1 // Copyright (c) 1994-2006 Sun Microsystems Inc.
2 // All Rights Reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 // - Redistributions of source code must retain the above copyright notice,
9 // this list of conditions and the following disclaimer.
10 //
11 // - Redistribution in binary form must reproduce the above copyright
12 // notice, this list of conditions and the following disclaimer in the
13 // documentation and/or other materials provided with the distribution.
14 //
15 // - Neither the name of Sun Microsystems or the names of contributors may
16 // be used to endorse or promote products derived from this software without
17 // specific prior written permission.
18 //
19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
20 // IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
21 // THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
23 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
24 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
26 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
27 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
28 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
29 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30
31 // The original source code covered by the above license above has been
32 // modified significantly by Google Inc.
33 // Copyright 2012 the V8 project authors. All rights reserved.
34
35 #include "src/assembler.h"
36
37 #include <cmath>
38 #include "src/api.h"
39 #include "src/base/lazy-instance.h"
40 #include "src/builtins.h"
41 #include "src/counters.h"
42 #include "src/cpu.h"
43 #include "src/cpu-profiler.h"
44 #include "src/debug.h"
45 #include "src/deoptimizer.h"
46 #include "src/execution.h"
47 #include "src/ic.h"
48 #include "src/isolate-inl.h"
49 #include "src/jsregexp.h"
50 #include "src/platform.h"
51 #include "src/regexp-macro-assembler.h"
52 #include "src/regexp-stack.h"
53 #include "src/runtime.h"
54 #include "src/serialize.h"
55 #include "src/store-buffer-inl.h"
56 #include "src/stub-cache.h"
57 #include "src/token.h"
58
59 #if V8_TARGET_ARCH_IA32
60 #include "src/ia32/assembler-ia32-inl.h"
61 #elif V8_TARGET_ARCH_X64
62 #include "src/x64/assembler-x64-inl.h"
63 #elif V8_TARGET_ARCH_ARM64
64 #include "src/arm64/assembler-arm64-inl.h"
65 #elif V8_TARGET_ARCH_ARM
66 #include "src/arm/assembler-arm-inl.h"
67 #elif V8_TARGET_ARCH_MIPS
68 #include "src/mips/assembler-mips-inl.h"
69 #elif V8_TARGET_ARCH_X87
70 #include "src/x87/assembler-x87-inl.h"
71 #else
72 #error "Unknown architecture."
73 #endif
74
75 // Include native regexp-macro-assembler.
76 #ifndef V8_INTERPRETED_REGEXP
77 #if V8_TARGET_ARCH_IA32
78 #include "src/ia32/regexp-macro-assembler-ia32.h"
79 #elif V8_TARGET_ARCH_X64
80 #include "src/x64/regexp-macro-assembler-x64.h"
81 #elif V8_TARGET_ARCH_ARM64
82 #include "src/arm64/regexp-macro-assembler-arm64.h"
83 #elif V8_TARGET_ARCH_ARM
84 #include "src/arm/regexp-macro-assembler-arm.h"
85 #elif V8_TARGET_ARCH_MIPS
86 #include "src/mips/regexp-macro-assembler-mips.h"
87 #elif V8_TARGET_ARCH_X87
88 #include "src/x87/regexp-macro-assembler-x87.h"
89 #else // Unknown architecture.
90 #error "Unknown architecture."
91 #endif // Target architecture.
92 #endif // V8_INTERPRETED_REGEXP
93
94 namespace v8 {
95 namespace internal {
96
97 // -----------------------------------------------------------------------------
98 // Common double constants.
99
100 struct DoubleConstant BASE_EMBEDDED {
101 double min_int;
102 double one_half;
103 double minus_one_half;
104 double minus_zero;
105 double zero;
106 double uint8_max_value;
107 double negative_infinity;
108 double canonical_non_hole_nan;
109 double the_hole_nan;
110 double uint32_bias;
111 };
112
113 static DoubleConstant double_constants;
114
115 const char* const RelocInfo::kFillerCommentString = "DEOPTIMIZATION PADDING";
116
117 static bool math_exp_data_initialized = false;
118 static Mutex* math_exp_data_mutex = NULL;
119 static double* math_exp_constants_array = NULL;
120 static double* math_exp_log_table_array = NULL;
121
122 // -----------------------------------------------------------------------------
123 // Implementation of AssemblerBase
124
AssemblerBase(Isolate * isolate,void * buffer,int buffer_size)125 AssemblerBase::AssemblerBase(Isolate* isolate, void* buffer, int buffer_size)
126 : isolate_(isolate),
127 jit_cookie_(0),
128 enabled_cpu_features_(0),
129 emit_debug_code_(FLAG_debug_code),
130 predictable_code_size_(false),
131 // We may use the assembler without an isolate.
132 serializer_enabled_(isolate && isolate->serializer_enabled()) {
133 if (FLAG_mask_constants_with_cookie && isolate != NULL) {
134 jit_cookie_ = isolate->random_number_generator()->NextInt();
135 }
136 if (buffer == NULL) {
137 // Do our own buffer management.
138 if (buffer_size <= kMinimalBufferSize) {
139 buffer_size = kMinimalBufferSize;
140 if (isolate->assembler_spare_buffer() != NULL) {
141 buffer = isolate->assembler_spare_buffer();
142 isolate->set_assembler_spare_buffer(NULL);
143 }
144 }
145 if (buffer == NULL) buffer = NewArray<byte>(buffer_size);
146 own_buffer_ = true;
147 } else {
148 // Use externally provided buffer instead.
149 ASSERT(buffer_size > 0);
150 own_buffer_ = false;
151 }
152 buffer_ = static_cast<byte*>(buffer);
153 buffer_size_ = buffer_size;
154
155 pc_ = buffer_;
156 }
157
158
~AssemblerBase()159 AssemblerBase::~AssemblerBase() {
160 if (own_buffer_) {
161 if (isolate() != NULL &&
162 isolate()->assembler_spare_buffer() == NULL &&
163 buffer_size_ == kMinimalBufferSize) {
164 isolate()->set_assembler_spare_buffer(buffer_);
165 } else {
166 DeleteArray(buffer_);
167 }
168 }
169 }
170
171
172 // -----------------------------------------------------------------------------
173 // Implementation of PredictableCodeSizeScope
174
PredictableCodeSizeScope(AssemblerBase * assembler,int expected_size)175 PredictableCodeSizeScope::PredictableCodeSizeScope(AssemblerBase* assembler,
176 int expected_size)
177 : assembler_(assembler),
178 expected_size_(expected_size),
179 start_offset_(assembler->pc_offset()),
180 old_value_(assembler->predictable_code_size()) {
181 assembler_->set_predictable_code_size(true);
182 }
183
184
~PredictableCodeSizeScope()185 PredictableCodeSizeScope::~PredictableCodeSizeScope() {
186 // TODO(svenpanne) Remove the 'if' when everything works.
187 if (expected_size_ >= 0) {
188 CHECK_EQ(expected_size_, assembler_->pc_offset() - start_offset_);
189 }
190 assembler_->set_predictable_code_size(old_value_);
191 }
192
193
194 // -----------------------------------------------------------------------------
195 // Implementation of CpuFeatureScope
196
197 #ifdef DEBUG
CpuFeatureScope(AssemblerBase * assembler,CpuFeature f)198 CpuFeatureScope::CpuFeatureScope(AssemblerBase* assembler, CpuFeature f)
199 : assembler_(assembler) {
200 ASSERT(CpuFeatures::IsSupported(f));
201 old_enabled_ = assembler_->enabled_cpu_features();
202 uint64_t mask = static_cast<uint64_t>(1) << f;
203 // TODO(svenpanne) This special case below doesn't belong here!
204 #if V8_TARGET_ARCH_ARM
205 // ARMv7 is implied by VFP3.
206 if (f == VFP3) {
207 mask |= static_cast<uint64_t>(1) << ARMv7;
208 }
209 #endif
210 assembler_->set_enabled_cpu_features(old_enabled_ | mask);
211 }
212
213
~CpuFeatureScope()214 CpuFeatureScope::~CpuFeatureScope() {
215 assembler_->set_enabled_cpu_features(old_enabled_);
216 }
217 #endif
218
219
220 bool CpuFeatures::initialized_ = false;
221 unsigned CpuFeatures::supported_ = 0;
222 unsigned CpuFeatures::cache_line_size_ = 0;
223
224
225 // -----------------------------------------------------------------------------
226 // Implementation of Label
227
pos() const228 int Label::pos() const {
229 if (pos_ < 0) return -pos_ - 1;
230 if (pos_ > 0) return pos_ - 1;
231 UNREACHABLE();
232 return 0;
233 }
234
235
236 // -----------------------------------------------------------------------------
237 // Implementation of RelocInfoWriter and RelocIterator
238 //
239 // Relocation information is written backwards in memory, from high addresses
240 // towards low addresses, byte by byte. Therefore, in the encodings listed
241 // below, the first byte listed it at the highest address, and successive
242 // bytes in the record are at progressively lower addresses.
