1 /*
2 * Copyright (C) 2013 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #define ATRACE_TAG ATRACE_TAG_GRAPHICS
18
19 // This is needed for stdint.h to define INT64_MAX in C++
20 #define __STDC_LIMIT_MACROS
21
22 #include <math.h>
23
24 #include <cutils/log.h>
25
26 #include <ui/Fence.h>
27
28 #include <utils/String8.h>
29 #include <utils/Thread.h>
30 #include <utils/Trace.h>
31 #include <utils/Vector.h>
32
33 #include "DispSync.h"
34 #include "EventLog/EventLog.h"
35
36 namespace android {
37
38 // Setting this to true enables verbose tracing that can be used to debug
39 // vsync event model or phase issues.
40 static const bool kTraceDetailedInfo = false;
41
42 // This is the threshold used to determine when hardware vsync events are
43 // needed to re-synchronize the software vsync model with the hardware. The
44 // error metric used is the mean of the squared difference between each
45 // present time and the nearest software-predicted vsync.
46 static const nsecs_t kErrorThreshold = 160000000000; // 400 usec squared
47
48 // This is the offset from the present fence timestamps to the corresponding
49 // vsync event.
50 static const int64_t kPresentTimeOffset = PRESENT_TIME_OFFSET_FROM_VSYNC_NS;
51
52 class DispSyncThread: public Thread {
53 public:
54
DispSyncThread()55 DispSyncThread():
56 mStop(false),
57 mPeriod(0),
58 mPhase(0),
59 mWakeupLatency(0) {
60 }
61
~DispSyncThread()62 virtual ~DispSyncThread() {}
63
updateModel(nsecs_t period,nsecs_t phase)64 void updateModel(nsecs_t period, nsecs_t phase) {
65 Mutex::Autolock lock(mMutex);
66 mPeriod = period;
67 mPhase = phase;
68 mCond.signal();
69 }
70
stop()71 void stop() {
72 Mutex::Autolock lock(mMutex);
73 mStop = true;
74 mCond.signal();
75 }
76
threadLoop()77 virtual bool threadLoop() {
78 status_t err;
79 nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC);
80 nsecs_t nextEventTime = 0;
81
82 while (true) {
83 Vector<CallbackInvocation> callbackInvocations;
84
85 nsecs_t targetTime = 0;
86
87 { // Scope for lock
88 Mutex::Autolock lock(mMutex);
89
90 if (mStop) {
91 return false;
92 }
93
94 if (mPeriod == 0) {
95 err = mCond.wait(mMutex);
96 if (err != NO_ERROR) {
97 ALOGE("error waiting for new events: %s (%d)",
98 strerror(-err), err);
99 return false;
100 }
101 continue;
102 }
103
104 nextEventTime = computeNextEventTimeLocked(now);
105 targetTime = nextEventTime;
106
107 bool isWakeup = false;
108
109 if (now < targetTime) {
110 err = mCond.waitRelative(mMutex, targetTime - now);
111
112 if (err == TIMED_OUT) {
113 isWakeup = true;
114 } else if (err != NO_ERROR) {
115 ALOGE("error waiting for next event: %s (%d)",
116 strerror(-err), err);
117 return false;
118 }
119 }
120
121 now = systemTime(SYSTEM_TIME_MONOTONIC);
122
123 if (isWakeup) {
124 mWakeupLatency = ((mWakeupLatency * 63) +
125 (now - targetTime)) / 64;
126 if (mWakeupLatency > 500000) {
127 // Don't correct by more than 500 us
128 mWakeupLatency = 500000;
129 }
130 if (kTraceDetailedInfo) {
131 ATRACE_INT64("DispSync:WakeupLat", now - nextEventTime);
132 ATRACE_INT64("DispSync:AvgWakeupLat", mWakeupLatency);
133 }
134 }
135
136 callbackInvocations = gatherCallbackInvocationsLocked(now);
137 }
138
139 if (callbackInvocations.size() > 0) {
140 fireCallbackInvocations(callbackInvocations);
141 }
142 }
143
144 return false;
145 }
146
addEventListener(nsecs_t phase,const sp<DispSync::Callback> & callback)147 status_t addEventListener(nsecs_t phase, const sp<DispSync::Callback>& callback) {
148 Mutex::Autolock lock(mMutex);
149
150 for (size_t i = 0; i < mEventListeners.size(); i++) {
151 if (mEventListeners[i].mCallback == callback) {
152 return BAD_VALUE;
153 }
154 }
155
156 EventListener listener;
157 listener.mPhase = phase;
158 listener.mCallback = callback;
159
160 // We want to allow the firstmost future event to fire without
161 // allowing any past events to fire. Because
162 // computeListenerNextEventTimeLocked filters out events within a half
163 // a period of the last event time, we need to initialize the last
164 // event time to a half a period in the past.
