• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright (c) 1994-2006 Sun Microsystems Inc.
2 // All Rights Reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 // - Redistributions of source code must retain the above copyright notice,
9 // this list of conditions and the following disclaimer.
10 //
11 // - Redistribution in binary form must reproduce the above copyright
12 // notice, this list of conditions and the following disclaimer in the
13 // documentation and/or other materials provided with the distribution.
14 //
15 // - Neither the name of Sun Microsystems or the names of contributors may
16 // be used to endorse or promote products derived from this software without
17 // specific prior written permission.
18 //
19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
20 // IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
21 // THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
23 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
24 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
26 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
27 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
28 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
29 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 
31 // The original source code covered by the above license above has been
32 // modified significantly by Google Inc.
33 // Copyright 2012 the V8 project authors. All rights reserved.
34 
35 #include "src/assembler.h"
36 
37 #include <cmath>
38 #include "src/api.h"
39 #include "src/base/lazy-instance.h"
40 #include "src/builtins.h"
41 #include "src/counters.h"
42 #include "src/cpu.h"
43 #include "src/cpu-profiler.h"
44 #include "src/debug.h"
45 #include "src/deoptimizer.h"
46 #include "src/execution.h"
47 #include "src/ic.h"
48 #include "src/isolate-inl.h"
49 #include "src/jsregexp.h"
50 #include "src/platform.h"
51 #include "src/regexp-macro-assembler.h"
52 #include "src/regexp-stack.h"
53 #include "src/runtime.h"
54 #include "src/serialize.h"
55 #include "src/store-buffer-inl.h"
56 #include "src/stub-cache.h"
57 #include "src/token.h"
58 
59 #if V8_TARGET_ARCH_IA32
60 #include "src/ia32/assembler-ia32-inl.h"
61 #elif V8_TARGET_ARCH_X64
62 #include "src/x64/assembler-x64-inl.h"
63 #elif V8_TARGET_ARCH_ARM64
64 #include "src/arm64/assembler-arm64-inl.h"
65 #elif V8_TARGET_ARCH_ARM
66 #include "src/arm/assembler-arm-inl.h"
67 #elif V8_TARGET_ARCH_MIPS
68 #include "src/mips/assembler-mips-inl.h"
69 #elif V8_TARGET_ARCH_X87
70 #include "src/x87/assembler-x87-inl.h"
71 #else
72 #error "Unknown architecture."
73 #endif
74 
75 // Include native regexp-macro-assembler.
76 #ifndef V8_INTERPRETED_REGEXP
77 #if V8_TARGET_ARCH_IA32
78 #include "src/ia32/regexp-macro-assembler-ia32.h"
79 #elif V8_TARGET_ARCH_X64
80 #include "src/x64/regexp-macro-assembler-x64.h"
81 #elif V8_TARGET_ARCH_ARM64
82 #include "src/arm64/regexp-macro-assembler-arm64.h"
83 #elif V8_TARGET_ARCH_ARM
84 #include "src/arm/regexp-macro-assembler-arm.h"
85 #elif V8_TARGET_ARCH_MIPS
86 #include "src/mips/regexp-macro-assembler-mips.h"
87 #elif V8_TARGET_ARCH_X87
88 #include "src/x87/regexp-macro-assembler-x87.h"
89 #else  // Unknown architecture.
90 #error "Unknown architecture."
91 #endif  // Target architecture.
92 #endif  // V8_INTERPRETED_REGEXP
93 
94 namespace v8 {
95 namespace internal {
96 
97 // -----------------------------------------------------------------------------
98 // Common double constants.
99 
100 struct DoubleConstant BASE_EMBEDDED {
101   double min_int;
102   double one_half;
103   double minus_one_half;
104   double minus_zero;
105   double zero;
106   double uint8_max_value;
107   double negative_infinity;
108   double canonical_non_hole_nan;
109   double the_hole_nan;
110   double uint32_bias;
111 };
112 
113 static DoubleConstant double_constants;
114 
115 const char* const RelocInfo::kFillerCommentString = "DEOPTIMIZATION PADDING";
116 
117 static bool math_exp_data_initialized = false;
118 static Mutex* math_exp_data_mutex = NULL;
119 static double* math_exp_constants_array = NULL;
120 static double* math_exp_log_table_array = NULL;
121 
122 // -----------------------------------------------------------------------------
123 // Implementation of AssemblerBase
124 
AssemblerBase(Isolate * isolate,void * buffer,int buffer_size)125 AssemblerBase::AssemblerBase(Isolate* isolate, void* buffer, int buffer_size)
126     : isolate_(isolate),
127       jit_cookie_(0),
128       enabled_cpu_features_(0),
129       emit_debug_code_(FLAG_debug_code),
130       predictable_code_size_(false),
131       // We may use the assembler without an isolate.
132       serializer_enabled_(isolate && isolate->serializer_enabled()) {
133   if (FLAG_mask_constants_with_cookie && isolate != NULL)  {
134     jit_cookie_ = isolate->random_number_generator()->NextInt();
135   }
136   if (buffer == NULL) {
137     // Do our own buffer management.
138     if (buffer_size <= kMinimalBufferSize) {
139       buffer_size = kMinimalBufferSize;
140       if (isolate->assembler_spare_buffer() != NULL) {
141         buffer = isolate->assembler_spare_buffer();
142         isolate->set_assembler_spare_buffer(NULL);
143       }
144     }
145     if (buffer == NULL) buffer = NewArray<byte>(buffer_size);
146     own_buffer_ = true;
147   } else {
148     // Use externally provided buffer instead.
149     ASSERT(buffer_size > 0);
150     own_buffer_ = false;
151   }
152   buffer_ = static_cast<byte*>(buffer);
153   buffer_size_ = buffer_size;
154 
155   pc_ = buffer_;
156 }
157 
158 
~AssemblerBase()159 AssemblerBase::~AssemblerBase() {
160   if (own_buffer_) {
161     if (isolate() != NULL &&
162         isolate()->assembler_spare_buffer() == NULL &&
163         buffer_size_ == kMinimalBufferSize) {
164       isolate()->set_assembler_spare_buffer(buffer_);
165     } else {
166       DeleteArray(buffer_);
167     }
168   }
169 }
170 
171 
172 // -----------------------------------------------------------------------------
173 // Implementation of PredictableCodeSizeScope
174 
PredictableCodeSizeScope(AssemblerBase * assembler,int expected_size)175 PredictableCodeSizeScope::PredictableCodeSizeScope(AssemblerBase* assembler,
176                                                    int expected_size)
177     : assembler_(assembler),
178       expected_size_(expected_size),
179       start_offset_(assembler->pc_offset()),
180       old_value_(assembler->predictable_code_size()) {
181   assembler_->set_predictable_code_size(true);
182 }
183 
184 
~PredictableCodeSizeScope()185 PredictableCodeSizeScope::~PredictableCodeSizeScope() {
186   // TODO(svenpanne) Remove the 'if' when everything works.
187   if (expected_size_ >= 0) {
188     CHECK_EQ(expected_size_, assembler_->pc_offset() - start_offset_);
189   }
190   assembler_->set_predictable_code_size(old_value_);
191 }
192 
193 
194 // -----------------------------------------------------------------------------
195 // Implementation of CpuFeatureScope
196 
197 #ifdef DEBUG
CpuFeatureScope(AssemblerBase * assembler,CpuFeature f)198 CpuFeatureScope::CpuFeatureScope(AssemblerBase* assembler, CpuFeature f)
199     : assembler_(assembler) {
200   ASSERT(CpuFeatures::IsSupported(f));
201   old_enabled_ = assembler_->enabled_cpu_features();
202   uint64_t mask = static_cast<uint64_t>(1) << f;
203   // TODO(svenpanne) This special case below doesn't belong here!
204 #if V8_TARGET_ARCH_ARM
205   // ARMv7 is implied by VFP3.
206   if (f == VFP3) {
207     mask |= static_cast<uint64_t>(1) << ARMv7;
208   }
209 #endif
210   assembler_->set_enabled_cpu_features(old_enabled_ | mask);
211 }
212 
213 
~CpuFeatureScope()214 CpuFeatureScope::~CpuFeatureScope() {
215   assembler_->set_enabled_cpu_features(old_enabled_);
216 }
217 #endif
218 
219 
220 bool CpuFeatures::initialized_ = false;
221 unsigned CpuFeatures::supported_ = 0;
222 unsigned CpuFeatures::cache_line_size_ = 0;
223 
224 
225 // -----------------------------------------------------------------------------
226 // Implementation of Label
227 
pos() const228 int Label::pos() const {
229   if (pos_ < 0) return -pos_ - 1;
230   if (pos_ > 0) return  pos_ - 1;
231   UNREACHABLE();
232   return 0;
233 }
234 
235 
236 // -----------------------------------------------------------------------------
237 // Implementation of RelocInfoWriter and RelocIterator
238 //
239 // Relocation information is written backwards in memory, from high addresses
240 // towards low addresses, byte by byte.  Therefore, in the encodings listed
241 // below, the first byte listed it at the highest address, and successive
242 // bytes in the record are at progressively lower addresses.
