1 /*
2 * Copyright (C) 2014 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #define LOG_TAG "OpenGLRenderer"
18
19 // The highest z value can't be higher than (CASTER_Z_CAP_RATIO * light.z)
20 #define CASTER_Z_CAP_RATIO 0.95f
21
22 // When there is no umbra, then just fake the umbra using
23 // centroid * (1 - FAKE_UMBRA_SIZE_RATIO) + outline * FAKE_UMBRA_SIZE_RATIO
24 #define FAKE_UMBRA_SIZE_RATIO 0.05f
25
26 // When the polygon is about 90 vertices, the penumbra + umbra can reach 270 rays.
27 // That is consider pretty fine tessllated polygon so far.
28 // This is just to prevent using too much some memory when edge slicing is not
29 // needed any more.
30 #define FINE_TESSELLATED_POLYGON_RAY_NUMBER 270
31 /**
32 * Extra vertices for the corner for smoother corner.
33 * Only for outer loop.
34 * Note that we use such extra memory to avoid an extra loop.
35 */
36 // For half circle, we could add EXTRA_VERTEX_PER_PI vertices.
37 // Set to 1 if we don't want to have any.
38 #define SPOT_EXTRA_CORNER_VERTEX_PER_PI 18
39
40 // For the whole polygon, the sum of all the deltas b/t normals is 2 * M_PI,
41 // therefore, the maximum number of extra vertices will be twice bigger.
42 #define SPOT_MAX_EXTRA_CORNER_VERTEX_NUMBER (2 * SPOT_EXTRA_CORNER_VERTEX_PER_PI)
43
44 // For each RADIANS_DIVISOR, we would allocate one more vertex b/t the normals.
45 #define SPOT_CORNER_RADIANS_DIVISOR (M_PI / SPOT_EXTRA_CORNER_VERTEX_PER_PI)
46
47
48 #include <math.h>
49 #include <stdlib.h>
50 #include <utils/Log.h>
51
52 #include "ShadowTessellator.h"
53 #include "SpotShadow.h"
54 #include "Vertex.h"
55 #include "utils/MathUtils.h"
56
57 // TODO: After we settle down the new algorithm, we can remove the old one and
58 // its utility functions.
59 // Right now, we still need to keep it for comparison purpose and future expansion.
60 namespace android {
61 namespace uirenderer {
62
63 static const double EPSILON = 1e-7;
64
65 /**
66 * For each polygon's vertex, the light center will project it to the receiver
67 * as one of the outline vertex.
68 * For each outline vertex, we need to store the position and normal.
69 * Normal here is defined against the edge by the current vertex and the next vertex.
70 */
71 struct OutlineData {
72 Vector2 position;
73 Vector2 normal;
74 float radius;
75 };
76
77 /**
78 * For each vertex, we need to keep track of its angle, whether it is penumbra or
79 * umbra, and its corresponding vertex index.
80 */
81 struct SpotShadow::VertexAngleData {
82 // The angle to the vertex from the centroid.
83 float mAngle;
84 // True is the vertex comes from penumbra, otherwise it comes from umbra.
85 bool mIsPenumbra;
86 // The index of the vertex described by this data.
87 int mVertexIndex;
setandroid::uirenderer::SpotShadow::VertexAngleData88 void set(float angle, bool isPenumbra, int index) {
89 mAngle = angle;
90 mIsPenumbra = isPenumbra;
91 mVertexIndex = index;
92 }
93 };
94
95 /**
96 * Calculate the angle between and x and a y coordinate.
97 * The atan2 range from -PI to PI.
98 */
angle(const Vector2 & point,const Vector2 & center)99 static float angle(const Vector2& point, const Vector2& center) {
100 return atan2(point.y - center.y, point.x - center.x);
101 }
102
103 /**
104 * Calculate the intersection of a ray with the line segment defined by two points.
105 *
106 * Returns a negative value in error conditions.
107
108 * @param rayOrigin The start of the ray
109 * @param dx The x vector of the ray
110 * @param dy The y vector of the ray
111 * @param p1 The first point defining the line segment
112 * @param p2 The second point defining the line segment
113 * @return The distance along the ray if it intersects with the line segment, negative if otherwise
114 */
rayIntersectPoints(const Vector2 & rayOrigin,float dx,float dy,const Vector2 & p1,const Vector2 & p2)115 static float rayIntersectPoints(const Vector2& rayOrigin, float dx, float dy,
116 const Vector2& p1, const Vector2& p2) {
117 // The math below is derived from solving this formula, basically the
118 // intersection point should stay on both the ray and the edge of (p1, p2).
119 // solve([p1x+t*(p2x-p1x)=dx*t2+px,p1y+t*(p2y-p1y)=dy*t2+py],[t,t2]);
120
121 double divisor = (dx * (p1.y - p2.y) + dy * p2.x - dy * p1.x);
122 if (divisor == 0) return -1.0f; // error, invalid divisor
123
124 #if DEBUG_SHADOW
125 double interpVal = (dx * (p1.y - rayOrigin.y) + dy * rayOrigin.x - dy * p1.x) / divisor;
126 if (interpVal < 0 || interpVal > 1) {
127 ALOGW("rayIntersectPoints is hitting outside the segment %f", interpVal);
128 }
129 #endif
130
131 double distance = (p1.x * (rayOrigin.y - p2.y) + p2.x * (p1.y - rayOrigin.y) +
132 rayOrigin.x * (p2.y - p1.y)) / divisor;
133
134 return distance; // may be negative in error cases
135 }
136
137 /**
138 * Sort points by their X coordinates
139 *
140 * @param points the points as a Vector2 array.
141 * @param pointsLength the number of vertices of the polygon.
142 */
xsort(Vector2 * points,int pointsLength)143 void SpotShadow::xsort(Vector2* points, int pointsLength) {
144 quicksortX(points, 0, pointsLength - 1);
145 }
146
147 /**
148 * compute the convex hull of a collection of Points
149 *
150 * @param points the points as a Vector2 array.
151 * @param pointsLength the number of vertices of the polygon.
152 * @param retPoly pre allocated array of floats to put the vertices
153 * @return the number of points in the polygon 0 if no intersection
154 */
hull(Vector2 * points,int pointsLength,Vector2 * retPoly)155 int SpotShadow::hull(Vector2* points, int pointsLength, Vector2* retPoly) {
156 xsort(points, pointsLength);
157 int n = pointsLength;
158 Vector2 lUpper[n];
159 lUpper[0] = points[0];
160 lUpper[1] = points[1];
161
162 int lUpperSize = 2;
163
164 for (int i = 2; i < n; i++) {
165 lUpper[lUpperSize] = points[i];
166 lUpperSize++;
167
168 while (lUpperSize > 2 && !ccw(
169 lUpper[lUpperSize - 3].x, lUpper[lUpperSize - 3].y,
170 lUpper[lUpperSize - 2].x, lUpper[lUpperSize - 2].y,
171 lUpper[lUpperSize - 1].x, lUpper[lUpperSize - 1].y)) {
172 // Remove the middle point of the three last
173 lUpper[lUpperSize - 2].x = lUpper[lUpperSize - 1].x;
174 lUpper[lUpperSize - 2].y = lUpper[lUpperSize - 1].y;
175 lUpperSize--;
176 }
177 }
178
179 Vector2 lLower[n];
180 lLower[0] = points[n - 1];
181 lLower[1] = points[n - 2];
182
183 int lLowerSize = 2;
184
185 for (int i = n - 3; i >= 0; i--) {
186 lLower[lLowerSize] = points[i];
187 lLowerSize++;
188
189 while (lLowerSize > 2 && !ccw(
190 lLower[lLowerSize - 3].x, lLower[lLowerSize - 3].y,
191 lLower[lLowerSize - 2].x, lLower[lLowerSize - 2].y,
192 lLower[lLowerSize - 1].x, lLower[lLowerSize - 1].y)) {
193 // Remove the middle point of the three last
194 lLower[lLowerSize - 2] = lLower[lLowerSize - 1];
195 lLowerSize--;
196 }
197 }
198
199 // output points in CW ordering
200 const int total = lUpperSize + lLowerSize - 2;
201 int outIndex = total - 1;
202 for (int i = 0; i < lUpperSize; i++) {
203 retPoly[outIndex] = lUpper[i];
204 outIndex--;
205 }
206
207 for (int i = 1; i < lLowerSize - 1; i++) {
208 retPoly[outIndex] = lLower[i];
209 outIndex--;
210 }
211 // TODO: Add test harness which verify that all the points are inside the hull.
212 return total;
213 }
214
215 /**
216 * Test whether the 3 points form a counter clockwise turn.
217 *
218 * @return true if a right hand turn
219 */
ccw(double ax,double ay,double bx,double by,double cx,double cy)220 bool SpotShadow::ccw(double ax, double ay, double bx, double by,
221 double cx, double cy) {
222 return (bx - ax) * (cy - ay) - (by - ay) * (cx - ax) > EPSILON;
223 }
224
225 /**
226 * Calculates the intersection of poly1 with poly2 and put in poly2.
227 * Note that both poly1 and poly2 must be in CW order already!
228 *
229 * @param poly1 The 1st polygon, as a Vector2 array.
230 * @param poly1Length The number of vertices of 1st polygon.
231 * @param poly2 The 2nd and output polygon, as a Vector2 array.
232 * @param poly2Length The number of vertices of 2nd polygon.
233 * @return number of vertices in output polygon as poly2.