165 listener.mLastEventTime = systemTime(SYSTEM_TIME_MONOTONIC) - mPeriod / 2;
166
167 mEventListeners.push(listener);
168
169 mCond.signal();
170
171 return NO_ERROR;
172 }
173
removeEventListener(const sp<DispSync::Callback> & callback)174 status_t removeEventListener(const sp<DispSync::Callback>& callback) {
175 Mutex::Autolock lock(mMutex);
176
177 for (size_t i = 0; i < mEventListeners.size(); i++) {
178 if (mEventListeners[i].mCallback == callback) {
179 mEventListeners.removeAt(i);
180 mCond.signal();
181 return NO_ERROR;
182 }
183 }
184
185 return BAD_VALUE;
186 }
187
188 // This method is only here to handle the kIgnorePresentFences case.
hasAnyEventListeners()189 bool hasAnyEventListeners() {
190 Mutex::Autolock lock(mMutex);
191 return !mEventListeners.empty();
192 }
193
194 private:
195
196 struct EventListener {
197 nsecs_t mPhase;
198 nsecs_t mLastEventTime;
199 sp<DispSync::Callback> mCallback;
200 };
201
202 struct CallbackInvocation {
203 sp<DispSync::Callback> mCallback;
204 nsecs_t mEventTime;
205 };
206
computeNextEventTimeLocked(nsecs_t now)207 nsecs_t computeNextEventTimeLocked(nsecs_t now) {
208 nsecs_t nextEventTime = INT64_MAX;
209 for (size_t i = 0; i < mEventListeners.size(); i++) {
210 nsecs_t t = computeListenerNextEventTimeLocked(mEventListeners[i],
211 now);
212
213 if (t < nextEventTime) {
214 nextEventTime = t;
215 }
216 }
217
218 return nextEventTime;
219 }
220
gatherCallbackInvocationsLocked(nsecs_t now)221 Vector<CallbackInvocation> gatherCallbackInvocationsLocked(nsecs_t now) {
222 Vector<CallbackInvocation> callbackInvocations;
223 nsecs_t ref = now - mPeriod;
224
225 for (size_t i = 0; i < mEventListeners.size(); i++) {
226 nsecs_t t = computeListenerNextEventTimeLocked(mEventListeners[i],
227 ref);
228
229 if (t < now) {
230 CallbackInvocation ci;
231 ci.mCallback = mEventListeners[i].mCallback;
232 ci.mEventTime = t;
233 callbackInvocations.push(ci);
234 mEventListeners.editItemAt(i).mLastEventTime = t;
235 }
236 }
237
238 return callbackInvocations;
239 }
240
computeListenerNextEventTimeLocked(const EventListener & listener,nsecs_t ref)241 nsecs_t computeListenerNextEventTimeLocked(const EventListener& listener,
242 nsecs_t ref) {
243
244 nsecs_t lastEventTime = listener.mLastEventTime;
245 if (ref < lastEventTime) {
246 ref = lastEventTime;
247 }
248
249 nsecs_t phase = mPhase + listener.mPhase;
250 nsecs_t t = (((ref - phase) / mPeriod) + 1) * mPeriod + phase;
251
252 if (t - listener.mLastEventTime < mPeriod / 2) {
253 t += mPeriod;
254 }
255
256 return t;
257 }
258
fireCallbackInvocations(const Vector<CallbackInvocation> & callbacks)259 void fireCallbackInvocations(const Vector<CallbackInvocation>& callbacks) {
260 for (size_t i = 0; i < callbacks.size(); i++) {
261 callbacks[i].mCallback->onDispSyncEvent(callbacks[i].mEventTime);
262 }
263 }
264
265 bool mStop;
266
267 nsecs_t mPeriod;
268 nsecs_t mPhase;
269 nsecs_t mWakeupLatency;
270
271 Vector<EventListener> mEventListeners;
272
273 Mutex mMutex;
274 Condition mCond;