243 //
244 // Encoding
245 //
246 // The most common modes are given single-byte encodings. Also, it is
247 // easy to identify the type of reloc info and skip unwanted modes in
248 // an iteration.
249 //
250 // The encoding relies on the fact that there are fewer than 14
251 // different relocation modes using standard non-compact encoding.
252 //
253 // The first byte of a relocation record has a tag in its low 2 bits:
254 // Here are the record schemes, depending on the low tag and optional higher
255 // tags.
256 //
257 // Low tag:
258 // 00: embedded_object: [6-bit pc delta] 00
259 //
260 // 01: code_target: [6-bit pc delta] 01
261 //
262 // 10: short_data_record: [6-bit pc delta] 10 followed by
263 // [6-bit data delta] [2-bit data type tag]
264 //
265 // 11: long_record [2-bit high tag][4 bit middle_tag] 11
266 // followed by variable data depending on type.
267 //
268 // 2-bit data type tags, used in short_data_record and data_jump long_record:
269 // code_target_with_id: 00
270 // position: 01
271 // statement_position: 10
272 // comment: 11 (not used in short_data_record)
273 //
274 // Long record format:
275 // 4-bit middle_tag:
276 // 0000 - 1100 : Short record for RelocInfo::Mode middle_tag + 2
277 // (The middle_tag encodes rmode - RelocInfo::LAST_COMPACT_ENUM,
278 // and is between 0000 and 1100)
279 // The format is:
280 // 00 [4 bit middle_tag] 11 followed by
281 // 00 [6 bit pc delta]
282 //
283 // 1101: constant or veneer pool. Used only on ARM and ARM64 for now.
284 // The format is: [2-bit sub-type] 1101 11
285 // signed int (size of the pool).
286 // The 2-bit sub-types are:
287 // 00: constant pool
288 // 01: veneer pool
289 // 1110: long_data_record
290 // The format is: [2-bit data_type_tag] 1110 11
291 // signed intptr_t, lowest byte written first
292 // (except data_type code_target_with_id, which
293 // is followed by a signed int, not intptr_t.)
294 //
295 // 1111: long_pc_jump
296 // The format is:
297 // pc-jump: 00 1111 11,
298 // 00 [6 bits pc delta]
299 // or
300 // pc-jump (variable length):
301 // 01 1111 11,
302 // [7 bits data] 0
303 // ...
304 // [7 bits data] 1
305 // (Bits 6..31 of pc delta, with leading zeroes
306 // dropped, and last non-zero chunk tagged with 1.)
307
308
309 #ifdef DEBUG
310 const int kMaxStandardNonCompactModes = 14;
311 #endif
312
313 const int kTagBits = 2;
314 const int kTagMask = (1 << kTagBits) - 1;
315 const int kExtraTagBits = 4;
316 const int kLocatableTypeTagBits = 2;
317 const int kSmallDataBits = kBitsPerByte - kLocatableTypeTagBits;
318
319 const int kEmbeddedObjectTag = 0;
320 const int kCodeTargetTag = 1;
321 const int kLocatableTag = 2;
322 const int kDefaultTag = 3;
323
324 const int kPCJumpExtraTag = (1 << kExtraTagBits) - 1;
325
326 const int kSmallPCDeltaBits = kBitsPerByte - kTagBits;
327 const int kSmallPCDeltaMask = (1 << kSmallPCDeltaBits) - 1;
328 const int RelocInfo::kMaxSmallPCDelta = kSmallPCDeltaMask;
329
330 const int kVariableLengthPCJumpTopTag = 1;
331 const int kChunkBits = 7;
332 const int kChunkMask = (1 << kChunkBits) - 1;
333 const int kLastChunkTagBits = 1;
334 const int kLastChunkTagMask = 1;
335 const int kLastChunkTag = 1;
336
337
338 const int kDataJumpExtraTag = kPCJumpExtraTag - 1;
339
340 const int kCodeWithIdTag = 0;
341 const int kNonstatementPositionTag = 1;
342 const int kStatementPositionTag = 2;
343 const int kCommentTag = 3;
344
345 const int kPoolExtraTag = kPCJumpExtraTag - 2;
346 const int kConstPoolTag = 0;
347 const int kVeneerPoolTag = 1;
348
349
WriteVariableLengthPCJump(uint32_t pc_delta)350 uint32_t RelocInfoWriter::WriteVariableLengthPCJump(uint32_t pc_delta) {
351 // Return if the pc_delta can fit in kSmallPCDeltaBits bits.
352 // Otherwise write a variable length PC jump for the bits that do
353 // not fit in the kSmallPCDeltaBits bits.
354 if (is_uintn(pc_delta, kSmallPCDeltaBits)) return pc_delta;
355 WriteExtraTag(kPCJumpExtraTag, kVariableLengthPCJumpTopTag);
356 uint32_t pc_jump = pc_delta >> kSmallPCDeltaBits;
357 ASSERT(pc_jump > 0);
358 // Write kChunkBits size chunks of the pc_jump.
359 for (; pc_jump > 0; pc_jump = pc_jump >> kChunkBits) {
360 byte b = pc_jump & kChunkMask;
361 *--pos_ = b << kLastChunkTagBits;
362 }
363 // Tag the last chunk so it can be identified.
364 *pos_ = *pos_ | kLastChunkTag;
365 // Return the remaining kSmallPCDeltaBits of the pc_delta.
366 return pc_delta & kSmallPCDeltaMask;
367 }
368
369
WriteTaggedPC(uint32_t pc_delta,int tag)370 void RelocInfoWriter::WriteTaggedPC(uint32_t pc_delta, int tag) {
371 // Write a byte of tagged pc-delta, possibly preceded by var. length pc-jump.
372 pc_delta = WriteVariableLengthPCJump(pc_delta);
373 *--pos_ = pc_delta << kTagBits | tag;
374 }
375
376
WriteTaggedData(intptr_t data_delta,int tag)377 void RelocInfoWriter::WriteTaggedData(intptr_t data_delta, int tag) {
378 *--pos_ = static_cast<byte>(data_delta << kLocatableTypeTagBits | tag);
379 }
380
381
WriteExtraTag(int extra_tag,int top_tag)382 void RelocInfoWriter::WriteExtraTag(int extra_tag, int top_tag) {
383 *--pos_ = static_cast<int>(top_tag << (kTagBits + kExtraTagBits) |
384 extra_tag << kTagBits |
385 kDefaultTag);
386 }
387
388
WriteExtraTaggedPC(uint32_t pc_delta,int extra_tag)389 void RelocInfoWriter::WriteExtraTaggedPC(uint32_t pc_delta, int extra_tag) {
390 // Write two-byte tagged pc-delta, possibly preceded by var. length pc-jump.
391 pc_delta = WriteVariableLengthPCJump(pc_delta);
392 WriteExtraTag(extra_tag, 0);
393 *--pos_ = pc_delta;
394 }
395
396
WriteExtraTaggedIntData(int data_delta,int top_tag)397 void RelocInfoWriter::WriteExtraTaggedIntData(int data_delta, int top_tag) {
398 WriteExtraTag(kDataJumpExtraTag, top_tag);
399 for (int i = 0; i < kIntSize; i++) {
400 *--pos_ = static_cast<byte>(data_delta);
401 // Signed right shift is arithmetic shift. Tested in test-utils.cc.
402 data_delta = data_delta >> kBitsPerByte;
403 }
404 }
405
406
WriteExtraTaggedPoolData(int data,int pool_type)407 void RelocInfoWriter::WriteExtraTaggedPoolData(int data, int pool_type) {
408 WriteExtraTag(kPoolExtraTag, pool_type);
409 for (int i = 0; i < kIntSize; i++) {
410 *--pos_ = static_cast<byte>(data);
411 // Signed right shift is arithmetic shift. Tested in test-utils.cc.
412 data = data >> kBitsPerByte;
413 }
414 }
415
416
WriteExtraTaggedData(intptr_t data_delta,int top_tag)417 void RelocInfoWriter::WriteExtraTaggedData(intptr_t data_delta, int top_tag) {
418 WriteExtraTag(kDataJumpExtraTag, top_tag);
419 for (int i = 0; i < kIntptrSize; i++) {
420 *--pos_ = static_cast<byte>(data_delta);
421 // Signed right shift is arithmetic shift. Tested in test-utils.cc.
422 data_delta = data_delta >> kBitsPerByte;
423 }
424 }
425
426
Write(const RelocInfo * rinfo)427 void RelocInfoWriter::Write(const RelocInfo* rinfo) {
428 #ifdef DEBUG
429 byte* begin_pos = pos_;
430 #endif
431 ASSERT(rinfo->rmode() < RelocInfo::NUMBER_OF_MODES);
432 ASSERT(rinfo->pc() - last_pc_ >= 0);
433 ASSERT(RelocInfo::LAST_STANDARD_NONCOMPACT_ENUM - RelocInfo::LAST_COMPACT_ENUM
434 <= kMaxStandardNonCompactModes);
435 // Use unsigned delta-encoding for pc.
