1 //==- UninitializedValues.cpp - Find Uninitialized Values -------*- C++ --*-==//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements uninitialized values analysis for source-level CFGs.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "clang/AST/ASTContext.h"
15 #include "clang/AST/Attr.h"
16 #include "clang/AST/Decl.h"
17 #include "clang/AST/StmtVisitor.h"
18 #include "clang/Analysis/Analyses/PostOrderCFGView.h"
19 #include "clang/Analysis/Analyses/UninitializedValues.h"
20 #include "clang/Analysis/AnalysisContext.h"
21 #include "clang/Analysis/CFG.h"
22 #include "clang/Analysis/DomainSpecific/ObjCNoReturn.h"
23 #include "llvm/ADT/DenseMap.h"
24 #include "llvm/ADT/Optional.h"
25 #include "llvm/ADT/PackedVector.h"
26 #include "llvm/ADT/SmallBitVector.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/Support/SaveAndRestore.h"
29 #include <utility>
30
31 using namespace clang;
32
33 #define DEBUG_LOGGING 0
34
isTrackedVar(const VarDecl * vd,const DeclContext * dc)35 static bool isTrackedVar(const VarDecl *vd, const DeclContext *dc) {
36 if (vd->isLocalVarDecl() && !vd->hasGlobalStorage() &&
37 !vd->isExceptionVariable() && !vd->isInitCapture() &&
38 vd->getDeclContext() == dc) {
39 QualType ty = vd->getType();
40 return ty->isScalarType() || ty->isVectorType();
41 }
42 return false;
43 }
44
45 //------------------------------------------------------------------------====//
46 // DeclToIndex: a mapping from Decls we track to value indices.
47 //====------------------------------------------------------------------------//
48
49 namespace {
50 class DeclToIndex {
51 llvm::DenseMap<const VarDecl *, unsigned> map;
52 public:
DeclToIndex()53 DeclToIndex() {}
54
55 /// Compute the actual mapping from declarations to bits.
56 void computeMap(const DeclContext &dc);
57
58 /// Return the number of declarations in the map.
size() const59 unsigned size() const { return map.size(); }
60
61 /// Returns the bit vector index for a given declaration.
62 Optional<unsigned> getValueIndex(const VarDecl *d) const;
63 };
64 }
65
computeMap(const DeclContext & dc)66 void DeclToIndex::computeMap(const DeclContext &dc) {
67 unsigned count = 0;
68 DeclContext::specific_decl_iterator<VarDecl> I(dc.decls_begin()),
69 E(dc.decls_end());
70 for ( ; I != E; ++I) {
71 const VarDecl *vd = *I;
72 if (isTrackedVar(vd, &dc))
73 map[vd] = count++;
74 }
75 }
76
getValueIndex(const VarDecl * d) const77 Optional<unsigned> DeclToIndex::getValueIndex(const VarDecl *d) const {
78 llvm::DenseMap<const VarDecl *, unsigned>::const_iterator I = map.find(d);
79 if (I == map.end())
80 return None;
81 return I->second;
82 }
83
84 //------------------------------------------------------------------------====//
85 // CFGBlockValues: dataflow values for CFG blocks.
86 //====------------------------------------------------------------------------//
87
88 // These values are defined in such a way that a merge can be done using
89 // a bitwise OR.