234 */
intersection(const Vector2 * poly1,int poly1Length,Vector2 * poly2,int poly2Length)235 int SpotShadow::intersection(const Vector2* poly1, int poly1Length,
236 Vector2* poly2, int poly2Length) {
237 #if DEBUG_SHADOW
238 if (!ShadowTessellator::isClockwise(poly1, poly1Length)) {
239 ALOGW("Poly1 is not clockwise! Intersection is wrong!");
240 }
241 if (!ShadowTessellator::isClockwise(poly2, poly2Length)) {
242 ALOGW("Poly2 is not clockwise! Intersection is wrong!");
243 }
244 #endif
245 Vector2 poly[poly1Length * poly2Length + 2];
246 int count = 0;
247 int pcount = 0;
248
249 // If one vertex from one polygon sits inside another polygon, add it and
250 // count them.
251 for (int i = 0; i < poly1Length; i++) {
252 if (testPointInsidePolygon(poly1[i], poly2, poly2Length)) {
253 poly[count] = poly1[i];
254 count++;
255 pcount++;
256
257 }
258 }
259
260 int insidePoly2 = pcount;
261 for (int i = 0; i < poly2Length; i++) {
262 if (testPointInsidePolygon(poly2[i], poly1, poly1Length)) {
263 poly[count] = poly2[i];
264 count++;
265 }
266 }
267
268 int insidePoly1 = count - insidePoly2;
269 // If all vertices from poly1 are inside poly2, then just return poly1.
270 if (insidePoly2 == poly1Length) {
271 memcpy(poly2, poly1, poly1Length * sizeof(Vector2));
272 return poly1Length;
273 }
274
275 // If all vertices from poly2 are inside poly1, then just return poly2.
276 if (insidePoly1 == poly2Length) {
277 return poly2Length;
278 }
279
280 // Since neither polygon fully contain the other one, we need to add all the
281 // intersection points.
282 Vector2 intersection = {0, 0};
283 for (int i = 0; i < poly2Length; i++) {
284 for (int j = 0; j < poly1Length; j++) {
285 int poly2LineStart = i;
286 int poly2LineEnd = ((i + 1) % poly2Length);
287 int poly1LineStart = j;
288 int poly1LineEnd = ((j + 1) % poly1Length);
289 bool found = lineIntersection(
290 poly2[poly2LineStart].x, poly2[poly2LineStart].y,
291 poly2[poly2LineEnd].x, poly2[poly2LineEnd].y,
292 poly1[poly1LineStart].x, poly1[poly1LineStart].y,
293 poly1[poly1LineEnd].x, poly1[poly1LineEnd].y,
294 intersection);
295 if (found) {
296 poly[count].x = intersection.x;
297 poly[count].y = intersection.y;
298 count++;
299 } else {
300 Vector2 delta = poly2[i] - poly1[j];
301 if (delta.lengthSquared() < EPSILON) {
302 poly[count] = poly2[i];
303 count++;
304 }
305 }
306 }
307 }
308
309 if (count == 0) {
310 return 0;
311 }
312
313 // Sort the result polygon around the center.
314 Vector2 center = {0.0f, 0.0f};
315 for (int i = 0; i < count; i++) {
316 center += poly[i];
317 }
318 center /= count;
319 sort(poly, count, center);
320
321 #if DEBUG_SHADOW
322 // Since poly2 is overwritten as the result, we need to save a copy to do
323 // our verification.
324 Vector2 oldPoly2[poly2Length];
325 int oldPoly2Length = poly2Length;
326 memcpy(oldPoly2, poly2, sizeof(Vector2) * poly2Length);
327 #endif
328
329 // Filter the result out from poly and put it into poly2.
330 poly2[0] = poly[0];
331 int lastOutputIndex = 0;
332 for (int i = 1; i < count; i++) {
333 Vector2 delta = poly[i] - poly2[lastOutputIndex];
334 if (delta.lengthSquared() >= EPSILON) {
335 poly2[++lastOutputIndex] = poly[i];
336 } else {
337 // If the vertices are too close, pick the inner one, because the
338 // inner one is more likely to be an intersection point.
339 Vector2 delta1 = poly[i] - center;
340 Vector2 delta2 = poly2[lastOutputIndex] - center;
341 if (delta1.lengthSquared() < delta2.lengthSquared()) {
342 poly2[lastOutputIndex] = poly[i];
343 }
344 }
345 }
346 int resultLength = lastOutputIndex + 1;
347
348 #if DEBUG_SHADOW
349 testConvex(poly2, resultLength, "intersection");
350 testConvex(poly1, poly1Length, "input poly1");
351 testConvex(oldPoly2, oldPoly2Length, "input poly2");
352
353 testIntersection(poly1, poly1Length, oldPoly2, oldPoly2Length, poly2, resultLength);
354 #endif
355
356 return resultLength;
357 }
358
359 /**
360 * Sort points about a center point
361 *
362 * @param poly The in and out polyogon as a Vector2 array.
363 * @param polyLength The number of vertices of the polygon.
364 * @param center the center ctr[0] = x , ctr[1] = y to sort around.
365 */
sort(Vector2 * poly,int polyLength,const Vector2 & center)366 void SpotShadow::sort(Vector2* poly, int polyLength, const Vector2& center) {
367 quicksortCirc(poly, 0, polyLength - 1, center);
368 }
369
370 /**
371 * Swap points pointed to by i and j
372 */
swap(Vector2 * points,int i,int j)373 void SpotShadow::swap(Vector2* points, int i, int j) {
374 Vector2 temp = points[i];
375 points[i] = points[j];
376 points[j] = temp;
377 }
378
379 /**
380 * quick sort implementation about the center.
381 */
quicksortCirc(Vector2 * points,int low,int high,const Vector2 & center)382 void SpotShadow::quicksortCirc(Vector2* points, int low, int high,
383 const Vector2& center) {
384 int i = low, j = high;
385 int p = low + (high - low) / 2;
386 float pivot = angle(points[p], center);
387 while (i <= j) {
388 while (angle(points[i], center) > pivot) {
389 i++;
390 }
391 while (angle(points[j], center) < pivot) {
392 j--;
393 }
394
395 if (i <= j) {
396 swap(points, i, j);
397 i++;
398 j--;
399 }
400 }
401 if (low < j) quicksortCirc(points, low, j, center);
402 if (i < high) quicksortCirc(points, i, high, center);
403 }
404
405 /**
406 * Sort points by x axis
407 *
408 * @param points points to sort
409 * @param low start index
410 * @param high end index
411 */
quicksortX(Vector2 * points,int low,int high)412 void SpotShadow::quicksortX(Vector2* points, int low, int high) {
413 int i = low, j = high;
414 int p = low + (high - low) / 2;
415 float pivot = points[p].x;
416 while (i <= j) {
417 while (points[i].x < pivot) {
418 i++;
419 }
420 while (points[j].x > pivot) {
421 j--;
422 }
423
424 if (i <= j) {
425 swap(points, i, j);
426 i++;
427 j--;
428 }
429 }
430 if (low < j) quicksortX(points, low, j);
431 if (i < high) quicksortX(points, i, high);
432 }
433
434 /**
435 * Test whether a point is inside the polygon.
436 *
437 * @param testPoint the point to test
438 * @param poly the polygon
439 * @return true if the testPoint is inside the poly.
440 */
testPointInsidePolygon(const Vector2 testPoint,const Vector2 * poly,int len)441 bool SpotShadow::testPointInsidePolygon(const Vector2 testPoint,
442 const Vector2* poly, int len) {
443 bool c = false;
444 double testx = testPoint.x;
445 double testy = testPoint.y;
446 for (int i = 0, j = len - 1; i < len; j = i++) {
447 double startX = poly[j].x;
448 double startY = poly[j].y;
449 double endX = poly[i].x;
450 double endY = poly[i].y;
451
452 if (((endY > testy) != (startY > testy))
453 && (testx < (startX - endX) * (testy - endY)
454 / (startY - endY) + endX)) {
455 c = !c;
456 }
457 }
458 return c;
459 }
460
461 /**
462 * Make the polygon turn clockwise.
463 *
464 * @param polygon the polygon as a Vector2 array.
465 * @param len the number of points of the polygon
466 */
makeClockwise(Vector2 * polygon,int len)467 void SpotShadow::makeClockwise(Vector2* polygon, int len) {
468 if (polygon == 0 || len == 0) {
469 return;
470 }
471 if (!ShadowTessellator::isClockwise(polygon, len)) {
472 reverse(polygon, len);
473 }
474 }
475
476 /**
477 * Reverse the polygon
478 *
479 * @param polygon the polygon as a Vector2 array
480 * @param len the number of points of the polygon
481 */
reverse(Vector2 * polygon,int len)482 void SpotShadow::reverse(Vector2* polygon, int len) {
483 int n = len / 2;
484 for (int i = 0; i < n; i++) {
485 Vector2 tmp = polygon[i];
486 int k = len - 1 - i;
487 polygon[i] = polygon[k];
488 polygon[k] = tmp;
489 }
490 }
491
492 /**
493 * Intersects two lines in parametric form. This function is called in a tight
494 * loop, and we need double precision to get things right.
495 *
496 * @param x1 the x coordinate point 1 of line 1
497 * @param y1 the y coordinate point 1 of line 1
498 * @param x2 the x coordinate point 2 of line 1
499 * @param y2 the y coordinate point 2 of line 1
500 * @param x3 the x coordinate point 1 of line 2
501 * @param y3 the y coordinate point 1 of line 2
502 * @param x4 the x coordinate point 2 of line 2
503 * @param y4 the y coordinate point 2 of line 2
504 * @param ret the x,y location of the intersection
505 * @return true if it found an intersection
506 */
lineIntersection(double x1,double y1,double x2,double y2,double x3,double y3,double x4,double y4,Vector2 & ret)507 inline bool SpotShadow::lineIntersection(double x1, double y1, double x2, double y2,
508 double x3, double y3, double x4, double y4, Vector2& ret) {
509 double d = (x1 - x2) * (y3 - y4) - (y1 - y2) * (x3 - x4);
510 if (d == 0.0) return false;
511
512 double dx = (x1 * y2 - y1 * x2);
513 double dy = (x3 * y4 - y3 * x4);
514 double x = (dx * (x3 - x4) - (x1 - x2) * dy) / d;
515 double y = (dx * (y3 - y4) - (y1 - y2) * dy) / d;
516
517 // The intersection should be in the middle of the point 1 and point 2,
518 // likewise point 3 and point 4.
