• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /**
2  * mount.c
3  *
4  * Copyright (c) 2013 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include "fsck.h"
12 
print_inode_info(struct f2fs_inode * inode)13 void print_inode_info(struct f2fs_inode *inode)
14 {
15 	unsigned int i = 0;
16 	int namelen = le32_to_cpu(inode->i_namelen);
17 
18 	DISP_u32(inode, i_mode);
19 	DISP_u32(inode, i_uid);
20 	DISP_u32(inode, i_gid);
21 	DISP_u32(inode, i_links);
22 	DISP_u64(inode, i_size);
23 	DISP_u64(inode, i_blocks);
24 
25 	DISP_u64(inode, i_atime);
26 	DISP_u32(inode, i_atime_nsec);
27 	DISP_u64(inode, i_ctime);
28 	DISP_u32(inode, i_ctime_nsec);
29 	DISP_u64(inode, i_mtime);
30 	DISP_u32(inode, i_mtime_nsec);
31 
32 	DISP_u32(inode, i_generation);
33 	DISP_u32(inode, i_current_depth);
34 	DISP_u32(inode, i_xattr_nid);
35 	DISP_u32(inode, i_flags);
36 	DISP_u32(inode, i_pino);
37 
38 	if (namelen) {
39 		DISP_u32(inode, i_namelen);
40 		inode->i_name[namelen] = '\0';
41 		DISP_utf(inode, i_name);
42 	}
43 
44 	printf("i_ext: fofs:%x blkaddr:%x len:%x\n",
45 			inode->i_ext.fofs,
46 			inode->i_ext.blk_addr,
47 			inode->i_ext.len);
48 
49 	DISP_u32(inode, i_addr[0]);	/* Pointers to data blocks */
50 	DISP_u32(inode, i_addr[1]);	/* Pointers to data blocks */
51 	DISP_u32(inode, i_addr[2]);	/* Pointers to data blocks */
52 	DISP_u32(inode, i_addr[3]);	/* Pointers to data blocks */
53 
54 	for (i = 4; i < ADDRS_PER_INODE(inode); i++) {
55 		if (inode->i_addr[i] != 0x0) {
56 			printf("i_addr[0x%x] points data block\r\t\t\t\t[0x%4x]\n",
57 					i, inode->i_addr[i]);
58 			break;
59 		}
60 	}
61 
62 	DISP_u32(inode, i_nid[0]);	/* direct */
63 	DISP_u32(inode, i_nid[1]);	/* direct */
64 	DISP_u32(inode, i_nid[2]);	/* indirect */
65 	DISP_u32(inode, i_nid[3]);	/* indirect */
66 	DISP_u32(inode, i_nid[4]);	/* double indirect */
67 
68 	printf("\n");
69 }
70 
print_node_info(struct f2fs_node * node_block)71 void print_node_info(struct f2fs_node *node_block)
72 {
73 	nid_t ino = le32_to_cpu(node_block->footer.ino);
74 	nid_t nid = le32_to_cpu(node_block->footer.nid);
75 	/* Is this inode? */
76 	if (ino == nid) {
77 		DBG(0, "Node ID [0x%x:%u] is inode\n", nid, nid);
78 		print_inode_info(&node_block->i);
79 	} else {
80 		int i;
81 		u32 *dump_blk = (u32 *)node_block;
82 		DBG(0, "Node ID [0x%x:%u] is direct node or indirect node.\n", nid, nid);
83 		for (i = 0; i <= 10; i++)
84 			MSG(0, "[%d]\t\t\t[0x%8x : %d]\n", i, dump_blk[i], dump_blk[i]);
85 	}
86 }
87 
print_raw_sb_info(struct f2fs_sb_info * sbi)88 void print_raw_sb_info(struct f2fs_sb_info *sbi)
89 {
90 	struct f2fs_super_block *sb = F2FS_RAW_SUPER(sbi);
91 
92 	if (!config.dbg_lv)
93 		return;
94 
95 	printf("\n");
96 	printf("+--------------------------------------------------------+\n");
97 	printf("| Super block                                            |\n");
98 	printf("+--------------------------------------------------------+\n");
99 
100 	DISP_u32(sb, magic);
101 	DISP_u32(sb, major_ver);
102 	DISP_u32(sb, minor_ver);
103 	DISP_u32(sb, log_sectorsize);
104 	DISP_u32(sb, log_sectors_per_block);
105 
106 	DISP_u32(sb, log_blocksize);
107 	DISP_u32(sb, log_blocks_per_seg);
108 	DISP_u32(sb, segs_per_sec);
109 	DISP_u32(sb, secs_per_zone);
110 	DISP_u32(sb, checksum_offset);
111 	DISP_u64(sb, block_count);
112 
113 	DISP_u32(sb, section_count);
114 	DISP_u32(sb, segment_count);
115 	DISP_u32(sb, segment_count_ckpt);
116 	DISP_u32(sb, segment_count_sit);
117 	DISP_u32(sb, segment_count_nat);
118 
119 	DISP_u32(sb, segment_count_ssa);
120 	DISP_u32(sb, segment_count_main);
121 	DISP_u32(sb, segment0_blkaddr);
122 
123 	DISP_u32(sb, cp_blkaddr);
124 	DISP_u32(sb, sit_blkaddr);
125 	DISP_u32(sb, nat_blkaddr);
126 	DISP_u32(sb, ssa_blkaddr);
127 	DISP_u32(sb, main_blkaddr);
128 
129 	DISP_u32(sb, root_ino);
130 	DISP_u32(sb, node_ino);
131 	DISP_u32(sb, meta_ino);
132 	DISP_u32(sb, cp_payload);
133 	printf("\n");
134 }
135 
print_ckpt_info(struct f2fs_sb_info * sbi)136 void print_ckpt_info(struct f2fs_sb_info *sbi)
137 {
138 	struct f2fs_checkpoint *cp = F2FS_CKPT(sbi);
139 
140 	if (!config.dbg_lv)
141 		return;
142 
143 	printf("\n");
144 	printf("+--------------------------------------------------------+\n");
145 	printf("| Checkpoint                                             |\n");
146 	printf("+--------------------------------------------------------+\n");
147 
148 	DISP_u64(cp, checkpoint_ver);
149 	DISP_u64(cp, user_block_count);
150 	DISP_u64(cp, valid_block_count);
151 	DISP_u32(cp, rsvd_segment_count);
152 	DISP_u32(cp, overprov_segment_count);
153 	DISP_u32(cp, free_segment_count);
