1 //===-- RuntimeDyldELF.cpp - Run-time dynamic linker for MC-JIT -*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Implementation of ELF support for the MC-JIT runtime dynamic linker.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "RuntimeDyldELF.h"
15 #include "JITRegistrar.h"
16 #include "ObjectImageCommon.h"
17 #include "llvm/ADT/IntervalMap.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/StringRef.h"
20 #include "llvm/ADT/Triple.h"
21 #include "llvm/ExecutionEngine/ObjectBuffer.h"
22 #include "llvm/ExecutionEngine/ObjectImage.h"
23 #include "llvm/Object/ELFObjectFile.h"
24 #include "llvm/Object/ObjectFile.h"
25 #include "llvm/Support/ELF.h"
26 #include "llvm/Support/MemoryBuffer.h"
27
28 using namespace llvm;
29 using namespace llvm::object;
30
31 #define DEBUG_TYPE "dyld"
32
33 namespace {
34
check(std::error_code Err)35 static inline std::error_code check(std::error_code Err) {
36 if (Err) {
37 report_fatal_error(Err.message());
38 }
39 return Err;
40 }
41
42 template <class ELFT> class DyldELFObject : public ELFObjectFile<ELFT> {
43 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
44
45 typedef Elf_Shdr_Impl<ELFT> Elf_Shdr;
46 typedef Elf_Sym_Impl<ELFT> Elf_Sym;
47 typedef Elf_Rel_Impl<ELFT, false> Elf_Rel;
48 typedef Elf_Rel_Impl<ELFT, true> Elf_Rela;
49
50 typedef Elf_Ehdr_Impl<ELFT> Elf_Ehdr;
51
52 typedef typename ELFDataTypeTypedefHelper<ELFT>::value_type addr_type;
53
54 std::unique_ptr<ObjectFile> UnderlyingFile;
55
56 public:
57 DyldELFObject(std::unique_ptr<ObjectFile> UnderlyingFile,
58 std::unique_ptr<MemoryBuffer> Wrapper, std::error_code &ec);
59
60 DyldELFObject(std::unique_ptr<MemoryBuffer> Wrapper, std::error_code &ec);
61
62 void updateSectionAddress(const SectionRef &Sec, uint64_t Addr);
63 void updateSymbolAddress(const SymbolRef &Sym, uint64_t Addr);
64
65 // Methods for type inquiry through isa, cast and dyn_cast
classof(const Binary * v)66 static inline bool classof(const Binary *v) {
67 return (isa<ELFObjectFile<ELFT>>(v) &&
68 classof(cast<ELFObjectFile<ELFT>>(v)));
69 }
classof(const ELFObjectFile<ELFT> * v)70 static inline bool classof(const ELFObjectFile<ELFT> *v) {
71 return v->isDyldType();
72 }
73 };
74
75 template <class ELFT> class ELFObjectImage : public ObjectImageCommon {
76 bool Registered;
77
78 public:
ELFObjectImage(ObjectBuffer * Input,std::unique_ptr<DyldELFObject<ELFT>> Obj)79 ELFObjectImage(ObjectBuffer *Input, std::unique_ptr<DyldELFObject<ELFT>> Obj)
80 : ObjectImageCommon(Input, std::move(Obj)), Registered(false) {}
81
~ELFObjectImage()82 virtual ~ELFObjectImage() {
83 if (Registered)
84 deregisterWithDebugger();
85 }
86
87 // Subclasses can override these methods to update the image with loaded
88 // addresses for sections and common symbols
updateSectionAddress(const SectionRef & Sec,uint64_t Addr)89 void updateSectionAddress(const SectionRef &Sec, uint64_t Addr) override {
90 static_cast<DyldELFObject<ELFT>*>(getObjectFile())
91 ->updateSectionAddress(Sec, Addr);
92 }
93
updateSymbolAddress(const SymbolRef & Sym,uint64_t Addr)94 void updateSymbolAddress(const SymbolRef &Sym, uint64_t Addr) override {
95 static_cast<DyldELFObject<ELFT>*>(getObjectFile())
96 ->updateSymbolAddress(Sym, Addr);
97 }
98
registerWithDebugger()99 void registerWithDebugger() override {
100 JITRegistrar::getGDBRegistrar().registerObject(*Buffer);
101 Registered = true;
102 }
deregisterWithDebugger()103 void deregisterWithDebugger() override {
104 JITRegistrar::getGDBRegistrar().deregisterObject(*Buffer);
105 }
106 };
107
108 // The MemoryBuffer passed into this constructor is just a wrapper around the
109 // actual memory. Ultimately, the Binary parent class will take ownership of
110 // this MemoryBuffer object but not the underlying memory.
111 template <class ELFT>
DyldELFObject(std::unique_ptr<MemoryBuffer> Wrapper,std::error_code & EC)112 DyldELFObject<ELFT>::DyldELFObject(std::unique_ptr<MemoryBuffer> Wrapper,
113 std::error_code &EC)
114 : ELFObjectFile<ELFT>(std::move(Wrapper), EC) {
115 this->isDyldELFObject = true;
116 }
117
118 template <class ELFT>
DyldELFObject(std::unique_ptr<ObjectFile> UnderlyingFile,std::unique_ptr<MemoryBuffer> Wrapper,std::error_code & EC)119 DyldELFObject<ELFT>::DyldELFObject(std::unique_ptr<ObjectFile> UnderlyingFile,
120 std::unique_ptr<MemoryBuffer> Wrapper,
121 std::error_code &EC)
122 : ELFObjectFile<ELFT>(std::move(Wrapper), EC),
123 UnderlyingFile(std::move(UnderlyingFile)) {
124 this->isDyldELFObject = true;
125 }
126
127 template <class ELFT>
updateSectionAddress(const SectionRef & Sec,uint64_t Addr)128 void DyldELFObject<ELFT>::updateSectionAddress(const SectionRef &Sec,
129 uint64_t Addr) {
130 DataRefImpl ShdrRef = Sec.getRawDataRefImpl();
131 Elf_Shdr *shdr =
132 const_cast<Elf_Shdr *>(reinterpret_cast<const Elf_Shdr *>(ShdrRef.p));
133
134 // This assumes the address passed in matches the target address bitness
135 // The template-based type cast handles everything else.
136 shdr->sh_addr = static_cast<addr_type>(Addr);
137 }
138
139 template <class ELFT>
updateSymbolAddress(const SymbolRef & SymRef,uint64_t Addr)140 void DyldELFObject<ELFT>::updateSymbolAddress(const SymbolRef &SymRef,
141 uint64_t Addr) {
142
143 Elf_Sym *sym = const_cast<Elf_Sym *>(
144 ELFObjectFile<ELFT>::getSymbol(SymRef.getRawDataRefImpl()));
145
146 // This assumes the address passed in matches the target address bitness
147 // The template-based type cast handles everything else.
148 sym->st_value = static_cast<addr_type>(Addr);
149 }
150
151 } // namespace
152
153 namespace llvm {
154
registerEHFrames()155 void RuntimeDyldELF::registerEHFrames() {
156 if (!MemMgr)
157 return;
158 for (int i = 0, e = UnregisteredEHFrameSections.size(); i != e; ++i) {
159 SID EHFrameSID = UnregisteredEHFrameSections[i];
160 uint8_t *EHFrameAddr = Sections[EHFrameSID].Address;
161 uint64_t EHFrameLoadAddr = Sections[EHFrameSID].LoadAddress;
162 size_t EHFrameSize = Sections[EHFrameSID].Size;
163 MemMgr->registerEHFrames(EHFrameAddr, EHFrameLoadAddr, EHFrameSize);
164 RegisteredEHFrameSections.push_back(EHFrameSID);
165 }
166 UnregisteredEHFrameSections.clear();
167 }
168
deregisterEHFrames()169 void RuntimeDyldELF::deregisterEHFrames() {
170 if (!MemMgr)
171 return;
172 for (int i = 0, e = RegisteredEHFrameSections.size(); i != e; ++i) {
173 SID EHFrameSID = RegisteredEHFrameSections[i];
174 uint8_t *EHFrameAddr = Sections[EHFrameSID].Address;
175 uint64_t EHFrameLoadAddr = Sections[EHFrameSID].LoadAddress;
176 size_t EHFrameSize = Sections[EHFrameSID].Size;
177 MemMgr->deregisterEHFrames(EHFrameAddr, EHFrameLoadAddr, EHFrameSize);
178 }
179 RegisteredEHFrameSections.clear();
180 }
181
182 ObjectImage *
createObjectImageFromFile(std::unique_ptr<object::ObjectFile> ObjFile)183 RuntimeDyldELF::createObjectImageFromFile(std::unique_ptr<object::ObjectFile> ObjFile) {
184 if (!ObjFile)
185 return nullptr;
186
187 std::error_code ec;
188 std::unique_ptr<MemoryBuffer> Buffer(
189 MemoryBuffer::getMemBuffer(ObjFile->getData(), "", false));
190
191 if (ObjFile->getBytesInAddress() == 4 && ObjFile->isLittleEndian()) {
192 auto Obj =
193 llvm::make_unique<DyldELFObject<ELFType<support::little, 2, false>>>(
194 std::move(ObjFile), std::move(Buffer), ec);
195 return new ELFObjectImage<ELFType<support::little, 2, false>>(
196 nullptr, std::move(Obj));
197 } else if (ObjFile->getBytesInAddress() == 4 && !ObjFile->isLittleEndian()) {
198 auto Obj =
199 llvm::make_unique<DyldELFObject<ELFType<support::big, 2, false>>>(
200 std::move(ObjFile), std::move(Buffer), ec);
201 return new ELFObjectImage<ELFType<support::big, 2, false>>(nullptr, std::move(Obj));
202 } else if (ObjFile->getBytesInAddress() == 8 && !ObjFile->isLittleEndian()) {
203 auto Obj = llvm::make_unique<DyldELFObject<ELFType<support::big, 2, true>>>(
204 std::move(ObjFile), std::move(Buffer), ec);
205 return new ELFObjectImage<ELFType<support::big, 2, true>>(nullptr,
206 std::move(Obj));
207 } else if (ObjFile->getBytesInAddress() == 8 && ObjFile->isLittleEndian()) {
208 auto Obj =
209 llvm::make_unique<DyldELFObject<ELFType<support::little, 2, true>>>(