90 enum Value { Unknown = 0x0, /* 00 */
91 Initialized = 0x1, /* 01 */
92 Uninitialized = 0x2, /* 10 */
93 MayUninitialized = 0x3 /* 11 */ };
94
isUninitialized(const Value v)95 static bool isUninitialized(const Value v) {
96 return v >= Uninitialized;
97 }
isAlwaysUninit(const Value v)98 static bool isAlwaysUninit(const Value v) {
99 return v == Uninitialized;
100 }
101
102 namespace {
103
104 typedef llvm::PackedVector<Value, 2, llvm::SmallBitVector> ValueVector;
105
106 class CFGBlockValues {
107 const CFG &cfg;
108 SmallVector<ValueVector, 8> vals;
109 ValueVector scratch;
110 DeclToIndex declToIndex;
111 public:
112 CFGBlockValues(const CFG &cfg);
113
getNumEntries() const114 unsigned getNumEntries() const { return declToIndex.size(); }
115
116 void computeSetOfDeclarations(const DeclContext &dc);
getValueVector(const CFGBlock * block)117 ValueVector &getValueVector(const CFGBlock *block) {
118 return vals[block->getBlockID()];
119 }
120
121 void setAllScratchValues(Value V);
122 void mergeIntoScratch(ValueVector const &source, bool isFirst);
123 bool updateValueVectorWithScratch(const CFGBlock *block);
124
hasNoDeclarations() const125 bool hasNoDeclarations() const {
126 return declToIndex.size() == 0;
127 }
128
129 void resetScratch();
130
131 ValueVector::reference operator[](const VarDecl *vd);
132
getValue(const CFGBlock * block,const CFGBlock * dstBlock,const VarDecl * vd)133 Value getValue(const CFGBlock *block, const CFGBlock *dstBlock,
134 const VarDecl *vd) {
135 const Optional<unsigned> &idx = declToIndex.getValueIndex(vd);
136 assert(idx.hasValue());
137 return getValueVector(block)[idx.getValue()];
138 }
139 };
140 } // end anonymous namespace
141
CFGBlockValues(const CFG & c)142 CFGBlockValues::CFGBlockValues(const CFG &c) : cfg(c), vals(0) {}
143
computeSetOfDeclarations(const DeclContext & dc)144 void CFGBlockValues::computeSetOfDeclarations(const DeclContext &dc) {
145 declToIndex.computeMap(dc);
146 unsigned decls = declToIndex.size();
147 scratch.resize(decls);
148 unsigned n = cfg.getNumBlockIDs();
149 if (!n)
150 return;
151 vals.resize(n);
152 for (unsigned i = 0; i < n; ++i)
153 vals[i].resize(decls);
154 }
155
156 #if DEBUG_LOGGING
printVector(const CFGBlock * block,ValueVector & bv,unsigned num)157 static void printVector(const CFGBlock *block, ValueVector &bv,
158 unsigned num) {
159 llvm::errs() << block->getBlockID() << " :";
160 for (unsigned i = 0; i < bv.size(); ++i) {
161 llvm::errs() << ' ' << bv[i];
162 }
163 llvm::errs() << " : " << num << '\n';
164 }
165 #endif
166
setAllScratchValues(Value V)167 void CFGBlockValues::setAllScratchValues(Value V) {
168 for (unsigned I = 0, E = scratch.size(); I != E; ++I)
169 scratch[I] = V;
170 }
171
mergeIntoScratch(ValueVector const & source,bool isFirst)172 void CFGBlockValues::mergeIntoScratch(ValueVector const &source,
173 bool isFirst) {
174 if (isFirst)
175 scratch = source;
176 else
177 scratch |= source;
178 }
179
updateValueVectorWithScratch(const CFGBlock * block)180 bool CFGBlockValues::updateValueVectorWithScratch(const CFGBlock *block) {
181 ValueVector &dst = getValueVector(block);
182 bool changed = (dst != scratch);
183 if (changed)
184 dst = scratch;
185 #if DEBUG_LOGGING
186 printVector(block, scratch, 0);
187 #endif
188 return changed;
189 }
190
resetScratch()191 void CFGBlockValues::resetScratch() {
192 scratch.reset();
193 }
194
operator [](const VarDecl * vd)195 ValueVector::reference CFGBlockValues::operator[](const VarDecl *vd) {
196 const Optional<unsigned> &idx = declToIndex.getValueIndex(vd);
197 assert(idx.hasValue());
198 return scratch[idx.getValue()];
199 }
200
201 //------------------------------------------------------------------------====//
202 // Worklist: worklist for dataflow analysis.
203 //====------------------------------------------------------------------------//
204
205 namespace {
206 class DataflowWorklist {
207 PostOrderCFGView::iterator PO_I, PO_E;
208 SmallVector<const CFGBlock *, 20> worklist;
209 llvm::BitVector enqueuedBlocks;
210 public:
DataflowWorklist(const CFG & cfg,PostOrderCFGView & view)211 DataflowWorklist(const CFG &cfg, PostOrderCFGView &view)
212 : PO_I(view.begin()), PO_E(view.end()),
213 enqueuedBlocks(cfg.getNumBlockIDs(), true) {
214 // Treat the first block as already analyzed.