519 if (((x - x1) * (x - x2) > EPSILON)
520 || ((x - x3) * (x - x4) > EPSILON)
521 || ((y - y1) * (y - y2) > EPSILON)
522 || ((y - y3) * (y - y4) > EPSILON)) {
523 // Not interesected
524 return false;
525 }
526 ret.x = x;
527 ret.y = y;
528 return true;
529
530 }
531
532 /**
533 * Compute a horizontal circular polygon about point (x , y , height) of radius
534 * (size)
535 *
536 * @param points number of the points of the output polygon.
537 * @param lightCenter the center of the light.
538 * @param size the light size.
539 * @param ret result polygon.
540 */
computeLightPolygon(int points,const Vector3 & lightCenter,float size,Vector3 * ret)541 void SpotShadow::computeLightPolygon(int points, const Vector3& lightCenter,
542 float size, Vector3* ret) {
543 // TODO: Caching all the sin / cos values and store them in a look up table.
544 for (int i = 0; i < points; i++) {
545 double angle = 2 * i * M_PI / points;
546 ret[i].x = cosf(angle) * size + lightCenter.x;
547 ret[i].y = sinf(angle) * size + lightCenter.y;
548 ret[i].z = lightCenter.z;
549 }
550 }
551
552 /**
553 * From light center, project one vertex to the z=0 surface and get the outline.
554 *
555 * @param outline The result which is the outline position.
556 * @param lightCenter The center of light.
557 * @param polyVertex The input polygon's vertex.
558 *
559 * @return float The ratio of (polygon.z / light.z - polygon.z)
560 */
projectCasterToOutline(Vector2 & outline,const Vector3 & lightCenter,const Vector3 & polyVertex)561 float SpotShadow::projectCasterToOutline(Vector2& outline,
562 const Vector3& lightCenter, const Vector3& polyVertex) {
563 float lightToPolyZ = lightCenter.z - polyVertex.z;
564 float ratioZ = CASTER_Z_CAP_RATIO;
565 if (lightToPolyZ != 0) {
566 // If any caster's vertex is almost above the light, we just keep it as 95%
567 // of the height of the light.
568 ratioZ = MathUtils::clamp(polyVertex.z / lightToPolyZ, 0.0f, CASTER_Z_CAP_RATIO);
569 }
570
571 outline.x = polyVertex.x - ratioZ * (lightCenter.x - polyVertex.x);
572 outline.y = polyVertex.y - ratioZ * (lightCenter.y - polyVertex.y);
573 return ratioZ;
574 }
575
576 /**
577 * Generate the shadow spot light of shape lightPoly and a object poly
578 *
579 * @param isCasterOpaque whether the caster is opaque
580 * @param lightCenter the center of the light
581 * @param lightSize the radius of the light
582 * @param poly x,y,z vertexes of a convex polygon that occludes the light source
583 * @param polyLength number of vertexes of the occluding polygon
584 * @param shadowTriangleStrip return an (x,y,alpha) triangle strip representing the shadow. Return
585 * empty strip if error.
586 */
createSpotShadow(bool isCasterOpaque,const Vector3 & lightCenter,float lightSize,const Vector3 * poly,int polyLength,const Vector3 & polyCentroid,VertexBuffer & shadowTriangleStrip)587 void SpotShadow::createSpotShadow(bool isCasterOpaque, const Vector3& lightCenter,
588 float lightSize, const Vector3* poly, int polyLength, const Vector3& polyCentroid,
589 VertexBuffer& shadowTriangleStrip) {
590 if (CC_UNLIKELY(lightCenter.z <= 0)) {
591 ALOGW("Relative Light Z is not positive. No spot shadow!");
592 return;
593 }
594 if (CC_UNLIKELY(polyLength < 3)) {
595 #if DEBUG_SHADOW
596 ALOGW("Invalid polygon length. No spot shadow!");
597 #endif
598 return;
599 }
600 OutlineData outlineData[polyLength];
601 Vector2 outlineCentroid;
602 // Calculate the projected outline for each polygon's vertices from the light center.
603 //
604 // O Light
605 // /
606 // /
607 // . Polygon vertex
608 // /
609 // /
610 // O Outline vertices
611 //
612 // Ratio = (Poly - Outline) / (Light - Poly)
613 // Outline.x = Poly.x - Ratio * (Light.x - Poly.x)
614 // Outline's radius / Light's radius = Ratio
615
616 // Compute the last outline vertex to make sure we can get the normal and outline
617 // in one single loop.
618 projectCasterToOutline(outlineData[polyLength - 1].position, lightCenter,
619 poly[polyLength - 1]);
620
621 // Take the outline's polygon, calculate the normal for each outline edge.
622 int currentNormalIndex = polyLength - 1;
623 int nextNormalIndex = 0;
624
625 for (int i = 0; i < polyLength; i++) {
626 float ratioZ = projectCasterToOutline(outlineData[i].position,
627 lightCenter, poly[i]);
628 outlineData[i].radius = ratioZ * lightSize;
629
630 outlineData[currentNormalIndex].normal = ShadowTessellator::calculateNormal(
631 outlineData[currentNormalIndex].position,
632 outlineData[nextNormalIndex].position);
633 currentNormalIndex = (currentNormalIndex + 1) % polyLength;
634 nextNormalIndex++;
635 }
636
637 projectCasterToOutline(outlineCentroid, lightCenter, polyCentroid);
638
639 int penumbraIndex = 0;
640 // Then each polygon's vertex produce at minmal 2 penumbra vertices.
641 // Since the size can be dynamic here, we keep track of the size and update
642 // the real size at the end.
643 int allocatedPenumbraLength = 2 * polyLength + SPOT_MAX_EXTRA_CORNER_VERTEX_NUMBER;
644 Vector2 penumbra[allocatedPenumbraLength];
645 int totalExtraCornerSliceNumber = 0;
646
647 Vector2 umbra[polyLength];
648
649 // When centroid is covered by all circles from outline, then we consider
650 // the umbra is invalid, and we will tune down the shadow strength.
651 bool hasValidUmbra = true;
652 // We need the minimal of RaitoVI to decrease the spot shadow strength accordingly.
653 float minRaitoVI = FLT_MAX;
654
655 for (int i = 0; i < polyLength; i++) {
656 // Generate all the penumbra's vertices only using the (outline vertex + normal * radius)
657 // There is no guarantee that the penumbra is still convex, but for
658 // each outline vertex, it will connect to all its corresponding penumbra vertices as
659 // triangle fans. And for neighber penumbra vertex, it will be a trapezoid.
660 //
661 // Penumbra Vertices marked as Pi
662 // Outline Vertices marked as Vi
663 // (P3)
664 // (P2) | ' (P4)
665 // (P1)' | | '
666 // ' | | '
667 // (P0) ------------------------------------------------(P5)
668 // | (V0) |(V1)
669 // | |
670 // | |
671 // | |
672 // | |
673 // | |
674 // | |
675 // | |
676 // | |
677 // (V3)-----------------------------------(V2)
678 int preNormalIndex = (i + polyLength - 1) % polyLength;
679
680 const Vector2& previousNormal = outlineData[preNormalIndex].normal;
681 const Vector2& currentNormal = outlineData[i].normal;
682
683 // Depending on how roundness we want for each corner, we can subdivide
684 // further here and/or introduce some heuristic to decide how much the
685 // subdivision should be.
686 int currentExtraSliceNumber = ShadowTessellator::getExtraVertexNumber(
687 previousNormal, currentNormal, SPOT_CORNER_RADIANS_DIVISOR);
688
689 int currentCornerSliceNumber = 1 + currentExtraSliceNumber;
690 totalExtraCornerSliceNumber += currentExtraSliceNumber;
691 #if DEBUG_SHADOW
692 ALOGD("currentExtraSliceNumber should be %d", currentExtraSliceNumber);
693 ALOGD("currentCornerSliceNumber should be %d", currentCornerSliceNumber);
694 ALOGD("totalCornerSliceNumber is %d", totalExtraCornerSliceNumber);
695 #endif
696 if (CC_UNLIKELY(totalExtraCornerSliceNumber > SPOT_MAX_EXTRA_CORNER_VERTEX_NUMBER)) {
697 currentCornerSliceNumber = 1;
698 }
699 for (int k = 0; k <= currentCornerSliceNumber; k++) {
700 Vector2 avgNormal =
701 (previousNormal * (currentCornerSliceNumber - k) + currentNormal * k) /
702 currentCornerSliceNumber;
703 avgNormal.normalize();
704 penumbra[penumbraIndex++] = outlineData[i].position +
705 avgNormal * outlineData[i].radius;
706 }
707
708
709 // Compute the umbra by the intersection from the outline's centroid!
710 //
711 // (V) ------------------------------------
712 // | ' |
713 // | ' |
714 // | ' (I) |
715 // | ' |
716 // | ' (C) |
717 // | |
718 // | |
719 // | |
720 // | |
721 // ------------------------------------
722 //
723 // Connect a line b/t the outline vertex (V) and the centroid (C), it will
724 // intersect with the outline vertex's circle at point (I).
725 // Now, ratioVI = VI / VC, ratioIC = IC / VC
726 // Then the intersetion point can be computed as Ixy = Vxy * ratioIC + Cxy * ratioVI;
727 //
728 // When all of the outline circles cover the the outline centroid, (like I is
729 // on the other side of C), there is no real umbra any more, so we just fake
730 // a small area around the centroid as the umbra, and tune down the spot
731 // shadow's umbra strength to simulate the effect the whole shadow will
732 // become lighter in this case.