436 uint32_t pc_delta = static_cast<uint32_t>(rinfo->pc() - last_pc_);
437 RelocInfo::Mode rmode = rinfo->rmode();
438
439 // The two most common modes are given small tags, and usually fit in a byte.
440 if (rmode == RelocInfo::EMBEDDED_OBJECT) {
441 WriteTaggedPC(pc_delta, kEmbeddedObjectTag);
442 } else if (rmode == RelocInfo::CODE_TARGET) {
443 WriteTaggedPC(pc_delta, kCodeTargetTag);
444 ASSERT(begin_pos - pos_ <= RelocInfo::kMaxCallSize);
445 } else if (rmode == RelocInfo::CODE_TARGET_WITH_ID) {
446 // Use signed delta-encoding for id.
447 ASSERT(static_cast<int>(rinfo->data()) == rinfo->data());
448 int id_delta = static_cast<int>(rinfo->data()) - last_id_;
449 // Check if delta is small enough to fit in a tagged byte.
450 if (is_intn(id_delta, kSmallDataBits)) {
451 WriteTaggedPC(pc_delta, kLocatableTag);
452 WriteTaggedData(id_delta, kCodeWithIdTag);
453 } else {
454 // Otherwise, use costly encoding.
455 WriteExtraTaggedPC(pc_delta, kPCJumpExtraTag);
456 WriteExtraTaggedIntData(id_delta, kCodeWithIdTag);
457 }
458 last_id_ = static_cast<int>(rinfo->data());
459 } else if (RelocInfo::IsPosition(rmode)) {
460 // Use signed delta-encoding for position.
461 ASSERT(static_cast<int>(rinfo->data()) == rinfo->data());
462 int pos_delta = static_cast<int>(rinfo->data()) - last_position_;
463 int pos_type_tag = (rmode == RelocInfo::POSITION) ? kNonstatementPositionTag
464 : kStatementPositionTag;
465 // Check if delta is small enough to fit in a tagged byte.
466 if (is_intn(pos_delta, kSmallDataBits)) {
467 WriteTaggedPC(pc_delta, kLocatableTag);
468 WriteTaggedData(pos_delta, pos_type_tag);
469 } else {
470 // Otherwise, use costly encoding.
471 WriteExtraTaggedPC(pc_delta, kPCJumpExtraTag);
472 WriteExtraTaggedIntData(pos_delta, pos_type_tag);
473 }
474 last_position_ = static_cast<int>(rinfo->data());
475 } else if (RelocInfo::IsComment(rmode)) {
476 // Comments are normally not generated, so we use the costly encoding.
477 WriteExtraTaggedPC(pc_delta, kPCJumpExtraTag);
478 WriteExtraTaggedData(rinfo->data(), kCommentTag);
479 ASSERT(begin_pos - pos_ >= RelocInfo::kMinRelocCommentSize);
480 } else if (RelocInfo::IsConstPool(rmode) || RelocInfo::IsVeneerPool(rmode)) {
481 WriteExtraTaggedPC(pc_delta, kPCJumpExtraTag);
482 WriteExtraTaggedPoolData(static_cast<int>(rinfo->data()),
483 RelocInfo::IsConstPool(rmode) ? kConstPoolTag
484 : kVeneerPoolTag);
485 } else {
486 ASSERT(rmode > RelocInfo::LAST_COMPACT_ENUM);
487 int saved_mode = rmode - RelocInfo::LAST_COMPACT_ENUM;
488 // For all other modes we simply use the mode as the extra tag.
489 // None of these modes need a data component.
490 ASSERT(saved_mode < kPCJumpExtraTag && saved_mode < kDataJumpExtraTag);
491 WriteExtraTaggedPC(pc_delta, saved_mode);
492 }
493 last_pc_ = rinfo->pc();
494 #ifdef DEBUG
495 ASSERT(begin_pos - pos_ <= kMaxSize);
496 #endif
497 }
498
499
AdvanceGetTag()500 inline int RelocIterator::AdvanceGetTag() {
501 return *--pos_ & kTagMask;
502 }
503
504
GetExtraTag()505 inline int RelocIterator::GetExtraTag() {
506 return (*pos_ >> kTagBits) & ((1 << kExtraTagBits) - 1);
507 }
508
509
GetTopTag()510 inline int RelocIterator::GetTopTag() {
511 return *pos_ >> (kTagBits + kExtraTagBits);
512 }
513
514
ReadTaggedPC()515 inline void RelocIterator::ReadTaggedPC() {
516 rinfo_.pc_ += *pos_ >> kTagBits;
517 }
518
519
AdvanceReadPC()520 inline void RelocIterator::AdvanceReadPC() {
521 rinfo_.pc_ += *--pos_;
522 }
523
524
AdvanceReadId()525 void RelocIterator::AdvanceReadId() {
526 int x = 0;
527 for (int i = 0; i < kIntSize; i++) {
528 x |= static_cast<int>(*--pos_) << i * kBitsPerByte;
529 }
530 last_id_ += x;
531 rinfo_.data_ = last_id_;
532 }
533
534
AdvanceReadPoolData()535 void RelocIterator::AdvanceReadPoolData() {
536 int x = 0;
537 for (int i = 0; i < kIntSize; i++) {
538 x |= static_cast<int>(*--pos_) << i * kBitsPerByte;
539 }
540 rinfo_.data_ = x;
541 }
542
543
AdvanceReadPosition()544 void RelocIterator::AdvanceReadPosition() {
545 int x = 0;
546 for (int i = 0; i < kIntSize; i++) {
547 x |= static_cast<int>(*--pos_) << i * kBitsPerByte;
548 }
549 last_position_ += x;
550 rinfo_.data_ = last_position_;
551 }
552
553
AdvanceReadData()554 void RelocIterator::AdvanceReadData() {
555 intptr_t x = 0;
556 for (int i = 0; i < kIntptrSize; i++) {
557 x |= static_cast<intptr_t>(*--pos_) << i * kBitsPerByte;
558 }
559 rinfo_.data_ = x;
560 }
561
562
AdvanceReadVariableLengthPCJump()563 void RelocIterator::AdvanceReadVariableLengthPCJump() {
564 // Read the 32-kSmallPCDeltaBits most significant bits of the
565 // pc jump in kChunkBits bit chunks and shift them into place.
566 // Stop when the last chunk is encountered.
567 uint32_t pc_jump = 0;
568 for (int i = 0; i < kIntSize; i++) {
569 byte pc_jump_part = *--pos_;
570 pc_jump |= (pc_jump_part >> kLastChunkTagBits) << i * kChunkBits;
571 if ((pc_jump_part & kLastChunkTagMask) == 1) break;
572 }
573 // The least significant kSmallPCDeltaBits bits will be added
574 // later.
575 rinfo_.pc_ += pc_jump << kSmallPCDeltaBits;
576 }
577
578
GetLocatableTypeTag()579 inline int RelocIterator::GetLocatableTypeTag() {
580 return *pos_ & ((1 << kLocatableTypeTagBits) - 1);
581 }
582
583
ReadTaggedId()584 inline void RelocIterator::ReadTaggedId() {
585 int8_t signed_b = *pos_;
586 // Signed right shift is arithmetic shift. Tested in test-utils.cc.
587 last_id_ += signed_b >> kLocatableTypeTagBits;
588 rinfo_.data_ = last_id_;
589 }
590
591
ReadTaggedPosition()592 inline void RelocIterator::ReadTaggedPosition() {
593 int8_t signed_b = *pos_;
594 // Signed right shift is arithmetic shift. Tested in test-utils.cc.
595 last_position_ += signed_b >> kLocatableTypeTagBits;
596 rinfo_.data_ = last_position_;
597 }
598
599
GetPositionModeFromTag(int tag)600 static inline RelocInfo::Mode GetPositionModeFromTag(int tag) {
601 ASSERT(tag == kNonstatementPositionTag ||
602 tag == kStatementPositionTag);
603 return (tag == kNonstatementPositionTag) ?
604 RelocInfo::POSITION :
605 RelocInfo::STATEMENT_POSITION;
606 }
607
608
next()609 void RelocIterator::next() {
610 ASSERT(!done());
611 // Basically, do the opposite of RelocInfoWriter::Write.
612 // Reading of data is as far as possible avoided for unwanted modes,
613 // but we must always update the pc.
614 //
615 // We exit this loop by returning when we find a mode we want.
616 while (pos_ > end_) {
617 int tag = AdvanceGetTag();
618 if (tag == kEmbeddedObjectTag) {
619 ReadTaggedPC();
620 if (SetMode(RelocInfo::EMBEDDED_OBJECT)) return;
621 } else if (tag == kCodeTargetTag) {
622 ReadTaggedPC();
623 if (SetMode(RelocInfo::CODE_TARGET)) return;
624 } else if (tag == kLocatableTag) {
625 ReadTaggedPC();
626 Advance();
627 int locatable_tag = GetLocatableTypeTag();
628 if (locatable_tag == kCodeWithIdTag) {
629 if (SetMode(RelocInfo::CODE_TARGET_WITH_ID)) {
630 ReadTaggedId();
631 return;
632 }
633 } else {
634 // Compact encoding is never used for comments,
635 // so it must be a position.