210 std::move(ObjFile), std::move(Buffer), ec);
211 return new ELFObjectImage<ELFType<support::little, 2, true>>(
212 nullptr, std::move(Obj));
213 } else
214 llvm_unreachable("Unexpected ELF format");
215 }
216
createObjectImage(ObjectBuffer * Buffer)217 ObjectImage *RuntimeDyldELF::createObjectImage(ObjectBuffer *Buffer) {
218 if (Buffer->getBufferSize() < ELF::EI_NIDENT)
219 llvm_unreachable("Unexpected ELF object size");
220 std::pair<unsigned char, unsigned char> Ident =
221 std::make_pair((uint8_t)Buffer->getBufferStart()[ELF::EI_CLASS],
222 (uint8_t)Buffer->getBufferStart()[ELF::EI_DATA]);
223 std::error_code ec;
224
225 std::unique_ptr<MemoryBuffer> Buf(Buffer->getMemBuffer());
226
227 if (Ident.first == ELF::ELFCLASS32 && Ident.second == ELF::ELFDATA2LSB) {
228 auto Obj =
229 llvm::make_unique<DyldELFObject<ELFType<support::little, 4, false>>>(
230 std::move(Buf), ec);
231 return new ELFObjectImage<ELFType<support::little, 4, false>>(
232 Buffer, std::move(Obj));
233 } else if (Ident.first == ELF::ELFCLASS32 &&
234 Ident.second == ELF::ELFDATA2MSB) {
235 auto Obj =
236 llvm::make_unique<DyldELFObject<ELFType<support::big, 4, false>>>(
237 std::move(Buf), ec);
238 return new ELFObjectImage<ELFType<support::big, 4, false>>(Buffer,
239 std::move(Obj));
240 } else if (Ident.first == ELF::ELFCLASS64 &&
241 Ident.second == ELF::ELFDATA2MSB) {
242 auto Obj = llvm::make_unique<DyldELFObject<ELFType<support::big, 8, true>>>(
243 std::move(Buf), ec);
244 return new ELFObjectImage<ELFType<support::big, 8, true>>(Buffer, std::move(Obj));
245 } else if (Ident.first == ELF::ELFCLASS64 &&
246 Ident.second == ELF::ELFDATA2LSB) {
247 auto Obj =
248 llvm::make_unique<DyldELFObject<ELFType<support::little, 8, true>>>(
249 std::move(Buf), ec);
250 return new ELFObjectImage<ELFType<support::little, 8, true>>(Buffer, std::move(Obj));
251 } else
252 llvm_unreachable("Unexpected ELF format");
253 }
254
~RuntimeDyldELF()255 RuntimeDyldELF::~RuntimeDyldELF() {}
256
resolveX86_64Relocation(const SectionEntry & Section,uint64_t Offset,uint64_t Value,uint32_t Type,int64_t Addend,uint64_t SymOffset)257 void RuntimeDyldELF::resolveX86_64Relocation(const SectionEntry &Section,
258 uint64_t Offset, uint64_t Value,
259 uint32_t Type, int64_t Addend,
260 uint64_t SymOffset) {
261 switch (Type) {
262 default:
263 llvm_unreachable("Relocation type not implemented yet!");
264 break;
265 case ELF::R_X86_64_64: {
266 uint64_t *Target = reinterpret_cast<uint64_t *>(Section.Address + Offset);
267 *Target = Value + Addend;
268 DEBUG(dbgs() << "Writing " << format("%p", (Value + Addend)) << " at "
269 << format("%p\n", Target));
270 break;
271 }
272 case ELF::R_X86_64_32:
273 case ELF::R_X86_64_32S: {
274 Value += Addend;
275 assert((Type == ELF::R_X86_64_32 && (Value <= UINT32_MAX)) ||
276 (Type == ELF::R_X86_64_32S &&
277 ((int64_t)Value <= INT32_MAX && (int64_t)Value >= INT32_MIN)));
278 uint32_t TruncatedAddr = (Value & 0xFFFFFFFF);
279 uint32_t *Target = reinterpret_cast<uint32_t *>(Section.Address + Offset);
280 *Target = TruncatedAddr;
281 DEBUG(dbgs() << "Writing " << format("%p", TruncatedAddr) << " at "
282 << format("%p\n", Target));
283 break;
284 }
285 case ELF::R_X86_64_GOTPCREL: {
286 // findGOTEntry returns the 'G + GOT' part of the relocation calculation
287 // based on the load/target address of the GOT (not the current/local addr).
288 uint64_t GOTAddr = findGOTEntry(Value, SymOffset);
289 uint32_t *Target = reinterpret_cast<uint32_t *>(Section.Address + Offset);
290 uint64_t FinalAddress = Section.LoadAddress + Offset;
291 // The processRelocationRef method combines the symbol offset and the addend
292 // and in most cases that's what we want. For this relocation type, we need
293 // the raw addend, so we subtract the symbol offset to get it.
294 int64_t RealOffset = GOTAddr + Addend - SymOffset - FinalAddress;
295 assert(RealOffset <= INT32_MAX && RealOffset >= INT32_MIN);
296 int32_t TruncOffset = (RealOffset & 0xFFFFFFFF);
297 *Target = TruncOffset;
298 break;
299 }
300 case ELF::R_X86_64_PC32: {
301 // Get the placeholder value from the generated object since
302 // a previous relocation attempt may have overwritten the loaded version
303 uint32_t *Placeholder =
304 reinterpret_cast<uint32_t *>(Section.ObjAddress + Offset);
305 uint32_t *Target = reinterpret_cast<uint32_t *>(Section.Address + Offset);
306 uint64_t FinalAddress = Section.LoadAddress + Offset;
307 int64_t RealOffset = *Placeholder + Value + Addend - FinalAddress;
308 assert(RealOffset <= INT32_MAX && RealOffset >= INT32_MIN);
309 int32_t TruncOffset = (RealOffset & 0xFFFFFFFF);
310 *Target = TruncOffset;
311 break;
312 }
313 case ELF::R_X86_64_PC64: {
314 // Get the placeholder value from the generated object since
315 // a previous relocation attempt may have overwritten the loaded version
316 uint64_t *Placeholder =
317 reinterpret_cast<uint64_t *>(Section.ObjAddress + Offset);
318 uint64_t *Target = reinterpret_cast<uint64_t *>(Section.Address + Offset);
319 uint64_t FinalAddress = Section.LoadAddress + Offset;
320 *Target = *Placeholder + Value + Addend - FinalAddress;
321 break;
322 }
323 }
324 }
325
resolveX86Relocation(const SectionEntry & Section,uint64_t Offset,uint32_t Value,uint32_t Type,int32_t Addend)326 void RuntimeDyldELF::resolveX86Relocation(const SectionEntry &Section,
327 uint64_t Offset, uint32_t Value,
328 uint32_t Type, int32_t Addend) {
329 switch (Type) {
330 case ELF::R_386_32: {
331 // Get the placeholder value from the generated object since
332 // a previous relocation attempt may have overwritten the loaded version
333 uint32_t *Placeholder =
334 reinterpret_cast<uint32_t *>(Section.ObjAddress + Offset);
335 uint32_t *Target = reinterpret_cast<uint32_t *>(Section.Address + Offset);
336 *Target = *Placeholder + Value + Addend;
337 break;
338 }
339 case ELF::R_386_PC32: {
340 // Get the placeholder value from the generated object since
341 // a previous relocation attempt may have overwritten the loaded version
342 uint32_t *Placeholder =
343 reinterpret_cast<uint32_t *>(Section.ObjAddress + Offset);
344 uint32_t *Target = reinterpret_cast<uint32_t *>(Section.Address + Offset);
345 uint32_t FinalAddress = ((Section.LoadAddress + Offset) & 0xFFFFFFFF);
346 uint32_t RealOffset = *Placeholder + Value + Addend - FinalAddress;
347 *Target = RealOffset;
348 break;
349 }
350 default:
351 // There are other relocation types, but it appears these are the
352 // only ones currently used by the LLVM ELF object writer
353 llvm_unreachable("Relocation type not implemented yet!");
354 break;
355 }
356 }
357
resolveAArch64Relocation(const SectionEntry & Section,uint64_t Offset,uint64_t Value,uint32_t Type,int64_t Addend)358 void RuntimeDyldELF::resolveAArch64Relocation(const SectionEntry &Section,
359 uint64_t Offset, uint64_t Value,
360 uint32_t Type, int64_t Addend) {
361 uint32_t *TargetPtr = reinterpret_cast<uint32_t *>(Section.Address + Offset);
362 uint64_t FinalAddress = Section.LoadAddress + Offset;
363
364 DEBUG(dbgs() << "resolveAArch64Relocation, LocalAddress: 0x"
365 << format("%llx", Section.Address + Offset)
366 << " FinalAddress: 0x" << format("%llx", FinalAddress)
367 << " Value: 0x" << format("%llx", Value) << " Type: 0x"
368 << format("%x", Type) << " Addend: 0x" << format("%llx", Addend)
369 << "\n");
370
371 switch (Type) {
372 default:
373 llvm_unreachable("Relocation type not implemented yet!");
374 break;
375 case ELF::R_AARCH64_ABS64: {
376 uint64_t *TargetPtr =
377 reinterpret_cast<uint64_t *>(Section.Address + Offset);
378 *TargetPtr = Value + Addend;
379 break;
380 }
381 case ELF::R_AARCH64_PREL32: {
382 uint64_t Result = Value + Addend - FinalAddress;
383 assert(static_cast<int64_t>(Result) >= INT32_MIN &&
384 static_cast<int64_t>(Result) <= UINT32_MAX);
385 *TargetPtr = static_cast<uint32_t>(Result & 0xffffffffU);
386 break;
387 }
388 case ELF::R_AARCH64_CALL26: // fallthrough
389 case ELF::R_AARCH64_JUMP26: {
390 // Operation: S+A-P. Set Call or B immediate value to bits fff_fffc of the
391 // calculation.