215 if (PO_I != PO_E) {
216 assert(*PO_I == &cfg.getEntry());
217 enqueuedBlocks[(*PO_I)->getBlockID()] = false;
218 ++PO_I;
219 }
220 }
221
222 void enqueueSuccessors(const CFGBlock *block);
223 const CFGBlock *dequeue();
224 };
225 }
226
enqueueSuccessors(const clang::CFGBlock * block)227 void DataflowWorklist::enqueueSuccessors(const clang::CFGBlock *block) {
228 for (CFGBlock::const_succ_iterator I = block->succ_begin(),
229 E = block->succ_end(); I != E; ++I) {
230 const CFGBlock *Successor = *I;
231 if (!Successor || enqueuedBlocks[Successor->getBlockID()])
232 continue;
233 worklist.push_back(Successor);
234 enqueuedBlocks[Successor->getBlockID()] = true;
235 }
236 }
237
dequeue()238 const CFGBlock *DataflowWorklist::dequeue() {
239 const CFGBlock *B = nullptr;
240
241 // First dequeue from the worklist. This can represent
242 // updates along backedges that we want propagated as quickly as possible.
243 if (!worklist.empty())
244 B = worklist.pop_back_val();
245
246 // Next dequeue from the initial reverse post order. This is the
247 // theoretical ideal in the presence of no back edges.
248 else if (PO_I != PO_E) {
249 B = *PO_I;
250 ++PO_I;
251 }
252 else {
253 return nullptr;
254 }
255
256 assert(enqueuedBlocks[B->getBlockID()] == true);
257 enqueuedBlocks[B->getBlockID()] = false;
258 return B;
259 }
260
261 //------------------------------------------------------------------------====//
262 // Classification of DeclRefExprs as use or initialization.
263 //====------------------------------------------------------------------------//
264
265 namespace {
266 class FindVarResult {
267 const VarDecl *vd;
268 const DeclRefExpr *dr;
269 public:
FindVarResult(const VarDecl * vd,const DeclRefExpr * dr)270 FindVarResult(const VarDecl *vd, const DeclRefExpr *dr) : vd(vd), dr(dr) {}
271
getDeclRefExpr() const272 const DeclRefExpr *getDeclRefExpr() const { return dr; }
getDecl() const273 const VarDecl *getDecl() const { return vd; }
274 };
275
stripCasts(ASTContext & C,const Expr * Ex)276 static const Expr *stripCasts(ASTContext &C, const Expr *Ex) {
277 while (Ex) {
278 Ex = Ex->IgnoreParenNoopCasts(C);
279 if (const CastExpr *CE = dyn_cast<CastExpr>(Ex)) {
280 if (CE->getCastKind() == CK_LValueBitCast) {
281 Ex = CE->getSubExpr();
282 continue;
283 }
284 }
285 break;
286 }
287 return Ex;
288 }
289
290 /// If E is an expression comprising a reference to a single variable, find that
291 /// variable.
findVar(const Expr * E,const DeclContext * DC)292 static FindVarResult findVar(const Expr *E, const DeclContext *DC) {
293 if (const DeclRefExpr *DRE =
294 dyn_cast<DeclRefExpr>(stripCasts(DC->getParentASTContext(), E)))
295 if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl()))
296 if (isTrackedVar(VD, DC))
297 return FindVarResult(VD, DRE);
298 return FindVarResult(nullptr, nullptr);
299 }
300
301 /// \brief Classify each DeclRefExpr as an initialization or a use. Any
302 /// DeclRefExpr which isn't explicitly classified will be assumed to have
303 /// escaped the analysis and will be treated as an initialization.