636 ASSERT(locatable_tag == kNonstatementPositionTag ||
637 locatable_tag == kStatementPositionTag);
638 if (mode_mask_ & RelocInfo::kPositionMask) {
639 ReadTaggedPosition();
640 if (SetMode(GetPositionModeFromTag(locatable_tag))) return;
641 }
642 }
643 } else {
644 ASSERT(tag == kDefaultTag);
645 int extra_tag = GetExtraTag();
646 if (extra_tag == kPCJumpExtraTag) {
647 if (GetTopTag() == kVariableLengthPCJumpTopTag) {
648 AdvanceReadVariableLengthPCJump();
649 } else {
650 AdvanceReadPC();
651 }
652 } else if (extra_tag == kDataJumpExtraTag) {
653 int locatable_tag = GetTopTag();
654 if (locatable_tag == kCodeWithIdTag) {
655 if (SetMode(RelocInfo::CODE_TARGET_WITH_ID)) {
656 AdvanceReadId();
657 return;
658 }
659 Advance(kIntSize);
660 } else if (locatable_tag != kCommentTag) {
661 ASSERT(locatable_tag == kNonstatementPositionTag ||
662 locatable_tag == kStatementPositionTag);
663 if (mode_mask_ & RelocInfo::kPositionMask) {
664 AdvanceReadPosition();
665 if (SetMode(GetPositionModeFromTag(locatable_tag))) return;
666 } else {
667 Advance(kIntSize);
668 }
669 } else {
670 ASSERT(locatable_tag == kCommentTag);
671 if (SetMode(RelocInfo::COMMENT)) {
672 AdvanceReadData();
673 return;
674 }
675 Advance(kIntptrSize);
676 }
677 } else if (extra_tag == kPoolExtraTag) {
678 int pool_type = GetTopTag();
679 ASSERT(pool_type == kConstPoolTag || pool_type == kVeneerPoolTag);
680 RelocInfo::Mode rmode = (pool_type == kConstPoolTag) ?
681 RelocInfo::CONST_POOL : RelocInfo::VENEER_POOL;
682 if (SetMode(rmode)) {
683 AdvanceReadPoolData();
684 return;
685 }
686 Advance(kIntSize);
687 } else {
688 AdvanceReadPC();
689 int rmode = extra_tag + RelocInfo::LAST_COMPACT_ENUM;
690 if (SetMode(static_cast<RelocInfo::Mode>(rmode))) return;
691 }
692 }
693 }
694 if (code_age_sequence_ != NULL) {
695 byte* old_code_age_sequence = code_age_sequence_;
696 code_age_sequence_ = NULL;
697 if (SetMode(RelocInfo::CODE_AGE_SEQUENCE)) {
698 rinfo_.data_ = 0;
699 rinfo_.pc_ = old_code_age_sequence;
700 return;
701 }
702 }
703 done_ = true;
704 }
705
706
RelocIterator(Code * code,int mode_mask)707 RelocIterator::RelocIterator(Code* code, int mode_mask) {
708 rinfo_.host_ = code;
709 rinfo_.pc_ = code->instruction_start();
710 rinfo_.data_ = 0;
711 // Relocation info is read backwards.
712 pos_ = code->relocation_start() + code->relocation_size();
713 end_ = code->relocation_start();
714 done_ = false;
715 mode_mask_ = mode_mask;
716 last_id_ = 0;
717 last_position_ = 0;
718 byte* sequence = code->FindCodeAgeSequence();
719 // We get the isolate from the map, because at serialization time
720 // the code pointer has been cloned and isn't really in heap space.
721 Isolate* isolate = code->map()->GetIsolate();
722 if (sequence != NULL && !Code::IsYoungSequence(isolate, sequence)) {
723 code_age_sequence_ = sequence;
724 } else {
725 code_age_sequence_ = NULL;
726 }
727 if (mode_mask_ == 0) pos_ = end_;
728 next();
729 }
730
731
RelocIterator(const CodeDesc & desc,int mode_mask)732 RelocIterator::RelocIterator(const CodeDesc& desc, int mode_mask) {
733 rinfo_.pc_ = desc.buffer;
734 rinfo_.data_ = 0;
735 // Relocation info is read backwards.
736 pos_ = desc.buffer + desc.buffer_size;
737 end_ = pos_ - desc.reloc_size;
738 done_ = false;
739 mode_mask_ = mode_mask;
740 last_id_ = 0;
741 last_position_ = 0;
742 code_age_sequence_ = NULL;
743 if (mode_mask_ == 0) pos_ = end_;
744 next();
745 }
746
747
748 // -----------------------------------------------------------------------------
749 // Implementation of RelocInfo
750
751
752 #ifdef DEBUG
RequiresRelocation(const CodeDesc & desc)753 bool RelocInfo::RequiresRelocation(const CodeDesc& desc) {
754 // Ensure there are no code targets or embedded objects present in the
755 // deoptimization entries, they would require relocation after code
756 // generation.
757 int mode_mask = RelocInfo::kCodeTargetMask |
758 RelocInfo::ModeMask(RelocInfo::EMBEDDED_OBJECT) |
759 RelocInfo::ModeMask(RelocInfo::CELL) |
760 RelocInfo::kApplyMask;
761 RelocIterator it(desc, mode_mask);
762 return !it.done();
763 }
764 #endif
765
766
767 #ifdef ENABLE_DISASSEMBLER
RelocModeName(RelocInfo::Mode rmode)768 const char* RelocInfo::RelocModeName(RelocInfo::Mode rmode) {
769 switch (rmode) {
770 case RelocInfo::NONE32:
771 return "no reloc 32";
772 case RelocInfo::NONE64:
773 return "no reloc 64";
774 case RelocInfo::EMBEDDED_OBJECT:
775 return "embedded object";
776 case RelocInfo::CONSTRUCT_CALL:
777 return "code target (js construct call)";
778 case RelocInfo::DEBUG_BREAK:
779 return "debug break";
780 case RelocInfo::CODE_TARGET:
781 return "code target";
782 case RelocInfo::CODE_TARGET_WITH_ID:
783 return "code target with id";
784 case RelocInfo::CELL:
785 return "property cell";
786 case RelocInfo::RUNTIME_ENTRY:
787 return "runtime entry";
788 case RelocInfo::JS_RETURN:
789 return "js return";
790 case RelocInfo::COMMENT:
791 return "comment";
792 case RelocInfo::POSITION:
793 return "position";
794 case RelocInfo::STATEMENT_POSITION:
795 return "statement position";
796 case RelocInfo::EXTERNAL_REFERENCE:
797 return "external reference";
798 case RelocInfo::INTERNAL_REFERENCE:
799 return "internal reference";
800 case RelocInfo::CONST_POOL:
801 return "constant pool";
802 case RelocInfo::VENEER_POOL:
803 return "veneer pool";
804 case RelocInfo::DEBUG_BREAK_SLOT:
805 return "debug break slot";
806 case RelocInfo::CODE_AGE_SEQUENCE:
807 return "code_age_sequence";
808 case RelocInfo::NUMBER_OF_MODES:
809 UNREACHABLE();
810 return "number_of_modes";
811 }
812 return "unknown relocation type";
813 }
814
815
Print(Isolate * isolate,FILE * out)816 void RelocInfo::Print(Isolate* isolate, FILE* out) {
817 PrintF(out, "%p %s", pc_, RelocModeName(rmode_));
818 if (IsComment(rmode_)) {
819 PrintF(out, " (%s)", reinterpret_cast<char*>(data_));
820 } else if (rmode_ == EMBEDDED_OBJECT) {
821 PrintF(out, " (");
822 target_object()->ShortPrint(out);
823 PrintF(out, ")");
824 } else if (rmode_ == EXTERNAL_REFERENCE) {
825 ExternalReferenceEncoder ref_encoder(isolate);
826 PrintF(out, " (%s) (%p)",
827 ref_encoder.NameOfAddress(target_reference()),
828 target_reference());
829 } else if (IsCodeTarget(rmode_)) {
830 Code* code = Code::GetCodeFromTargetAddress(target_address());
831 PrintF(out, " (%s) (%p)", Code::Kind2String(code->kind()),
832 target_address());
833 if (rmode_ == CODE_TARGET_WITH_ID) {
834 PrintF(out, " (id=%d)", static_cast<int>(data_));
835 }
836 } else if (IsPosition(rmode_)) {
837 PrintF(out, " (%" V8_PTR_PREFIX "d)", data());
838 } else if (IsRuntimeEntry(rmode_) &&
839 isolate->deoptimizer_data() != NULL) {
840 // Depotimization bailouts are stored as runtime entries.