392 uint64_t BranchImm = Value + Addend - FinalAddress;
393
394 // "Check that -2^27 <= result < 2^27".
395 assert(-(1LL << 27) <= static_cast<int64_t>(BranchImm) &&
396 static_cast<int64_t>(BranchImm) < (1LL << 27));
397
398 // AArch64 code is emitted with .rela relocations. The data already in any
399 // bits affected by the relocation on entry is garbage.
400 *TargetPtr &= 0xfc000000U;
401 // Immediate goes in bits 25:0 of B and BL.
402 *TargetPtr |= static_cast<uint32_t>(BranchImm & 0xffffffcU) >> 2;
403 break;
404 }
405 case ELF::R_AARCH64_MOVW_UABS_G3: {
406 uint64_t Result = Value + Addend;
407
408 // AArch64 code is emitted with .rela relocations. The data already in any
409 // bits affected by the relocation on entry is garbage.
410 *TargetPtr &= 0xffe0001fU;
411 // Immediate goes in bits 20:5 of MOVZ/MOVK instruction
412 *TargetPtr |= Result >> (48 - 5);
413 // Shift must be "lsl #48", in bits 22:21
414 assert((*TargetPtr >> 21 & 0x3) == 3 && "invalid shift for relocation");
415 break;
416 }
417 case ELF::R_AARCH64_MOVW_UABS_G2_NC: {
418 uint64_t Result = Value + Addend;
419
420 // AArch64 code is emitted with .rela relocations. The data already in any
421 // bits affected by the relocation on entry is garbage.
422 *TargetPtr &= 0xffe0001fU;
423 // Immediate goes in bits 20:5 of MOVZ/MOVK instruction
424 *TargetPtr |= ((Result & 0xffff00000000ULL) >> (32 - 5));
425 // Shift must be "lsl #32", in bits 22:21
426 assert((*TargetPtr >> 21 & 0x3) == 2 && "invalid shift for relocation");
427 break;
428 }
429 case ELF::R_AARCH64_MOVW_UABS_G1_NC: {
430 uint64_t Result = Value + Addend;
431
432 // AArch64 code is emitted with .rela relocations. The data already in any
433 // bits affected by the relocation on entry is garbage.
434 *TargetPtr &= 0xffe0001fU;
435 // Immediate goes in bits 20:5 of MOVZ/MOVK instruction
436 *TargetPtr |= ((Result & 0xffff0000U) >> (16 - 5));
437 // Shift must be "lsl #16", in bits 22:2
438 assert((*TargetPtr >> 21 & 0x3) == 1 && "invalid shift for relocation");
439 break;
440 }
441 case ELF::R_AARCH64_MOVW_UABS_G0_NC: {
442 uint64_t Result = Value + Addend;
443
444 // AArch64 code is emitted with .rela relocations. The data already in any
445 // bits affected by the relocation on entry is garbage.
446 *TargetPtr &= 0xffe0001fU;
447 // Immediate goes in bits 20:5 of MOVZ/MOVK instruction
448 *TargetPtr |= ((Result & 0xffffU) << 5);
449 // Shift must be "lsl #0", in bits 22:21.
450 assert((*TargetPtr >> 21 & 0x3) == 0 && "invalid shift for relocation");
451 break;
452 }
453 case ELF::R_AARCH64_ADR_PREL_PG_HI21: {
454 // Operation: Page(S+A) - Page(P)
455 uint64_t Result =
456 ((Value + Addend) & ~0xfffULL) - (FinalAddress & ~0xfffULL);
457
458 // Check that -2^32 <= X < 2^32
459 assert(static_cast<int64_t>(Result) >= (-1LL << 32) &&
460 static_cast<int64_t>(Result) < (1LL << 32) &&
461 "overflow check failed for relocation");
462
463 // AArch64 code is emitted with .rela relocations. The data already in any
464 // bits affected by the relocation on entry is garbage.
465 *TargetPtr &= 0x9f00001fU;
466 // Immediate goes in bits 30:29 + 5:23 of ADRP instruction, taken
467 // from bits 32:12 of X.
468 *TargetPtr |= ((Result & 0x3000U) << (29 - 12));
469 *TargetPtr |= ((Result & 0x1ffffc000ULL) >> (14 - 5));
470 break;
471 }
472 case ELF::R_AARCH64_LDST32_ABS_LO12_NC: {
473 // Operation: S + A
474 uint64_t Result = Value + Addend;
475
476 // AArch64 code is emitted with .rela relocations. The data already in any
477 // bits affected by the relocation on entry is garbage.
478 *TargetPtr &= 0xffc003ffU;
479 // Immediate goes in bits 21:10 of LD/ST instruction, taken
480 // from bits 11:2 of X
481 *TargetPtr |= ((Result & 0xffc) << (10 - 2));
482 break;
483 }
484 case ELF::R_AARCH64_LDST64_ABS_LO12_NC: {
485 // Operation: S + A
486 uint64_t Result = Value + Addend;
487
488 // AArch64 code is emitted with .rela relocations. The data already in any
489 // bits affected by the relocation on entry is garbage.
490 *TargetPtr &= 0xffc003ffU;
491 // Immediate goes in bits 21:10 of LD/ST instruction, taken
492 // from bits 11:3 of X
493 *TargetPtr |= ((Result & 0xff8) << (10 - 3));
494 break;
495 }
496 }
497 }
498
resolveARMRelocation(const SectionEntry & Section,uint64_t Offset,uint32_t Value,uint32_t Type,int32_t Addend)499 void RuntimeDyldELF::resolveARMRelocation(const SectionEntry &Section,
500 uint64_t Offset, uint32_t Value,
501 uint32_t Type, int32_t Addend) {
502 // TODO: Add Thumb relocations.
503 uint32_t *Placeholder =
504 reinterpret_cast<uint32_t *>(Section.ObjAddress + Offset);
505 uint32_t *TargetPtr = (uint32_t *)(Section.Address + Offset);
506 uint32_t FinalAddress = ((Section.LoadAddress + Offset) & 0xFFFFFFFF);
507 Value += Addend;
508
509 DEBUG(dbgs() << "resolveARMRelocation, LocalAddress: "
510 << Section.Address + Offset
511 << " FinalAddress: " << format("%p", FinalAddress) << " Value: "
512 << format("%x", Value) << " Type: " << format("%x", Type)
513 << " Addend: " << format("%x", Addend) << "\n");
514
515 switch (Type) {
516 default:
517 llvm_unreachable("Not implemented relocation type!");
518
519 case ELF::R_ARM_NONE:
520 break;
521 // Write a 32bit value to relocation address, taking into account the
522 // implicit addend encoded in the target.
523 case ELF::R_ARM_PREL31:
524 case ELF::R_ARM_TARGET1:
525 case ELF::R_ARM_ABS32:
526 *TargetPtr = *Placeholder + Value;
527 break;
528 // Write first 16 bit of 32 bit value to the mov instruction.
529 // Last 4 bit should be shifted.
530 case ELF::R_ARM_MOVW_ABS_NC:
531 // We are not expecting any other addend in the relocation address.
532 // Using 0x000F0FFF because MOVW has its 16 bit immediate split into 2
533 // non-contiguous fields.
534 assert((*Placeholder & 0x000F0FFF) == 0);
535 Value = Value & 0xFFFF;
536 *TargetPtr = *Placeholder | (Value & 0xFFF);
537 *TargetPtr |= ((Value >> 12) & 0xF) << 16;
538 break;
539 // Write last 16 bit of 32 bit value to the mov instruction.
540 // Last 4 bit should be shifted.
541 case ELF::R_ARM_MOVT_ABS:
542 // We are not expecting any other addend in the relocation address.
543 // Use 0x000F0FFF for the same reason as R_ARM_MOVW_ABS_NC.
544 assert((*Placeholder & 0x000F0FFF) == 0);
545
546 Value = (Value >> 16) & 0xFFFF;
547 *TargetPtr = *Placeholder | (Value & 0xFFF);
548 *TargetPtr |= ((Value >> 12) & 0xF) << 16;
549 break;
550 // Write 24 bit relative value to the branch instruction.
551 case ELF::R_ARM_PC24: // Fall through.
552 case ELF::R_ARM_CALL: // Fall through.
553 case ELF::R_ARM_JUMP24: {
554 int32_t RelValue = static_cast<int32_t>(Value - FinalAddress - 8);
555 RelValue = (RelValue & 0x03FFFFFC) >> 2;
556 assert((*TargetPtr & 0xFFFFFF) == 0xFFFFFE);
557 *TargetPtr &= 0xFF000000;
558 *TargetPtr |= RelValue;
559 break;
560 }
561 case ELF::R_ARM_PRIVATE_0:
562 // This relocation is reserved by the ARM ELF ABI for internal use. We
563 // appropriate it here to act as an R_ARM_ABS32 without any addend for use
564 // in the stubs created during JIT (which can't put an addend into the
565 // original object file).