733 // The ratio can be simulated by using the inverse of maximum of ratioVI for
734 // all (V).
735 float distOutline = (outlineData[i].position - outlineCentroid).length();
736 if (CC_UNLIKELY(distOutline == 0)) {
737 // If the outline has 0 area, then there is no spot shadow anyway.
738 ALOGW("Outline has 0 area, no spot shadow!");
739 return;
740 }
741
742 float ratioVI = outlineData[i].radius / distOutline;
743 minRaitoVI = MathUtils::min(minRaitoVI, ratioVI);
744 if (ratioVI >= (1 - FAKE_UMBRA_SIZE_RATIO)) {
745 ratioVI = (1 - FAKE_UMBRA_SIZE_RATIO);
746 }
747 // When we know we don't have valid umbra, don't bother to compute the
748 // values below. But we can't skip the loop yet since we want to know the
749 // maximum ratio.
750 float ratioIC = 1 - ratioVI;
751 umbra[i] = outlineData[i].position * ratioIC + outlineCentroid * ratioVI;
752 }
753
754 hasValidUmbra = (minRaitoVI <= 1.0);
755 float shadowStrengthScale = 1.0;
756 if (!hasValidUmbra) {
757 #if DEBUG_SHADOW
758 ALOGW("The object is too close to the light or too small, no real umbra!");
759 #endif
760 for (int i = 0; i < polyLength; i++) {
761 umbra[i] = outlineData[i].position * FAKE_UMBRA_SIZE_RATIO +
762 outlineCentroid * (1 - FAKE_UMBRA_SIZE_RATIO);
763 }
764 shadowStrengthScale = 1.0 / minRaitoVI;
765 }
766
767 int penumbraLength = penumbraIndex;
768 int umbraLength = polyLength;
769
770 #if DEBUG_SHADOW
771 ALOGD("penumbraLength is %d , allocatedPenumbraLength %d", penumbraLength, allocatedPenumbraLength);
772 dumpPolygon(poly, polyLength, "input poly");
773 dumpPolygon(penumbra, penumbraLength, "penumbra");
774 dumpPolygon(umbra, umbraLength, "umbra");
775 ALOGD("hasValidUmbra is %d and shadowStrengthScale is %f", hasValidUmbra, shadowStrengthScale);
776 #endif
777
778 // The penumbra and umbra needs to be in convex shape to keep consistency
779 // and quality.
780 // Since we are still shooting rays to penumbra, it needs to be convex.
781 // Umbra can be represented as a fan from the centroid, but visually umbra
782 // looks nicer when it is convex.
783 Vector2 finalUmbra[umbraLength];
784 Vector2 finalPenumbra[penumbraLength];
785 int finalUmbraLength = hull(umbra, umbraLength, finalUmbra);
786 int finalPenumbraLength = hull(penumbra, penumbraLength, finalPenumbra);
787
788 generateTriangleStrip(isCasterOpaque, shadowStrengthScale, finalPenumbra,
789 finalPenumbraLength, finalUmbra, finalUmbraLength, poly, polyLength,
790 shadowTriangleStrip, outlineCentroid);
791
792 }
793
794 /**
795 * Converts a polygon specified with CW vertices into an array of distance-from-centroid values.
796 *
797 * Returns false in error conditions
798 *
799 * @param poly Array of vertices. Note that these *must* be CW.
800 * @param polyLength The number of vertices in the polygon.
801 * @param polyCentroid The centroid of the polygon, from which rays will be cast
802 * @param rayDist The output array for the calculated distances, must be SHADOW_RAY_COUNT in size
803 */
convertPolyToRayDist(const Vector2 * poly,int polyLength,const Vector2 & polyCentroid,float * rayDist)804 bool convertPolyToRayDist(const Vector2* poly, int polyLength, const Vector2& polyCentroid,
805 float* rayDist) {
806 const int rays = SHADOW_RAY_COUNT;
807 const float step = M_PI * 2 / rays;
808
809 const Vector2* lastVertex = &(poly[polyLength - 1]);
810 float startAngle = angle(*lastVertex, polyCentroid);
811
812 // Start with the ray that's closest to and less than startAngle
813 int rayIndex = floor((startAngle - EPSILON) / step);
814 rayIndex = (rayIndex + rays) % rays; // ensure positive
815
816 for (int polyIndex = 0; polyIndex < polyLength; polyIndex++) {
817 /*
818 * For a given pair of vertices on the polygon, poly[i-1] and poly[i], the rays that
819 * intersect these will be those that are between the two angles from the centroid that the
820 * vertices define.
821 *
822 * Because the polygon vertices are stored clockwise, the closest ray with an angle
823 * *smaller* than that defined by angle(poly[i], centroid) will be the first ray that does
824 * not intersect with poly[i-1], poly[i].
825 */
826 float currentAngle = angle(poly[polyIndex], polyCentroid);
827
828 // find first ray that will not intersect the line segment poly[i-1] & poly[i]
829 int firstRayIndexOnNextSegment = floor((currentAngle - EPSILON) / step);
830 firstRayIndexOnNextSegment = (firstRayIndexOnNextSegment + rays) % rays; // ensure positive
831
832 // Iterate through all rays that intersect with poly[i-1], poly[i] line segment.
833 // This may be 0 rays.
834 while (rayIndex != firstRayIndexOnNextSegment) {
835 float distanceToIntersect = rayIntersectPoints(polyCentroid,
836 cos(rayIndex * step),
837 sin(rayIndex * step),
838 *lastVertex, poly[polyIndex]);
839 if (distanceToIntersect < 0) {
840 #if DEBUG_SHADOW
841 ALOGW("ERROR: convertPolyToRayDist failed");
842 #endif
843 return false; // error case, abort
844 }
845
846 rayDist[rayIndex] = distanceToIntersect;
847
848 rayIndex = (rayIndex - 1 + rays) % rays;
849 }
850 lastVertex = &poly[polyIndex];
851 }
852
853 return true;
854 }
855
calculateOccludedUmbra(const Vector2 * umbra,int umbraLength,const Vector3 * poly,int polyLength,Vector2 * occludedUmbra)856 int SpotShadow::calculateOccludedUmbra(const Vector2* umbra, int umbraLength,
857 const Vector3* poly, int polyLength, Vector2* occludedUmbra) {
858 // Occluded umbra area is computed as the intersection of the projected 2D
859 // poly and umbra.
860 for (int i = 0; i < polyLength; i++) {
861 occludedUmbra[i].x = poly[i].x;
862 occludedUmbra[i].y = poly[i].y;
863 }
864
865 // Both umbra and incoming polygon are guaranteed to be CW, so we can call
866 // intersection() directly.
867 return intersection(umbra, umbraLength,
868 occludedUmbra, polyLength);
869 }
870
871 /**
872 * This is only for experimental purpose.
873 * After intersections are calculated, we could smooth the polygon if needed.
874 * So far, we don't think it is more appealing yet.
875 *
876 * @param level The level of smoothness.
877 * @param rays The total number of rays.
878 * @param rayDist (In and Out) The distance for each ray.
879 *
880 */
smoothPolygon(int level,int rays,float * rayDist)881 void SpotShadow::smoothPolygon(int level, int rays, float* rayDist) {
882 for (int k = 0; k < level; k++) {
883 for (int i = 0; i < rays; i++) {
884 float p1 = rayDist[(rays - 1 + i) % rays];
885 float p2 = rayDist[i];
886 float p3 = rayDist[(i + 1) % rays];
887 rayDist[i] = (p1 + p2 * 2 + p3) / 4;
888 }
889 }
890 }
891
892 /**
893 * Generate a array of the angleData for either umbra or penumbra vertices.
894 *
895 * This array will be merged and used to guide where to shoot the rays, in clockwise order.
896 *
897 * @param angleDataList The result array of angle data.
898 *
899 * @return int The maximum angle's index in the array.
900 */
setupAngleList(VertexAngleData * angleDataList,int polyLength,const Vector2 * polygon,const Vector2 & centroid,bool isPenumbra,const char * name)901 int SpotShadow::setupAngleList(VertexAngleData* angleDataList,
902 int polyLength, const Vector2* polygon, const Vector2& centroid,
903 bool isPenumbra, const char* name) {
904 float maxAngle = FLT_MIN;
905 int maxAngleIndex = 0;
906 for (int i = 0; i < polyLength; i++) {
907 float currentAngle = angle(polygon[i], centroid);
908 if (currentAngle > maxAngle) {
909 maxAngle = currentAngle;
910 maxAngleIndex = i;
911 }
912 angleDataList[i].set(currentAngle, isPenumbra, i);
913 #if DEBUG_SHADOW
914 ALOGD("%s AngleList i %d %f", name, i, currentAngle);
915 #endif
916 }
917 return maxAngleIndex;
918 }
919
920 /**
921 * Make sure the polygons are indeed in clockwise order.
922 *
923 * Possible reasons to return false: 1. The input polygon is not setup properly. 2. The hull
924 * algorithm is not able to generate it properly.
925 *
926 * Anyway, since the algorithm depends on the clockwise, when these kind of unexpected error
927 * situation is found, we need to detect it and early return without corrupting the memory.
928 *
929 * @return bool True if the angle list is actually from big to small.
930 */
checkClockwise(int indexOfMaxAngle,int listLength,VertexAngleData * angleList,const char * name)931 bool SpotShadow::checkClockwise(int indexOfMaxAngle, int listLength, VertexAngleData* angleList,
932 const char* name) {
933 int currentIndex = indexOfMaxAngle;
934 #if DEBUG_SHADOW
935 ALOGD("max index %d", currentIndex);
936 #endif
937 for (int i = 0; i < listLength - 1; i++) {
938 // TODO: Cache the last angle.