154 
155 	DISP_u32(cp, alloc_type[CURSEG_HOT_NODE]);
156 	DISP_u32(cp, alloc_type[CURSEG_WARM_NODE]);
157 	DISP_u32(cp, alloc_type[CURSEG_COLD_NODE]);
158 	DISP_u32(cp, cur_node_segno[0]);
159 	DISP_u32(cp, cur_node_segno[1]);
160 	DISP_u32(cp, cur_node_segno[2]);
161 
162 	DISP_u32(cp, cur_node_blkoff[0]);
163 	DISP_u32(cp, cur_node_blkoff[1]);
164 	DISP_u32(cp, cur_node_blkoff[2]);
165 
166 
167 	DISP_u32(cp, alloc_type[CURSEG_HOT_DATA]);
168 	DISP_u32(cp, alloc_type[CURSEG_WARM_DATA]);
169 	DISP_u32(cp, alloc_type[CURSEG_COLD_DATA]);
170 	DISP_u32(cp, cur_data_segno[0]);
171 	DISP_u32(cp, cur_data_segno[1]);
172 	DISP_u32(cp, cur_data_segno[2]);
173 
174 	DISP_u32(cp, cur_data_blkoff[0]);
175 	DISP_u32(cp, cur_data_blkoff[1]);
176 	DISP_u32(cp, cur_data_blkoff[2]);
177 
178 	DISP_u32(cp, ckpt_flags);
179 	DISP_u32(cp, cp_pack_total_block_count);
180 	DISP_u32(cp, cp_pack_start_sum);
181 	DISP_u32(cp, valid_node_count);
182 	DISP_u32(cp, valid_inode_count);
183 	DISP_u32(cp, next_free_nid);
184 	DISP_u32(cp, sit_ver_bitmap_bytesize);
185 	DISP_u32(cp, nat_ver_bitmap_bytesize);
186 	DISP_u32(cp, checksum_offset);
187 	DISP_u64(cp, elapsed_time);
188 
189 	DISP_u32(cp, sit_nat_version_bitmap[0]);
190 	printf("\n\n");
191 }
192 
sanity_check_raw_super(struct f2fs_super_block * raw_super)193 int sanity_check_raw_super(struct f2fs_super_block *raw_super)
194 {
195 	unsigned int blocksize;
196 
197 	if (F2FS_SUPER_MAGIC != le32_to_cpu(raw_super->magic)) {
198 		return -1;
199 	}
200 
201 	if (F2FS_BLKSIZE != PAGE_CACHE_SIZE) {
202 		return -1;
203 	}
204 
205 	blocksize = 1 << le32_to_cpu(raw_super->log_blocksize);
206 	if (F2FS_BLKSIZE != blocksize) {
207 		return -1;
208 	}
209 
210 	if (F2FS_LOG_SECTOR_SIZE != le32_to_cpu(raw_super->log_sectorsize)) {
211 		return -1;
212 	}
213 
214 	if (F2FS_LOG_SECTORS_PER_BLOCK != le32_to_cpu(raw_super->log_sectors_per_block)) {
215 		return -1;
216 	}
217 
218 	return 0;
219 }
220 
validate_super_block(struct f2fs_sb_info * sbi,int block)221 int validate_super_block(struct f2fs_sb_info *sbi, int block)
222 {
223 	u64 offset = (block + 1) * F2FS_SUPER_OFFSET;
224 	sbi->raw_super = malloc(sizeof(struct f2fs_super_block));
225 
226 	if (dev_read(sbi->raw_super, offset, sizeof(struct f2fs_super_block)))
227 		return -1;
228 
229 	if (!sanity_check_raw_super(sbi->raw_super))
230 		return 0;
231 
232 	free(sbi->raw_super);
233 	MSG(0, "\tCan't find a valid F2FS filesystem in %d superblock\n", block);
234 
235 	return -EINVAL;
236 }
237 
init_sb_info(struct f2fs_sb_info * sbi)238 int init_sb_info(struct f2fs_sb_info *sbi)
239 {
240 	struct f2fs_super_block *raw_super = sbi->raw_super;
241 
242 	sbi->log_sectors_per_block =
243 		le32_to_cpu(raw_super->log_sectors_per_block);
244 	sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize);
245 	sbi->blocksize = 1 << sbi->log_blocksize;
246 	sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
247 	sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg;
248 	sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
249 	sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
250 	sbi->total_sections = le32_to_cpu(raw_super->section_count);
251 	sbi->total_node_count =
252 		(le32_to_cpu(raw_super->segment_count_nat) / 2)
253 		* sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK;
254 	sbi->root_ino_num = le32_to_cpu(raw_super->root_ino);
255 	sbi->node_ino_num = le32_to_cpu(raw_super->node_ino);
256 	sbi->meta_ino_num = le32_to_cpu(raw_super->meta_ino);
257 	sbi->cur_victim_sec = NULL_SEGNO;
258 	return 0;
259 }
260 
validate_checkpoint(struct f2fs_sb_info * sbi,block_t cp_addr,unsigned long long * version)261 void *validate_checkpoint(struct f2fs_sb_info *sbi, block_t cp_addr, unsigned long long *version)
262 {
263 	void *cp_page_1, *cp_page_2;
264 	struct f2fs_checkpoint *cp_block;
265 	unsigned long blk_size = sbi->blocksize;
266 	unsigned long long cur_version = 0, pre_version = 0;
267 	unsigned int crc = 0;
268 	size_t crc_offset;
269 
270 	/* Read the 1st cp block in this CP pack */
271 	cp_page_1 = malloc(PAGE_SIZE);
272 	if (dev_read_block(cp_page_1, cp_addr) < 0)
273 		return NULL;
274 
275 	cp_block = (struct f2fs_checkpoint *)cp_page_1;
276 	crc_offset = le32_to_cpu(cp_block->checksum_offset);
277 	if (crc_offset >= blk_size)
278 		goto invalid_cp1;
279 
280 	crc = *(unsigned int *)((unsigned char *)cp_block + crc_offset);
281 	if (f2fs_crc_valid(crc, cp_block, crc_offset))
282 		goto invalid_cp1;
283 
284 	pre_version = le64_to_cpu(cp_block->checkpoint_ver);
285 
286 	/* Read the 2nd cp block in this CP pack */