275 };
276
277 class ZeroPhaseTracer : public DispSync::Callback {
278 public:
ZeroPhaseTracer()279 ZeroPhaseTracer() : mParity(false) {}
280
onDispSyncEvent(nsecs_t)281 virtual void onDispSyncEvent(nsecs_t /*when*/) {
282 mParity = !mParity;
283 ATRACE_INT("ZERO_PHASE_VSYNC", mParity ? 1 : 0);
284 }
285
286 private:
287 bool mParity;
288 };
289
DispSync()290 DispSync::DispSync() :
291 mRefreshSkipCount(0),
292 mThread(new DispSyncThread()) {
293
294 mThread->run("DispSync", PRIORITY_URGENT_DISPLAY + PRIORITY_MORE_FAVORABLE);
295
296 reset();
297 beginResync();
298
299 if (kTraceDetailedInfo) {
300 // If we're not getting present fences then the ZeroPhaseTracer
301 // would prevent HW vsync event from ever being turned off.
302 // Even if we're just ignoring the fences, the zero-phase tracing is
303 // not needed because any time there is an event registered we will
304 // turn on the HW vsync events.
305 if (!kIgnorePresentFences) {
306 addEventListener(0, new ZeroPhaseTracer());
307 }
308 }
309 }
310
~DispSync()311 DispSync::~DispSync() {}
312
reset()313 void DispSync::reset() {
314 Mutex::Autolock lock(mMutex);
315
316 mNumResyncSamples = 0;
317 mFirstResyncSample = 0;
318 mNumResyncSamplesSincePresent = 0;
319 resetErrorLocked();
320 }
321
addPresentFence(const sp<Fence> & fence)322 bool DispSync::addPresentFence(const sp<Fence>& fence) {
323 Mutex::Autolock lock(mMutex);
324
325 mPresentFences[mPresentSampleOffset] = fence;
326 mPresentTimes[mPresentSampleOffset] = 0;
327 mPresentSampleOffset = (mPresentSampleOffset + 1) % NUM_PRESENT_SAMPLES;
328 mNumResyncSamplesSincePresent = 0;
329
330 for (size_t i = 0; i < NUM_PRESENT_SAMPLES; i++) {
331 const sp<Fence>& f(mPresentFences[i]);
332 if (f != NULL) {
333 nsecs_t t = f->getSignalTime();
334 if (t < INT64_MAX) {
335 mPresentFences[i].clear();
336 mPresentTimes[i] = t + kPresentTimeOffset;
337 }
338 }
339 }
340
341 updateErrorLocked();
342
343 return mPeriod == 0 || mError > kErrorThreshold;
344 }
345
beginResync()346 void DispSync::beginResync() {
347 Mutex::Autolock lock(mMutex);
348
349 mNumResyncSamples = 0;
350 }
351
addResyncSample(nsecs_t timestamp)352 bool DispSync::addResyncSample(nsecs_t timestamp) {
353 Mutex::Autolock lock(mMutex);
354
355 size_t idx = (mFirstResyncSample + mNumResyncSamples) % MAX_RESYNC_SAMPLES;
356 mResyncSamples[idx] = timestamp;
357
358 if (mNumResyncSamples < MAX_RESYNC_SAMPLES) {
359 mNumResyncSamples++;
360 } else {
361 mFirstResyncSample = (mFirstResyncSample + 1) % MAX_RESYNC_SAMPLES;
362 }
363
364 updateModelLocked();
365
366 if (mNumResyncSamplesSincePresent++ > MAX_RESYNC_SAMPLES_WITHOUT_PRESENT) {
367 resetErrorLocked();
368 }
369
370 if (kIgnorePresentFences) {
371 // If we don't have the sync framework we will never have
372 // addPresentFence called. This means we have no way to know whether
373 // or not we're synchronized with the HW vsyncs, so we just request
374 // that the HW vsync events be turned on whenever we need to generate
375 // SW vsync events.
