• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2 ** 2004 May 22
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 ******************************************************************************
12 **
13 ** This file contains the VFS implementation for unix-like operating systems
14 ** include Linux, MacOSX, *BSD, QNX, VxWorks, AIX, HPUX, and others.
15 **
16 ** There are actually several different VFS implementations in this file.
17 ** The differences are in the way that file locking is done.  The default
18 ** implementation uses Posix Advisory Locks.  Alternative implementations
19 ** use flock(), dot-files, various proprietary locking schemas, or simply
20 ** skip locking all together.
21 **
22 ** This source file is organized into divisions where the logic for various
23 ** subfunctions is contained within the appropriate division.  PLEASE
24 ** KEEP THE STRUCTURE OF THIS FILE INTACT.  New code should be placed
25 ** in the correct division and should be clearly labeled.
26 **
27 ** The layout of divisions is as follows:
28 **
29 **   *  General-purpose declarations and utility functions.
30 **   *  Unique file ID logic used by VxWorks.
31 **   *  Various locking primitive implementations (all except proxy locking):
32 **      + for Posix Advisory Locks
33 **      + for no-op locks
34 **      + for dot-file locks
35 **      + for flock() locking
36 **      + for named semaphore locks (VxWorks only)
37 **      + for AFP filesystem locks (MacOSX only)
38 **   *  sqlite3_file methods not associated with locking.
39 **   *  Definitions of sqlite3_io_methods objects for all locking
40 **      methods plus "finder" functions for each locking method.
41 **   *  sqlite3_vfs method implementations.
42 **   *  Locking primitives for the proxy uber-locking-method. (MacOSX only)
43 **   *  Definitions of sqlite3_vfs objects for all locking methods
44 **      plus implementations of sqlite3_os_init() and sqlite3_os_end().
45 */
46 #include "sqliteInt.h"
47 #if SQLITE_OS_UNIX              /* This file is used on unix only */
48 
49 /*
50 ** There are various methods for file locking used for concurrency
51 ** control:
52 **
53 **   1. POSIX locking (the default),
54 **   2. No locking,
55 **   3. Dot-file locking,
56 **   4. flock() locking,
57 **   5. AFP locking (OSX only),
58 **   6. Named POSIX semaphores (VXWorks only),
59 **   7. proxy locking. (OSX only)
60 **
61 ** Styles 4, 5, and 7 are only available of SQLITE_ENABLE_LOCKING_STYLE
62 ** is defined to 1.  The SQLITE_ENABLE_LOCKING_STYLE also enables automatic
63 ** selection of the appropriate locking style based on the filesystem
64 ** where the database is located.
65 */
66 #if !defined(SQLITE_ENABLE_LOCKING_STYLE)
67 #  if defined(__APPLE__)
68 #    define SQLITE_ENABLE_LOCKING_STYLE 1
69 #  else
70 #    define SQLITE_ENABLE_LOCKING_STYLE 0
71 #  endif
72 #endif
73 
74 /*
75 ** Define the OS_VXWORKS pre-processor macro to 1 if building on
76 ** vxworks, or 0 otherwise.
77 */
78 #ifndef OS_VXWORKS
79 #  if defined(__RTP__) || defined(_WRS_KERNEL)
80 #    define OS_VXWORKS 1
81 #  else
82 #    define OS_VXWORKS 0
83 #  endif
84 #endif
85 
86 /*
87 ** These #defines should enable >2GB file support on Posix if the
88 ** underlying operating system supports it.  If the OS lacks
89 ** large file support, these should be no-ops.
90 **
91 ** Large file support can be disabled using the -DSQLITE_DISABLE_LFS switch
92 ** on the compiler command line.  This is necessary if you are compiling
93 ** on a recent machine (ex: RedHat 7.2) but you want your code to work
94 ** on an older machine (ex: RedHat 6.0).  If you compile on RedHat 7.2
95 ** without this option, LFS is enable.  But LFS does not exist in the kernel
96 ** in RedHat 6.0, so the code won't work.  Hence, for maximum binary
97 ** portability you should omit LFS.
98 **
99 ** The previous paragraph was written in 2005.  (This paragraph is written
100 ** on 2008-11-28.) These days, all Linux kernels support large files, so
101 ** you should probably leave LFS enabled.  But some embedded platforms might
102 ** lack LFS in which case the SQLITE_DISABLE_LFS macro might still be useful.
103 */
104 #ifndef SQLITE_DISABLE_LFS
105 # define _LARGE_FILE       1
106 # ifndef _FILE_OFFSET_BITS
107 #   define _FILE_OFFSET_BITS 64
108 # endif
109 # define _LARGEFILE_SOURCE 1
110 #endif
111 
112 /*
113 ** standard include files.
114 */
115 #include <sys/types.h>
116 #include <sys/stat.h>
117 #include <fcntl.h>
118 #include <unistd.h>
119 #include <time.h>
120 #include <sys/time.h>
121 #include <errno.h>
122 #ifndef SQLITE_OMIT_WAL
123 #include <sys/mman.h>
124 #endif
125 
126 #if SQLITE_ENABLE_LOCKING_STYLE
127 # include <sys/ioctl.h>
128 # if OS_VXWORKS
129 #  include <semaphore.h>
130 #  include <limits.h>
131 # else
132 #  include <sys/file.h>
133 #  include <sys/param.h>
134 # endif
135 #endif /* SQLITE_ENABLE_LOCKING_STYLE */
136 
137 #if defined(__APPLE__) || (SQLITE_ENABLE_LOCKING_STYLE && !OS_VXWORKS)
138 # include <sys/mount.h>
139 #endif
140 
141 /*
142 ** Allowed values of unixFile.fsFlags
143 */
144 #define SQLITE_FSFLAGS_IS_MSDOS     0x1
145 
146 /*
147 ** If we are to be thread-safe, include the pthreads header and define
148 ** the SQLITE_UNIX_THREADS macro.
149 */
150 #if SQLITE_THREADSAFE
151 # include <pthread.h>
152 # define SQLITE_UNIX_THREADS 1
153 #endif
154 
155 /*
156 ** Default permissions when creating a new file
157 */
158 #ifndef SQLITE_DEFAULT_FILE_PERMISSIONS
159 # define SQLITE_DEFAULT_FILE_PERMISSIONS 0644
160 #endif
161 
162 /*
163  ** Default permissions when creating auto proxy dir
164  */
165 #ifndef SQLITE_DEFAULT_PROXYDIR_PERMISSIONS
166 # define SQLITE_DEFAULT_PROXYDIR_PERMISSIONS 0755
167 #endif
168 
169 /*
170 ** Maximum supported path-length.
171 */
172 #define MAX_PATHNAME 512
173 
174 /*
175 ** Only set the lastErrno if the error code is a real error and not
176 ** a normal expected return code of SQLITE_BUSY or SQLITE_OK
177 */
178 #define IS_LOCK_ERROR(x)  ((x != SQLITE_OK) && (x != SQLITE_BUSY))
179 
180 /* Forward references */
181 typedef struct unixShm unixShm;               /* Connection shared memory */
182 typedef struct unixShmNode unixShmNode;       /* Shared memory instance */
183 typedef struct unixInodeInfo unixInodeInfo;   /* An i-node */
184 typedef struct UnixUnusedFd UnixUnusedFd;     /* An unused file descriptor */
185 
186 /*
187 ** Sometimes, after a file handle is closed by SQLite, the file descriptor
188 ** cannot be closed immediately. In these cases, instances of the following
189 ** structure are used to store the file descriptor while waiting for an
190 ** opportunity to either close or reuse it.
191 */
192 struct UnixUnusedFd {
193   int fd;                   /* File descriptor to close */
194   int flags;                /* Flags this file descriptor was opened with */
195   UnixUnusedFd *pNext;      /* Next unused file descriptor on same file */
196 };
197 
198 /*
199 ** The unixFile structure is subclass of sqlite3_file specific to the unix
200 ** VFS implementations.
201 */
202 typedef struct unixFile unixFile;
203 struct unixFile {
204   sqlite3_io_methods const *pMethod;  /* Always the first entry */
205   unixInodeInfo *pInode;              /* Info about locks on this inode */
206   int h;                              /* The file descriptor */
207   unsigned char eFileLock;            /* The type of lock held on this fd */
208   unsigned char ctrlFlags;            /* Behavioral bits.  UNIXFILE_* flags */
209   int lastErrno;                      /* The unix errno from last I/O error */
210   void *lockingContext;               /* Locking style specific state */
211   UnixUnusedFd *pUnused;              /* Pre-allocated UnixUnusedFd */
212   const char *zPath;                  /* Name of the file */
213   unixShm *pShm;                      /* Shared memory segment information */
214   int szChunk;                        /* Configured by FCNTL_CHUNK_SIZE */
215 #if SQLITE_ENABLE_LOCKING_STYLE
216   int openFlags;                      /* The flags specified at open() */
217 #endif
218 #if SQLITE_ENABLE_LOCKING_STYLE || defined(__APPLE__)
219   unsigned fsFlags;                   /* cached details from statfs() */
220 #endif
221 #if OS_VXWORKS
222   int isDelete;                       /* Delete on close if true */
223   struct vxworksFileId *pId;          /* Unique file ID */
224 #endif
225 #ifndef NDEBUG
226   /* The next group of variables are used to track whether or not the
227   ** transaction counter in bytes 24-27 of database files are updated
228   ** whenever any part of the database changes.  An assertion fault will
229   ** occur if a file is updated without also updating the transaction
230   ** counter.  This test is made to avoid new problems similar to the
231   ** one described by ticket #3584.
232   */
233   unsigned char transCntrChng;   /* True if the transaction counter changed */
234   unsigned char dbUpdate;        /* True if any part of database file changed */
235   unsigned char inNormalWrite;   /* True if in a normal write operation */
236 #endif
237 #ifdef SQLITE_TEST
238   /* In test mode, increase the size of this structure a bit so that
239   ** it is larger than the struct CrashFile defined in test6.c.
240   */
241   char aPadding[32];
242 #endif
243 };
244 
245 /*
246 ** Allowed values for the unixFile.ctrlFlags bitmask:
247 */
248 #define UNIXFILE_EXCL   0x01     /* Connections from one process only */
249 #define UNIXFILE_RDONLY 0x02     /* Connection is read only */
250 #define UNIXFILE_DIRSYNC 0x04    /* Directory sync needed */
251 
252 /*
253 ** Include code that is common to all os_*.c files
254 */
255 #include "os_common.h"
256 
257 /*
258 ** Define various macros that are missing from some systems.
259 */
260 #ifndef O_LARGEFILE
261 # define O_LARGEFILE 0
262 #endif
263 #ifdef SQLITE_DISABLE_LFS
264 # undef O_LARGEFILE
265 # define O_LARGEFILE 0
266 #endif
267 #ifndef O_NOFOLLOW
268 # define O_NOFOLLOW 0
269 #endif
270 #ifndef O_BINARY
271 # define O_BINARY 0
272 #endif
273 
274 /*
275 ** The threadid macro resolves to the thread-id or to 0.  Used for
276 ** testing and debugging only.
277 */
278 #if SQLITE_THREADSAFE
279 #define threadid pthread_self()
280 #else
281 #define threadid 0
282 #endif
283 
284 /* Forward reference */
285 static int openDirectory(const char*, int*);
286 
287 /*
288 ** Many system calls are accessed through pointer-to-functions so that
289 ** they may be overridden at runtime to facilitate fault injection during
290 ** testing and sandboxing.  The following array holds the names and pointers
291 ** to all overrideable system calls.
292 */
293 static struct unix_syscall {
294   const char *zName;            /* Name of the sytem call */
295   sqlite3_syscall_ptr pCurrent; /* Current value of the system call */
296   sqlite3_syscall_ptr pDefault; /* Default value */
297 } aSyscall[] = {
298   { "open",         (sqlite3_syscall_ptr)open,       0  },
299 #define osOpen      ((int(*)(const char*,int,...))aSyscall[0].pCurrent)
300 
301   { "close",        (sqlite3_syscall_ptr)close,      0  },
302 #define osClose     ((int(*)(int))aSyscall[1].pCurrent)
303 
304   { "access",       (sqlite3_syscall_ptr)access,     0  },
305 #define osAccess    ((int(*)(const char*,int))aSyscall[2].pCurrent)
306 
307   { "getcwd",       (sqlite3_syscall_ptr)getcwd,     0  },
308 #define osGetcwd    ((char*(*)(char*,size_t))aSyscall[3].pCurrent)
309 
310   { "stat",         (sqlite3_syscall_ptr)stat,       0  },
311 #define osStat      ((int(*)(const char*,struct stat*))aSyscall[4].pCurrent)
312 
313 /*
314 ** The DJGPP compiler environment looks mostly like Unix, but it
315 ** lacks the fcntl() system call.  So redefine fcntl() to be something
316 ** that always succeeds.  This means that locking does not occur under
317 ** DJGPP.  But it is DOS - what did you expect?
318 */
319 #ifdef __DJGPP__
320   { "fstat",        0,                 0  },
321 #define osFstat(a,b,c)    0
322 #else
323   { "fstat",        (sqlite3_syscall_ptr)fstat,      0  },
324 #define osFstat     ((int(*)(int,struct stat*))aSyscall[5].pCurrent)
325 #endif
326 
327   { "ftruncate",    (sqlite3_syscall_ptr)ftruncate,  0  },
328 #define osFtruncate ((int(*)(int,off_t))aSyscall[6].pCurrent)
329 
330   { "fcntl",        (sqlite3_syscall_ptr)fcntl,      0  },
331 #define osFcntl     ((int(*)(int,int,...))aSyscall[7].pCurrent)
332 
333   { "read",         (sqlite3_syscall_ptr)read,       0  },
334 #define osRead      ((ssize_t(*)(int,void*,size_t))aSyscall[8].pCurrent)
335 
336 #if defined(USE_PREAD) || defined(SQLITE_ENABLE_LOCKING_STYLE)
337   { "pread",        (sqlite3_syscall_ptr)pread,      0  },
338 #else
339   { "pread",        (sqlite3_syscall_ptr)0,          0  },
340 #endif
341 #define osPread     ((ssize_t(*)(int,void*,size_t,off_t))aSyscall[9].pCurrent)
342 
343 #if defined(USE_PREAD64)
344   { "pread64",      (sqlite3_syscall_ptr)pread64,    0  },
345 #else
346   { "pread64",      (sqlite3_syscall_ptr)0,          0  },
347 #endif
348 #define osPread64   ((ssize_t(*)(int,void*,size_t,off_t))aSyscall[10].pCurrent)
349 
350   { "write",        (sqlite3_syscall_ptr)write,      0  },
351 #define osWrite     ((ssize_t(*)(int,const void*,size_t))aSyscall[11].pCurrent)
352 
353 #if defined(USE_PREAD) || defined(SQLITE_ENABLE_LOCKING_STYLE)
354   { "pwrite",       (sqlite3_syscall_ptr)pwrite,     0  },
355 #else
356   { "pwrite",       (sqlite3_syscall_ptr)0,          0  },
357 #endif
358 #define osPwrite    ((ssize_t(*)(int,const void*,size_t,off_t))\
359                     aSyscall[12].pCurrent)
360 
361 #if defined(USE_PREAD64)
362   { "pwrite64",     (sqlite3_syscall_ptr)pwrite64,   0  },
363 #else
364   { "pwrite64",     (sqlite3_syscall_ptr)0,          0  },
365 #endif
366 #define osPwrite64  ((ssize_t(*)(int,const void*,size_t,off_t))\
367                     aSyscall[13].pCurrent)
368 
369 #if SQLITE_ENABLE_LOCKING_STYLE
370   { "fchmod",       (sqlite3_syscall_ptr)fchmod,     0  },
371 #else
372   { "fchmod",       (sqlite3_syscall_ptr)0,          0  },
373 #endif
374 #define osFchmod    ((int(*)(int,mode_t))aSyscall[14].pCurrent)
375 
376 #if defined(HAVE_POSIX_FALLOCATE) && HAVE_POSIX_FALLOCATE
377   { "fallocate",    (sqlite3_syscall_ptr)posix_fallocate,  0 },
378 #else
379   { "fallocate",    (sqlite3_syscall_ptr)0,                0 },
380 #endif
381 #define osFallocate ((int(*)(int,off_t,off_t))aSyscall[15].pCurrent)
382 
383   { "unlink",       (sqlite3_syscall_ptr)unlink,           0 },
384 #define osUnlink    ((int(*)(const char*))aSyscall[16].pCurrent)
385 
386   { "openDirectory",    (sqlite3_syscall_ptr)openDirectory,      0 },
387 #define osOpenDirectory ((int(*)(const char*,int*))aSyscall[17].pCurrent)
388 
389 }; /* End of the overrideable system calls */
390 
391 /*
392 ** This is the xSetSystemCall() method of sqlite3_vfs for all of the
393 ** "unix" VFSes.  Return SQLITE_OK opon successfully updating the
394 ** system call pointer, or SQLITE_NOTFOUND if there is no configurable
395 ** system call named zName.
396 */
unixSetSystemCall(sqlite3_vfs * pNotUsed,const char * zName,sqlite3_syscall_ptr pNewFunc)397 static int unixSetSystemCall(
398   sqlite3_vfs *pNotUsed,        /* The VFS pointer.  Not used */
399   const char *zName,            /* Name of system call to override */
400   sqlite3_syscall_ptr pNewFunc  /* Pointer to new system call value */
401 ){
402   unsigned int i;
403   int rc = SQLITE_NOTFOUND;
404 
405   UNUSED_PARAMETER(pNotUsed);
406   if( zName==0 ){
407     /* If no zName is given, restore all system calls to their default
408     ** settings and return NULL
409     */
410     rc = SQLITE_OK;
411     for(i=0; i<sizeof(aSyscall)/sizeof(aSyscall[0]); i++){
412       if( aSyscall[i].pDefault ){
413         aSyscall[i].pCurrent = aSyscall[i].pDefault;
414       }
415     }
416   }else{
417     /* If zName is specified, operate on only the one system call
418     ** specified.
419     */
420     for(i=0; i<sizeof(aSyscall)/sizeof(aSyscall[0]); i++){
421       if( strcmp(zName, aSyscall[i].zName)==0 ){
422         if( aSyscall[i].pDefault==0 ){
423           aSyscall[i].pDefault = aSyscall[i].pCurrent;
424         }
425         rc = SQLITE_OK;
426         if( pNewFunc==0 ) pNewFunc = aSyscall[i].pDefault;
427         aSyscall[i].pCurrent = pNewFunc;
428         break;
429       }
430     }
431   }
432   return rc;
433 }
434 
435 /*
436 ** Return the value of a system call.  Return NULL if zName is not a
437 ** recognized system call name.  NULL is also returned if the system call
438 ** is currently undefined.
439 */
unixGetSystemCall(sqlite3_vfs * pNotUsed,const char * zName)440 static sqlite3_syscall_ptr unixGetSystemCall(
441   sqlite3_vfs *pNotUsed,
442   const char *zName
443 ){
444   unsigned int i;
445 
446   UNUSED_PARAMETER(pNotUsed);
447   for(i=0; i<sizeof(aSyscall)/sizeof(aSyscall[0]); i++){
448     if( strcmp(zName, aSyscall[i].zName)==0 ) return aSyscall[i].pCurrent;
449   }
450   return 0;
451 }
452 
453 /*
454 ** Return the name of the first system call after zName.  If zName==NULL
455 ** then return the name of the first system call.  Return NULL if zName
456 ** is the last system call or if zName is not the name of a valid
457 ** system call.
458 */
unixNextSystemCall(sqlite3_vfs * p,const char * zName)459 static const char *unixNextSystemCall(sqlite3_vfs *p, const char *zName){
460   int i = -1;
461 
462   UNUSED_PARAMETER(p);
463   if( zName ){
464     for(i=0; i<ArraySize(aSyscall)-1; i++){
465       if( strcmp(zName, aSyscall[i].zName)==0 ) break;
466     }
467   }
468   for(i++; i<ArraySize(aSyscall); i++){
469     if( aSyscall[i].pCurrent!=0 ) return aSyscall[i].zName;
470   }
471   return 0;
472 }
473 
474 /*
475 ** Retry open() calls that fail due to EINTR
476 */
robust_open(const char * z,int f,int m)477 static int robust_open(const char *z, int f, int m){
478   int rc;
479   do{ rc = osOpen(z,f,m); }while( rc<0 && errno==EINTR );
480   return rc;
481 }
482 
483 /*
484 ** Helper functions to obtain and relinquish the global mutex. The
485 ** global mutex is used to protect the unixInodeInfo and
486 ** vxworksFileId objects used by this file, all of which may be
487 ** shared by multiple threads.
488 **
489 ** Function unixMutexHeld() is used to assert() that the global mutex
490 ** is held when required. This function is only used as part of assert()
491 ** statements. e.g.
492 **
493 **   unixEnterMutex()
494 **     assert( unixMutexHeld() );
495 **   unixEnterLeave()
496 */
unixEnterMutex(void)497 static void unixEnterMutex(void){
498   sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER));
499 }
unixLeaveMutex(void)500 static void unixLeaveMutex(void){
501   sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER));
502 }
503 #ifdef SQLITE_DEBUG
unixMutexHeld(void)504 static int unixMutexHeld(void) {
505   return sqlite3_mutex_held(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER));
506 }
507 #endif
508 
509 
510 #ifdef SQLITE_DEBUG
511 /*
512 ** Helper function for printing out trace information from debugging
513 ** binaries. This returns the string represetation of the supplied
514 ** integer lock-type.
515 */
azFileLock(int eFileLock)516 static const char *azFileLock(int eFileLock){
517   switch( eFileLock ){
518     case NO_LOCK: return "NONE";
519     case SHARED_LOCK: return "SHARED";
520     case RESERVED_LOCK: return "RESERVED";
521     case PENDING_LOCK: return "PENDING";
522     case EXCLUSIVE_LOCK: return "EXCLUSIVE";
523   }
524   return "ERROR";
525 }
526 #endif
527 
528 #ifdef SQLITE_LOCK_TRACE
529 /*
530 ** Print out information about all locking operations.
531 **
532 ** This routine is used for troubleshooting locks on multithreaded
533 ** platforms.  Enable by compiling with the -DSQLITE_LOCK_TRACE
534 ** command-line option on the compiler.  This code is normally
535 ** turned off.
536 */
lockTrace(int fd,int op,struct flock * p)537 static int lockTrace(int fd, int op, struct flock *p){
538   char *zOpName, *zType;
539   int s;
540   int savedErrno;
541   if( op==F_GETLK ){
542     zOpName = "GETLK";
543   }else if( op==F_SETLK ){
544     zOpName = "SETLK";
545   }else{
546     s = osFcntl(fd, op, p);
547     sqlite3DebugPrintf("fcntl unknown %d %d %d\n", fd, op, s);
548     return s;
549   }
550   if( p->l_type==F_RDLCK ){
551     zType = "RDLCK";
552   }else if( p->l_type==F_WRLCK ){
553     zType = "WRLCK";
554   }else if( p->l_type==F_UNLCK ){
555     zType = "UNLCK";
556   }else{
557     assert( 0 );
558   }
559   assert( p->l_whence==SEEK_SET );
560   s = osFcntl(fd, op, p);
561   savedErrno = errno;
562   sqlite3DebugPrintf("fcntl %d %d %s %s %d %d %d %d\n",
563      threadid, fd, zOpName, zType, (int)p->l_start, (int)p->l_len,
564      (int)p->l_pid, s);
565   if( s==(-1) && op==F_SETLK && (p->l_type==F_RDLCK || p->l_type==F_WRLCK) ){
566     struct flock l2;
567     l2 = *p;
568     osFcntl(fd, F_GETLK, &l2);
569     if( l2.l_type==F_RDLCK ){
570       zType = "RDLCK";
571     }else if( l2.l_type==F_WRLCK ){
572       zType = "WRLCK";
573     }else if( l2.l_type==F_UNLCK ){
574       zType = "UNLCK";
575     }else{
576       assert( 0 );
577     }
578     sqlite3DebugPrintf("fcntl-failure-reason: %s %d %d %d\n",
579        zType, (int)l2.l_start, (int)l2.l_len, (int)l2.l_pid);
580   }
581   errno = savedErrno;
582   return s;
583 }
584 #undef osFcntl
585 #define osFcntl lockTrace
586 #endif /* SQLITE_LOCK_TRACE */
587 
588 /*
589 ** Retry ftruncate() calls that fail due to EINTR
590 */
robust_ftruncate(int h,sqlite3_int64 sz)591 static int robust_ftruncate(int h, sqlite3_int64 sz){
592   int rc;
593   do{ rc = osFtruncate(h,sz); }while( rc<0 && errno==EINTR );
594   return rc;
595 }
596 
597 /*
598 ** This routine translates a standard POSIX errno code into something
599 ** useful to the clients of the sqlite3 functions.  Specifically, it is
600 ** intended to translate a variety of "try again" errors into SQLITE_BUSY
601 ** and a variety of "please close the file descriptor NOW" errors into
602 ** SQLITE_IOERR
603 **
604 ** Errors during initialization of locks, or file system support for locks,
605 ** should handle ENOLCK, ENOTSUP, EOPNOTSUPP separately.
606 */
sqliteErrorFromPosixError(int posixError,int sqliteIOErr)607 static int sqliteErrorFromPosixError(int posixError, int sqliteIOErr) {
608   switch (posixError) {
609 #if 0
610   /* At one point this code was not commented out. In theory, this branch
611   ** should never be hit, as this function should only be called after
612   ** a locking-related function (i.e. fcntl()) has returned non-zero with
613   ** the value of errno as the first argument. Since a system call has failed,
614   ** errno should be non-zero.
615   **
616   ** Despite this, if errno really is zero, we still don't want to return
617   ** SQLITE_OK. The system call failed, and *some* SQLite error should be
618   ** propagated back to the caller. Commenting this branch out means errno==0
619   ** will be handled by the "default:" case below.
620   */
621   case 0:
622     return SQLITE_OK;
623 #endif
624 
625   case EAGAIN:
626   case ETIMEDOUT:
627   case EBUSY:
628   case EINTR:
629   case ENOLCK:
630     /* random NFS retry error, unless during file system support
631      * introspection, in which it actually means what it says */
632     return SQLITE_BUSY;
633 
634   case EACCES:
635     /* EACCES is like EAGAIN during locking operations, but not any other time*/
636     if( (sqliteIOErr == SQLITE_IOERR_LOCK) ||
637 	(sqliteIOErr == SQLITE_IOERR_UNLOCK) ||
638 	(sqliteIOErr == SQLITE_IOERR_RDLOCK) ||
639 	(sqliteIOErr == SQLITE_IOERR_CHECKRESERVEDLOCK) ){
640       return SQLITE_BUSY;
641     }
642     /* else fall through */
643   case EPERM:
644     return SQLITE_PERM;
645 
646   /* EDEADLK is only possible if a call to fcntl(F_SETLKW) is made. And
647   ** this module never makes such a call. And the code in SQLite itself
648   ** asserts that SQLITE_IOERR_BLOCKED is never returned. For these reasons
649   ** this case is also commented out. If the system does set errno to EDEADLK,
650   ** the default SQLITE_IOERR_XXX code will be returned. */
651 #if 0
652   case EDEADLK:
653     return SQLITE_IOERR_BLOCKED;
654 #endif
655 
656 #if EOPNOTSUPP!=ENOTSUP
657   case EOPNOTSUPP:
658     /* something went terribly awry, unless during file system support
659      * introspection, in which it actually means what it says */
660 #endif
661 #ifdef ENOTSUP
662   case ENOTSUP:
663     /* invalid fd, unless during file system support introspection, in which
664      * it actually means what it says */
665 #endif
666   case EIO:
667   case EBADF:
668   case EINVAL:
669   case ENOTCONN:
670   case ENODEV:
671   case ENXIO:
672   case ENOENT:
673   case ESTALE:
674   case ENOSYS:
675     /* these should force the client to close the file and reconnect */
676 
677   default:
678     return sqliteIOErr;
679   }
680 }
681 
682 
683 
684 /******************************************************************************
685 ****************** Begin Unique File ID Utility Used By VxWorks ***************
686 **
687 ** On most versions of unix, we can get a unique ID for a file by concatenating
688 ** the device number and the inode number.  But this does not work on VxWorks.
689 ** On VxWorks, a unique file id must be based on the canonical filename.
690 **
691 ** A pointer to an instance of the following structure can be used as a
692 ** unique file ID in VxWorks.  Each instance of this structure contains
693 ** a copy of the canonical filename.  There is also a reference count.
694 ** The structure is reclaimed when the number of pointers to it drops to
695 ** zero.
696 **
697 ** There are never very many files open at one time and lookups are not
698 ** a performance-critical path, so it is sufficient to put these
699 ** structures on a linked list.
700 */
701 struct vxworksFileId {
702   struct vxworksFileId *pNext;  /* Next in a list of them all */
703   int nRef;                     /* Number of references to this one */
704   int nName;                    /* Length of the zCanonicalName[] string */
705   char *zCanonicalName;         /* Canonical filename */
706 };
707 
708 #if OS_VXWORKS
709 /*
710 ** All unique filenames are held on a linked list headed by this
711 ** variable:
712 */
713 static struct vxworksFileId *vxworksFileList = 0;
714 
715 /*
716 ** Simplify a filename into its canonical form
717 ** by making the following changes:
718 **
719 **  * removing any trailing and duplicate /
720 **  * convert /./ into just /
721 **  * convert /A/../ where A is any simple name into just /
722 **
723 ** Changes are made in-place.  Return the new name length.
724 **
725 ** The original filename is in z[0..n-1].  Return the number of
726 ** characters in the simplified name.
727 */
vxworksSimplifyName(char * z,int n)728 static int vxworksSimplifyName(char *z, int n){
729   int i, j;
730   while( n>1 && z[n-1]=='/' ){ n--; }
731   for(i=j=0; i<n; i++){
732     if( z[i]=='/' ){
733       if( z[i+1]=='/' ) continue;
734       if( z[i+1]=='.' && i+2<n && z[i+2]=='/' ){
735         i += 1;
736         continue;
737       }
738       if( z[i+1]=='.' && i+3<n && z[i+2]=='.' && z[i+3]=='/' ){
739         while( j>0 && z[j-1]!='/' ){ j--; }
740         if( j>0 ){ j--; }
741         i += 2;
742         continue;
743       }
744     }
745     z[j++] = z[i];
746   }
747   z[j] = 0;
748   return j;
749 }
750 
751 /*
752 ** Find a unique file ID for the given absolute pathname.  Return
753 ** a pointer to the vxworksFileId object.  This pointer is the unique
754 ** file ID.
755 **
756 ** The nRef field of the vxworksFileId object is incremented before
757 ** the object is returned.  A new vxworksFileId object is created
758 ** and added to the global list if necessary.
759 **
760 ** If a memory allocation error occurs, return NULL.
761 */
vxworksFindFileId(const char * zAbsoluteName)762 static struct vxworksFileId *vxworksFindFileId(const char *zAbsoluteName){
763   struct vxworksFileId *pNew;         /* search key and new file ID */
764   struct vxworksFileId *pCandidate;   /* For looping over existing file IDs */
765   int n;                              /* Length of zAbsoluteName string */
766 
767   assert( zAbsoluteName[0]=='/' );
768   n = (int)strlen(zAbsoluteName);
769   pNew = sqlite3_malloc( sizeof(*pNew) + (n+1) );
770   if( pNew==0 ) return 0;
771   pNew->zCanonicalName = (char*)&pNew[1];
772   memcpy(pNew->zCanonicalName, zAbsoluteName, n+1);
773   n = vxworksSimplifyName(pNew->zCanonicalName, n);
774 
775   /* Search for an existing entry that matching the canonical name.
776   ** If found, increment the reference count and return a pointer to
777   ** the existing file ID.
778   */
779   unixEnterMutex();
780   for(pCandidate=vxworksFileList; pCandidate; pCandidate=pCandidate->pNext){
781     if( pCandidate->nName==n
782      && memcmp(pCandidate->zCanonicalName, pNew->zCanonicalName, n)==0
783     ){
784        sqlite3_free(pNew);
785        pCandidate->nRef++;
786        unixLeaveMutex();
787        return pCandidate;
788     }
789   }
790 
791   /* No match was found.  We will make a new file ID */
792   pNew->nRef = 1;
793   pNew->nName = n;
794   pNew->pNext = vxworksFileList;
795   vxworksFileList = pNew;
796   unixLeaveMutex();
797   return pNew;
798 }
799 
800 /*
801 ** Decrement the reference count on a vxworksFileId object.  Free
802 ** the object when the reference count reaches zero.
803 */
vxworksReleaseFileId(struct vxworksFileId * pId)804 static void vxworksReleaseFileId(struct vxworksFileId *pId){
805   unixEnterMutex();
806   assert( pId->nRef>0 );
807   pId->nRef--;
808   if( pId->nRef==0 ){
809     struct vxworksFileId **pp;
810     for(pp=&vxworksFileList; *pp && *pp!=pId; pp = &((*pp)->pNext)){}
811     assert( *pp==pId );
812     *pp = pId->pNext;
813     sqlite3_free(pId);
814   }
815   unixLeaveMutex();
816 }
817 #endif /* OS_VXWORKS */
818 /*************** End of Unique File ID Utility Used By VxWorks ****************
819 ******************************************************************************/
820 
821 
822 /******************************************************************************
823 *************************** Posix Advisory Locking ****************************
824 **
825 ** POSIX advisory locks are broken by design.  ANSI STD 1003.1 (1996)
826 ** section 6.5.2.2 lines 483 through 490 specify that when a process
827 ** sets or clears a lock, that operation overrides any prior locks set
828 ** by the same process.  It does not explicitly say so, but this implies
829 ** that it overrides locks set by the same process using a different
830 ** file descriptor.  Consider this test case:
831 **
832 **       int fd1 = open("./file1", O_RDWR|O_CREAT, 0644);
833 **       int fd2 = open("./file2", O_RDWR|O_CREAT, 0644);
834 **
835 ** Suppose ./file1 and ./file2 are really the same file (because
836 ** one is a hard or symbolic link to the other) then if you set
837 ** an exclusive lock on fd1, then try to get an exclusive lock
838 ** on fd2, it works.  I would have expected the second lock to
839 ** fail since there was already a lock on the file due to fd1.
840 ** But not so.  Since both locks came from the same process, the
841 ** second overrides the first, even though they were on different
842 ** file descriptors opened on different file names.
843 **
844 ** This means that we cannot use POSIX locks to synchronize file access
845 ** among competing threads of the same process.  POSIX locks will work fine
846 ** to synchronize access for threads in separate processes, but not
847 ** threads within the same process.
848 **
849 ** To work around the problem, SQLite has to manage file locks internally
850 ** on its own.  Whenever a new database is opened, we have to find the
851 ** specific inode of the database file (the inode is determined by the
852 ** st_dev and st_ino fields of the stat structure that fstat() fills in)
853 ** and check for locks already existing on that inode.  When locks are
854 ** created or removed, we have to look at our own internal record of the
855 ** locks to see if another thread has previously set a lock on that same
856 ** inode.
857 **
858 ** (Aside: The use of inode numbers as unique IDs does not work on VxWorks.
859 ** For VxWorks, we have to use the alternative unique ID system based on
860 ** canonical filename and implemented in the previous division.)
861 **
862 ** The sqlite3_file structure for POSIX is no longer just an integer file
863 ** descriptor.  It is now a structure that holds the integer file
864 ** descriptor and a pointer to a structure that describes the internal
865 ** locks on the corresponding inode.  There is one locking structure
866 ** per inode, so if the same inode is opened twice, both unixFile structures
867 ** point to the same locking structure.  The locking structure keeps
868 ** a reference count (so we will know when to delete it) and a "cnt"
869 ** field that tells us its internal lock status.  cnt==0 means the
870 ** file is unlocked.  cnt==-1 means the file has an exclusive lock.
871 ** cnt>0 means there are cnt shared locks on the file.
872 **
873 ** Any attempt to lock or unlock a file first checks the locking
874 ** structure.  The fcntl() system call is only invoked to set a
875 ** POSIX lock if the internal lock structure transitions between
876 ** a locked and an unlocked state.
877 **
878 ** But wait:  there are yet more problems with POSIX advisory locks.
879 **
880 ** If you close a file descriptor that points to a file that has locks,
881 ** all locks on that file that are owned by the current process are
882 ** released.  To work around this problem, each unixInodeInfo object
883 ** maintains a count of the number of pending locks on tha inode.
884 ** When an attempt is made to close an unixFile, if there are
885 ** other unixFile open on the same inode that are holding locks, the call
886 ** to close() the file descriptor is deferred until all of the locks clear.
887 ** The unixInodeInfo structure keeps a list of file descriptors that need to
888 ** be closed and that list is walked (and cleared) when the last lock
889 ** clears.
890 **
891 ** Yet another problem:  LinuxThreads do not play well with posix locks.
892 **
893 ** Many older versions of linux use the LinuxThreads library which is
894 ** not posix compliant.  Under LinuxThreads, a lock created by thread
895 ** A cannot be modified or overridden by a different thread B.