243 //
244 // Encoding
245 //
246 // The most common modes are given single-byte encodings.  Also, it is
247 // easy to identify the type of reloc info and skip unwanted modes in
248 // an iteration.
249 //
250 // The encoding relies on the fact that there are fewer than 14
251 // different relocation modes using standard non-compact encoding.
252 //
253 // The first byte of a relocation record has a tag in its low 2 bits:
254 // Here are the record schemes, depending on the low tag and optional higher
255 // tags.
256 //
257 // Low tag:
258 //   00: embedded_object:      [6-bit pc delta] 00
259 //
260 //   01: code_target:          [6-bit pc delta] 01
261 //
262 //   10: short_data_record:    [6-bit pc delta] 10 followed by
263 //                             [6-bit data delta] [2-bit data type tag]
264 //
265 //   11: long_record           [2-bit high tag][4 bit middle_tag] 11
266 //                             followed by variable data depending on type.
267 //
268 //  2-bit data type tags, used in short_data_record and data_jump long_record:
269 //   code_target_with_id: 00
270 //   position:            01
271 //   statement_position:  10
272 //   comment:             11 (not used in short_data_record)
273 //
274 //  Long record format:
275 //    4-bit middle_tag:
276 //      0000 - 1100 : Short record for RelocInfo::Mode middle_tag + 2
277 //         (The middle_tag encodes rmode - RelocInfo::LAST_COMPACT_ENUM,
278 //          and is between 0000 and 1100)
279 //        The format is:
280 //                              00 [4 bit middle_tag] 11 followed by
281 //                              00 [6 bit pc delta]
282 //
283 //      1101: constant or veneer pool. Used only on ARM and ARM64 for now.
284 //        The format is:       [2-bit sub-type] 1101 11
285 //                             signed int (size of the pool).
286 //          The 2-bit sub-types are:
287 //            00: constant pool
288 //            01: veneer pool
289 //      1110: long_data_record
290 //        The format is:       [2-bit data_type_tag] 1110 11
291 //                             signed intptr_t, lowest byte written first
292 //                             (except data_type code_target_with_id, which
293 //                             is followed by a signed int, not intptr_t.)
294 //
295 //      1111: long_pc_jump
296 //        The format is:
297 //          pc-jump:             00 1111 11,
298 //                               00 [6 bits pc delta]
299 //        or
300 //          pc-jump (variable length):
301 //                               01 1111 11,
302 //                               [7 bits data] 0
303 //                                  ...
304 //                               [7 bits data] 1
305 //               (Bits 6..31 of pc delta, with leading zeroes
306 //                dropped, and last non-zero chunk tagged with 1.)
307 
308 
309 #ifdef DEBUG
310 const int kMaxStandardNonCompactModes = 14;
311 #endif
312 
313 const int kTagBits = 2;
314 const int kTagMask = (1 << kTagBits) - 1;
315 const int kExtraTagBits = 4;
316 const int kLocatableTypeTagBits = 2;
317 const int kSmallDataBits = kBitsPerByte - kLocatableTypeTagBits;
318 
319 const int kEmbeddedObjectTag = 0;
320 const int kCodeTargetTag = 1;
321 const int kLocatableTag = 2;
322 const int kDefaultTag = 3;
323 
324 const int kPCJumpExtraTag = (1 << kExtraTagBits) - 1;
325 
326 const int kSmallPCDeltaBits = kBitsPerByte - kTagBits;
327 const int kSmallPCDeltaMask = (1 << kSmallPCDeltaBits) - 1;
328 const int RelocInfo::kMaxSmallPCDelta = kSmallPCDeltaMask;
329 
330 const int kVariableLengthPCJumpTopTag = 1;
331 const int kChunkBits = 7;
332 const int kChunkMask = (1 << kChunkBits) - 1;
333 const int kLastChunkTagBits = 1;
334 const int kLastChunkTagMask = 1;
335 const int kLastChunkTag = 1;
336 
337 
338 const int kDataJumpExtraTag = kPCJumpExtraTag - 1;
339 
340 const int kCodeWithIdTag = 0;
341 const int kNonstatementPositionTag = 1;
342 const int kStatementPositionTag = 2;
343 const int kCommentTag = 3;
344 
345 const int kPoolExtraTag = kPCJumpExtraTag - 2;
346 const int kConstPoolTag = 0;
347 const int kVeneerPoolTag = 1;
348 
349 
WriteVariableLengthPCJump(uint32_t pc_delta)350 uint32_t RelocInfoWriter::WriteVariableLengthPCJump(uint32_t pc_delta) {
351   // Return if the pc_delta can fit in kSmallPCDeltaBits bits.
352   // Otherwise write a variable length PC jump for the bits that do
353   // not fit in the kSmallPCDeltaBits bits.
354   if (is_uintn(pc_delta, kSmallPCDeltaBits)) return pc_delta;
355   WriteExtraTag(kPCJumpExtraTag, kVariableLengthPCJumpTopTag);
356   uint32_t pc_jump = pc_delta >> kSmallPCDeltaBits;
357   ASSERT(pc_jump > 0);
358   // Write kChunkBits size chunks of the pc_jump.
359   for (; pc_jump > 0; pc_jump = pc_jump >> kChunkBits) {
360     byte b = pc_jump & kChunkMask;
361     *--pos_ = b << kLastChunkTagBits;
362   }
363   // Tag the last chunk so it can be identified.
364   *pos_ = *pos_ | kLastChunkTag;
365   // Return the remaining kSmallPCDeltaBits of the pc_delta.
366   return pc_delta & kSmallPCDeltaMask;
367 }
368 
369 
WriteTaggedPC(uint32_t pc_delta,int tag)370 void RelocInfoWriter::WriteTaggedPC(uint32_t pc_delta, int tag) {
371   // Write a byte of tagged pc-delta, possibly preceded by var. length pc-jump.
372   pc_delta = WriteVariableLengthPCJump(pc_delta);
373   *--pos_ = pc_delta << kTagBits | tag;
374 }
375 
376 
WriteTaggedData(intptr_t data_delta,int tag)377 void RelocInfoWriter::WriteTaggedData(intptr_t data_delta, int tag) {
378   *--pos_ = static_cast<byte>(data_delta << kLocatableTypeTagBits | tag);
379 }
380 
381 
WriteExtraTag(int extra_tag,int top_tag)382 void RelocInfoWriter::WriteExtraTag(int extra_tag, int top_tag) {
383   *--pos_ = static_cast<int>(top_tag << (kTagBits + kExtraTagBits) |
384                              extra_tag << kTagBits |
385                              kDefaultTag);
386 }
387 
388 
WriteExtraTaggedPC(uint32_t pc_delta,int extra_tag)389 void RelocInfoWriter::WriteExtraTaggedPC(uint32_t pc_delta, int extra_tag) {
390   // Write two-byte tagged pc-delta, possibly preceded by var. length pc-jump.
391   pc_delta = WriteVariableLengthPCJump(pc_delta);
392   WriteExtraTag(extra_tag, 0);
393   *--pos_ = pc_delta;
394 }
395 
396 
WriteExtraTaggedIntData(int data_delta,int top_tag)397 void RelocInfoWriter::WriteExtraTaggedIntData(int data_delta, int top_tag) {
398   WriteExtraTag(kDataJumpExtraTag, top_tag);
399   for (int i = 0; i < kIntSize; i++) {
400     *--pos_ = static_cast<byte>(data_delta);
401     // Signed right shift is arithmetic shift.  Tested in test-utils.cc.
402     data_delta = data_delta >> kBitsPerByte;
403   }
404 }
405 
406 
WriteExtraTaggedPoolData(int data,int pool_type)407 void RelocInfoWriter::WriteExtraTaggedPoolData(int data, int pool_type) {
408   WriteExtraTag(kPoolExtraTag, pool_type);
409   for (int i = 0; i < kIntSize; i++) {
410     *--pos_ = static_cast<byte>(data);
411     // Signed right shift is arithmetic shift.  Tested in test-utils.cc.
412     data = data >> kBitsPerByte;
413   }
414 }
415 
416 
WriteExtraTaggedData(intptr_t data_delta,int top_tag)417 void RelocInfoWriter::WriteExtraTaggedData(intptr_t data_delta, int top_tag) {
418   WriteExtraTag(kDataJumpExtraTag, top_tag);
419   for (int i = 0; i < kIntptrSize; i++) {
420     *--pos_ = static_cast<byte>(data_delta);
421     // Signed right shift is arithmetic shift.  Tested in test-utils.cc.
422     data_delta = data_delta >> kBitsPerByte;
423   }
424 }
425 
426 
Write(const RelocInfo * rinfo)427 void RelocInfoWriter::Write(const RelocInfo* rinfo) {
428 #ifdef DEBUG
429   byte* begin_pos = pos_;
430 #endif
431   ASSERT(rinfo->rmode() < RelocInfo::NUMBER_OF_MODES);
432   ASSERT(rinfo->pc() - last_pc_ >= 0);
433   ASSERT(RelocInfo::LAST_STANDARD_NONCOMPACT_ENUM - RelocInfo::LAST_COMPACT_ENUM
434          <= kMaxStandardNonCompactModes);
435   // Use unsigned delta-encoding for pc.