566 *TargetPtr = Value;
567 break;
568 }
569 }
570
resolveMIPSRelocation(const SectionEntry & Section,uint64_t Offset,uint32_t Value,uint32_t Type,int32_t Addend)571 void RuntimeDyldELF::resolveMIPSRelocation(const SectionEntry &Section,
572 uint64_t Offset, uint32_t Value,
573 uint32_t Type, int32_t Addend) {
574 uint32_t *Placeholder =
575 reinterpret_cast<uint32_t *>(Section.ObjAddress + Offset);
576 uint32_t *TargetPtr = (uint32_t *)(Section.Address + Offset);
577 Value += Addend;
578
579 DEBUG(dbgs() << "resolveMipselocation, LocalAddress: "
580 << Section.Address + Offset << " FinalAddress: "
581 << format("%p", Section.LoadAddress + Offset) << " Value: "
582 << format("%x", Value) << " Type: " << format("%x", Type)
583 << " Addend: " << format("%x", Addend) << "\n");
584
585 switch (Type) {
586 default:
587 llvm_unreachable("Not implemented relocation type!");
588 break;
589 case ELF::R_MIPS_32:
590 *TargetPtr = Value + (*Placeholder);
591 break;
592 case ELF::R_MIPS_26:
593 *TargetPtr = ((*Placeholder) & 0xfc000000) | ((Value & 0x0fffffff) >> 2);
594 break;
595 case ELF::R_MIPS_HI16:
596 // Get the higher 16-bits. Also add 1 if bit 15 is 1.
597 Value += ((*Placeholder) & 0x0000ffff) << 16;
598 *TargetPtr =
599 ((*Placeholder) & 0xffff0000) | (((Value + 0x8000) >> 16) & 0xffff);
600 break;
601 case ELF::R_MIPS_LO16:
602 Value += ((*Placeholder) & 0x0000ffff);
603 *TargetPtr = ((*Placeholder) & 0xffff0000) | (Value & 0xffff);
604 break;
605 case ELF::R_MIPS_UNUSED1:
606 // Similar to ELF::R_ARM_PRIVATE_0, R_MIPS_UNUSED1 and R_MIPS_UNUSED2
607 // are used for internal JIT purpose. These relocations are similar to
608 // R_MIPS_HI16 and R_MIPS_LO16, but they do not take any addend into
609 // account.
610 *TargetPtr =
611 ((*TargetPtr) & 0xffff0000) | (((Value + 0x8000) >> 16) & 0xffff);
612 break;
613 case ELF::R_MIPS_UNUSED2:
614 *TargetPtr = ((*TargetPtr) & 0xffff0000) | (Value & 0xffff);
615 break;
616 }
617 }
618
619 // Return the .TOC. section and offset.
findPPC64TOCSection(ObjectImage & Obj,ObjSectionToIDMap & LocalSections,RelocationValueRef & Rel)620 void RuntimeDyldELF::findPPC64TOCSection(ObjectImage &Obj,
621 ObjSectionToIDMap &LocalSections,
622 RelocationValueRef &Rel) {
623 // Set a default SectionID in case we do not find a TOC section below.
624 // This may happen for references to TOC base base (sym@toc, .odp
625 // relocation) without a .toc directive. In this case just use the
626 // first section (which is usually the .odp) since the code won't
627 // reference the .toc base directly.
628 Rel.SymbolName = NULL;
629 Rel.SectionID = 0;
630
631 // The TOC consists of sections .got, .toc, .tocbss, .plt in that
632 // order. The TOC starts where the first of these sections starts.
633 for (section_iterator si = Obj.begin_sections(), se = Obj.end_sections();
634 si != se; ++si) {
635
636 StringRef SectionName;
637 check(si->getName(SectionName));
638
639 if (SectionName == ".got"
640 || SectionName == ".toc"
641 || SectionName == ".tocbss"
642 || SectionName == ".plt") {
643 Rel.SectionID = findOrEmitSection(Obj, *si, false, LocalSections);
644 break;
645 }
646 }
647
648 // Per the ppc64-elf-linux ABI, The TOC base is TOC value plus 0x8000
649 // thus permitting a full 64 Kbytes segment.
650 Rel.Addend = 0x8000;
651 }
652
653 // Returns the sections and offset associated with the ODP entry referenced
654 // by Symbol.
findOPDEntrySection(ObjectImage & Obj,ObjSectionToIDMap & LocalSections,RelocationValueRef & Rel)655 void RuntimeDyldELF::findOPDEntrySection(ObjectImage &Obj,
656 ObjSectionToIDMap &LocalSections,
657 RelocationValueRef &Rel) {
658 // Get the ELF symbol value (st_value) to compare with Relocation offset in
659 // .opd entries
660 for (section_iterator si = Obj.begin_sections(), se = Obj.end_sections();
661 si != se; ++si) {
662 section_iterator RelSecI = si->getRelocatedSection();
663 if (RelSecI == Obj.end_sections())
664 continue;
665
666 StringRef RelSectionName;
667 check(RelSecI->getName(RelSectionName));
668 if (RelSectionName != ".opd")
669 continue;
670
671 for (relocation_iterator i = si->relocation_begin(),
672 e = si->relocation_end();
673 i != e;) {
674 // The R_PPC64_ADDR64 relocation indicates the first field
675 // of a .opd entry
676 uint64_t TypeFunc;
677 check(i->getType(TypeFunc));
678 if (TypeFunc != ELF::R_PPC64_ADDR64) {
679 ++i;
680 continue;
681 }
682
683 uint64_t TargetSymbolOffset;
684 symbol_iterator TargetSymbol = i->getSymbol();
685 check(i->getOffset(TargetSymbolOffset));
686 int64_t Addend;
687 check(getELFRelocationAddend(*i, Addend));
688
689 ++i;
690 if (i == e)
691 break;
692
693 // Just check if following relocation is a R_PPC64_TOC
694 uint64_t TypeTOC;
695 check(i->getType(TypeTOC));
696 if (TypeTOC != ELF::R_PPC64_TOC)
697 continue;
698
699 // Finally compares the Symbol value and the target symbol offset
700 // to check if this .opd entry refers to the symbol the relocation
701 // points to.
702 if (Rel.Addend != (int64_t)TargetSymbolOffset)
703 continue;
704
705 section_iterator tsi(Obj.end_sections());
706 check(TargetSymbol->getSection(tsi));
707 bool IsCode = false;
708 tsi->isText(IsCode);
709 Rel.SectionID = findOrEmitSection(Obj, (*tsi), IsCode, LocalSections);
710 Rel.Addend = (intptr_t)Addend;
711 return;
712 }
713 }
714 llvm_unreachable("Attempting to get address of ODP entry!");
715 }
716
717 // Relocation masks following the #lo(value), #hi(value), #ha(value),
718 // #higher(value), #highera(value), #highest(value), and #highesta(value)
719 // macros defined in section 4.5.1. Relocation Types of the PPC-elf64abi
720 // document.