896 ** Only thread A can modify the lock.  Locking behavior is correct
897 ** if the appliation uses the newer Native Posix Thread Library (NPTL)
898 ** on linux - with NPTL a lock created by thread A can override locks
899 ** in thread B.  But there is no way to know at compile-time which
900 ** threading library is being used.  So there is no way to know at
901 ** compile-time whether or not thread A can override locks on thread B.
902 ** One has to do a run-time check to discover the behavior of the
903 ** current process.
904 **
905 ** SQLite used to support LinuxThreads.  But support for LinuxThreads
906 ** was dropped beginning with version 3.7.0.  SQLite will still work with
907 ** LinuxThreads provided that (1) there is no more than one connection
908 ** per database file in the same process and (2) database connections
909 ** do not move across threads.
910 */
911 
912 /*
913 ** An instance of the following structure serves as the key used
914 ** to locate a particular unixInodeInfo object.
915 */
916 struct unixFileId {
917   dev_t dev;                  /* Device number */
918 #if OS_VXWORKS
919   struct vxworksFileId *pId;  /* Unique file ID for vxworks. */
920 #else
921   ino_t ino;                  /* Inode number */
922 #endif
923 };
924 
925 /*
926 ** An instance of the following structure is allocated for each open
927 ** inode.  Or, on LinuxThreads, there is one of these structures for
928 ** each inode opened by each thread.
929 **
930 ** A single inode can have multiple file descriptors, so each unixFile
931 ** structure contains a pointer to an instance of this object and this
932 ** object keeps a count of the number of unixFile pointing to it.
933 */
934 struct unixInodeInfo {
935   struct unixFileId fileId;       /* The lookup key */
936   int nShared;                    /* Number of SHARED locks held */
937   unsigned char eFileLock;        /* One of SHARED_LOCK, RESERVED_LOCK etc. */
938   unsigned char bProcessLock;     /* An exclusive process lock is held */
939   int nRef;                       /* Number of pointers to this structure */
940   unixShmNode *pShmNode;          /* Shared memory associated with this inode */
941   int nLock;                      /* Number of outstanding file locks */
942   UnixUnusedFd *pUnused;          /* Unused file descriptors to close */
943   unixInodeInfo *pNext;           /* List of all unixInodeInfo objects */
944   unixInodeInfo *pPrev;           /*    .... doubly linked */
945 #if defined(SQLITE_ENABLE_LOCKING_STYLE)
946   unsigned long long sharedByte;  /* for AFP simulated shared lock */
947 #endif
948 #if OS_VXWORKS
949   sem_t *pSem;                    /* Named POSIX semaphore */
950   char aSemName[MAX_PATHNAME+2];  /* Name of that semaphore */
951 #endif
952 };
953 
954 /*
955 ** A lists of all unixInodeInfo objects.
956 */
957 static unixInodeInfo *inodeList = 0;
958 
959 /*
960 **
961 ** This function - unixLogError_x(), is only ever called via the macro
962 ** unixLogError().
963 **
964 ** It is invoked after an error occurs in an OS function and errno has been
965 ** set. It logs a message using sqlite3_log() containing the current value of
966 ** errno and, if possible, the human-readable equivalent from strerror() or
967 ** strerror_r().
968 **
969 ** The first argument passed to the macro should be the error code that
970 ** will be returned to SQLite (e.g. SQLITE_IOERR_DELETE, SQLITE_CANTOPEN).
971 ** The two subsequent arguments should be the name of the OS function that
972 ** failed (e.g. "unlink", "open") and the the associated file-system path,
973 ** if any.
974 */
975 #define unixLogError(a,b,c)     unixLogErrorAtLine(a,b,c,__LINE__)
unixLogErrorAtLine(int errcode,const char * zFunc,const char * zPath,int iLine)976 static int unixLogErrorAtLine(
977   int errcode,                    /* SQLite error code */
978   const char *zFunc,              /* Name of OS function that failed */
979   const char *zPath,              /* File path associated with error */
980   int iLine                       /* Source line number where error occurred */
981 ){
982   char *zErr;                     /* Message from strerror() or equivalent */
983   int iErrno = errno;             /* Saved syscall error number */
984 
985   /* If this is not a threadsafe build (SQLITE_THREADSAFE==0), then use
986   ** the strerror() function to obtain the human-readable error message
987   ** equivalent to errno. Otherwise, use strerror_r().
988   */
989 #if SQLITE_THREADSAFE && defined(HAVE_STRERROR_R)
990   char aErr[80];
991   memset(aErr, 0, sizeof(aErr));
992   zErr = aErr;
993 
994   /* If STRERROR_R_CHAR_P (set by autoconf scripts) or __USE_GNU is defined,
995   ** assume that the system provides the the GNU version of strerror_r() that
996   ** returns a pointer to a buffer containing the error message. That pointer
997   ** may point to aErr[], or it may point to some static storage somewhere.
998   ** Otherwise, assume that the system provides the POSIX version of
999   ** strerror_r(), which always writes an error message into aErr[].
1000   **
1001   ** If the code incorrectly assumes that it is the POSIX version that is
1002   ** available, the error message will often be an empty string. Not a
1003   ** huge problem. Incorrectly concluding that the GNU version is available
1004   ** could lead to a segfault though.
1005   */
1006 #if defined(STRERROR_R_CHAR_P) || defined(__USE_GNU)
1007   zErr =
1008 # endif
1009   strerror_r(iErrno, aErr, sizeof(aErr)-1);
1010 
1011 #elif SQLITE_THREADSAFE
1012   /* This is a threadsafe build, but strerror_r() is not available. */
1013   zErr = "";
1014 #else
1015   /* Non-threadsafe build, use strerror(). */
1016   zErr = strerror(iErrno);
1017 #endif
1018 
1019   assert( errcode!=SQLITE_OK );
1020   if( zPath==0 ) zPath = "";
1021   sqlite3_log(errcode,
1022       "os_unix.c:%d: (%d) %s(%s) - %s",
1023       iLine, iErrno, zFunc, zPath, zErr
1024   );
1025 
1026   return errcode;
1027 }
1028 
1029 /*
1030 ** Close a file descriptor.
1031 **
1032 ** We assume that close() almost always works, since it is only in a
1033 ** very sick application or on a very sick platform that it might fail.
1034 ** If it does fail, simply leak the file descriptor, but do log the
1035 ** error.
1036 **
1037 ** Note that it is not safe to retry close() after EINTR since the
1038 ** file descriptor might have already been reused by another thread.
1039 ** So we don't even try to recover from an EINTR.  Just log the error
1040 ** and move on.
1041 */
robust_close(unixFile * pFile,int h,int lineno)1042 static void robust_close(unixFile *pFile, int h, int lineno){
1043   if( osClose(h) ){
1044     unixLogErrorAtLine(SQLITE_IOERR_CLOSE, "close",
1045                        pFile ? pFile->zPath : 0, lineno);
1046   }
1047 }
1048 
1049 /*
1050 ** Close all file descriptors accumuated in the unixInodeInfo->pUnused list.
1051 */
closePendingFds(unixFile * pFile)1052 static void closePendingFds(unixFile *pFile){
1053   unixInodeInfo *pInode = pFile->pInode;
1054   UnixUnusedFd *p;
1055   UnixUnusedFd *pNext;
1056   for(p=pInode->pUnused; p; p=pNext){
1057     pNext = p->pNext;
1058     robust_close(pFile, p->fd, __LINE__);
1059     sqlite3_free(p);
1060   }
1061   pInode->pUnused = 0;
1062 }
1063 
1064 /*
1065 ** Release a unixInodeInfo structure previously allocated by findInodeInfo().
1066 **
1067 ** The mutex entered using the unixEnterMutex() function must be held
1068 ** when this function is called.
1069 */
releaseInodeInfo(unixFile * pFile)1070 static void releaseInodeInfo(unixFile *pFile){
1071   unixInodeInfo *pInode = pFile->pInode;
1072   assert( unixMutexHeld() );
1073   if( ALWAYS(pInode) ){
1074     pInode->nRef--;
1075     if( pInode->nRef==0 ){
1076       assert( pInode->pShmNode==0 );
1077       closePendingFds(pFile);
1078       if( pInode->pPrev ){
1079         assert( pInode->pPrev->pNext==pInode );
1080         pInode->pPrev->pNext = pInode->pNext;
1081       }else{
1082         assert( inodeList==pInode );
1083         inodeList = pInode->pNext;
1084       }
1085       if( pInode->pNext ){
1086         assert( pInode->pNext->pPrev==pInode );
1087         pInode->pNext->pPrev = pInode->pPrev;
1088       }
1089       sqlite3_free(pInode);
1090     }
1091   }
1092 }
1093 
1094 /*
1095 ** Given a file descriptor, locate the unixInodeInfo object that
1096 ** describes that file descriptor.  Create a new one if necessary.  The
1097 ** return value might be uninitialized if an error occurs.
1098 **
1099 ** The mutex entered using the unixEnterMutex() function must be held
1100 ** when this function is called.
1101 **
1102 ** Return an appropriate error code.
1103 */
findInodeInfo(unixFile * pFile,unixInodeInfo ** ppInode)1104 static int findInodeInfo(
1105   unixFile *pFile,               /* Unix file with file desc used in the key */
1106   unixInodeInfo **ppInode        /* Return the unixInodeInfo object here */
1107 ){
1108   int rc;                        /* System call return code */
1109   int fd;                        /* The file descriptor for pFile */
1110   struct unixFileId fileId;      /* Lookup key for the unixInodeInfo */
1111   struct stat statbuf;           /* Low-level file information */
1112   unixInodeInfo *pInode = 0;     /* Candidate unixInodeInfo object */
1113 
1114   assert( unixMutexHeld() );
1115 
1116   /* Get low-level information about the file that we can used to
1117   ** create a unique name for the file.
1118   */
1119   fd = pFile->h;
1120   rc = osFstat(fd, &statbuf);
1121   if( rc!=0 ){
1122     pFile->lastErrno = errno;
1123 #ifdef EOVERFLOW
1124     if( pFile->lastErrno==EOVERFLOW ) return SQLITE_NOLFS;
1125 #endif
1126     return SQLITE_IOERR;
1127   }
1128 
1129 #ifdef __APPLE__
1130   /* On OS X on an msdos filesystem, the inode number is reported
1131   ** incorrectly for zero-size files.  See ticket #3260.  To work
1132   ** around this problem (we consider it a bug in OS X, not SQLite)
1133   ** we always increase the file size to 1 by writing a single byte
1134   ** prior to accessing the inode number.  The one byte written is
1135   ** an ASCII 'S' character which also happens to be the first byte
1136   ** in the header of every SQLite database.  In this way, if there
1137   ** is a race condition such that another thread has already populated
1138   ** the first page of the database, no damage is done.
1139   */
1140   if( statbuf.st_size==0 && (pFile->fsFlags & SQLITE_FSFLAGS_IS_MSDOS)!=0 ){
1141     do{ rc = osWrite(fd, "S", 1); }while( rc<0 && errno==EINTR );
1142     if( rc!=1 ){
1143       pFile->lastErrno = errno;
1144       return SQLITE_IOERR;
1145     }
1146     rc = osFstat(fd, &statbuf);
1147     if( rc!=0 ){
1148       pFile->lastErrno = errno;
1149       return SQLITE_IOERR;
1150     }
1151   }
1152 #endif
1153 
1154   memset(&fileId, 0, sizeof(fileId));
1155   fileId.dev = statbuf.st_dev;
1156 #if OS_VXWORKS
1157   fileId.pId = pFile->pId;
1158 #else
1159   fileId.ino = statbuf.st_ino;
1160 #endif
1161   pInode = inodeList;
1162   while( pInode && memcmp(&fileId, &pInode->fileId, sizeof(fileId)) ){
1163     pInode = pInode->pNext;
1164   }
1165   if( pInode==0 ){
1166     pInode = sqlite3_malloc( sizeof(*pInode) );
1167     if( pInode==0 ){
1168       return SQLITE_NOMEM;
1169     }
1170     memset(pInode, 0, sizeof(*pInode));
1171     memcpy(&pInode->fileId, &fileId, sizeof(fileId));
1172     pInode->nRef = 1;
1173     pInode->pNext = inodeList;
1174     pInode->pPrev = 0;
1175     if( inodeList ) inodeList->pPrev = pInode;
1176     inodeList = pInode;
1177   }else{
1178     pInode->nRef++;
1179   }
1180   *ppInode = pInode;
1181   return SQLITE_OK;
1182 }
1183 
1184 
1185 /*
1186 ** This routine checks if there is a RESERVED lock held on the specified
1187 ** file by this or any other process. If such a lock is held, set *pResOut
1188 ** to a non-zero value otherwise *pResOut is set to zero.  The return value
1189 ** is set to SQLITE_OK unless an I/O error occurs during lock checking.
1190 */
unixCheckReservedLock(sqlite3_file * id,int * pResOut)1191 static int unixCheckReservedLock(sqlite3_file *id, int *pResOut){
1192   int rc = SQLITE_OK;
1193   int reserved = 0;
1194   unixFile *pFile = (unixFile*)id;
1195 
1196   SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; );
1197 
1198   assert( pFile );
1199   unixEnterMutex(); /* Because pFile->pInode is shared across threads */
1200 
1201   /* Check if a thread in this process holds such a lock */
1202   if( pFile->pInode->eFileLock>SHARED_LOCK ){
1203     reserved = 1;
1204   }
1205 
1206   /* Otherwise see if some other process holds it.
1207   */
1208 #ifndef __DJGPP__
1209   if( !reserved && !pFile->pInode->bProcessLock ){
1210     struct flock lock;
1211     lock.l_whence = SEEK_SET;
1212     lock.l_start = RESERVED_BYTE;
1213     lock.l_len = 1;
1214     lock.l_type = F_WRLCK;
1215     if( osFcntl(pFile->h, F_GETLK, &lock) ){
1216       rc = SQLITE_IOERR_CHECKRESERVEDLOCK;
1217       pFile->lastErrno = errno;
1218     } else if( lock.l_type!=F_UNLCK ){
1219       reserved = 1;
1220     }
1221   }
1222 #endif
1223 
1224   unixLeaveMutex();
1225   OSTRACE(("TEST WR-LOCK %d %d %d (unix)\n", pFile->h, rc, reserved));
1226 
1227   *pResOut = reserved;
1228   return rc;
1229 }
1230 
1231 /*
1232 ** Attempt to set a system-lock on the file pFile.  The lock is
1233 ** described by pLock.
1234 **
1235 ** If the pFile was opened read/write from unix-excl, then the only lock
1236 ** ever obtained is an exclusive lock, and it is obtained exactly once
1237 ** the first time any lock is attempted.  All subsequent system locking
1238 ** operations become no-ops.  Locking operations still happen internally,
1239 ** in order to coordinate access between separate database connections
1240 ** within this process, but all of that is handled in memory and the
1241 ** operating system does not participate.
1242 **
1243 ** This function is a pass-through to fcntl(F_SETLK) if pFile is using
1244 ** any VFS other than "unix-excl" or if pFile is opened on "unix-excl"
1245 ** and is read-only.
1246 **
1247 ** Zero is returned if the call completes successfully, or -1 if a call
1248 ** to fcntl() fails. In this case, errno is set appropriately (by fcntl()).
1249 */
unixFileLock(unixFile * pFile,struct flock * pLock)1250 static int unixFileLock(unixFile *pFile, struct flock *pLock){
1251   int rc;
1252   unixInodeInfo *pInode = pFile->pInode;
1253   assert( unixMutexHeld() );
1254   assert( pInode!=0 );
1255   if( ((pFile->ctrlFlags & UNIXFILE_EXCL)!=0 || pInode->bProcessLock)
1256    && ((pFile->ctrlFlags & UNIXFILE_RDONLY)==0)
1257   ){
1258     if( pInode->bProcessLock==0 ){
1259       struct flock lock;
1260       assert( pInode->nLock==0 );
1261       lock.l_whence = SEEK_SET;
1262       lock.l_start = SHARED_FIRST;
1263       lock.l_len = SHARED_SIZE;
1264       lock.l_type = F_WRLCK;
1265       rc = osFcntl(pFile->h, F_SETLK, &lock);
1266       if( rc<0 ) return rc;
1267       pInode->bProcessLock = 1;
1268       pInode->nLock++;
1269     }else{
1270       rc = 0;
1271     }
1272   }else{
1273     rc = osFcntl(pFile->h, F_SETLK, pLock);
1274   }
1275   return rc;
1276 }
1277 
1278 /*
1279 ** Lock the file with the lock specified by parameter eFileLock - one
1280 ** of the following:
1281 **
1282 **     (1) SHARED_LOCK
1283 **     (2) RESERVED_LOCK
1284 **     (3) PENDING_LOCK
1285 **     (4) EXCLUSIVE_LOCK
1286 **
1287 ** Sometimes when requesting one lock state, additional lock states
1288 ** are inserted in between.  The locking might fail on one of the later
1289 ** transitions leaving the lock state different from what it started but
1290 ** still short of its goal.  The following chart shows the allowed
1291 ** transitions and the inserted intermediate states:
1292 **
1293 **    UNLOCKED -> SHARED
1294 **    SHARED -> RESERVED
1295 **    SHARED -> (PENDING) -> EXCLUSIVE
1296 **    RESERVED -> (PENDING) -> EXCLUSIVE
1297 **    PENDING -> EXCLUSIVE
1298 **
1299 ** This routine will only increase a lock.  Use the sqlite3OsUnlock()
1300 ** routine to lower a locking level.
1301 */
unixLock(sqlite3_file * id,int eFileLock)1302 static int unixLock(sqlite3_file *id, int eFileLock){
1303   /* The following describes the implementation of the various locks and
1304   ** lock transitions in terms of the POSIX advisory shared and exclusive
1305   ** lock primitives (called read-locks and write-locks below, to avoid
1306   ** confusion with SQLite lock names). The algorithms are complicated
1307   ** slightly in order to be compatible with windows systems simultaneously
1308   ** accessing the same database file, in case that is ever required.
1309   **
1310   ** Symbols defined in os.h indentify the 'pending byte' and the 'reserved
1311   ** byte', each single bytes at well known offsets, and the 'shared byte
1312   ** range', a range of 510 bytes at a well known offset.
1313   **
1314   ** To obtain a SHARED lock, a read-lock is obtained on the 'pending
1315   ** byte'.  If this is successful, a random byte from the 'shared byte
1316   ** range' is read-locked and the lock on the 'pending byte' released.
1317   **
1318   ** A process may only obtain a RESERVED lock after it has a SHARED lock.
1319   ** A RESERVED lock is implemented by grabbing a write-lock on the
1320   ** 'reserved byte'.
1321   **
1322   ** A process may only obtain a PENDING lock after it has obtained a
1323   ** SHARED lock. A PENDING lock is implemented by obtaining a write-lock
1324   ** on the 'pending byte'. This ensures that no new SHARED locks can be
1325   ** obtained, but existing SHARED locks are allowed to persist. A process
1326   ** does not have to obtain a RESERVED lock on the way to a PENDING lock.
1327   ** This property is used by the algorithm for rolling back a journal file
1328   ** after a crash.
1329   **
1330   ** An EXCLUSIVE lock, obtained after a PENDING lock is held, is
1331   ** implemented by obtaining a write-lock on the entire 'shared byte
1332   ** range'. Since all other locks require a read-lock on one of the bytes
1333   ** within this range, this ensures that no other locks are held on the
1334   ** database.
1335   **
1336   ** The reason a single byte cannot be used instead of the 'shared byte
1337   ** range' is that some versions of windows do not support read-locks. By
1338   ** locking a random byte from a range, concurrent SHARED locks may exist
1339   ** even if the locking primitive used is always a write-lock.
1340   */
1341   int rc = SQLITE_OK;
1342   unixFile *pFile = (unixFile*)id;
1343   unixInodeInfo *pInode = pFile->pInode;
1344   struct flock lock;
1345   int tErrno = 0;
1346 
1347   assert( pFile );
1348   OSTRACE(("LOCK    %d %s was %s(%s,%d) pid=%d (unix)\n", pFile->h,
1349       azFileLock(eFileLock), azFileLock(pFile->eFileLock),
1350       azFileLock(pInode->eFileLock), pInode->nShared , getpid()));
1351 
1352   /* If there is already a lock of this type or more restrictive on the
1353   ** unixFile, do nothing. Don't use the end_lock: exit path, as
1354   ** unixEnterMutex() hasn't been called yet.
1355   */
1356   if( pFile->eFileLock>=eFileLock ){
1357     OSTRACE(("LOCK    %d %s ok (already held) (unix)\n", pFile->h,
1358             azFileLock(eFileLock)));
1359     return SQLITE_OK;
1360   }
1361 
1362   /* Make sure the locking sequence is correct.
1363   **  (1) We never move from unlocked to anything higher than shared lock.
1364   **  (2) SQLite never explicitly requests a pendig lock.
1365   **  (3) A shared lock is always held when a reserve lock is requested.
1366   */
1367   assert( pFile->eFileLock!=NO_LOCK || eFileLock==SHARED_LOCK );
1368   assert( eFileLock!=PENDING_LOCK );
1369   assert( eFileLock!=RESERVED_LOCK || pFile->eFileLock==SHARED_LOCK );
1370 
1371   /* This mutex is needed because pFile->pInode is shared across threads
1372   */
1373   unixEnterMutex();
1374   pInode = pFile->pInode;
1375 
1376   /* If some thread using this PID has a lock via a different unixFile*
1377   ** handle that precludes the requested lock, return BUSY.
1378   */
1379   if( (pFile->eFileLock!=pInode->eFileLock &&
1380           (pInode->eFileLock>=PENDING_LOCK || eFileLock>SHARED_LOCK))
1381   ){
1382     rc = SQLITE_BUSY;
1383     goto end_lock;
1384   }
1385 
1386   /* If a SHARED lock is requested, and some thread using this PID already
1387   ** has a SHARED or RESERVED lock, then increment reference counts and
1388   ** return SQLITE_OK.
1389   */
1390   if( eFileLock==SHARED_LOCK &&
1391       (pInode->eFileLock==SHARED_LOCK || pInode->eFileLock==RESERVED_LOCK) ){
1392     assert( eFileLock==SHARED_LOCK );
1393     assert( pFile->eFileLock==0 );
1394     assert( pInode->nShared>0 );
1395     pFile->eFileLock = SHARED_LOCK;
1396     pInode->nShared++;
1397     pInode->nLock++;
1398     goto end_lock;
1399   }
1400 
1401 
1402   /* A PENDING lock is needed before acquiring a SHARED lock and before
1403   ** acquiring an EXCLUSIVE lock.  For the SHARED lock, the PENDING will
1404   ** be released.
1405   */
1406   lock.l_len = 1L;
1407   lock.l_whence = SEEK_SET;
1408   if( eFileLock==SHARED_LOCK
1409       || (eFileLock==EXCLUSIVE_LOCK && pFile->eFileLock<PENDING_LOCK)
1410   ){
1411     lock.l_type = (eFileLock==SHARED_LOCK?F_RDLCK:F_WRLCK);
1412     lock.l_start = PENDING_BYTE;
1413     if( unixFileLock(pFile, &lock) ){
1414       tErrno = errno;
1415       rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK);
1416       if( rc!=SQLITE_BUSY ){
1417         pFile->lastErrno = tErrno;
1418       }
1419       goto end_lock;
1420     }
1421   }
1422 
1423 
1424   /* If control gets to this point, then actually go ahead and make
1425   ** operating system calls for the specified lock.
1426   */
1427   if( eFileLock==SHARED_LOCK ){
1428     assert( pInode->nShared==0 );
1429     assert( pInode->eFileLock==0 );
1430     assert( rc==SQLITE_OK );
1431 
1432     /* Now get the read-lock */
1433     lock.l_start = SHARED_FIRST;
1434     lock.l_len = SHARED_SIZE;
1435     if( unixFileLock(pFile, &lock) ){
1436       tErrno = errno;
1437       rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK);
1438     }
1439 
1440     /* Drop the temporary PENDING lock */
1441     lock.l_start = PENDING_BYTE;
1442     lock.l_len = 1L;
1443     lock.l_type = F_UNLCK;
1444     if( unixFileLock(pFile, &lock) && rc==SQLITE_OK ){
1445       /* This could happen with a network mount */
1446       tErrno = errno;
1447       rc = SQLITE_IOERR_UNLOCK;
1448     }
1449 
1450     if( rc ){
1451       if( rc!=SQLITE_BUSY ){
1452         pFile->lastErrno = tErrno;
1453       }
1454       goto end_lock;
1455     }else{
1456       pFile->eFileLock = SHARED_LOCK;
1457       pInode->nLock++;
1458       pInode->nShared = 1;
1459     }
1460   }else if( eFileLock==EXCLUSIVE_LOCK && pInode->nShared>1 ){
1461     /* We are trying for an exclusive lock but another thread in this
1462     ** same process is still holding a shared lock. */
1463     rc = SQLITE_BUSY;
1464   }else{
1465     /* The request was for a RESERVED or EXCLUSIVE lock.  It is
1466     ** assumed that there is a SHARED or greater lock on the file
1467     ** already.
1468     */
1469     assert( 0!=pFile->eFileLock );
1470     lock.l_type = F_WRLCK;
1471 
1472     assert( eFileLock==RESERVED_LOCK || eFileLock==EXCLUSIVE_LOCK );
1473     if( eFileLock==RESERVED_LOCK ){
1474       lock.l_start = RESERVED_BYTE;
1475       lock.l_len = 1L;
1476     }else{
1477       lock.l_start = SHARED_FIRST;
1478       lock.l_len = SHARED_SIZE;
1479     }
1480 
1481     if( unixFileLock(pFile, &lock) ){
1482       tErrno = errno;
1483       rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK);
1484       if( rc!=SQLITE_BUSY ){
1485         pFile->lastErrno = tErrno;
1486       }
1487     }
1488   }
1489 
1490 
1491 #ifndef NDEBUG
1492   /* Set up the transaction-counter change checking flags when
1493   ** transitioning from a SHARED to a RESERVED lock.  The change
1494   ** from SHARED to RESERVED marks the beginning of a normal
1495   ** write operation (not a hot journal rollback).
1496   */
1497   if( rc==SQLITE_OK
1498    && pFile->eFileLock<=SHARED_LOCK
1499    && eFileLock==RESERVED_LOCK
1500   ){
1501     pFile->transCntrChng = 0;
1502     pFile->dbUpdate = 0;
1503     pFile->inNormalWrite = 1;
1504   }
1505 #endif
1506 
1507 
1508   if( rc==SQLITE_OK ){
1509     pFile->eFileLock = eFileLock;
1510     pInode->eFileLock = eFileLock;
1511   }else if( eFileLock==EXCLUSIVE_LOCK ){
1512     pFile->eFileLock = PENDING_LOCK;
1513     pInode->eFileLock = PENDING_LOCK;
1514   }
1515 
1516 end_lock:
1517   unixLeaveMutex();
1518   OSTRACE(("LOCK    %d %s %s (unix)\n", pFile->h, azFileLock(eFileLock),
1519       rc==SQLITE_OK ? "ok" : "failed"));
1520   return rc;
1521 }
1522 
1523 /*
1524 ** Add the file descriptor used by file handle pFile to the corresponding
1525 ** pUnused list.
1526 */
setPendingFd(unixFile * pFile)1527 static void setPendingFd(unixFile *pFile){
1528   unixInodeInfo *pInode = pFile->pInode;
1529   UnixUnusedFd *p = pFile->pUnused;
1530   p->pNext = pInode->pUnused;
1531   pInode->pUnused = p;
1532   pFile->h = -1;
1533   pFile->pUnused = 0;
1534 }
1535 
1536 /*
1537 ** Lower the locking level on file descriptor pFile to eFileLock.  eFileLock
1538 ** must be either NO_LOCK or SHARED_LOCK.
1539 **
1540 ** If the locking level of the file descriptor is already at or below
1541 ** the requested locking level, this routine is a no-op.
1542 **
1543 ** If handleNFSUnlock is true, then on downgrading an EXCLUSIVE_LOCK to SHARED
1544 ** the byte range is divided into 2 parts and the first part is unlocked then
1545 ** set to a read lock, then the other part is simply unlocked.  This works
1546 ** around a bug in BSD NFS lockd (also seen on MacOSX 10.3+) that fails to
1547 ** remove the write lock on a region when a read lock is set.
1548 */
posixUnlock(sqlite3_file * id,int eFileLock,int handleNFSUnlock)1549 static int posixUnlock(sqlite3_file *id, int eFileLock, int handleNFSUnlock){
1550   unixFile *pFile = (unixFile*)id;
1551   unixInodeInfo *pInode;
1552   struct flock lock;
1553   int rc = SQLITE_OK;
1554   int h;
1555 
1556   assert( pFile );
1557   OSTRACE(("UNLOCK  %d %d was %d(%d,%d) pid=%d (unix)\n", pFile->h, eFileLock,
1558       pFile->eFileLock, pFile->pInode->eFileLock, pFile->pInode->nShared,
1559       getpid()));
1560 
1561   assert( eFileLock<=SHARED_LOCK );
1562   if( pFile->eFileLock<=eFileLock ){
1563     return SQLITE_OK;
1564   }
1565   unixEnterMutex();
1566   h = pFile->h;
1567   pInode = pFile->pInode;
1568   assert( pInode->nShared!=0 );
1569   if( pFile->eFileLock>SHARED_LOCK ){
1570     assert( pInode->eFileLock==pFile->eFileLock );
1571     SimulateIOErrorBenign(1);
1572     SimulateIOError( h=(-1) )
1573     SimulateIOErrorBenign(0);
1574 
1575 #ifndef NDEBUG
1576     /* When reducing a lock such that other processes can start
1577     ** reading the database file again, make sure that the
1578     ** transaction counter was updated if any part of the database
1579     ** file changed.  If the transaction counter is not updated,
1580     ** other connections to the same file might not realize that
1581     ** the file has changed and hence might not know to flush their
1582     ** cache.  The use of a stale cache can lead to database corruption.
1583     */
1584 #if 0
1585     assert( pFile->inNormalWrite==0
1586          || pFile->dbUpdate==0
1587          || pFile->transCntrChng==1 );
1588 #endif
1589     pFile->inNormalWrite = 0;
1590 #endif
1591 
1592     /* downgrading to a shared lock on NFS involves clearing the write lock
1593     ** before establishing the readlock - to avoid a race condition we downgrade
1594     ** the lock in 2 blocks, so that part of the range will be covered by a
1595     ** write lock until the rest is covered by a read lock:
1596     **  1:   [WWWWW]
1597     **  2:   [....W]
1598     **  3:   [RRRRW]
1599     **  4:   [RRRR.]
1600     */
1601     if( eFileLock==SHARED_LOCK ){
1602 
1603 #if !defined(__APPLE__) || !SQLITE_ENABLE_LOCKING_STYLE
1604       (void)handleNFSUnlock;
1605       assert( handleNFSUnlock==0 );
1606 #endif
1607 #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
1608       if( handleNFSUnlock ){
1609         int tErrno;               /* Error code from system call errors */
1610         off_t divSize = SHARED_SIZE - 1;
1611 
1612         lock.l_type = F_UNLCK;
1613         lock.l_whence = SEEK_SET;
1614         lock.l_start = SHARED_FIRST;
1615         lock.l_len = divSize;
1616         if( unixFileLock(pFile, &lock)==(-1) ){
1617           tErrno = errno;
1618           rc = SQLITE_IOERR_UNLOCK;
1619           if( IS_LOCK_ERROR(rc) ){
1620             pFile->lastErrno = tErrno;
1621           }
1622           goto end_unlock;
1623         }
1624         lock.l_type = F_RDLCK;
1625         lock.l_whence = SEEK_SET;
1626         lock.l_start = SHARED_FIRST;
1627         lock.l_len = divSize;
1628         if( unixFileLock(pFile, &lock)==(-1) ){
1629           tErrno = errno;
1630           rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_RDLOCK);
1631           if( IS_LOCK_ERROR(rc) ){
1632             pFile->lastErrno = tErrno;
1633           }
1634           goto end_unlock;
1635         }
1636         lock.l_type = F_UNLCK;
1637         lock.l_whence = SEEK_SET;
1638         lock.l_start = SHARED_FIRST+divSize;
1639         lock.l_len = SHARED_SIZE-divSize;
1640         if( unixFileLock(pFile, &lock)==(-1) ){
1641           tErrno = errno;
1642           rc = SQLITE_IOERR_UNLOCK;
1643           if( IS_LOCK_ERROR(rc) ){
1644             pFile->lastErrno = tErrno;
1645           }
1646           goto end_unlock;
1647         }
1648       }else
1649 #endif /* defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE */
1650       {
1651         lock.l_type = F_RDLCK;
1652         lock.l_whence = SEEK_SET;
1653         lock.l_start = SHARED_FIRST;
1654         lock.l_len = SHARED_SIZE;
1655         if( unixFileLock(pFile, &lock) ){
1656           /* In theory, the call to unixFileLock() cannot fail because another
1657           ** process is holding an incompatible lock. If it does, this
1658           ** indicates that the other process is not following the locking
1659           ** protocol. If this happens, return SQLITE_IOERR_RDLOCK. Returning
1660           ** SQLITE_BUSY would confuse the upper layer (in practice it causes
1661           ** an assert to fail). */
1662           rc = SQLITE_IOERR_RDLOCK;
1663           pFile->lastErrno = errno;
1664           goto end_unlock;
1665         }
1666       }
1667     }
1668     lock.l_type = F_UNLCK;
1669     lock.l_whence = SEEK_SET;
1670     lock.l_start = PENDING_BYTE;
1671     lock.l_len = 2L;  assert( PENDING_BYTE+1==RESERVED_BYTE );
1672     if( unixFileLock(pFile, &lock)==0 ){
1673       pInode->eFileLock = SHARED_LOCK;
1674     }else{
1675       rc = SQLITE_IOERR_UNLOCK;
1676       pFile->lastErrno = errno;
1677       goto end_unlock;
1678     }
1679   }
1680   if( eFileLock==NO_LOCK ){
1681     /* Decrement the shared lock counter.  Release the lock using an
1682     ** OS call only when all threads in this same process have released
1683     ** the lock.
1684     */
1685     pInode->nShared--;
1686     if( pInode->nShared==0 ){
1687       lock.l_type = F_UNLCK;
1688       lock.l_whence = SEEK_SET;
1689       lock.l_start = lock.l_len = 0L;
1690       SimulateIOErrorBenign(1);
1691       SimulateIOError( h=(-1) )
1692       SimulateIOErrorBenign(0);
1693       if( unixFileLock(pFile, &lock)==0 ){
1694         pInode->eFileLock = NO_LOCK;
1695       }else{
1696         rc = SQLITE_IOERR_UNLOCK;
1697 	pFile->lastErrno = errno;
1698         pInode->eFileLock = NO_LOCK;
1699         pFile->eFileLock = NO_LOCK;
1700       }
1701     }
1702 
1703     /* Decrement the count of locks against this same file.  When the
1704     ** count reaches zero, close any other file descriptors whose close
1705     ** was deferred because of outstanding locks.
1706     */
1707     pInode->nLock--;
1708     assert( pInode->nLock>=0 );
1709     if( pInode->nLock==0 ){
1710       closePendingFds(pFile);
1711     }
1712   }
1713 
1714 end_unlock:
1715   unixLeaveMutex();
1716   if( rc==SQLITE_OK ) pFile->eFileLock = eFileLock;
1717   return rc;
1718 }
1719 
1720 /*
1721 ** Lower the locking level on file descriptor pFile to eFileLock.  eFileLock
1722 ** must be either NO_LOCK or SHARED_LOCK.
1723 **
1724 ** If the locking level of the file descriptor is already at or below
1725 ** the requested locking level, this routine is a no-op.
1726 */
unixUnlock(sqlite3_file * id,int eFileLock)1727 static int unixUnlock(sqlite3_file *id, int eFileLock){
1728   return posixUnlock(id, eFileLock, 0);
1729 }
1730 
1731 /*
1732 ** This function performs the parts of the "close file" operation
1733 ** common to all locking schemes. It closes the directory and file
1734 ** handles, if they are valid, and sets all fields of the unixFile
1735 ** structure to 0.
1736 **
1737 ** It is *not* necessary to hold the mutex when this routine is called,
1738 ** even on VxWorks.  A mutex will be acquired on VxWorks by the
1739 ** vxworksReleaseFileId() routine.
1740 */
closeUnixFile(sqlite3_file * id)1741 static int closeUnixFile(sqlite3_file *id){
1742   unixFile *pFile = (unixFile*)id;
1743   if( pFile->h>=0 ){
1744     robust_close(pFile, pFile->h, __LINE__);
1745     pFile->h = -1;
1746   }
1747 #if OS_VXWORKS
1748   if( pFile->pId ){
1749     if( pFile->isDelete ){
1750       osUnlink(pFile->pId->zCanonicalName);
1751     }
1752     vxworksReleaseFileId(pFile->pId);
1753     pFile->pId = 0;
1754   }
1755 #endif
1756   OSTRACE(("CLOSE   %-3d\n", pFile->h));
1757   OpenCounter(-1);
1758   sqlite3_free(pFile->pUnused);
1759   memset(pFile, 0, sizeof(unixFile));
1760   return SQLITE_OK;
1761 }
1762 
1763 /*
1764 ** Close a file.