436   uint32_t pc_delta = static_cast<uint32_t>(rinfo->pc() - last_pc_);
437   RelocInfo::Mode rmode = rinfo->rmode();
438 
439   // The two most common modes are given small tags, and usually fit in a byte.
440   if (rmode == RelocInfo::EMBEDDED_OBJECT) {
441     WriteTaggedPC(pc_delta, kEmbeddedObjectTag);
442   } else if (rmode == RelocInfo::CODE_TARGET) {
443     WriteTaggedPC(pc_delta, kCodeTargetTag);
444     ASSERT(begin_pos - pos_ <= RelocInfo::kMaxCallSize);
445   } else if (rmode == RelocInfo::CODE_TARGET_WITH_ID) {
446     // Use signed delta-encoding for id.
447     ASSERT(static_cast<int>(rinfo->data()) == rinfo->data());
448     int id_delta = static_cast<int>(rinfo->data()) - last_id_;
449     // Check if delta is small enough to fit in a tagged byte.
450     if (is_intn(id_delta, kSmallDataBits)) {
451       WriteTaggedPC(pc_delta, kLocatableTag);
452       WriteTaggedData(id_delta, kCodeWithIdTag);
453     } else {
454       // Otherwise, use costly encoding.
455       WriteExtraTaggedPC(pc_delta, kPCJumpExtraTag);
456       WriteExtraTaggedIntData(id_delta, kCodeWithIdTag);
457     }
458     last_id_ = static_cast<int>(rinfo->data());
459   } else if (RelocInfo::IsPosition(rmode)) {
460     // Use signed delta-encoding for position.
461     ASSERT(static_cast<int>(rinfo->data()) == rinfo->data());
462     int pos_delta = static_cast<int>(rinfo->data()) - last_position_;
463     int pos_type_tag = (rmode == RelocInfo::POSITION) ? kNonstatementPositionTag
464                                                       : kStatementPositionTag;
465     // Check if delta is small enough to fit in a tagged byte.
466     if (is_intn(pos_delta, kSmallDataBits)) {
467       WriteTaggedPC(pc_delta, kLocatableTag);
468       WriteTaggedData(pos_delta, pos_type_tag);
469     } else {
470       // Otherwise, use costly encoding.
471       WriteExtraTaggedPC(pc_delta, kPCJumpExtraTag);
472       WriteExtraTaggedIntData(pos_delta, pos_type_tag);
473     }
474     last_position_ = static_cast<int>(rinfo->data());
475   } else if (RelocInfo::IsComment(rmode)) {
476     // Comments are normally not generated, so we use the costly encoding.
477     WriteExtraTaggedPC(pc_delta, kPCJumpExtraTag);
478     WriteExtraTaggedData(rinfo->data(), kCommentTag);
479     ASSERT(begin_pos - pos_ >= RelocInfo::kMinRelocCommentSize);
480   } else if (RelocInfo::IsConstPool(rmode) || RelocInfo::IsVeneerPool(rmode)) {
481       WriteExtraTaggedPC(pc_delta, kPCJumpExtraTag);
482       WriteExtraTaggedPoolData(static_cast<int>(rinfo->data()),
483                                RelocInfo::IsConstPool(rmode) ? kConstPoolTag
484                                                              : kVeneerPoolTag);
485   } else {
486     ASSERT(rmode > RelocInfo::LAST_COMPACT_ENUM);
487     int saved_mode = rmode - RelocInfo::LAST_COMPACT_ENUM;
488     // For all other modes we simply use the mode as the extra tag.
489     // None of these modes need a data component.
490     ASSERT(saved_mode < kPCJumpExtraTag && saved_mode < kDataJumpExtraTag);
491     WriteExtraTaggedPC(pc_delta, saved_mode);
492   }
493   last_pc_ = rinfo->pc();
494 #ifdef DEBUG
495   ASSERT(begin_pos - pos_ <= kMaxSize);
496 #endif
497 }
498 
499 
AdvanceGetTag()500 inline int RelocIterator::AdvanceGetTag() {
501   return *--pos_ & kTagMask;
502 }
503 
504 
GetExtraTag()505 inline int RelocIterator::GetExtraTag() {
506   return (*pos_ >> kTagBits) & ((1 << kExtraTagBits) - 1);
507 }
508 
509 
GetTopTag()510 inline int RelocIterator::GetTopTag() {
511   return *pos_ >> (kTagBits + kExtraTagBits);
512 }
513 
514 
ReadTaggedPC()515 inline void RelocIterator::ReadTaggedPC() {
516   rinfo_.pc_ += *pos_ >> kTagBits;
517 }
518 
519 
AdvanceReadPC()520 inline void RelocIterator::AdvanceReadPC() {
521   rinfo_.pc_ += *--pos_;
522 }
523 
524 
AdvanceReadId()525 void RelocIterator::AdvanceReadId() {
526   int x = 0;
527   for (int i = 0; i < kIntSize; i++) {
528     x |= static_cast<int>(*--pos_) << i * kBitsPerByte;
529   }
530   last_id_ += x;
531   rinfo_.data_ = last_id_;
532 }
533 
534 
AdvanceReadPoolData()535 void RelocIterator::AdvanceReadPoolData() {
536   int x = 0;
537   for (int i = 0; i < kIntSize; i++) {
538     x |= static_cast<int>(*--pos_) << i * kBitsPerByte;
539   }
540   rinfo_.data_ = x;
541 }
542 
543 
AdvanceReadPosition()544 void RelocIterator::AdvanceReadPosition() {
545   int x = 0;
546   for (int i = 0; i < kIntSize; i++) {
547     x |= static_cast<int>(*--pos_) << i * kBitsPerByte;
548   }
549   last_position_ += x;
550   rinfo_.data_ = last_position_;
551 }
552 
553 
AdvanceReadData()554 void RelocIterator::AdvanceReadData() {
555   intptr_t x = 0;
556   for (int i = 0; i < kIntptrSize; i++) {
557     x |= static_cast<intptr_t>(*--pos_) << i * kBitsPerByte;
558   }
559   rinfo_.data_ = x;
560 }
561 
562 
AdvanceReadVariableLengthPCJump()563 void RelocIterator::AdvanceReadVariableLengthPCJump() {
564   // Read the 32-kSmallPCDeltaBits most significant bits of the
565   // pc jump in kChunkBits bit chunks and shift them into place.
566   // Stop when the last chunk is encountered.
567   uint32_t pc_jump = 0;
568   for (int i = 0; i < kIntSize; i++) {
569     byte pc_jump_part = *--pos_;
570     pc_jump |= (pc_jump_part >> kLastChunkTagBits) << i * kChunkBits;
571     if ((pc_jump_part & kLastChunkTagMask) == 1) break;
572   }
573   // The least significant kSmallPCDeltaBits bits will be added
574   // later.
575   rinfo_.pc_ += pc_jump << kSmallPCDeltaBits;
576 }
577 
578 
GetLocatableTypeTag()579 inline int RelocIterator::GetLocatableTypeTag() {
580   return *pos_ & ((1 << kLocatableTypeTagBits) - 1);
581 }
582 
583 
ReadTaggedId()584 inline void RelocIterator::ReadTaggedId() {
585   int8_t signed_b = *pos_;
586   // Signed right shift is arithmetic shift.  Tested in test-utils.cc.
587   last_id_ += signed_b >> kLocatableTypeTagBits;
588   rinfo_.data_ = last_id_;
589 }
590 
591 
ReadTaggedPosition()592 inline void RelocIterator::ReadTaggedPosition() {
593   int8_t signed_b = *pos_;
594   // Signed right shift is arithmetic shift.  Tested in test-utils.cc.
595   last_position_ += signed_b >> kLocatableTypeTagBits;
596   rinfo_.data_ = last_position_;
597 }
598 
599 
GetPositionModeFromTag(int tag)600 static inline RelocInfo::Mode GetPositionModeFromTag(int tag) {
601   ASSERT(tag == kNonstatementPositionTag ||
602          tag == kStatementPositionTag);
603   return (tag == kNonstatementPositionTag) ?
604          RelocInfo::POSITION :
605          RelocInfo::STATEMENT_POSITION;
606 }
607 
608 
next()609 void RelocIterator::next() {
610   ASSERT(!done());
611   // Basically, do the opposite of RelocInfoWriter::Write.
612   // Reading of data is as far as possible avoided for unwanted modes,
613   // but we must always update the pc.
614   //
615   // We exit this loop by returning when we find a mode we want.
616   while (pos_ > end_) {
617     int tag = AdvanceGetTag();
618     if (tag == kEmbeddedObjectTag) {
619       ReadTaggedPC();
620       if (SetMode(RelocInfo::EMBEDDED_OBJECT)) return;
621     } else if (tag == kCodeTargetTag) {
622       ReadTaggedPC();
623       if (SetMode(RelocInfo::CODE_TARGET)) return;
624     } else if (tag == kLocatableTag) {
625       ReadTaggedPC();
626       Advance();
627       int locatable_tag = GetLocatableTypeTag();
628       if (locatable_tag == kCodeWithIdTag) {
629         if (SetMode(RelocInfo::CODE_TARGET_WITH_ID)) {
630           ReadTaggedId();
631           return;
632         }
633       } else {
634         // Compact encoding is never used for comments,
635         // so it must be a position.