841 int id = Deoptimizer::GetDeoptimizationId(
842 isolate, target_address(), Deoptimizer::EAGER);
843 if (id != Deoptimizer::kNotDeoptimizationEntry) {
844 PrintF(out, " (deoptimization bailout %d)", id);
845 }
846 }
847
848 PrintF(out, "\n");
849 }
850 #endif // ENABLE_DISASSEMBLER
851
852
853 #ifdef VERIFY_HEAP
Verify(Isolate * isolate)854 void RelocInfo::Verify(Isolate* isolate) {
855 switch (rmode_) {
856 case EMBEDDED_OBJECT:
857 Object::VerifyPointer(target_object());
858 break;
859 case CELL:
860 Object::VerifyPointer(target_cell());
861 break;
862 case DEBUG_BREAK:
863 case CONSTRUCT_CALL:
864 case CODE_TARGET_WITH_ID:
865 case CODE_TARGET: {
866 // convert inline target address to code object
867 Address addr = target_address();
868 CHECK(addr != NULL);
869 // Check that we can find the right code object.
870 Code* code = Code::GetCodeFromTargetAddress(addr);
871 Object* found = isolate->FindCodeObject(addr);
872 CHECK(found->IsCode());
873 CHECK(code->address() == HeapObject::cast(found)->address());
874 break;
875 }
876 case RUNTIME_ENTRY:
877 case JS_RETURN:
878 case COMMENT:
879 case POSITION:
880 case STATEMENT_POSITION:
881 case EXTERNAL_REFERENCE:
882 case INTERNAL_REFERENCE:
883 case CONST_POOL:
884 case VENEER_POOL:
885 case DEBUG_BREAK_SLOT:
886 case NONE32:
887 case NONE64:
888 break;
889 case NUMBER_OF_MODES:
890 UNREACHABLE();
891 break;
892 case CODE_AGE_SEQUENCE:
893 ASSERT(Code::IsYoungSequence(isolate, pc_) || code_age_stub()->IsCode());
894 break;
895 }
896 }
897 #endif // VERIFY_HEAP
898
899
900 // -----------------------------------------------------------------------------
901 // Implementation of ExternalReference
902
SetUp()903 void ExternalReference::SetUp() {
904 double_constants.min_int = kMinInt;
905 double_constants.one_half = 0.5;
906 double_constants.minus_one_half = -0.5;
907 double_constants.minus_zero = -0.0;
908 double_constants.uint8_max_value = 255;
909 double_constants.zero = 0.0;
910 double_constants.canonical_non_hole_nan = OS::nan_value();
911 double_constants.the_hole_nan = BitCast<double>(kHoleNanInt64);
912 double_constants.negative_infinity = -V8_INFINITY;
913 double_constants.uint32_bias =
914 static_cast<double>(static_cast<uint32_t>(0xFFFFFFFF)) + 1;
915
916 math_exp_data_mutex = new Mutex();
917 }
918
919
InitializeMathExpData()920 void ExternalReference::InitializeMathExpData() {
921 // Early return?
922 if (math_exp_data_initialized) return;
923
924 LockGuard<Mutex> lock_guard(math_exp_data_mutex);
925 if (!math_exp_data_initialized) {
926 // If this is changed, generated code must be adapted too.
927 const int kTableSizeBits = 11;
928 const int kTableSize = 1 << kTableSizeBits;
929 const double kTableSizeDouble = static_cast<double>(kTableSize);
930
931 math_exp_constants_array = new double[9];
932 // Input values smaller than this always return 0.
933 math_exp_constants_array[0] = -708.39641853226408;
934 // Input values larger than this always return +Infinity.
935 math_exp_constants_array[1] = 709.78271289338397;
936 math_exp_constants_array[2] = V8_INFINITY;
937 // The rest is black magic. Do not attempt to understand it. It is
938 // loosely based on the "expd" function published at:
939 // http://herumi.blogspot.com/2011/08/fast-double-precision-exponential.html
940 const double constant3 = (1 << kTableSizeBits) / std::log(2.0);
941 math_exp_constants_array[3] = constant3;
942 math_exp_constants_array[4] =
943 static_cast<double>(static_cast<int64_t>(3) << 51);
944 math_exp_constants_array[5] = 1 / constant3;
945 math_exp_constants_array[6] = 3.0000000027955394;
946 math_exp_constants_array[7] = 0.16666666685227835;
947 math_exp_constants_array[8] = 1;
948
949 math_exp_log_table_array = new double[kTableSize];
950 for (int i = 0; i < kTableSize; i++) {
951 double value = std::pow(2, i / kTableSizeDouble);
952 uint64_t bits = BitCast<uint64_t, double>(value);
953 bits &= (static_cast<uint64_t>(1) << 52) - 1;
954 double mantissa = BitCast<double, uint64_t>(bits);
955 math_exp_log_table_array[i] = mantissa;
956 }
957
958 math_exp_data_initialized = true;
959 }
960 }
961
962
TearDownMathExpData()963 void ExternalReference::TearDownMathExpData() {
964 delete[] math_exp_constants_array;
965 delete[] math_exp_log_table_array;
966 delete math_exp_data_mutex;
967 }
968
969
ExternalReference(Builtins::CFunctionId id,Isolate * isolate)970 ExternalReference::ExternalReference(Builtins::CFunctionId id, Isolate* isolate)
971 : address_(Redirect(isolate, Builtins::c_function_address(id))) {}
972
973
ExternalReference(ApiFunction * fun,Type type=ExternalReference::BUILTIN_CALL,Isolate * isolate=NULL)974 ExternalReference::ExternalReference(
975 ApiFunction* fun,
976 Type type = ExternalReference::BUILTIN_CALL,
977 Isolate* isolate = NULL)
978 : address_(Redirect(isolate, fun->address(), type)) {}
979
980
ExternalReference(Builtins::Name name,Isolate * isolate)981 ExternalReference::ExternalReference(Builtins::Name name, Isolate* isolate)
982 : address_(isolate->builtins()->builtin_address(name)) {}
983
984
ExternalReference(Runtime::FunctionId id,Isolate * isolate)985 ExternalReference::ExternalReference(Runtime::FunctionId id,
986 Isolate* isolate)
987 : address_(Redirect(isolate, Runtime::FunctionForId(id)->entry)) {}
988
989
ExternalReference(const Runtime::Function * f,Isolate * isolate)990 ExternalReference::ExternalReference(const Runtime::Function* f,
991 Isolate* isolate)
992 : address_(Redirect(isolate, f->entry)) {}
993
994
isolate_address(Isolate * isolate)995 ExternalReference ExternalReference::isolate_address(Isolate* isolate) {
996 return ExternalReference(isolate);
997 }
998
999
ExternalReference(const IC_Utility & ic_utility,Isolate * isolate)1000 ExternalReference::ExternalReference(const IC_Utility& ic_utility,
1001 Isolate* isolate)
1002 : address_(Redirect(isolate, ic_utility.address())) {}
1003
1004
ExternalReference(StatsCounter * counter)1005 ExternalReference::ExternalReference(StatsCounter* counter)
1006 : address_(reinterpret_cast<Address>(counter->GetInternalPointer())) {}
1007
1008
ExternalReference(Isolate::AddressId id,Isolate * isolate)1009 ExternalReference::ExternalReference(Isolate::AddressId id, Isolate* isolate)
1010 : address_(isolate->get_address_from_id(id)) {}
1011
1012
ExternalReference(const SCTableReference & table_ref)1013 ExternalReference::ExternalReference(const SCTableReference& table_ref)
1014 : address_(table_ref.address()) {}
1015
1016
1017 ExternalReference ExternalReference::
incremental_marking_record_write_function(Isolate * isolate)1018 incremental_marking_record_write_function(Isolate* isolate) {
1019 return ExternalReference(Redirect(
1020 isolate,
1021 FUNCTION_ADDR(IncrementalMarking::RecordWriteFromCode)));
1022 }
1023
1024
1025 ExternalReference ExternalReference::
store_buffer_overflow_function(Isolate * isolate)1026 store_buffer_overflow_function(Isolate* isolate) {
1027 return ExternalReference(Redirect(
1028 isolate,
1029 FUNCTION_ADDR(StoreBuffer::StoreBufferOverflow)));
1030 }
1031
1032
flush_icache_function(Isolate * isolate)1033 ExternalReference ExternalReference::flush_icache_function(Isolate* isolate) {
1034 return ExternalReference(Redirect(isolate, FUNCTION_ADDR(CPU::FlushICache)));
1035 }
1036
1037
delete_handle_scope_extensions(Isolate * isolate)1038 ExternalReference ExternalReference::delete_handle_scope_extensions(
1039 Isolate* isolate) {
1040 return ExternalReference(Redirect(
1041 isolate,
1042 FUNCTION_ADDR(HandleScope::DeleteExtensions)));
1043 }
1044
1045
get_date_field_function(Isolate * isolate)1046 ExternalReference ExternalReference::get_date_field_function(
1047 Isolate* isolate) {
1048 return ExternalReference(Redirect(isolate, FUNCTION_ADDR(JSDate::GetField)));
1049 }