1765 */
unixClose(sqlite3_file * id)1766 static int unixClose(sqlite3_file *id){
1767   int rc = SQLITE_OK;
1768   unixFile *pFile = (unixFile *)id;
1769   unixUnlock(id, NO_LOCK);
1770   unixEnterMutex();
1771 
1772   /* unixFile.pInode is always valid here. Otherwise, a different close
1773   ** routine (e.g. nolockClose()) would be called instead.
1774   */
1775   assert( pFile->pInode->nLock>0 || pFile->pInode->bProcessLock==0 );
1776   if( ALWAYS(pFile->pInode) && pFile->pInode->nLock ){
1777     /* If there are outstanding locks, do not actually close the file just
1778     ** yet because that would clear those locks.  Instead, add the file
1779     ** descriptor to pInode->pUnused list.  It will be automatically closed
1780     ** when the last lock is cleared.
1781     */
1782     setPendingFd(pFile);
1783   }
1784   releaseInodeInfo(pFile);
1785   rc = closeUnixFile(id);
1786   unixLeaveMutex();
1787   return rc;
1788 }
1789 
1790 /************** End of the posix advisory lock implementation *****************
1791 ******************************************************************************/
1792 
1793 /******************************************************************************
1794 ****************************** No-op Locking **********************************
1795 **
1796 ** Of the various locking implementations available, this is by far the
1797 ** simplest:  locking is ignored.  No attempt is made to lock the database
1798 ** file for reading or writing.
1799 **
1800 ** This locking mode is appropriate for use on read-only databases
1801 ** (ex: databases that are burned into CD-ROM, for example.)  It can
1802 ** also be used if the application employs some external mechanism to
1803 ** prevent simultaneous access of the same database by two or more
1804 ** database connections.  But there is a serious risk of database
1805 ** corruption if this locking mode is used in situations where multiple
1806 ** database connections are accessing the same database file at the same
1807 ** time and one or more of those connections are writing.
1808 */
1809 
nolockCheckReservedLock(sqlite3_file * NotUsed,int * pResOut)1810 static int nolockCheckReservedLock(sqlite3_file *NotUsed, int *pResOut){
1811   UNUSED_PARAMETER(NotUsed);
1812   *pResOut = 0;
1813   return SQLITE_OK;
1814 }
nolockLock(sqlite3_file * NotUsed,int NotUsed2)1815 static int nolockLock(sqlite3_file *NotUsed, int NotUsed2){
1816   UNUSED_PARAMETER2(NotUsed, NotUsed2);
1817   return SQLITE_OK;
1818 }
nolockUnlock(sqlite3_file * NotUsed,int NotUsed2)1819 static int nolockUnlock(sqlite3_file *NotUsed, int NotUsed2){
1820   UNUSED_PARAMETER2(NotUsed, NotUsed2);
1821   return SQLITE_OK;
1822 }
1823 
1824 /*
1825 ** Close the file.
1826 */
nolockClose(sqlite3_file * id)1827 static int nolockClose(sqlite3_file *id) {
1828   return closeUnixFile(id);
1829 }
1830 
1831 /******************* End of the no-op lock implementation *********************
1832 ******************************************************************************/
1833 
1834 /******************************************************************************
1835 ************************* Begin dot-file Locking ******************************
1836 **
1837 ** The dotfile locking implementation uses the existance of separate lock
1838 ** files in order to control access to the database.  This works on just
1839 ** about every filesystem imaginable.  But there are serious downsides:
1840 **
1841 **    (1)  There is zero concurrency.  A single reader blocks all other
1842 **         connections from reading or writing the database.
1843 **
1844 **    (2)  An application crash or power loss can leave stale lock files
1845 **         sitting around that need to be cleared manually.
1846 **
1847 ** Nevertheless, a dotlock is an appropriate locking mode for use if no
1848 ** other locking strategy is available.
1849 **
1850 ** Dotfile locking works by creating a file in the same directory as the
1851 ** database and with the same name but with a ".lock" extension added.
1852 ** The existance of a lock file implies an EXCLUSIVE lock.  All other lock
1853 ** types (SHARED, RESERVED, PENDING) are mapped into EXCLUSIVE.
1854 */
1855 
1856 /*
1857 ** The file suffix added to the data base filename in order to create the
1858 ** lock file.
1859 */
1860 #define DOTLOCK_SUFFIX ".lock"
1861 
1862 /*
1863 ** This routine checks if there is a RESERVED lock held on the specified
1864 ** file by this or any other process. If such a lock is held, set *pResOut
1865 ** to a non-zero value otherwise *pResOut is set to zero.  The return value
1866 ** is set to SQLITE_OK unless an I/O error occurs during lock checking.
1867 **
1868 ** In dotfile locking, either a lock exists or it does not.  So in this
1869 ** variation of CheckReservedLock(), *pResOut is set to true if any lock
1870 ** is held on the file and false if the file is unlocked.
1871 */
dotlockCheckReservedLock(sqlite3_file * id,int * pResOut)1872 static int dotlockCheckReservedLock(sqlite3_file *id, int *pResOut) {
1873   int rc = SQLITE_OK;
1874   int reserved = 0;
1875   unixFile *pFile = (unixFile*)id;
1876 
1877   SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; );
1878 
1879   assert( pFile );
1880 
1881   /* Check if a thread in this process holds such a lock */
1882   if( pFile->eFileLock>SHARED_LOCK ){
1883     /* Either this connection or some other connection in the same process
1884     ** holds a lock on the file.  No need to check further. */
1885     reserved = 1;
1886   }else{
1887     /* The lock is held if and only if the lockfile exists */
1888     const char *zLockFile = (const char*)pFile->lockingContext;
1889     reserved = osAccess(zLockFile, 0)==0;
1890   }
1891   OSTRACE(("TEST WR-LOCK %d %d %d (dotlock)\n", pFile->h, rc, reserved));
1892   *pResOut = reserved;
1893   return rc;
1894 }
1895 
1896 /*
1897 ** Lock the file with the lock specified by parameter eFileLock - one
1898 ** of the following:
1899 **
1900 **     (1) SHARED_LOCK
1901 **     (2) RESERVED_LOCK
1902 **     (3) PENDING_LOCK
1903 **     (4) EXCLUSIVE_LOCK
1904 **
1905 ** Sometimes when requesting one lock state, additional lock states
1906 ** are inserted in between.  The locking might fail on one of the later
1907 ** transitions leaving the lock state different from what it started but
1908 ** still short of its goal.  The following chart shows the allowed
1909 ** transitions and the inserted intermediate states:
1910 **
1911 **    UNLOCKED -> SHARED
1912 **    SHARED -> RESERVED
1913 **    SHARED -> (PENDING) -> EXCLUSIVE
1914 **    RESERVED -> (PENDING) -> EXCLUSIVE
1915 **    PENDING -> EXCLUSIVE
1916 **
1917 ** This routine will only increase a lock.  Use the sqlite3OsUnlock()
1918 ** routine to lower a locking level.
1919 **
1920 ** With dotfile locking, we really only support state (4): EXCLUSIVE.
1921 ** But we track the other locking levels internally.
1922 */
dotlockLock(sqlite3_file * id,int eFileLock)1923 static int dotlockLock(sqlite3_file *id, int eFileLock) {
1924   unixFile *pFile = (unixFile*)id;
1925   int fd;
1926   char *zLockFile = (char *)pFile->lockingContext;
1927   int rc = SQLITE_OK;
1928 
1929 
1930   /* If we have any lock, then the lock file already exists.  All we have
1931   ** to do is adjust our internal record of the lock level.
1932   */
1933   if( pFile->eFileLock > NO_LOCK ){
1934     pFile->eFileLock = eFileLock;
1935 #if !OS_VXWORKS
1936     /* Always update the timestamp on the old file */
1937     utimes(zLockFile, NULL);
1938 #endif
1939     return SQLITE_OK;
1940   }
1941 
1942   /* grab an exclusive lock */
1943   fd = robust_open(zLockFile,O_RDONLY|O_CREAT|O_EXCL,0600);
1944   if( fd<0 ){
1945     /* failed to open/create the file, someone else may have stolen the lock */
1946     int tErrno = errno;
1947     if( EEXIST == tErrno ){
1948       rc = SQLITE_BUSY;
1949     } else {
1950       rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK);
1951       if( IS_LOCK_ERROR(rc) ){
1952         pFile->lastErrno = tErrno;
1953       }
1954     }
1955     return rc;
1956   }
1957   robust_close(pFile, fd, __LINE__);
1958 
1959   /* got it, set the type and return ok */
1960   pFile->eFileLock = eFileLock;
1961   return rc;
1962 }
1963 
1964 /*
1965 ** Lower the locking level on file descriptor pFile to eFileLock.  eFileLock
1966 ** must be either NO_LOCK or SHARED_LOCK.
1967 **
1968 ** If the locking level of the file descriptor is already at or below
1969 ** the requested locking level, this routine is a no-op.
1970 **
1971 ** When the locking level reaches NO_LOCK, delete the lock file.
1972 */
dotlockUnlock(sqlite3_file * id,int eFileLock)1973 static int dotlockUnlock(sqlite3_file *id, int eFileLock) {
1974   unixFile *pFile = (unixFile*)id;
1975   char *zLockFile = (char *)pFile->lockingContext;
1976 
1977   assert( pFile );
1978   OSTRACE(("UNLOCK  %d %d was %d pid=%d (dotlock)\n", pFile->h, eFileLock,
1979 	   pFile->eFileLock, getpid()));
1980   assert( eFileLock<=SHARED_LOCK );
1981 
1982   /* no-op if possible */
1983   if( pFile->eFileLock==eFileLock ){
1984     return SQLITE_OK;
1985   }
1986 
1987   /* To downgrade to shared, simply update our internal notion of the
1988   ** lock state.  No need to mess with the file on disk.
1989   */
1990   if( eFileLock==SHARED_LOCK ){
1991     pFile->eFileLock = SHARED_LOCK;
1992     return SQLITE_OK;
1993   }
1994 
1995   /* To fully unlock the database, delete the lock file */
1996   assert( eFileLock==NO_LOCK );
1997   if( osUnlink(zLockFile) ){
1998     int rc = 0;
1999     int tErrno = errno;
2000     if( ENOENT != tErrno ){
2001       rc = SQLITE_IOERR_UNLOCK;
2002     }
2003     if( IS_LOCK_ERROR(rc) ){
2004       pFile->lastErrno = tErrno;
2005     }
2006     return rc;
2007   }
2008   pFile->eFileLock = NO_LOCK;
2009   return SQLITE_OK;
2010 }
2011 
2012 /*
2013 ** Close a file.  Make sure the lock has been released before closing.
2014 */
dotlockClose(sqlite3_file * id)2015 static int dotlockClose(sqlite3_file *id) {
2016   int rc;
2017   if( id ){
2018     unixFile *pFile = (unixFile*)id;
2019     dotlockUnlock(id, NO_LOCK);
2020     sqlite3_free(pFile->lockingContext);
2021   }
2022   rc = closeUnixFile(id);
2023   return rc;
2024 }
2025 /****************** End of the dot-file lock implementation *******************
2026 ******************************************************************************/
2027 
2028 /******************************************************************************
2029 ************************** Begin flock Locking ********************************
2030 **
2031 ** Use the flock() system call to do file locking.
2032 **
2033 ** flock() locking is like dot-file locking in that the various
2034 ** fine-grain locking levels supported by SQLite are collapsed into
2035 ** a single exclusive lock.  In other words, SHARED, RESERVED, and
2036 ** PENDING locks are the same thing as an EXCLUSIVE lock.  SQLite
2037 ** still works when you do this, but concurrency is reduced since
2038 ** only a single process can be reading the database at a time.
2039 **
2040 ** Omit this section if SQLITE_ENABLE_LOCKING_STYLE is turned off or if
2041 ** compiling for VXWORKS.
2042 */
2043 #if SQLITE_ENABLE_LOCKING_STYLE && !OS_VXWORKS
2044 
2045 /*
2046 ** Retry flock() calls that fail with EINTR
2047 */
2048 #ifdef EINTR
robust_flock(int fd,int op)2049 static int robust_flock(int fd, int op){
2050   int rc;
2051   do{ rc = flock(fd,op); }while( rc<0 && errno==EINTR );
2052   return rc;
2053 }
2054 #else
2055 # define robust_flock(a,b) flock(a,b)
2056 #endif
2057 
2058 
2059 /*
2060 ** This routine checks if there is a RESERVED lock held on the specified
2061 ** file by this or any other process. If such a lock is held, set *pResOut
2062 ** to a non-zero value otherwise *pResOut is set to zero.  The return value
2063 ** is set to SQLITE_OK unless an I/O error occurs during lock checking.
2064 */
flockCheckReservedLock(sqlite3_file * id,int * pResOut)2065 static int flockCheckReservedLock(sqlite3_file *id, int *pResOut){
2066   int rc = SQLITE_OK;
2067   int reserved = 0;
2068   unixFile *pFile = (unixFile*)id;
2069 
2070   SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; );
2071 
2072   assert( pFile );
2073 
2074   /* Check if a thread in this process holds such a lock */
2075   if( pFile->eFileLock>SHARED_LOCK ){
2076     reserved = 1;
2077   }
2078 
2079   /* Otherwise see if some other process holds it. */
2080   if( !reserved ){
2081     /* attempt to get the lock */
2082     int lrc = robust_flock(pFile->h, LOCK_EX | LOCK_NB);
2083     if( !lrc ){
2084       /* got the lock, unlock it */
2085       lrc = robust_flock(pFile->h, LOCK_UN);
2086       if ( lrc ) {
2087         int tErrno = errno;
2088         /* unlock failed with an error */
2089         lrc = SQLITE_IOERR_UNLOCK;
2090         if( IS_LOCK_ERROR(lrc) ){
2091           pFile->lastErrno = tErrno;
2092           rc = lrc;
2093         }
2094       }
2095     } else {
2096       int tErrno = errno;
2097       reserved = 1;
2098       /* someone else might have it reserved */
2099       lrc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK);
2100       if( IS_LOCK_ERROR(lrc) ){
2101         pFile->lastErrno = tErrno;
2102         rc = lrc;
2103       }
2104     }
2105   }
2106   OSTRACE(("TEST WR-LOCK %d %d %d (flock)\n", pFile->h, rc, reserved));
2107 
2108 #ifdef SQLITE_IGNORE_FLOCK_LOCK_ERRORS
2109   if( (rc & SQLITE_IOERR) == SQLITE_IOERR ){
2110     rc = SQLITE_OK;
2111     reserved=1;
2112   }
2113 #endif /* SQLITE_IGNORE_FLOCK_LOCK_ERRORS */
2114   *pResOut = reserved;
2115   return rc;
2116 }
2117 
2118 /*
2119 ** Lock the file with the lock specified by parameter eFileLock - one
2120 ** of the following:
2121 **
2122 **     (1) SHARED_LOCK
2123 **     (2) RESERVED_LOCK
2124 **     (3) PENDING_LOCK
2125 **     (4) EXCLUSIVE_LOCK
2126 **
2127 ** Sometimes when requesting one lock state, additional lock states
2128 ** are inserted in between.  The locking might fail on one of the later
2129 ** transitions leaving the lock state different from what it started but
2130 ** still short of its goal.  The following chart shows the allowed
2131 ** transitions and the inserted intermediate states:
2132 **
2133 **    UNLOCKED -> SHARED
2134 **    SHARED -> RESERVED
2135 **    SHARED -> (PENDING) -> EXCLUSIVE
2136 **    RESERVED -> (PENDING) -> EXCLUSIVE
2137 **    PENDING -> EXCLUSIVE
2138 **
2139 ** flock() only really support EXCLUSIVE locks.  We track intermediate
2140 ** lock states in the sqlite3_file structure, but all locks SHARED or
2141 ** above are really EXCLUSIVE locks and exclude all other processes from
2142 ** access the file.
2143 **
2144 ** This routine will only increase a lock.  Use the sqlite3OsUnlock()
2145 ** routine to lower a locking level.
2146 */
flockLock(sqlite3_file * id,int eFileLock)2147 static int flockLock(sqlite3_file *id, int eFileLock) {
2148   int rc = SQLITE_OK;
2149   unixFile *pFile = (unixFile*)id;
2150 
2151   assert( pFile );
2152 
2153   /* if we already have a lock, it is exclusive.
2154   ** Just adjust level and punt on outta here. */
2155   if (pFile->eFileLock > NO_LOCK) {
2156     pFile->eFileLock = eFileLock;
2157     return SQLITE_OK;
2158   }
2159 
2160   /* grab an exclusive lock */
2161 
2162   if (robust_flock(pFile->h, LOCK_EX | LOCK_NB)) {
2163     int tErrno = errno;
2164     /* didn't get, must be busy */
2165     rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK);
2166     if( IS_LOCK_ERROR(rc) ){
2167       pFile->lastErrno = tErrno;
2168     }
2169   } else {
2170     /* got it, set the type and return ok */
2171     pFile->eFileLock = eFileLock;
2172   }
2173   OSTRACE(("LOCK    %d %s %s (flock)\n", pFile->h, azFileLock(eFileLock),
2174            rc==SQLITE_OK ? "ok" : "failed"));
2175 #ifdef SQLITE_IGNORE_FLOCK_LOCK_ERRORS
2176   if( (rc & SQLITE_IOERR) == SQLITE_IOERR ){
2177     rc = SQLITE_BUSY;
2178   }
2179 #endif /* SQLITE_IGNORE_FLOCK_LOCK_ERRORS */
2180   return rc;
2181 }
2182 
2183 
2184 /*
2185 ** Lower the locking level on file descriptor pFile to eFileLock.  eFileLock
2186 ** must be either NO_LOCK or SHARED_LOCK.
2187 **
2188 ** If the locking level of the file descriptor is already at or below
2189 ** the requested locking level, this routine is a no-op.
2190 */
flockUnlock(sqlite3_file * id,int eFileLock)2191 static int flockUnlock(sqlite3_file *id, int eFileLock) {
2192   unixFile *pFile = (unixFile*)id;
2193 
2194   assert( pFile );
2195   OSTRACE(("UNLOCK  %d %d was %d pid=%d (flock)\n", pFile->h, eFileLock,
2196            pFile->eFileLock, getpid()));
2197   assert( eFileLock<=SHARED_LOCK );
2198 
2199   /* no-op if possible */
2200   if( pFile->eFileLock==eFileLock ){
2201     return SQLITE_OK;
2202   }
2203 
2204   /* shared can just be set because we always have an exclusive */
2205   if (eFileLock==SHARED_LOCK) {
2206     pFile->eFileLock = eFileLock;
2207     return SQLITE_OK;
2208   }
2209 
2210   /* no, really, unlock. */
2211   if( robust_flock(pFile->h, LOCK_UN) ){
2212 #ifdef SQLITE_IGNORE_FLOCK_LOCK_ERRORS
2213     return SQLITE_OK;
2214 #endif /* SQLITE_IGNORE_FLOCK_LOCK_ERRORS */
2215     return SQLITE_IOERR_UNLOCK;
2216   }else{
2217     pFile->eFileLock = NO_LOCK;
2218     return SQLITE_OK;
2219   }
2220 }
2221 
2222 /*
2223 ** Close a file.
2224 */
flockClose(sqlite3_file * id)2225 static int flockClose(sqlite3_file *id) {
2226   if( id ){
2227     flockUnlock(id, NO_LOCK);
2228   }
2229   return closeUnixFile(id);
2230 }
2231 
2232 #endif /* SQLITE_ENABLE_LOCKING_STYLE && !OS_VXWORK */
2233 
2234 /******************* End of the flock lock implementation *********************
2235 ******************************************************************************/
2236 
2237 /******************************************************************************
2238 ************************ Begin Named Semaphore Locking ************************
2239 **
2240 ** Named semaphore locking is only supported on VxWorks.
2241 **
2242 ** Semaphore locking is like dot-lock and flock in that it really only
2243 ** supports EXCLUSIVE locking.  Only a single process can read or write
2244 ** the database file at a time.  This reduces potential concurrency, but
2245 ** makes the lock implementation much easier.
2246 */
2247 #if OS_VXWORKS
2248 
2249 /*
2250 ** This routine checks if there is a RESERVED lock held on the specified
2251 ** file by this or any other process. If such a lock is held, set *pResOut
2252 ** to a non-zero value otherwise *pResOut is set to zero.  The return value
2253 ** is set to SQLITE_OK unless an I/O error occurs during lock checking.
2254 */
semCheckReservedLock(sqlite3_file * id,int * pResOut)2255 static int semCheckReservedLock(sqlite3_file *id, int *pResOut) {
2256   int rc = SQLITE_OK;
2257   int reserved = 0;
2258   unixFile *pFile = (unixFile*)id;
2259 
2260   SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; );
2261 
2262   assert( pFile );
2263 
2264   /* Check if a thread in this process holds such a lock */
2265   if( pFile->eFileLock>SHARED_LOCK ){
2266     reserved = 1;
2267   }
2268 
2269   /* Otherwise see if some other process holds it. */
2270   if( !reserved ){
2271     sem_t *pSem = pFile->pInode->pSem;
2272     struct stat statBuf;
2273 
2274     if( sem_trywait(pSem)==-1 ){
2275       int tErrno = errno;
2276       if( EAGAIN != tErrno ){
2277         rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_CHECKRESERVEDLOCK);
2278         pFile->lastErrno = tErrno;
2279       } else {
2280         /* someone else has the lock when we are in NO_LOCK */
2281         reserved = (pFile->eFileLock < SHARED_LOCK);
2282       }
2283     }else{
2284       /* we could have it if we want it */
2285       sem_post(pSem);
2286     }
2287   }
2288   OSTRACE(("TEST WR-LOCK %d %d %d (sem)\n", pFile->h, rc, reserved));
2289 
2290   *pResOut = reserved;
2291   return rc;
2292 }
2293 
2294 /*
2295 ** Lock the file with the lock specified by parameter eFileLock - one
2296 ** of the following:
2297 **
2298 **     (1) SHARED_LOCK
2299 **     (2) RESERVED_LOCK
2300 **     (3) PENDING_LOCK
2301 **     (4) EXCLUSIVE_LOCK
2302 **
2303 ** Sometimes when requesting one lock state, additional lock states
2304 ** are inserted in between.  The locking might fail on one of the later
2305 ** transitions leaving the lock state different from what it started but
2306 ** still short of its goal.  The following chart shows the allowed
2307 ** transitions and the inserted intermediate states:
2308 **
2309 **    UNLOCKED -> SHARED
2310 **    SHARED -> RESERVED
2311 **    SHARED -> (PENDING) -> EXCLUSIVE
2312 **    RESERVED -> (PENDING) -> EXCLUSIVE
2313 **    PENDING -> EXCLUSIVE
2314 **
2315 ** Semaphore locks only really support EXCLUSIVE locks.  We track intermediate
2316 ** lock states in the sqlite3_file structure, but all locks SHARED or
2317 ** above are really EXCLUSIVE locks and exclude all other processes from
2318 ** access the file.
2319 **
2320 ** This routine will only increase a lock.  Use the sqlite3OsUnlock()
2321 ** routine to lower a locking level.
2322 */
semLock(sqlite3_file * id,int eFileLock)2323 static int semLock(sqlite3_file *id, int eFileLock) {
2324   unixFile *pFile = (unixFile*)id;
2325   int fd;
2326   sem_t *pSem = pFile->pInode->pSem;
2327   int rc = SQLITE_OK;
2328 
2329   /* if we already have a lock, it is exclusive.
2330   ** Just adjust level and punt on outta here. */
2331   if (pFile->eFileLock > NO_LOCK) {
2332     pFile->eFileLock = eFileLock;
2333     rc = SQLITE_OK;
2334     goto sem_end_lock;
2335   }
2336 
2337   /* lock semaphore now but bail out when already locked. */
2338   if( sem_trywait(pSem)==-1 ){
2339     rc = SQLITE_BUSY;
2340     goto sem_end_lock;
2341   }
2342 
2343   /* got it, set the type and return ok */
2344   pFile->eFileLock = eFileLock;
2345 
2346  sem_end_lock:
2347   return rc;
2348 }
2349 
2350 /*
2351 ** Lower the locking level on file descriptor pFile to eFileLock.  eFileLock
2352 ** must be either NO_LOCK or SHARED_LOCK.
2353 **
2354 ** If the locking level of the file descriptor is already at or below
2355 ** the requested locking level, this routine is a no-op.
2356 */
semUnlock(sqlite3_file * id,int eFileLock)2357 static int semUnlock(sqlite3_file *id, int eFileLock) {
2358   unixFile *pFile = (unixFile*)id;
2359   sem_t *pSem = pFile->pInode->pSem;
2360 
2361   assert( pFile );
2362   assert( pSem );
2363   OSTRACE(("UNLOCK  %d %d was %d pid=%d (sem)\n", pFile->h, eFileLock,
2364 	   pFile->eFileLock, getpid()));
2365   assert( eFileLock<=SHARED_LOCK );
2366 
2367   /* no-op if possible */
2368   if( pFile->eFileLock==eFileLock ){
2369     return SQLITE_OK;
2370   }
2371 
2372   /* shared can just be set because we always have an exclusive */
2373   if (eFileLock==SHARED_LOCK) {
2374     pFile->eFileLock = eFileLock;
2375     return SQLITE_OK;
2376   }
2377 
2378   /* no, really unlock. */
2379   if ( sem_post(pSem)==-1 ) {
2380     int rc, tErrno = errno;
2381     rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_UNLOCK);
2382     if( IS_LOCK_ERROR(rc) ){
2383       pFile->lastErrno = tErrno;
2384     }
2385     return rc;
2386   }
2387   pFile->eFileLock = NO_LOCK;
2388   return SQLITE_OK;
2389 }
2390 
2391 /*
2392  ** Close a file.
2393  */
semClose(sqlite3_file * id)2394 static int semClose(sqlite3_file *id) {
2395   if( id ){
2396     unixFile *pFile = (unixFile*)id;
2397     semUnlock(id, NO_LOCK);
2398     assert( pFile );
2399     unixEnterMutex();
2400     releaseInodeInfo(pFile);
2401     unixLeaveMutex();
2402     closeUnixFile(id);
2403   }
2404   return SQLITE_OK;
2405 }
2406 
2407 #endif /* OS_VXWORKS */
2408 /*
2409 ** Named semaphore locking is only available on VxWorks.
2410 **
2411 *************** End of the named semaphore lock implementation ****************
2412 ******************************************************************************/
2413 
2414 
2415 /******************************************************************************
2416 *************************** Begin AFP Locking *********************************
2417 **
2418 ** AFP is the Apple Filing Protocol.  AFP is a network filesystem found
2419 ** on Apple Macintosh computers - both OS9 and OSX.
2420 **
2421 ** Third-party implementations of AFP are available.  But this code here
2422 ** only works on OSX.
2423 */
2424 
2425 #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
2426 /*
2427 ** The afpLockingContext structure contains all afp lock specific state
2428 */
2429 typedef struct afpLockingContext afpLockingContext;
2430 struct afpLockingContext {
2431   int reserved;
2432   const char *dbPath;             /* Name of the open file */
2433 };
2434 
2435 struct ByteRangeLockPB2
2436 {
2437   unsigned long long offset;        /* offset to first byte to lock */
2438   unsigned long long length;        /* nbr of bytes to lock */
2439   unsigned long long retRangeStart; /* nbr of 1st byte locked if successful */
2440   unsigned char unLockFlag;         /* 1 = unlock, 0 = lock */
2441   unsigned char startEndFlag;       /* 1=rel to end of fork, 0=rel to start */
2442   int fd;                           /* file desc to assoc this lock with */
2443 };
2444 
2445 #define afpfsByteRangeLock2FSCTL        _IOWR('z', 23, struct ByteRangeLockPB2)
2446 
2447 /*
2448 ** This is a utility for setting or clearing a bit-range lock on an
2449 ** AFP filesystem.
2450 **
2451 ** Return SQLITE_OK on success, SQLITE_BUSY on failure.
2452 */
afpSetLock(const char * path,unixFile * pFile,unsigned long long offset,unsigned long long length,int setLockFlag)2453 static int afpSetLock(
2454   const char *path,              /* Name of the file to be locked or unlocked */
2455   unixFile *pFile,               /* Open file descriptor on path */
2456   unsigned long long offset,     /* First byte to be locked */
2457   unsigned long long length,     /* Number of bytes to lock */
2458   int setLockFlag                /* True to set lock.  False to clear lock */
2459 ){
2460   struct ByteRangeLockPB2 pb;
2461   int err;
2462 
2463   pb.unLockFlag = setLockFlag ? 0 : 1;
2464   pb.startEndFlag = 0;
2465   pb.offset = offset;
2466   pb.length = length;
2467   pb.fd = pFile->h;
2468 
2469   OSTRACE(("AFPSETLOCK [%s] for %d%s in range %llx:%llx\n",
2470     (setLockFlag?"ON":"OFF"), pFile->h, (pb.fd==-1?"[testval-1]":""),
2471     offset, length));
2472   err = fsctl(path, afpfsByteRangeLock2FSCTL, &pb, 0);
2473   if ( err==-1 ) {
2474     int rc;
2475     int tErrno = errno;
2476     OSTRACE(("AFPSETLOCK failed to fsctl() '%s' %d %s\n",
2477              path, tErrno, strerror(tErrno)));
2478 #ifdef SQLITE_IGNORE_AFP_LOCK_ERRORS
2479     rc = SQLITE_BUSY;
2480 #else
2481     rc = sqliteErrorFromPosixError(tErrno,
2482                     setLockFlag ? SQLITE_IOERR_LOCK : SQLITE_IOERR_UNLOCK);
2483 #endif /* SQLITE_IGNORE_AFP_LOCK_ERRORS */
2484     if( IS_LOCK_ERROR(rc) ){
2485       pFile->lastErrno = tErrno;
2486     }
2487     return rc;
2488   } else {
2489     return SQLITE_OK;
2490   }
2491 }
2492 
2493 /*
2494 ** This routine checks if there is a RESERVED lock held on the specified
2495 ** file by this or any other process. If such a lock is held, set *pResOut
2496 ** to a non-zero value otherwise *pResOut is set to zero.  The return value
2497 ** is set to SQLITE_OK unless an I/O error occurs during lock checking.
2498 */
afpCheckReservedLock(sqlite3_file * id,int * pResOut)2499 static int afpCheckReservedLock(sqlite3_file *id, int *pResOut){
2500   int rc = SQLITE_OK;
2501   int reserved = 0;
2502   unixFile *pFile = (unixFile*)id;
2503 
2504   SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; );
2505 
2506   assert( pFile );
2507   afpLockingContext *context = (afpLockingContext *) pFile->lockingContext;
2508   if( context->reserved ){
2509     *pResOut = 1;
2510     return SQLITE_OK;
2511   }
2512   unixEnterMutex(); /* Because pFile->pInode is shared across threads */
2513 
2514   /* Check if a thread in this process holds such a lock */
2515   if( pFile->pInode->eFileLock>SHARED_LOCK ){
2516     reserved = 1;
2517   }
2518 
2519   /* Otherwise see if some other process holds it.
2520    */
2521   if( !reserved ){
2522     /* lock the RESERVED byte */
2523     int lrc = afpSetLock(context->dbPath, pFile, RESERVED_BYTE, 1,1);
2524     if( SQLITE_OK==lrc ){
2525       /* if we succeeded in taking the reserved lock, unlock it to restore
2526       ** the original state */
2527       lrc = afpSetLock(context->dbPath, pFile, RESERVED_BYTE, 1, 0);
2528     } else {
2529       /* if we failed to get the lock then someone else must have it */
2530       reserved = 1;
2531     }
2532     if( IS_LOCK_ERROR(lrc) ){
2533       rc=lrc;
2534     }
2535   }
2536 
2537   unixLeaveMutex();
2538   OSTRACE(("TEST WR-LOCK %d %d %d (afp)\n", pFile->h, rc, reserved));
2539 
2540   *pResOut = reserved;
2541   return rc;
2542 }
2543 
2544 /*
2545 ** Lock the file with the lock specified by parameter eFileLock - one
2546 ** of the following:
2547 **
2548 **     (1) SHARED_LOCK
2549 **     (2) RESERVED_LOCK
2550 **     (3) PENDING_LOCK
2551 **     (4) EXCLUSIVE_LOCK
2552 **
2553 ** Sometimes when requesting one lock state, additional lock states
2554 ** are inserted in between.  The locking might fail on one of the later
2555 ** transitions leaving the lock state different from what it started but
2556 ** still short of its goal.  The following chart shows the allowed
2557 ** transitions and the inserted intermediate states:
2558 **
2559 **    UNLOCKED -> SHARED
2560 **    SHARED -> RESERVED
2561 **    SHARED -> (PENDING) -> EXCLUSIVE
2562 **    RESERVED -> (PENDING) -> EXCLUSIVE
2563 **    PENDING -> EXCLUSIVE
2564 **
2565 ** This routine will only increase a lock.  Use the sqlite3OsUnlock()
2566 ** routine to lower a locking level.
2567 */
afpLock(sqlite3_file * id,int eFileLock)2568 static int afpLock(sqlite3_file *id, int eFileLock){
2569   int rc = SQLITE_OK;
2570   unixFile *pFile = (unixFile*)id;
2571   unixInodeInfo *pInode = pFile->pInode;
2572   afpLockingContext *context = (afpLockingContext *) pFile->lockingContext;
2573 
2574   assert( pFile );
2575   OSTRACE(("LOCK    %d %s was %s(%s,%d) pid=%d (afp)\n", pFile->h,
2576            azFileLock(eFileLock), azFileLock(pFile->eFileLock),
2577            azFileLock(pInode->eFileLock), pInode->nShared , getpid()));
2578 
2579   /* If there is already a lock of this type or more restrictive on the
2580   ** unixFile, do nothing. Don't use the afp_end_lock: exit path, as
2581   ** unixEnterMutex() hasn't been called yet.
2582   */
2583   if( pFile->eFileLock>=eFileLock ){
2584     OSTRACE(("LOCK    %d %s ok (already held) (afp)\n", pFile->h,
2585            azFileLock(eFileLock)));
2586     return SQLITE_OK;
2587   }
2588 
2589   /* Make sure the locking sequence is correct
2590   **  (1) We never move from unlocked to anything higher than shared lock.
2591   **  (2) SQLite never explicitly requests a pendig lock.
2592   **  (3) A shared lock is always held when a reserve lock is requested.
2593   */
2594   assert( pFile->eFileLock!=NO_LOCK || eFileLock==SHARED_LOCK );
2595   assert( eFileLock!=PENDING_LOCK );
2596   assert( eFileLock!=RESERVED_LOCK || pFile->eFileLock==SHARED_LOCK );
2597 
2598   /* This mutex is needed because pFile->pInode is shared across threads
2599   */
2600   unixEnterMutex();
2601   pInode = pFile->pInode;
2602 
2603   /* If some thread using this PID has a lock via a different unixFile*
2604   ** handle that precludes the requested lock, return BUSY.
2605   */
2606   if( (pFile->eFileLock!=pInode->eFileLock &&
2607        (pInode->eFileLock>=PENDING_LOCK || eFileLock>SHARED_LOCK))
2608      ){
2609     rc = SQLITE_BUSY;
2610     goto afp_end_lock;
2611   }
2612 
2613   /* If a SHARED lock is requested, and some thread using this PID already
2614   ** has a SHARED or RESERVED lock, then increment reference counts and
2615   ** return SQLITE_OK.
2616   */
2617   if( eFileLock==SHARED_LOCK &&
2618      (pInode->eFileLock==SHARED_LOCK || pInode->eFileLock==RESERVED_LOCK) ){
2619     assert( eFileLock==SHARED_LOCK );
2620     assert( pFile->eFileLock==0 );
2621     assert( pInode->nShared>0 );
2622     pFile->eFileLock = SHARED_LOCK;
2623     pInode->nShared++;
2624     pInode->nLock++;
2625     goto afp_end_lock;
2626   }
2627 
2628   /* A PENDING lock is needed before acquiring a SHARED lock and before
2629   ** acquiring an EXCLUSIVE lock.  For the SHARED lock, the PENDING will
2630   ** be released.
2631   */
2632   if( eFileLock==SHARED_LOCK
2633       || (eFileLock==EXCLUSIVE_LOCK && pFile->eFileLock<PENDING_LOCK)
2634   ){
2635     int failed;
2636     failed = afpSetLock(context->dbPath, pFile, PENDING_BYTE, 1, 1);
2637     if (failed) {
2638       rc = failed;
2639       goto afp_end_lock;
2640     }
2641   }
2642 
2643   /* If control gets to this point, then actually go ahead and make
2644   ** operating system calls for the specified lock.