304 class ClassifyRefs : public StmtVisitor<ClassifyRefs> {
305 public:
306 enum Class {
307 Init,
308 Use,
309 SelfInit,
310 Ignore
311 };
312
313 private:
314 const DeclContext *DC;
315 llvm::DenseMap<const DeclRefExpr*, Class> Classification;
316
isTrackedVar(const VarDecl * VD) const317 bool isTrackedVar(const VarDecl *VD) const {
318 return ::isTrackedVar(VD, DC);
319 }
320
321 void classify(const Expr *E, Class C);
322
323 public:
ClassifyRefs(AnalysisDeclContext & AC)324 ClassifyRefs(AnalysisDeclContext &AC) : DC(cast<DeclContext>(AC.getDecl())) {}
325
326 void VisitDeclStmt(DeclStmt *DS);
327 void VisitUnaryOperator(UnaryOperator *UO);
328 void VisitBinaryOperator(BinaryOperator *BO);
329 void VisitCallExpr(CallExpr *CE);
330 void VisitCastExpr(CastExpr *CE);
331
operator ()(Stmt * S)332 void operator()(Stmt *S) { Visit(S); }
333
get(const DeclRefExpr * DRE) const334 Class get(const DeclRefExpr *DRE) const {
335 llvm::DenseMap<const DeclRefExpr*, Class>::const_iterator I
336 = Classification.find(DRE);
337 if (I != Classification.end())
338 return I->second;
339
340 const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl());
341 if (!VD || !isTrackedVar(VD))
342 return Ignore;
343
344 return Init;
345 }
346 };
347 }
348
getSelfInitExpr(VarDecl * VD)349 static const DeclRefExpr *getSelfInitExpr(VarDecl *VD) {
350 if (Expr *Init = VD->getInit()) {
351 const DeclRefExpr *DRE
352 = dyn_cast<DeclRefExpr>(stripCasts(VD->getASTContext(), Init));
353 if (DRE && DRE->getDecl() == VD)
354 return DRE;
355 }
356 return nullptr;
357 }
358
classify(const Expr * E,Class C)359 void ClassifyRefs::classify(const Expr *E, Class C) {
360 // The result of a ?: could also be an lvalue.
361 E = E->IgnoreParens();
362 if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
363 const Expr *TrueExpr = CO->getTrueExpr();
364 if (!isa<OpaqueValueExpr>(TrueExpr))
365 classify(TrueExpr, C);
366 classify(CO->getFalseExpr(), C);
367 return;
368 }
369
370 FindVarResult Var = findVar(E, DC);
371 if (const DeclRefExpr *DRE = Var.getDeclRefExpr())
372 Classification[DRE] = std::max(Classification[DRE], C);
373 }
374
VisitDeclStmt(DeclStmt * DS)375 void ClassifyRefs::VisitDeclStmt(DeclStmt *DS) {
376 for (auto *DI : DS->decls()) {
377 VarDecl *VD = dyn_cast<VarDecl>(DI);
378 if (VD && isTrackedVar(VD))
379 if (const DeclRefExpr *DRE = getSelfInitExpr(VD))
380 Classification[DRE] = SelfInit;
381 }
382 }
383
VisitBinaryOperator(BinaryOperator * BO)384 void ClassifyRefs::VisitBinaryOperator(BinaryOperator *BO) {
385 // Ignore the evaluation of a DeclRefExpr on the LHS of an assignment. If this
386 // is not a compound-assignment, we will treat it as initializing the variable
387 // when TransferFunctions visits it. A compound-assignment does not affect
388 // whether a variable is uninitialized, and there's no point counting it as a
389 // use.
390 if (BO->isCompoundAssignmentOp())
391 classify(BO->getLHS(), Use);
392 else if (BO->getOpcode() == BO_Assign)
393 classify(BO->getLHS(), Ignore);
394 }
395
VisitUnaryOperator(UnaryOperator * UO)396 void ClassifyRefs::VisitUnaryOperator(UnaryOperator *UO) {
397 // Increment and decrement are uses despite there being no lvalue-to-rvalue
398 // conversion.
399 if (UO->isIncrementDecrementOp())
400 classify(UO->getSubExpr(), Use);
401 }
402
VisitCallExpr(CallExpr * CE)403 void ClassifyRefs::VisitCallExpr(CallExpr *CE) {
404 // If a value is passed by const reference to a function, we should not assume
405 // that it is initialized by the call, and we conservatively do not assume
406 // that it is used.