636         ASSERT(locatable_tag == kNonstatementPositionTag ||
637                locatable_tag == kStatementPositionTag);
638         if (mode_mask_ & RelocInfo::kPositionMask) {
639           ReadTaggedPosition();
640           if (SetMode(GetPositionModeFromTag(locatable_tag))) return;
641         }
642       }
643     } else {
644       ASSERT(tag == kDefaultTag);
645       int extra_tag = GetExtraTag();
646       if (extra_tag == kPCJumpExtraTag) {
647         if (GetTopTag() == kVariableLengthPCJumpTopTag) {
648           AdvanceReadVariableLengthPCJump();
649         } else {
650           AdvanceReadPC();
651         }
652       } else if (extra_tag == kDataJumpExtraTag) {
653         int locatable_tag = GetTopTag();
654         if (locatable_tag == kCodeWithIdTag) {
655           if (SetMode(RelocInfo::CODE_TARGET_WITH_ID)) {
656             AdvanceReadId();
657             return;
658           }
659           Advance(kIntSize);
660         } else if (locatable_tag != kCommentTag) {
661           ASSERT(locatable_tag == kNonstatementPositionTag ||
662                  locatable_tag == kStatementPositionTag);
663           if (mode_mask_ & RelocInfo::kPositionMask) {
664             AdvanceReadPosition();
665             if (SetMode(GetPositionModeFromTag(locatable_tag))) return;
666           } else {
667             Advance(kIntSize);
668           }
669         } else {
670           ASSERT(locatable_tag == kCommentTag);
671           if (SetMode(RelocInfo::COMMENT)) {
672             AdvanceReadData();
673             return;
674           }
675           Advance(kIntptrSize);
676         }
677       } else if (extra_tag == kPoolExtraTag) {
678         int pool_type = GetTopTag();
679         ASSERT(pool_type == kConstPoolTag || pool_type == kVeneerPoolTag);
680         RelocInfo::Mode rmode = (pool_type == kConstPoolTag) ?
681           RelocInfo::CONST_POOL : RelocInfo::VENEER_POOL;
682         if (SetMode(rmode)) {
683           AdvanceReadPoolData();
684           return;
685         }
686         Advance(kIntSize);
687       } else {
688         AdvanceReadPC();
689         int rmode = extra_tag + RelocInfo::LAST_COMPACT_ENUM;
690         if (SetMode(static_cast<RelocInfo::Mode>(rmode))) return;
691       }
692     }
693   }
694   if (code_age_sequence_ != NULL) {
695     byte* old_code_age_sequence = code_age_sequence_;
696     code_age_sequence_ = NULL;
697     if (SetMode(RelocInfo::CODE_AGE_SEQUENCE)) {
698       rinfo_.data_ = 0;
699       rinfo_.pc_ = old_code_age_sequence;
700       return;
701     }
702   }
703   done_ = true;
704 }
705 
706 
RelocIterator(Code * code,int mode_mask)707 RelocIterator::RelocIterator(Code* code, int mode_mask) {
708   rinfo_.host_ = code;
709   rinfo_.pc_ = code->instruction_start();
710   rinfo_.data_ = 0;
711   // Relocation info is read backwards.
712   pos_ = code->relocation_start() + code->relocation_size();
713   end_ = code->relocation_start();
714   done_ = false;
715   mode_mask_ = mode_mask;
716   last_id_ = 0;
717   last_position_ = 0;
718   byte* sequence = code->FindCodeAgeSequence();
719   // We get the isolate from the map, because at serialization time
720   // the code pointer has been cloned and isn't really in heap space.
721   Isolate* isolate = code->map()->GetIsolate();
722   if (sequence != NULL && !Code::IsYoungSequence(isolate, sequence)) {
723     code_age_sequence_ = sequence;
724   } else {
725     code_age_sequence_ = NULL;
726   }
727   if (mode_mask_ == 0) pos_ = end_;
728   next();
729 }
730 
731 
RelocIterator(const CodeDesc & desc,int mode_mask)732 RelocIterator::RelocIterator(const CodeDesc& desc, int mode_mask) {
733   rinfo_.pc_ = desc.buffer;
734   rinfo_.data_ = 0;
735   // Relocation info is read backwards.
736   pos_ = desc.buffer + desc.buffer_size;
737   end_ = pos_ - desc.reloc_size;
738   done_ = false;
739   mode_mask_ = mode_mask;
740   last_id_ = 0;
741   last_position_ = 0;
742   code_age_sequence_ = NULL;
743   if (mode_mask_ == 0) pos_ = end_;
744   next();
745 }
746 
747 
748 // -----------------------------------------------------------------------------
749 // Implementation of RelocInfo
750 
751 
752 #ifdef DEBUG
RequiresRelocation(const CodeDesc & desc)753 bool RelocInfo::RequiresRelocation(const CodeDesc& desc) {
754   // Ensure there are no code targets or embedded objects present in the
755   // deoptimization entries, they would require relocation after code
756   // generation.
757   int mode_mask = RelocInfo::kCodeTargetMask |
758                   RelocInfo::ModeMask(RelocInfo::EMBEDDED_OBJECT) |
759                   RelocInfo::ModeMask(RelocInfo::CELL) |
760                   RelocInfo::kApplyMask;
761   RelocIterator it(desc, mode_mask);
762   return !it.done();
763 }
764 #endif
765 
766 
767 #ifdef ENABLE_DISASSEMBLER
RelocModeName(RelocInfo::Mode rmode)768 const char* RelocInfo::RelocModeName(RelocInfo::Mode rmode) {
769   switch (rmode) {
770     case RelocInfo::NONE32:
771       return "no reloc 32";
772     case RelocInfo::NONE64:
773       return "no reloc 64";
774     case RelocInfo::EMBEDDED_OBJECT:
775       return "embedded object";
776     case RelocInfo::CONSTRUCT_CALL:
777       return "code target (js construct call)";
778     case RelocInfo::DEBUG_BREAK:
779       return "debug break";
780     case RelocInfo::CODE_TARGET:
781       return "code target";
782     case RelocInfo::CODE_TARGET_WITH_ID:
783       return "code target with id";
784     case RelocInfo::CELL:
785       return "property cell";
786     case RelocInfo::RUNTIME_ENTRY:
787       return "runtime entry";
788     case RelocInfo::JS_RETURN:
789       return "js return";
790     case RelocInfo::COMMENT:
791       return "comment";
792     case RelocInfo::POSITION:
793       return "position";
794     case RelocInfo::STATEMENT_POSITION:
795       return "statement position";
796     case RelocInfo::EXTERNAL_REFERENCE:
797       return "external reference";
798     case RelocInfo::INTERNAL_REFERENCE:
799       return "internal reference";
800     case RelocInfo::CONST_POOL:
801       return "constant pool";
802     case RelocInfo::VENEER_POOL:
803       return "veneer pool";
804     case RelocInfo::DEBUG_BREAK_SLOT:
805       return "debug break slot";
806     case RelocInfo::CODE_AGE_SEQUENCE:
807       return "code_age_sequence";
808     case RelocInfo::NUMBER_OF_MODES:
809       UNREACHABLE();
810       return "number_of_modes";
811   }
812   return "unknown relocation type";
813 }
814 
815 
Print(Isolate * isolate,FILE * out)816 void RelocInfo::Print(Isolate* isolate, FILE* out) {
817   PrintF(out, "%p  %s", pc_, RelocModeName(rmode_));
818   if (IsComment(rmode_)) {
819     PrintF(out, "  (%s)", reinterpret_cast<char*>(data_));
820   } else if (rmode_ == EMBEDDED_OBJECT) {
821     PrintF(out, "  (");
822     target_object()->ShortPrint(out);
823     PrintF(out, ")");
824   } else if (rmode_ == EXTERNAL_REFERENCE) {
825     ExternalReferenceEncoder ref_encoder(isolate);
826     PrintF(out, " (%s)  (%p)",
827            ref_encoder.NameOfAddress(target_reference()),
828            target_reference());
829   } else if (IsCodeTarget(rmode_)) {
830     Code* code = Code::GetCodeFromTargetAddress(target_address());
831     PrintF(out, " (%s)  (%p)", Code::Kind2String(code->kind()),
832            target_address());
833     if (rmode_ == CODE_TARGET_WITH_ID) {
834       PrintF(out, " (id=%d)", static_cast<int>(data_));
835     }
836   } else if (IsPosition(rmode_)) {
837     PrintF(out, "  (%" V8_PTR_PREFIX "d)", data());
838   } else if (IsRuntimeEntry(rmode_) &&
839              isolate->deoptimizer_data() != NULL) {
840     // Depotimization bailouts are stored as runtime entries.