1050
1051
get_make_code_young_function(Isolate * isolate)1052 ExternalReference ExternalReference::get_make_code_young_function(
1053 Isolate* isolate) {
1054 return ExternalReference(Redirect(
1055 isolate, FUNCTION_ADDR(Code::MakeCodeAgeSequenceYoung)));
1056 }
1057
1058
get_mark_code_as_executed_function(Isolate * isolate)1059 ExternalReference ExternalReference::get_mark_code_as_executed_function(
1060 Isolate* isolate) {
1061 return ExternalReference(Redirect(
1062 isolate, FUNCTION_ADDR(Code::MarkCodeAsExecuted)));
1063 }
1064
1065
date_cache_stamp(Isolate * isolate)1066 ExternalReference ExternalReference::date_cache_stamp(Isolate* isolate) {
1067 return ExternalReference(isolate->date_cache()->stamp_address());
1068 }
1069
1070
stress_deopt_count(Isolate * isolate)1071 ExternalReference ExternalReference::stress_deopt_count(Isolate* isolate) {
1072 return ExternalReference(isolate->stress_deopt_count_address());
1073 }
1074
1075
new_deoptimizer_function(Isolate * isolate)1076 ExternalReference ExternalReference::new_deoptimizer_function(
1077 Isolate* isolate) {
1078 return ExternalReference(
1079 Redirect(isolate, FUNCTION_ADDR(Deoptimizer::New)));
1080 }
1081
1082
compute_output_frames_function(Isolate * isolate)1083 ExternalReference ExternalReference::compute_output_frames_function(
1084 Isolate* isolate) {
1085 return ExternalReference(
1086 Redirect(isolate, FUNCTION_ADDR(Deoptimizer::ComputeOutputFrames)));
1087 }
1088
1089
log_enter_external_function(Isolate * isolate)1090 ExternalReference ExternalReference::log_enter_external_function(
1091 Isolate* isolate) {
1092 return ExternalReference(
1093 Redirect(isolate, FUNCTION_ADDR(Logger::EnterExternal)));
1094 }
1095
1096
log_leave_external_function(Isolate * isolate)1097 ExternalReference ExternalReference::log_leave_external_function(
1098 Isolate* isolate) {
1099 return ExternalReference(
1100 Redirect(isolate, FUNCTION_ADDR(Logger::LeaveExternal)));
1101 }
1102
1103
keyed_lookup_cache_keys(Isolate * isolate)1104 ExternalReference ExternalReference::keyed_lookup_cache_keys(Isolate* isolate) {
1105 return ExternalReference(isolate->keyed_lookup_cache()->keys_address());
1106 }
1107
1108
keyed_lookup_cache_field_offsets(Isolate * isolate)1109 ExternalReference ExternalReference::keyed_lookup_cache_field_offsets(
1110 Isolate* isolate) {
1111 return ExternalReference(
1112 isolate->keyed_lookup_cache()->field_offsets_address());
1113 }
1114
1115
roots_array_start(Isolate * isolate)1116 ExternalReference ExternalReference::roots_array_start(Isolate* isolate) {
1117 return ExternalReference(isolate->heap()->roots_array_start());
1118 }
1119
1120
allocation_sites_list_address(Isolate * isolate)1121 ExternalReference ExternalReference::allocation_sites_list_address(
1122 Isolate* isolate) {
1123 return ExternalReference(isolate->heap()->allocation_sites_list_address());
1124 }
1125
1126
address_of_stack_limit(Isolate * isolate)1127 ExternalReference ExternalReference::address_of_stack_limit(Isolate* isolate) {
1128 return ExternalReference(isolate->stack_guard()->address_of_jslimit());
1129 }
1130
1131
address_of_real_stack_limit(Isolate * isolate)1132 ExternalReference ExternalReference::address_of_real_stack_limit(
1133 Isolate* isolate) {
1134 return ExternalReference(isolate->stack_guard()->address_of_real_jslimit());
1135 }
1136
1137
address_of_regexp_stack_limit(Isolate * isolate)1138 ExternalReference ExternalReference::address_of_regexp_stack_limit(
1139 Isolate* isolate) {
1140 return ExternalReference(isolate->regexp_stack()->limit_address());
1141 }
1142
1143
new_space_start(Isolate * isolate)1144 ExternalReference ExternalReference::new_space_start(Isolate* isolate) {
1145 return ExternalReference(isolate->heap()->NewSpaceStart());
1146 }
1147
1148
store_buffer_top(Isolate * isolate)1149 ExternalReference ExternalReference::store_buffer_top(Isolate* isolate) {
1150 return ExternalReference(isolate->heap()->store_buffer()->TopAddress());
1151 }
1152
1153
new_space_mask(Isolate * isolate)1154 ExternalReference ExternalReference::new_space_mask(Isolate* isolate) {
1155 return ExternalReference(reinterpret_cast<Address>(
1156 isolate->heap()->NewSpaceMask()));
1157 }
1158
1159
new_space_allocation_top_address(Isolate * isolate)1160 ExternalReference ExternalReference::new_space_allocation_top_address(
1161 Isolate* isolate) {
1162 return ExternalReference(isolate->heap()->NewSpaceAllocationTopAddress());
1163 }
1164
1165
heap_always_allocate_scope_depth(Isolate * isolate)1166 ExternalReference ExternalReference::heap_always_allocate_scope_depth(
1167 Isolate* isolate) {
1168 Heap* heap = isolate->heap();
1169 return ExternalReference(heap->always_allocate_scope_depth_address());
1170 }
1171
1172
new_space_allocation_limit_address(Isolate * isolate)1173 ExternalReference ExternalReference::new_space_allocation_limit_address(
1174 Isolate* isolate) {
1175 return ExternalReference(isolate->heap()->NewSpaceAllocationLimitAddress());
1176 }
1177
1178
old_pointer_space_allocation_top_address(Isolate * isolate)1179 ExternalReference ExternalReference::old_pointer_space_allocation_top_address(
1180 Isolate* isolate) {
1181 return ExternalReference(
1182 isolate->heap()->OldPointerSpaceAllocationTopAddress());
1183 }
1184
1185
old_pointer_space_allocation_limit_address(Isolate * isolate)1186 ExternalReference ExternalReference::old_pointer_space_allocation_limit_address(
1187 Isolate* isolate) {
1188 return ExternalReference(
1189 isolate->heap()->OldPointerSpaceAllocationLimitAddress());
1190 }
1191
1192
old_data_space_allocation_top_address(Isolate * isolate)1193 ExternalReference ExternalReference::old_data_space_allocation_top_address(
1194 Isolate* isolate) {
1195 return ExternalReference(
1196 isolate->heap()->OldDataSpaceAllocationTopAddress());
1197 }
1198
1199
old_data_space_allocation_limit_address(Isolate * isolate)1200 ExternalReference ExternalReference::old_data_space_allocation_limit_address(
1201 Isolate* isolate) {
1202 return ExternalReference(
1203 isolate->heap()->OldDataSpaceAllocationLimitAddress());
1204 }
1205
1206
handle_scope_level_address(Isolate * isolate)1207 ExternalReference ExternalReference::handle_scope_level_address(
1208 Isolate* isolate) {
1209 return ExternalReference(HandleScope::current_level_address(isolate));
1210 }
1211
1212
handle_scope_next_address(Isolate * isolate)1213 ExternalReference ExternalReference::handle_scope_next_address(
1214 Isolate* isolate) {
1215 return ExternalReference(HandleScope::current_next_address(isolate));
1216 }
1217
1218
handle_scope_limit_address(Isolate * isolate)1219 ExternalReference ExternalReference::handle_scope_limit_address(
1220 Isolate* isolate) {
1221 return ExternalReference(HandleScope::current_limit_address(isolate));
1222 }
1223
1224
scheduled_exception_address(Isolate * isolate)1225 ExternalReference ExternalReference::scheduled_exception_address(
1226 Isolate* isolate) {
1227 return ExternalReference(isolate->scheduled_exception_address());
1228 }
1229
1230
address_of_pending_message_obj(Isolate * isolate)1231 ExternalReference ExternalReference::address_of_pending_message_obj(
1232 Isolate* isolate) {
1233 return ExternalReference(isolate->pending_message_obj_address());
1234 }
1235
1236
address_of_has_pending_message(Isolate * isolate)1237 ExternalReference ExternalReference::address_of_has_pending_message(
1238 Isolate* isolate) {
1239 return ExternalReference(isolate->has_pending_message_address());
1240 }
1241
1242
address_of_pending_message_script(Isolate * isolate)1243 ExternalReference ExternalReference::address_of_pending_message_script(
1244 Isolate* isolate) {
1245 return ExternalReference(isolate->pending_message_script_address());
1246 }
1247
1248