939 float currentAngle = angleList[currentIndex].mAngle;
940 float nextAngle = angleList[(currentIndex + 1) % listLength].mAngle;
941 if (currentAngle < nextAngle) {
942 #if DEBUG_SHADOW
943 ALOGE("%s, is not CW, at index %d", name, currentIndex);
944 #endif
945 return false;
946 }
947 currentIndex = (currentIndex + 1) % listLength;
948 }
949 return true;
950 }
951
952 /**
953 * Check the polygon is clockwise.
954 *
955 * @return bool True is the polygon is clockwise.
956 */
checkPolyClockwise(int polyAngleLength,int maxPolyAngleIndex,const float * polyAngleList)957 bool SpotShadow::checkPolyClockwise(int polyAngleLength, int maxPolyAngleIndex,
958 const float* polyAngleList) {
959 bool isPolyCW = true;
960 // Starting from maxPolyAngleIndex , check around to make sure angle decrease.
961 for (int i = 0; i < polyAngleLength - 1; i++) {
962 float currentAngle = polyAngleList[(i + maxPolyAngleIndex) % polyAngleLength];
963 float nextAngle = polyAngleList[(i + maxPolyAngleIndex + 1) % polyAngleLength];
964 if (currentAngle < nextAngle) {
965 isPolyCW = false;
966 }
967 }
968 return isPolyCW;
969 }
970
971 /**
972 * Given the sorted array of all the vertices angle data, calculate for each
973 * vertices, the offset value to array element which represent the start edge
974 * of the polygon we need to shoot the ray at.
975 *
976 * TODO: Calculate this for umbra and penumbra in one loop using one single array.
977 *
978 * @param distances The result of the array distance counter.
979 */
calculateDistanceCounter(bool needsOffsetToUmbra,int angleLength,const VertexAngleData * allVerticesAngleData,int * distances)980 void SpotShadow::calculateDistanceCounter(bool needsOffsetToUmbra, int angleLength,
981 const VertexAngleData* allVerticesAngleData, int* distances) {
982
983 bool firstVertexIsPenumbra = allVerticesAngleData[0].mIsPenumbra;
984 // If we want distance to inner, then we just set to 0 when we see inner.
985 bool needsSearch = needsOffsetToUmbra ? firstVertexIsPenumbra : !firstVertexIsPenumbra;
986 int distanceCounter = 0;
987 if (needsSearch) {
988 int foundIndex = -1;
989 for (int i = (angleLength - 1); i >= 0; i--) {
990 bool currentIsOuter = allVerticesAngleData[i].mIsPenumbra;
991 // If we need distance to inner, then we need to find a inner vertex.
992 if (currentIsOuter != firstVertexIsPenumbra) {
993 foundIndex = i;
994 break;
995 }
996 }
997 LOG_ALWAYS_FATAL_IF(foundIndex == -1, "Wrong index found, means either"
998 " umbra or penumbra's length is 0");
999 distanceCounter = angleLength - foundIndex;
1000 }
1001 #if DEBUG_SHADOW
1002 ALOGD("distances[0] is %d", distanceCounter);
1003 #endif
1004
1005 distances[0] = distanceCounter; // means never see a target poly
1006
1007 for (int i = 1; i < angleLength; i++) {
1008 bool firstVertexIsPenumbra = allVerticesAngleData[i].mIsPenumbra;
1009 // When we needs for distance for each outer vertex to inner, then we
1010 // increase the distance when seeing outer vertices. Otherwise, we clear
1011 // to 0.
1012 bool needsIncrement = needsOffsetToUmbra ? firstVertexIsPenumbra : !firstVertexIsPenumbra;
1013 // If counter is not -1, that means we have seen an other polygon's vertex.
1014 if (needsIncrement && distanceCounter != -1) {
1015 distanceCounter++;
1016 } else {
1017 distanceCounter = 0;
1018 }
1019 distances[i] = distanceCounter;
1020 }
1021 }
1022
1023 /**
1024 * Given umbra and penumbra angle data list, merge them by sorting the angle
1025 * from the biggest to smallest.
1026 *
1027 * @param allVerticesAngleData The result array of merged angle data.
1028 */
mergeAngleList(int maxUmbraAngleIndex,int maxPenumbraAngleIndex,const VertexAngleData * umbraAngleList,int umbraLength,const VertexAngleData * penumbraAngleList,int penumbraLength,VertexAngleData * allVerticesAngleData)1029 void SpotShadow::mergeAngleList(int maxUmbraAngleIndex, int maxPenumbraAngleIndex,
1030 const VertexAngleData* umbraAngleList, int umbraLength,
1031 const VertexAngleData* penumbraAngleList, int penumbraLength,
1032 VertexAngleData* allVerticesAngleData) {
1033
1034 int totalRayNumber = umbraLength + penumbraLength;
1035 int umbraIndex = maxUmbraAngleIndex;
1036 int penumbraIndex = maxPenumbraAngleIndex;
1037
1038 float currentUmbraAngle = umbraAngleList[umbraIndex].mAngle;
1039 float currentPenumbraAngle = penumbraAngleList[penumbraIndex].mAngle;
1040
1041 // TODO: Clean this up using a while loop with 2 iterators.
1042 for (int i = 0; i < totalRayNumber; i++) {
1043 if (currentUmbraAngle > currentPenumbraAngle) {
1044 allVerticesAngleData[i] = umbraAngleList[umbraIndex];
1045 umbraIndex = (umbraIndex + 1) % umbraLength;
1046
1047 // If umbraIndex round back, that means we are running out of
1048 // umbra vertices to merge, so just copy all the penumbra leftover.
1049 // Otherwise, we update the currentUmbraAngle.
1050 if (umbraIndex != maxUmbraAngleIndex) {
1051 currentUmbraAngle = umbraAngleList[umbraIndex].mAngle;
1052 } else {
1053 for (int j = i + 1; j < totalRayNumber; j++) {
1054 allVerticesAngleData[j] = penumbraAngleList[penumbraIndex];
1055 penumbraIndex = (penumbraIndex + 1) % penumbraLength;
1056 }
1057 break;
1058 }
1059 } else {
1060 allVerticesAngleData[i] = penumbraAngleList[penumbraIndex];
1061 penumbraIndex = (penumbraIndex + 1) % penumbraLength;
1062 // If penumbraIndex round back, that means we are running out of
1063 // penumbra vertices to merge, so just copy all the umbra leftover.
1064 // Otherwise, we update the currentPenumbraAngle.
1065 if (penumbraIndex != maxPenumbraAngleIndex) {
1066 currentPenumbraAngle = penumbraAngleList[penumbraIndex].mAngle;
1067 } else {
1068 for (int j = i + 1; j < totalRayNumber; j++) {
1069 allVerticesAngleData[j] = umbraAngleList[umbraIndex];
1070 umbraIndex = (umbraIndex + 1) % umbraLength;
1071 }
1072 break;
1073 }
1074 }
1075 }
1076 }
1077
1078 #if DEBUG_SHADOW
1079 /**
1080 * DEBUG ONLY: Verify all the offset compuation is correctly done by examining
1081 * each vertex and its neighbor.
1082 */
verifyDistanceCounter(const VertexAngleData * allVerticesAngleData,const int * distances,int angleLength,const char * name)1083 static void verifyDistanceCounter(const VertexAngleData* allVerticesAngleData,
1084 const int* distances, int angleLength, const char* name) {
1085 int currentDistance = distances[0];
1086 for (int i = 1; i < angleLength; i++) {
1087 if (distances[i] != INT_MIN) {
1088 if (!((currentDistance + 1) == distances[i]
1089 || distances[i] == 0)) {
1090 ALOGE("Wrong distance found at i %d name %s", i, name);
1091 }
1092 currentDistance = distances[i];
1093 if (currentDistance != 0) {
1094 bool currentOuter = allVerticesAngleData[i].mIsPenumbra;
1095 for (int j = 1; j <= (currentDistance - 1); j++) {
1096 bool neigborOuter =
1097 allVerticesAngleData[(i + angleLength - j) % angleLength].mIsPenumbra;
1098 if (neigborOuter != currentOuter) {
1099 ALOGE("Wrong distance found at i %d name %s", i, name);
1100 }
1101 }
1102 bool oppositeOuter =
1103 allVerticesAngleData[(i + angleLength - currentDistance) % angleLength].mIsPenumbra;
1104 if (oppositeOuter == currentOuter) {
1105 ALOGE("Wrong distance found at i %d name %s", i, name);
1106 }
1107 }
1108 }
1109 }
1110 }
1111
1112 /**
1113 * DEBUG ONLY: Verify all the angle data compuated are is correctly done
1114 */
verifyAngleData(int totalRayNumber,const VertexAngleData * allVerticesAngleData,const int * distancesToInner,const int * distancesToOuter,const VertexAngleData * umbraAngleList,int maxUmbraAngleIndex,int umbraLength,const VertexAngleData * penumbraAngleList,int maxPenumbraAngleIndex,int penumbraLength)1115 static void verifyAngleData(int totalRayNumber, const VertexAngleData* allVerticesAngleData,
1116 const int* distancesToInner, const int* distancesToOuter,
1117 const VertexAngleData* umbraAngleList, int maxUmbraAngleIndex, int umbraLength,
1118 const VertexAngleData* penumbraAngleList, int maxPenumbraAngleIndex,
1119 int penumbraLength) {
1120 for (int i = 0; i < totalRayNumber; i++) {
1121 ALOGD("currentAngleList i %d, angle %f, isInner %d, index %d distancesToInner"
1122 " %d distancesToOuter %d", i, allVerticesAngleData[i].mAngle,
1123 !allVerticesAngleData[i].mIsPenumbra,
1124 allVerticesAngleData[i].mVertexIndex, distancesToInner[i], distancesToOuter[i]);
1125 }
1126
1127 verifyDistanceCounter(allVerticesAngleData, distancesToInner, totalRayNumber, "distancesToInner");
1128 verifyDistanceCounter(allVerticesAngleData, distancesToOuter, totalRayNumber, "distancesToOuter");
1129
1130 for (int i = 0; i < totalRayNumber; i++) {
1131 if ((distancesToInner[i] * distancesToOuter[i]) != 0) {
1132 ALOGE("distancesToInner wrong at index %d distancesToInner[i] %d,"
1133 " distancesToOuter[i] %d", i, distancesToInner[i], distancesToOuter[i]);
1134 }
1135 }
1136 int currentUmbraVertexIndex =
1137 umbraAngleList[maxUmbraAngleIndex].mVertexIndex;
1138 int currentPenumbraVertexIndex =
1139 penumbraAngleList[maxPenumbraAngleIndex].mVertexIndex;
1140 for (int i = 0; i < totalRayNumber; i++) {
1141 if (allVerticesAngleData[i].mIsPenumbra == true) {
1142 if (allVerticesAngleData[i].mVertexIndex != currentPenumbraVertexIndex) {
1143 ALOGW("wrong penumbra indexing i %d allVerticesAngleData[i].mVertexIndex %d "
1144 "currentpenumbraVertexIndex %d", i,
1145 allVerticesAngleData[i].mVertexIndex, currentPenumbraVertexIndex);
1146 }
1147 currentPenumbraVertexIndex = (currentPenumbraVertexIndex + 1) % penumbraLength;
1148 } else {
1149 if (allVerticesAngleData[i].mVertexIndex != currentUmbraVertexIndex) {
1150 ALOGW("wrong umbra indexing i %d allVerticesAngleData[i].mVertexIndex %d "
1151 "currentUmbraVertexIndex %d", i,
1152 allVerticesAngleData[i].mVertexIndex, currentUmbraVertexIndex);
1153 }
1154 currentUmbraVertexIndex = (currentUmbraVertexIndex + 1) % umbraLength;
1155 }
1156 }
1157 for (int i = 0; i < totalRayNumber - 1; i++) {
1158 float currentAngle = allVerticesAngleData[i].mAngle;
1159 float nextAngle = allVerticesAngleData[(i + 1) % totalRayNumber].mAngle;
1160 if (currentAngle < nextAngle) {
1161 ALOGE("Unexpected angle values!, currentAngle nextAngle %f %f", currentAngle, nextAngle);
1162 }
1163 }
1164 }
1165 #endif
1166
1167 /**
1168 * In order to compute the occluded umbra, we need to setup the angle data list
1169 * for the polygon data. Since we only store one poly vertex per polygon vertex,
1170 * this array only needs to be a float array which are the angles for each vertex.