407 for (CallExpr::arg_iterator I = CE->arg_begin(), E = CE->arg_end();
408 I != E; ++I)
409 if ((*I)->getType().isConstQualified() && (*I)->isGLValue())
410 classify(*I, Ignore);
411 }
412
VisitCastExpr(CastExpr * CE)413 void ClassifyRefs::VisitCastExpr(CastExpr *CE) {
414 if (CE->getCastKind() == CK_LValueToRValue)
415 classify(CE->getSubExpr(), Use);
416 else if (CStyleCastExpr *CSE = dyn_cast<CStyleCastExpr>(CE)) {
417 if (CSE->getType()->isVoidType()) {
418 // Squelch any detected load of an uninitialized value if
419 // we cast it to void.
420 // e.g. (void) x;
421 classify(CSE->getSubExpr(), Ignore);
422 }
423 }
424 }
425
426 //------------------------------------------------------------------------====//
427 // Transfer function for uninitialized values analysis.
428 //====------------------------------------------------------------------------//
429
430 namespace {
431 class TransferFunctions : public StmtVisitor<TransferFunctions> {
432 CFGBlockValues &vals;
433 const CFG &cfg;
434 const CFGBlock *block;
435 AnalysisDeclContext ∾
436 const ClassifyRefs &classification;
437 ObjCNoReturn objCNoRet;
438 UninitVariablesHandler &handler;
439
440 public:
TransferFunctions(CFGBlockValues & vals,const CFG & cfg,const CFGBlock * block,AnalysisDeclContext & ac,const ClassifyRefs & classification,UninitVariablesHandler & handler)441 TransferFunctions(CFGBlockValues &vals, const CFG &cfg,
442 const CFGBlock *block, AnalysisDeclContext &ac,
443 const ClassifyRefs &classification,
444 UninitVariablesHandler &handler)
445 : vals(vals), cfg(cfg), block(block), ac(ac),
446 classification(classification), objCNoRet(ac.getASTContext()),
447 handler(handler) {}
448
449 void reportUse(const Expr *ex, const VarDecl *vd);
450
451 void VisitBinaryOperator(BinaryOperator *bo);
452 void VisitBlockExpr(BlockExpr *be);
453 void VisitCallExpr(CallExpr *ce);
454 void VisitDeclRefExpr(DeclRefExpr *dr);
455 void VisitDeclStmt(DeclStmt *ds);
456 void VisitObjCForCollectionStmt(ObjCForCollectionStmt *FS);
457 void VisitObjCMessageExpr(ObjCMessageExpr *ME);
458
isTrackedVar(const VarDecl * vd)459 bool isTrackedVar(const VarDecl *vd) {
460 return ::isTrackedVar(vd, cast<DeclContext>(ac.getDecl()));
461 }
462
findVar(const Expr * ex)463 FindVarResult findVar(const Expr *ex) {
464 return ::findVar(ex, cast<DeclContext>(ac.getDecl()));
465 }
466
getUninitUse(const Expr * ex,const VarDecl * vd,Value v)467 UninitUse getUninitUse(const Expr *ex, const VarDecl *vd, Value v) {
468 UninitUse Use(ex, isAlwaysUninit(v));
469
470 assert(isUninitialized(v));
471 if (Use.getKind() == UninitUse::Always)
472 return Use;
473
474 // If an edge which leads unconditionally to this use did not initialize
475 // the variable, we can say something stronger than 'may be uninitialized':
476 // we can say 'either it's used uninitialized or you have dead code'.
477 //
478 // We track the number of successors of a node which have been visited, and
479 // visit a node once we have visited all of its successors. Only edges where
480 // the variable might still be uninitialized are followed. Since a variable
481 // can't transfer from being initialized to being uninitialized, this will
482 // trace out the subgraph which inevitably leads to the use and does not
483 // initialize the variable. We do not want to skip past loops, since their
484 // non-termination might be correlated with the initialization condition.
485 //
486 // For example:
487 //
488 // void f(bool a, bool b) {
489 // block1: int n;
490 // if (a) {
491 // block2: if (b)
492 // block3: n = 1;
493 // block4: } else if (b) {
494 // block5: while (!a) {
495 // block6: do_work(&a);
496 // n = 2;
497 // }
498 // }
499 // block7: if (a)
500 // block8: g();
501 // block9: return n;
502 // }
503 //
504 // Starting from the maybe-uninitialized use in block 9:
505 // * Block 7 is not visited because we have only visited one of its two
506 // successors.