287 	cp_page_2 = malloc(PAGE_SIZE);
288 	cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
289 
290 	if (dev_read_block(cp_page_2, cp_addr) < 0)
291 		goto invalid_cp2;
292 
293 	cp_block = (struct f2fs_checkpoint *)cp_page_2;
294 	crc_offset = le32_to_cpu(cp_block->checksum_offset);
295 	if (crc_offset >= blk_size)
296 		goto invalid_cp2;
297 
298 	crc = *(unsigned int *)((unsigned char *)cp_block + crc_offset);
299 	if (f2fs_crc_valid(crc, cp_block, crc_offset))
300 		goto invalid_cp2;
301 
302 	cur_version = le64_to_cpu(cp_block->checkpoint_ver);
303 
304 	if (cur_version == pre_version) {
305 		*version = cur_version;
306 		free(cp_page_2);
307 		return cp_page_1;
308 	}
309 
310 invalid_cp2:
311 	free(cp_page_2);
312 invalid_cp1:
313 	free(cp_page_1);
314 	return NULL;
315 }
316 
get_valid_checkpoint(struct f2fs_sb_info * sbi)317 int get_valid_checkpoint(struct f2fs_sb_info *sbi)
318 {
319 	struct f2fs_super_block *raw_sb = sbi->raw_super;
320 	void *cp1, *cp2, *cur_page;
321 	unsigned long blk_size = sbi->blocksize;
322 	unsigned long long cp1_version = 0, cp2_version = 0;
323 	unsigned long long cp_start_blk_no;
324 	unsigned int cp_blks = 1 + le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
325 
326 	sbi->ckpt = malloc(cp_blks * blk_size);
327 	if (!sbi->ckpt)
328 		return -ENOMEM;
329 	/*
330 	 * Finding out valid cp block involves read both
331 	 * sets( cp pack1 and cp pack 2)
332 	 */
333 	cp_start_blk_no = le32_to_cpu(raw_sb->cp_blkaddr);
334 	cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
335 
336 	/* The second checkpoint pack should start at the next segment */
337 	cp_start_blk_no += 1 << le32_to_cpu(raw_sb->log_blocks_per_seg);
338 	cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
339 
340 	if (cp1 && cp2) {
341 		if (ver_after(cp2_version, cp1_version))
342 			cur_page = cp2;
343 		else
344 			cur_page = cp1;
345 	} else if (cp1) {
346 		cur_page = cp1;
347 	} else if (cp2) {
348 		cur_page = cp2;
349 	} else {
350 		free(cp1);
351 		free(cp2);
352 		goto fail_no_cp;
353 	}
354 
355 	memcpy(sbi->ckpt, cur_page, blk_size);
356 
357 	if (cp_blks > 1) {
358 		int i;
359 		unsigned long long cp_blk_no;
360 
361 		cp_blk_no = le32_to_cpu(raw_sb->cp_blkaddr);
362 		if (cur_page == cp2)
363 			cp_blk_no += 1 << le32_to_cpu(raw_sb->log_blocks_per_seg);
364 		/* copy sit bitmap */
365 		for (i = 1; i < cp_blks; i++) {
366 			unsigned char *ckpt = (unsigned char *)sbi->ckpt;
367 			dev_read_block(cur_page, cp_blk_no + i);
368 			memcpy(ckpt + i * blk_size, cur_page, blk_size);
369 		}
370 	}
371 	free(cp1);
372 	free(cp2);
373 	return 0;
374 
375 fail_no_cp:
376 	free(sbi->ckpt);
377 	return -EINVAL;
378 }
379 
sanity_check_ckpt(struct f2fs_sb_info * sbi)380 int sanity_check_ckpt(struct f2fs_sb_info *sbi)
381 {
382 	unsigned int total, fsmeta;
383 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
384 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
385 
386 	total = le32_to_cpu(raw_super->segment_count);
387 	fsmeta = le32_to_cpu(raw_super->segment_count_ckpt);
388 	fsmeta += le32_to_cpu(raw_super->segment_count_sit);
389 	fsmeta += le32_to_cpu(raw_super->segment_count_nat);
390 	fsmeta += le32_to_cpu(ckpt->rsvd_segment_count);
391 	fsmeta += le32_to_cpu(raw_super->segment_count_ssa);
392 
393 	if (fsmeta >= total)
394 		return 1;
395 
396 	return 0;
397 }
398 
init_node_manager(struct f2fs_sb_info * sbi)399 int init_node_manager(struct f2fs_sb_info *sbi)
400 {
401 	struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
402 	struct f2fs_nm_info *nm_i = NM_I(sbi);
403 	unsigned char *version_bitmap;
404 	unsigned int nat_segs, nat_blocks;
405 
406 	nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
407 
408 	/* segment_count_nat includes pair segment so divide to 2. */
409 	nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
410 	nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
411 	nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nat_blocks;
412 	nm_i->fcnt = 0;
413 	nm_i->nat_cnt = 0;
414 	nm_i->init_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
415 	nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
416 
417 	nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
418 
419 	nm_i->nat_bitmap = malloc(nm_i->bitmap_size);
420 	if (!nm_i->nat_bitmap)
421 		return -ENOMEM;
422 	version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
423 	if (!version_bitmap)
424 		return -EFAULT;
425 
426 	/* copy version bitmap */
427 	memcpy(nm_i->nat_bitmap, version_bitmap, nm_i->bitmap_size);
428 	return 0;
429 }
430 
build_node_manager(struct f2fs_sb_info * sbi)431 int build_node_manager(struct f2fs_sb_info *sbi)