1171 *
1172 * @param polyAngleList The result list
1173 *
1174 * @return int The index for the maximum angle in this array.
1175 */
setupPolyAngleList(float * polyAngleList,int polyAngleLength,const Vector2 * poly2d,const Vector2 & centroid)1176 int SpotShadow::setupPolyAngleList(float* polyAngleList, int polyAngleLength,
1177 const Vector2* poly2d, const Vector2& centroid) {
1178 int maxPolyAngleIndex = -1;
1179 float maxPolyAngle = -FLT_MAX;
1180 for (int i = 0; i < polyAngleLength; i++) {
1181 polyAngleList[i] = angle(poly2d[i], centroid);
1182 if (polyAngleList[i] > maxPolyAngle) {
1183 maxPolyAngle = polyAngleList[i];
1184 maxPolyAngleIndex = i;
1185 }
1186 }
1187 return maxPolyAngleIndex;
1188 }
1189
1190 /**
1191 * For umbra and penumbra, given the offset info and the current ray number,
1192 * find the right edge index (the (starting vertex) for the ray to shoot at.
1193 *
1194 * @return int The index of the starting vertex of the edge.
1195 */
getEdgeStartIndex(const int * offsets,int rayIndex,int totalRayNumber,const VertexAngleData * allVerticesAngleData)1196 inline int SpotShadow::getEdgeStartIndex(const int* offsets, int rayIndex, int totalRayNumber,
1197 const VertexAngleData* allVerticesAngleData) {
1198 int tempOffset = offsets[rayIndex];
1199 int targetRayIndex = (rayIndex - tempOffset + totalRayNumber) % totalRayNumber;
1200 return allVerticesAngleData[targetRayIndex].mVertexIndex;
1201 }
1202
1203 /**
1204 * For the occluded umbra, given the array of angles, find the index of the
1205 * starting vertex of the edge, for the ray to shoo at.
1206 *
1207 * TODO: Save the last result to shorten the search distance.
1208 *
1209 * @return int The index of the starting vertex of the edge.
1210 */
getPolyEdgeStartIndex(int maxPolyAngleIndex,int polyLength,const float * polyAngleList,float rayAngle)1211 inline int SpotShadow::getPolyEdgeStartIndex(int maxPolyAngleIndex, int polyLength,
1212 const float* polyAngleList, float rayAngle) {
1213 int minPolyAngleIndex = (maxPolyAngleIndex + polyLength - 1) % polyLength;
1214 int resultIndex = -1;
1215 if (rayAngle > polyAngleList[maxPolyAngleIndex]
1216 || rayAngle <= polyAngleList[minPolyAngleIndex]) {
1217 resultIndex = minPolyAngleIndex;
1218 } else {
1219 for (int i = 0; i < polyLength - 1; i++) {
1220 int currentIndex = (maxPolyAngleIndex + i) % polyLength;
1221 int nextIndex = (maxPolyAngleIndex + i + 1) % polyLength;
1222 if (rayAngle <= polyAngleList[currentIndex]
1223 && rayAngle > polyAngleList[nextIndex]) {
1224 resultIndex = currentIndex;
1225 }
1226 }
1227 }
1228 if (CC_UNLIKELY(resultIndex == -1)) {
1229 // TODO: Add more error handling here.
1230 ALOGE("Wrong index found, means no edge can't be found for rayAngle %f", rayAngle);
1231 }
1232 return resultIndex;
1233 }
1234
1235 /**
1236 * Convert the incoming polygons into arrays of vertices, for each ray.
1237 * Ray only shoots when there is one vertex either on penumbra on umbra.
1238 *
1239 * Finally, it will generate vertices per ray for umbra, penumbra and optionally
1240 * occludedUmbra.
1241 *
1242 * Return true (success) when all vertices are generated
1243 */
convertPolysToVerticesPerRay(bool hasOccludedUmbraArea,const Vector2 * poly2d,int polyLength,const Vector2 * umbra,int umbraLength,const Vector2 * penumbra,int penumbraLength,const Vector2 & centroid,Vector2 * umbraVerticesPerRay,Vector2 * penumbraVerticesPerRay,Vector2 * occludedUmbraVerticesPerRay)1244 int SpotShadow::convertPolysToVerticesPerRay(
1245 bool hasOccludedUmbraArea, const Vector2* poly2d, int polyLength,
1246 const Vector2* umbra, int umbraLength, const Vector2* penumbra,
1247 int penumbraLength, const Vector2& centroid,
1248 Vector2* umbraVerticesPerRay, Vector2* penumbraVerticesPerRay,
1249 Vector2* occludedUmbraVerticesPerRay) {
1250 int totalRayNumber = umbraLength + penumbraLength;
1251
1252 // For incoming umbra / penumbra polygons, we will build an intermediate data
1253 // structure to help us sort all the vertices according to the vertices.
1254 // Using this data structure, we can tell where (the angle) to shoot the ray,
1255 // whether we shoot at penumbra edge or umbra edge, and which edge to shoot at.
1256 //
1257 // We first parse each vertices and generate a table of VertexAngleData.
1258 // Based on that, we create 2 arrays telling us which edge to shoot at.
1259 VertexAngleData allVerticesAngleData[totalRayNumber];
1260 VertexAngleData umbraAngleList[umbraLength];
1261 VertexAngleData penumbraAngleList[penumbraLength];
1262
1263 int polyAngleLength = hasOccludedUmbraArea ? polyLength : 0;
1264 float polyAngleList[polyAngleLength];
1265
1266 const int maxUmbraAngleIndex =
1267 setupAngleList(umbraAngleList, umbraLength, umbra, centroid, false, "umbra");
1268 const int maxPenumbraAngleIndex =
1269 setupAngleList(penumbraAngleList, penumbraLength, penumbra, centroid, true, "penumbra");
1270 const int maxPolyAngleIndex = setupPolyAngleList(polyAngleList, polyAngleLength, poly2d, centroid);
1271
1272 // Check all the polygons here are CW.
1273 bool isPolyCW = checkPolyClockwise(polyAngleLength, maxPolyAngleIndex, polyAngleList);
1274 bool isUmbraCW = checkClockwise(maxUmbraAngleIndex, umbraLength,
1275 umbraAngleList, "umbra");
1276 bool isPenumbraCW = checkClockwise(maxPenumbraAngleIndex, penumbraLength,
1277 penumbraAngleList, "penumbra");
1278
1279 if (!isUmbraCW || !isPenumbraCW || !isPolyCW) {
1280 #if DEBUG_SHADOW
1281 ALOGE("One polygon is not CW isUmbraCW %d isPenumbraCW %d isPolyCW %d",
1282 isUmbraCW, isPenumbraCW, isPolyCW);
1283 #endif
1284 return false;
1285 }
1286
1287 mergeAngleList(maxUmbraAngleIndex, maxPenumbraAngleIndex,
1288 umbraAngleList, umbraLength, penumbraAngleList, penumbraLength,
1289 allVerticesAngleData);
1290
1291 // Calculate the offset to the left most Inner vertex for each outerVertex.
1292 // Then the offset to the left most Outer vertex for each innerVertex.