507 // * Block 8 is visited because we've visited its only successor.
508 // From block 8:
509 // * Block 7 is visited because we've now visited both of its successors.
510 // From block 7:
511 // * Blocks 1, 2, 4, 5, and 6 are not visited because we didn't visit all
512 // of their successors (we didn't visit 4, 3, 5, 6, and 5, respectively).
513 // * Block 3 is not visited because it initializes 'n'.
514 // Now the algorithm terminates, having visited blocks 7 and 8, and having
515 // found the frontier is blocks 2, 4, and 5.
516 //
517 // 'n' is definitely uninitialized for two edges into block 7 (from blocks 2
518 // and 4), so we report that any time either of those edges is taken (in
519 // each case when 'b == false'), 'n' is used uninitialized.
520 SmallVector<const CFGBlock*, 32> Queue;
521 SmallVector<unsigned, 32> SuccsVisited(cfg.getNumBlockIDs(), 0);
522 Queue.push_back(block);
523 // Specify that we've already visited all successors of the starting block.
524 // This has the dual purpose of ensuring we never add it to the queue, and
525 // of marking it as not being a candidate element of the frontier.
526 SuccsVisited[block->getBlockID()] = block->succ_size();
527 while (!Queue.empty()) {
528 const CFGBlock *B = Queue.pop_back_val();
529
530 // If the use is always reached from the entry block, make a note of that.
531 if (B == &cfg.getEntry())
532 Use.setUninitAfterCall();
533
534 for (CFGBlock::const_pred_iterator I = B->pred_begin(), E = B->pred_end();
535 I != E; ++I) {
536 const CFGBlock *Pred = *I;
537 if (!Pred)
538 continue;
539
540 Value AtPredExit = vals.getValue(Pred, B, vd);
541 if (AtPredExit == Initialized)
542 // This block initializes the variable.
543 continue;
544 if (AtPredExit == MayUninitialized &&
545 vals.getValue(B, nullptr, vd) == Uninitialized) {
546 // This block declares the variable (uninitialized), and is reachable
547 // from a block that initializes the variable. We can't guarantee to
548 // give an earlier location for the diagnostic (and it appears that
549 // this code is intended to be reachable) so give a diagnostic here
550 // and go no further down this path.
551 Use.setUninitAfterDecl();
552 continue;
553 }
554
555 unsigned &SV = SuccsVisited[Pred->getBlockID()];
556 if (!SV) {
557 // When visiting the first successor of a block, mark all NULL
558 // successors as having been visited.
559 for (CFGBlock::const_succ_iterator SI = Pred->succ_begin(),
560 SE = Pred->succ_end();
561 SI != SE; ++SI)
562 if (!*SI)
563 ++SV;
564 }
565
566 if (++SV == Pred->succ_size())
567 // All paths from this block lead to the use and don't initialize the
568 // variable.
569 Queue.push_back(Pred);
570 }
571 }
572
573 // Scan the frontier, looking for blocks where the variable was
574 // uninitialized.
575 for (CFG::const_iterator BI = cfg.begin(), BE = cfg.end(); BI != BE; ++BI) {
576 const CFGBlock *Block = *BI;
577 unsigned BlockID = Block->getBlockID();
578 const Stmt *Term = Block->getTerminator();
579 if (SuccsVisited[BlockID] && SuccsVisited[BlockID] < Block->succ_size() &&
580 Term) {
581 // This block inevitably leads to the use. If we have an edge from here
582 // to a post-dominator block, and the variable is uninitialized on that
583 // edge, we have found a bug.
584 for (CFGBlock::const_succ_iterator I = Block->succ_begin(),
585 E = Block->succ_end(); I != E; ++I) {
586 const CFGBlock *Succ = *I;
587 if (Succ && SuccsVisited[Succ->getBlockID()] >= Succ->succ_size() &&
588 vals.getValue(Block, Succ, vd) == Uninitialized) {
589 // Switch cases are a special case: report the label to the caller
590 // as the 'terminator', not the switch statement itself. Suppress
591 // situations where no label matched: we can't be sure that's
592 // possible.