address_of_min_int()1249 ExternalReference ExternalReference::address_of_min_int() {
1250 return ExternalReference(reinterpret_cast<void*>(&double_constants.min_int));
1251 }
1252
1253
address_of_one_half()1254 ExternalReference ExternalReference::address_of_one_half() {
1255 return ExternalReference(reinterpret_cast<void*>(&double_constants.one_half));
1256 }
1257
1258
address_of_minus_one_half()1259 ExternalReference ExternalReference::address_of_minus_one_half() {
1260 return ExternalReference(
1261 reinterpret_cast<void*>(&double_constants.minus_one_half));
1262 }
1263
1264
address_of_minus_zero()1265 ExternalReference ExternalReference::address_of_minus_zero() {
1266 return ExternalReference(
1267 reinterpret_cast<void*>(&double_constants.minus_zero));
1268 }
1269
1270
address_of_zero()1271 ExternalReference ExternalReference::address_of_zero() {
1272 return ExternalReference(reinterpret_cast<void*>(&double_constants.zero));
1273 }
1274
1275
address_of_uint8_max_value()1276 ExternalReference ExternalReference::address_of_uint8_max_value() {
1277 return ExternalReference(
1278 reinterpret_cast<void*>(&double_constants.uint8_max_value));
1279 }
1280
1281
address_of_negative_infinity()1282 ExternalReference ExternalReference::address_of_negative_infinity() {
1283 return ExternalReference(
1284 reinterpret_cast<void*>(&double_constants.negative_infinity));
1285 }
1286
1287
address_of_canonical_non_hole_nan()1288 ExternalReference ExternalReference::address_of_canonical_non_hole_nan() {
1289 return ExternalReference(
1290 reinterpret_cast<void*>(&double_constants.canonical_non_hole_nan));
1291 }
1292
1293
address_of_the_hole_nan()1294 ExternalReference ExternalReference::address_of_the_hole_nan() {
1295 return ExternalReference(
1296 reinterpret_cast<void*>(&double_constants.the_hole_nan));
1297 }
1298
1299
address_of_uint32_bias()1300 ExternalReference ExternalReference::address_of_uint32_bias() {
1301 return ExternalReference(
1302 reinterpret_cast<void*>(&double_constants.uint32_bias));
1303 }
1304
1305
is_profiling_address(Isolate * isolate)1306 ExternalReference ExternalReference::is_profiling_address(Isolate* isolate) {
1307 return ExternalReference(isolate->cpu_profiler()->is_profiling_address());
1308 }
1309
1310
invoke_function_callback(Isolate * isolate)1311 ExternalReference ExternalReference::invoke_function_callback(
1312 Isolate* isolate) {
1313 Address thunk_address = FUNCTION_ADDR(&InvokeFunctionCallback);
1314 ExternalReference::Type thunk_type = ExternalReference::PROFILING_API_CALL;
1315 ApiFunction thunk_fun(thunk_address);
1316 return ExternalReference(&thunk_fun, thunk_type, isolate);
1317 }
1318
1319
invoke_accessor_getter_callback(Isolate * isolate)1320 ExternalReference ExternalReference::invoke_accessor_getter_callback(
1321 Isolate* isolate) {
1322 Address thunk_address = FUNCTION_ADDR(&InvokeAccessorGetterCallback);
1323 ExternalReference::Type thunk_type =
1324 ExternalReference::PROFILING_GETTER_CALL;
1325 ApiFunction thunk_fun(thunk_address);
1326 return ExternalReference(&thunk_fun, thunk_type, isolate);
1327 }
1328
1329
1330 #ifndef V8_INTERPRETED_REGEXP
1331
re_check_stack_guard_state(Isolate * isolate)1332 ExternalReference ExternalReference::re_check_stack_guard_state(
1333 Isolate* isolate) {
1334 Address function;
1335 #if V8_TARGET_ARCH_X64
1336 function = FUNCTION_ADDR(RegExpMacroAssemblerX64::CheckStackGuardState);
1337 #elif V8_TARGET_ARCH_IA32
1338 function = FUNCTION_ADDR(RegExpMacroAssemblerIA32::CheckStackGuardState);
1339 #elif V8_TARGET_ARCH_ARM64
1340 function = FUNCTION_ADDR(RegExpMacroAssemblerARM64::CheckStackGuardState);
1341 #elif V8_TARGET_ARCH_ARM
1342 function = FUNCTION_ADDR(RegExpMacroAssemblerARM::CheckStackGuardState);
1343 #elif V8_TARGET_ARCH_MIPS
1344 function = FUNCTION_ADDR(RegExpMacroAssemblerMIPS::CheckStackGuardState);
1345 #elif V8_TARGET_ARCH_X87
1346 function = FUNCTION_ADDR(RegExpMacroAssemblerX87::CheckStackGuardState);
1347 #else
1348 UNREACHABLE();
1349 #endif
1350 return ExternalReference(Redirect(isolate, function));
1351 }
1352
1353
re_grow_stack(Isolate * isolate)1354 ExternalReference ExternalReference::re_grow_stack(Isolate* isolate) {
1355 return ExternalReference(
1356 Redirect(isolate, FUNCTION_ADDR(NativeRegExpMacroAssembler::GrowStack)));
1357 }
1358
re_case_insensitive_compare_uc16(Isolate * isolate)1359 ExternalReference ExternalReference::re_case_insensitive_compare_uc16(
1360 Isolate* isolate) {
1361 return ExternalReference(Redirect(
1362 isolate,
1363 FUNCTION_ADDR(NativeRegExpMacroAssembler::CaseInsensitiveCompareUC16)));
1364 }
1365
1366
re_word_character_map()1367 ExternalReference ExternalReference::re_word_character_map() {
1368 return ExternalReference(
1369 NativeRegExpMacroAssembler::word_character_map_address());
1370 }
1371
address_of_static_offsets_vector(Isolate * isolate)1372 ExternalReference ExternalReference::address_of_static_offsets_vector(
1373 Isolate* isolate) {
1374 return ExternalReference(
1375 reinterpret_cast<Address>(isolate->jsregexp_static_offsets_vector()));
1376 }
1377
address_of_regexp_stack_memory_address(Isolate * isolate)1378 ExternalReference ExternalReference::address_of_regexp_stack_memory_address(
1379 Isolate* isolate) {
1380 return ExternalReference(
1381 isolate->regexp_stack()->memory_address());
1382 }
1383
address_of_regexp_stack_memory_size(Isolate * isolate)1384 ExternalReference ExternalReference::address_of_regexp_stack_memory_size(
1385 Isolate* isolate) {
1386 return ExternalReference(isolate->regexp_stack()->memory_size_address());
1387 }
1388
1389 #endif // V8_INTERPRETED_REGEXP
1390
1391
math_log_double_function(Isolate * isolate)1392 ExternalReference ExternalReference::math_log_double_function(
1393 Isolate* isolate) {
1394 typedef double (*d2d)(double x);
1395 return ExternalReference(Redirect(isolate,
1396 FUNCTION_ADDR(static_cast<d2d>(std::log)),
1397 BUILTIN_FP_CALL));
1398 }
1399
1400
math_exp_constants(int constant_index)1401 ExternalReference ExternalReference::math_exp_constants(int constant_index) {
1402 ASSERT(math_exp_data_initialized);
1403 return ExternalReference(
1404 reinterpret_cast<void*>(math_exp_constants_array + constant_index));
1405 }
1406
1407
math_exp_log_table()1408 ExternalReference ExternalReference::math_exp_log_table() {
1409 ASSERT(math_exp_data_initialized);
1410 return ExternalReference(reinterpret_cast<void*>(math_exp_log_table_array));
1411 }
1412
1413
page_flags(Page * page)1414 ExternalReference ExternalReference::page_flags(Page* page) {
1415 return ExternalReference(reinterpret_cast<Address>(page) +
1416 MemoryChunk::kFlagsOffset);
1417 }
1418
1419
ForDeoptEntry(Address entry)1420 ExternalReference ExternalReference::ForDeoptEntry(Address entry) {
1421 return ExternalReference(entry);
1422 }
1423
1424
cpu_features()1425 ExternalReference ExternalReference::cpu_features() {
1426 ASSERT(CpuFeatures::initialized_);
1427 return ExternalReference(&CpuFeatures::supported_);
1428 }
1429
1430
debug_after_break_target_address(Isolate * isolate)1431 ExternalReference ExternalReference::debug_after_break_target_address(
1432 Isolate* isolate) {
1433 return ExternalReference(isolate->debug()->after_break_target_address());
1434 }
1435
1436
1437 ExternalReference
debug_restarter_frame_function_pointer_address(Isolate * isolate)1438 ExternalReference::debug_restarter_frame_function_pointer_address(
1439 Isolate* isolate) {
1440 return ExternalReference(
1441 isolate->debug()->restarter_frame_function_pointer_address());
1442 }
1443
1444
power_helper(double x,double y)1445 double power_helper(double x, double y) {
1446 int y_int = static_cast<int>(y);
1447 if (y == y_int) {
1448 return power_double_int(x, y_int); // Returns 1 if exponent is 0.