2645   */
2646   if( eFileLock==SHARED_LOCK ){
2647     int lrc1, lrc2, lrc1Errno;
2648     long lk, mask;
2649 
2650     assert( pInode->nShared==0 );
2651     assert( pInode->eFileLock==0 );
2652 
2653     mask = (sizeof(long)==8) ? LARGEST_INT64 : 0x7fffffff;
2654     /* Now get the read-lock SHARED_LOCK */
2655     /* note that the quality of the randomness doesn't matter that much */
2656     lk = random();
2657     pInode->sharedByte = (lk & mask)%(SHARED_SIZE - 1);
2658     lrc1 = afpSetLock(context->dbPath, pFile,
2659           SHARED_FIRST+pInode->sharedByte, 1, 1);
2660     if( IS_LOCK_ERROR(lrc1) ){
2661       lrc1Errno = pFile->lastErrno;
2662     }
2663     /* Drop the temporary PENDING lock */
2664     lrc2 = afpSetLock(context->dbPath, pFile, PENDING_BYTE, 1, 0);
2665 
2666     if( IS_LOCK_ERROR(lrc1) ) {
2667       pFile->lastErrno = lrc1Errno;
2668       rc = lrc1;
2669       goto afp_end_lock;
2670     } else if( IS_LOCK_ERROR(lrc2) ){
2671       rc = lrc2;
2672       goto afp_end_lock;
2673     } else if( lrc1 != SQLITE_OK ) {
2674       rc = lrc1;
2675     } else {
2676       pFile->eFileLock = SHARED_LOCK;
2677       pInode->nLock++;
2678       pInode->nShared = 1;
2679     }
2680   }else if( eFileLock==EXCLUSIVE_LOCK && pInode->nShared>1 ){
2681     /* We are trying for an exclusive lock but another thread in this
2682      ** same process is still holding a shared lock. */
2683     rc = SQLITE_BUSY;
2684   }else{
2685     /* The request was for a RESERVED or EXCLUSIVE lock.  It is
2686     ** assumed that there is a SHARED or greater lock on the file
2687     ** already.
2688     */
2689     int failed = 0;
2690     assert( 0!=pFile->eFileLock );
2691     if (eFileLock >= RESERVED_LOCK && pFile->eFileLock < RESERVED_LOCK) {
2692         /* Acquire a RESERVED lock */
2693         failed = afpSetLock(context->dbPath, pFile, RESERVED_BYTE, 1,1);
2694       if( !failed ){
2695         context->reserved = 1;
2696       }
2697     }
2698     if (!failed && eFileLock == EXCLUSIVE_LOCK) {
2699       /* Acquire an EXCLUSIVE lock */
2700 
2701       /* Remove the shared lock before trying the range.  we'll need to
2702       ** reestablish the shared lock if we can't get the  afpUnlock
2703       */
2704       if( !(failed = afpSetLock(context->dbPath, pFile, SHARED_FIRST +
2705                          pInode->sharedByte, 1, 0)) ){
2706         int failed2 = SQLITE_OK;
2707         /* now attemmpt to get the exclusive lock range */
2708         failed = afpSetLock(context->dbPath, pFile, SHARED_FIRST,
2709                                SHARED_SIZE, 1);
2710         if( failed && (failed2 = afpSetLock(context->dbPath, pFile,
2711                        SHARED_FIRST + pInode->sharedByte, 1, 1)) ){
2712           /* Can't reestablish the shared lock.  Sqlite can't deal, this is
2713           ** a critical I/O error
2714           */
2715           rc = ((failed & SQLITE_IOERR) == SQLITE_IOERR) ? failed2 :
2716                SQLITE_IOERR_LOCK;
2717           goto afp_end_lock;
2718         }
2719       }else{
2720         rc = failed;
2721       }
2722     }
2723     if( failed ){
2724       rc = failed;
2725     }
2726   }
2727 
2728   if( rc==SQLITE_OK ){
2729     pFile->eFileLock = eFileLock;
2730     pInode->eFileLock = eFileLock;
2731   }else if( eFileLock==EXCLUSIVE_LOCK ){
2732     pFile->eFileLock = PENDING_LOCK;
2733     pInode->eFileLock = PENDING_LOCK;
2734   }
2735 
2736 afp_end_lock:
2737   unixLeaveMutex();
2738   OSTRACE(("LOCK    %d %s %s (afp)\n", pFile->h, azFileLock(eFileLock),
2739          rc==SQLITE_OK ? "ok" : "failed"));
2740   return rc;
2741 }
2742 
2743 /*
2744 ** Lower the locking level on file descriptor pFile to eFileLock.  eFileLock
2745 ** must be either NO_LOCK or SHARED_LOCK.
2746 **
2747 ** If the locking level of the file descriptor is already at or below
2748 ** the requested locking level, this routine is a no-op.
2749 */
afpUnlock(sqlite3_file * id,int eFileLock)2750 static int afpUnlock(sqlite3_file *id, int eFileLock) {
2751   int rc = SQLITE_OK;
2752   unixFile *pFile = (unixFile*)id;
2753   unixInodeInfo *pInode;
2754   afpLockingContext *context = (afpLockingContext *) pFile->lockingContext;
2755   int skipShared = 0;
2756 #ifdef SQLITE_TEST
2757   int h = pFile->h;
2758 #endif
2759 
2760   assert( pFile );
2761   OSTRACE(("UNLOCK  %d %d was %d(%d,%d) pid=%d (afp)\n", pFile->h, eFileLock,
2762            pFile->eFileLock, pFile->pInode->eFileLock, pFile->pInode->nShared,
2763            getpid()));
2764 
2765   assert( eFileLock<=SHARED_LOCK );
2766   if( pFile->eFileLock<=eFileLock ){
2767     return SQLITE_OK;
2768   }
2769   unixEnterMutex();
2770   pInode = pFile->pInode;
2771   assert( pInode->nShared!=0 );
2772   if( pFile->eFileLock>SHARED_LOCK ){
2773     assert( pInode->eFileLock==pFile->eFileLock );
2774     SimulateIOErrorBenign(1);
2775     SimulateIOError( h=(-1) )
2776     SimulateIOErrorBenign(0);
2777 
2778 #ifndef NDEBUG
2779     /* When reducing a lock such that other processes can start
2780     ** reading the database file again, make sure that the
2781     ** transaction counter was updated if any part of the database
2782     ** file changed.  If the transaction counter is not updated,
2783     ** other connections to the same file might not realize that
2784     ** the file has changed and hence might not know to flush their
2785     ** cache.  The use of a stale cache can lead to database corruption.
2786     */
2787     assert( pFile->inNormalWrite==0
2788            || pFile->dbUpdate==0
2789            || pFile->transCntrChng==1 );
2790     pFile->inNormalWrite = 0;
2791 #endif
2792 
2793     if( pFile->eFileLock==EXCLUSIVE_LOCK ){
2794       rc = afpSetLock(context->dbPath, pFile, SHARED_FIRST, SHARED_SIZE, 0);
2795       if( rc==SQLITE_OK && (eFileLock==SHARED_LOCK || pInode->nShared>1) ){
2796         /* only re-establish the shared lock if necessary */
2797         int sharedLockByte = SHARED_FIRST+pInode->sharedByte;
2798         rc = afpSetLock(context->dbPath, pFile, sharedLockByte, 1, 1);
2799       } else {
2800         skipShared = 1;
2801       }
2802     }
2803     if( rc==SQLITE_OK && pFile->eFileLock>=PENDING_LOCK ){
2804       rc = afpSetLock(context->dbPath, pFile, PENDING_BYTE, 1, 0);
2805     }
2806     if( rc==SQLITE_OK && pFile->eFileLock>=RESERVED_LOCK && context->reserved ){
2807       rc = afpSetLock(context->dbPath, pFile, RESERVED_BYTE, 1, 0);
2808       if( !rc ){
2809         context->reserved = 0;
2810       }
2811     }
2812     if( rc==SQLITE_OK && (eFileLock==SHARED_LOCK || pInode->nShared>1)){
2813       pInode->eFileLock = SHARED_LOCK;
2814     }
2815   }
2816   if( rc==SQLITE_OK && eFileLock==NO_LOCK ){
2817 
2818     /* Decrement the shared lock counter.  Release the lock using an
2819     ** OS call only when all threads in this same process have released
2820     ** the lock.
2821     */
2822     unsigned long long sharedLockByte = SHARED_FIRST+pInode->sharedByte;
2823     pInode->nShared--;
2824     if( pInode->nShared==0 ){
2825       SimulateIOErrorBenign(1);
2826       SimulateIOError( h=(-1) )
2827       SimulateIOErrorBenign(0);
2828       if( !skipShared ){
2829         rc = afpSetLock(context->dbPath, pFile, sharedLockByte, 1, 0);
2830       }
2831       if( !rc ){
2832         pInode->eFileLock = NO_LOCK;
2833         pFile->eFileLock = NO_LOCK;
2834       }
2835     }
2836     if( rc==SQLITE_OK ){
2837       pInode->nLock--;
2838       assert( pInode->nLock>=0 );
2839       if( pInode->nLock==0 ){
2840         closePendingFds(pFile);
2841       }
2842     }
2843   }
2844 
2845   unixLeaveMutex();
2846   if( rc==SQLITE_OK ) pFile->eFileLock = eFileLock;
2847   return rc;
2848 }
2849 
2850 /*
2851 ** Close a file & cleanup AFP specific locking context
2852 */
afpClose(sqlite3_file * id)2853 static int afpClose(sqlite3_file *id) {
2854   int rc = SQLITE_OK;
2855   if( id ){
2856     unixFile *pFile = (unixFile*)id;
2857     afpUnlock(id, NO_LOCK);
2858     unixEnterMutex();
2859     if( pFile->pInode && pFile->pInode->nLock ){
2860       /* If there are outstanding locks, do not actually close the file just
2861       ** yet because that would clear those locks.  Instead, add the file
2862       ** descriptor to pInode->aPending.  It will be automatically closed when
2863       ** the last lock is cleared.
2864       */
2865       setPendingFd(pFile);
2866     }
2867     releaseInodeInfo(pFile);
2868     sqlite3_free(pFile->lockingContext);
2869     rc = closeUnixFile(id);
2870     unixLeaveMutex();
2871   }
2872   return rc;
2873 }
2874 
2875 #endif /* defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE */
2876 /*
2877 ** The code above is the AFP lock implementation.  The code is specific
2878 ** to MacOSX and does not work on other unix platforms.  No alternative
2879 ** is available.  If you don't compile for a mac, then the "unix-afp"
2880 ** VFS is not available.
2881 **
2882 ********************* End of the AFP lock implementation **********************
2883 ******************************************************************************/
2884 
2885 /******************************************************************************
2886 *************************** Begin NFS Locking ********************************/
2887 
2888 #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
2889 /*
2890  ** Lower the locking level on file descriptor pFile to eFileLock.  eFileLock
2891  ** must be either NO_LOCK or SHARED_LOCK.
2892  **
2893  ** If the locking level of the file descriptor is already at or below
2894  ** the requested locking level, this routine is a no-op.
2895  */
nfsUnlock(sqlite3_file * id,int eFileLock)2896 static int nfsUnlock(sqlite3_file *id, int eFileLock){
2897   return posixUnlock(id, eFileLock, 1);
2898 }
2899 
2900 #endif /* defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE */
2901 /*
2902 ** The code above is the NFS lock implementation.  The code is specific
2903 ** to MacOSX and does not work on other unix platforms.  No alternative
2904 ** is available.
2905 **
2906 ********************* End of the NFS lock implementation **********************
2907 ******************************************************************************/
2908 
2909 /******************************************************************************
2910 **************** Non-locking sqlite3_file methods *****************************
2911 **
2912 ** The next division contains implementations for all methods of the
2913 ** sqlite3_file object other than the locking methods.  The locking
2914 ** methods were defined in divisions above (one locking method per
2915 ** division).  Those methods that are common to all locking modes
2916 ** are gather together into this division.
2917 */
2918 
2919 /*
2920 ** Seek to the offset passed as the second argument, then read cnt
2921 ** bytes into pBuf. Return the number of bytes actually read.
2922 **
2923 ** NB:  If you define USE_PREAD or USE_PREAD64, then it might also
2924 ** be necessary to define _XOPEN_SOURCE to be 500.  This varies from
2925 ** one system to another.  Since SQLite does not define USE_PREAD
2926 ** any any form by default, we will not attempt to define _XOPEN_SOURCE.
2927 ** See tickets #2741 and #2681.
2928 **
2929 ** To avoid stomping the errno value on a failed read the lastErrno value
2930 ** is set before returning.
2931 */
seekAndRead(unixFile * id,sqlite3_int64 offset,void * pBuf,int cnt)2932 static int seekAndRead(unixFile *id, sqlite3_int64 offset, void *pBuf, int cnt){
2933   int got;
2934 #if (!defined(USE_PREAD) && !defined(USE_PREAD64))
2935   i64 newOffset;
2936 #endif
2937   TIMER_START;
2938 #if defined(USE_PREAD)
2939   do{ got = osPread(id->h, pBuf, cnt, offset); }while( got<0 && errno==EINTR );
2940   SimulateIOError( got = -1 );
2941 #elif defined(USE_PREAD64)
2942   do{ got = osPread64(id->h, pBuf, cnt, offset); }while( got<0 && errno==EINTR);
2943   SimulateIOError( got = -1 );
2944 #else
2945   newOffset = lseek(id->h, offset, SEEK_SET);
2946   SimulateIOError( newOffset-- );
2947   if( newOffset!=offset ){
2948     if( newOffset == -1 ){
2949       ((unixFile*)id)->lastErrno = errno;
2950     }else{
2951       ((unixFile*)id)->lastErrno = 0;
2952     }
2953     return -1;
2954   }
2955   do{ got = osRead(id->h, pBuf, cnt); }while( got<0 && errno==EINTR );
2956 #endif
2957   TIMER_END;
2958   if( got<0 ){
2959     ((unixFile*)id)->lastErrno = errno;
2960   }
2961   OSTRACE(("READ    %-3d %5d %7lld %llu\n", id->h, got, offset, TIMER_ELAPSED));
2962   return got;
2963 }
2964 
2965 /*
2966 ** Read data from a file into a buffer.  Return SQLITE_OK if all
2967 ** bytes were read successfully and SQLITE_IOERR if anything goes
2968 ** wrong.
2969 */
unixRead(sqlite3_file * id,void * pBuf,int amt,sqlite3_int64 offset)2970 static int unixRead(
2971   sqlite3_file *id,
2972   void *pBuf,
2973   int amt,
2974   sqlite3_int64 offset
2975 ){
2976   unixFile *pFile = (unixFile *)id;
2977   int got;
2978   assert( id );
2979 
2980   /* If this is a database file (not a journal, master-journal or temp
2981   ** file), the bytes in the locking range should never be read or written. */
2982 #if 0
2983   assert( pFile->pUnused==0
2984        || offset>=PENDING_BYTE+512
2985        || offset+amt<=PENDING_BYTE
2986   );
2987 #endif
2988 
2989   got = seekAndRead(pFile, offset, pBuf, amt);
2990   if( got==amt ){
2991     return SQLITE_OK;
2992   }else if( got<0 ){
2993     /* lastErrno set by seekAndRead */
2994     return SQLITE_IOERR_READ;
2995   }else{
2996     pFile->lastErrno = 0; /* not a system error */
2997     /* Unread parts of the buffer must be zero-filled */
2998     memset(&((char*)pBuf)[got], 0, amt-got);
2999     return SQLITE_IOERR_SHORT_READ;
3000   }
3001 }
3002 
3003 /*
3004 ** Seek to the offset in id->offset then read cnt bytes into pBuf.
3005 ** Return the number of bytes actually read.  Update the offset.
3006 **
3007 ** To avoid stomping the errno value on a failed write the lastErrno value
3008 ** is set before returning.
3009 */
seekAndWrite(unixFile * id,i64 offset,const void * pBuf,int cnt)3010 static int seekAndWrite(unixFile *id, i64 offset, const void *pBuf, int cnt){
3011   int got;
3012 #if (!defined(USE_PREAD) && !defined(USE_PREAD64))
3013   i64 newOffset;
3014 #endif
3015   TIMER_START;
3016 #if defined(USE_PREAD)
3017   do{ got = osPwrite(id->h, pBuf, cnt, offset); }while( got<0 && errno==EINTR );
3018 #elif defined(USE_PREAD64)
3019   do{ got = osPwrite64(id->h, pBuf, cnt, offset);}while( got<0 && errno==EINTR);
3020 #else
3021   newOffset = lseek(id->h, offset, SEEK_SET);
3022   SimulateIOError( newOffset-- );
3023   if( newOffset!=offset ){
3024     if( newOffset == -1 ){
3025       ((unixFile*)id)->lastErrno = errno;
3026     }else{
3027       ((unixFile*)id)->lastErrno = 0;
3028     }
3029     return -1;
3030   }
3031   do{ got = osWrite(id->h, pBuf, cnt); }while( got<0 && errno==EINTR );
3032 #endif
3033   TIMER_END;
3034   if( got<0 ){
3035     ((unixFile*)id)->lastErrno = errno;
3036   }
3037 
3038   OSTRACE(("WRITE   %-3d %5d %7lld %llu\n", id->h, got, offset, TIMER_ELAPSED));
3039   return got;
3040 }
3041 
3042 
3043 /*
3044 ** Write data from a buffer into a file.  Return SQLITE_OK on success
3045 ** or some other error code on failure.
3046 */
unixWrite(sqlite3_file * id,const void * pBuf,int amt,sqlite3_int64 offset)3047 static int unixWrite(
3048   sqlite3_file *id,
3049   const void *pBuf,
3050   int amt,
3051   sqlite3_int64 offset
3052 ){
3053   unixFile *pFile = (unixFile*)id;
3054   int wrote = 0;
3055   assert( id );
3056   assert( amt>0 );
3057 
3058   /* If this is a database file (not a journal, master-journal or temp
3059   ** file), the bytes in the locking range should never be read or written. */
3060 #if 0
3061   assert( pFile->pUnused==0
3062        || offset>=PENDING_BYTE+512
3063        || offset+amt<=PENDING_BYTE
3064   );
3065 #endif
3066 
3067 #ifndef NDEBUG
3068   /* If we are doing a normal write to a database file (as opposed to
3069   ** doing a hot-journal rollback or a write to some file other than a
3070   ** normal database file) then record the fact that the database
3071   ** has changed.  If the transaction counter is modified, record that
3072   ** fact too.
3073   */
3074   if( pFile->inNormalWrite ){
3075     pFile->dbUpdate = 1;  /* The database has been modified */
3076     if( offset<=24 && offset+amt>=27 ){
3077       int rc;
3078       char oldCntr[4];
3079       SimulateIOErrorBenign(1);
3080       rc = seekAndRead(pFile, 24, oldCntr, 4);
3081       SimulateIOErrorBenign(0);
3082       if( rc!=4 || memcmp(oldCntr, &((char*)pBuf)[24-offset], 4)!=0 ){
3083         pFile->transCntrChng = 1;  /* The transaction counter has changed */
3084       }
3085     }
3086   }
3087 #endif
3088 
3089   while( amt>0 && (wrote = seekAndWrite(pFile, offset, pBuf, amt))>0 ){
3090     amt -= wrote;
3091     offset += wrote;
3092     pBuf = &((char*)pBuf)[wrote];
3093   }
3094   SimulateIOError(( wrote=(-1), amt=1 ));
3095   SimulateDiskfullError(( wrote=0, amt=1 ));
3096 
3097   if( amt>0 ){
3098     if( wrote<0 ){
3099       /* lastErrno set by seekAndWrite */
3100       return SQLITE_IOERR_WRITE;
3101     }else{
3102       pFile->lastErrno = 0; /* not a system error */
3103       return SQLITE_FULL;
3104     }
3105   }
3106 
3107   return SQLITE_OK;
3108 }
3109 
3110 #ifdef SQLITE_TEST
3111 /*
3112 ** Count the number of fullsyncs and normal syncs.  This is used to test
3113 ** that syncs and fullsyncs are occurring at the right times.
3114 */
3115 int sqlite3_sync_count = 0;
3116 int sqlite3_fullsync_count = 0;
3117 #endif
3118 
3119 /*
3120 ** We do not trust systems to provide a working fdatasync().  Some do.
3121 ** Others do no.  To be safe, we will stick with the (slower) fsync().
3122 ** If you know that your system does support fdatasync() correctly,
3123 ** then simply compile with -Dfdatasync=fdatasync
3124 */
3125 #if !defined(fdatasync) && !defined(__linux__)
3126 # define fdatasync fsync
3127 #endif
3128 
3129 /*
3130 ** Define HAVE_FULLFSYNC to 0 or 1 depending on whether or not
3131 ** the F_FULLFSYNC macro is defined.  F_FULLFSYNC is currently
3132 ** only available on Mac OS X.  But that could change.
3133 */
3134 #ifdef F_FULLFSYNC
3135 # define HAVE_FULLFSYNC 1
3136 #else
3137 # define HAVE_FULLFSYNC 0
3138 #endif
3139 
3140 
3141 /*
3142 ** The fsync() system call does not work as advertised on many
3143 ** unix systems.  The following procedure is an attempt to make
3144 ** it work better.
3145 **
3146 ** The SQLITE_NO_SYNC macro disables all fsync()s.  This is useful
3147 ** for testing when we want to run through the test suite quickly.
3148 ** You are strongly advised *not* to deploy with SQLITE_NO_SYNC
3149 ** enabled, however, since with SQLITE_NO_SYNC enabled, an OS crash
3150 ** or power failure will likely corrupt the database file.
3151 **
3152 ** SQLite sets the dataOnly flag if the size of the file is unchanged.
3153 ** The idea behind dataOnly is that it should only write the file content
3154 ** to disk, not the inode.  We only set dataOnly if the file size is
3155 ** unchanged since the file size is part of the inode.  However,
3156 ** Ted Ts'o tells us that fdatasync() will also write the inode if the
3157 ** file size has changed.  The only real difference between fdatasync()
3158 ** and fsync(), Ted tells us, is that fdatasync() will not flush the
3159 ** inode if the mtime or owner or other inode attributes have changed.
3160 ** We only care about the file size, not the other file attributes, so
3161 ** as far as SQLite is concerned, an fdatasync() is always adequate.
3162 ** So, we always use fdatasync() if it is available, regardless of
3163 ** the value of the dataOnly flag.
3164 */
full_fsync(int fd,int fullSync,int dataOnly)3165 static int full_fsync(int fd, int fullSync, int dataOnly){
3166   int rc;
3167 
3168   /* The following "ifdef/elif/else/" block has the same structure as
3169   ** the one below. It is replicated here solely to avoid cluttering
3170   ** up the real code with the UNUSED_PARAMETER() macros.
3171   */
3172 #ifdef SQLITE_NO_SYNC
3173   UNUSED_PARAMETER(fd);
3174   UNUSED_PARAMETER(fullSync);
3175   UNUSED_PARAMETER(dataOnly);
3176 #elif HAVE_FULLFSYNC
3177   UNUSED_PARAMETER(dataOnly);
3178 #else
3179   UNUSED_PARAMETER(fullSync);
3180   UNUSED_PARAMETER(dataOnly);
3181 #endif
3182 
3183   /* Record the number of times that we do a normal fsync() and
3184   ** FULLSYNC.  This is used during testing to verify that this procedure
3185   ** gets called with the correct arguments.
3186   */
3187 #ifdef SQLITE_TEST
3188   if( fullSync ) sqlite3_fullsync_count++;
3189   sqlite3_sync_count++;
3190 #endif
3191 
3192   /* If we compiled with the SQLITE_NO_SYNC flag, then syncing is a
3193   ** no-op
3194   */
3195 #ifdef SQLITE_NO_SYNC
3196   rc = SQLITE_OK;
3197 #elif HAVE_FULLFSYNC
3198   if( fullSync ){
3199     rc = osFcntl(fd, F_FULLFSYNC, 0);
3200   }else{
3201     rc = 1;
3202   }
3203   /* If the FULLFSYNC failed, fall back to attempting an fsync().
3204   ** It shouldn't be possible for fullfsync to fail on the local
3205   ** file system (on OSX), so failure indicates that FULLFSYNC
3206   ** isn't supported for this file system. So, attempt an fsync
3207   ** and (for now) ignore the overhead of a superfluous fcntl call.
3208   ** It'd be better to detect fullfsync support once and avoid
3209   ** the fcntl call every time sync is called.
3210   */
3211   if( rc ) rc = fsync(fd);
3212 
3213 #elif defined(__APPLE__)
3214   /* fdatasync() on HFS+ doesn't yet flush the file size if it changed correctly
3215   ** so currently we default to the macro that redefines fdatasync to fsync
3216   */
3217   rc = fsync(fd);
3218 #else
3219   rc = fdatasync(fd);
3220 #if OS_VXWORKS
3221   if( rc==-1 && errno==ENOTSUP ){
3222     rc = fsync(fd);
3223   }
3224 #endif /* OS_VXWORKS */
3225 #endif /* ifdef SQLITE_NO_SYNC elif HAVE_FULLFSYNC */
3226 
3227   if( OS_VXWORKS && rc!= -1 ){
3228     rc = 0;
3229   }
3230   return rc;
3231 }
3232 
3233 /*
3234 ** Open a file descriptor to the directory containing file zFilename.
3235 ** If successful, *pFd is set to the opened file descriptor and
3236 ** SQLITE_OK is returned. If an error occurs, either SQLITE_NOMEM
3237 ** or SQLITE_CANTOPEN is returned and *pFd is set to an undefined
3238 ** value.
3239 **
3240 ** The directory file descriptor is used for only one thing - to
3241 ** fsync() a directory to make sure file creation and deletion events
3242 ** are flushed to disk.  Such fsyncs are not needed on newer
3243 ** journaling filesystems, but are required on older filesystems.
3244 **
3245 ** This routine can be overridden using the xSetSysCall interface.
3246 ** The ability to override this routine was added in support of the
3247 ** chromium sandbox.  Opening a directory is a security risk (we are
3248 ** told) so making it overrideable allows the chromium sandbox to
3249 ** replace this routine with a harmless no-op.  To make this routine
3250 ** a no-op, replace it with a stub that returns SQLITE_OK but leaves
3251 ** *pFd set to a negative number.
3252 **
3253 ** If SQLITE_OK is returned, the caller is responsible for closing
3254 ** the file descriptor *pFd using close().
3255 */
openDirectory(const char * zFilename,int * pFd)3256 static int openDirectory(const char *zFilename, int *pFd){
3257   int ii;
3258   int fd = -1;
3259   char zDirname[MAX_PATHNAME+1];
3260 
3261   sqlite3_snprintf(MAX_PATHNAME, zDirname, "%s", zFilename);
3262   for(ii=(int)strlen(zDirname); ii>1 && zDirname[ii]!='/'; ii--);
3263   if( ii>0 ){
3264     zDirname[ii] = '\0';
3265     fd = robust_open(zDirname, O_RDONLY|O_BINARY, 0);
3266     if( fd>=0 ){
3267 #ifdef FD_CLOEXEC
3268       osFcntl(fd, F_SETFD, osFcntl(fd, F_GETFD, 0) | FD_CLOEXEC);
3269 #endif
3270       OSTRACE(("OPENDIR %-3d %s\n", fd, zDirname));
3271     }
3272   }
3273   *pFd = fd;
3274   return (fd>=0?SQLITE_OK:unixLogError(SQLITE_CANTOPEN_BKPT, "open", zDirname));
3275 }
3276 
3277 /*
3278 ** Make sure all writes to a particular file are committed to disk.
3279 **
3280 ** If dataOnly==0 then both the file itself and its metadata (file
3281 ** size, access time, etc) are synced.  If dataOnly!=0 then only the
3282 ** file data is synced.
3283 **
3284 ** Under Unix, also make sure that the directory entry for the file
3285 ** has been created by fsync-ing the directory that contains the file.
3286 ** If we do not do this and we encounter a power failure, the directory
3287 ** entry for the journal might not exist after we reboot.  The next
3288 ** SQLite to access the file will not know that the journal exists (because
3289 ** the directory entry for the journal was never created) and the transaction
3290 ** will not roll back - possibly leading to database corruption.
3291 */
unixSync(sqlite3_file * id,int flags)3292 static int unixSync(sqlite3_file *id, int flags){
3293   int rc;
3294   unixFile *pFile = (unixFile*)id;
3295 
3296   int isDataOnly = (flags&SQLITE_SYNC_DATAONLY);
3297   int isFullsync = (flags&0x0F)==SQLITE_SYNC_FULL;
3298 
3299   /* Check that one of SQLITE_SYNC_NORMAL or FULL was passed */
3300   assert((flags&0x0F)==SQLITE_SYNC_NORMAL
3301       || (flags&0x0F)==SQLITE_SYNC_FULL
3302   );
3303 
3304   /* Unix cannot, but some systems may return SQLITE_FULL from here. This
3305   ** line is to test that doing so does not cause any problems.
3306   */
3307   SimulateDiskfullError( return SQLITE_FULL );
3308 
3309   assert( pFile );
3310   OSTRACE(("SYNC    %-3d\n", pFile->h));
3311   rc = full_fsync(pFile->h, isFullsync, isDataOnly);
3312   SimulateIOError( rc=1 );
3313   if( rc ){
3314     pFile->lastErrno = errno;
3315     return unixLogError(SQLITE_IOERR_FSYNC, "full_fsync", pFile->zPath);
3316   }
3317 
3318   /* Also fsync the directory containing the file if the DIRSYNC flag
3319   ** is set.  This is a one-time occurrance.  Many systems (examples: AIX)
3320   ** are unable to fsync a directory, so ignore errors on the fsync.
3321   */
3322   if( pFile->ctrlFlags & UNIXFILE_DIRSYNC ){
3323     int dirfd;
3324     OSTRACE(("DIRSYNC %s (have_fullfsync=%d fullsync=%d)\n", pFile->zPath,
3325             HAVE_FULLFSYNC, isFullsync));
3326     rc = osOpenDirectory(pFile->zPath, &dirfd);
3327     if( rc==SQLITE_OK && dirfd>=0 ){
3328       full_fsync(dirfd, 0, 0);
3329       robust_close(pFile, dirfd, __LINE__);
3330     }else if( rc==SQLITE_CANTOPEN ){
3331       rc = SQLITE_OK;
3332     }
3333     pFile->ctrlFlags &= ~UNIXFILE_DIRSYNC;
3334   }
3335   return rc;
3336 }
3337 
3338 /*
3339 ** Truncate an open file to a specified size
3340 */
unixTruncate(sqlite3_file * id,i64 nByte)3341 static int unixTruncate(sqlite3_file *id, i64 nByte){
3342   unixFile *pFile = (unixFile *)id;
3343   int rc;
3344   assert( pFile );
3345   SimulateIOError( return SQLITE_IOERR_TRUNCATE );
3346 
3347   /* If the user has configured a chunk-size for this file, truncate the
3348   ** file so that it consists of an integer number of chunks (i.e. the
3349   ** actual file size after the operation may be larger than the requested
3350   ** size).
3351   */
3352   if( pFile->szChunk ){
3353     nByte = ((nByte + pFile->szChunk - 1)/pFile->szChunk) * pFile->szChunk;
3354   }
3355 
3356   rc = robust_ftruncate(pFile->h, (off_t)nByte);
3357   if( rc ){
3358     pFile->lastErrno = errno;
3359     return unixLogError(SQLITE_IOERR_TRUNCATE, "ftruncate", pFile->zPath);
3360   }else{
3361 #ifndef NDEBUG
3362     /* If we are doing a normal write to a database file (as opposed to
3363     ** doing a hot-journal rollback or a write to some file other than a
3364     ** normal database file) and we truncate the file to zero length,
3365     ** that effectively updates the change counter.  This might happen
3366     ** when restoring a database using the backup API from a zero-length
3367     ** source.
3368     */
3369     if( pFile->inNormalWrite && nByte==0 ){
3370       pFile->transCntrChng = 1;
3371     }
3372 #endif
3373 
3374     return SQLITE_OK;
3375   }
3376 }
3377 
3378 /*
3379 ** Determine the current size of a file in bytes
3380 */
unixFileSize(sqlite3_file * id,i64 * pSize)3381 static int unixFileSize(sqlite3_file *id, i64 *pSize){
3382   int rc;
3383   struct stat buf;
3384   assert( id );
3385   rc = osFstat(((unixFile*)id)->h, &buf);
3386   SimulateIOError( rc=1 );
3387   if( rc!=0 ){
3388     ((unixFile*)id)->lastErrno = errno;
3389     return SQLITE_IOERR_FSTAT;
3390   }
3391   *pSize = buf.st_size;
3392 
3393   /* When opening a zero-size database, the findInodeInfo() procedure
3394   ** writes a single byte into that file in order to work around a bug
3395   ** in the OS-X msdos filesystem.  In order to avoid problems with upper
3396   ** layers, we need to report this file size as zero even though it is
3397   ** really 1.   Ticket #3260.
3398   */
3399   if( *pSize==1 ) *pSize = 0;
3400 
3401 
3402   return SQLITE_OK;
3403 }
3404 
3405 #if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__)
3406 /*
3407 ** Handler for proxy-locking file-control verbs.  Defined below in the
3408 ** proxying locking division.
3409 */
3410 static int proxyFileControl(sqlite3_file*,int,void*);
3411 #endif
3412 
3413 /*
3414 ** This function is called to handle the SQLITE_FCNTL_SIZE_HINT
3415 ** file-control operation.
3416 **
3417 ** If the user has configured a chunk-size for this file, it could be
3418 ** that the file needs to be extended at this point. Otherwise, the
3419 ** SQLITE_FCNTL_SIZE_HINT operation is a no-op for Unix.
3420 */
fcntlSizeHint(unixFile * pFile,i64 nByte)3421 static int fcntlSizeHint(unixFile *pFile, i64 nByte){
3422   if( pFile->szChunk ){
3423     i64 nSize;                    /* Required file size */
3424     struct stat buf;              /* Used to hold return values of fstat() */
3425 
3426     if( osFstat(pFile->h, &buf) ) return SQLITE_IOERR_FSTAT;
3427 
3428     nSize = ((nByte+pFile->szChunk-1) / pFile->szChunk) * pFile->szChunk;
3429     if( nSize>(i64)buf.st_size ){
3430 
3431 #if defined(HAVE_POSIX_FALLOCATE) && HAVE_POSIX_FALLOCATE
3432       /* The code below is handling the return value of osFallocate()
3433       ** correctly. posix_fallocate() is defined to "returns zero on success,
3434       ** or an error number on  failure". See the manpage for details. */
3435       int err;
3436       do{
3437         err = osFallocate(pFile->h, buf.st_size, nSize-buf.st_size);
3438       }while( err==EINTR );
3439       if( err ) return SQLITE_IOERR_WRITE;
3440 #else
3441       /* If the OS does not have posix_fallocate(), fake it. First use
3442       ** ftruncate() to set the file size, then write a single byte to
3443       ** the last byte in each block within the extended region. This
3444       ** is the same technique used by glibc to implement posix_fallocate()
3445       ** on systems that do not have a real fallocate() system call.
3446       */
3447       int nBlk = buf.st_blksize;  /* File-system block size */
3448       i64 iWrite;                 /* Next offset to write to */
3449 
3450       if( robust_ftruncate(pFile->h, nSize) ){
3451         pFile->lastErrno = errno;
3452         return unixLogError(SQLITE_IOERR_TRUNCATE, "ftruncate", pFile->zPath);
3453       }
3454       iWrite = ((buf.st_size + 2*nBlk - 1)/nBlk)*nBlk-1;
3455       while( iWrite<nSize ){
3456         int nWrite = seekAndWrite(pFile, iWrite, "", 1);
3457         if( nWrite!=1 ) return SQLITE_IOERR_WRITE;
3458         iWrite += nBlk;
3459       }
3460 #endif
3461     }
3462   }
3463 
3464   return SQLITE_OK;
3465 }
3466 
3467 /*
3468 ** Information and control of an open file handle.
3469 */
unixFileControl(sqlite3_file * id,int op,void * pArg)3470 static int unixFileControl(sqlite3_file *id, int op, void *pArg){
3471   switch( op ){
3472     case SQLITE_FCNTL_LOCKSTATE: {
3473       *(int*)pArg = ((unixFile*)id)->eFileLock;
3474       return SQLITE_OK;
3475     }
3476     case SQLITE_LAST_ERRNO: {
3477       *(int*)pArg = ((unixFile*)id)->lastErrno;
3478       return SQLITE_OK;
3479     }
3480     case SQLITE_FCNTL_CHUNK_SIZE: {
3481       ((unixFile*)id)->szChunk = *(int *)pArg;
3482       return SQLITE_OK;
3483     }
3484     case SQLITE_FCNTL_SIZE_HINT: {
3485       return fcntlSizeHint((unixFile *)id, *(i64 *)pArg);
3486     }
3487 #ifndef NDEBUG
3488     /* The pager calls this method to signal that it has done
3489     ** a rollback and that the database is therefore unchanged and
3490     ** it hence it is OK for the transaction change counter to be
3491     ** unchanged.