432 {
433 	int err;
434 	sbi->nm_info = malloc(sizeof(struct f2fs_nm_info));
435 	if (!sbi->nm_info)
436 		return -ENOMEM;
437 
438 	err = init_node_manager(sbi);
439 	if (err)
440 		return err;
441 
442 	return 0;
443 }
444 
build_sit_info(struct f2fs_sb_info * sbi)445 int build_sit_info(struct f2fs_sb_info *sbi)
446 {
447 	struct f2fs_super_block *raw_sb = F2FS_RAW_SUPER(sbi);
448 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
449 	struct sit_info *sit_i;
450 	unsigned int sit_segs, start;
451 	char *src_bitmap, *dst_bitmap;
452 	unsigned int bitmap_size;
453 
454 	sit_i = malloc(sizeof(struct sit_info));
455 	if (!sit_i)
456 		return -ENOMEM;
457 
458 	SM_I(sbi)->sit_info = sit_i;
459 
460 	sit_i->sentries = calloc(TOTAL_SEGS(sbi) * sizeof(struct seg_entry), 1);
461 
462 	for (start = 0; start < TOTAL_SEGS(sbi); start++) {
463 		sit_i->sentries[start].cur_valid_map
464 			= calloc(SIT_VBLOCK_MAP_SIZE, 1);
465 		sit_i->sentries[start].ckpt_valid_map
466 			= calloc(SIT_VBLOCK_MAP_SIZE, 1);
467 		if (!sit_i->sentries[start].cur_valid_map
468 				|| !sit_i->sentries[start].ckpt_valid_map)
469 			return -ENOMEM;
470 	}
471 
472 	sit_segs = le32_to_cpu(raw_sb->segment_count_sit) >> 1;
473 	bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
474 	src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
475 
476 	dst_bitmap = malloc(bitmap_size);
477 	memcpy(dst_bitmap, src_bitmap, bitmap_size);
478 
479 	sit_i->sit_base_addr = le32_to_cpu(raw_sb->sit_blkaddr);
480 	sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
481 	sit_i->written_valid_blocks = le64_to_cpu(ckpt->valid_block_count);
482 	sit_i->sit_bitmap = dst_bitmap;
483 	sit_i->bitmap_size = bitmap_size;
484 	sit_i->dirty_sentries = 0;
485 	sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
486 	sit_i->elapsed_time = le64_to_cpu(ckpt->elapsed_time);
487 	return 0;
488 }
489 
reset_curseg(struct f2fs_sb_info * sbi,int type)490 void reset_curseg(struct f2fs_sb_info *sbi, int type)
491 {
492 	struct curseg_info *curseg = CURSEG_I(sbi, type);
493 
494 	curseg->segno = curseg->next_segno;
495 	curseg->zone = GET_ZONENO_FROM_SEGNO(sbi, curseg->segno);
496 	curseg->next_blkoff = 0;
497 	curseg->next_segno = NULL_SEGNO;
498 
499 }
500 
read_compacted_summaries(struct f2fs_sb_info * sbi)501 int read_compacted_summaries(struct f2fs_sb_info *sbi)
502 {
503 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
504 	struct curseg_info *curseg;
505 	block_t start;
506 	char *kaddr;
507 	unsigned int i, j, offset;
508 
509 	start = start_sum_block(sbi);
510 
511 	kaddr = (char *)malloc(PAGE_SIZE);
512 	dev_read_block(kaddr, start++);
513 
514 	curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
515 	memcpy(&curseg->sum_blk->n_nats, kaddr, SUM_JOURNAL_SIZE);
516 
517 	curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
518 	memcpy(&curseg->sum_blk->n_sits, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
519 
520 	offset = 2 * SUM_JOURNAL_SIZE;
521 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
522 		unsigned short blk_off;
523 		unsigned int segno;
524 
525 		curseg = CURSEG_I(sbi, i);
526 		segno = le32_to_cpu(ckpt->cur_data_segno[i]);
527 		blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
528 		curseg->next_segno = segno;
529 		reset_curseg(sbi, i);
530 		curseg->alloc_type = ckpt->alloc_type[i];
531 		curseg->next_blkoff = blk_off;
532 
533 		if (curseg->alloc_type == SSR)
534 			blk_off = sbi->blocks_per_seg;
535 
536 		for (j = 0; j < blk_off; j++) {
537 			struct f2fs_summary *s;
538 			s = (struct f2fs_summary *)(kaddr + offset);
539 			curseg->sum_blk->entries[j] = *s;
540 			offset += SUMMARY_SIZE;
541 			if (offset + SUMMARY_SIZE <= PAGE_CACHE_SIZE - SUM_FOOTER_SIZE)
542 				continue;
543 			memset(kaddr, 0, PAGE_SIZE);
544 			dev_read_block(kaddr, start++);
545 			offset = 0;
546 		}
547 	}
548 
549 	free(kaddr);
550 	return 0;
551 }
552 
restore_node_summary(struct f2fs_sb_info * sbi,unsigned int segno,struct f2fs_summary_block * sum_blk)553 int restore_node_summary(struct f2fs_sb_info *sbi,
554 		unsigned int segno, struct f2fs_summary_block *sum_blk)
555 {
556 	struct f2fs_node *node_blk;
557 	struct f2fs_summary *sum_entry;
558 	void *page;
559 	block_t addr;
560 	unsigned int i;
561 
562 	page = malloc(PAGE_SIZE);
563 	if (!page)
564 		return -ENOMEM;
565 
566 	/* scan the node segment */
567 	addr = START_BLOCK(sbi, segno);
568 	sum_entry = &sum_blk->entries[0];
569 
570 	for (i = 0; i < sbi->blocks_per_seg; i++, sum_entry++) {
571 		if (dev_read_block(page, addr))
572 			goto out;
573 