721
applyPPClo(uint64_t value)722 static inline uint16_t applyPPClo(uint64_t value) { return value & 0xffff; }
723
applyPPChi(uint64_t value)724 static inline uint16_t applyPPChi(uint64_t value) {
725 return (value >> 16) & 0xffff;
726 }
727
applyPPCha(uint64_t value)728 static inline uint16_t applyPPCha (uint64_t value) {
729 return ((value + 0x8000) >> 16) & 0xffff;
730 }
731
applyPPChigher(uint64_t value)732 static inline uint16_t applyPPChigher(uint64_t value) {
733 return (value >> 32) & 0xffff;
734 }
735
applyPPChighera(uint64_t value)736 static inline uint16_t applyPPChighera (uint64_t value) {
737 return ((value + 0x8000) >> 32) & 0xffff;
738 }
739
applyPPChighest(uint64_t value)740 static inline uint16_t applyPPChighest(uint64_t value) {
741 return (value >> 48) & 0xffff;
742 }
743
applyPPChighesta(uint64_t value)744 static inline uint16_t applyPPChighesta (uint64_t value) {
745 return ((value + 0x8000) >> 48) & 0xffff;
746 }
747
resolvePPC64Relocation(const SectionEntry & Section,uint64_t Offset,uint64_t Value,uint32_t Type,int64_t Addend)748 void RuntimeDyldELF::resolvePPC64Relocation(const SectionEntry &Section,
749 uint64_t Offset, uint64_t Value,
750 uint32_t Type, int64_t Addend) {
751 uint8_t *LocalAddress = Section.Address + Offset;
752 switch (Type) {
753 default:
754 llvm_unreachable("Relocation type not implemented yet!");
755 break;
756 case ELF::R_PPC64_ADDR16:
757 writeInt16BE(LocalAddress, applyPPClo(Value + Addend));
758 break;
759 case ELF::R_PPC64_ADDR16_DS:
760 writeInt16BE(LocalAddress, applyPPClo(Value + Addend) & ~3);
761 break;
762 case ELF::R_PPC64_ADDR16_LO:
763 writeInt16BE(LocalAddress, applyPPClo(Value + Addend));
764 break;
765 case ELF::R_PPC64_ADDR16_LO_DS:
766 writeInt16BE(LocalAddress, applyPPClo(Value + Addend) & ~3);
767 break;
768 case ELF::R_PPC64_ADDR16_HI:
769 writeInt16BE(LocalAddress, applyPPChi(Value + Addend));
770 break;
771 case ELF::R_PPC64_ADDR16_HA:
772 writeInt16BE(LocalAddress, applyPPCha(Value + Addend));
773 break;
774 case ELF::R_PPC64_ADDR16_HIGHER:
775 writeInt16BE(LocalAddress, applyPPChigher(Value + Addend));
776 break;
777 case ELF::R_PPC64_ADDR16_HIGHERA:
778 writeInt16BE(LocalAddress, applyPPChighera(Value + Addend));
779 break;
780 case ELF::R_PPC64_ADDR16_HIGHEST:
781 writeInt16BE(LocalAddress, applyPPChighest(Value + Addend));
782 break;
783 case ELF::R_PPC64_ADDR16_HIGHESTA:
784 writeInt16BE(LocalAddress, applyPPChighesta(Value + Addend));
785 break;
786 case ELF::R_PPC64_ADDR14: {
787 assert(((Value + Addend) & 3) == 0);
788 // Preserve the AA/LK bits in the branch instruction
789 uint8_t aalk = *(LocalAddress + 3);
790 writeInt16BE(LocalAddress + 2, (aalk & 3) | ((Value + Addend) & 0xfffc));
791 } break;
792 case ELF::R_PPC64_REL16_LO: {
793 uint64_t FinalAddress = (Section.LoadAddress + Offset);
794 uint64_t Delta = Value - FinalAddress + Addend;
795 writeInt16BE(LocalAddress, applyPPClo(Delta));
796 } break;
797 case ELF::R_PPC64_REL16_HI: {
798 uint64_t FinalAddress = (Section.LoadAddress + Offset);
799 uint64_t Delta = Value - FinalAddress + Addend;
800 writeInt16BE(LocalAddress, applyPPChi(Delta));
801 } break;
802 case ELF::R_PPC64_REL16_HA: {
803 uint64_t FinalAddress = (Section.LoadAddress + Offset);
804 uint64_t Delta = Value - FinalAddress + Addend;
805 writeInt16BE(LocalAddress, applyPPCha(Delta));
806 } break;
807 case ELF::R_PPC64_ADDR32: {
808 int32_t Result = static_cast<int32_t>(Value + Addend);
809 if (SignExtend32<32>(Result) != Result)
810 llvm_unreachable("Relocation R_PPC64_ADDR32 overflow");
811 writeInt32BE(LocalAddress, Result);
812 } break;
813 case ELF::R_PPC64_REL24: {
814 uint64_t FinalAddress = (Section.LoadAddress + Offset);
815 int32_t delta = static_cast<int32_t>(Value - FinalAddress + Addend);
816 if (SignExtend32<24>(delta) != delta)
817 llvm_unreachable("Relocation R_PPC64_REL24 overflow");
818 // Generates a 'bl <address>' instruction
819 writeInt32BE(LocalAddress, 0x48000001 | (delta & 0x03FFFFFC));
820 } break;
821 case ELF::R_PPC64_REL32: {
822 uint64_t FinalAddress = (Section.LoadAddress + Offset);
823 int32_t delta = static_cast<int32_t>(Value - FinalAddress + Addend);
824 if (SignExtend32<32>(delta) != delta)
825 llvm_unreachable("Relocation R_PPC64_REL32 overflow");
826 writeInt32BE(LocalAddress, delta);
827 } break;
828 case ELF::R_PPC64_REL64: {
829 uint64_t FinalAddress = (Section.LoadAddress + Offset);
830 uint64_t Delta = Value - FinalAddress + Addend;
831 writeInt64BE(LocalAddress, Delta);
832 } break;
833 case ELF::R_PPC64_ADDR64:
834 writeInt64BE(LocalAddress, Value + Addend);
835 break;
836 }
837 }
838
resolveSystemZRelocation(const SectionEntry & Section,uint64_t Offset,uint64_t Value,uint32_t Type,int64_t Addend)839 void RuntimeDyldELF::resolveSystemZRelocation(const SectionEntry &Section,
840 uint64_t Offset, uint64_t Value,
841 uint32_t Type, int64_t Addend) {
842 uint8_t *LocalAddress = Section.Address + Offset;
843 switch (Type) {
844 default:
845 llvm_unreachable("Relocation type not implemented yet!");
846 break;
847 case ELF::R_390_PC16DBL:
848 case ELF::R_390_PLT16DBL: {
849 int64_t Delta = (Value + Addend) - (Section.LoadAddress + Offset);
850 assert(int16_t(Delta / 2) * 2 == Delta && "R_390_PC16DBL overflow");
851 writeInt16BE(LocalAddress, Delta / 2);
852 break;
853 }
854 case ELF::R_390_PC32DBL:
855 case ELF::R_390_PLT32DBL: {
856 int64_t Delta = (Value + Addend) - (Section.LoadAddress + Offset);
857 assert(int32_t(Delta / 2) * 2 == Delta && "R_390_PC32DBL overflow");
858 writeInt32BE(LocalAddress, Delta / 2);
859 break;
860 }
861 case ELF::R_390_PC32: {
862 int64_t Delta = (Value + Addend) - (Section.LoadAddress + Offset);
863 assert(int32_t(Delta) == Delta && "R_390_PC32 overflow");
864 writeInt32BE(LocalAddress, Delta);
865 break;
866 }
867 case ELF::R_390_64:
868 writeInt64BE(LocalAddress, Value + Addend);
869 break;
870 }
871 }
872
873 // The target location for the relocation is described by RE.SectionID and
874 // RE.Offset. RE.SectionID can be used to find the SectionEntry. Each
875 // SectionEntry has three members describing its location.
876 // SectionEntry::Address is the address at which the section has been loaded
877 // into memory in the current (host) process. SectionEntry::LoadAddress is the
878 // address that the section will have in the target process.
879 // SectionEntry::ObjAddress is the address of the bits for this section in the
880 // original emitted object image (also in the current address space).
881 //
882 // Relocations will be applied as if the section were loaded at
883 // SectionEntry::LoadAddress, but they will be applied at an address based
884 // on SectionEntry::Address. SectionEntry::ObjAddress will be used to refer to
885 // Target memory contents if they are required for value calculations.
886 //
887 // The Value parameter here is the load address of the symbol for the
888 // relocation to be applied. For relocations which refer to symbols in the
889 // current object Value will be the LoadAddress of the section in which
890 // the symbol resides (RE.Addend provides additional information about the
891 // symbol location). For external symbols, Value will be the address of the
892 // symbol in the target address space.
resolveRelocation(const RelocationEntry & RE,uint64_t Value)893 void RuntimeDyldELF::resolveRelocation(const RelocationEntry &RE,
894 uint64_t Value) {
895 const SectionEntry &Section = Sections[RE.SectionID];
896 return resolveRelocation(Section, RE.Offset, Value, RE.RelType, RE.Addend,
897 RE.SymOffset);
898 }
899
resolveRelocation(const SectionEntry & Section,uint64_t Offset,uint64_t Value,uint32_t Type,int64_t Addend,uint64_t SymOffset)900 void RuntimeDyldELF::resolveRelocation(const SectionEntry &Section,
901 uint64_t Offset, uint64_t Value,
902 uint32_t Type, int64_t Addend,
903 uint64_t SymOffset) {
904 switch (Arch) {
905 case Triple::x86_64:
906 resolveX86_64Relocation(Section, Offset, Value, Type, Addend, SymOffset);
907 break;
908 case Triple::x86:
909 resolveX86Relocation(Section, Offset, (uint32_t)(Value & 0xffffffffL), Type,
910 (uint32_t)(Addend & 0xffffffffL));
911 break;
912 case Triple::aarch64:
913 case Triple::aarch64_be:
914 case Triple::arm64:
915 case Triple::arm64_be:
916 resolveAArch64Relocation(Section, Offset, Value, Type, Addend);
917 break;
918 case Triple::arm: // Fall through.
919 case Triple::armeb:
920 case Triple::thumb:
921 case Triple::thumbeb:
922 resolveARMRelocation(Section, Offset, (uint32_t)(Value & 0xffffffffL), Type,
923 (uint32_t)(Addend & 0xffffffffL));
924 break;
925 case Triple::mips: // Fall through.
926 case Triple::mipsel:
927 resolveMIPSRelocation(Section, Offset, (uint32_t)(Value & 0xffffffffL),
928 Type, (uint32_t)(Addend & 0xffffffffL));
929 break;
930 case Triple::ppc64: // Fall through.
931 case Triple::ppc64le:
932 resolvePPC64Relocation(Section, Offset, Value, Type, Addend);
933 break;
934 case Triple::systemz:
935 resolveSystemZRelocation(Section, Offset, Value, Type, Addend);
936 break;
937 default:
938 llvm_unreachable("Unsupported CPU type!");
939 }
940 }
941
processRelocationRef(unsigned SectionID,relocation_iterator RelI,ObjectImage & Obj,ObjSectionToIDMap & ObjSectionToID,const SymbolTableMap & Symbols,StubMap & Stubs)942 relocation_iterator RuntimeDyldELF::processRelocationRef(
943 unsigned SectionID, relocation_iterator RelI, ObjectImage &Obj,
944 ObjSectionToIDMap &ObjSectionToID, const SymbolTableMap &Symbols,
945 StubMap &Stubs) {
946 uint64_t RelType;
947 Check(RelI->getType(RelType));
948 int64_t Addend;
949 Check(getELFRelocationAddend(*RelI, Addend));
950 symbol_iterator Symbol = RelI->getSymbol();
951
952 // Obtain the symbol name which is referenced in the relocation
953 StringRef TargetName;
954 if (Symbol != Obj.end_symbols())
955 Symbol->getName(TargetName);
956 DEBUG(dbgs() << "\t\tRelType: " << RelType << " Addend: " << Addend
957 << " TargetName: " << TargetName << "\n");
958 RelocationValueRef Value;
959 // First search for the symbol in the local symbol table
960 SymbolTableMap::const_iterator lsi = Symbols.end();
961 SymbolRef::Type SymType = SymbolRef::ST_Unknown;
962 if (Symbol != Obj.end_symbols()) {
963 lsi = Symbols.find(TargetName.data());
964 Symbol->getType(SymType);
965 }
966 if (lsi != Symbols.end()) {
967 Value.SectionID = lsi->second.first;
968 Value.Offset = lsi->second.second;
969 Value.Addend = lsi->second.second + Addend;
970 } else {
971 // Search for the symbol in the global symbol table
972 SymbolTableMap::const_iterator gsi = GlobalSymbolTable.end();
973 if (Symbol != Obj.end_symbols())
974 gsi = GlobalSymbolTable.find(TargetName.data());
975 if (gsi != GlobalSymbolTable.end()) {
976 Value.SectionID = gsi->second.first;
977 Value.Offset = gsi->second.second;
978 Value.Addend = gsi->second.second + Addend;
979 } else {
980 switch (SymType) {
981 case SymbolRef::ST_Debug: {
982 // TODO: Now ELF SymbolRef::ST_Debug = STT_SECTION, it's not obviously
983 // and can be changed by another developers. Maybe best way is add
984 // a new symbol type ST_Section to SymbolRef and use it.
