
790 common->alpha_map = (bits_image_t *)pixman_image_ref (alpha_map);
791
792 common->alpha_map->common.alpha_count++;
793 }
794 else
795 {
796 common->alpha_map = NULL;
797 }
798 }
799
800 common->alpha_origin_x = x;
801 common->alpha_origin_y = y;
802
803 image_property_changed (image);
804 }
805
806 PIXMAN_EXPORT void
pixman_image_set_component_alpha(pixman_image_t * image,pixman_bool_t component_alpha)807 pixman_image_set_component_alpha (pixman_image_t *image,
808 pixman_bool_t component_alpha)
809 {
810 if (image->common.component_alpha == component_alpha)
811 return;
812
813 image->common.component_alpha = component_alpha;
814
815 image_property_changed (image);
816 }
817
818 PIXMAN_EXPORT pixman_bool_t
pixman_image_get_component_alpha(pixman_image_t * image)819 pixman_image_get_component_alpha (pixman_image_t *image)
820 {
821 return image->common.component_alpha;
822 }
823
824 PIXMAN_EXPORT void
pixman_image_set_accessors(pixman_image_t * image,pixman_read_memory_func_t read_func,pixman_write_memory_func_t write_func)825 pixman_image_set_accessors (pixman_image_t * image,
826 pixman_read_memory_func_t read_func,
827 pixman_write_memory_func_t write_func)
828 {
829 return_if_fail (image != NULL);
830
831 if (image->type == BITS)
832 {
833 image->bits.read_func = read_func;
834 image->bits.write_func = write_func;
835
836 image_property_changed (image);
837 }
838 }
839
840 PIXMAN_EXPORT uint32_t *
pixman_image_get_data(pixman_image_t * image)841 pixman_image_get_data (pixman_image_t *image)
842 {
843 if (image->type == BITS)
844 return image->bits.bits;
845
846 return NULL;
847 }
848
849 PIXMAN_EXPORT int
pixman_image_get_width(pixman_image_t * image)850 pixman_image_get_width (pixman_image_t *image)
851 {
852 if (image->type == BITS)
853 return image->bits.width;
854
855 return 0;
856 }
857
858 PIXMAN_EXPORT int
pixman_image_get_height(pixman_image_t * image)859 pixman_image_get_height (pixman_image_t *image)
860 {
861 if (image->type == BITS)
862 return image->bits.height;
863
864 return 0;
865 }
866
867 PIXMAN_EXPORT int
pixman_image_get_stride(pixman_image_t * image)868 pixman_image_get_stride (pixman_image_t *image)
869 {
870 if (image->type == BITS)
871 return image->bits.rowstride * (int) sizeof (uint32_t);
872
873 return 0;
874 }
875
876 PIXMAN_EXPORT int
pixman_image_get_depth(pixman_image_t * image)877 pixman_image_get_depth (pixman_image_t *image)
878 {
879 if (image->type == BITS)
880 return PIXMAN_FORMAT_DEPTH (image->bits.format);
881
882 return 0;
883 }
884
885 PIXMAN_EXPORT pixman_format_code_t
pixman_image_get_format(pixman_image_t * image)886 pixman_image_get_format (pixman_image_t *image)
887 {
888 if (image->type == BITS)
889 return image->bits.format;
890
891 return PIXMAN_null;
892 }
893
894 uint32_t
_pixman_image_get_solid(pixman_implementation_t * imp,pixman_image_t * image,pixman_format_code_t format)895 _pixman_image_get_solid (pixman_implementation_t *imp,
896 pixman_image_t * image,
897 pixman_format_code_t format)
898 {
899 uint32_t result;
900
901 if (image->type == SOLID)
902 {
903 result = image->solid.color_32;
904 }
905 else if (image->type == BITS)
906 {
907 if (image->bits.format == PIXMAN_a8r8g8b8)
908 result = image->bits.bits[0];
909 else if (image->bits.format == PIXMAN_x8r8g8b8)
910 result = image->bits.bits[0] | 0xff000000;
911 else if (image->bits.format == PIXMAN_a8)
912 result = (*(uint8_t *)image->bits.bits) << 24;
913 else
914 goto otherwise;
915 }
916 else
917 {
918 pixman_iter_t iter;
919
920 otherwise:
921 _pixman_implementation_src_iter_init (
922 imp, &iter, image, 0, 0, 1, 1,
923 (uint8_t *)&result,
924 ITER_NARROW, image->common.flags);
925
926 result = *iter.get_scanline (&iter, NULL);
927 }
928
929 /* If necessary, convert RGB <--> BGR. */
930 if (PIXMAN_FORMAT_TYPE (format) != PIXMAN_TYPE_ARGB
931 && PIXMAN_FORMAT_TYPE (format) != PIXMAN_TYPE_ARGB_SRGB)
932 {
933 result = (((result & 0xff000000) >> 0) |
934 ((result & 0x00ff0000) >> 16) |
935 ((result & 0x0000ff00) >> 0) |
936 ((result & 0x000000ff) << 16));
937 }
938
939 return result;
940 }
941