841     int id = Deoptimizer::GetDeoptimizationId(
842         isolate, target_address(), Deoptimizer::EAGER);
843     if (id != Deoptimizer::kNotDeoptimizationEntry) {
844       PrintF(out, "  (deoptimization bailout %d)", id);
845     }
846   }
847 
848   PrintF(out, "\n");
849 }
850 #endif  // ENABLE_DISASSEMBLER
851 
852 
853 #ifdef VERIFY_HEAP
Verify(Isolate * isolate)854 void RelocInfo::Verify(Isolate* isolate) {
855   switch (rmode_) {
856     case EMBEDDED_OBJECT:
857       Object::VerifyPointer(target_object());
858       break;
859     case CELL:
860       Object::VerifyPointer(target_cell());
861       break;
862     case DEBUG_BREAK:
863     case CONSTRUCT_CALL:
864     case CODE_TARGET_WITH_ID:
865     case CODE_TARGET: {
866       // convert inline target address to code object
867       Address addr = target_address();
868       CHECK(addr != NULL);
869       // Check that we can find the right code object.
870       Code* code = Code::GetCodeFromTargetAddress(addr);
871       Object* found = isolate->FindCodeObject(addr);
872       CHECK(found->IsCode());
873       CHECK(code->address() == HeapObject::cast(found)->address());
874       break;
875     }
876     case RUNTIME_ENTRY:
877     case JS_RETURN:
878     case COMMENT:
879     case POSITION:
880     case STATEMENT_POSITION:
881     case EXTERNAL_REFERENCE:
882     case INTERNAL_REFERENCE:
883     case CONST_POOL:
884     case VENEER_POOL:
885     case DEBUG_BREAK_SLOT:
886     case NONE32:
887     case NONE64:
888       break;
889     case NUMBER_OF_MODES:
890       UNREACHABLE();
891       break;
892     case CODE_AGE_SEQUENCE:
893       ASSERT(Code::IsYoungSequence(isolate, pc_) || code_age_stub()->IsCode());
894       break;
895   }
896 }
897 #endif  // VERIFY_HEAP
898 
899 
900 // -----------------------------------------------------------------------------
901 // Implementation of ExternalReference
902 
SetUp()903 void ExternalReference::SetUp() {
904   double_constants.min_int = kMinInt;
905   double_constants.one_half = 0.5;
906   double_constants.minus_one_half = -0.5;
907   double_constants.minus_zero = -0.0;
908   double_constants.uint8_max_value = 255;
909   double_constants.zero = 0.0;
910   double_constants.canonical_non_hole_nan = OS::nan_value();
911   double_constants.the_hole_nan = BitCast<double>(kHoleNanInt64);
912   double_constants.negative_infinity = -V8_INFINITY;
913   double_constants.uint32_bias =
914     static_cast<double>(static_cast<uint32_t>(0xFFFFFFFF)) + 1;
915 
916   math_exp_data_mutex = new Mutex();
917 }
918 
919 
InitializeMathExpData()920 void ExternalReference::InitializeMathExpData() {
921   // Early return?
922   if (math_exp_data_initialized) return;
923 
924   LockGuard<Mutex> lock_guard(math_exp_data_mutex);
925   if (!math_exp_data_initialized) {
926     // If this is changed, generated code must be adapted too.
927     const int kTableSizeBits = 11;
928     const int kTableSize = 1 << kTableSizeBits;
929     const double kTableSizeDouble = static_cast<double>(kTableSize);
930 
931     math_exp_constants_array = new double[9];
932     // Input values smaller than this always return 0.
933     math_exp_constants_array[0] = -708.39641853226408;
934     // Input values larger than this always return +Infinity.
935     math_exp_constants_array[1] = 709.78271289338397;
936     math_exp_constants_array[2] = V8_INFINITY;
937     // The rest is black magic. Do not attempt to understand it. It is
938     // loosely based on the "expd" function published at:
939     // http://herumi.blogspot.com/2011/08/fast-double-precision-exponential.html
940     const double constant3 = (1 << kTableSizeBits) / std::log(2.0);
941     math_exp_constants_array[3] = constant3;
942     math_exp_constants_array[4] =
943         static_cast<double>(static_cast<int64_t>(3) << 51);
944     math_exp_constants_array[5] = 1 / constant3;
945     math_exp_constants_array[6] = 3.0000000027955394;
946     math_exp_constants_array[7] = 0.16666666685227835;
947     math_exp_constants_array[8] = 1;
948 
949     math_exp_log_table_array = new double[kTableSize];
950     for (int i = 0; i < kTableSize; i++) {
951       double value = std::pow(2, i / kTableSizeDouble);
952       uint64_t bits = BitCast<uint64_t, double>(value);
953       bits &= (static_cast<uint64_t>(1) << 52) - 1;
954       double mantissa = BitCast<double, uint64_t>(bits);
955       math_exp_log_table_array[i] = mantissa;
956     }
957 
958     math_exp_data_initialized = true;
959   }
960 }
961 
962 
TearDownMathExpData()963 void ExternalReference::TearDownMathExpData() {
964   delete[] math_exp_constants_array;
965   delete[] math_exp_log_table_array;
966   delete math_exp_data_mutex;
967 }
968 
969 
ExternalReference(Builtins::CFunctionId id,Isolate * isolate)970 ExternalReference::ExternalReference(Builtins::CFunctionId id, Isolate* isolate)
971   : address_(Redirect(isolate, Builtins::c_function_address(id))) {}
972 
973 
ExternalReference(ApiFunction * fun,Type type=ExternalReference::BUILTIN_CALL,Isolate * isolate=NULL)974 ExternalReference::ExternalReference(
975     ApiFunction* fun,
976     Type type = ExternalReference::BUILTIN_CALL,
977     Isolate* isolate = NULL)
978   : address_(Redirect(isolate, fun->address(), type)) {}
979 
980 
ExternalReference(Builtins::Name name,Isolate * isolate)981 ExternalReference::ExternalReference(Builtins::Name name, Isolate* isolate)
982   : address_(isolate->builtins()->builtin_address(name)) {}
983 
984 
ExternalReference(Runtime::FunctionId id,Isolate * isolate)985 ExternalReference::ExternalReference(Runtime::FunctionId id,
986                                      Isolate* isolate)
987   : address_(Redirect(isolate, Runtime::FunctionForId(id)->entry)) {}
988 
989 
ExternalReference(const Runtime::Function * f,Isolate * isolate)990 ExternalReference::ExternalReference(const Runtime::Function* f,
991                                      Isolate* isolate)
992   : address_(Redirect(isolate, f->entry)) {}
993 
994 
isolate_address(Isolate * isolate)995 ExternalReference ExternalReference::isolate_address(Isolate* isolate) {
996   return ExternalReference(isolate);
997 }
998 
999 
ExternalReference(const IC_Utility & ic_utility,Isolate * isolate)1000 ExternalReference::ExternalReference(const IC_Utility& ic_utility,
1001                                      Isolate* isolate)
1002   : address_(Redirect(isolate, ic_utility.address())) {}
1003 
1004 
ExternalReference(StatsCounter * counter)1005 ExternalReference::ExternalReference(StatsCounter* counter)
1006   : address_(reinterpret_cast<Address>(counter->GetInternalPointer())) {}
1007 
1008 
ExternalReference(Isolate::AddressId id,Isolate * isolate)1009 ExternalReference::ExternalReference(Isolate::AddressId id, Isolate* isolate)
1010   : address_(isolate->get_address_from_id(id)) {}
1011 
1012 
ExternalReference(const SCTableReference & table_ref)1013 ExternalReference::ExternalReference(const SCTableReference& table_ref)
1014   : address_(table_ref.address()) {}
1015 
1016 
1017 ExternalReference ExternalReference::
incremental_marking_record_write_function(Isolate * isolate)1018     incremental_marking_record_write_function(Isolate* isolate) {
1019   return ExternalReference(Redirect(
1020       isolate,
1021       FUNCTION_ADDR(IncrementalMarking::RecordWriteFromCode)));
1022 }
1023 
1024 
1025 ExternalReference ExternalReference::
store_buffer_overflow_function(Isolate * isolate)1026     store_buffer_overflow_function(Isolate* isolate) {
1027   return ExternalReference(Redirect(
1028       isolate,
1029       FUNCTION_ADDR(StoreBuffer::StoreBufferOverflow)));
1030 }
1031 
1032 
flush_icache_function(Isolate * isolate)1033 ExternalReference ExternalReference::flush_icache_function(Isolate* isolate) {
1034   return ExternalReference(Redirect(isolate, FUNCTION_ADDR(CPU::FlushICache)));
1035 }
1036 
1037 
delete_handle_scope_extensions(Isolate * isolate)1038 ExternalReference ExternalReference::delete_handle_scope_extensions(
1039     Isolate* isolate) {
1040   return ExternalReference(Redirect(
1041       isolate,
1042       FUNCTION_ADDR(HandleScope::DeleteExtensions)));
1043 }
1044 
1045 