1293 int offsetToInner[totalRayNumber];
1294 int offsetToOuter[totalRayNumber];
1295 calculateDistanceCounter(true, totalRayNumber, allVerticesAngleData, offsetToInner);
1296 calculateDistanceCounter(false, totalRayNumber, allVerticesAngleData, offsetToOuter);
1297
1298 // Generate both umbraVerticesPerRay and penumbraVerticesPerRay
1299 for (int i = 0; i < totalRayNumber; i++) {
1300 float rayAngle = allVerticesAngleData[i].mAngle;
1301 bool isUmbraVertex = !allVerticesAngleData[i].mIsPenumbra;
1302
1303 float dx = cosf(rayAngle);
1304 float dy = sinf(rayAngle);
1305 float distanceToIntersectUmbra = -1;
1306
1307 if (isUmbraVertex) {
1308 // We can just copy umbra easily, and calculate the distance for the
1309 // occluded umbra computation.
1310 int startUmbraIndex = allVerticesAngleData[i].mVertexIndex;
1311 umbraVerticesPerRay[i] = umbra[startUmbraIndex];
1312 if (hasOccludedUmbraArea) {
1313 distanceToIntersectUmbra = (umbraVerticesPerRay[i] - centroid).length();
1314 }
1315
1316 //shoot ray to penumbra only
1317 int startPenumbraIndex = getEdgeStartIndex(offsetToOuter, i, totalRayNumber,
1318 allVerticesAngleData);
1319 float distanceToIntersectPenumbra = rayIntersectPoints(centroid, dx, dy,
1320 penumbra[startPenumbraIndex],
1321 penumbra[(startPenumbraIndex + 1) % penumbraLength]);
1322 if (distanceToIntersectPenumbra < 0) {
1323 #if DEBUG_SHADOW
1324 ALOGW("convertPolyToRayDist for penumbra failed rayAngle %f dx %f dy %f",
1325 rayAngle, dx, dy);
1326 #endif
1327 distanceToIntersectPenumbra = 0;
1328 }
1329 penumbraVerticesPerRay[i].x = centroid.x + dx * distanceToIntersectPenumbra;
1330 penumbraVerticesPerRay[i].y = centroid.y + dy * distanceToIntersectPenumbra;
1331 } else {
1332 // We can just copy the penumbra
1333 int startPenumbraIndex = allVerticesAngleData[i].mVertexIndex;
1334 penumbraVerticesPerRay[i] = penumbra[startPenumbraIndex];
1335
1336 // And shoot ray to umbra only
1337 int startUmbraIndex = getEdgeStartIndex(offsetToInner, i, totalRayNumber,
1338 allVerticesAngleData);
1339
1340 distanceToIntersectUmbra = rayIntersectPoints(centroid, dx, dy,
1341 umbra[startUmbraIndex], umbra[(startUmbraIndex + 1) % umbraLength]);
1342 if (distanceToIntersectUmbra < 0) {
1343 #if DEBUG_SHADOW
1344 ALOGW("convertPolyToRayDist for umbra failed rayAngle %f dx %f dy %f",
1345 rayAngle, dx, dy);
1346 #endif
1347 distanceToIntersectUmbra = 0;
1348 }
1349 umbraVerticesPerRay[i].x = centroid.x + dx * distanceToIntersectUmbra;
1350 umbraVerticesPerRay[i].y = centroid.y + dy * distanceToIntersectUmbra;
1351 }
1352
1353 if (hasOccludedUmbraArea) {
1354 // Shoot the same ray to the poly2d, and get the distance.
1355 int startPolyIndex = getPolyEdgeStartIndex(maxPolyAngleIndex, polyLength,
1356 polyAngleList, rayAngle);
1357
1358 float distanceToIntersectPoly = rayIntersectPoints(centroid, dx, dy,
1359 poly2d[startPolyIndex], poly2d[(startPolyIndex + 1) % polyLength]);
1360 if (distanceToIntersectPoly < 0) {
1361 distanceToIntersectPoly = 0;
1362 }
1363 distanceToIntersectPoly = MathUtils::min(distanceToIntersectUmbra, distanceToIntersectPoly);
1364 occludedUmbraVerticesPerRay[i].x = centroid.x + dx * distanceToIntersectPoly;
1365 occludedUmbraVerticesPerRay[i].y = centroid.y + dy * distanceToIntersectPoly;
1366 }
1367 }
1368
1369 #if DEBUG_SHADOW
1370 verifyAngleData(totalRayNumber, allVerticesAngleData, offsetToInner,
1371 offsetToOuter, umbraAngleList, maxUmbraAngleIndex, umbraLength,
1372 penumbraAngleList, maxPenumbraAngleIndex, penumbraLength);
1373 #endif
1374 return true; // success
1375
1376 }
1377
1378 /**
1379 * Generate a triangle strip given two convex polygon
1380 **/
generateTriangleStrip(bool isCasterOpaque,float shadowStrengthScale,Vector2 * penumbra,int penumbraLength,Vector2 * umbra,int umbraLength,const Vector3 * poly,int polyLength,VertexBuffer & shadowTriangleStrip,const Vector2 & centroid)1381 void SpotShadow::generateTriangleStrip(bool isCasterOpaque, float shadowStrengthScale,
1382 Vector2* penumbra, int penumbraLength, Vector2* umbra, int umbraLength,
1383 const Vector3* poly, int polyLength, VertexBuffer& shadowTriangleStrip,
1384 const Vector2& centroid) {
1385
1386 bool hasOccludedUmbraArea = false;
1387 Vector2 poly2d[polyLength];
1388
1389 if (isCasterOpaque) {
1390 for (int i = 0; i < polyLength; i++) {
1391 poly2d[i].x = poly[i].x;
1392 poly2d[i].y = poly[i].y;
1393 }
1394 // Make sure the centroid is inside the umbra, otherwise, fall back to the
1395 // approach as if there is no occluded umbra area.
1396 if (testPointInsidePolygon(centroid, poly2d, polyLength)) {
1397 hasOccludedUmbraArea = true;
1398 }
1399 }
1400
1401 int totalRayNum = umbraLength + penumbraLength;
1402 Vector2 umbraVertices[totalRayNum];
1403 Vector2 penumbraVertices[totalRayNum];
1404 Vector2 occludedUmbraVertices[totalRayNum];
1405 bool convertSuccess = convertPolysToVerticesPerRay(hasOccludedUmbraArea, poly2d,
1406 polyLength, umbra, umbraLength, penumbra, penumbraLength,
1407 centroid, umbraVertices, penumbraVertices, occludedUmbraVertices);
1408 if (!convertSuccess) {
1409 return;
1410 }
1411
1412 // Minimal value is 1, for each vertex show up once.
1413 // The bigger this value is , the smoother the look is, but more memory
1414 // is consumed.
1415 // When the ray number is high, that means the polygon has been fine
1416 // tessellated, we don't need this extra slice, just keep it as 1.
1417 int sliceNumberPerEdge = (totalRayNum > FINE_TESSELLATED_POLYGON_RAY_NUMBER) ? 1 : 2;
1418
1419 // For each polygon, we at most add (totalRayNum * sliceNumberPerEdge) vertices.
1420 int slicedVertexCountPerPolygon = totalRayNum * sliceNumberPerEdge;
1421 int totalVertexCount = slicedVertexCountPerPolygon * 2 + totalRayNum;
1422 int totalIndexCount = 2 * (slicedVertexCountPerPolygon * 2 + 2);
1423 AlphaVertex* shadowVertices =
1424 shadowTriangleStrip.alloc<AlphaVertex>(totalVertexCount);
1425 uint16_t* indexBuffer =
1426 shadowTriangleStrip.allocIndices<uint16_t>(totalIndexCount);
1427
1428 int indexBufferIndex = 0;
1429 int vertexBufferIndex = 0;
1430
1431 uint16_t slicedUmbraVertexIndex[totalRayNum * sliceNumberPerEdge];
1432 // Should be something like 0 0 0 1 1 1 2 3 3 3...
1433 int rayNumberPerSlicedUmbra[totalRayNum * sliceNumberPerEdge];
1434 int realUmbraVertexCount = 0;
1435 for (int i = 0; i < totalRayNum; i++) {
1436 Vector2 currentPenumbra = penumbraVertices[i];
1437 Vector2 currentUmbra = umbraVertices[i];
1438
1439 Vector2 nextPenumbra = penumbraVertices[(i + 1) % totalRayNum];
1440 Vector2 nextUmbra = umbraVertices[(i + 1) % totalRayNum];
1441 // NextUmbra/Penumbra will be done in the next loop!!
1442 for (int weight = 0; weight < sliceNumberPerEdge; weight++) {
1443 const Vector2& slicedPenumbra = (currentPenumbra * (sliceNumberPerEdge - weight)
1444 + nextPenumbra * weight) / sliceNumberPerEdge;
1445
1446 const Vector2& slicedUmbra = (currentUmbra * (sliceNumberPerEdge - weight)
1447 + nextUmbra * weight) / sliceNumberPerEdge;
1448
1449 // In the vertex buffer, we fill the Penumbra first, then umbra.
1450 indexBuffer[indexBufferIndex++] = vertexBufferIndex;
1451 AlphaVertex::set(&shadowVertices[vertexBufferIndex++], slicedPenumbra.x,
1452 slicedPenumbra.y, 0.0f);
1453
1454 // When we add umbra vertex, we need to remember its current ray number.
1455 // And its own vertexBufferIndex. This is for occluded umbra usage.
1456 indexBuffer[indexBufferIndex++] = vertexBufferIndex;
1457 rayNumberPerSlicedUmbra[realUmbraVertexCount] = i;
1458 slicedUmbraVertexIndex[realUmbraVertexCount] = vertexBufferIndex;
1459 realUmbraVertexCount++;
1460 AlphaVertex::set(&shadowVertices[vertexBufferIndex++], slicedUmbra.x,
1461 slicedUmbra.y, M_PI);
1462 }
1463 }
1464
1465 indexBuffer[indexBufferIndex++] = 0;
1466 //RealUmbraVertexIndex[0] must be 1, so we connect back well at the
1467 //beginning of occluded area.