985 section_iterator si(Obj.end_sections());
986 Symbol->getSection(si);
987 if (si == Obj.end_sections())
988 llvm_unreachable("Symbol section not found, bad object file format!");
989 DEBUG(dbgs() << "\t\tThis is section symbol\n");
990 // Default to 'true' in case isText fails (though it never does).
991 bool isCode = true;
992 si->isText(isCode);
993 Value.SectionID = findOrEmitSection(Obj, (*si), isCode, ObjSectionToID);
994 Value.Addend = Addend;
995 break;
996 }
997 case SymbolRef::ST_Data:
998 case SymbolRef::ST_Unknown: {
999 Value.SymbolName = TargetName.data();
1000 Value.Addend = Addend;
1001
1002 // Absolute relocations will have a zero symbol ID (STN_UNDEF), which
1003 // will manifest here as a NULL symbol name.
1004 // We can set this as a valid (but empty) symbol name, and rely
1005 // on addRelocationForSymbol to handle this.
1006 if (!Value.SymbolName)
1007 Value.SymbolName = "";
1008 break;
1009 }
1010 default:
1011 llvm_unreachable("Unresolved symbol type!");
1012 break;
1013 }
1014 }
1015 }
1016 uint64_t Offset;
1017 Check(RelI->getOffset(Offset));
1018
1019 DEBUG(dbgs() << "\t\tSectionID: " << SectionID << " Offset: " << Offset
1020 << "\n");
1021 if ((Arch == Triple::aarch64 || Arch == Triple::aarch64_be ||
1022 Arch == Triple::arm64 || Arch == Triple::arm64_be) &&
1023 (RelType == ELF::R_AARCH64_CALL26 || RelType == ELF::R_AARCH64_JUMP26)) {
1024 // This is an AArch64 branch relocation, need to use a stub function.
1025 DEBUG(dbgs() << "\t\tThis is an AArch64 branch relocation.");
1026 SectionEntry &Section = Sections[SectionID];
1027
1028 // Look for an existing stub.
1029 StubMap::const_iterator i = Stubs.find(Value);
1030 if (i != Stubs.end()) {
1031 resolveRelocation(Section, Offset, (uint64_t)Section.Address + i->second,
1032 RelType, 0);
1033 DEBUG(dbgs() << " Stub function found\n");
1034 } else {
1035 // Create a new stub function.
1036 DEBUG(dbgs() << " Create a new stub function\n");
1037 Stubs[Value] = Section.StubOffset;
1038 uint8_t *StubTargetAddr =
1039 createStubFunction(Section.Address + Section.StubOffset);
1040
1041 RelocationEntry REmovz_g3(SectionID, StubTargetAddr - Section.Address,
1042 ELF::R_AARCH64_MOVW_UABS_G3, Value.Addend);
1043 RelocationEntry REmovk_g2(SectionID, StubTargetAddr - Section.Address + 4,
1044 ELF::R_AARCH64_MOVW_UABS_G2_NC, Value.Addend);
1045 RelocationEntry REmovk_g1(SectionID, StubTargetAddr - Section.Address + 8,
1046 ELF::R_AARCH64_MOVW_UABS_G1_NC, Value.Addend);
1047 RelocationEntry REmovk_g0(SectionID,
1048 StubTargetAddr - Section.Address + 12,
1049 ELF::R_AARCH64_MOVW_UABS_G0_NC, Value.Addend);
1050
1051 if (Value.SymbolName) {
1052 addRelocationForSymbol(REmovz_g3, Value.SymbolName);
1053 addRelocationForSymbol(REmovk_g2, Value.SymbolName);
1054 addRelocationForSymbol(REmovk_g1, Value.SymbolName);
1055 addRelocationForSymbol(REmovk_g0, Value.SymbolName);
1056 } else {
1057 addRelocationForSection(REmovz_g3, Value.SectionID);
1058 addRelocationForSection(REmovk_g2, Value.SectionID);
1059 addRelocationForSection(REmovk_g1, Value.SectionID);
1060 addRelocationForSection(REmovk_g0, Value.SectionID);
1061 }
1062 resolveRelocation(Section, Offset,
1063 (uint64_t)Section.Address + Section.StubOffset, RelType,
1064 0);
1065 Section.StubOffset += getMaxStubSize();
1066 }
1067 } else if (Arch == Triple::arm &&
1068 (RelType == ELF::R_ARM_PC24 || RelType == ELF::R_ARM_CALL ||
1069 RelType == ELF::R_ARM_JUMP24)) {
1070 // This is an ARM branch relocation, need to use a stub function.
1071 DEBUG(dbgs() << "\t\tThis is an ARM branch relocation.");
1072 SectionEntry &Section = Sections[SectionID];
1073
1074 // Look for an existing stub.
1075 StubMap::const_iterator i = Stubs.find(Value);
1076 if (i != Stubs.end()) {
1077 resolveRelocation(Section, Offset, (uint64_t)Section.Address + i->second,
1078 RelType, 0);
1079 DEBUG(dbgs() << " Stub function found\n");
1080 } else {
1081 // Create a new stub function.
1082 DEBUG(dbgs() << " Create a new stub function\n");
1083 Stubs[Value] = Section.StubOffset;
1084 uint8_t *StubTargetAddr =
1085 createStubFunction(Section.Address + Section.StubOffset);
1086 RelocationEntry RE(SectionID, StubTargetAddr - Section.Address,
1087 ELF::R_ARM_PRIVATE_0, Value.Addend);
1088 if (Value.SymbolName)
1089 addRelocationForSymbol(RE, Value.SymbolName);
1090 else
1091 addRelocationForSection(RE, Value.SectionID);
1092
1093 resolveRelocation(Section, Offset,
1094 (uint64_t)Section.Address + Section.StubOffset, RelType,
1095 0);
1096 Section.StubOffset += getMaxStubSize();
1097 }
1098 } else if ((Arch == Triple::mipsel || Arch == Triple::mips) &&
1099 RelType == ELF::R_MIPS_26) {
1100 // This is an Mips branch relocation, need to use a stub function.
1101 DEBUG(dbgs() << "\t\tThis is a Mips branch relocation.");
1102 SectionEntry &Section = Sections[SectionID];
1103 uint8_t *Target = Section.Address + Offset;
1104 uint32_t *TargetAddress = (uint32_t *)Target;
1105
1106 // Extract the addend from the instruction.
1107 uint32_t Addend = ((*TargetAddress) & 0x03ffffff) << 2;
1108
1109 Value.Addend += Addend;
1110
1111 // Look up for existing stub.
1112 StubMap::const_iterator i = Stubs.find(Value);
1113 if (i != Stubs.end()) {
1114 RelocationEntry RE(SectionID, Offset, RelType, i->second);
1115 addRelocationForSection(RE, SectionID);
1116 DEBUG(dbgs() << " Stub function found\n");
1117 } else {
1118 // Create a new stub function.
1119 DEBUG(dbgs() << " Create a new stub function\n");
1120 Stubs[Value] = Section.StubOffset;
1121 uint8_t *StubTargetAddr =
1122 createStubFunction(Section.Address + Section.StubOffset);
1123
1124 // Creating Hi and Lo relocations for the filled stub instructions.
1125 RelocationEntry REHi(SectionID, StubTargetAddr - Section.Address,
1126 ELF::R_MIPS_UNUSED1, Value.Addend);
1127 RelocationEntry RELo(SectionID, StubTargetAddr - Section.Address + 4,
1128 ELF::R_MIPS_UNUSED2, Value.Addend);
1129
1130 if (Value.SymbolName) {
1131 addRelocationForSymbol(REHi, Value.SymbolName);
1132 addRelocationForSymbol(RELo, Value.SymbolName);
1133 } else {
1134 addRelocationForSection(REHi, Value.SectionID);
1135 addRelocationForSection(RELo, Value.SectionID);
1136 }
1137
1138 RelocationEntry RE(SectionID, Offset, RelType, Section.StubOffset);
1139 addRelocationForSection(RE, SectionID);
1140 Section.StubOffset += getMaxStubSize();
1141 }
1142 } else if (Arch == Triple::ppc64 || Arch == Triple::ppc64le) {
1143 if (RelType == ELF::R_PPC64_REL24) {
1144 // A PPC branch relocation will need a stub function if the target is
1145 // an external symbol (Symbol::ST_Unknown) or if the target address
1146 // is not within the signed 24-bits branch address.
1147 SectionEntry &Section = Sections[SectionID];
1148 uint8_t *Target = Section.Address + Offset;
1149 bool RangeOverflow = false;
1150 if (SymType != SymbolRef::ST_Unknown) {
1151 // A function call may points to the .opd entry, so the final symbol
1152 // value
1153 // in calculated based in the relocation values in .opd section.