574 		node_blk = (struct f2fs_node *)page;
575 		sum_entry->nid = node_blk->footer.nid;
576 		/* do not change original value */
577 #if 0
578 		sum_entry->version = 0;
579 		sum_entry->ofs_in_node = 0;
580 #endif
581 		addr++;
582 
583 	}
584 out:
585 	free(page);
586 	return 0;
587 }
588 
read_normal_summaries(struct f2fs_sb_info * sbi,int type)589 int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
590 {
591 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
592 	struct f2fs_summary_block *sum_blk;
593 	struct curseg_info *curseg;
594 	unsigned short blk_off;
595 	unsigned int segno = 0;
596 	block_t blk_addr = 0;
597 
598 	if (IS_DATASEG(type)) {
599 		segno = le32_to_cpu(ckpt->cur_data_segno[type]);
600 		blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type - CURSEG_HOT_DATA]);
601 
602 		if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG))
603 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type);
604 		else
605 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
606 	} else {
607 		segno = le32_to_cpu(ckpt->cur_node_segno[type - CURSEG_HOT_NODE]);
608 		blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type - CURSEG_HOT_NODE]);
609 
610 		if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG))
611 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE, type - CURSEG_HOT_NODE);
612 		else
613 			blk_addr = GET_SUM_BLKADDR(sbi, segno);
614 	}
615 
616 	sum_blk = (struct f2fs_summary_block *)malloc(PAGE_SIZE);
617 	dev_read_block(sum_blk, blk_addr);
618 
619 	if (IS_NODESEG(type)) {
620 		if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG)) {
621 			struct f2fs_summary *sum_entry = &sum_blk->entries[0];
622 			unsigned int i;
623 			for (i = 0; i < sbi->blocks_per_seg; i++, sum_entry++) {
624 				/* do not change original value */
625 #if 0
626 				sum_entry->version = 0;
627 				sum_entry->ofs_in_node = 0;
628 #endif
629 			}
630 		} else {
631 			if (restore_node_summary(sbi, segno, sum_blk)) {
632 				free(sum_blk);
633 				return -EINVAL;
634 			}
635 		}
636 	}
637 
638 	curseg = CURSEG_I(sbi, type);
639 	memcpy(curseg->sum_blk, sum_blk, PAGE_CACHE_SIZE);
640 	curseg->next_segno = segno;
641 	reset_curseg(sbi, type);
642 	curseg->alloc_type = ckpt->alloc_type[type];
643 	curseg->next_blkoff = blk_off;
644 	free(sum_blk);
645 
646 	return 0;
647 }
648 
restore_curseg_summaries(struct f2fs_sb_info * sbi)649 int restore_curseg_summaries(struct f2fs_sb_info *sbi)
650 {
651 	int type = CURSEG_HOT_DATA;
652 
653 	if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG)) {
654 		if (read_compacted_summaries(sbi))
655 			return -EINVAL;
656 		type = CURSEG_HOT_NODE;
657 	}
658 
659 	for (; type <= CURSEG_COLD_NODE; type++) {
660 		if (read_normal_summaries(sbi, type))
661 			return -EINVAL;
662 	}
663 	return 0;
664 }
665 
build_curseg(struct f2fs_sb_info * sbi)666 int build_curseg(struct f2fs_sb_info *sbi)
667 {
668 	struct curseg_info *array;
669 	int i;
670 
671 	array = malloc(sizeof(*array) * NR_CURSEG_TYPE);
672 
673 	SM_I(sbi)->curseg_array = array;
674 
675 	for (i = 0; i < NR_CURSEG_TYPE; i++) {
676 		array[i].sum_blk = malloc(PAGE_CACHE_SIZE);
677 		if (!array[i].sum_blk)
678 			return -ENOMEM;
679 		array[i].segno = NULL_SEGNO;
680 		array[i].next_blkoff = 0;
681 	}
682 	return restore_curseg_summaries(sbi);
683 }
684 
check_seg_range(struct f2fs_sb_info * sbi,unsigned int segno)685 inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno)
686 {
687 	unsigned int end_segno = SM_I(sbi)->segment_count - 1;
688 	ASSERT(segno <= end_segno);
689 }
690 
get_current_sit_page(struct f2fs_sb_info * sbi,unsigned int segno)691 struct f2fs_sit_block *get_current_sit_page(struct f2fs_sb_info *sbi, unsigned int segno)
692 {
693 	struct sit_info *sit_i = SIT_I(sbi);
694 	unsigned int offset = SIT_BLOCK_OFFSET(sit_i, segno);
695 	block_t blk_addr = sit_i->sit_base_addr + offset;
696 	struct f2fs_sit_block *sit_blk = calloc(BLOCK_SZ, 1);
697 
698 	check_seg_range(sbi, segno);
699 
700 	/* calculate sit block address */
701 	if (f2fs_test_bit(offset, sit_i->sit_bitmap))
702 		blk_addr += sit_i->sit_blocks;
703 
704 	dev_read_block(sit_blk, blk_addr);
705 
706 	return sit_blk;
707 }
708 
check_block_count(struct f2fs_sb_info * sbi,unsigned int segno,struct f2fs_sit_entry * raw_sit)709 void check_block_count(struct f2fs_sb_info *sbi,
710 		unsigned int segno, struct f2fs_sit_entry *raw_sit)
711 {
712 	struct f2fs_sm_info *sm_info = SM_I(sbi);
713 	unsigned int end_segno = sm_info->segment_count - 1;
714 	int valid_blocks = 0;
715 	unsigned int i;
716 
717 
718 	/* check segment usage */