get_date_field_function(Isolate * isolate)1046 ExternalReference ExternalReference::get_date_field_function(
1047     Isolate* isolate) {
1048   return ExternalReference(Redirect(isolate, FUNCTION_ADDR(JSDate::GetField)));
1049 }
1050 
1051 
get_make_code_young_function(Isolate * isolate)1052 ExternalReference ExternalReference::get_make_code_young_function(
1053     Isolate* isolate) {
1054   return ExternalReference(Redirect(
1055       isolate, FUNCTION_ADDR(Code::MakeCodeAgeSequenceYoung)));
1056 }
1057 
1058 
get_mark_code_as_executed_function(Isolate * isolate)1059 ExternalReference ExternalReference::get_mark_code_as_executed_function(
1060     Isolate* isolate) {
1061   return ExternalReference(Redirect(
1062       isolate, FUNCTION_ADDR(Code::MarkCodeAsExecuted)));
1063 }
1064 
1065 
date_cache_stamp(Isolate * isolate)1066 ExternalReference ExternalReference::date_cache_stamp(Isolate* isolate) {
1067   return ExternalReference(isolate->date_cache()->stamp_address());
1068 }
1069 
1070 
stress_deopt_count(Isolate * isolate)1071 ExternalReference ExternalReference::stress_deopt_count(Isolate* isolate) {
1072   return ExternalReference(isolate->stress_deopt_count_address());
1073 }
1074 
1075 
new_deoptimizer_function(Isolate * isolate)1076 ExternalReference ExternalReference::new_deoptimizer_function(
1077     Isolate* isolate) {
1078   return ExternalReference(
1079       Redirect(isolate, FUNCTION_ADDR(Deoptimizer::New)));
1080 }
1081 
1082 
compute_output_frames_function(Isolate * isolate)1083 ExternalReference ExternalReference::compute_output_frames_function(
1084     Isolate* isolate) {
1085   return ExternalReference(
1086       Redirect(isolate, FUNCTION_ADDR(Deoptimizer::ComputeOutputFrames)));
1087 }
1088 
1089 
log_enter_external_function(Isolate * isolate)1090 ExternalReference ExternalReference::log_enter_external_function(
1091     Isolate* isolate) {
1092   return ExternalReference(
1093       Redirect(isolate, FUNCTION_ADDR(Logger::EnterExternal)));
1094 }
1095 
1096 
log_leave_external_function(Isolate * isolate)1097 ExternalReference ExternalReference::log_leave_external_function(
1098     Isolate* isolate) {
1099   return ExternalReference(
1100       Redirect(isolate, FUNCTION_ADDR(Logger::LeaveExternal)));
1101 }
1102 
1103 
keyed_lookup_cache_keys(Isolate * isolate)1104 ExternalReference ExternalReference::keyed_lookup_cache_keys(Isolate* isolate) {
1105   return ExternalReference(isolate->keyed_lookup_cache()->keys_address());
1106 }
1107 
1108 
keyed_lookup_cache_field_offsets(Isolate * isolate)1109 ExternalReference ExternalReference::keyed_lookup_cache_field_offsets(
1110     Isolate* isolate) {
1111   return ExternalReference(
1112       isolate->keyed_lookup_cache()->field_offsets_address());
1113 }
1114 
1115 
roots_array_start(Isolate * isolate)1116 ExternalReference ExternalReference::roots_array_start(Isolate* isolate) {
1117   return ExternalReference(isolate->heap()->roots_array_start());
1118 }
1119 
1120 
allocation_sites_list_address(Isolate * isolate)1121 ExternalReference ExternalReference::allocation_sites_list_address(
1122     Isolate* isolate) {
1123   return ExternalReference(isolate->heap()->allocation_sites_list_address());
1124 }
1125 
1126 
address_of_stack_limit(Isolate * isolate)1127 ExternalReference ExternalReference::address_of_stack_limit(Isolate* isolate) {
1128   return ExternalReference(isolate->stack_guard()->address_of_jslimit());
1129 }
1130 
1131 
address_of_real_stack_limit(Isolate * isolate)1132 ExternalReference ExternalReference::address_of_real_stack_limit(
1133     Isolate* isolate) {
1134   return ExternalReference(isolate->stack_guard()->address_of_real_jslimit());
1135 }
1136 
1137 
address_of_regexp_stack_limit(Isolate * isolate)1138 ExternalReference ExternalReference::address_of_regexp_stack_limit(
1139     Isolate* isolate) {
1140   return ExternalReference(isolate->regexp_stack()->limit_address());
1141 }
1142 
1143 
new_space_start(Isolate * isolate)1144 ExternalReference ExternalReference::new_space_start(Isolate* isolate) {
1145   return ExternalReference(isolate->heap()->NewSpaceStart());
1146 }
1147 
1148 
store_buffer_top(Isolate * isolate)1149 ExternalReference ExternalReference::store_buffer_top(Isolate* isolate) {
1150   return ExternalReference(isolate->heap()->store_buffer()->TopAddress());
1151 }
1152 
1153 
new_space_mask(Isolate * isolate)1154 ExternalReference ExternalReference::new_space_mask(Isolate* isolate) {
1155   return ExternalReference(reinterpret_cast<Address>(
1156       isolate->heap()->NewSpaceMask()));
1157 }
1158 
1159 
new_space_allocation_top_address(Isolate * isolate)1160 ExternalReference ExternalReference::new_space_allocation_top_address(
1161     Isolate* isolate) {
1162   return ExternalReference(isolate->heap()->NewSpaceAllocationTopAddress());
1163 }
1164 
1165 
heap_always_allocate_scope_depth(Isolate * isolate)1166 ExternalReference ExternalReference::heap_always_allocate_scope_depth(
1167     Isolate* isolate) {
1168   Heap* heap = isolate->heap();
1169   return ExternalReference(heap->always_allocate_scope_depth_address());
1170 }
1171 
1172 
new_space_allocation_limit_address(Isolate * isolate)1173 ExternalReference ExternalReference::new_space_allocation_limit_address(
1174     Isolate* isolate) {
1175   return ExternalReference(isolate->heap()->NewSpaceAllocationLimitAddress());
1176 }
1177 
1178 
old_pointer_space_allocation_top_address(Isolate * isolate)1179 ExternalReference ExternalReference::old_pointer_space_allocation_top_address(
1180     Isolate* isolate) {
1181   return ExternalReference(
1182       isolate->heap()->OldPointerSpaceAllocationTopAddress());
1183 }
1184 
1185 
old_pointer_space_allocation_limit_address(Isolate * isolate)1186 ExternalReference ExternalReference::old_pointer_space_allocation_limit_address(
1187     Isolate* isolate) {
1188   return ExternalReference(
1189       isolate->heap()->OldPointerSpaceAllocationLimitAddress());
1190 }
1191 
1192 
old_data_space_allocation_top_address(Isolate * isolate)1193 ExternalReference ExternalReference::old_data_space_allocation_top_address(
1194     Isolate* isolate) {
1195   return ExternalReference(
1196       isolate->heap()->OldDataSpaceAllocationTopAddress());
1197 }
1198 
1199 
old_data_space_allocation_limit_address(Isolate * isolate)1200 ExternalReference ExternalReference::old_data_space_allocation_limit_address(
1201     Isolate* isolate) {
1202   return ExternalReference(
1203       isolate->heap()->OldDataSpaceAllocationLimitAddress());
1204 }
1205 
1206 
handle_scope_level_address(Isolate * isolate)1207 ExternalReference ExternalReference::handle_scope_level_address(
1208     Isolate* isolate) {
1209   return ExternalReference(HandleScope::current_level_address(isolate));
1210 }
1211 
1212 
handle_scope_next_address(Isolate * isolate)1213 ExternalReference ExternalReference::handle_scope_next_address(
1214     Isolate* isolate) {
1215   return ExternalReference(HandleScope::current_next_address(isolate));
1216 }
1217 
1218 
handle_scope_limit_address(Isolate * isolate)1219 ExternalReference ExternalReference::handle_scope_limit_address(
1220     Isolate* isolate) {
1221   return ExternalReference(HandleScope::current_limit_address(isolate));
1222 }
1223 
1224 
scheduled_exception_address(Isolate * isolate)1225 ExternalReference ExternalReference::scheduled_exception_address(
1226     Isolate* isolate) {
1227   return ExternalReference(isolate->scheduled_exception_address());
1228 }
1229 
1230 
address_of_pending_message_obj(Isolate * isolate)1231 ExternalReference ExternalReference::address_of_pending_message_obj(
1232     Isolate* isolate) {
1233   return ExternalReference(isolate->pending_message_obj_address());
1234 }
1235 
1236 
address_of_has_pending_message(Isolate * isolate)1237 ExternalReference ExternalReference::address_of_has_pending_message(
1238     Isolate* isolate) {
1239   return ExternalReference(isolate->has_pending_message_address());
1240 }
1241 
1242 
address_of_pending_message_script(Isolate * isolate)1243 ExternalReference ExternalReference::address_of_pending_message_script(
1244     Isolate* isolate) {
1245   return ExternalReference(isolate->pending_message_script_address());