1468 indexBuffer[indexBufferIndex++] = 1;
1469
1470 float occludedUmbraAlpha = M_PI;
1471 if (hasOccludedUmbraArea) {
1472 // Now the occludedUmbra area;
1473 int currentRayNumber = -1;
1474 int firstOccludedUmbraIndex = -1;
1475 for (int i = 0; i < realUmbraVertexCount; i++) {
1476 indexBuffer[indexBufferIndex++] = slicedUmbraVertexIndex[i];
1477
1478 // If the occludedUmbra vertex has not been added yet, then add it.
1479 // Otherwise, just use the previously added occludedUmbra vertices.
1480 if (rayNumberPerSlicedUmbra[i] != currentRayNumber) {
1481 currentRayNumber++;
1482 indexBuffer[indexBufferIndex++] = vertexBufferIndex;
1483 // We need to remember the begining of the occludedUmbra vertices
1484 // to close this loop.
1485 if (currentRayNumber == 0) {
1486 firstOccludedUmbraIndex = vertexBufferIndex;
1487 }
1488 AlphaVertex::set(&shadowVertices[vertexBufferIndex++],
1489 occludedUmbraVertices[currentRayNumber].x,
1490 occludedUmbraVertices[currentRayNumber].y,
1491 occludedUmbraAlpha);
1492 } else {
1493 indexBuffer[indexBufferIndex++] = (vertexBufferIndex - 1);
1494 }
1495 }
1496 // Close the loop here!
1497 indexBuffer[indexBufferIndex++] = slicedUmbraVertexIndex[0];
1498 indexBuffer[indexBufferIndex++] = firstOccludedUmbraIndex;
1499 } else {
1500 int lastCentroidIndex = vertexBufferIndex;
1501 AlphaVertex::set(&shadowVertices[vertexBufferIndex++], centroid.x,
1502 centroid.y, occludedUmbraAlpha);
1503 for (int i = 0; i < realUmbraVertexCount; i++) {
1504 indexBuffer[indexBufferIndex++] = slicedUmbraVertexIndex[i];
1505 indexBuffer[indexBufferIndex++] = lastCentroidIndex;
1506 }
1507 // Close the loop here!
1508 indexBuffer[indexBufferIndex++] = slicedUmbraVertexIndex[0];
1509 indexBuffer[indexBufferIndex++] = lastCentroidIndex;
1510 }
1511
1512 #if DEBUG_SHADOW
1513 ALOGD("allocated IB %d allocated VB is %d", totalIndexCount, totalVertexCount);
1514 ALOGD("IB index %d VB index is %d", indexBufferIndex, vertexBufferIndex);
1515 for (int i = 0; i < vertexBufferIndex; i++) {
1516 ALOGD("vertexBuffer i %d, (%f, %f %f)", i, shadowVertices[i].x, shadowVertices[i].y,
1517 shadowVertices[i].alpha);
1518 }
1519 for (int i = 0; i < indexBufferIndex; i++) {
1520 ALOGD("indexBuffer i %d, indexBuffer[i] %d", i, indexBuffer[i]);
1521 }
1522 #endif
1523
1524 // At the end, update the real index and vertex buffer size.
1525 shadowTriangleStrip.updateVertexCount(vertexBufferIndex);
1526 shadowTriangleStrip.updateIndexCount(indexBufferIndex);
1527 ShadowTessellator::checkOverflow(vertexBufferIndex, totalVertexCount, "Spot Vertex Buffer");
1528 ShadowTessellator::checkOverflow(indexBufferIndex, totalIndexCount, "Spot Index Buffer");
1529
1530 shadowTriangleStrip.setMode(VertexBuffer::kIndices);
1531 shadowTriangleStrip.computeBounds<AlphaVertex>();
1532 }
1533
1534 #if DEBUG_SHADOW
1535
1536 #define TEST_POINT_NUMBER 128
1537 /**
1538 * Calculate the bounds for generating random test points.
1539 */
updateBound(const Vector2 inVector,Vector2 & lowerBound,Vector2 & upperBound)1540 void SpotShadow::updateBound(const Vector2 inVector, Vector2& lowerBound,
1541 Vector2& upperBound) {
1542 if (inVector.x < lowerBound.x) {
1543 lowerBound.x = inVector.x;
1544 }
1545
1546 if (inVector.y < lowerBound.y) {
1547 lowerBound.y = inVector.y;
1548 }
1549
1550 if (inVector.x > upperBound.x) {
1551 upperBound.x = inVector.x;
1552 }
1553
1554 if (inVector.y > upperBound.y) {
1555 upperBound.y = inVector.y;
1556 }
1557 }
1558
1559 /**
1560 * For debug purpose, when things go wrong, dump the whole polygon data.
1561 */
dumpPolygon(const Vector2 * poly,int polyLength,const char * polyName)1562 void SpotShadow::dumpPolygon(const Vector2* poly, int polyLength, const char* polyName) {
1563 for (int i = 0; i < polyLength; i++) {
1564 ALOGD("polygon %s i %d x %f y %f", polyName, i, poly[i].x, poly[i].y);
1565 }
1566 }
1567
1568 /**
1569 * For debug purpose, when things go wrong, dump the whole polygon data.
1570 */
dumpPolygon(const Vector3 * poly,int polyLength,const char * polyName)1571 void SpotShadow::dumpPolygon(const Vector3* poly, int polyLength, const char* polyName) {
1572 for (int i = 0; i < polyLength; i++) {
1573 ALOGD("polygon %s i %d x %f y %f", polyName, i, poly[i].x, poly[i].y);
1574 }
1575 }
1576
1577 /**
1578 * Test whether the polygon is convex.
1579 */
testConvex(const Vector2 * polygon,int polygonLength,const char * name)1580 bool SpotShadow::testConvex(const Vector2* polygon, int polygonLength,
1581 const char* name) {
1582 bool isConvex = true;
1583 for (int i = 0; i < polygonLength; i++) {
1584 Vector2 start = polygon[i];
1585 Vector2 middle = polygon[(i + 1) % polygonLength];
1586 Vector2 end = polygon[(i + 2) % polygonLength];
1587
1588 double delta = (double(middle.x) - start.x) * (double(end.y) - start.y) -
1589 (double(middle.y) - start.y) * (double(end.x) - start.x);
1590 bool isCCWOrCoLinear = (delta >= EPSILON);
1591
1592 if (isCCWOrCoLinear) {
1593 ALOGW("(Error Type 2): polygon (%s) is not a convex b/c start (x %f, y %f),"
1594 "middle (x %f, y %f) and end (x %f, y %f) , delta is %f !!!",
1595 name, start.x, start.y, middle.x, middle.y, end.x, end.y, delta);
1596 isConvex = false;
1597 break;
1598 }
1599 }
1600 return isConvex;
1601 }
1602
1603 /**
1604 * Test whether or not the polygon (intersection) is within the 2 input polygons.
1605 * Using Marte Carlo method, we generate a random point, and if it is inside the
1606 * intersection, then it must be inside both source polygons.
1607 */
testIntersection(const Vector2 * poly1,int poly1Length,const Vector2 * poly2,int poly2Length,const Vector2 * intersection,int intersectionLength)1608 void SpotShadow::testIntersection(const Vector2* poly1, int poly1Length,
1609 const Vector2* poly2, int poly2Length,
1610 const Vector2* intersection, int intersectionLength) {
1611 // Find the min and max of x and y.
1612 Vector2 lowerBound = {FLT_MAX, FLT_MAX};
1613 Vector2 upperBound = {-FLT_MAX, -FLT_MAX};
1614 for (int i = 0; i < poly1Length; i++) {
1615 updateBound(poly1[i], lowerBound, upperBound);
1616 }
1617 for (int i = 0; i < poly2Length; i++) {
1618 updateBound(poly2[i], lowerBound, upperBound);
1619 }
1620
1621 bool dumpPoly = false;
1622 for (int k = 0; k < TEST_POINT_NUMBER; k++) {
1623 // Generate a random point between minX, minY and maxX, maxY.
1624 double randomX = rand() / double(RAND_MAX);
1625 double randomY = rand() / double(RAND_MAX);
1626
1627 Vector2 testPoint;
1628 testPoint.x = lowerBound.x + randomX * (upperBound.x - lowerBound.x);
1629 testPoint.y = lowerBound.y + randomY * (upperBound.y - lowerBound.y);
1630
1631 // If the random point is in both poly 1 and 2, then it must be intersection.
1632 if (testPointInsidePolygon(testPoint, intersection, intersectionLength)) {
1633 if (!testPointInsidePolygon(testPoint, poly1, poly1Length)) {
1634 dumpPoly = true;
1635 ALOGW("(Error Type 1): one point (%f, %f) in the intersection is"
1636 " not in the poly1",
1637 testPoint.x, testPoint.y);
1638 }
1639
1640 if (!testPointInsidePolygon(testPoint, poly2, poly2Length)) {
1641 dumpPoly = true;
1642 ALOGW("(Error Type 1): one point (%f, %f) in the intersection is"
1643 " not in the poly2",
1644 testPoint.x, testPoint.y);
1645 }
1646 }
1647 }
1648
1649 if (dumpPoly) {
1650 dumpPolygon(intersection, intersectionLength, "intersection");
1651 for (int i = 1; i < intersectionLength; i++) {
1652 Vector2 delta = intersection[i] - intersection[i - 1];
1653 ALOGD("Intersetion i, %d Vs i-1 is delta %f", i, delta.lengthSquared());
1654 }
1655
1656 dumpPolygon(poly1, poly1Length, "poly 1");
1657 dumpPolygon(poly2, poly2Length, "poly 2");
1658 }
1659 }
1660 #endif
1661
1662 }; // namespace uirenderer
1663 }; // namespace android
1664