719 	ASSERT(GET_SIT_VBLOCKS(raw_sit) <= sbi->blocks_per_seg);
720 
721 	/* check boundary of a given segment number */
722 	ASSERT(segno <= end_segno);
723 
724 	/* check bitmap with valid block count */
725 	for (i = 0; i < sbi->blocks_per_seg; i++)
726 		if (f2fs_test_bit(i, (char *)raw_sit->valid_map))
727 			valid_blocks++;
728 	ASSERT(GET_SIT_VBLOCKS(raw_sit) == valid_blocks);
729 }
730 
seg_info_from_raw_sit(struct seg_entry * se,struct f2fs_sit_entry * raw_sit)731 void seg_info_from_raw_sit(struct seg_entry *se,
732 		struct f2fs_sit_entry *raw_sit)
733 {
734 	se->valid_blocks = GET_SIT_VBLOCKS(raw_sit);
735 	se->ckpt_valid_blocks = GET_SIT_VBLOCKS(raw_sit);
736 	memcpy(se->cur_valid_map, raw_sit->valid_map, SIT_VBLOCK_MAP_SIZE);
737 	memcpy(se->ckpt_valid_map, raw_sit->valid_map, SIT_VBLOCK_MAP_SIZE);
738 	se->type = GET_SIT_TYPE(raw_sit);
739 	se->mtime = le64_to_cpu(raw_sit->mtime);
740 }
741 
get_seg_entry(struct f2fs_sb_info * sbi,unsigned int segno)742 struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi,
743 		unsigned int segno)
744 {
745 	struct sit_info *sit_i = SIT_I(sbi);
746 	return &sit_i->sentries[segno];
747 }
748 
get_sum_block(struct f2fs_sb_info * sbi,unsigned int segno,struct f2fs_summary_block * sum_blk)749 int get_sum_block(struct f2fs_sb_info *sbi, unsigned int segno, struct f2fs_summary_block *sum_blk)
750 {
751 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
752 	struct curseg_info *curseg;
753 	int type, ret;
754 	u64 ssa_blk;
755 
756 	ssa_blk = GET_SUM_BLKADDR(sbi, segno);
757 	for (type = 0; type < NR_CURSEG_NODE_TYPE; type++) {
758 		if (segno == ckpt->cur_node_segno[type]) {
759 			curseg = CURSEG_I(sbi, CURSEG_HOT_NODE + type);
760 			memcpy(sum_blk, curseg->sum_blk, BLOCK_SZ);
761 			return SEG_TYPE_CUR_NODE; /* current node seg was not stored */
762 		}
763 	}
764 
765 	for (type = 0; type < NR_CURSEG_DATA_TYPE; type++) {
766 		if (segno == ckpt->cur_data_segno[type]) {
767 			curseg = CURSEG_I(sbi, type);
768 			memcpy(sum_blk, curseg->sum_blk, BLOCK_SZ);
769 			ASSERT(!IS_SUM_NODE_SEG(sum_blk->footer));
770 			DBG(2, "segno [0x%x] is current data seg[0x%x]\n", segno, type);
771 			return SEG_TYPE_CUR_DATA; /* current data seg was not stored */
772 		}
773 	}
774 
775 	ret = dev_read_block(sum_blk, ssa_blk);
776 	ASSERT(ret >= 0);
777 
778 	if (IS_SUM_NODE_SEG(sum_blk->footer))
779 		return SEG_TYPE_NODE;
780 	else
781 		return SEG_TYPE_DATA;
782 
783 }
784 
get_sum_entry(struct f2fs_sb_info * sbi,u32 blk_addr,struct f2fs_summary * sum_entry)785 int get_sum_entry(struct f2fs_sb_info *sbi, u32 blk_addr, struct f2fs_summary *sum_entry)
786 {
787 	struct f2fs_summary_block *sum_blk;
788 	u32 segno, offset;
789 	int ret;
790 
791 	segno = GET_SEGNO(sbi, blk_addr);
792 	offset = OFFSET_IN_SEG(sbi, blk_addr);
793 
794 	sum_blk = calloc(BLOCK_SZ, 1);
795 
796 	ret = get_sum_block(sbi, segno, sum_blk);
797 
798 	memcpy(sum_entry, &(sum_blk->entries[offset]), sizeof(struct f2fs_summary));
799 
800 	free(sum_blk);
801 	return ret;
802 }
803 
get_nat_entry(struct f2fs_sb_info * sbi,nid_t nid,struct f2fs_nat_entry * raw_nat)804 int get_nat_entry(struct f2fs_sb_info *sbi, nid_t nid, struct f2fs_nat_entry *raw_nat)
805 {
806 	struct f2fs_fsck *fsck = F2FS_FSCK(sbi);
807 	struct f2fs_nm_info *nm_i = NM_I(sbi);
808 	struct f2fs_nat_block *nat_block;
809 	pgoff_t block_off;
810 	pgoff_t block_addr;
811 	int seg_off, entry_off;
812 	int ret;
813 
814 	if ((nid / NAT_ENTRY_PER_BLOCK) > fsck->nr_nat_entries) {
815 		DBG(0, "nid is over max nid\n");
816 		return -EINVAL;
817 	}
818 
819 	if (lookup_nat_in_journal(sbi, nid, raw_nat) >= 0)
820 		return 0;
821 
822 	nat_block = (struct f2fs_nat_block *)calloc(BLOCK_SZ, 1);
823 
824 	block_off = nid / NAT_ENTRY_PER_BLOCK;
825 	entry_off = nid % NAT_ENTRY_PER_BLOCK;
826 
827 	seg_off = block_off >> sbi->log_blocks_per_seg;
828 	block_addr = (pgoff_t)(nm_i->nat_blkaddr +
829 			(seg_off << sbi->log_blocks_per_seg << 1) +
830 			(block_off & ((1 << sbi->log_blocks_per_seg) - 1)));
831 
832 	if (f2fs_test_bit(block_off, nm_i->nat_bitmap))
833 		block_addr += sbi->blocks_per_seg;
834 
835 	ret = dev_read_block(nat_block, block_addr);
836 	ASSERT(ret >= 0);
837 
838 	memcpy(raw_nat, &nat_block->entries[entry_off], sizeof(struct f2fs_nat_entry));
839 	free(nat_block);
840 
841 	return 0;
842 }
843 
get_node_info(struct f2fs_sb_info * sbi,nid_t nid,struct node_info * ni)844 int get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni)
845 {
846 	struct f2fs_nat_entry raw_nat;
847 	int ret;
848 
849 	ret = get_nat_entry(sbi, nid, &raw_nat);
850 	ni->nid = nid;
851 	node_info_from_raw_nat(ni, &raw_nat);