1246 }
1247 
1248 
address_of_min_int()1249 ExternalReference ExternalReference::address_of_min_int() {
1250   return ExternalReference(reinterpret_cast<void*>(&double_constants.min_int));
1251 }
1252 
1253 
address_of_one_half()1254 ExternalReference ExternalReference::address_of_one_half() {
1255   return ExternalReference(reinterpret_cast<void*>(&double_constants.one_half));
1256 }
1257 
1258 
address_of_minus_one_half()1259 ExternalReference ExternalReference::address_of_minus_one_half() {
1260   return ExternalReference(
1261       reinterpret_cast<void*>(&double_constants.minus_one_half));
1262 }
1263 
1264 
address_of_minus_zero()1265 ExternalReference ExternalReference::address_of_minus_zero() {
1266   return ExternalReference(
1267       reinterpret_cast<void*>(&double_constants.minus_zero));
1268 }
1269 
1270 
address_of_zero()1271 ExternalReference ExternalReference::address_of_zero() {
1272   return ExternalReference(reinterpret_cast<void*>(&double_constants.zero));
1273 }
1274 
1275 
address_of_uint8_max_value()1276 ExternalReference ExternalReference::address_of_uint8_max_value() {
1277   return ExternalReference(
1278       reinterpret_cast<void*>(&double_constants.uint8_max_value));
1279 }
1280 
1281 
address_of_negative_infinity()1282 ExternalReference ExternalReference::address_of_negative_infinity() {
1283   return ExternalReference(
1284       reinterpret_cast<void*>(&double_constants.negative_infinity));
1285 }
1286 
1287 
address_of_canonical_non_hole_nan()1288 ExternalReference ExternalReference::address_of_canonical_non_hole_nan() {
1289   return ExternalReference(
1290       reinterpret_cast<void*>(&double_constants.canonical_non_hole_nan));
1291 }
1292 
1293 
address_of_the_hole_nan()1294 ExternalReference ExternalReference::address_of_the_hole_nan() {
1295   return ExternalReference(
1296       reinterpret_cast<void*>(&double_constants.the_hole_nan));
1297 }
1298 
1299 
address_of_uint32_bias()1300 ExternalReference ExternalReference::address_of_uint32_bias() {
1301   return ExternalReference(
1302       reinterpret_cast<void*>(&double_constants.uint32_bias));
1303 }
1304 
1305 
is_profiling_address(Isolate * isolate)1306 ExternalReference ExternalReference::is_profiling_address(Isolate* isolate) {
1307   return ExternalReference(isolate->cpu_profiler()->is_profiling_address());
1308 }
1309 
1310 
invoke_function_callback(Isolate * isolate)1311 ExternalReference ExternalReference::invoke_function_callback(
1312     Isolate* isolate) {
1313   Address thunk_address = FUNCTION_ADDR(&InvokeFunctionCallback);
1314   ExternalReference::Type thunk_type = ExternalReference::PROFILING_API_CALL;
1315   ApiFunction thunk_fun(thunk_address);
1316   return ExternalReference(&thunk_fun, thunk_type, isolate);
1317 }
1318 
1319 
invoke_accessor_getter_callback(Isolate * isolate)1320 ExternalReference ExternalReference::invoke_accessor_getter_callback(
1321     Isolate* isolate) {
1322   Address thunk_address = FUNCTION_ADDR(&InvokeAccessorGetterCallback);
1323   ExternalReference::Type thunk_type =
1324       ExternalReference::PROFILING_GETTER_CALL;
1325   ApiFunction thunk_fun(thunk_address);
1326   return ExternalReference(&thunk_fun, thunk_type, isolate);
1327 }
1328 
1329 
1330 #ifndef V8_INTERPRETED_REGEXP
1331 
re_check_stack_guard_state(Isolate * isolate)1332 ExternalReference ExternalReference::re_check_stack_guard_state(
1333     Isolate* isolate) {
1334   Address function;
1335 #if V8_TARGET_ARCH_X64
1336   function = FUNCTION_ADDR(RegExpMacroAssemblerX64::CheckStackGuardState);
1337 #elif V8_TARGET_ARCH_IA32
1338   function = FUNCTION_ADDR(RegExpMacroAssemblerIA32::CheckStackGuardState);
1339 #elif V8_TARGET_ARCH_ARM64
1340   function = FUNCTION_ADDR(RegExpMacroAssemblerARM64::CheckStackGuardState);
1341 #elif V8_TARGET_ARCH_ARM
1342   function = FUNCTION_ADDR(RegExpMacroAssemblerARM::CheckStackGuardState);
1343 #elif V8_TARGET_ARCH_MIPS
1344   function = FUNCTION_ADDR(RegExpMacroAssemblerMIPS::CheckStackGuardState);
1345 #elif V8_TARGET_ARCH_X87
1346   function = FUNCTION_ADDR(RegExpMacroAssemblerX87::CheckStackGuardState);
1347 #else
1348   UNREACHABLE();
1349 #endif
1350   return ExternalReference(Redirect(isolate, function));
1351 }
1352 
1353 
re_grow_stack(Isolate * isolate)1354 ExternalReference ExternalReference::re_grow_stack(Isolate* isolate) {
1355   return ExternalReference(
1356       Redirect(isolate, FUNCTION_ADDR(NativeRegExpMacroAssembler::GrowStack)));
1357 }
1358 
re_case_insensitive_compare_uc16(Isolate * isolate)1359 ExternalReference ExternalReference::re_case_insensitive_compare_uc16(
1360     Isolate* isolate) {
1361   return ExternalReference(Redirect(
1362       isolate,
1363       FUNCTION_ADDR(NativeRegExpMacroAssembler::CaseInsensitiveCompareUC16)));
1364 }
1365 
1366 
re_word_character_map()1367 ExternalReference ExternalReference::re_word_character_map() {
1368   return ExternalReference(
1369       NativeRegExpMacroAssembler::word_character_map_address());
1370 }
1371 
address_of_static_offsets_vector(Isolate * isolate)1372 ExternalReference ExternalReference::address_of_static_offsets_vector(
1373     Isolate* isolate) {
1374   return ExternalReference(
1375       reinterpret_cast<Address>(isolate->jsregexp_static_offsets_vector()));
1376 }
1377 
address_of_regexp_stack_memory_address(Isolate * isolate)1378 ExternalReference ExternalReference::address_of_regexp_stack_memory_address(
1379     Isolate* isolate) {
1380   return ExternalReference(
1381       isolate->regexp_stack()->memory_address());
1382 }
1383 
address_of_regexp_stack_memory_size(Isolate * isolate)1384 ExternalReference ExternalReference::address_of_regexp_stack_memory_size(
1385     Isolate* isolate) {
1386   return ExternalReference(isolate->regexp_stack()->memory_size_address());
1387 }
1388 
1389 #endif  // V8_INTERPRETED_REGEXP
1390 
1391 
math_log_double_function(Isolate * isolate)1392 ExternalReference ExternalReference::math_log_double_function(
1393     Isolate* isolate) {
1394   typedef double (*d2d)(double x);
1395   return ExternalReference(Redirect(isolate,
1396                                     FUNCTION_ADDR(static_cast<d2d>(std::log)),
1397                                     BUILTIN_FP_CALL));
1398 }
1399 
1400 
math_exp_constants(int constant_index)1401 ExternalReference ExternalReference::math_exp_constants(int constant_index) {
1402   ASSERT(math_exp_data_initialized);
1403   return ExternalReference(
1404       reinterpret_cast<void*>(math_exp_constants_array + constant_index));
1405 }
1406 
1407 
math_exp_log_table()1408 ExternalReference ExternalReference::math_exp_log_table() {
1409   ASSERT(math_exp_data_initialized);
1410   return ExternalReference(reinterpret_cast<void*>(math_exp_log_table_array));
1411 }
1412 
1413 
page_flags(Page * page)1414 ExternalReference ExternalReference::page_flags(Page* page) {
1415   return ExternalReference(reinterpret_cast<Address>(page) +
1416                            MemoryChunk::kFlagsOffset);
1417 }
1418 
1419 
ForDeoptEntry(Address entry)1420 ExternalReference ExternalReference::ForDeoptEntry(Address entry) {
1421   return ExternalReference(entry);
1422 }
1423 
1424 
cpu_features()1425 ExternalReference ExternalReference::cpu_features() {
1426   ASSERT(CpuFeatures::initialized_);
1427   return ExternalReference(&CpuFeatures::supported_);
1428 }
1429 
1430 
debug_after_break_target_address(Isolate * isolate)1431 ExternalReference ExternalReference::debug_after_break_target_address(
1432     Isolate* isolate) {
1433   return ExternalReference(isolate->debug()->after_break_target_address());
1434 }
1435 
1436 
1437 ExternalReference
debug_restarter_frame_function_pointer_address(Isolate * isolate)1438     ExternalReference::debug_restarter_frame_function_pointer_address(
1439         Isolate* isolate) {
1440   return ExternalReference(
1441       isolate->debug()->restarter_frame_function_pointer_address());
1442 }
1443 
1444 
power_helper(double x,double y)1445 double power_helper(double x, double y) {
1446   int y_int = static_cast<int>(y);
1447   if (y == y_int) {
1448     return power_double_int(x, y_int);  // Returns 1 if exponent is 0.