593 if (isa<SwitchStmt>(Term)) {
594 const Stmt *Label = Succ->getLabel();
595 if (!Label || !isa<SwitchCase>(Label))
596 // Might not be possible.
597 continue;
598 UninitUse::Branch Branch;
599 Branch.Terminator = Label;
600 Branch.Output = 0; // Ignored.
601 Use.addUninitBranch(Branch);
602 } else {
603 UninitUse::Branch Branch;
604 Branch.Terminator = Term;
605 Branch.Output = I - Block->succ_begin();
606 Use.addUninitBranch(Branch);
607 }
608 }
609 }
610 }
611 }
612
613 return Use;
614 }
615 };
616 }
617
reportUse(const Expr * ex,const VarDecl * vd)618 void TransferFunctions::reportUse(const Expr *ex, const VarDecl *vd) {
619 Value v = vals[vd];
620 if (isUninitialized(v))
621 handler.handleUseOfUninitVariable(vd, getUninitUse(ex, vd, v));
622 }
623
VisitObjCForCollectionStmt(ObjCForCollectionStmt * FS)624 void TransferFunctions::VisitObjCForCollectionStmt(ObjCForCollectionStmt *FS) {
625 // This represents an initialization of the 'element' value.
626 if (DeclStmt *DS = dyn_cast<DeclStmt>(FS->getElement())) {
627 const VarDecl *VD = cast<VarDecl>(DS->getSingleDecl());
628 if (isTrackedVar(VD))
629 vals[VD] = Initialized;
630 }
631 }
632
VisitBlockExpr(BlockExpr * be)633 void TransferFunctions::VisitBlockExpr(BlockExpr *be) {
634 const BlockDecl *bd = be->getBlockDecl();
635 for (const auto &I : bd->captures()) {
636 const VarDecl *vd = I.getVariable();
637 if (!isTrackedVar(vd))
638 continue;
639 if (I.isByRef()) {
640 vals[vd] = Initialized;
641 continue;
642 }
643 reportUse(be, vd);
644 }
645 }
646
VisitCallExpr(CallExpr * ce)647 void TransferFunctions::VisitCallExpr(CallExpr *ce) {
648 if (Decl *Callee = ce->getCalleeDecl()) {
649 if (Callee->hasAttr<ReturnsTwiceAttr>()) {
650 // After a call to a function like setjmp or vfork, any variable which is
651 // initialized anywhere within this function may now be initialized. For
652 // now, just assume such a call initializes all variables. FIXME: Only
653 // mark variables as initialized if they have an initializer which is
654 // reachable from here.
655 vals.setAllScratchValues(Initialized);
656 }
657 else if (Callee->hasAttr<AnalyzerNoReturnAttr>()) {
658 // Functions labeled like "analyzer_noreturn" are often used to denote
659 // "panic" functions that in special debug situations can still return,
660 // but for the most part should not be treated as returning. This is a
661 // useful annotation borrowed from the static analyzer that is useful for
662 // suppressing branch-specific false positives when we call one of these
663 // functions but keep pretending the path continues (when in reality the
664 // user doesn't care).
665 vals.setAllScratchValues(Unknown);
666 }
667 }
668 }
669
VisitDeclRefExpr(DeclRefExpr * dr)670 void TransferFunctions::VisitDeclRefExpr(DeclRefExpr *dr) {
671 switch (classification.get(dr)) {
672 case ClassifyRefs::Ignore:
673 break;
674 case ClassifyRefs::Use:
675 reportUse(dr, cast<VarDecl>(dr->getDecl()));
676 break;
677 case ClassifyRefs::Init:
678 vals[cast<VarDecl>(dr->getDecl())] = Initialized;
679 break;
680 case ClassifyRefs::SelfInit:
681 handler.handleSelfInit(cast<VarDecl>(dr->getDecl()));
682 break;
683 }
684 }
685
VisitBinaryOperator(BinaryOperator * BO)686 void TransferFunctions::VisitBinaryOperator(BinaryOperator *BO) {
687 if (BO->getOpcode() == BO_Assign) {
688 FindVarResult Var = findVar(BO->getLHS());
689 if (const VarDecl *VD = Var.getDecl())
690 vals[VD] = Initialized;
691 }
692 }
693
VisitDeclStmt(DeclStmt * DS)694 void TransferFunctions::VisitDeclStmt(DeclStmt *DS) {
695 for (auto *DI : DS->decls()) {
696 VarDecl *VD = dyn_cast<VarDecl>(DI);
697 if (VD && isTrackedVar(VD)) {
698 if (getSelfInitExpr(VD)) {
699 // If the initializer consists solely of a reference to itself, we
700 // explicitly mark the variable as uninitialized. This allows code
701 // like the following:
702 //
703 // int x = x;
704 //
705 // to deliberately leave a variable uninitialized. Different analysis
706 // clients can detect this pattern and adjust their reporting
707 // appropriately, but we need to continue to analyze subsequent uses
708 // of the variable.