852 	return ret;
853 }
854 
build_sit_entries(struct f2fs_sb_info * sbi)855 void build_sit_entries(struct f2fs_sb_info *sbi)
856 {
857 	struct sit_info *sit_i = SIT_I(sbi);
858 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
859 	struct f2fs_summary_block *sum = curseg->sum_blk;
860 	unsigned int segno;
861 
862 	for (segno = 0; segno < TOTAL_SEGS(sbi); segno++) {
863 		struct seg_entry *se = &sit_i->sentries[segno];
864 		struct f2fs_sit_block *sit_blk;
865 		struct f2fs_sit_entry sit;
866 		int i;
867 
868 		for (i = 0; i < sits_in_cursum(sum); i++) {
869 			if (le32_to_cpu(segno_in_journal(sum, i)) == segno) {
870 				sit = sit_in_journal(sum, i);
871 				goto got_it;
872 			}
873 		}
874 		sit_blk = get_current_sit_page(sbi, segno);
875 		sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, segno)];
876 		free(sit_blk);
877 got_it:
878 		check_block_count(sbi, segno, &sit);
879 		seg_info_from_raw_sit(se, &sit);
880 	}
881 
882 }
883 
build_segment_manager(struct f2fs_sb_info * sbi)884 int build_segment_manager(struct f2fs_sb_info *sbi)
885 {
886 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
887 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
888 	struct f2fs_sm_info *sm_info;
889 
890 	sm_info = malloc(sizeof(struct f2fs_sm_info));
891 	if (!sm_info)
892 		return -ENOMEM;
893 
894 	/* init sm info */
895 	sbi->sm_info = sm_info;
896 	sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
897 	sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
898 	sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
899 	sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
900 	sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
901 	sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
902 	sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
903 
904 	build_sit_info(sbi);
905 
906 	build_curseg(sbi);
907 
908 	build_sit_entries(sbi);
909 
910 	return 0;
911 }
912 
build_sit_area_bitmap(struct f2fs_sb_info * sbi)913 int build_sit_area_bitmap(struct f2fs_sb_info *sbi)
914 {
915 	struct f2fs_fsck *fsck = F2FS_FSCK(sbi);
916 	struct f2fs_sm_info *sm_i = SM_I(sbi);
917 	unsigned int segno = 0;
918 	int j = 0;
919 	char *ptr = NULL;
920 
921 	u32 sum_vblocks = 0;
922 	u32 free_segs = 0;
923 	u32 vblocks = 0;
924 
925 	struct seg_entry *se;
926 
927 	fsck->sit_area_bitmap_sz = sm_i->main_segments * SIT_VBLOCK_MAP_SIZE;
928 	fsck->sit_area_bitmap = calloc(1, fsck->sit_area_bitmap_sz);
929 	ptr = fsck->sit_area_bitmap;
930 
931 	ASSERT(fsck->sit_area_bitmap_sz == fsck->main_area_bitmap_sz);
932 
933 	for (segno = 0; segno < sm_i->main_segments; segno++) {
934 		se = get_seg_entry(sbi, segno);
935 
936 		memcpy(ptr, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
937 		ptr += SIT_VBLOCK_MAP_SIZE;
938 
939 		vblocks = 0;
940 		for (j = 0; j < SIT_VBLOCK_MAP_SIZE; j++) {
941 			vblocks += get_bits_in_byte(se->cur_valid_map[j]);
942 		}
943 		ASSERT(vblocks == se->valid_blocks);
944 
945 		if (se->valid_blocks == 0x0) {
946 
947 			if (sbi->ckpt->cur_node_segno[0] == segno ||
948 					sbi->ckpt->cur_data_segno[0] == segno ||
949 					sbi->ckpt->cur_node_segno[1] == segno ||
950 					sbi->ckpt->cur_data_segno[1] == segno ||
951 					sbi->ckpt->cur_node_segno[2] == segno ||
952 					sbi->ckpt->cur_data_segno[2] == segno) {
953 				continue;
954 			} else {
955 				free_segs++;
956 			}
957 
958 		} else {
959 			ASSERT(se->valid_blocks <= 512);
960 			sum_vblocks += se->valid_blocks;
961 		}
962 	}
963 
964 	fsck->chk.sit_valid_blocks = sum_vblocks;
965 	fsck->chk.sit_free_segs = free_segs;
966 
967 	DBG(1, "Blocks [0x%x : %d] Free Segs [0x%x : %d]\n\n", sum_vblocks, sum_vblocks,
968 			free_segs, free_segs);
969 	return 0;
970 }
971 
lookup_nat_in_journal(struct f2fs_sb_info * sbi,u32 nid,struct f2fs_nat_entry * raw_nat)972 int lookup_nat_in_journal(struct f2fs_sb_info *sbi, u32 nid, struct f2fs_nat_entry *raw_nat)
973 {
974 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
975 	struct f2fs_summary_block *sum = curseg->sum_blk;
976 	int i = 0;
977 
978 	for (i = 0; i < nats_in_cursum(sum); i++) {
979 		if (le32_to_cpu(nid_in_journal(sum, i)) == nid) {
980 			memcpy(raw_nat, &nat_in_journal(sum, i), sizeof(struct f2fs_nat_entry));
981 			DBG(3, "==> Found nid [0x%x] in nat cache\n", nid);
982 			return i;
983 		}
984 	}
985 	return -1;
986 }
987 
build_nat_area_bitmap(struct f2fs_sb_info * sbi)988 void build_nat_area_bitmap(struct f2fs_sb_info *sbi)
989 {
990 	struct f2fs_fsck *fsck = F2FS_FSCK(sbi);
991 	struct f2fs_super_block *raw_sb = F2FS_RAW_SUPER(sbi);
992 	struct f2fs_nm_info *nm_i = NM_I(sbi);