3492     */
3493     case SQLITE_FCNTL_DB_UNCHANGED: {
3494       ((unixFile*)id)->dbUpdate = 0;
3495       return SQLITE_OK;
3496     }
3497 #endif
3498 #if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__)
3499     case SQLITE_SET_LOCKPROXYFILE:
3500     case SQLITE_GET_LOCKPROXYFILE: {
3501       return proxyFileControl(id,op,pArg);
3502     }
3503 #endif /* SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__) */
3504     case SQLITE_FCNTL_SYNC_OMITTED: {
3505       return SQLITE_OK;  /* A no-op */
3506     }
3507   }
3508   return SQLITE_NOTFOUND;
3509 }
3510 
3511 /*
3512 ** Return the sector size in bytes of the underlying block device for
3513 ** the specified file. This is almost always 512 bytes, but may be
3514 ** larger for some devices.
3515 **
3516 ** SQLite code assumes this function cannot fail. It also assumes that
3517 ** if two files are created in the same file-system directory (i.e.
3518 ** a database and its journal file) that the sector size will be the
3519 ** same for both.
3520 */
unixSectorSize(sqlite3_file * NotUsed)3521 static int unixSectorSize(sqlite3_file *NotUsed){
3522   UNUSED_PARAMETER(NotUsed);
3523   return SQLITE_DEFAULT_SECTOR_SIZE;
3524 }
3525 
3526 /*
3527 ** Return the device characteristics for the file. This is always 0 for unix.
3528 */
unixDeviceCharacteristics(sqlite3_file * NotUsed)3529 static int unixDeviceCharacteristics(sqlite3_file *NotUsed){
3530   UNUSED_PARAMETER(NotUsed);
3531   return 0;
3532 }
3533 
3534 #ifndef SQLITE_OMIT_WAL
3535 
3536 
3537 /*
3538 ** Object used to represent an shared memory buffer.
3539 **
3540 ** When multiple threads all reference the same wal-index, each thread
3541 ** has its own unixShm object, but they all point to a single instance
3542 ** of this unixShmNode object.  In other words, each wal-index is opened
3543 ** only once per process.
3544 **
3545 ** Each unixShmNode object is connected to a single unixInodeInfo object.
3546 ** We could coalesce this object into unixInodeInfo, but that would mean
3547 ** every open file that does not use shared memory (in other words, most
3548 ** open files) would have to carry around this extra information.  So
3549 ** the unixInodeInfo object contains a pointer to this unixShmNode object
3550 ** and the unixShmNode object is created only when needed.
3551 **
3552 ** unixMutexHeld() must be true when creating or destroying
3553 ** this object or while reading or writing the following fields:
3554 **
3555 **      nRef
3556 **
3557 ** The following fields are read-only after the object is created:
3558 **
3559 **      fid
3560 **      zFilename
3561 **
3562 ** Either unixShmNode.mutex must be held or unixShmNode.nRef==0 and
3563 ** unixMutexHeld() is true when reading or writing any other field
3564 ** in this structure.
3565 */
3566 struct unixShmNode {
3567   unixInodeInfo *pInode;     /* unixInodeInfo that owns this SHM node */
3568   sqlite3_mutex *mutex;      /* Mutex to access this object */
3569   char *zFilename;           /* Name of the mmapped file */
3570   int h;                     /* Open file descriptor */
3571   int szRegion;              /* Size of shared-memory regions */
3572   int nRegion;               /* Size of array apRegion */
3573   char **apRegion;           /* Array of mapped shared-memory regions */
3574   int nRef;                  /* Number of unixShm objects pointing to this */
3575   unixShm *pFirst;           /* All unixShm objects pointing to this */
3576 #ifdef SQLITE_DEBUG
3577   u8 exclMask;               /* Mask of exclusive locks held */
3578   u8 sharedMask;             /* Mask of shared locks held */
3579   u8 nextShmId;              /* Next available unixShm.id value */
3580 #endif
3581 };
3582 
3583 /*
3584 ** Structure used internally by this VFS to record the state of an
3585 ** open shared memory connection.
3586 **
3587 ** The following fields are initialized when this object is created and
3588 ** are read-only thereafter:
3589 **
3590 **    unixShm.pFile
3591 **    unixShm.id
3592 **
3593 ** All other fields are read/write.  The unixShm.pFile->mutex must be held
3594 ** while accessing any read/write fields.
3595 */
3596 struct unixShm {
3597   unixShmNode *pShmNode;     /* The underlying unixShmNode object */
3598   unixShm *pNext;            /* Next unixShm with the same unixShmNode */
3599   u8 hasMutex;               /* True if holding the unixShmNode mutex */
3600   u16 sharedMask;            /* Mask of shared locks held */
3601   u16 exclMask;              /* Mask of exclusive locks held */
3602 #ifdef SQLITE_DEBUG
3603   u8 id;                     /* Id of this connection within its unixShmNode */
3604 #endif
3605 };
3606 
3607 /*
3608 ** Constants used for locking
3609 */
3610 #define UNIX_SHM_BASE   ((22+SQLITE_SHM_NLOCK)*4)         /* first lock byte */
3611 #define UNIX_SHM_DMS    (UNIX_SHM_BASE+SQLITE_SHM_NLOCK)  /* deadman switch */
3612 
3613 /*
3614 ** Apply posix advisory locks for all bytes from ofst through ofst+n-1.
3615 **
3616 ** Locks block if the mask is exactly UNIX_SHM_C and are non-blocking
3617 ** otherwise.
3618 */
unixShmSystemLock(unixShmNode * pShmNode,int lockType,int ofst,int n)3619 static int unixShmSystemLock(
3620   unixShmNode *pShmNode, /* Apply locks to this open shared-memory segment */
3621   int lockType,          /* F_UNLCK, F_RDLCK, or F_WRLCK */
3622   int ofst,              /* First byte of the locking range */
3623   int n                  /* Number of bytes to lock */
3624 ){
3625   struct flock f;       /* The posix advisory locking structure */
3626   int rc = SQLITE_OK;   /* Result code form fcntl() */
3627 
3628   /* Access to the unixShmNode object is serialized by the caller */
3629   assert( sqlite3_mutex_held(pShmNode->mutex) || pShmNode->nRef==0 );
3630 
3631   /* Shared locks never span more than one byte */
3632   assert( n==1 || lockType!=F_RDLCK );
3633 
3634   /* Locks are within range */
3635   assert( n>=1 && n<SQLITE_SHM_NLOCK );
3636 
3637   if( pShmNode->h>=0 ){
3638     /* Initialize the locking parameters */
3639     memset(&f, 0, sizeof(f));
3640     f.l_type = lockType;
3641     f.l_whence = SEEK_SET;
3642     f.l_start = ofst;
3643     f.l_len = n;
3644 
3645     rc = osFcntl(pShmNode->h, F_SETLK, &f);
3646     rc = (rc!=(-1)) ? SQLITE_OK : SQLITE_BUSY;
3647   }
3648 
3649   /* Update the global lock state and do debug tracing */
3650 #ifdef SQLITE_DEBUG
3651   { u16 mask;
3652   OSTRACE(("SHM-LOCK "));
3653   mask = (1<<(ofst+n)) - (1<<ofst);
3654   if( rc==SQLITE_OK ){
3655     if( lockType==F_UNLCK ){
3656       OSTRACE(("unlock %d ok", ofst));
3657       pShmNode->exclMask &= ~mask;
3658       pShmNode->sharedMask &= ~mask;
3659     }else if( lockType==F_RDLCK ){
3660       OSTRACE(("read-lock %d ok", ofst));
3661       pShmNode->exclMask &= ~mask;
3662       pShmNode->sharedMask |= mask;
3663     }else{
3664       assert( lockType==F_WRLCK );
3665       OSTRACE(("write-lock %d ok", ofst));
3666       pShmNode->exclMask |= mask;
3667       pShmNode->sharedMask &= ~mask;
3668     }
3669   }else{
3670     if( lockType==F_UNLCK ){
3671       OSTRACE(("unlock %d failed", ofst));
3672     }else if( lockType==F_RDLCK ){
3673       OSTRACE(("read-lock failed"));
3674     }else{
3675       assert( lockType==F_WRLCK );
3676       OSTRACE(("write-lock %d failed", ofst));
3677     }
3678   }
3679   OSTRACE((" - afterwards %03x,%03x\n",
3680            pShmNode->sharedMask, pShmNode->exclMask));
3681   }
3682 #endif
3683 
3684   return rc;
3685 }
3686 
3687 
3688 /*
3689 ** Purge the unixShmNodeList list of all entries with unixShmNode.nRef==0.
3690 **
3691 ** This is not a VFS shared-memory method; it is a utility function called
3692 ** by VFS shared-memory methods.
3693 */
unixShmPurge(unixFile * pFd)3694 static void unixShmPurge(unixFile *pFd){
3695   unixShmNode *p = pFd->pInode->pShmNode;
3696   assert( unixMutexHeld() );
3697   if( p && p->nRef==0 ){
3698     int i;
3699     assert( p->pInode==pFd->pInode );
3700     if( p->mutex ) sqlite3_mutex_free(p->mutex);
3701     for(i=0; i<p->nRegion; i++){
3702       if( p->h>=0 ){
3703         munmap(p->apRegion[i], p->szRegion);
3704       }else{
3705         sqlite3_free(p->apRegion[i]);
3706       }
3707     }
3708     sqlite3_free(p->apRegion);
3709     if( p->h>=0 ){
3710       robust_close(pFd, p->h, __LINE__);
3711       p->h = -1;
3712     }
3713     p->pInode->pShmNode = 0;
3714     sqlite3_free(p);
3715   }
3716 }
3717 
3718 /*
3719 ** Open a shared-memory area associated with open database file pDbFd.
3720 ** This particular implementation uses mmapped files.
3721 **
3722 ** The file used to implement shared-memory is in the same directory
3723 ** as the open database file and has the same name as the open database
3724 ** file with the "-shm" suffix added.  For example, if the database file
3725 ** is "/home/user1/config.db" then the file that is created and mmapped
3726 ** for shared memory will be called "/home/user1/config.db-shm".
3727 **
3728 ** Another approach to is to use files in /dev/shm or /dev/tmp or an
3729 ** some other tmpfs mount. But if a file in a different directory
3730 ** from the database file is used, then differing access permissions
3731 ** or a chroot() might cause two different processes on the same
3732 ** database to end up using different files for shared memory -
3733 ** meaning that their memory would not really be shared - resulting
3734 ** in database corruption.  Nevertheless, this tmpfs file usage
3735 ** can be enabled at compile-time using -DSQLITE_SHM_DIRECTORY="/dev/shm"
3736 ** or the equivalent.  The use of the SQLITE_SHM_DIRECTORY compile-time
3737 ** option results in an incompatible build of SQLite;  builds of SQLite
3738 ** that with differing SQLITE_SHM_DIRECTORY settings attempt to use the
3739 ** same database file at the same time, database corruption will likely
3740 ** result. The SQLITE_SHM_DIRECTORY compile-time option is considered
3741 ** "unsupported" and may go away in a future SQLite release.
3742 **
3743 ** When opening a new shared-memory file, if no other instances of that
3744 ** file are currently open, in this process or in other processes, then
3745 ** the file must be truncated to zero length or have its header cleared.
3746 **
3747 ** If the original database file (pDbFd) is using the "unix-excl" VFS
3748 ** that means that an exclusive lock is held on the database file and
3749 ** that no other processes are able to read or write the database.  In
3750 ** that case, we do not really need shared memory.  No shared memory
3751 ** file is created.  The shared memory will be simulated with heap memory.
3752 */
unixOpenSharedMemory(unixFile * pDbFd)3753 static int unixOpenSharedMemory(unixFile *pDbFd){
3754   struct unixShm *p = 0;          /* The connection to be opened */
3755   struct unixShmNode *pShmNode;   /* The underlying mmapped file */
3756   int rc;                         /* Result code */
3757   unixInodeInfo *pInode;          /* The inode of fd */
3758   char *zShmFilename;             /* Name of the file used for SHM */
3759   int nShmFilename;               /* Size of the SHM filename in bytes */
3760 
3761   /* Allocate space for the new unixShm object. */
3762   p = sqlite3_malloc( sizeof(*p) );
3763   if( p==0 ) return SQLITE_NOMEM;
3764   memset(p, 0, sizeof(*p));
3765   assert( pDbFd->pShm==0 );
3766 
3767   /* Check to see if a unixShmNode object already exists. Reuse an existing
3768   ** one if present. Create a new one if necessary.
3769   */
3770   unixEnterMutex();
3771   pInode = pDbFd->pInode;
3772   pShmNode = pInode->pShmNode;
3773   if( pShmNode==0 ){
3774     struct stat sStat;                 /* fstat() info for database file */
3775 
3776     /* Call fstat() to figure out the permissions on the database file. If
3777     ** a new *-shm file is created, an attempt will be made to create it
3778     ** with the same permissions. The actual permissions the file is created
3779     ** with are subject to the current umask setting.
3780     */
3781     if( osFstat(pDbFd->h, &sStat) && pInode->bProcessLock==0 ){
3782       rc = SQLITE_IOERR_FSTAT;
3783       goto shm_open_err;
3784     }
3785 
3786 #ifdef SQLITE_SHM_DIRECTORY
3787     nShmFilename = sizeof(SQLITE_SHM_DIRECTORY) + 30;
3788 #else
3789     nShmFilename = 5 + (int)strlen(pDbFd->zPath);
3790 #endif
3791     pShmNode = sqlite3_malloc( sizeof(*pShmNode) + nShmFilename );
3792     if( pShmNode==0 ){
3793       rc = SQLITE_NOMEM;
3794       goto shm_open_err;
3795     }
3796     memset(pShmNode, 0, sizeof(*pShmNode));
3797     zShmFilename = pShmNode->zFilename = (char*)&pShmNode[1];
3798 #ifdef SQLITE_SHM_DIRECTORY
3799     sqlite3_snprintf(nShmFilename, zShmFilename,
3800                      SQLITE_SHM_DIRECTORY "/sqlite-shm-%x-%x",
3801                      (u32)sStat.st_ino, (u32)sStat.st_dev);
3802 #else
3803     sqlite3_snprintf(nShmFilename, zShmFilename, "%s-shm", pDbFd->zPath);
3804 #endif
3805     pShmNode->h = -1;
3806     pDbFd->pInode->pShmNode = pShmNode;
3807     pShmNode->pInode = pDbFd->pInode;
3808     pShmNode->mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_FAST);
3809     if( pShmNode->mutex==0 ){
3810       rc = SQLITE_NOMEM;
3811       goto shm_open_err;
3812     }
3813 
3814     if( pInode->bProcessLock==0 ){
3815       pShmNode->h = robust_open(zShmFilename, O_RDWR|O_CREAT,
3816                                (sStat.st_mode & 0777));
3817       if( pShmNode->h<0 ){
3818         rc = unixLogError(SQLITE_CANTOPEN_BKPT, "open", zShmFilename);
3819         goto shm_open_err;
3820       }
3821 
3822       /* Check to see if another process is holding the dead-man switch.
3823       ** If not, truncate the file to zero length.
3824       */
3825       rc = SQLITE_OK;
3826       if( unixShmSystemLock(pShmNode, F_WRLCK, UNIX_SHM_DMS, 1)==SQLITE_OK ){
3827         if( robust_ftruncate(pShmNode->h, 0) ){
3828           rc = unixLogError(SQLITE_IOERR_SHMOPEN, "ftruncate", zShmFilename);
3829         }
3830       }
3831       if( rc==SQLITE_OK ){
3832         rc = unixShmSystemLock(pShmNode, F_RDLCK, UNIX_SHM_DMS, 1);
3833       }
3834       if( rc ) goto shm_open_err;
3835     }
3836   }
3837 
3838   /* Make the new connection a child of the unixShmNode */
3839   p->pShmNode = pShmNode;
3840 #ifdef SQLITE_DEBUG
3841   p->id = pShmNode->nextShmId++;
3842 #endif
3843   pShmNode->nRef++;
3844   pDbFd->pShm = p;
3845   unixLeaveMutex();
3846 
3847   /* The reference count on pShmNode has already been incremented under
3848   ** the cover of the unixEnterMutex() mutex and the pointer from the
3849   ** new (struct unixShm) object to the pShmNode has been set. All that is
3850   ** left to do is to link the new object into the linked list starting
3851   ** at pShmNode->pFirst. This must be done while holding the pShmNode->mutex
3852   ** mutex.
3853   */
3854   sqlite3_mutex_enter(pShmNode->mutex);
3855   p->pNext = pShmNode->pFirst;
3856   pShmNode->pFirst = p;
3857   sqlite3_mutex_leave(pShmNode->mutex);
3858   return SQLITE_OK;
3859 
3860   /* Jump here on any error */
3861 shm_open_err:
3862   unixShmPurge(pDbFd);       /* This call frees pShmNode if required */
3863   sqlite3_free(p);
3864   unixLeaveMutex();
3865   return rc;
3866 }
3867 
3868 /*
3869 ** This function is called to obtain a pointer to region iRegion of the
3870 ** shared-memory associated with the database file fd. Shared-memory regions
3871 ** are numbered starting from zero. Each shared-memory region is szRegion
3872 ** bytes in size.
3873 **
3874 ** If an error occurs, an error code is returned and *pp is set to NULL.
3875 **
3876 ** Otherwise, if the bExtend parameter is 0 and the requested shared-memory
3877 ** region has not been allocated (by any client, including one running in a
3878 ** separate process), then *pp is set to NULL and SQLITE_OK returned. If
3879 ** bExtend is non-zero and the requested shared-memory region has not yet
3880 ** been allocated, it is allocated by this function.
3881 **
3882 ** If the shared-memory region has already been allocated or is allocated by
3883 ** this call as described above, then it is mapped into this processes
3884 ** address space (if it is not already), *pp is set to point to the mapped
3885 ** memory and SQLITE_OK returned.
3886 */
unixShmMap(sqlite3_file * fd,int iRegion,int szRegion,int bExtend,void volatile ** pp)3887 static int unixShmMap(
3888   sqlite3_file *fd,               /* Handle open on database file */
3889   int iRegion,                    /* Region to retrieve */
3890   int szRegion,                   /* Size of regions */
3891   int bExtend,                    /* True to extend file if necessary */
3892   void volatile **pp              /* OUT: Mapped memory */
3893 ){
3894   unixFile *pDbFd = (unixFile*)fd;
3895   unixShm *p;
3896   unixShmNode *pShmNode;
3897   int rc = SQLITE_OK;
3898 
3899   /* If the shared-memory file has not yet been opened, open it now. */
3900   if( pDbFd->pShm==0 ){
3901     rc = unixOpenSharedMemory(pDbFd);
3902     if( rc!=SQLITE_OK ) return rc;
3903   }
3904 
3905   p = pDbFd->pShm;
3906   pShmNode = p->pShmNode;
3907   sqlite3_mutex_enter(pShmNode->mutex);
3908   assert( szRegion==pShmNode->szRegion || pShmNode->nRegion==0 );
3909   assert( pShmNode->pInode==pDbFd->pInode );
3910   assert( pShmNode->h>=0 || pDbFd->pInode->bProcessLock==1 );
3911   assert( pShmNode->h<0 || pDbFd->pInode->bProcessLock==0 );
3912 
3913   if( pShmNode->nRegion<=iRegion ){
3914     char **apNew;                      /* New apRegion[] array */
3915     int nByte = (iRegion+1)*szRegion;  /* Minimum required file size */
3916     struct stat sStat;                 /* Used by fstat() */
3917 
3918     pShmNode->szRegion = szRegion;
3919 
3920     if( pShmNode->h>=0 ){
3921       /* The requested region is not mapped into this processes address space.
3922       ** Check to see if it has been allocated (i.e. if the wal-index file is
3923       ** large enough to contain the requested region).
3924       */
3925       if( osFstat(pShmNode->h, &sStat) ){
3926         rc = SQLITE_IOERR_SHMSIZE;
3927         goto shmpage_out;
3928       }
3929 
3930       if( sStat.st_size<nByte ){
3931         /* The requested memory region does not exist. If bExtend is set to
3932         ** false, exit early. *pp will be set to NULL and SQLITE_OK returned.
3933         **
3934         ** Alternatively, if bExtend is true, use ftruncate() to allocate
3935         ** the requested memory region.
3936         */
3937         if( !bExtend ) goto shmpage_out;
3938         if( robust_ftruncate(pShmNode->h, nByte) ){
3939           rc = unixLogError(SQLITE_IOERR_SHMSIZE, "ftruncate",
3940                             pShmNode->zFilename);
3941           goto shmpage_out;
3942         }
3943       }
3944     }
3945 
3946     /* Map the requested memory region into this processes address space. */
3947     apNew = (char **)sqlite3_realloc(
3948         pShmNode->apRegion, (iRegion+1)*sizeof(char *)
3949     );
3950     if( !apNew ){
3951       rc = SQLITE_IOERR_NOMEM;
3952       goto shmpage_out;
3953     }
3954     pShmNode->apRegion = apNew;
3955     while(pShmNode->nRegion<=iRegion){
3956       void *pMem;
3957       if( pShmNode->h>=0 ){
3958         pMem = mmap(0, szRegion, PROT_READ|PROT_WRITE,
3959             MAP_SHARED, pShmNode->h, pShmNode->nRegion*szRegion
3960         );
3961         if( pMem==MAP_FAILED ){
3962           rc = SQLITE_IOERR;
3963           goto shmpage_out;
3964         }
3965       }else{
3966         pMem = sqlite3_malloc(szRegion);
3967         if( pMem==0 ){
3968           rc = SQLITE_NOMEM;
3969           goto shmpage_out;
3970         }
3971         memset(pMem, 0, szRegion);
3972       }
3973       pShmNode->apRegion[pShmNode->nRegion] = pMem;
3974       pShmNode->nRegion++;
3975     }
3976   }
3977 
3978 shmpage_out:
3979   if( pShmNode->nRegion>iRegion ){
3980     *pp = pShmNode->apRegion[iRegion];
3981   }else{
3982     *pp = 0;
3983   }
3984   sqlite3_mutex_leave(pShmNode->mutex);
3985   return rc;
3986 }
3987 
3988 /*
3989 ** Change the lock state for a shared-memory segment.
3990 **
3991 ** Note that the relationship between SHAREd and EXCLUSIVE locks is a little
3992 ** different here than in posix.  In xShmLock(), one can go from unlocked
3993 ** to shared and back or from unlocked to exclusive and back.  But one may
3994 ** not go from shared to exclusive or from exclusive to shared.
3995 */
unixShmLock(sqlite3_file * fd,int ofst,int n,int flags)3996 static int unixShmLock(
3997   sqlite3_file *fd,          /* Database file holding the shared memory */
3998   int ofst,                  /* First lock to acquire or release */
3999   int n,                     /* Number of locks to acquire or release */
4000   int flags                  /* What to do with the lock */
4001 ){
4002   unixFile *pDbFd = (unixFile*)fd;      /* Connection holding shared memory */
4003   unixShm *p = pDbFd->pShm;             /* The shared memory being locked */
4004   unixShm *pX;                          /* For looping over all siblings */
4005   unixShmNode *pShmNode = p->pShmNode;  /* The underlying file iNode */
4006   int rc = SQLITE_OK;                   /* Result code */
4007   u16 mask;                             /* Mask of locks to take or release */
4008 
4009   assert( pShmNode==pDbFd->pInode->pShmNode );
4010   assert( pShmNode->pInode==pDbFd->pInode );
4011   assert( ofst>=0 && ofst+n<=SQLITE_SHM_NLOCK );
4012   assert( n>=1 );
4013   assert( flags==(SQLITE_SHM_LOCK | SQLITE_SHM_SHARED)
4014        || flags==(SQLITE_SHM_LOCK | SQLITE_SHM_EXCLUSIVE)
4015        || flags==(SQLITE_SHM_UNLOCK | SQLITE_SHM_SHARED)
4016        || flags==(SQLITE_SHM_UNLOCK | SQLITE_SHM_EXCLUSIVE) );
4017   assert( n==1 || (flags & SQLITE_SHM_EXCLUSIVE)!=0 );
4018   assert( pShmNode->h>=0 || pDbFd->pInode->bProcessLock==1 );
4019   assert( pShmNode->h<0 || pDbFd->pInode->bProcessLock==0 );
4020 
4021   mask = (1<<(ofst+n)) - (1<<ofst);
4022   assert( n>1 || mask==(1<<ofst) );
4023   sqlite3_mutex_enter(pShmNode->mutex);
4024   if( flags & SQLITE_SHM_UNLOCK ){
4025     u16 allMask = 0; /* Mask of locks held by siblings */
4026 
4027     /* See if any siblings hold this same lock */
4028     for(pX=pShmNode->pFirst; pX; pX=pX->pNext){
4029       if( pX==p ) continue;
4030       assert( (pX->exclMask & (p->exclMask|p->sharedMask))==0 );
4031       allMask |= pX->sharedMask;
4032     }
4033 
4034     /* Unlock the system-level locks */
4035     if( (mask & allMask)==0 ){
4036       rc = unixShmSystemLock(pShmNode, F_UNLCK, ofst+UNIX_SHM_BASE, n);
4037     }else{
4038       rc = SQLITE_OK;
4039     }
4040 
4041     /* Undo the local locks */
4042     if( rc==SQLITE_OK ){
4043       p->exclMask &= ~mask;
4044       p->sharedMask &= ~mask;
4045     }
4046   }else if( flags & SQLITE_SHM_SHARED ){
4047     u16 allShared = 0;  /* Union of locks held by connections other than "p" */
4048 
4049     /* Find out which shared locks are already held by sibling connections.
4050     ** If any sibling already holds an exclusive lock, go ahead and return
4051     ** SQLITE_BUSY.
4052     */
4053     for(pX=pShmNode->pFirst; pX; pX=pX->pNext){
4054       if( (pX->exclMask & mask)!=0 ){
4055         rc = SQLITE_BUSY;
4056         break;
4057       }
4058       allShared |= pX->sharedMask;
4059     }
4060 
4061     /* Get shared locks at the system level, if necessary */
4062     if( rc==SQLITE_OK ){
4063       if( (allShared & mask)==0 ){
4064         rc = unixShmSystemLock(pShmNode, F_RDLCK, ofst+UNIX_SHM_BASE, n);
4065       }else{
4066         rc = SQLITE_OK;
4067       }
4068     }
4069 
4070     /* Get the local shared locks */
4071     if( rc==SQLITE_OK ){
4072       p->sharedMask |= mask;
4073     }
4074   }else{
4075     /* Make sure no sibling connections hold locks that will block this
4076     ** lock.  If any do, return SQLITE_BUSY right away.
4077     */
4078     for(pX=pShmNode->pFirst; pX; pX=pX->pNext){
4079       if( (pX->exclMask & mask)!=0 || (pX->sharedMask & mask)!=0 ){
4080         rc = SQLITE_BUSY;
4081         break;
4082       }
4083     }
4084 
4085     /* Get the exclusive locks at the system level.  Then if successful
4086     ** also mark the local connection as being locked.
4087     */
4088     if( rc==SQLITE_OK ){
4089       rc = unixShmSystemLock(pShmNode, F_WRLCK, ofst+UNIX_SHM_BASE, n);
4090       if( rc==SQLITE_OK ){
4091         assert( (p->sharedMask & mask)==0 );
4092         p->exclMask |= mask;
4093       }
4094     }
4095   }
4096   sqlite3_mutex_leave(pShmNode->mutex);
4097   OSTRACE(("SHM-LOCK shmid-%d, pid-%d got %03x,%03x\n",
4098            p->id, getpid(), p->sharedMask, p->exclMask));
4099   return rc;
4100 }
4101 
4102 /*
4103 ** Implement a memory barrier or memory fence on shared memory.
4104 **
4105 ** All loads and stores begun before the barrier must complete before
4106 ** any load or store begun after the barrier.
4107 */
unixShmBarrier(sqlite3_file * fd)4108 static void unixShmBarrier(
4109   sqlite3_file *fd                /* Database file holding the shared memory */
4110 ){
4111   UNUSED_PARAMETER(fd);
4112   unixEnterMutex();
4113   unixLeaveMutex();
4114 }
4115 
4116 /*
4117 ** Close a connection to shared-memory.  Delete the underlying
4118 ** storage if deleteFlag is true.
4119 **
4120 ** If there is no shared memory associated with the connection then this
4121 ** routine is a harmless no-op.
4122 */
unixShmUnmap(sqlite3_file * fd,int deleteFlag)4123 static int unixShmUnmap(
4124   sqlite3_file *fd,               /* The underlying database file */
4125   int deleteFlag                  /* Delete shared-memory if true */
4126 ){
4127   unixShm *p;                     /* The connection to be closed */
4128   unixShmNode *pShmNode;          /* The underlying shared-memory file */
4129   unixShm **pp;                   /* For looping over sibling connections */
4130   unixFile *pDbFd;                /* The underlying database file */
4131 
4132   pDbFd = (unixFile*)fd;
4133   p = pDbFd->pShm;
4134   if( p==0 ) return SQLITE_OK;
4135   pShmNode = p->pShmNode;
4136 
4137   assert( pShmNode==pDbFd->pInode->pShmNode );
4138   assert( pShmNode->pInode==pDbFd->pInode );
4139 
4140   /* Remove connection p from the set of connections associated
4141   ** with pShmNode */
4142   sqlite3_mutex_enter(pShmNode->mutex);
4143   for(pp=&pShmNode->pFirst; (*pp)!=p; pp = &(*pp)->pNext){}
4144   *pp = p->pNext;
4145 
4146   /* Free the connection p */
4147   sqlite3_free(p);
4148   pDbFd->pShm = 0;
4149   sqlite3_mutex_leave(pShmNode->mutex);
4150 
4151   /* If pShmNode->nRef has reached 0, then close the underlying
4152   ** shared-memory file, too */
4153   unixEnterMutex();
4154   assert( pShmNode->nRef>0 );
4155   pShmNode->nRef--;
4156   if( pShmNode->nRef==0 ){
4157     if( deleteFlag && pShmNode->h>=0 ) osUnlink(pShmNode->zFilename);
4158     unixShmPurge(pDbFd);
4159   }
4160   unixLeaveMutex();
4161 
4162   return SQLITE_OK;
4163 }
4164 
4165 
4166 #else
4167 # define unixShmMap     0
4168 # define unixShmLock    0
4169 # define unixShmBarrier 0
4170 # define unixShmUnmap   0
4171 #endif /* #ifndef SQLITE_OMIT_WAL */
4172 
4173 /*
4174 ** Here ends the implementation of all sqlite3_file methods.
4175 **
4176 ********************** End sqlite3_file Methods *******************************
4177 ******************************************************************************/
4178 
4179 /*
4180 ** This division contains definitions of sqlite3_io_methods objects that
4181 ** implement various file locking strategies.  It also contains definitions
4182 ** of "finder" functions.  A finder-function is used to locate the appropriate
4183 ** sqlite3_io_methods object for a particular database file.  The pAppData
4184 ** field of the sqlite3_vfs VFS objects are initialized to be pointers to
4185 ** the correct finder-function for that VFS.
4186 **
4187 ** Most finder functions return a pointer to a fixed sqlite3_io_methods
4188 ** object.  The only interesting finder-function is autolockIoFinder, which
4189 ** looks at the filesystem type and tries to guess the best locking
4190 ** strategy from that.
4191 **
4192 ** For finder-funtion F, two objects are created:
4193 **
4194 **    (1) The real finder-function named "FImpt()".
4195 **
4196 **    (2) A constant pointer to this function named just "F".
4197 **
4198 **
4199 ** A pointer to the F pointer is used as the pAppData value for VFS
4200 ** objects.  We have to do this instead of letting pAppData point
4201 ** directly at the finder-function since C90 rules prevent a void*
4202 ** from be cast into a function pointer.
4203 **
4204 **
4205 ** Each instance of this macro generates two objects:
4206 **
4207 **   *  A constant sqlite3_io_methods object call METHOD that has locking
4208 **      methods CLOSE, LOCK, UNLOCK, CKRESLOCK.
4209 **
4210 **   *  An I/O method finder function called FINDER that returns a pointer
4211 **      to the METHOD object in the previous bullet.
4212 */
4213 #define IOMETHODS(FINDER, METHOD, VERSION, CLOSE, LOCK, UNLOCK, CKLOCK)      \
4214 static const sqlite3_io_methods METHOD = {                                   \
4215    VERSION,                    /* iVersion */                                \
4216    CLOSE,                      /* xClose */                                  \
4217    unixRead,                   /* xRead */                                   \
4218    unixWrite,                  /* xWrite */                                  \
4219    unixTruncate,               /* xTruncate */                               \
4220    unixSync,                   /* xSync */                                   \
4221    unixFileSize,               /* xFileSize */                               \
4222    LOCK,                       /* xLock */                                   \
4223    UNLOCK,                     /* xUnlock */                                 \
4224    CKLOCK,                     /* xCheckReservedLock */                      \
4225    unixFileControl,            /* xFileControl */                            \
4226    unixSectorSize,             /* xSectorSize */                             \
4227    unixDeviceCharacteristics,  /* xDeviceCapabilities */                     \
4228    unixShmMap,                 /* xShmMap */                                 \
4229    unixShmLock,                /* xShmLock */                                \
4230    unixShmBarrier,             /* xShmBarrier */                             \
4231    unixShmUnmap                /* xShmUnmap */                               \
4232 };                                                                           \
4233 static const sqlite3_io_methods *FINDER##Impl(const char *z, unixFile *p){   \
4234   UNUSED_PARAMETER(z); UNUSED_PARAMETER(p);                                  \
4235   return &METHOD;                                                            \
4236 }                                                                            \
4237 static const sqlite3_io_methods *(*const FINDER)(const char*,unixFile *p)    \
4238     = FINDER##Impl;
4239 
4240 /*
4241 ** Here are all of the sqlite3_io_methods objects for each of the
4242 ** locking strategies.  Functions that return pointers to these methods
4243 ** are also created.
4244 */
4245 IOMETHODS(
4246   posixIoFinder,            /* Finder function name */
4247   posixIoMethods,           /* sqlite3_io_methods object name */
4248   2,                        /* shared memory is enabled */
4249   unixClose,                /* xClose method */
4250   unixLock,                 /* xLock method */
4251   unixUnlock,               /* xUnlock method */
4252   unixCheckReservedLock     /* xCheckReservedLock method */
4253 )
4254 IOMETHODS(
4255   nolockIoFinder,           /* Finder function name */
4256   nolockIoMethods,          /* sqlite3_io_methods object name */
4257   1,                        /* shared memory is disabled */
4258   nolockClose,              /* xClose method */
4259   nolockLock,               /* xLock method */
4260   nolockUnlock,             /* xUnlock method */
4261   nolockCheckReservedLock   /* xCheckReservedLock method */
4262 )
4263 IOMETHODS(
4264   dotlockIoFinder,          /* Finder function name */
4265   dotlockIoMethods,         /* sqlite3_io_methods object name */
4266   1,                        /* shared memory is disabled */
4267   dotlockClose,             /* xClose method */
4268   dotlockLock,              /* xLock method */
4269   dotlockUnlock,            /* xUnlock method */
4270   dotlockCheckReservedLock  /* xCheckReservedLock method */
4271 )
4272 
4273 #if SQLITE_ENABLE_LOCKING_STYLE && !OS_VXWORKS
4274 IOMETHODS(
4275   flockIoFinder,            /* Finder function name */
4276   flockIoMethods,           /* sqlite3_io_methods object name */
4277   1,                        /* shared memory is disabled */
4278   flockClose,               /* xClose method */
4279   flockLock,                /* xLock method */
4280   flockUnlock,              /* xUnlock method */
4281   flockCheckReservedLock    /* xCheckReservedLock method */
4282 )
4283 #endif
4284 
4285 #if OS_VXWORKS
4286 IOMETHODS(
4287   semIoFinder,              /* Finder function name */
4288   semIoMethods,             /* sqlite3_io_methods object name */
4289   1,                        /* shared memory is disabled */
4290   semClose,                 /* xClose method */
4291   semLock,                  /* xLock method */
4292   semUnlock,                /* xUnlock method */
4293   semCheckReservedLock      /* xCheckReservedLock method */
4294 )
4295 #endif
4296 
4297 #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
4298 IOMETHODS(
4299   afpIoFinder,              /* Finder function name */
4300   afpIoMethods,             /* sqlite3_io_methods object name */
4301   1,                        /* shared memory is disabled */
4302   afpClose,                 /* xClose method */
4303   afpLock,                  /* xLock method */
4304   afpUnlock,                /* xUnlock method */
4305   afpCheckReservedLock      /* xCheckReservedLock method */
4306 )
4307 #endif
4308 
4309 /*
4310 ** The proxy locking method is a "super-method" in the sense that it
4311 ** opens secondary file descriptors for the conch and lock files and
4312 ** it uses proxy, dot-file, AFP, and flock() locking methods on those
4313 ** secondary files.  For this reason, the division that implements
4314 ** proxy locking is located much further down in the file.  But we need
4315 ** to go ahead and define the sqlite3_io_methods and finder function
4316 ** for proxy locking here.  So we forward declare the I/O methods.