376 return mThread->hasAnyEventListeners();
377 }
378
379 return mPeriod == 0 || mError > kErrorThreshold;
380 }
381
endResync()382 void DispSync::endResync() {
383 }
384
addEventListener(nsecs_t phase,const sp<Callback> & callback)385 status_t DispSync::addEventListener(nsecs_t phase,
386 const sp<Callback>& callback) {
387
388 Mutex::Autolock lock(mMutex);
389 return mThread->addEventListener(phase, callback);
390 }
391
setRefreshSkipCount(int count)392 void DispSync::setRefreshSkipCount(int count) {
393 Mutex::Autolock lock(mMutex);
394 ALOGD("setRefreshSkipCount(%d)", count);
395 mRefreshSkipCount = count;
396 updateModelLocked();
397 }
398
removeEventListener(const sp<Callback> & callback)399 status_t DispSync::removeEventListener(const sp<Callback>& callback) {
400 Mutex::Autolock lock(mMutex);
401 return mThread->removeEventListener(callback);
402 }
403
setPeriod(nsecs_t period)404 void DispSync::setPeriod(nsecs_t period) {
405 Mutex::Autolock lock(mMutex);
406 mPeriod = period;
407 mPhase = 0;
408 mThread->updateModel(mPeriod, mPhase);
409 }
410
getPeriod()411 nsecs_t DispSync::getPeriod() {
412 // lock mutex as mPeriod changes multiple times in updateModelLocked
413 Mutex::Autolock lock(mMutex);
414 return mPeriod;
415 }
416
updateModelLocked()417 void DispSync::updateModelLocked() {
418 if (mNumResyncSamples >= MIN_RESYNC_SAMPLES_FOR_UPDATE) {
419 nsecs_t durationSum = 0;
420 for (size_t i = 1; i < mNumResyncSamples; i++) {
421 size_t idx = (mFirstResyncSample + i) % MAX_RESYNC_SAMPLES;
422 size_t prev = (idx + MAX_RESYNC_SAMPLES - 1) % MAX_RESYNC_SAMPLES;
423 durationSum += mResyncSamples[idx] - mResyncSamples[prev];
424 }
425
426 mPeriod = durationSum / (mNumResyncSamples - 1);
427
428 double sampleAvgX = 0;
429 double sampleAvgY = 0;
430 double scale = 2.0 * M_PI / double(mPeriod);
431 for (size_t i = 0; i < mNumResyncSamples; i++) {
432 size_t idx = (mFirstResyncSample + i) % MAX_RESYNC_SAMPLES;
433 nsecs_t sample = mResyncSamples[idx];
434 double samplePhase = double(sample % mPeriod) * scale;
435 sampleAvgX += cos(samplePhase);
436 sampleAvgY += sin(samplePhase);
437 }
438
439 sampleAvgX /= double(mNumResyncSamples);
440 sampleAvgY /= double(mNumResyncSamples);
441
442 mPhase = nsecs_t(atan2(sampleAvgY, sampleAvgX) / scale);
443
444 if (mPhase < 0) {
445 mPhase += mPeriod;
446 }
447
448 if (kTraceDetailedInfo) {
449 ATRACE_INT64("DispSync:Period", mPeriod);
450 ATRACE_INT64("DispSync:Phase", mPhase);
451 }
452
453 // Artificially inflate the period if requested.
454 mPeriod += mPeriod * mRefreshSkipCount;
455
456 mThread->updateModel(mPeriod, mPhase);
457 }
458 }
459
updateErrorLocked()460 void DispSync::updateErrorLocked() {
461 if (mPeriod == 0) {
462 return;
463 }
464
465 // Need to compare present fences against the un-adjusted refresh period,
466 // since they might arrive between two events.