1449 }
1450 if (y == 0.5) {
1451 return (std::isinf(x)) ? V8_INFINITY
1452 : fast_sqrt(x + 0.0); // Convert -0 to +0.
1453 }
1454 if (y == -0.5) {
1455 return (std::isinf(x)) ? 0 : 1.0 / fast_sqrt(x + 0.0); // Convert -0 to +0.
1456 }
1457 return power_double_double(x, y);
1458 }
1459
1460
1461 // Helper function to compute x^y, where y is known to be an
1462 // integer. Uses binary decomposition to limit the number of
1463 // multiplications; see the discussion in "Hacker's Delight" by Henry
1464 // S. Warren, Jr., figure 11-6, page 213.
power_double_int(double x,int y)1465 double power_double_int(double x, int y) {
1466 double m = (y < 0) ? 1 / x : x;
1467 unsigned n = (y < 0) ? -y : y;
1468 double p = 1;
1469 while (n != 0) {
1470 if ((n & 1) != 0) p *= m;
1471 m *= m;
1472 if ((n & 2) != 0) p *= m;
1473 m *= m;
1474 n >>= 2;
1475 }
1476 return p;
1477 }
1478
1479
power_double_double(double x,double y)1480 double power_double_double(double x, double y) {
1481 #if defined(__MINGW64_VERSION_MAJOR) && \
1482 (!defined(__MINGW64_VERSION_RC) || __MINGW64_VERSION_RC < 1)
1483 // MinGW64 has a custom implementation for pow. This handles certain
1484 // special cases that are different.
1485 if ((x == 0.0 || std::isinf(x)) && std::isfinite(y)) {
1486 double f;
1487 if (std::modf(y, &f) != 0.0) {
1488 return ((x == 0.0) ^ (y > 0)) ? V8_INFINITY : 0;
1489 }
1490 }
1491
1492 if (x == 2.0) {
1493 int y_int = static_cast<int>(y);
1494 if (y == y_int) {
1495 return std::ldexp(1.0, y_int);
1496 }
1497 }
1498 #endif
1499
1500 // The checks for special cases can be dropped in ia32 because it has already
1501 // been done in generated code before bailing out here.
1502 if (std::isnan(y) || ((x == 1 || x == -1) && std::isinf(y))) {
1503 return OS::nan_value();
1504 }
1505 return std::pow(x, y);
1506 }
1507
1508
power_double_double_function(Isolate * isolate)1509 ExternalReference ExternalReference::power_double_double_function(
1510 Isolate* isolate) {
1511 return ExternalReference(Redirect(isolate,
1512 FUNCTION_ADDR(power_double_double),
1513 BUILTIN_FP_FP_CALL));
1514 }
1515
1516
power_double_int_function(Isolate * isolate)1517 ExternalReference ExternalReference::power_double_int_function(
1518 Isolate* isolate) {
1519 return ExternalReference(Redirect(isolate,
1520 FUNCTION_ADDR(power_double_int),
1521 BUILTIN_FP_INT_CALL));
1522 }
1523
1524
EvalComparison(Token::Value op,double op1,double op2)1525 bool EvalComparison(Token::Value op, double op1, double op2) {
1526 ASSERT(Token::IsCompareOp(op));
1527 switch (op) {
1528 case Token::EQ:
1529 case Token::EQ_STRICT: return (op1 == op2);
1530 case Token::NE: return (op1 != op2);
1531 case Token::LT: return (op1 < op2);
1532 case Token::GT: return (op1 > op2);
1533 case Token::LTE: return (op1 <= op2);
1534 case Token::GTE: return (op1 >= op2);
1535 default:
1536 UNREACHABLE();
1537 return false;
1538 }
1539 }
1540
1541
mod_two_doubles_operation(Isolate * isolate)1542 ExternalReference ExternalReference::mod_two_doubles_operation(
1543 Isolate* isolate) {
1544 return ExternalReference(Redirect(isolate,
1545 FUNCTION_ADDR(modulo),
1546 BUILTIN_FP_FP_CALL));
1547 }
1548
1549
debug_break(Isolate * isolate)1550 ExternalReference ExternalReference::debug_break(Isolate* isolate) {
1551 return ExternalReference(Redirect(isolate, FUNCTION_ADDR(Debug_Break)));
1552 }
1553
1554
debug_step_in_fp_address(Isolate * isolate)1555 ExternalReference ExternalReference::debug_step_in_fp_address(
1556 Isolate* isolate) {
1557 return ExternalReference(isolate->debug()->step_in_fp_addr());
1558 }
1559
1560
RecordPosition(int pos)1561 void PositionsRecorder::RecordPosition(int pos) {
1562 ASSERT(pos != RelocInfo::kNoPosition);
1563 ASSERT(pos >= 0);
1564 state_.current_position = pos;
1565 #ifdef ENABLE_GDB_JIT_INTERFACE
1566 if (gdbjit_lineinfo_ != NULL) {
1567 gdbjit_lineinfo_->SetPosition(assembler_->pc_offset(), pos, false);
1568 }
1569 #endif
1570 LOG_CODE_EVENT(assembler_->isolate(),
1571 CodeLinePosInfoAddPositionEvent(jit_handler_data_,
1572 assembler_->pc_offset(),
1573 pos));
1574 }
1575
1576
RecordStatementPosition(int pos)1577 void PositionsRecorder::RecordStatementPosition(int pos) {
1578 ASSERT(pos != RelocInfo::kNoPosition);
1579 ASSERT(pos >= 0);
1580 state_.current_statement_position = pos;
1581 #ifdef ENABLE_GDB_JIT_INTERFACE
1582 if (gdbjit_lineinfo_ != NULL) {
1583 gdbjit_lineinfo_->SetPosition(assembler_->pc_offset(), pos, true);
1584 }
1585 #endif
1586 LOG_CODE_EVENT(assembler_->isolate(),
1587 CodeLinePosInfoAddStatementPositionEvent(
1588 jit_handler_data_,
1589 assembler_->pc_offset(),
1590 pos));
1591 }
1592
1593
WriteRecordedPositions()1594 bool PositionsRecorder::WriteRecordedPositions() {
1595 bool written = false;
1596
1597 // Write the statement position if it is different from what was written last
1598 // time.
1599 if (state_.current_statement_position != state_.written_statement_position) {
1600 EnsureSpace ensure_space(assembler_);
1601 assembler_->RecordRelocInfo(RelocInfo::STATEMENT_POSITION,
1602 state_.current_statement_position);
1603 state_.written_statement_position = state_.current_statement_position;
1604 written = true;
1605 }
1606
1607 // Write the position if it is different from what was written last time and
1608 // also different from the written statement position.
1609 if (state_.current_position != state_.written_position &&
1610 state_.current_position != state_.written_statement_position) {
1611 EnsureSpace ensure_space(assembler_);
1612 assembler_->RecordRelocInfo(RelocInfo::POSITION, state_.current_position);
1613 state_.written_position = state_.current_position;
1614 written = true;
1615 }
1616
1617 // Return whether something was written.
1618 return written;
1619 }
1620
1621
MultiplierAndShift(int32_t d)1622 MultiplierAndShift::MultiplierAndShift(int32_t d) {
1623 ASSERT(d <= -2 || 2 <= d);
1624 const uint32_t two31 = 0x80000000;
1625 uint32_t ad = Abs(d);
1626 uint32_t t = two31 + (uint32_t(d) >> 31);
1627 uint32_t anc = t - 1 - t % ad; // Absolute value of nc.
1628 int32_t p = 31; // Init. p.
1629 uint32_t q1 = two31 / anc; // Init. q1 = 2**p/|nc|.
1630 uint32_t r1 = two31 - q1 * anc; // Init. r1 = rem(2**p, |nc|).
1631 uint32_t q2 = two31 / ad; // Init. q2 = 2**p/|d|.
1632 uint32_t r2 = two31 - q2 * ad; // Init. r2 = rem(2**p, |d|).
1633 uint32_t delta;
1634 do {
1635 p++;
1636 q1 *= 2; // Update q1 = 2**p/|nc|.
1637 r1 *= 2; // Update r1 = rem(2**p, |nc|).
1638 if (r1 >= anc) { // Must be an unsigned comparison here.
1639 q1++;
1640 r1 = r1 - anc;
1641 }
1642 q2 *= 2; // Update q2 = 2**p/|d|.
1643 r2 *= 2; // Update r2 = rem(2**p, |d|).
1644 if (r2 >= ad) { // Must be an unsigned comparison here.
1645 q2++;
1646 r2 = r2 - ad;
1647 }
1648 delta = ad - r2;
1649 } while (q1 < delta || (q1 == delta && r1 == 0));
1650 int32_t mul = static_cast<int32_t>(q2 + 1);
1651 multiplier_ = (d < 0) ? -mul : mul;
1652 shift_ = p - 32;
1653 }
1654
1655 } } // namespace v8::internal
1656