4317 */
4318 #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
4319 static int proxyClose(sqlite3_file*);
4320 static int proxyLock(sqlite3_file*, int);
4321 static int proxyUnlock(sqlite3_file*, int);
4322 static int proxyCheckReservedLock(sqlite3_file*, int*);
4323 IOMETHODS(
4324   proxyIoFinder,            /* Finder function name */
4325   proxyIoMethods,           /* sqlite3_io_methods object name */
4326   1,                        /* shared memory is disabled */
4327   proxyClose,               /* xClose method */
4328   proxyLock,                /* xLock method */
4329   proxyUnlock,              /* xUnlock method */
4330   proxyCheckReservedLock    /* xCheckReservedLock method */
4331 )
4332 #endif
4333 
4334 /* nfs lockd on OSX 10.3+ doesn't clear write locks when a read lock is set */
4335 #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
4336 IOMETHODS(
4337   nfsIoFinder,               /* Finder function name */
4338   nfsIoMethods,              /* sqlite3_io_methods object name */
4339   1,                         /* shared memory is disabled */
4340   unixClose,                 /* xClose method */
4341   unixLock,                  /* xLock method */
4342   nfsUnlock,                 /* xUnlock method */
4343   unixCheckReservedLock      /* xCheckReservedLock method */
4344 )
4345 #endif
4346 
4347 #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
4348 /*
4349 ** This "finder" function attempts to determine the best locking strategy
4350 ** for the database file "filePath".  It then returns the sqlite3_io_methods
4351 ** object that implements that strategy.
4352 **
4353 ** This is for MacOSX only.
4354 */
autolockIoFinderImpl(const char * filePath,unixFile * pNew)4355 static const sqlite3_io_methods *autolockIoFinderImpl(
4356   const char *filePath,    /* name of the database file */
4357   unixFile *pNew           /* open file object for the database file */
4358 ){
4359   static const struct Mapping {
4360     const char *zFilesystem;              /* Filesystem type name */
4361     const sqlite3_io_methods *pMethods;   /* Appropriate locking method */
4362   } aMap[] = {
4363     { "hfs",    &posixIoMethods },
4364     { "ufs",    &posixIoMethods },
4365     { "afpfs",  &afpIoMethods },
4366     { "smbfs",  &afpIoMethods },
4367     { "webdav", &nolockIoMethods },
4368     { 0, 0 }
4369   };
4370   int i;
4371   struct statfs fsInfo;
4372   struct flock lockInfo;
4373 
4374   if( !filePath ){
4375     /* If filePath==NULL that means we are dealing with a transient file
4376     ** that does not need to be locked. */
4377     return &nolockIoMethods;
4378   }
4379   if( statfs(filePath, &fsInfo) != -1 ){
4380     if( fsInfo.f_flags & MNT_RDONLY ){
4381       return &nolockIoMethods;
4382     }
4383     for(i=0; aMap[i].zFilesystem; i++){
4384       if( strcmp(fsInfo.f_fstypename, aMap[i].zFilesystem)==0 ){
4385         return aMap[i].pMethods;
4386       }
4387     }
4388   }
4389 
4390   /* Default case. Handles, amongst others, "nfs".
4391   ** Test byte-range lock using fcntl(). If the call succeeds,
4392   ** assume that the file-system supports POSIX style locks.
4393   */
4394   lockInfo.l_len = 1;
4395   lockInfo.l_start = 0;
4396   lockInfo.l_whence = SEEK_SET;
4397   lockInfo.l_type = F_RDLCK;
4398   if( osFcntl(pNew->h, F_GETLK, &lockInfo)!=-1 ) {
4399     if( strcmp(fsInfo.f_fstypename, "nfs")==0 ){
4400       return &nfsIoMethods;
4401     } else {
4402       return &posixIoMethods;
4403     }
4404   }else{
4405     return &dotlockIoMethods;
4406   }
4407 }
4408 static const sqlite3_io_methods
4409   *(*const autolockIoFinder)(const char*,unixFile*) = autolockIoFinderImpl;
4410 
4411 #endif /* defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE */
4412 
4413 #if OS_VXWORKS && SQLITE_ENABLE_LOCKING_STYLE
4414 /*
4415 ** This "finder" function attempts to determine the best locking strategy
4416 ** for the database file "filePath".  It then returns the sqlite3_io_methods
4417 ** object that implements that strategy.
4418 **
4419 ** This is for VXWorks only.
4420 */
autolockIoFinderImpl(const char * filePath,unixFile * pNew)4421 static const sqlite3_io_methods *autolockIoFinderImpl(
4422   const char *filePath,    /* name of the database file */
4423   unixFile *pNew           /* the open file object */
4424 ){
4425   struct flock lockInfo;
4426 
4427   if( !filePath ){
4428     /* If filePath==NULL that means we are dealing with a transient file
4429     ** that does not need to be locked. */
4430     return &nolockIoMethods;
4431   }
4432 
4433   /* Test if fcntl() is supported and use POSIX style locks.
4434   ** Otherwise fall back to the named semaphore method.
4435   */
4436   lockInfo.l_len = 1;
4437   lockInfo.l_start = 0;
4438   lockInfo.l_whence = SEEK_SET;
4439   lockInfo.l_type = F_RDLCK;
4440   if( osFcntl(pNew->h, F_GETLK, &lockInfo)!=-1 ) {
4441     return &posixIoMethods;
4442   }else{
4443     return &semIoMethods;
4444   }
4445 }
4446 static const sqlite3_io_methods
4447   *(*const autolockIoFinder)(const char*,unixFile*) = autolockIoFinderImpl;
4448 
4449 #endif /* OS_VXWORKS && SQLITE_ENABLE_LOCKING_STYLE */
4450 
4451 /*
4452 ** An abstract type for a pointer to a IO method finder function:
4453 */
4454 typedef const sqlite3_io_methods *(*finder_type)(const char*,unixFile*);
4455 
4456 
4457 /****************************************************************************
4458 **************************** sqlite3_vfs methods ****************************
4459 **
4460 ** This division contains the implementation of methods on the
4461 ** sqlite3_vfs object.
4462 */
4463 
4464 /*
4465 ** Initializes a unixFile structure with zeros.
4466 */
initUnixFile(sqlite3_file * file)4467 void initUnixFile(sqlite3_file* file) {
4468   memset(file, 0, sizeof(unixFile));
4469 }
4470 
4471 /*
4472 ** Initialize the contents of the unixFile structure pointed to by pId.
4473 */
fillInUnixFile(sqlite3_vfs * pVfs,int h,int syncDir,sqlite3_file * pId,const char * zFilename,int noLock,int isDelete,int isReadOnly)4474 int fillInUnixFile(
4475   sqlite3_vfs *pVfs,      /* Pointer to vfs object */
4476   int h,                  /* Open file descriptor of file being opened */
4477   int syncDir,            /* True to sync directory on first sync */
4478   sqlite3_file *pId,      /* Write to the unixFile structure here */
4479   const char *zFilename,  /* Name of the file being opened */
4480   int noLock,             /* Omit locking if true */
4481   int isDelete,           /* Delete on close if true */
4482   int isReadOnly          /* True if the file is opened read-only */
4483 ){
4484   const sqlite3_io_methods *pLockingStyle;
4485   unixFile *pNew = (unixFile *)pId;
4486   int rc = SQLITE_OK;
4487 
4488   assert( pNew->pInode==NULL );
4489 
4490   /* Parameter isDelete is only used on vxworks. Express this explicitly
4491   ** here to prevent compiler warnings about unused parameters.
4492   */
4493   UNUSED_PARAMETER(isDelete);
4494 
4495   /* Usually the path zFilename should not be a relative pathname. The
4496   ** exception is when opening the proxy "conch" file in builds that
4497   ** include the special Apple locking styles.
4498   */
4499 #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
4500   assert( zFilename==0 || zFilename[0]=='/'
4501     || pVfs->pAppData==(void*)&autolockIoFinder );
4502 #else
4503   assert( zFilename==0 || zFilename[0]=='/' );
4504 #endif
4505 
4506   OSTRACE(("OPEN    %-3d %s\n", h, zFilename));
4507   pNew->h = h;
4508   pNew->zPath = zFilename;
4509   if( strcmp(pVfs->zName,"unix-excl")==0 ){
4510     pNew->ctrlFlags = UNIXFILE_EXCL;
4511   }else{
4512     pNew->ctrlFlags = 0;
4513   }
4514   if( isReadOnly ){
4515     pNew->ctrlFlags |= UNIXFILE_RDONLY;
4516   }
4517   if( syncDir ){
4518     pNew->ctrlFlags |= UNIXFILE_DIRSYNC;
4519   }
4520 
4521 #if OS_VXWORKS
4522   pNew->pId = vxworksFindFileId(zFilename);
4523   if( pNew->pId==0 ){
4524     noLock = 1;
4525     rc = SQLITE_NOMEM;
4526   }
4527 #endif
4528 
4529   if( noLock ){
4530     pLockingStyle = &nolockIoMethods;
4531   }else{
4532     pLockingStyle = (**(finder_type*)pVfs->pAppData)(zFilename, pNew);
4533 #if SQLITE_ENABLE_LOCKING_STYLE
4534     /* Cache zFilename in the locking context (AFP and dotlock override) for
4535     ** proxyLock activation is possible (remote proxy is based on db name)
4536     ** zFilename remains valid until file is closed, to support */
4537     pNew->lockingContext = (void*)zFilename;
4538 #endif
4539   }
4540 
4541   if( pLockingStyle == &posixIoMethods
4542 #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
4543     || pLockingStyle == &nfsIoMethods
4544 #endif
4545   ){
4546     unixEnterMutex();
4547     rc = findInodeInfo(pNew, &pNew->pInode);
4548     if( rc!=SQLITE_OK ){
4549       /* If an error occured in findInodeInfo(), close the file descriptor
4550       ** immediately, before releasing the mutex. findInodeInfo() may fail
4551       ** in two scenarios:
4552       **
4553       **   (a) A call to fstat() failed.
4554       **   (b) A malloc failed.
4555       **
4556       ** Scenario (b) may only occur if the process is holding no other
4557       ** file descriptors open on the same file. If there were other file
4558       ** descriptors on this file, then no malloc would be required by
4559       ** findInodeInfo(). If this is the case, it is quite safe to close
4560       ** handle h - as it is guaranteed that no posix locks will be released
4561       ** by doing so.
4562       **
4563       ** If scenario (a) caused the error then things are not so safe. The
4564       ** implicit assumption here is that if fstat() fails, things are in
4565       ** such bad shape that dropping a lock or two doesn't matter much.
4566       */
4567       robust_close(pNew, h, __LINE__);
4568       h = -1;
4569     }
4570     unixLeaveMutex();
4571   }
4572 
4573 #if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__)
4574   else if( pLockingStyle == &afpIoMethods ){
4575     /* AFP locking uses the file path so it needs to be included in
4576     ** the afpLockingContext.
4577     */
4578     afpLockingContext *pCtx;
4579     pNew->lockingContext = pCtx = sqlite3_malloc( sizeof(*pCtx) );
4580     if( pCtx==0 ){
4581       rc = SQLITE_NOMEM;
4582     }else{
4583       /* NB: zFilename exists and remains valid until the file is closed
4584       ** according to requirement F11141.  So we do not need to make a
4585       ** copy of the filename. */
4586       pCtx->dbPath = zFilename;
4587       pCtx->reserved = 0;
4588       srandomdev();
4589       unixEnterMutex();
4590       rc = findInodeInfo(pNew, &pNew->pInode);
4591       if( rc!=SQLITE_OK ){
4592         sqlite3_free(pNew->lockingContext);
4593         robust_close(pNew, h, __LINE__);
4594         h = -1;
4595       }
4596       unixLeaveMutex();
4597     }
4598   }
4599 #endif
4600 
4601   else if( pLockingStyle == &dotlockIoMethods ){
4602     /* Dotfile locking uses the file path so it needs to be included in
4603     ** the dotlockLockingContext
4604     */
4605     char *zLockFile;
4606     int nFilename;
4607     nFilename = (int)strlen(zFilename) + 6;
4608     zLockFile = (char *)sqlite3_malloc(nFilename);
4609     if( zLockFile==0 ){
4610       rc = SQLITE_NOMEM;
4611     }else{
4612       sqlite3_snprintf(nFilename, zLockFile, "%s" DOTLOCK_SUFFIX, zFilename);
4613     }
4614     pNew->lockingContext = zLockFile;
4615   }
4616 
4617 #if OS_VXWORKS
4618   else if( pLockingStyle == &semIoMethods ){
4619     /* Named semaphore locking uses the file path so it needs to be
4620     ** included in the semLockingContext
4621     */
4622     unixEnterMutex();
4623     rc = findInodeInfo(pNew, &pNew->pInode);
4624     if( (rc==SQLITE_OK) && (pNew->pInode->pSem==NULL) ){
4625       char *zSemName = pNew->pInode->aSemName;
4626       int n;
4627       sqlite3_snprintf(MAX_PATHNAME, zSemName, "/%s.sem",
4628                        pNew->pId->zCanonicalName);
4629       for( n=1; zSemName[n]; n++ )
4630         if( zSemName[n]=='/' ) zSemName[n] = '_';
4631       pNew->pInode->pSem = sem_open(zSemName, O_CREAT, 0666, 1);
4632       if( pNew->pInode->pSem == SEM_FAILED ){
4633         rc = SQLITE_NOMEM;
4634         pNew->pInode->aSemName[0] = '\0';
4635       }
4636     }
4637     unixLeaveMutex();
4638   }
4639 #endif
4640 
4641   pNew->lastErrno = 0;
4642 #if OS_VXWORKS
4643   if( rc!=SQLITE_OK ){
4644     if( h>=0 ) robust_close(pNew, h, __LINE__);
4645     h = -1;
4646     osUnlink(zFilename);
4647     isDelete = 0;
4648   }
4649   pNew->isDelete = isDelete;
4650 #endif
4651   if( rc!=SQLITE_OK ){
4652     if( h>=0 ) robust_close(pNew, h, __LINE__);
4653   }else{
4654     pNew->pMethod = pLockingStyle;
4655     OpenCounter(+1);
4656   }
4657   return rc;
4658 }
4659 
4660 /*
4661 ** Return the name of a directory in which to put temporary files.
4662 ** If no suitable temporary file directory can be found, return NULL.
4663 */
unixTempFileDir(void)4664 static const char *unixTempFileDir(void){
4665   static const char *azDirs[] = {
4666      0,
4667      0,
4668      "/var/tmp",
4669      "/usr/tmp",
4670      "/tmp",
4671      0        /* List terminator */
4672   };
4673   unsigned int i;
4674   struct stat buf;
4675   const char *zDir = 0;
4676 
4677   azDirs[0] = sqlite3_temp_directory;
4678   if( !azDirs[1] ) azDirs[1] = getenv("TMPDIR");
4679   for(i=0; i<sizeof(azDirs)/sizeof(azDirs[0]); zDir=azDirs[i++]){
4680     if( zDir==0 ) continue;
4681     if( osStat(zDir, &buf) ) continue;
4682     if( !S_ISDIR(buf.st_mode) ) continue;
4683     if( osAccess(zDir, 07) ) continue;
4684     break;
4685   }
4686   return zDir;
4687 }
4688 
4689 /*
4690 ** Create a temporary file name in zBuf.  zBuf must be allocated
4691 ** by the calling process and must be big enough to hold at least
4692 ** pVfs->mxPathname bytes.
4693 */
unixGetTempname(int nBuf,char * zBuf)4694 static int unixGetTempname(int nBuf, char *zBuf){
4695   static const unsigned char zChars[] =
4696     "abcdefghijklmnopqrstuvwxyz"
4697     "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
4698     "0123456789";
4699   unsigned int i, j;
4700   const char *zDir;
4701 
4702   /* It's odd to simulate an io-error here, but really this is just
4703   ** using the io-error infrastructure to test that SQLite handles this
4704   ** function failing.
4705   */
4706   SimulateIOError( return SQLITE_IOERR );
4707 
4708   zDir = unixTempFileDir();
4709   if( zDir==0 ) zDir = ".";
4710 
4711   /* Check that the output buffer is large enough for the temporary file
4712   ** name. If it is not, return SQLITE_ERROR.
4713   */
4714   if( (strlen(zDir) + strlen(SQLITE_TEMP_FILE_PREFIX) + 17) >= (size_t)nBuf ){
4715     return SQLITE_ERROR;
4716   }
4717 
4718   do{
4719     sqlite3_snprintf(nBuf-17, zBuf, "%s/"SQLITE_TEMP_FILE_PREFIX, zDir);
4720     j = (int)strlen(zBuf);
4721     sqlite3_randomness(15, &zBuf[j]);
4722     for(i=0; i<15; i++, j++){
4723       zBuf[j] = (char)zChars[ ((unsigned char)zBuf[j])%(sizeof(zChars)-1) ];
4724     }
4725     zBuf[j] = 0;
4726   }while( osAccess(zBuf,0)==0 );
4727   return SQLITE_OK;
4728 }
4729 
4730 #if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__)
4731 /*
4732 ** Routine to transform a unixFile into a proxy-locking unixFile.
4733 ** Implementation in the proxy-lock division, but used by unixOpen()
4734 ** if SQLITE_PREFER_PROXY_LOCKING is defined.
4735 */
4736 static int proxyTransformUnixFile(unixFile*, const char*);
4737 #endif
4738 
4739 /*
4740 ** Search for an unused file descriptor that was opened on the database
4741 ** file (not a journal or master-journal file) identified by pathname
4742 ** zPath with SQLITE_OPEN_XXX flags matching those passed as the second
4743 ** argument to this function.
4744 **
4745 ** Such a file descriptor may exist if a database connection was closed
4746 ** but the associated file descriptor could not be closed because some
4747 ** other file descriptor open on the same file is holding a file-lock.
4748 ** Refer to comments in the unixClose() function and the lengthy comment
4749 ** describing "Posix Advisory Locking" at the start of this file for
4750 ** further details. Also, ticket #4018.
4751 **
4752 ** If a suitable file descriptor is found, then it is returned. If no
4753 ** such file descriptor is located, -1 is returned.
4754 */
findReusableFd(const char * zPath,int flags)4755 static UnixUnusedFd *findReusableFd(const char *zPath, int flags){
4756   UnixUnusedFd *pUnused = 0;
4757 
4758   /* Do not search for an unused file descriptor on vxworks. Not because
4759   ** vxworks would not benefit from the change (it might, we're not sure),
4760   ** but because no way to test it is currently available. It is better
4761   ** not to risk breaking vxworks support for the sake of such an obscure
4762   ** feature.  */
4763 #if !OS_VXWORKS
4764   struct stat sStat;                   /* Results of stat() call */
4765 
4766   /* A stat() call may fail for various reasons. If this happens, it is
4767   ** almost certain that an open() call on the same path will also fail.
4768   ** For this reason, if an error occurs in the stat() call here, it is
4769   ** ignored and -1 is returned. The caller will try to open a new file
4770   ** descriptor on the same path, fail, and return an error to SQLite.
4771   **
4772   ** Even if a subsequent open() call does succeed, the consequences of
4773   ** not searching for a resusable file descriptor are not dire.  */
4774   if( 0==osStat(zPath, &sStat) ){
4775     unixInodeInfo *pInode;
4776 
4777     unixEnterMutex();
4778     pInode = inodeList;
4779     while( pInode && (pInode->fileId.dev!=sStat.st_dev
4780                      || pInode->fileId.ino!=sStat.st_ino) ){
4781        pInode = pInode->pNext;
4782     }
4783     if( pInode ){
4784       UnixUnusedFd **pp;
4785       for(pp=&pInode->pUnused; *pp && (*pp)->flags!=flags; pp=&((*pp)->pNext));
4786       pUnused = *pp;
4787       if( pUnused ){
4788         *pp = pUnused->pNext;
4789       }
4790     }
4791     unixLeaveMutex();
4792   }
4793 #endif    /* if !OS_VXWORKS */
4794   return pUnused;
4795 }
4796 
4797 /*
4798 ** This function is called by unixOpen() to determine the unix permissions
4799 ** to create new files with. If no error occurs, then SQLITE_OK is returned
4800 ** and a value suitable for passing as the third argument to open(2) is
4801 ** written to *pMode. If an IO error occurs, an SQLite error code is
4802 ** returned and the value of *pMode is not modified.
4803 **
4804 ** If the file being opened is a temporary file, it is always created with
4805 ** the octal permissions 0600 (read/writable by owner only). If the file
4806 ** is a database or master journal file, it is created with the permissions
4807 ** mask SQLITE_DEFAULT_FILE_PERMISSIONS.
4808 **
4809 ** Finally, if the file being opened is a WAL or regular journal file, then
4810 ** this function queries the file-system for the permissions on the
4811 ** corresponding database file and sets *pMode to this value. Whenever
4812 ** possible, WAL and journal files are created using the same permissions
4813 ** as the associated database file.
4814 */
findCreateFileMode(const char * zPath,int flags,mode_t * pMode)4815 static int findCreateFileMode(
4816   const char *zPath,              /* Path of file (possibly) being created */
4817   int flags,                      /* Flags passed as 4th argument to xOpen() */
4818   mode_t *pMode                   /* OUT: Permissions to open file with */
4819 ){
4820   int rc = SQLITE_OK;             /* Return Code */
4821   if( flags & (SQLITE_OPEN_WAL|SQLITE_OPEN_MAIN_JOURNAL) ){
4822     char zDb[MAX_PATHNAME+1];     /* Database file path */
4823     int nDb;                      /* Number of valid bytes in zDb */
4824     struct stat sStat;            /* Output of stat() on database file */
4825 
4826     /* zPath is a path to a WAL or journal file. The following block derives
4827     ** the path to the associated database file from zPath. This block handles
4828     ** the following naming conventions:
4829     **
4830     **   "<path to db>-journal"
4831     **   "<path to db>-wal"
4832     **   "<path to db>-journal-NNNN"
4833     **   "<path to db>-wal-NNNN"
4834     **
4835     ** where NNNN is a 4 digit decimal number. The NNNN naming schemes are
4836     ** used by the test_multiplex.c module.
4837     */
4838     nDb = sqlite3Strlen30(zPath) - 1;
4839     while( nDb>0 && zPath[nDb]!='l' ) nDb--;
4840     nDb -= ((flags & SQLITE_OPEN_WAL) ? 3 : 7);
4841     memcpy(zDb, zPath, nDb);
4842     zDb[nDb] = '\0';
4843 
4844     if( 0==osStat(zDb, &sStat) ){
4845       *pMode = sStat.st_mode & 0777;
4846     }else{
4847       rc = SQLITE_IOERR_FSTAT;
4848     }
4849   }else if( flags & SQLITE_OPEN_DELETEONCLOSE ){
4850     *pMode = 0600;
4851   }else{
4852     *pMode = SQLITE_DEFAULT_FILE_PERMISSIONS;
4853   }
4854   return rc;
4855 }
4856 
4857 /*
4858 ** Initializes a unixFile structure with zeros.
4859 */
chromium_sqlite3_initialize_unix_sqlite3_file(sqlite3_file * file)4860 void chromium_sqlite3_initialize_unix_sqlite3_file(sqlite3_file* file) {
4861   memset(file, 0, sizeof(unixFile));
4862 }
4863 
chromium_sqlite3_fill_in_unix_sqlite3_file(sqlite3_vfs * vfs,int fd,int dirfd,sqlite3_file * file,const char * fileName,int noLock,int isDelete)4864 int chromium_sqlite3_fill_in_unix_sqlite3_file(sqlite3_vfs* vfs,
4865                                                int fd,
4866                                                int dirfd,
4867                                                sqlite3_file* file,
4868                                                const char* fileName,
4869                                                int noLock,
4870                                                int isDelete) {
4871   return fillInUnixFile(vfs, fd, dirfd, file, fileName, noLock, isDelete, 0);
4872 }
4873 
4874 /*
4875 ** Search for an unused file descriptor that was opened on the database file.
4876 ** If a suitable file descriptor if found, then it is stored in *fd; otherwise,
4877 ** *fd is not modified.
4878 **
4879 ** If a reusable file descriptor is not found, and a new UnixUnusedFd cannot
4880 ** be allocated, SQLITE_NOMEM is returned. Otherwise, SQLITE_OK is returned.
4881 */
chromium_sqlite3_get_reusable_file_handle(sqlite3_file * file,const char * fileName,int flags,int * fd)4882 int chromium_sqlite3_get_reusable_file_handle(sqlite3_file* file,
4883                                               const char* fileName,
4884                                               int flags,
4885                                               int* fd) {
4886   unixFile* unixSQLite3File = (unixFile*)file;
4887   int fileType = flags & 0xFFFFFF00;
4888   if (fileType == SQLITE_OPEN_MAIN_DB) {
4889     UnixUnusedFd *unusedFd = findReusableFd(fileName, flags);
4890     if (unusedFd) {
4891       *fd = unusedFd->fd;
4892     } else {
4893       unusedFd = sqlite3_malloc(sizeof(*unusedFd));
4894       if (!unusedFd) {
4895         return SQLITE_NOMEM;
4896       }
4897     }
4898     unixSQLite3File->pUnused = unusedFd;
4899   }
4900   return SQLITE_OK;
4901 }
4902 
4903 /*
4904 ** Marks 'fd' as the unused file descriptor for 'pFile'.
4905 */
chromium_sqlite3_update_reusable_file_handle(sqlite3_file * file,int fd,int flags)4906 void chromium_sqlite3_update_reusable_file_handle(sqlite3_file* file,
4907                                                   int fd,
4908                                                   int flags) {
4909   unixFile* unixSQLite3File = (unixFile*)file;
4910   if (unixSQLite3File->pUnused) {
4911     unixSQLite3File->pUnused->fd = fd;
4912     unixSQLite3File->pUnused->flags = flags;
4913   }
4914 }
4915 
4916 /*
4917 ** Destroys pFile's field that keeps track of the unused file descriptor.
4918 */
chromium_sqlite3_destroy_reusable_file_handle(sqlite3_file * file)4919 void chromium_sqlite3_destroy_reusable_file_handle(sqlite3_file* file) {
4920   unixFile* unixSQLite3File = (unixFile*)file;
4921   sqlite3_free(unixSQLite3File->pUnused);
4922 }
4923 
4924 /*
4925 ** Open the file zPath.
4926 **
4927 ** Previously, the SQLite OS layer used three functions in place of this
4928 ** one:
4929 **
4930 **     sqlite3OsOpenReadWrite();
4931 **     sqlite3OsOpenReadOnly();
4932 **     sqlite3OsOpenExclusive();
4933 **
4934 ** These calls correspond to the following combinations of flags:
4935 **
4936 **     ReadWrite() ->     (READWRITE | CREATE)
4937 **     ReadOnly()  ->     (READONLY)
4938 **     OpenExclusive() -> (READWRITE | CREATE | EXCLUSIVE)
4939 **
4940 ** The old OpenExclusive() accepted a boolean argument - "delFlag". If
4941 ** true, the file was configured to be automatically deleted when the
4942 ** file handle closed. To achieve the same effect using this new
4943 ** interface, add the DELETEONCLOSE flag to those specified above for
4944 ** OpenExclusive().
4945 */
unixOpen(sqlite3_vfs * pVfs,const char * zPath,sqlite3_file * pFile,int flags,int * pOutFlags)4946 static int unixOpen(
4947   sqlite3_vfs *pVfs,           /* The VFS for which this is the xOpen method */
4948   const char *zPath,           /* Pathname of file to be opened */
4949   sqlite3_file *pFile,         /* The file descriptor to be filled in */
4950   int flags,                   /* Input flags to control the opening */
4951   int *pOutFlags               /* Output flags returned to SQLite core */
4952 ){
4953   unixFile *p = (unixFile *)pFile;
4954   int fd = -1;                   /* File descriptor returned by open() */
4955   int openFlags = 0;             /* Flags to pass to open() */
4956   int eType = flags&0xFFFFFF00;  /* Type of file to open */
4957   int noLock;                    /* True to omit locking primitives */
4958   int rc = SQLITE_OK;            /* Function Return Code */
4959 
4960   int isExclusive  = (flags & SQLITE_OPEN_EXCLUSIVE);
4961   int isDelete     = (flags & SQLITE_OPEN_DELETEONCLOSE);
4962   int isCreate     = (flags & SQLITE_OPEN_CREATE);
4963   int isReadonly   = (flags & SQLITE_OPEN_READONLY);
4964   int isReadWrite  = (flags & SQLITE_OPEN_READWRITE);
4965 #if SQLITE_ENABLE_LOCKING_STYLE
4966   int isAutoProxy  = (flags & SQLITE_OPEN_AUTOPROXY);
4967 #endif
4968 
4969   /* If creating a master or main-file journal, this function will open
4970   ** a file-descriptor on the directory too. The first time unixSync()
4971   ** is called the directory file descriptor will be fsync()ed and close()d.
4972   */
4973   int syncDir = (isCreate && (
4974         eType==SQLITE_OPEN_MASTER_JOURNAL
4975      || eType==SQLITE_OPEN_MAIN_JOURNAL
4976      || eType==SQLITE_OPEN_WAL
4977   ));
4978 
4979   /* If argument zPath is a NULL pointer, this function is required to open
4980   ** a temporary file. Use this buffer to store the file name in.
4981   */
4982   char zTmpname[MAX_PATHNAME+1];
4983   const char *zName = zPath;
4984 
4985   /* Check the following statements are true:
4986   **
4987   **   (a) Exactly one of the READWRITE and READONLY flags must be set, and
4988   **   (b) if CREATE is set, then READWRITE must also be set, and
4989   **   (c) if EXCLUSIVE is set, then CREATE must also be set.
4990   **   (d) if DELETEONCLOSE is set, then CREATE must also be set.
4991   */
4992   assert((isReadonly==0 || isReadWrite==0) && (isReadWrite || isReadonly));
4993   assert(isCreate==0 || isReadWrite);
4994   assert(isExclusive==0 || isCreate);
4995   assert(isDelete==0 || isCreate);
4996 
4997   /* The main DB, main journal, WAL file and master journal are never
4998   ** automatically deleted. Nor are they ever temporary files.  */
4999   assert( (!isDelete && zName) || eType!=SQLITE_OPEN_MAIN_DB );
5000   assert( (!isDelete && zName) || eType!=SQLITE_OPEN_MAIN_JOURNAL );
5001   assert( (!isDelete && zName) || eType!=SQLITE_OPEN_MASTER_JOURNAL );
5002   assert( (!isDelete && zName) || eType!=SQLITE_OPEN_WAL );
5003 
5004   /* Assert that the upper layer has set one of the "file-type" flags. */
5005   assert( eType==SQLITE_OPEN_MAIN_DB      || eType==SQLITE_OPEN_TEMP_DB
5006        || eType==SQLITE_OPEN_MAIN_JOURNAL || eType==SQLITE_OPEN_TEMP_JOURNAL
5007        || eType==SQLITE_OPEN_SUBJOURNAL   || eType==SQLITE_OPEN_MASTER_JOURNAL
5008        || eType==SQLITE_OPEN_TRANSIENT_DB || eType==SQLITE_OPEN_WAL
5009   );
5010 
5011   chromium_sqlite3_initialize_unix_sqlite3_file(pFile);
5012 
5013   if( eType==SQLITE_OPEN_MAIN_DB ){
5014     rc = chromium_sqlite3_get_reusable_file_handle(pFile, zName, flags, &fd);
5015     if( rc!=SQLITE_OK ){
5016       return rc;
5017     }
5018   }else if( !zName ){
5019     /* If zName is NULL, the upper layer is requesting a temp file. */
5020     assert(isDelete && !syncDir);
5021     rc = unixGetTempname(MAX_PATHNAME+1, zTmpname);
5022     if( rc!=SQLITE_OK ){
5023       return rc;
5024     }
5025     zName = zTmpname;
5026   }
5027 
5028   /* Determine the value of the flags parameter passed to POSIX function
5029   ** open(). These must be calculated even if open() is not called, as
5030   ** they may be stored as part of the file handle and used by the
5031   ** 'conch file' locking functions later on.  */
5032   if( isReadonly )  openFlags |= O_RDONLY;
5033   if( isReadWrite ) openFlags |= O_RDWR;
5034   if( isCreate )    openFlags |= O_CREAT;
5035   if( isExclusive ) openFlags |= (O_EXCL|O_NOFOLLOW);
5036   openFlags |= (O_LARGEFILE|O_BINARY);
5037 
5038   if( fd<0 ){
5039     mode_t openMode;              /* Permissions to create file with */
5040     rc = findCreateFileMode(zName, flags, &openMode);
5041     if( rc!=SQLITE_OK ){
5042       assert( !p->pUnused );
5043       assert( eType==SQLITE_OPEN_WAL || eType==SQLITE_OPEN_MAIN_JOURNAL );
5044       return rc;
5045     }
5046     fd = robust_open(zName, openFlags, openMode);
5047     OSTRACE(("OPENX   %-3d %s 0%o\n", fd, zName, openFlags));
5048     if( fd<0 && errno!=EISDIR && isReadWrite && !isExclusive ){
5049       /* Failed to open the file for read/write access. Try read-only. */
5050       flags &= ~(SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE);
5051       openFlags &= ~(O_RDWR|O_CREAT);
5052       flags |= SQLITE_OPEN_READONLY;
5053       openFlags |= O_RDONLY;
5054       isReadonly = 1;
5055       fd = robust_open(zName, openFlags, openMode);
5056     }
5057     if( fd<0 ){
5058       rc = unixLogError(SQLITE_CANTOPEN_BKPT, "open", zName);
5059       goto open_finished;
5060     }
5061   }
5062   assert( fd>=0 );
5063   if( pOutFlags ){
5064     *pOutFlags = flags;
5065   }
5066 
5067   chromium_sqlite3_update_reusable_file_handle(pFile, fd, flags);
5068 
5069   if( isDelete ){
5070 #if OS_VXWORKS
5071     zPath = zName;
5072 #else
5073     osUnlink(zName);
5074 #endif
5075   }
5076 #if SQLITE_ENABLE_LOCKING_STYLE
5077   else{
5078     p->openFlags = openFlags;
5079   }
5080 #endif
5081 
5082 #ifdef FD_CLOEXEC
5083   osFcntl(fd, F_SETFD, osFcntl(fd, F_GETFD, 0) | FD_CLOEXEC);
5084 #endif
5085 
5086   noLock = eType!=SQLITE_OPEN_MAIN_DB;
5087 
5088 
5089 #if defined(__APPLE__) || SQLITE_ENABLE_LOCKING_STYLE
5090   struct statfs fsInfo;
5091   if( fstatfs(fd, &fsInfo) == -1 ){
5092     ((unixFile*)pFile)->lastErrno = errno;
5093     robust_close(p, fd, __LINE__);
5094     return SQLITE_IOERR_ACCESS;
5095   }
5096   if (0 == strncmp("msdos", fsInfo.f_fstypename, 5)) {
5097     ((unixFile*)pFile)->fsFlags |= SQLITE_FSFLAGS_IS_MSDOS;
5098   }
5099 #endif
5100 
5101 #if SQLITE_ENABLE_LOCKING_STYLE
5102 #if SQLITE_PREFER_PROXY_LOCKING
5103   isAutoProxy = 1;
5104 #endif
5105   if( isAutoProxy && (zPath!=NULL) && (!noLock) && pVfs->xOpen ){
5106     char *envforce = getenv("SQLITE_FORCE_PROXY_LOCKING");
5107     int useProxy = 0;
5108 
5109     /* SQLITE_FORCE_PROXY_LOCKING==1 means force always use proxy, 0 means
5110     ** never use proxy, NULL means use proxy for non-local files only.  */
5111     if( envforce!=NULL ){
5112       useProxy = atoi(envforce)>0;
5113     }else{
5114       struct statfs fsInfo;
5115       if( statfs(zPath, &fsInfo) == -1 ){
5116         /* In theory, the close(fd) call is sub-optimal. If the file opened
5117         ** with fd is a database file, and there are other connections open
5118         ** on that file that are currently holding advisory locks on it,
5119         ** then the call to close() will cancel those locks. In practice,
5120         ** we're assuming that statfs() doesn't fail very often. At least
5121         ** not while other file descriptors opened by the same process on
5122         ** the same file are working.  */
5123         p->lastErrno = errno;
5124         robust_close(p, fd, __LINE__);
5125         rc = SQLITE_IOERR_ACCESS;
5126         goto open_finished;
5127       }
5128       useProxy = !(fsInfo.f_flags&MNT_LOCAL);
5129     }
5130     if( useProxy ){
5131       rc = fillInUnixFile(pVfs, fd, syncDir, pFile, zPath, noLock,
5132                           isDelete, isReadonly);
5133       if( rc==SQLITE_OK ){
5134         rc = proxyTransformUnixFile((unixFile*)pFile, ":auto:");
5135         if( rc!=SQLITE_OK ){
5136           /* Use unixClose to clean up the resources added in fillInUnixFile
5137           ** and clear all the structure's references.  Specifically,
5138           ** pFile->pMethods will be NULL so sqlite3OsClose will be a no-op
5139           */
5140           unixClose(pFile);
5141           return rc;
5142         }
5143       }
5144       goto open_finished;
5145     }
5146   }
5147 #endif
5148 
5149   rc = fillInUnixFile(pVfs, fd, syncDir, pFile, zPath, noLock,
5150                       isDelete, isReadonly);
5151 open_finished:
5152   if( rc!=SQLITE_OK ){
5153     chromium_sqlite3_destroy_reusable_file_handle(pFile);
5154   }
5155   return rc;
5156 }
5157 
5158 
5159 /*
5160 ** Delete the file at zPath. If the dirSync argument is true, fsync()
5161 ** the directory after deleting the file.