467 nsecs_t period = mPeriod / (1 + mRefreshSkipCount);
468
469 int numErrSamples = 0;
470 nsecs_t sqErrSum = 0;
471
472 for (size_t i = 0; i < NUM_PRESENT_SAMPLES; i++) {
473 nsecs_t sample = mPresentTimes[i];
474 if (sample > mPhase) {
475 nsecs_t sampleErr = (sample - mPhase) % period;
476 if (sampleErr > period / 2) {
477 sampleErr -= period;
478 }
479 sqErrSum += sampleErr * sampleErr;
480 numErrSamples++;
481 }
482 }
483
484 if (numErrSamples > 0) {
485 mError = sqErrSum / numErrSamples;
486 } else {
487 mError = 0;
488 }
489
490 if (kTraceDetailedInfo) {
491 ATRACE_INT64("DispSync:Error", mError);
492 }
493 }
494
resetErrorLocked()495 void DispSync::resetErrorLocked() {
496 mPresentSampleOffset = 0;
497 mError = 0;
498 for (size_t i = 0; i < NUM_PRESENT_SAMPLES; i++) {
499 mPresentFences[i].clear();
500 mPresentTimes[i] = 0;
501 }
502 }
503
computeNextRefresh(int periodOffset) const504 nsecs_t DispSync::computeNextRefresh(int periodOffset) const {
505 Mutex::Autolock lock(mMutex);
506 nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC);
507 return (((now - mPhase) / mPeriod) + periodOffset + 1) * mPeriod + mPhase;
508 }
509
dump(String8 & result) const510 void DispSync::dump(String8& result) const {
511 Mutex::Autolock lock(mMutex);
512 result.appendFormat("present fences are %s\n",
513 kIgnorePresentFences ? "ignored" : "used");
514 result.appendFormat("mPeriod: %" PRId64 " ns (%.3f fps; skipCount=%d)\n",
515 mPeriod, 1000000000.0 / mPeriod, mRefreshSkipCount);
516 result.appendFormat("mPhase: %" PRId64 " ns\n", mPhase);
517 result.appendFormat("mError: %" PRId64 " ns (sqrt=%.1f)\n",
518 mError, sqrt(mError));
519 result.appendFormat("mNumResyncSamplesSincePresent: %d (limit %d)\n",
520 mNumResyncSamplesSincePresent, MAX_RESYNC_SAMPLES_WITHOUT_PRESENT);
521 result.appendFormat("mNumResyncSamples: %zd (max %d)\n",
522 mNumResyncSamples, MAX_RESYNC_SAMPLES);
523
524 result.appendFormat("mResyncSamples:\n");
525 nsecs_t previous = -1;
526 for (size_t i = 0; i < mNumResyncSamples; i++) {
527 size_t idx = (mFirstResyncSample + i) % MAX_RESYNC_SAMPLES;
528 nsecs_t sampleTime = mResyncSamples[idx];
529 if (i == 0) {
530 result.appendFormat(" %" PRId64 "\n", sampleTime);
531 } else {
532 result.appendFormat(" %" PRId64 " (+%" PRId64 ")\n",
533 sampleTime, sampleTime - previous);
534 }
535 previous = sampleTime;
536 }
537
538 result.appendFormat("mPresentFences / mPresentTimes [%d]:\n",
539 NUM_PRESENT_SAMPLES);
540 nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC);
541 previous = 0;
542 for (size_t i = 0; i < NUM_PRESENT_SAMPLES; i++) {
543 size_t idx = (i + mPresentSampleOffset) % NUM_PRESENT_SAMPLES;
544 bool signaled = mPresentFences[idx] == NULL;
545 nsecs_t presentTime = mPresentTimes[idx];
546 if (!signaled) {
547 result.appendFormat(" [unsignaled fence]\n");
548 } else if (presentTime == 0) {
549 result.appendFormat(" 0\n");
550 } else if (previous == 0) {
551 result.appendFormat(" %" PRId64 " (%.3f ms ago)\n", presentTime,
552 (now - presentTime) / 1000000.0);
553 } else {
554 result.appendFormat(" %" PRId64 " (+%" PRId64 " / %.3f) (%.3f ms ago)\n",
555 presentTime, presentTime - previous,
556 (presentTime - previous) / (double) mPeriod,
557 (now - presentTime) / 1000000.0);
558 }
559 previous = presentTime;
560 }
561
562 result.appendFormat("current monotonic time: %" PRId64 "\n", now);
563 }
564
565 } // namespace android
566