1449   }
1450   if (y == 0.5) {
1451     return (std::isinf(x)) ? V8_INFINITY
1452                            : fast_sqrt(x + 0.0);  // Convert -0 to +0.
1453   }
1454   if (y == -0.5) {
1455     return (std::isinf(x)) ? 0 : 1.0 / fast_sqrt(x + 0.0);  // Convert -0 to +0.
1456   }
1457   return power_double_double(x, y);
1458 }
1459 
1460 
1461 // Helper function to compute x^y, where y is known to be an
1462 // integer. Uses binary decomposition to limit the number of
1463 // multiplications; see the discussion in "Hacker's Delight" by Henry
1464 // S. Warren, Jr., figure 11-6, page 213.
power_double_int(double x,int y)1465 double power_double_int(double x, int y) {
1466   double m = (y < 0) ? 1 / x : x;
1467   unsigned n = (y < 0) ? -y : y;
1468   double p = 1;
1469   while (n != 0) {
1470     if ((n & 1) != 0) p *= m;
1471     m *= m;
1472     if ((n & 2) != 0) p *= m;
1473     m *= m;
1474     n >>= 2;
1475   }
1476   return p;
1477 }
1478 
1479 
power_double_double(double x,double y)1480 double power_double_double(double x, double y) {
1481 #if defined(__MINGW64_VERSION_MAJOR) && \
1482     (!defined(__MINGW64_VERSION_RC) || __MINGW64_VERSION_RC < 1)
1483   // MinGW64 has a custom implementation for pow.  This handles certain
1484   // special cases that are different.
1485   if ((x == 0.0 || std::isinf(x)) && std::isfinite(y)) {
1486     double f;
1487     if (std::modf(y, &f) != 0.0) {
1488       return ((x == 0.0) ^ (y > 0)) ? V8_INFINITY : 0;
1489     }
1490   }
1491 
1492   if (x == 2.0) {
1493     int y_int = static_cast<int>(y);
1494     if (y == y_int) {
1495       return std::ldexp(1.0, y_int);
1496     }
1497   }
1498 #endif
1499 
1500   // The checks for special cases can be dropped in ia32 because it has already
1501   // been done in generated code before bailing out here.
1502   if (std::isnan(y) || ((x == 1 || x == -1) && std::isinf(y))) {
1503     return OS::nan_value();
1504   }
1505   return std::pow(x, y);
1506 }
1507 
1508 
power_double_double_function(Isolate * isolate)1509 ExternalReference ExternalReference::power_double_double_function(
1510     Isolate* isolate) {
1511   return ExternalReference(Redirect(isolate,
1512                                     FUNCTION_ADDR(power_double_double),
1513                                     BUILTIN_FP_FP_CALL));
1514 }
1515 
1516 
power_double_int_function(Isolate * isolate)1517 ExternalReference ExternalReference::power_double_int_function(
1518     Isolate* isolate) {
1519   return ExternalReference(Redirect(isolate,
1520                                     FUNCTION_ADDR(power_double_int),
1521                                     BUILTIN_FP_INT_CALL));
1522 }
1523 
1524 
EvalComparison(Token::Value op,double op1,double op2)1525 bool EvalComparison(Token::Value op, double op1, double op2) {
1526   ASSERT(Token::IsCompareOp(op));
1527   switch (op) {
1528     case Token::EQ:
1529     case Token::EQ_STRICT: return (op1 == op2);
1530     case Token::NE: return (op1 != op2);
1531     case Token::LT: return (op1 < op2);
1532     case Token::GT: return (op1 > op2);
1533     case Token::LTE: return (op1 <= op2);
1534     case Token::GTE: return (op1 >= op2);
1535     default:
1536       UNREACHABLE();
1537       return false;
1538   }
1539 }
1540 
1541 
mod_two_doubles_operation(Isolate * isolate)1542 ExternalReference ExternalReference::mod_two_doubles_operation(
1543     Isolate* isolate) {
1544   return ExternalReference(Redirect(isolate,
1545                                     FUNCTION_ADDR(modulo),
1546                                     BUILTIN_FP_FP_CALL));
1547 }
1548 
1549 
debug_break(Isolate * isolate)1550 ExternalReference ExternalReference::debug_break(Isolate* isolate) {
1551   return ExternalReference(Redirect(isolate, FUNCTION_ADDR(Debug_Break)));
1552 }
1553 
1554 
debug_step_in_fp_address(Isolate * isolate)1555 ExternalReference ExternalReference::debug_step_in_fp_address(
1556     Isolate* isolate) {
1557   return ExternalReference(isolate->debug()->step_in_fp_addr());
1558 }
1559 
1560 
RecordPosition(int pos)1561 void PositionsRecorder::RecordPosition(int pos) {
1562   ASSERT(pos != RelocInfo::kNoPosition);
1563   ASSERT(pos >= 0);
1564   state_.current_position = pos;
1565 #ifdef ENABLE_GDB_JIT_INTERFACE
1566   if (gdbjit_lineinfo_ != NULL) {
1567     gdbjit_lineinfo_->SetPosition(assembler_->pc_offset(), pos, false);
1568   }
1569 #endif
1570   LOG_CODE_EVENT(assembler_->isolate(),
1571                  CodeLinePosInfoAddPositionEvent(jit_handler_data_,
1572                                                  assembler_->pc_offset(),
1573                                                  pos));
1574 }
1575 
1576 
RecordStatementPosition(int pos)1577 void PositionsRecorder::RecordStatementPosition(int pos) {
1578   ASSERT(pos != RelocInfo::kNoPosition);
1579   ASSERT(pos >= 0);
1580   state_.current_statement_position = pos;
1581 #ifdef ENABLE_GDB_JIT_INTERFACE
1582   if (gdbjit_lineinfo_ != NULL) {
1583     gdbjit_lineinfo_->SetPosition(assembler_->pc_offset(), pos, true);
1584   }
1585 #endif
1586   LOG_CODE_EVENT(assembler_->isolate(),
1587                  CodeLinePosInfoAddStatementPositionEvent(
1588                      jit_handler_data_,
1589                      assembler_->pc_offset(),
1590                      pos));
1591 }
1592 
1593 
WriteRecordedPositions()1594 bool PositionsRecorder::WriteRecordedPositions() {
1595   bool written = false;
1596 
1597   // Write the statement position if it is different from what was written last
1598   // time.
1599   if (state_.current_statement_position != state_.written_statement_position) {
1600     EnsureSpace ensure_space(assembler_);
1601     assembler_->RecordRelocInfo(RelocInfo::STATEMENT_POSITION,
1602                                 state_.current_statement_position);
1603     state_.written_statement_position = state_.current_statement_position;
1604     written = true;
1605   }
1606 
1607   // Write the position if it is different from what was written last time and
1608   // also different from the written statement position.
1609   if (state_.current_position != state_.written_position &&
1610       state_.current_position != state_.written_statement_position) {
1611     EnsureSpace ensure_space(assembler_);
1612     assembler_->RecordRelocInfo(RelocInfo::POSITION, state_.current_position);
1613     state_.written_position = state_.current_position;
1614     written = true;
1615   }
1616 
1617   // Return whether something was written.
1618   return written;
1619 }
1620 
1621 
MultiplierAndShift(int32_t d)1622 MultiplierAndShift::MultiplierAndShift(int32_t d) {
1623   ASSERT(d <= -2 || 2 <= d);
1624   const uint32_t two31 = 0x80000000;
1625   uint32_t ad = Abs(d);
1626   uint32_t t = two31 + (uint32_t(d) >> 31);
1627   uint32_t anc = t - 1 - t % ad;   // Absolute value of nc.
1628   int32_t p = 31;                  // Init. p.
1629   uint32_t q1 = two31 / anc;       // Init. q1 = 2**p/|nc|.
1630   uint32_t r1 = two31 - q1 * anc;  // Init. r1 = rem(2**p, |nc|).
1631   uint32_t q2 = two31 / ad;        // Init. q2 = 2**p/|d|.
1632   uint32_t r2 = two31 - q2 * ad;   // Init. r2 = rem(2**p, |d|).
1633   uint32_t delta;
1634   do {
1635     p++;
1636     q1 *= 2;          // Update q1 = 2**p/|nc|.
1637     r1 *= 2;          // Update r1 = rem(2**p, |nc|).
1638     if (r1 >= anc) {  // Must be an unsigned comparison here.
1639       q1++;
1640       r1 = r1 - anc;
1641     }
1642     q2 *= 2;          // Update q2 = 2**p/|d|.
1643     r2 *= 2;          // Update r2 = rem(2**p, |d|).
1644     if (r2 >= ad) {   // Must be an unsigned comparison here.
1645       q2++;
1646       r2 = r2 - ad;
1647     }
1648     delta = ad - r2;
1649   } while (q1 < delta || (q1 == delta && r1 == 0));
1650   int32_t mul = static_cast<int32_t>(q2 + 1);
1651   multiplier_ = (d < 0) ? -mul : mul;
1652   shift_ = p - 32;
1653 }
1654 
1655 } }  // namespace v8::internal
1656