993 	struct f2fs_nat_block *nat_block;
994 	u32 nid, nr_nat_blks;
995 
996 	pgoff_t block_off;
997 	pgoff_t block_addr;
998 	int seg_off;
999 	int ret;
1000 	unsigned int i;
1001 
1002 
1003 	nat_block = (struct f2fs_nat_block *)calloc(BLOCK_SZ, 1);
1004 
1005 	/* Alloc & build nat entry bitmap */
1006 	nr_nat_blks = (le32_to_cpu(raw_sb->segment_count_nat) / 2) << sbi->log_blocks_per_seg;
1007 
1008 	fsck->nr_nat_entries = nr_nat_blks * NAT_ENTRY_PER_BLOCK;
1009 	fsck->nat_area_bitmap_sz = (fsck->nr_nat_entries + 7) / 8;
1010 	fsck->nat_area_bitmap = calloc(fsck->nat_area_bitmap_sz, 1);
1011 	ASSERT(fsck->nat_area_bitmap != NULL);
1012 
1013 	for (block_off = 0; block_off < nr_nat_blks; block_off++) {
1014 
1015 		seg_off = block_off >> sbi->log_blocks_per_seg;
1016 		block_addr = (pgoff_t)(nm_i->nat_blkaddr +
1017 				(seg_off << sbi->log_blocks_per_seg << 1) +
1018 				(block_off & ((1 << sbi->log_blocks_per_seg) - 1)));
1019 
1020 		if (f2fs_test_bit(block_off, nm_i->nat_bitmap))
1021 			block_addr += sbi->blocks_per_seg;
1022 
1023 		ret = dev_read_block(nat_block, block_addr);
1024 		ASSERT(ret >= 0);
1025 
1026 		nid = block_off * NAT_ENTRY_PER_BLOCK;
1027 		for (i = 0; i < NAT_ENTRY_PER_BLOCK; i++) {
1028 			struct f2fs_nat_entry raw_nat;
1029 			struct node_info ni;
1030 			ni.nid = nid + i;
1031 
1032 			if ((nid + i) == F2FS_NODE_INO(sbi) || (nid + i) == F2FS_META_INO(sbi)) {
1033 				ASSERT(nat_block->entries[i].block_addr != 0x0);
1034 				continue;
1035 			}
1036 
1037 			if (lookup_nat_in_journal(sbi, nid + i, &raw_nat) >= 0) {
1038 				node_info_from_raw_nat(&ni, &raw_nat);
1039 				if (ni.blk_addr != 0x0) {
1040 					f2fs_set_bit(nid + i, fsck->nat_area_bitmap);
1041 					fsck->chk.valid_nat_entry_cnt++;
1042 					DBG(3, "nid[0x%x] in nat cache\n", nid + i);
1043 				}
1044 			} else {
1045 				node_info_from_raw_nat(&ni, &nat_block->entries[i]);
1046 				if (ni.blk_addr != 0) {
1047 					ASSERT(nid + i != 0x0);
1048 
1049 					DBG(3, "nid[0x%8x] in nat entry [0x%16x] [0x%8x]\n",
1050 							nid + i,
1051 							ni.blk_addr,
1052 							ni.ino);
1053 
1054 					f2fs_set_bit(nid + i, fsck->nat_area_bitmap);
1055 					fsck->chk.valid_nat_entry_cnt++;
1056 				}
1057 			}
1058 		}
1059 	}
1060 	free(nat_block);
1061 
1062 	DBG(1, "valid nat entries (block_addr != 0x0) [0x%8x : %u]\n",
1063 			fsck->chk.valid_nat_entry_cnt, fsck->chk.valid_nat_entry_cnt);
1064 
1065 }
1066 
f2fs_do_mount(struct f2fs_sb_info * sbi)1067 int f2fs_do_mount(struct f2fs_sb_info *sbi)
1068 {
1069 	int ret;
1070 	sbi->active_logs = NR_CURSEG_TYPE;
1071 	ret = validate_super_block(sbi, 0);
1072 	if (ret) {
1073 		ret = validate_super_block(sbi, 1);
1074 		if (ret)
1075 			return -1;
1076 	}
1077 
1078 	print_raw_sb_info(sbi);
1079 
1080 	init_sb_info(sbi);
1081 
1082 	ret = get_valid_checkpoint(sbi);
1083 	if (ret) {
1084 		ERR_MSG("Can't find valid checkpoint\n");
1085 		return -1;
1086 	}
1087 
1088 	if (sanity_check_ckpt(sbi)) {
1089 		ERR_MSG("Checkpoint is polluted\n");
1090 		return -1;
1091 	}
1092 
1093 	print_ckpt_info(sbi);
1094 
1095 	sbi->total_valid_node_count = le32_to_cpu(sbi->ckpt->valid_node_count);
1096 	sbi->total_valid_inode_count = le32_to_cpu(sbi->ckpt->valid_inode_count);
1097 	sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count);
1098 	sbi->total_valid_block_count = le64_to_cpu(sbi->ckpt->valid_block_count);
1099 	sbi->last_valid_block_count = sbi->total_valid_block_count;
1100 	sbi->alloc_valid_block_count = 0;
1101 
1102 	if (build_segment_manager(sbi)) {
1103 		ERR_MSG("build_segment_manager failed\n");
1104 		return -1;
1105 	}
1106 
1107 	if (build_node_manager(sbi)) {
1108 		ERR_MSG("build_segment_manager failed\n");
1109 		return -1;
1110 	}
1111 
1112 	return ret;
1113 }
1114 
f2fs_do_umount(struct f2fs_sb_info * sbi)1115 void f2fs_do_umount(struct f2fs_sb_info *sbi)
1116 {
1117 	struct sit_info *sit_i = SIT_I(sbi);
1118 	struct f2fs_sm_info *sm_i = SM_I(sbi);
1119 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1120 	unsigned int i;
1121 
1122 	/* free nm_info */
1123 	free(nm_i->nat_bitmap);
1124 	free(sbi->nm_info);
1125 
1126 	/* free sit_info */
1127 	for (i = 0; i < TOTAL_SEGS(sbi); i++) {
1128 		free(sit_i->sentries[i].cur_valid_map);
1129 		free(sit_i->sentries[i].ckpt_valid_map);
1130 	}
1131 	free(sit_i->sit_bitmap);
1132 	free(sm_i->sit_info);
1133 
1134 	/* free sm_info */
1135 	for (i = 0; i < NR_CURSEG_TYPE; i++)
1136 		free(sm_i->curseg_array[i].sum_blk);
1137 
1138 	free(sm_i->curseg_array);
1139 	free(sbi->sm_info);
1140 
1141 	free(sbi->ckpt);
1142 	free(sbi->raw_super);
1143 }
1144