1154 findOPDEntrySection(Obj, ObjSectionToID, Value);
1155 uint8_t *RelocTarget = Sections[Value.SectionID].Address + Value.Addend;
1156 int32_t delta = static_cast<int32_t>(Target - RelocTarget);
1157 // If it is within 24-bits branch range, just set the branch target
1158 if (SignExtend32<24>(delta) == delta) {
1159 RelocationEntry RE(SectionID, Offset, RelType, Value.Addend);
1160 if (Value.SymbolName)
1161 addRelocationForSymbol(RE, Value.SymbolName);
1162 else
1163 addRelocationForSection(RE, Value.SectionID);
1164 } else {
1165 RangeOverflow = true;
1166 }
1167 }
1168 if (SymType == SymbolRef::ST_Unknown || RangeOverflow == true) {
1169 // It is an external symbol (SymbolRef::ST_Unknown) or within a range
1170 // larger than 24-bits.
1171 StubMap::const_iterator i = Stubs.find(Value);
1172 if (i != Stubs.end()) {
1173 // Symbol function stub already created, just relocate to it
1174 resolveRelocation(Section, Offset,
1175 (uint64_t)Section.Address + i->second, RelType, 0);
1176 DEBUG(dbgs() << " Stub function found\n");
1177 } else {
1178 // Create a new stub function.
1179 DEBUG(dbgs() << " Create a new stub function\n");
1180 Stubs[Value] = Section.StubOffset;
1181 uint8_t *StubTargetAddr =
1182 createStubFunction(Section.Address + Section.StubOffset);
1183 RelocationEntry RE(SectionID, StubTargetAddr - Section.Address,
1184 ELF::R_PPC64_ADDR64, Value.Addend);
1185
1186 // Generates the 64-bits address loads as exemplified in section
1187 // 4.5.1 in PPC64 ELF ABI. Note that the relocations need to
1188 // apply to the low part of the instructions, so we have to update
1189 // the offset according to the target endianness.
1190 uint64_t StubRelocOffset = StubTargetAddr - Section.Address;
1191 if (!IsTargetLittleEndian)
1192 StubRelocOffset += 2;
1193
1194 RelocationEntry REhst(SectionID, StubRelocOffset + 0,
1195 ELF::R_PPC64_ADDR16_HIGHEST, Value.Addend);
1196 RelocationEntry REhr(SectionID, StubRelocOffset + 4,
1197 ELF::R_PPC64_ADDR16_HIGHER, Value.Addend);
1198 RelocationEntry REh(SectionID, StubRelocOffset + 12,
1199 ELF::R_PPC64_ADDR16_HI, Value.Addend);
1200 RelocationEntry REl(SectionID, StubRelocOffset + 16,
1201 ELF::R_PPC64_ADDR16_LO, Value.Addend);
1202
1203 if (Value.SymbolName) {
1204 addRelocationForSymbol(REhst, Value.SymbolName);
1205 addRelocationForSymbol(REhr, Value.SymbolName);
1206 addRelocationForSymbol(REh, Value.SymbolName);
1207 addRelocationForSymbol(REl, Value.SymbolName);
1208 } else {
1209 addRelocationForSection(REhst, Value.SectionID);
1210 addRelocationForSection(REhr, Value.SectionID);
1211 addRelocationForSection(REh, Value.SectionID);
1212 addRelocationForSection(REl, Value.SectionID);
1213 }
1214
1215 resolveRelocation(Section, Offset,
1216 (uint64_t)Section.Address + Section.StubOffset,
1217 RelType, 0);
1218 Section.StubOffset += getMaxStubSize();
1219 }
1220 if (SymType == SymbolRef::ST_Unknown)
1221 // Restore the TOC for external calls
1222 writeInt32BE(Target + 4, 0xE8410028); // ld r2,40(r1)
1223 }
1224 } else if (RelType == ELF::R_PPC64_TOC16 ||
1225 RelType == ELF::R_PPC64_TOC16_DS ||
1226 RelType == ELF::R_PPC64_TOC16_LO ||
1227 RelType == ELF::R_PPC64_TOC16_LO_DS ||
1228 RelType == ELF::R_PPC64_TOC16_HI ||
1229 RelType == ELF::R_PPC64_TOC16_HA) {
1230 // These relocations are supposed to subtract the TOC address from
1231 // the final value. This does not fit cleanly into the RuntimeDyld
1232 // scheme, since there may be *two* sections involved in determining
1233 // the relocation value (the section of the symbol refered to by the
1234 // relocation, and the TOC section associated with the current module).
1235 //
1236 // Fortunately, these relocations are currently only ever generated
1237 // refering to symbols that themselves reside in the TOC, which means
1238 // that the two sections are actually the same. Thus they cancel out
1239 // and we can immediately resolve the relocation right now.
1240 switch (RelType) {
1241 case ELF::R_PPC64_TOC16: RelType = ELF::R_PPC64_ADDR16; break;
1242 case ELF::R_PPC64_TOC16_DS: RelType = ELF::R_PPC64_ADDR16_DS; break;
1243 case ELF::R_PPC64_TOC16_LO: RelType = ELF::R_PPC64_ADDR16_LO; break;
1244 case ELF::R_PPC64_TOC16_LO_DS: RelType = ELF::R_PPC64_ADDR16_LO_DS; break;
1245 case ELF::R_PPC64_TOC16_HI: RelType = ELF::R_PPC64_ADDR16_HI; break;
1246 case ELF::R_PPC64_TOC16_HA: RelType = ELF::R_PPC64_ADDR16_HA; break;
1247 default: llvm_unreachable("Wrong relocation type.");
1248 }
1249
1250 RelocationValueRef TOCValue;
1251 findPPC64TOCSection(Obj, ObjSectionToID, TOCValue);
1252 if (Value.SymbolName || Value.SectionID != TOCValue.SectionID)
1253 llvm_unreachable("Unsupported TOC relocation.");
1254 Value.Addend -= TOCValue.Addend;
1255 resolveRelocation(Sections[SectionID], Offset, Value.Addend, RelType, 0);
1256 } else {
1257 // There are two ways to refer to the TOC address directly: either
1258 // via a ELF::R_PPC64_TOC relocation (where both symbol and addend are
1259 // ignored), or via any relocation that refers to the magic ".TOC."
1260 // symbols (in which case the addend is respected).
1261 if (RelType == ELF::R_PPC64_TOC) {
1262 RelType = ELF::R_PPC64_ADDR64;
1263 findPPC64TOCSection(Obj, ObjSectionToID, Value);
1264 } else if (TargetName == ".TOC.") {
1265 findPPC64TOCSection(Obj, ObjSectionToID, Value);
1266 Value.Addend += Addend;
1267 }
1268
1269 RelocationEntry RE(SectionID, Offset, RelType, Value.Addend);
1270
1271 if (Value.SymbolName)
1272 addRelocationForSymbol(RE, Value.SymbolName);
1273 else
1274 addRelocationForSection(RE, Value.SectionID);
1275 }
1276 } else if (Arch == Triple::systemz &&
1277 (RelType == ELF::R_390_PLT32DBL || RelType == ELF::R_390_GOTENT)) {
1278 // Create function stubs for both PLT and GOT references, regardless of
1279 // whether the GOT reference is to data or code. The stub contains the
1280 // full address of the symbol, as needed by GOT references, and the
1281 // executable part only adds an overhead of 8 bytes.
1282 //
1283 // We could try to conserve space by allocating the code and data
1284 // parts of the stub separately. However, as things stand, we allocate
1285 // a stub for every relocation, so using a GOT in JIT code should be
1286 // no less space efficient than using an explicit constant pool.
1287 DEBUG(dbgs() << "\t\tThis is a SystemZ indirect relocation.");
1288 SectionEntry &Section = Sections[SectionID];
1289
1290 // Look for an existing stub.
1291 StubMap::const_iterator i = Stubs.find(Value);
1292 uintptr_t StubAddress;
1293 if (i != Stubs.end()) {
1294 StubAddress = uintptr_t(Section.Address) + i->second;
1295 DEBUG(dbgs() << " Stub function found\n");
1296 } else {
1297 // Create a new stub function.
1298 DEBUG(dbgs() << " Create a new stub function\n");
1299
1300 uintptr_t BaseAddress = uintptr_t(Section.Address);
1301 uintptr_t StubAlignment = getStubAlignment();
1302 StubAddress = (BaseAddress + Section.StubOffset + StubAlignment - 1) &
1303 -StubAlignment;
1304 unsigned StubOffset = StubAddress - BaseAddress;
1305
1306 Stubs[Value] = StubOffset;
1307 createStubFunction((uint8_t *)StubAddress);
1308 RelocationEntry RE(SectionID, StubOffset + 8, ELF::R_390_64,
1309 Value.Addend - Addend);
1310 if (Value.SymbolName)
1311 addRelocationForSymbol(RE, Value.SymbolName);
1312 else
1313 addRelocationForSection(RE, Value.SectionID);
1314 Section.StubOffset = StubOffset + getMaxStubSize();
1315 }
1316
1317 if (RelType == ELF::R_390_GOTENT)
1318 resolveRelocation(Section, Offset, StubAddress + 8, ELF::R_390_PC32DBL,
1319 Addend);
1320 else
1321 resolveRelocation(Section, Offset, StubAddress, RelType, Addend);
1322 } else if (Arch == Triple::x86_64 && RelType == ELF::R_X86_64_PLT32) {
1323 // The way the PLT relocations normally work is that the linker allocates
1324 // the
1325 // PLT and this relocation makes a PC-relative call into the PLT. The PLT
1326 // entry will then jump to an address provided by the GOT. On first call,
1327 // the
1328 // GOT address will point back into PLT code that resolves the symbol. After
1329 // the first call, the GOT entry points to the actual function.