5162 */
unixDelete(sqlite3_vfs * NotUsed,const char * zPath,int dirSync)5163 static int unixDelete(
5164   sqlite3_vfs *NotUsed,     /* VFS containing this as the xDelete method */
5165   const char *zPath,        /* Name of file to be deleted */
5166   int dirSync               /* If true, fsync() directory after deleting file */
5167 ){
5168   int rc = SQLITE_OK;
5169   UNUSED_PARAMETER(NotUsed);
5170   SimulateIOError(return SQLITE_IOERR_DELETE);
5171   if( osUnlink(zPath)==(-1) && errno!=ENOENT ){
5172     return unixLogError(SQLITE_IOERR_DELETE, "unlink", zPath);
5173   }
5174 #ifndef SQLITE_DISABLE_DIRSYNC
5175   if( dirSync ){
5176     int fd;
5177     rc = osOpenDirectory(zPath, &fd);
5178     if( rc==SQLITE_OK ){
5179 #if OS_VXWORKS
5180       if( fsync(fd)==-1 )
5181 #else
5182       if( fsync(fd) )
5183 #endif
5184       {
5185         rc = unixLogError(SQLITE_IOERR_DIR_FSYNC, "fsync", zPath);
5186       }
5187       robust_close(0, fd, __LINE__);
5188     }else if( rc==SQLITE_CANTOPEN ){
5189       rc = SQLITE_OK;
5190     }
5191   }
5192 #endif
5193   return rc;
5194 }
5195 
5196 /*
5197 ** Test the existance of or access permissions of file zPath. The
5198 ** test performed depends on the value of flags:
5199 **
5200 **     SQLITE_ACCESS_EXISTS: Return 1 if the file exists
5201 **     SQLITE_ACCESS_READWRITE: Return 1 if the file is read and writable.
5202 **     SQLITE_ACCESS_READONLY: Return 1 if the file is readable.
5203 **
5204 ** Otherwise return 0.
5205 */
unixAccess(sqlite3_vfs * NotUsed,const char * zPath,int flags,int * pResOut)5206 static int unixAccess(
5207   sqlite3_vfs *NotUsed,   /* The VFS containing this xAccess method */
5208   const char *zPath,      /* Path of the file to examine */
5209   int flags,              /* What do we want to learn about the zPath file? */
5210   int *pResOut            /* Write result boolean here */
5211 ){
5212   int amode = 0;
5213   UNUSED_PARAMETER(NotUsed);
5214   SimulateIOError( return SQLITE_IOERR_ACCESS; );
5215   switch( flags ){
5216     case SQLITE_ACCESS_EXISTS:
5217       amode = F_OK;
5218       break;
5219     case SQLITE_ACCESS_READWRITE:
5220       amode = W_OK|R_OK;
5221       break;
5222     case SQLITE_ACCESS_READ:
5223       amode = R_OK;
5224       break;
5225 
5226     default:
5227       assert(!"Invalid flags argument");
5228   }
5229   *pResOut = (osAccess(zPath, amode)==0);
5230   if( flags==SQLITE_ACCESS_EXISTS && *pResOut ){
5231     struct stat buf;
5232     if( 0==osStat(zPath, &buf) && buf.st_size==0 ){
5233       *pResOut = 0;
5234     }
5235   }
5236   return SQLITE_OK;
5237 }
5238 
5239 
5240 /*
5241 ** Turn a relative pathname into a full pathname. The relative path
5242 ** is stored as a nul-terminated string in the buffer pointed to by
5243 ** zPath.
5244 **
5245 ** zOut points to a buffer of at least sqlite3_vfs.mxPathname bytes
5246 ** (in this case, MAX_PATHNAME bytes). The full-path is written to
5247 ** this buffer before returning.
5248 */
unixFullPathname(sqlite3_vfs * pVfs,const char * zPath,int nOut,char * zOut)5249 static int unixFullPathname(
5250   sqlite3_vfs *pVfs,            /* Pointer to vfs object */
5251   const char *zPath,            /* Possibly relative input path */
5252   int nOut,                     /* Size of output buffer in bytes */
5253   char *zOut                    /* Output buffer */
5254 ){
5255 
5256   /* It's odd to simulate an io-error here, but really this is just
5257   ** using the io-error infrastructure to test that SQLite handles this
5258   ** function failing. This function could fail if, for example, the
5259   ** current working directory has been unlinked.
5260   */
5261   SimulateIOError( return SQLITE_ERROR );
5262 
5263   assert( pVfs->mxPathname==MAX_PATHNAME );
5264   UNUSED_PARAMETER(pVfs);
5265 
5266   zOut[nOut-1] = '\0';
5267   if( zPath[0]=='/' ){
5268     sqlite3_snprintf(nOut, zOut, "%s", zPath);
5269   }else{
5270     int nCwd;
5271     if( osGetcwd(zOut, nOut-1)==0 ){
5272       return unixLogError(SQLITE_CANTOPEN_BKPT, "getcwd", zPath);
5273     }
5274     nCwd = (int)strlen(zOut);
5275     sqlite3_snprintf(nOut-nCwd, &zOut[nCwd], "/%s", zPath);
5276   }
5277   return SQLITE_OK;
5278 }
5279 
5280 
5281 #ifndef SQLITE_OMIT_LOAD_EXTENSION
5282 /*
5283 ** Interfaces for opening a shared library, finding entry points
5284 ** within the shared library, and closing the shared library.
5285 */
5286 #include <dlfcn.h>
unixDlOpen(sqlite3_vfs * NotUsed,const char * zFilename)5287 static void *unixDlOpen(sqlite3_vfs *NotUsed, const char *zFilename){
5288   UNUSED_PARAMETER(NotUsed);
5289   return dlopen(zFilename, RTLD_NOW | RTLD_GLOBAL);
5290 }
5291 
5292 /*
5293 ** SQLite calls this function immediately after a call to unixDlSym() or
5294 ** unixDlOpen() fails (returns a null pointer). If a more detailed error
5295 ** message is available, it is written to zBufOut. If no error message
5296 ** is available, zBufOut is left unmodified and SQLite uses a default
5297 ** error message.
5298 */
unixDlError(sqlite3_vfs * NotUsed,int nBuf,char * zBufOut)5299 static void unixDlError(sqlite3_vfs *NotUsed, int nBuf, char *zBufOut){
5300   const char *zErr;
5301   UNUSED_PARAMETER(NotUsed);
5302   unixEnterMutex();
5303   zErr = dlerror();
5304   if( zErr ){
5305     sqlite3_snprintf(nBuf, zBufOut, "%s", zErr);
5306   }
5307   unixLeaveMutex();
5308 }
unixDlSym(sqlite3_vfs * NotUsed,void * p,const char * zSym)5309 static void (*unixDlSym(sqlite3_vfs *NotUsed, void *p, const char*zSym))(void){
5310   /*
5311   ** GCC with -pedantic-errors says that C90 does not allow a void* to be
5312   ** cast into a pointer to a function.  And yet the library dlsym() routine
5313   ** returns a void* which is really a pointer to a function.  So how do we
5314   ** use dlsym() with -pedantic-errors?
5315   **
5316   ** Variable x below is defined to be a pointer to a function taking
5317   ** parameters void* and const char* and returning a pointer to a function.
5318   ** We initialize x by assigning it a pointer to the dlsym() function.
5319   ** (That assignment requires a cast.)  Then we call the function that
5320   ** x points to.
5321   **
5322   ** This work-around is unlikely to work correctly on any system where
5323   ** you really cannot cast a function pointer into void*.  But then, on the
5324   ** other hand, dlsym() will not work on such a system either, so we have
5325   ** not really lost anything.
5326   */
5327   void (*(*x)(void*,const char*))(void);
5328   UNUSED_PARAMETER(NotUsed);
5329   x = (void(*(*)(void*,const char*))(void))dlsym;
5330   return (*x)(p, zSym);
5331 }
unixDlClose(sqlite3_vfs * NotUsed,void * pHandle)5332 static void unixDlClose(sqlite3_vfs *NotUsed, void *pHandle){
5333   UNUSED_PARAMETER(NotUsed);
5334   dlclose(pHandle);
5335 }
5336 #else /* if SQLITE_OMIT_LOAD_EXTENSION is defined: */
5337   #define unixDlOpen  0
5338   #define unixDlError 0
5339   #define unixDlSym   0
5340   #define unixDlClose 0
5341 #endif
5342 
5343 /*
5344 ** Write nBuf bytes of random data to the supplied buffer zBuf.
5345 */
unixRandomness(sqlite3_vfs * NotUsed,int nBuf,char * zBuf)5346 static int unixRandomness(sqlite3_vfs *NotUsed, int nBuf, char *zBuf){
5347   UNUSED_PARAMETER(NotUsed);
5348   assert((size_t)nBuf>=(sizeof(time_t)+sizeof(int)));
5349 
5350   /* We have to initialize zBuf to prevent valgrind from reporting
5351   ** errors.  The reports issued by valgrind are incorrect - we would
5352   ** prefer that the randomness be increased by making use of the
5353   ** uninitialized space in zBuf - but valgrind errors tend to worry
5354   ** some users.  Rather than argue, it seems easier just to initialize
5355   ** the whole array and silence valgrind, even if that means less randomness
5356   ** in the random seed.
5357   **
5358   ** When testing, initializing zBuf[] to zero is all we do.  That means
5359   ** that we always use the same random number sequence.  This makes the
5360   ** tests repeatable.
5361   */
5362   memset(zBuf, 0, nBuf);
5363 #if !defined(SQLITE_TEST)
5364   {
5365     int pid, fd;
5366     fd = robust_open("/dev/urandom", O_RDONLY, 0);
5367     if( fd<0 ){
5368       time_t t;
5369       time(&t);
5370       memcpy(zBuf, &t, sizeof(t));
5371       pid = getpid();
5372       memcpy(&zBuf[sizeof(t)], &pid, sizeof(pid));
5373       assert( sizeof(t)+sizeof(pid)<=(size_t)nBuf );
5374       nBuf = sizeof(t) + sizeof(pid);
5375     }else{
5376       do{ nBuf = osRead(fd, zBuf, nBuf); }while( nBuf<0 && errno==EINTR );
5377       robust_close(0, fd, __LINE__);
5378     }
5379   }
5380 #endif
5381   return nBuf;
5382 }
5383 
5384 
5385 /*
5386 ** Sleep for a little while.  Return the amount of time slept.
5387 ** The argument is the number of microseconds we want to sleep.
5388 ** The return value is the number of microseconds of sleep actually
5389 ** requested from the underlying operating system, a number which
5390 ** might be greater than or equal to the argument, but not less
5391 ** than the argument.
5392 */
unixSleep(sqlite3_vfs * NotUsed,int microseconds)5393 static int unixSleep(sqlite3_vfs *NotUsed, int microseconds){
5394 #if OS_VXWORKS
5395   struct timespec sp;
5396 
5397   sp.tv_sec = microseconds / 1000000;
5398   sp.tv_nsec = (microseconds % 1000000) * 1000;
5399   nanosleep(&sp, NULL);
5400   UNUSED_PARAMETER(NotUsed);
5401   return microseconds;
5402 #elif defined(HAVE_USLEEP) && HAVE_USLEEP
5403   usleep(microseconds);
5404   UNUSED_PARAMETER(NotUsed);
5405   return microseconds;
5406 #else
5407   int seconds = (microseconds+999999)/1000000;
5408   sleep(seconds);
5409   UNUSED_PARAMETER(NotUsed);
5410   return seconds*1000000;
5411 #endif
5412 }
5413 
5414 /*
5415 ** The following variable, if set to a non-zero value, is interpreted as
5416 ** the number of seconds since 1970 and is used to set the result of
5417 ** sqlite3OsCurrentTime() during testing.
5418 */
5419 #ifdef SQLITE_TEST
5420 int sqlite3_current_time = 0;  /* Fake system time in seconds since 1970. */
5421 #endif
5422 
5423 /*
5424 ** Find the current time (in Universal Coordinated Time).  Write into *piNow
5425 ** the current time and date as a Julian Day number times 86_400_000.  In
5426 ** other words, write into *piNow the number of milliseconds since the Julian
5427 ** epoch of noon in Greenwich on November 24, 4714 B.C according to the
5428 ** proleptic Gregorian calendar.
5429 **
5430 ** On success, return 0.  Return 1 if the time and date cannot be found.
5431 */
unixCurrentTimeInt64(sqlite3_vfs * NotUsed,sqlite3_int64 * piNow)5432 static int unixCurrentTimeInt64(sqlite3_vfs *NotUsed, sqlite3_int64 *piNow){
5433   static const sqlite3_int64 unixEpoch = 24405875*(sqlite3_int64)8640000;
5434 #if defined(NO_GETTOD)
5435   time_t t;
5436   time(&t);
5437   *piNow = ((sqlite3_int64)t)*1000 + unixEpoch;
5438 #elif OS_VXWORKS
5439   struct timespec sNow;
5440   clock_gettime(CLOCK_REALTIME, &sNow);
5441   *piNow = unixEpoch + 1000*(sqlite3_int64)sNow.tv_sec + sNow.tv_nsec/1000000;
5442 #else
5443   struct timeval sNow;
5444   gettimeofday(&sNow, 0);
5445   *piNow = unixEpoch + 1000*(sqlite3_int64)sNow.tv_sec + sNow.tv_usec/1000;
5446 #endif
5447 
5448 #ifdef SQLITE_TEST
5449   if( sqlite3_current_time ){
5450     *piNow = 1000*(sqlite3_int64)sqlite3_current_time + unixEpoch;
5451   }
5452 #endif
5453   UNUSED_PARAMETER(NotUsed);
5454   return 0;
5455 }
5456 
5457 /*
5458 ** Find the current time (in Universal Coordinated Time).  Write the
5459 ** current time and date as a Julian Day number into *prNow and
5460 ** return 0.  Return 1 if the time and date cannot be found.
5461 */
unixCurrentTime(sqlite3_vfs * NotUsed,double * prNow)5462 static int unixCurrentTime(sqlite3_vfs *NotUsed, double *prNow){
5463   sqlite3_int64 i;
5464   UNUSED_PARAMETER(NotUsed);
5465   unixCurrentTimeInt64(0, &i);
5466   *prNow = i/86400000.0;
5467   return 0;
5468 }
5469 
5470 /*
5471 ** We added the xGetLastError() method with the intention of providing
5472 ** better low-level error messages when operating-system problems come up
5473 ** during SQLite operation.  But so far, none of that has been implemented
5474 ** in the core.  So this routine is never called.  For now, it is merely
5475 ** a place-holder.
5476 */
unixGetLastError(sqlite3_vfs * NotUsed,int NotUsed2,char * NotUsed3)5477 static int unixGetLastError(sqlite3_vfs *NotUsed, int NotUsed2, char *NotUsed3){
5478   UNUSED_PARAMETER(NotUsed);
5479   UNUSED_PARAMETER(NotUsed2);
5480   UNUSED_PARAMETER(NotUsed3);
5481   return 0;
5482 }
5483 
5484 
5485 /*
5486 ************************ End of sqlite3_vfs methods ***************************
5487 ******************************************************************************/
5488 
5489 /******************************************************************************
5490 ************************** Begin Proxy Locking ********************************
5491 **
5492 ** Proxy locking is a "uber-locking-method" in this sense:  It uses the
5493 ** other locking methods on secondary lock files.  Proxy locking is a
5494 ** meta-layer over top of the primitive locking implemented above.  For
5495 ** this reason, the division that implements of proxy locking is deferred
5496 ** until late in the file (here) after all of the other I/O methods have
5497 ** been defined - so that the primitive locking methods are available
5498 ** as services to help with the implementation of proxy locking.
5499 **
5500 ****
5501 **
5502 ** The default locking schemes in SQLite use byte-range locks on the
5503 ** database file to coordinate safe, concurrent access by multiple readers
5504 ** and writers [http://sqlite.org/lockingv3.html].  The five file locking
5505 ** states (UNLOCKED, PENDING, SHARED, RESERVED, EXCLUSIVE) are implemented
5506 ** as POSIX read & write locks over fixed set of locations (via fsctl),
5507 ** on AFP and SMB only exclusive byte-range locks are available via fsctl
5508 ** with _IOWR('z', 23, struct ByteRangeLockPB2) to track the same 5 states.
5509 ** To simulate a F_RDLCK on the shared range, on AFP a randomly selected
5510 ** address in the shared range is taken for a SHARED lock, the entire
5511 ** shared range is taken for an EXCLUSIVE lock):
5512 **
5513 **      PENDING_BYTE        0x40000000
5514 **      RESERVED_BYTE       0x40000001
5515 **      SHARED_RANGE        0x40000002 -> 0x40000200
5516 **
5517 ** This works well on the local file system, but shows a nearly 100x
5518 ** slowdown in read performance on AFP because the AFP client disables
5519 ** the read cache when byte-range locks are present.  Enabling the read
5520 ** cache exposes a cache coherency problem that is present on all OS X
5521 ** supported network file systems.  NFS and AFP both observe the
5522 ** close-to-open semantics for ensuring cache coherency
5523 ** [http://nfs.sourceforge.net/#faq_a8], which does not effectively
5524 ** address the requirements for concurrent database access by multiple
5525 ** readers and writers
5526 ** [http://www.nabble.com/SQLite-on-NFS-cache-coherency-td15655701.html].
5527 **
5528 ** To address the performance and cache coherency issues, proxy file locking
5529 ** changes the way database access is controlled by limiting access to a
5530 ** single host at a time and moving file locks off of the database file
5531 ** and onto a proxy file on the local file system.
5532 **
5533 **
5534 ** Using proxy locks
5535 ** -----------------
5536 **
5537 ** C APIs
5538 **
5539 **  sqlite3_file_control(db, dbname, SQLITE_SET_LOCKPROXYFILE,
5540 **                       <proxy_path> | ":auto:");
5541 **  sqlite3_file_control(db, dbname, SQLITE_GET_LOCKPROXYFILE, &<proxy_path>);
5542 **
5543 **
5544 ** SQL pragmas
5545 **
5546 **  PRAGMA [database.]lock_proxy_file=<proxy_path> | :auto:
5547 **  PRAGMA [database.]lock_proxy_file
5548 **
5549 ** Specifying ":auto:" means that if there is a conch file with a matching
5550 ** host ID in it, the proxy path in the conch file will be used, otherwise
5551 ** a proxy path based on the user's temp dir
5552 ** (via confstr(_CS_DARWIN_USER_TEMP_DIR,...)) will be used and the
5553 ** actual proxy file name is generated from the name and path of the
5554 ** database file.  For example:
5555 **
5556 **       For database path "/Users/me/foo.db"
5557 **       The lock path will be "<tmpdir>/sqliteplocks/_Users_me_foo.db:auto:")
5558 **
5559 ** Once a lock proxy is configured for a database connection, it can not
5560 ** be removed, however it may be switched to a different proxy path via
5561 ** the above APIs (assuming the conch file is not being held by another
5562 ** connection or process).
5563 **
5564 **
5565 ** How proxy locking works
5566 ** -----------------------
5567 **
5568 ** Proxy file locking relies primarily on two new supporting files:
5569 **
5570 **   *  conch file to limit access to the database file to a single host
5571 **      at a time
5572 **
5573 **   *  proxy file to act as a proxy for the advisory locks normally
5574 **      taken on the database
5575 **
5576 ** The conch file - to use a proxy file, sqlite must first "hold the conch"
5577 ** by taking an sqlite-style shared lock on the conch file, reading the
5578 ** contents and comparing the host's unique host ID (see below) and lock
5579 ** proxy path against the values stored in the conch.  The conch file is
5580 ** stored in the same directory as the database file and the file name
5581 ** is patterned after the database file name as ".<databasename>-conch".
5582 ** If the conch file does not exist, or it's contents do not match the
5583 ** host ID and/or proxy path, then the lock is escalated to an exclusive
5584 ** lock and the conch file contents is updated with the host ID and proxy
5585 ** path and the lock is downgraded to a shared lock again.  If the conch
5586 ** is held by another process (with a shared lock), the exclusive lock
5587 ** will fail and SQLITE_BUSY is returned.
5588 **
5589 ** The proxy file - a single-byte file used for all advisory file locks
5590 ** normally taken on the database file.   This allows for safe sharing
5591 ** of the database file for multiple readers and writers on the same
5592 ** host (the conch ensures that they all use the same local lock file).
5593 **
5594 ** Requesting the lock proxy does not immediately take the conch, it is
5595 ** only taken when the first request to lock database file is made.
5596 ** This matches the semantics of the traditional locking behavior, where
5597 ** opening a connection to a database file does not take a lock on it.
5598 ** The shared lock and an open file descriptor are maintained until
5599 ** the connection to the database is closed.
5600 **
5601 ** The proxy file and the lock file are never deleted so they only need
5602 ** to be created the first time they are used.
5603 **
5604 ** Configuration options
5605 ** ---------------------
5606 **
5607 **  SQLITE_PREFER_PROXY_LOCKING
5608 **
5609 **       Database files accessed on non-local file systems are
5610 **       automatically configured for proxy locking, lock files are
5611 **       named automatically using the same logic as
5612 **       PRAGMA lock_proxy_file=":auto:"
5613 **
5614 **  SQLITE_PROXY_DEBUG
5615 **
5616 **       Enables the logging of error messages during host id file
5617 **       retrieval and creation
5618 **
5619 **  LOCKPROXYDIR
5620 **
5621 **       Overrides the default directory used for lock proxy files that
5622 **       are named automatically via the ":auto:" setting
5623 **
5624 **  SQLITE_DEFAULT_PROXYDIR_PERMISSIONS
5625 **
5626 **       Permissions to use when creating a directory for storing the
5627 **       lock proxy files, only used when LOCKPROXYDIR is not set.
5628 **
5629 **
5630 ** As mentioned above, when compiled with SQLITE_PREFER_PROXY_LOCKING,
5631 ** setting the environment variable SQLITE_FORCE_PROXY_LOCKING to 1 will
5632 ** force proxy locking to be used for every database file opened, and 0
5633 ** will force automatic proxy locking to be disabled for all database
5634 ** files (explicity calling the SQLITE_SET_LOCKPROXYFILE pragma or
5635 ** sqlite_file_control API is not affected by SQLITE_FORCE_PROXY_LOCKING).
5636 */
5637 
5638 /*
5639 ** Proxy locking is only available on MacOSX
5640 */
5641 #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
5642 
5643 /*
5644 ** The proxyLockingContext has the path and file structures for the remote
5645 ** and local proxy files in it
5646 */
5647 typedef struct proxyLockingContext proxyLockingContext;
5648 struct proxyLockingContext {
5649   unixFile *conchFile;         /* Open conch file */
5650   char *conchFilePath;         /* Name of the conch file */
5651   unixFile *lockProxy;         /* Open proxy lock file */
5652   char *lockProxyPath;         /* Name of the proxy lock file */
5653   char *dbPath;                /* Name of the open file */
5654   int conchHeld;               /* 1 if the conch is held, -1 if lockless */
5655   void *oldLockingContext;     /* Original lockingcontext to restore on close */
5656   sqlite3_io_methods const *pOldMethod;     /* Original I/O methods for close */
5657 };
5658 
5659 /*
5660 ** The proxy lock file path for the database at dbPath is written into lPath,
5661 ** which must point to valid, writable memory large enough for a maxLen length
5662 ** file path.
5663 */
proxyGetLockPath(const char * dbPath,char * lPath,size_t maxLen)5664 static int proxyGetLockPath(const char *dbPath, char *lPath, size_t maxLen){
5665   int len;
5666   int dbLen;
5667   int i;
5668 
5669 #ifdef LOCKPROXYDIR
5670   len = strlcpy(lPath, LOCKPROXYDIR, maxLen);
5671 #else
5672 # ifdef _CS_DARWIN_USER_TEMP_DIR
5673   {
5674     if( !confstr(_CS_DARWIN_USER_TEMP_DIR, lPath, maxLen) ){
5675       OSTRACE(("GETLOCKPATH  failed %s errno=%d pid=%d\n",
5676                lPath, errno, getpid()));
5677       return SQLITE_IOERR_LOCK;
5678     }
5679     len = strlcat(lPath, "sqliteplocks", maxLen);
5680   }
5681 # else
5682   len = strlcpy(lPath, "/tmp/", maxLen);
5683 # endif
5684 #endif
5685 
5686   if( lPath[len-1]!='/' ){
5687     len = strlcat(lPath, "/", maxLen);
5688   }
5689 
5690   /* transform the db path to a unique cache name */
5691   dbLen = (int)strlen(dbPath);
5692   for( i=0; i<dbLen && (i+len+7)<(int)maxLen; i++){
5693     char c = dbPath[i];
5694     lPath[i+len] = (c=='/')?'_':c;
5695   }
5696   lPath[i+len]='\0';
5697   strlcat(lPath, ":auto:", maxLen);
5698   OSTRACE(("GETLOCKPATH  proxy lock path=%s pid=%d\n", lPath, getpid()));
5699   return SQLITE_OK;
5700 }
5701 
5702 /*
5703  ** Creates the lock file and any missing directories in lockPath
5704  */
proxyCreateLockPath(const char * lockPath)5705 static int proxyCreateLockPath(const char *lockPath){
5706   int i, len;
5707   char buf[MAXPATHLEN];
5708   int start = 0;
5709 
5710   assert(lockPath!=NULL);
5711   /* try to create all the intermediate directories */
5712   len = (int)strlen(lockPath);
5713   buf[0] = lockPath[0];
5714   for( i=1; i<len; i++ ){
5715     if( lockPath[i] == '/' && (i - start > 0) ){
5716       /* only mkdir if leaf dir != "." or "/" or ".." */
5717       if( i-start>2 || (i-start==1 && buf[start] != '.' && buf[start] != '/')
5718          || (i-start==2 && buf[start] != '.' && buf[start+1] != '.') ){
5719         buf[i]='\0';
5720         if( mkdir(buf, SQLITE_DEFAULT_PROXYDIR_PERMISSIONS) ){
5721           int err=errno;
5722           if( err!=EEXIST ) {
5723             OSTRACE(("CREATELOCKPATH  FAILED creating %s, "
5724                      "'%s' proxy lock path=%s pid=%d\n",
5725                      buf, strerror(err), lockPath, getpid()));
5726             return err;
5727           }
5728         }
5729       }
5730       start=i+1;
5731     }
5732     buf[i] = lockPath[i];
5733   }
5734   OSTRACE(("CREATELOCKPATH  proxy lock path=%s pid=%d\n", lockPath, getpid()));
5735   return 0;
5736 }
5737 
5738 /*
5739 ** Create a new VFS file descriptor (stored in memory obtained from
5740 ** sqlite3_malloc) and open the file named "path" in the file descriptor.
5741 **
5742 ** The caller is responsible not only for closing the file descriptor
5743 ** but also for freeing the memory associated with the file descriptor.
5744 */
proxyCreateUnixFile(const char * path,unixFile ** ppFile,int islockfile)5745 static int proxyCreateUnixFile(
5746     const char *path,        /* path for the new unixFile */
5747     unixFile **ppFile,       /* unixFile created and returned by ref */
5748     int islockfile           /* if non zero missing dirs will be created */
5749 ) {
5750   int fd = -1;
5751   unixFile *pNew;
5752   int rc = SQLITE_OK;
5753   int openFlags = O_RDWR | O_CREAT;
5754   sqlite3_vfs dummyVfs;
5755   int terrno = 0;
5756   UnixUnusedFd *pUnused = NULL;
5757 
5758   /* 1. first try to open/create the file
5759   ** 2. if that fails, and this is a lock file (not-conch), try creating
5760   ** the parent directories and then try again.
5761   ** 3. if that fails, try to open the file read-only
5762   ** otherwise return BUSY (if lock file) or CANTOPEN for the conch file
5763   */
5764   pUnused = findReusableFd(path, openFlags);
5765   if( pUnused ){
5766     fd = pUnused->fd;
5767   }else{
5768     pUnused = sqlite3_malloc(sizeof(*pUnused));
5769     if( !pUnused ){
5770       return SQLITE_NOMEM;
5771     }
5772   }
5773   if( fd<0 ){
5774     fd = robust_open(path, openFlags, SQLITE_DEFAULT_FILE_PERMISSIONS);
5775     terrno = errno;
5776     if( fd<0 && errno==ENOENT && islockfile ){
5777       if( proxyCreateLockPath(path) == SQLITE_OK ){
5778         fd = robust_open(path, openFlags, SQLITE_DEFAULT_FILE_PERMISSIONS);
5779       }
5780     }
5781   }
5782   if( fd<0 ){
5783     openFlags = O_RDONLY;
5784     fd = robust_open(path, openFlags, SQLITE_DEFAULT_FILE_PERMISSIONS);
5785     terrno = errno;
5786   }
5787   if( fd<0 ){
5788     if( islockfile ){
5789       return SQLITE_BUSY;
5790     }
5791     switch (terrno) {
5792       case EACCES:
5793         return SQLITE_PERM;
5794       case EIO:
5795         return SQLITE_IOERR_LOCK; /* even though it is the conch */
5796       default:
5797         return SQLITE_CANTOPEN_BKPT;
5798     }
5799   }
5800 
5801   pNew = (unixFile *)sqlite3_malloc(sizeof(*pNew));
5802   if( pNew==NULL ){
5803     rc = SQLITE_NOMEM;
5804     goto end_create_proxy;
5805   }
5806   memset(pNew, 0, sizeof(unixFile));
5807   pNew->openFlags = openFlags;
5808   memset(&dummyVfs, 0, sizeof(dummyVfs));
5809   dummyVfs.pAppData = (void*)&autolockIoFinder;
5810   dummyVfs.zName = "dummy";
5811   pUnused->fd = fd;
5812   pUnused->flags = openFlags;
5813   pNew->pUnused = pUnused;
5814 
5815   rc = fillInUnixFile(&dummyVfs, fd, 0, (sqlite3_file*)pNew, path, 0, 0, 0);
5816   if( rc==SQLITE_OK ){
5817     *ppFile = pNew;
5818     return SQLITE_OK;
5819   }
5820 end_create_proxy:
5821   robust_close(pNew, fd, __LINE__);
5822   sqlite3_free(pNew);
5823   sqlite3_free(pUnused);
5824   return rc;
5825 }
5826 
5827 #ifdef SQLITE_TEST
5828 /* simulate multiple hosts by creating unique hostid file paths */
5829 int sqlite3_hostid_num = 0;
5830 #endif
5831 
5832 #define PROXY_HOSTIDLEN    16  /* conch file host id length */
5833 
5834 /* Not always defined in the headers as it ought to be */
5835 extern int gethostuuid(uuid_t id, const struct timespec *wait);
5836 
5837 /* get the host ID via gethostuuid(), pHostID must point to PROXY_HOSTIDLEN
5838 ** bytes of writable memory.
5839 */
proxyGetHostID(unsigned char * pHostID,int * pError)5840 static int proxyGetHostID(unsigned char *pHostID, int *pError){
5841   assert(PROXY_HOSTIDLEN == sizeof(uuid_t));
5842   memset(pHostID, 0, PROXY_HOSTIDLEN);
5843 #if defined(__MAX_OS_X_VERSION_MIN_REQUIRED)\
5844                && __MAC_OS_X_VERSION_MIN_REQUIRED<1050
5845   {
5846     static const struct timespec timeout = {1, 0}; /* 1 sec timeout */
5847     if( gethostuuid(pHostID, &timeout) ){
5848       int err = errno;
5849       if( pError ){
5850         *pError = err;
5851       }
5852       return SQLITE_IOERR;
5853     }
5854   }
5855 #endif
5856 #ifdef SQLITE_TEST
5857   /* simulate multiple hosts by creating unique hostid file paths */
5858   if( sqlite3_hostid_num != 0){
5859     pHostID[0] = (char)(pHostID[0] + (char)(sqlite3_hostid_num & 0xFF));
5860   }
5861 #endif
5862 
5863   return SQLITE_OK;
5864 }
5865 
5866 /* The conch file contains the header, host id and lock file path
5867  */
5868 #define PROXY_CONCHVERSION 2   /* 1-byte header, 16-byte host id, path */
5869 #define PROXY_HEADERLEN    1   /* conch file header length */
5870 #define PROXY_PATHINDEX    (PROXY_HEADERLEN+PROXY_HOSTIDLEN)
5871 #define PROXY_MAXCONCHLEN  (PROXY_HEADERLEN+PROXY_HOSTIDLEN+MAXPATHLEN)
5872 
5873 /*
5874 ** Takes an open conch file, copies the contents to a new path and then moves
5875 ** it back.  The newly created file's file descriptor is assigned to the
5876 ** conch file structure and finally the original conch file descriptor is
5877 ** closed.  Returns zero if successful.
5878 */
proxyBreakConchLock(unixFile * pFile,uuid_t myHostID)5879 static int proxyBreakConchLock(unixFile *pFile, uuid_t myHostID){
5880   proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext;
5881   unixFile *conchFile = pCtx->conchFile;
5882   char tPath[MAXPATHLEN];
5883   char buf[PROXY_MAXCONCHLEN];
5884   char *cPath = pCtx->conchFilePath;
5885   size_t readLen = 0;
5886   size_t pathLen = 0;
5887   char errmsg[64] = "";
5888   int fd = -1;
5889   int rc = -1;
5890   UNUSED_PARAMETER(myHostID);
5891 
5892   /* create a new path by replace the trailing '-conch' with '-break' */
5893   pathLen = strlcpy(tPath, cPath, MAXPATHLEN);
5894   if( pathLen>MAXPATHLEN || pathLen<6 ||
5895      (strlcpy(&tPath[pathLen-5], "break", 6) != 5) ){
5896     sqlite3_snprintf(sizeof(errmsg),errmsg,"path error (len %d)",(int)pathLen);
5897     goto end_breaklock;
5898   }
5899   /* read the conch content */
5900   readLen = osPread(conchFile->h, buf, PROXY_MAXCONCHLEN, 0);
5901   if( readLen<PROXY_PATHINDEX ){
5902     sqlite3_snprintf(sizeof(errmsg),errmsg,"read error (len %d)",(int)readLen);
5903     goto end_breaklock;
5904   }
5905   /* write it out to the temporary break file */
5906   fd = robust_open(tPath, (O_RDWR|O_CREAT|O_EXCL),
5907                    SQLITE_DEFAULT_FILE_PERMISSIONS);
5908   if( fd<0 ){
5909     sqlite3_snprintf(sizeof(errmsg), errmsg, "create failed (%d)", errno);
5910     goto end_breaklock;
5911   }
5912   if( osPwrite(fd, buf, readLen, 0) != (ssize_t)readLen ){
5913     sqlite3_snprintf(sizeof(errmsg), errmsg, "write failed (%d)", errno);
5914     goto end_breaklock;
5915   }
5916   if( rename(tPath, cPath) ){
5917     sqlite3_snprintf(sizeof(errmsg), errmsg, "rename failed (%d)", errno);
5918     goto end_breaklock;
5919   }
5920   rc = 0;
5921   fprintf(stderr, "broke stale lock on %s\n", cPath);
5922   robust_close(pFile, conchFile->h, __LINE__);
5923   conchFile->h = fd;
5924   conchFile->openFlags = O_RDWR | O_CREAT;
5925 
5926 end_breaklock:
5927   if( rc ){
5928     if( fd>=0 ){
5929       osUnlink(tPath);
5930       robust_close(pFile, fd, __LINE__);
5931     }
5932     fprintf(stderr, "failed to break stale lock on %s, %s\n", cPath, errmsg);
5933   }
5934   return rc;
5935 }
5936 
5937 /* Take the requested lock on the conch file and break a stale lock if the
5938 ** host id matches.
5939 */
proxyConchLock(unixFile * pFile,uuid_t myHostID,int lockType)5940 static int proxyConchLock(unixFile *pFile, uuid_t myHostID, int lockType){
5941   proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext;
5942   unixFile *conchFile = pCtx->conchFile;
5943   int rc = SQLITE_OK;
5944   int nTries = 0;
5945   struct timespec conchModTime;
5946 
5947   do {
5948     rc = conchFile->pMethod->xLock((sqlite3_file*)conchFile, lockType);
5949     nTries ++;
5950     if( rc==SQLITE_BUSY ){
5951       /* If the lock failed (busy):
5952        * 1st try: get the mod time of the conch, wait 0.5s and try again.