1330 //
1331 // For local functions we're ignoring all of that here and just replacing
1332 // the PLT32 relocation type with PC32, which will translate the relocation
1333 // into a PC-relative call directly to the function. For external symbols we
1334 // can't be sure the function will be within 2^32 bytes of the call site, so
1335 // we need to create a stub, which calls into the GOT. This case is
1336 // equivalent to the usual PLT implementation except that we use the stub
1337 // mechanism in RuntimeDyld (which puts stubs at the end of the section)
1338 // rather than allocating a PLT section.
1339 if (Value.SymbolName) {
1340 // This is a call to an external function.
1341 // Look for an existing stub.
1342 SectionEntry &Section = Sections[SectionID];
1343 StubMap::const_iterator i = Stubs.find(Value);
1344 uintptr_t StubAddress;
1345 if (i != Stubs.end()) {
1346 StubAddress = uintptr_t(Section.Address) + i->second;
1347 DEBUG(dbgs() << " Stub function found\n");
1348 } else {
1349 // Create a new stub function (equivalent to a PLT entry).
1350 DEBUG(dbgs() << " Create a new stub function\n");
1351
1352 uintptr_t BaseAddress = uintptr_t(Section.Address);
1353 uintptr_t StubAlignment = getStubAlignment();
1354 StubAddress = (BaseAddress + Section.StubOffset + StubAlignment - 1) &
1355 -StubAlignment;
1356 unsigned StubOffset = StubAddress - BaseAddress;
1357 Stubs[Value] = StubOffset;
1358 createStubFunction((uint8_t *)StubAddress);
1359
1360 // Create a GOT entry for the external function.
1361 GOTEntries.push_back(Value);
1362
1363 // Make our stub function a relative call to the GOT entry.
1364 RelocationEntry RE(SectionID, StubOffset + 2, ELF::R_X86_64_GOTPCREL,
1365 -4);
1366 addRelocationForSymbol(RE, Value.SymbolName);
1367
1368 // Bump our stub offset counter
1369 Section.StubOffset = StubOffset + getMaxStubSize();
1370 }
1371
1372 // Make the target call a call into the stub table.
1373 resolveRelocation(Section, Offset, StubAddress, ELF::R_X86_64_PC32,
1374 Addend);
1375 } else {
1376 RelocationEntry RE(SectionID, Offset, ELF::R_X86_64_PC32, Value.Addend,
1377 Value.Offset);
1378 addRelocationForSection(RE, Value.SectionID);
1379 }
1380 } else {
1381 if (Arch == Triple::x86_64 && RelType == ELF::R_X86_64_GOTPCREL) {
1382 GOTEntries.push_back(Value);
1383 }
1384 RelocationEntry RE(SectionID, Offset, RelType, Value.Addend, Value.Offset);
1385 if (Value.SymbolName)
1386 addRelocationForSymbol(RE, Value.SymbolName);
1387 else
1388 addRelocationForSection(RE, Value.SectionID);
1389 }
1390 return ++RelI;
1391 }
1392
updateGOTEntries(StringRef Name,uint64_t Addr)1393 void RuntimeDyldELF::updateGOTEntries(StringRef Name, uint64_t Addr) {
1394
1395 SmallVectorImpl<std::pair<SID, GOTRelocations>>::iterator it;
1396 SmallVectorImpl<std::pair<SID, GOTRelocations>>::iterator end = GOTs.end();
1397
1398 for (it = GOTs.begin(); it != end; ++it) {
1399 GOTRelocations &GOTEntries = it->second;
1400 for (int i = 0, e = GOTEntries.size(); i != e; ++i) {
1401 if (GOTEntries[i].SymbolName != nullptr &&
1402 GOTEntries[i].SymbolName == Name) {
1403 GOTEntries[i].Offset = Addr;
1404 }
1405 }
1406 }
1407 }
1408
getGOTEntrySize()1409 size_t RuntimeDyldELF::getGOTEntrySize() {
1410 // We don't use the GOT in all of these cases, but it's essentially free
1411 // to put them all here.
1412 size_t Result = 0;
1413 switch (Arch) {
1414 case Triple::x86_64:
1415 case Triple::aarch64:
1416 case Triple::aarch64_be:
1417 case Triple::arm64:
1418 case Triple::arm64_be:
1419 case Triple::ppc64:
1420 case Triple::ppc64le:
1421 case Triple::systemz:
1422 Result = sizeof(uint64_t);
1423 break;
1424 case Triple::x86:
1425 case Triple::arm:
1426 case Triple::thumb:
1427 case Triple::mips:
1428 case Triple::mipsel:
1429 Result = sizeof(uint32_t);
1430 break;
1431 default:
1432 llvm_unreachable("Unsupported CPU type!");
1433 }
1434 return Result;
1435 }
1436
findGOTEntry(uint64_t LoadAddress,uint64_t Offset)1437 uint64_t RuntimeDyldELF::findGOTEntry(uint64_t LoadAddress, uint64_t Offset) {
1438
1439 const size_t GOTEntrySize = getGOTEntrySize();
1440
1441 SmallVectorImpl<std::pair<SID, GOTRelocations>>::const_iterator it;
1442 SmallVectorImpl<std::pair<SID, GOTRelocations>>::const_iterator end =
1443 GOTs.end();
1444
1445 int GOTIndex = -1;
1446 for (it = GOTs.begin(); it != end; ++it) {
1447 SID GOTSectionID = it->first;
1448 const GOTRelocations &GOTEntries = it->second;
1449
1450 // Find the matching entry in our vector.
1451 uint64_t SymbolOffset = 0;
1452 for (int i = 0, e = GOTEntries.size(); i != e; ++i) {
1453 if (!GOTEntries[i].SymbolName) {
1454 if (getSectionLoadAddress(GOTEntries[i].SectionID) == LoadAddress &&
1455 GOTEntries[i].Offset == Offset) {
1456 GOTIndex = i;
1457 SymbolOffset = GOTEntries[i].Offset;
1458 break;
1459 }
1460 } else {
1461 // GOT entries for external symbols use the addend as the address when
1462 // the external symbol has been resolved.
1463 if (GOTEntries[i].Offset == LoadAddress) {
1464 GOTIndex = i;
1465 // Don't use the Addend here. The relocation handler will use it.
1466 break;
1467 }
1468 }
1469 }
1470
1471 if (GOTIndex != -1) {
1472 if (GOTEntrySize == sizeof(uint64_t)) {
1473 uint64_t *LocalGOTAddr = (uint64_t *)getSectionAddress(GOTSectionID);
1474 // Fill in this entry with the address of the symbol being referenced.
1475 LocalGOTAddr[GOTIndex] = LoadAddress + SymbolOffset;
1476 } else {
1477 uint32_t *LocalGOTAddr = (uint32_t *)getSectionAddress(GOTSectionID);
1478 // Fill in this entry with the address of the symbol being referenced.
1479 LocalGOTAddr[GOTIndex] = (uint32_t)(LoadAddress + SymbolOffset);
1480 }
1481
1482 // Calculate the load address of this entry
1483 return getSectionLoadAddress(GOTSectionID) + (GOTIndex * GOTEntrySize);
1484 }
1485 }
1486
1487 assert(GOTIndex != -1 && "Unable to find requested GOT entry.");
1488 return 0;
1489 }
1490
finalizeLoad(ObjectImage & ObjImg,ObjSectionToIDMap & SectionMap)1491 void RuntimeDyldELF::finalizeLoad(ObjectImage &ObjImg,
1492 ObjSectionToIDMap &SectionMap) {
1493 // If necessary, allocate the global offset table
1494 if (MemMgr) {
1495 // Allocate the GOT if necessary
1496 size_t numGOTEntries = GOTEntries.size();
1497 if (numGOTEntries != 0) {
1498 // Allocate memory for the section
1499 unsigned SectionID = Sections.size();
1500 size_t TotalSize = numGOTEntries * getGOTEntrySize();
1501 uint8_t *Addr = MemMgr->allocateDataSection(TotalSize, getGOTEntrySize(),
1502 SectionID, ".got", false);
1503 if (!Addr)
1504 report_fatal_error("Unable to allocate memory for GOT!");
1505
1506 GOTs.push_back(std::make_pair(SectionID, GOTEntries));
1507 Sections.push_back(SectionEntry(".got", Addr, TotalSize, 0));
1508 // For now, initialize all GOT entries to zero. We'll fill them in as
1509 // needed when GOT-based relocations are applied.
1510 memset(Addr, 0, TotalSize);
1511 }
1512 } else {
1513 report_fatal_error("Unable to allocate memory for GOT!");
1514 }
1515
1516 // Look for and record the EH frame section.
1517 ObjSectionToIDMap::iterator i, e;
1518 for (i = SectionMap.begin(), e = SectionMap.end(); i != e; ++i) {
1519 const SectionRef &Section = i->first;
1520 StringRef Name;
1521 Section.getName(Name);
1522 if (Name == ".eh_frame") {
1523 UnregisteredEHFrameSections.push_back(i->second);
1524 break;
1525 }
1526 }
1527 }
1528
isCompatibleFormat(const ObjectBuffer * Buffer) const1529 bool RuntimeDyldELF::isCompatibleFormat(const ObjectBuffer *Buffer) const {
1530 if (Buffer->getBufferSize() < strlen(ELF::ElfMagic))
1531 return false;
1532 return (memcmp(Buffer->getBufferStart(), ELF::ElfMagic,
1533 strlen(ELF::ElfMagic))) == 0;
1534 }
1535
isCompatibleFile(const object::ObjectFile * Obj) const1536 bool RuntimeDyldELF::isCompatibleFile(const object::ObjectFile *Obj) const {
1537 return Obj->isELF();
1538 }
1539
1540 } // namespace llvm
1541