5953        * 2nd try: fail if the mod time changed or host id is different, wait
5954        *           10 sec and try again
5955        * 3rd try: break the lock unless the mod time has changed.
5956        */
5957       struct stat buf;
5958       if( osFstat(conchFile->h, &buf) ){
5959         pFile->lastErrno = errno;
5960         return SQLITE_IOERR_LOCK;
5961       }
5962 
5963       if( nTries==1 ){
5964         conchModTime = buf.st_mtimespec;
5965         usleep(500000); /* wait 0.5 sec and try the lock again*/
5966         continue;
5967       }
5968 
5969       assert( nTries>1 );
5970       if( conchModTime.tv_sec != buf.st_mtimespec.tv_sec ||
5971          conchModTime.tv_nsec != buf.st_mtimespec.tv_nsec ){
5972         return SQLITE_BUSY;
5973       }
5974 
5975       if( nTries==2 ){
5976         char tBuf[PROXY_MAXCONCHLEN];
5977         int len = osPread(conchFile->h, tBuf, PROXY_MAXCONCHLEN, 0);
5978         if( len<0 ){
5979           pFile->lastErrno = errno;
5980           return SQLITE_IOERR_LOCK;
5981         }
5982         if( len>PROXY_PATHINDEX && tBuf[0]==(char)PROXY_CONCHVERSION){
5983           /* don't break the lock if the host id doesn't match */
5984           if( 0!=memcmp(&tBuf[PROXY_HEADERLEN], myHostID, PROXY_HOSTIDLEN) ){
5985             return SQLITE_BUSY;
5986           }
5987         }else{
5988           /* don't break the lock on short read or a version mismatch */
5989           return SQLITE_BUSY;
5990         }
5991         usleep(10000000); /* wait 10 sec and try the lock again */
5992         continue;
5993       }
5994 
5995       assert( nTries==3 );
5996       if( 0==proxyBreakConchLock(pFile, myHostID) ){
5997         rc = SQLITE_OK;
5998         if( lockType==EXCLUSIVE_LOCK ){
5999           rc = conchFile->pMethod->xLock((sqlite3_file*)conchFile, SHARED_LOCK);
6000         }
6001         if( !rc ){
6002           rc = conchFile->pMethod->xLock((sqlite3_file*)conchFile, lockType);
6003         }
6004       }
6005     }
6006   } while( rc==SQLITE_BUSY && nTries<3 );
6007 
6008   return rc;
6009 }
6010 
6011 /* Takes the conch by taking a shared lock and read the contents conch, if
6012 ** lockPath is non-NULL, the host ID and lock file path must match.  A NULL
6013 ** lockPath means that the lockPath in the conch file will be used if the
6014 ** host IDs match, or a new lock path will be generated automatically
6015 ** and written to the conch file.
6016 */
proxyTakeConch(unixFile * pFile)6017 static int proxyTakeConch(unixFile *pFile){
6018   proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext;
6019 
6020   if( pCtx->conchHeld!=0 ){
6021     return SQLITE_OK;
6022   }else{
6023     unixFile *conchFile = pCtx->conchFile;
6024     uuid_t myHostID;
6025     int pError = 0;
6026     char readBuf[PROXY_MAXCONCHLEN];
6027     char lockPath[MAXPATHLEN];
6028     char *tempLockPath = NULL;
6029     int rc = SQLITE_OK;
6030     int createConch = 0;
6031     int hostIdMatch = 0;
6032     int readLen = 0;
6033     int tryOldLockPath = 0;
6034     int forceNewLockPath = 0;
6035 
6036     OSTRACE(("TAKECONCH  %d for %s pid=%d\n", conchFile->h,
6037              (pCtx->lockProxyPath ? pCtx->lockProxyPath : ":auto:"), getpid()));
6038 
6039     rc = proxyGetHostID(myHostID, &pError);
6040     if( (rc&0xff)==SQLITE_IOERR ){
6041       pFile->lastErrno = pError;
6042       goto end_takeconch;
6043     }
6044     rc = proxyConchLock(pFile, myHostID, SHARED_LOCK);
6045     if( rc!=SQLITE_OK ){
6046       goto end_takeconch;
6047     }
6048     /* read the existing conch file */
6049     readLen = seekAndRead((unixFile*)conchFile, 0, readBuf, PROXY_MAXCONCHLEN);
6050     if( readLen<0 ){
6051       /* I/O error: lastErrno set by seekAndRead */
6052       pFile->lastErrno = conchFile->lastErrno;
6053       rc = SQLITE_IOERR_READ;
6054       goto end_takeconch;
6055     }else if( readLen<=(PROXY_HEADERLEN+PROXY_HOSTIDLEN) ||
6056              readBuf[0]!=(char)PROXY_CONCHVERSION ){
6057       /* a short read or version format mismatch means we need to create a new
6058       ** conch file.
6059       */
6060       createConch = 1;
6061     }
6062     /* if the host id matches and the lock path already exists in the conch
6063     ** we'll try to use the path there, if we can't open that path, we'll
6064     ** retry with a new auto-generated path
6065     */
6066     do { /* in case we need to try again for an :auto: named lock file */
6067 
6068       if( !createConch && !forceNewLockPath ){
6069         hostIdMatch = !memcmp(&readBuf[PROXY_HEADERLEN], myHostID,
6070                                   PROXY_HOSTIDLEN);
6071         /* if the conch has data compare the contents */
6072         if( !pCtx->lockProxyPath ){
6073           /* for auto-named local lock file, just check the host ID and we'll
6074            ** use the local lock file path that's already in there
6075            */
6076           if( hostIdMatch ){
6077             size_t pathLen = (readLen - PROXY_PATHINDEX);
6078 
6079             if( pathLen>=MAXPATHLEN ){
6080               pathLen=MAXPATHLEN-1;
6081             }
6082             memcpy(lockPath, &readBuf[PROXY_PATHINDEX], pathLen);
6083             lockPath[pathLen] = 0;
6084             tempLockPath = lockPath;
6085             tryOldLockPath = 1;
6086             /* create a copy of the lock path if the conch is taken */
6087             goto end_takeconch;
6088           }
6089         }else if( hostIdMatch
6090                && !strncmp(pCtx->lockProxyPath, &readBuf[PROXY_PATHINDEX],
6091                            readLen-PROXY_PATHINDEX)
6092         ){
6093           /* conch host and lock path match */
6094           goto end_takeconch;
6095         }
6096       }
6097 
6098       /* if the conch isn't writable and doesn't match, we can't take it */
6099       if( (conchFile->openFlags&O_RDWR) == 0 ){
6100         rc = SQLITE_BUSY;
6101         goto end_takeconch;
6102       }
6103 
6104       /* either the conch didn't match or we need to create a new one */
6105       if( !pCtx->lockProxyPath ){
6106         proxyGetLockPath(pCtx->dbPath, lockPath, MAXPATHLEN);
6107         tempLockPath = lockPath;
6108         /* create a copy of the lock path _only_ if the conch is taken */
6109       }
6110 
6111       /* update conch with host and path (this will fail if other process
6112       ** has a shared lock already), if the host id matches, use the big
6113       ** stick.
6114       */
6115       futimes(conchFile->h, NULL);
6116       if( hostIdMatch && !createConch ){
6117         if( conchFile->pInode && conchFile->pInode->nShared>1 ){
6118           /* We are trying for an exclusive lock but another thread in this
6119            ** same process is still holding a shared lock. */
6120           rc = SQLITE_BUSY;
6121         } else {
6122           rc = proxyConchLock(pFile, myHostID, EXCLUSIVE_LOCK);
6123         }
6124       }else{
6125         rc = conchFile->pMethod->xLock((sqlite3_file*)conchFile, EXCLUSIVE_LOCK);
6126       }
6127       if( rc==SQLITE_OK ){
6128         char writeBuffer[PROXY_MAXCONCHLEN];
6129         int writeSize = 0;
6130 
6131         writeBuffer[0] = (char)PROXY_CONCHVERSION;
6132         memcpy(&writeBuffer[PROXY_HEADERLEN], myHostID, PROXY_HOSTIDLEN);
6133         if( pCtx->lockProxyPath!=NULL ){
6134           strlcpy(&writeBuffer[PROXY_PATHINDEX], pCtx->lockProxyPath, MAXPATHLEN);
6135         }else{
6136           strlcpy(&writeBuffer[PROXY_PATHINDEX], tempLockPath, MAXPATHLEN);
6137         }
6138         writeSize = PROXY_PATHINDEX + strlen(&writeBuffer[PROXY_PATHINDEX]);
6139         robust_ftruncate(conchFile->h, writeSize);
6140         rc = unixWrite((sqlite3_file *)conchFile, writeBuffer, writeSize, 0);
6141         fsync(conchFile->h);
6142         /* If we created a new conch file (not just updated the contents of a
6143          ** valid conch file), try to match the permissions of the database
6144          */
6145         if( rc==SQLITE_OK && createConch ){
6146           struct stat buf;
6147           int err = osFstat(pFile->h, &buf);
6148           if( err==0 ){
6149             mode_t cmode = buf.st_mode&(S_IRUSR|S_IWUSR | S_IRGRP|S_IWGRP |
6150                                         S_IROTH|S_IWOTH);
6151             /* try to match the database file R/W permissions, ignore failure */
6152 #ifndef SQLITE_PROXY_DEBUG
6153             osFchmod(conchFile->h, cmode);
6154 #else
6155             do{
6156               rc = osFchmod(conchFile->h, cmode);
6157             }while( rc==(-1) && errno==EINTR );
6158             if( rc!=0 ){
6159               int code = errno;
6160               fprintf(stderr, "fchmod %o FAILED with %d %s\n",
6161                       cmode, code, strerror(code));
6162             } else {
6163               fprintf(stderr, "fchmod %o SUCCEDED\n",cmode);
6164             }
6165           }else{
6166             int code = errno;
6167             fprintf(stderr, "STAT FAILED[%d] with %d %s\n",
6168                     err, code, strerror(code));
6169 #endif
6170           }
6171         }
6172       }
6173       conchFile->pMethod->xUnlock((sqlite3_file*)conchFile, SHARED_LOCK);
6174 
6175     end_takeconch:
6176       OSTRACE(("TRANSPROXY: CLOSE  %d\n", pFile->h));
6177       if( rc==SQLITE_OK && pFile->openFlags ){
6178         if( pFile->h>=0 ){
6179           robust_close(pFile, pFile->h, __LINE__);
6180         }
6181         pFile->h = -1;
6182         int fd = robust_open(pCtx->dbPath, pFile->openFlags,
6183                       SQLITE_DEFAULT_FILE_PERMISSIONS);
6184         OSTRACE(("TRANSPROXY: OPEN  %d\n", fd));
6185         if( fd>=0 ){
6186           pFile->h = fd;
6187         }else{
6188           rc=SQLITE_CANTOPEN_BKPT; /* SQLITE_BUSY? proxyTakeConch called
6189            during locking */
6190         }
6191       }
6192       if( rc==SQLITE_OK && !pCtx->lockProxy ){
6193         char *path = tempLockPath ? tempLockPath : pCtx->lockProxyPath;
6194         rc = proxyCreateUnixFile(path, &pCtx->lockProxy, 1);
6195         if( rc!=SQLITE_OK && rc!=SQLITE_NOMEM && tryOldLockPath ){
6196           /* we couldn't create the proxy lock file with the old lock file path
6197            ** so try again via auto-naming
6198            */
6199           forceNewLockPath = 1;
6200           tryOldLockPath = 0;
6201           continue; /* go back to the do {} while start point, try again */
6202         }
6203       }
6204       if( rc==SQLITE_OK ){
6205         /* Need to make a copy of path if we extracted the value
6206          ** from the conch file or the path was allocated on the stack
6207          */
6208         if( tempLockPath ){
6209           pCtx->lockProxyPath = sqlite3DbStrDup(0, tempLockPath);
6210           if( !pCtx->lockProxyPath ){
6211             rc = SQLITE_NOMEM;
6212           }
6213         }
6214       }
6215       if( rc==SQLITE_OK ){
6216         pCtx->conchHeld = 1;
6217 
6218         if( pCtx->lockProxy->pMethod == &afpIoMethods ){
6219           afpLockingContext *afpCtx;
6220           afpCtx = (afpLockingContext *)pCtx->lockProxy->lockingContext;
6221           afpCtx->dbPath = pCtx->lockProxyPath;
6222         }
6223       } else {
6224         conchFile->pMethod->xUnlock((sqlite3_file*)conchFile, NO_LOCK);
6225       }
6226       OSTRACE(("TAKECONCH  %d %s\n", conchFile->h,
6227                rc==SQLITE_OK?"ok":"failed"));
6228       return rc;
6229     } while (1); /* in case we need to retry the :auto: lock file -
6230                  ** we should never get here except via the 'continue' call. */
6231   }
6232 }
6233 
6234 /*
6235 ** If pFile holds a lock on a conch file, then release that lock.
6236 */
proxyReleaseConch(unixFile * pFile)6237 static int proxyReleaseConch(unixFile *pFile){
6238   int rc = SQLITE_OK;         /* Subroutine return code */
6239   proxyLockingContext *pCtx;  /* The locking context for the proxy lock */
6240   unixFile *conchFile;        /* Name of the conch file */
6241 
6242   pCtx = (proxyLockingContext *)pFile->lockingContext;
6243   conchFile = pCtx->conchFile;
6244   OSTRACE(("RELEASECONCH  %d for %s pid=%d\n", conchFile->h,
6245            (pCtx->lockProxyPath ? pCtx->lockProxyPath : ":auto:"),
6246            getpid()));
6247   if( pCtx->conchHeld>0 ){
6248     rc = conchFile->pMethod->xUnlock((sqlite3_file*)conchFile, NO_LOCK);
6249   }
6250   pCtx->conchHeld = 0;
6251   OSTRACE(("RELEASECONCH  %d %s\n", conchFile->h,
6252            (rc==SQLITE_OK ? "ok" : "failed")));
6253   return rc;
6254 }
6255 
6256 /*
6257 ** Given the name of a database file, compute the name of its conch file.
6258 ** Store the conch filename in memory obtained from sqlite3_malloc().
6259 ** Make *pConchPath point to the new name.  Return SQLITE_OK on success
6260 ** or SQLITE_NOMEM if unable to obtain memory.
6261 **
6262 ** The caller is responsible for ensuring that the allocated memory
6263 ** space is eventually freed.
6264 **
6265 ** *pConchPath is set to NULL if a memory allocation error occurs.
6266 */
proxyCreateConchPathname(char * dbPath,char ** pConchPath)6267 static int proxyCreateConchPathname(char *dbPath, char **pConchPath){
6268   int i;                        /* Loop counter */
6269   int len = (int)strlen(dbPath); /* Length of database filename - dbPath */
6270   char *conchPath;              /* buffer in which to construct conch name */
6271 
6272   /* Allocate space for the conch filename and initialize the name to
6273   ** the name of the original database file. */
6274   *pConchPath = conchPath = (char *)sqlite3_malloc(len + 8);
6275   if( conchPath==0 ){
6276     return SQLITE_NOMEM;
6277   }
6278   memcpy(conchPath, dbPath, len+1);
6279 
6280   /* now insert a "." before the last / character */
6281   for( i=(len-1); i>=0; i-- ){
6282     if( conchPath[i]=='/' ){
6283       i++;
6284       break;
6285     }
6286   }
6287   conchPath[i]='.';
6288   while ( i<len ){
6289     conchPath[i+1]=dbPath[i];
6290     i++;
6291   }
6292 
6293   /* append the "-conch" suffix to the file */
6294   memcpy(&conchPath[i+1], "-conch", 7);
6295   assert( (int)strlen(conchPath) == len+7 );
6296 
6297   return SQLITE_OK;
6298 }
6299 
6300 
6301 /* Takes a fully configured proxy locking-style unix file and switches
6302 ** the local lock file path
6303 */
switchLockProxyPath(unixFile * pFile,const char * path)6304 static int switchLockProxyPath(unixFile *pFile, const char *path) {
6305   proxyLockingContext *pCtx = (proxyLockingContext*)pFile->lockingContext;
6306   char *oldPath = pCtx->lockProxyPath;
6307   int rc = SQLITE_OK;
6308 
6309   if( pFile->eFileLock!=NO_LOCK ){
6310     return SQLITE_BUSY;
6311   }
6312 
6313   /* nothing to do if the path is NULL, :auto: or matches the existing path */
6314   if( !path || path[0]=='\0' || !strcmp(path, ":auto:") ||
6315     (oldPath && !strncmp(oldPath, path, MAXPATHLEN)) ){
6316     return SQLITE_OK;
6317   }else{
6318     unixFile *lockProxy = pCtx->lockProxy;
6319     pCtx->lockProxy=NULL;
6320     pCtx->conchHeld = 0;
6321     if( lockProxy!=NULL ){
6322       rc=lockProxy->pMethod->xClose((sqlite3_file *)lockProxy);
6323       if( rc ) return rc;
6324       sqlite3_free(lockProxy);
6325     }
6326     sqlite3_free(oldPath);
6327     pCtx->lockProxyPath = sqlite3DbStrDup(0, path);
6328   }
6329 
6330   return rc;
6331 }
6332 
6333 /*
6334 ** pFile is a file that has been opened by a prior xOpen call.  dbPath
6335 ** is a string buffer at least MAXPATHLEN+1 characters in size.
6336 **
6337 ** This routine find the filename associated with pFile and writes it
6338 ** int dbPath.
6339 */
proxyGetDbPathForUnixFile(unixFile * pFile,char * dbPath)6340 static int proxyGetDbPathForUnixFile(unixFile *pFile, char *dbPath){
6341 #if defined(__APPLE__)
6342   if( pFile->pMethod == &afpIoMethods ){
6343     /* afp style keeps a reference to the db path in the filePath field
6344     ** of the struct */
6345     assert( (int)strlen((char*)pFile->lockingContext)<=MAXPATHLEN );
6346     strlcpy(dbPath, ((afpLockingContext *)pFile->lockingContext)->dbPath, MAXPATHLEN);
6347   } else
6348 #endif
6349   if( pFile->pMethod == &dotlockIoMethods ){
6350     /* dot lock style uses the locking context to store the dot lock
6351     ** file path */
6352     int len = strlen((char *)pFile->lockingContext) - strlen(DOTLOCK_SUFFIX);
6353     memcpy(dbPath, (char *)pFile->lockingContext, len + 1);
6354   }else{
6355     /* all other styles use the locking context to store the db file path */
6356     assert( strlen((char*)pFile->lockingContext)<=MAXPATHLEN );
6357     strlcpy(dbPath, (char *)pFile->lockingContext, MAXPATHLEN);
6358   }
6359   return SQLITE_OK;
6360 }
6361 
6362 /*
6363 ** Takes an already filled in unix file and alters it so all file locking
6364 ** will be performed on the local proxy lock file.  The following fields
6365 ** are preserved in the locking context so that they can be restored and
6366 ** the unix structure properly cleaned up at close time:
6367 **  ->lockingContext
6368 **  ->pMethod
6369 */
proxyTransformUnixFile(unixFile * pFile,const char * path)6370 static int proxyTransformUnixFile(unixFile *pFile, const char *path) {
6371   proxyLockingContext *pCtx;
6372   char dbPath[MAXPATHLEN+1];       /* Name of the database file */
6373   char *lockPath=NULL;
6374   int rc = SQLITE_OK;
6375 
6376   if( pFile->eFileLock!=NO_LOCK ){
6377     return SQLITE_BUSY;
6378   }
6379   proxyGetDbPathForUnixFile(pFile, dbPath);
6380   if( !path || path[0]=='\0' || !strcmp(path, ":auto:") ){
6381     lockPath=NULL;
6382   }else{
6383     lockPath=(char *)path;
6384   }
6385 
6386   OSTRACE(("TRANSPROXY  %d for %s pid=%d\n", pFile->h,
6387            (lockPath ? lockPath : ":auto:"), getpid()));
6388 
6389   pCtx = sqlite3_malloc( sizeof(*pCtx) );
6390   if( pCtx==0 ){
6391     return SQLITE_NOMEM;
6392   }
6393   memset(pCtx, 0, sizeof(*pCtx));
6394 
6395   rc = proxyCreateConchPathname(dbPath, &pCtx->conchFilePath);
6396   if( rc==SQLITE_OK ){
6397     rc = proxyCreateUnixFile(pCtx->conchFilePath, &pCtx->conchFile, 0);
6398     if( rc==SQLITE_CANTOPEN && ((pFile->openFlags&O_RDWR) == 0) ){
6399       /* if (a) the open flags are not O_RDWR, (b) the conch isn't there, and
6400       ** (c) the file system is read-only, then enable no-locking access.
6401       ** Ugh, since O_RDONLY==0x0000 we test for !O_RDWR since unixOpen asserts
6402       ** that openFlags will have only one of O_RDONLY or O_RDWR.
6403       */
6404       struct statfs fsInfo;
6405       struct stat conchInfo;
6406       int goLockless = 0;
6407 
6408       if( osStat(pCtx->conchFilePath, &conchInfo) == -1 ) {
6409         int err = errno;
6410         if( (err==ENOENT) && (statfs(dbPath, &fsInfo) != -1) ){
6411           goLockless = (fsInfo.f_flags&MNT_RDONLY) == MNT_RDONLY;
6412         }
6413       }
6414       if( goLockless ){
6415         pCtx->conchHeld = -1; /* read only FS/ lockless */
6416         rc = SQLITE_OK;
6417       }
6418     }
6419   }
6420   if( rc==SQLITE_OK && lockPath ){
6421     pCtx->lockProxyPath = sqlite3DbStrDup(0, lockPath);
6422   }
6423 
6424   if( rc==SQLITE_OK ){
6425     pCtx->dbPath = sqlite3DbStrDup(0, dbPath);
6426     if( pCtx->dbPath==NULL ){
6427       rc = SQLITE_NOMEM;
6428     }
6429   }
6430   if( rc==SQLITE_OK ){
6431     /* all memory is allocated, proxys are created and assigned,
6432     ** switch the locking context and pMethod then return.
6433     */
6434     pCtx->oldLockingContext = pFile->lockingContext;
6435     pFile->lockingContext = pCtx;
6436     pCtx->pOldMethod = pFile->pMethod;
6437     pFile->pMethod = &proxyIoMethods;
6438   }else{
6439     if( pCtx->conchFile ){
6440       pCtx->conchFile->pMethod->xClose((sqlite3_file *)pCtx->conchFile);
6441       sqlite3_free(pCtx->conchFile);
6442     }
6443     sqlite3DbFree(0, pCtx->lockProxyPath);
6444     sqlite3_free(pCtx->conchFilePath);
6445     sqlite3_free(pCtx);
6446   }
6447   OSTRACE(("TRANSPROXY  %d %s\n", pFile->h,
6448            (rc==SQLITE_OK ? "ok" : "failed")));
6449   return rc;
6450 }
6451 
6452 
6453 /*
6454 ** This routine handles sqlite3_file_control() calls that are specific
6455 ** to proxy locking.
6456 */
proxyFileControl(sqlite3_file * id,int op,void * pArg)6457 static int proxyFileControl(sqlite3_file *id, int op, void *pArg){
6458   switch( op ){
6459     case SQLITE_GET_LOCKPROXYFILE: {
6460       unixFile *pFile = (unixFile*)id;
6461       if( pFile->pMethod == &proxyIoMethods ){
6462         proxyLockingContext *pCtx = (proxyLockingContext*)pFile->lockingContext;
6463         proxyTakeConch(pFile);
6464         if( pCtx->lockProxyPath ){
6465           *(const char **)pArg = pCtx->lockProxyPath;
6466         }else{
6467           *(const char **)pArg = ":auto: (not held)";
6468         }
6469       } else {
6470         *(const char **)pArg = NULL;
6471       }
6472       return SQLITE_OK;
6473     }
6474     case SQLITE_SET_LOCKPROXYFILE: {
6475       unixFile *pFile = (unixFile*)id;
6476       int rc = SQLITE_OK;
6477       int isProxyStyle = (pFile->pMethod == &proxyIoMethods);
6478       if( pArg==NULL || (const char *)pArg==0 ){
6479         if( isProxyStyle ){
6480           /* turn off proxy locking - not supported */
6481           rc = SQLITE_ERROR /*SQLITE_PROTOCOL? SQLITE_MISUSE?*/;
6482         }else{
6483           /* turn off proxy locking - already off - NOOP */
6484           rc = SQLITE_OK;
6485         }
6486       }else{
6487         const char *proxyPath = (const char *)pArg;
6488         if( isProxyStyle ){
6489           proxyLockingContext *pCtx =
6490             (proxyLockingContext*)pFile->lockingContext;
6491           if( !strcmp(pArg, ":auto:")
6492            || (pCtx->lockProxyPath &&
6493                !strncmp(pCtx->lockProxyPath, proxyPath, MAXPATHLEN))
6494           ){
6495             rc = SQLITE_OK;
6496           }else{
6497             rc = switchLockProxyPath(pFile, proxyPath);
6498           }
6499         }else{
6500           /* turn on proxy file locking */
6501           rc = proxyTransformUnixFile(pFile, proxyPath);
6502         }
6503       }
6504       return rc;
6505     }
6506     default: {
6507       assert( 0 );  /* The call assures that only valid opcodes are sent */
6508     }
6509   }
6510   /*NOTREACHED*/
6511   return SQLITE_ERROR;
6512 }
6513 
6514 /*
6515 ** Within this division (the proxying locking implementation) the procedures
6516 ** above this point are all utilities.  The lock-related methods of the
6517 ** proxy-locking sqlite3_io_method object follow.
6518 */
6519 
6520 
6521 /*
6522 ** This routine checks if there is a RESERVED lock held on the specified
6523 ** file by this or any other process. If such a lock is held, set *pResOut
6524 ** to a non-zero value otherwise *pResOut is set to zero.  The return value
6525 ** is set to SQLITE_OK unless an I/O error occurs during lock checking.
6526 */
proxyCheckReservedLock(sqlite3_file * id,int * pResOut)6527 static int proxyCheckReservedLock(sqlite3_file *id, int *pResOut) {
6528   unixFile *pFile = (unixFile*)id;
6529   int rc = proxyTakeConch(pFile);
6530   if( rc==SQLITE_OK ){
6531     proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext;
6532     if( pCtx->conchHeld>0 ){
6533       unixFile *proxy = pCtx->lockProxy;
6534       return proxy->pMethod->xCheckReservedLock((sqlite3_file*)proxy, pResOut);
6535     }else{ /* conchHeld < 0 is lockless */
6536       pResOut=0;
6537     }
6538   }
6539   return rc;
6540 }
6541 
6542 /*
6543 ** Lock the file with the lock specified by parameter eFileLock - one
6544 ** of the following:
6545 **
6546 **     (1) SHARED_LOCK
6547 **     (2) RESERVED_LOCK
6548 **     (3) PENDING_LOCK
6549 **     (4) EXCLUSIVE_LOCK
6550 **
6551 ** Sometimes when requesting one lock state, additional lock states
6552 ** are inserted in between.  The locking might fail on one of the later
6553 ** transitions leaving the lock state different from what it started but
6554 ** still short of its goal.  The following chart shows the allowed
6555 ** transitions and the inserted intermediate states:
6556 **
6557 **    UNLOCKED -> SHARED
6558 **    SHARED -> RESERVED
6559 **    SHARED -> (PENDING) -> EXCLUSIVE
6560 **    RESERVED -> (PENDING) -> EXCLUSIVE
6561 **    PENDING -> EXCLUSIVE
6562 **
6563 ** This routine will only increase a lock.  Use the sqlite3OsUnlock()
6564 ** routine to lower a locking level.
6565 */
proxyLock(sqlite3_file * id,int eFileLock)6566 static int proxyLock(sqlite3_file *id, int eFileLock) {
6567   unixFile *pFile = (unixFile*)id;
6568   int rc = proxyTakeConch(pFile);
6569   if( rc==SQLITE_OK ){
6570     proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext;
6571     if( pCtx->conchHeld>0 ){
6572       unixFile *proxy = pCtx->lockProxy;
6573       rc = proxy->pMethod->xLock((sqlite3_file*)proxy, eFileLock);
6574       pFile->eFileLock = proxy->eFileLock;
6575     }else{
6576       /* conchHeld < 0 is lockless */
6577     }
6578   }
6579   return rc;
6580 }
6581 
6582 
6583 /*
6584 ** Lower the locking level on file descriptor pFile to eFileLock.  eFileLock
6585 ** must be either NO_LOCK or SHARED_LOCK.
6586 **
6587 ** If the locking level of the file descriptor is already at or below
6588 ** the requested locking level, this routine is a no-op.
6589 */
proxyUnlock(sqlite3_file * id,int eFileLock)6590 static int proxyUnlock(sqlite3_file *id, int eFileLock) {
6591   unixFile *pFile = (unixFile*)id;
6592   int rc = proxyTakeConch(pFile);
6593   if( rc==SQLITE_OK ){
6594     proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext;
6595     if( pCtx->conchHeld>0 ){
6596       unixFile *proxy = pCtx->lockProxy;
6597       rc = proxy->pMethod->xUnlock((sqlite3_file*)proxy, eFileLock);
6598       pFile->eFileLock = proxy->eFileLock;
6599     }else{
6600       /* conchHeld < 0 is lockless */
6601     }
6602   }
6603   return rc;
6604 }
6605 
6606 /*
6607 ** Close a file that uses proxy locks.
6608 */
proxyClose(sqlite3_file * id)6609 static int proxyClose(sqlite3_file *id) {
6610   if( id ){
6611     unixFile *pFile = (unixFile*)id;
6612     proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext;
6613     unixFile *lockProxy = pCtx->lockProxy;
6614     unixFile *conchFile = pCtx->conchFile;
6615     int rc = SQLITE_OK;
6616 
6617     if( lockProxy ){
6618       rc = lockProxy->pMethod->xUnlock((sqlite3_file*)lockProxy, NO_LOCK);
6619       if( rc ) return rc;
6620       rc = lockProxy->pMethod->xClose((sqlite3_file*)lockProxy);
6621       if( rc ) return rc;
6622       sqlite3_free(lockProxy);
6623       pCtx->lockProxy = 0;
6624     }
6625     if( conchFile ){
6626       if( pCtx->conchHeld ){
6627         rc = proxyReleaseConch(pFile);
6628         if( rc ) return rc;
6629       }
6630       rc = conchFile->pMethod->xClose((sqlite3_file*)conchFile);
6631       if( rc ) return rc;
6632       sqlite3_free(conchFile);
6633     }
6634     sqlite3DbFree(0, pCtx->lockProxyPath);
6635     sqlite3_free(pCtx->conchFilePath);
6636     sqlite3DbFree(0, pCtx->dbPath);
6637     /* restore the original locking context and pMethod then close it */
6638     pFile->lockingContext = pCtx->oldLockingContext;
6639     pFile->pMethod = pCtx->pOldMethod;
6640     sqlite3_free(pCtx);
6641     return pFile->pMethod->xClose(id);
6642   }
6643   return SQLITE_OK;
6644 }
6645 
6646 
6647 
6648 #endif /* defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE */
6649 /*
6650 ** The proxy locking style is intended for use with AFP filesystems.
6651 ** And since AFP is only supported on MacOSX, the proxy locking is also
6652 ** restricted to MacOSX.
6653 **
6654 **
6655 ******************* End of the proxy lock implementation **********************
6656 ******************************************************************************/
6657 
6658 /*
6659 ** Initialize the operating system interface.
6660 **
6661 ** This routine registers all VFS implementations for unix-like operating
6662 ** systems.  This routine, and the sqlite3_os_end() routine that follows,
6663 ** should be the only routines in this file that are visible from other
6664 ** files.
6665 **
6666 ** This routine is called once during SQLite initialization and by a
6667 ** single thread.  The memory allocation and mutex subsystems have not
6668 ** necessarily been initialized when this routine is called, and so they
6669 ** should not be used.
6670 */
sqlite3_os_init(void)6671 int sqlite3_os_init(void){
6672   /*
6673   ** The following macro defines an initializer for an sqlite3_vfs object.
6674   ** The name of the VFS is NAME.  The pAppData is a pointer to a pointer
6675   ** to the "finder" function.  (pAppData is a pointer to a pointer because
6676   ** silly C90 rules prohibit a void* from being cast to a function pointer
6677   ** and so we have to go through the intermediate pointer to avoid problems
6678   ** when compiling with -pedantic-errors on GCC.)
6679   **
6680   ** The FINDER parameter to this macro is the name of the pointer to the
6681   ** finder-function.  The finder-function returns a pointer to the
6682   ** sqlite_io_methods object that implements the desired locking
6683   ** behaviors.  See the division above that contains the IOMETHODS
6684   ** macro for addition information on finder-functions.
6685   **
6686   ** Most finders simply return a pointer to a fixed sqlite3_io_methods
6687   ** object.  But the "autolockIoFinder" available on MacOSX does a little
6688   ** more than that; it looks at the filesystem type that hosts the
6689   ** database file and tries to choose an locking method appropriate for
6690   ** that filesystem time.
6691   */
6692   #define UNIXVFS(VFSNAME, FINDER) {                        \
6693     3,                    /* iVersion */                    \
6694     sizeof(unixFile),     /* szOsFile */                    \
6695     MAX_PATHNAME,         /* mxPathname */                  \
6696     0,                    /* pNext */                       \
6697     VFSNAME,              /* zName */                       \
6698     (void*)&FINDER,       /* pAppData */                    \
6699     unixOpen,             /* xOpen */                       \
6700     unixDelete,           /* xDelete */                     \
6701     unixAccess,           /* xAccess */                     \
6702     unixFullPathname,     /* xFullPathname */               \
6703     unixDlOpen,           /* xDlOpen */                     \
6704     unixDlError,          /* xDlError */                    \
6705     unixDlSym,            /* xDlSym */                      \
6706     unixDlClose,          /* xDlClose */                    \
6707     unixRandomness,       /* xRandomness */                 \
6708     unixSleep,            /* xSleep */                      \
6709     unixCurrentTime,      /* xCurrentTime */                \
6710     unixGetLastError,     /* xGetLastError */               \
6711     unixCurrentTimeInt64, /* xCurrentTimeInt64 */           \
6712     unixSetSystemCall,    /* xSetSystemCall */              \
6713     unixGetSystemCall,    /* xGetSystemCall */              \
6714     unixNextSystemCall,   /* xNextSystemCall */             \
6715   }
6716 
6717   /*
6718   ** All default VFSes for unix are contained in the following array.
6719   **
6720   ** Note that the sqlite3_vfs.pNext field of the VFS object is modified
6721   ** by the SQLite core when the VFS is registered.  So the following
6722   ** array cannot be const.
6723   */
6724   static sqlite3_vfs aVfs[] = {
6725 #if SQLITE_ENABLE_LOCKING_STYLE && (OS_VXWORKS || defined(__APPLE__))
6726     UNIXVFS("unix",          autolockIoFinder ),
6727 #else
6728     UNIXVFS("unix",          posixIoFinder ),
6729 #endif
6730     UNIXVFS("unix-none",     nolockIoFinder ),
6731     UNIXVFS("unix-dotfile",  dotlockIoFinder ),
6732     UNIXVFS("unix-excl",     posixIoFinder ),
6733 #if OS_VXWORKS
6734     UNIXVFS("unix-namedsem", semIoFinder ),
6735 #endif
6736 #if SQLITE_ENABLE_LOCKING_STYLE
6737     UNIXVFS("unix-posix",    posixIoFinder ),
6738 #if !OS_VXWORKS
6739     UNIXVFS("unix-flock",    flockIoFinder ),
6740 #endif
6741 #endif
6742 #if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__)
6743     UNIXVFS("unix-afp",      afpIoFinder ),
6744     UNIXVFS("unix-nfs",      nfsIoFinder ),
6745     UNIXVFS("unix-proxy",    proxyIoFinder ),
6746 #endif
6747   };
6748   unsigned int i;          /* Loop counter */
6749 
6750   /* Double-check that the aSyscall[] array has been constructed
6751   ** correctly.  See ticket [bb3a86e890c8e96ab] */
6752   assert( ArraySize(aSyscall)==18 );
6753 
6754   /* Register all VFSes defined in the aVfs[] array */
6755   for(i=0; i<(sizeof(aVfs)/sizeof(sqlite3_vfs)); i++){
6756     sqlite3_vfs_register(&aVfs[i], i==0);
6757   }
6758   return SQLITE_OK;
6759 }
6760 
6761 /*
6762 ** Shutdown the operating system interface.
6763 **
6764 ** Some operating systems might need to do some cleanup in this routine,
6765 ** to release dynamically allocated objects.  But not on unix.
6766 ** This routine is a no-op for unix.
6767 */
sqlite3_os_end(void)6768 int sqlite3_os_end(void){
6769   return SQLITE_OK;
6770 }
6771 
6772 #endif /* SQLITE_OS_UNIX */
6773