709 vals[VD] = Uninitialized;
710 } else if (VD->getInit()) {
711 // Treat the new variable as initialized.
712 vals[VD] = Initialized;
713 } else {
714 // No initializer: the variable is now uninitialized. This matters
715 // for cases like:
716 // while (...) {
717 // int n;
718 // use(n);
719 // n = 0;
720 // }
721 // FIXME: Mark the variable as uninitialized whenever its scope is
722 // left, since its scope could be re-entered by a jump over the
723 // declaration.
724 vals[VD] = Uninitialized;
725 }
726 }
727 }
728 }
729
VisitObjCMessageExpr(ObjCMessageExpr * ME)730 void TransferFunctions::VisitObjCMessageExpr(ObjCMessageExpr *ME) {
731 // If the Objective-C message expression is an implicit no-return that
732 // is not modeled in the CFG, set the tracked dataflow values to Unknown.
733 if (objCNoRet.isImplicitNoReturn(ME)) {
734 vals.setAllScratchValues(Unknown);
735 }
736 }
737
738 //------------------------------------------------------------------------====//
739 // High-level "driver" logic for uninitialized values analysis.
740 //====------------------------------------------------------------------------//
741
runOnBlock(const CFGBlock * block,const CFG & cfg,AnalysisDeclContext & ac,CFGBlockValues & vals,const ClassifyRefs & classification,llvm::BitVector & wasAnalyzed,UninitVariablesHandler & handler)742 static bool runOnBlock(const CFGBlock *block, const CFG &cfg,
743 AnalysisDeclContext &ac, CFGBlockValues &vals,
744 const ClassifyRefs &classification,
745 llvm::BitVector &wasAnalyzed,
746 UninitVariablesHandler &handler) {
747 wasAnalyzed[block->getBlockID()] = true;
748 vals.resetScratch();
749 // Merge in values of predecessor blocks.
750 bool isFirst = true;
751 for (CFGBlock::const_pred_iterator I = block->pred_begin(),
752 E = block->pred_end(); I != E; ++I) {
753 const CFGBlock *pred = *I;
754 if (!pred)
755 continue;
756 if (wasAnalyzed[pred->getBlockID()]) {
757 vals.mergeIntoScratch(vals.getValueVector(pred), isFirst);
758 isFirst = false;
759 }
760 }
761 // Apply the transfer function.
762 TransferFunctions tf(vals, cfg, block, ac, classification, handler);
763 for (CFGBlock::const_iterator I = block->begin(), E = block->end();
764 I != E; ++I) {
765 if (Optional<CFGStmt> cs = I->getAs<CFGStmt>())
766 tf.Visit(const_cast<Stmt*>(cs->getStmt()));
767 }
768 return vals.updateValueVectorWithScratch(block);
769 }
770
771 /// PruneBlocksHandler is a special UninitVariablesHandler that is used
772 /// to detect when a CFGBlock has any *potential* use of an uninitialized
773 /// variable. It is mainly used to prune out work during the final
774 /// reporting pass.
775 namespace {
776 struct PruneBlocksHandler : public UninitVariablesHandler {
PruneBlocksHandler__anonfcb5b39c0611::PruneBlocksHandler777 PruneBlocksHandler(unsigned numBlocks)
778 : hadUse(numBlocks, false), hadAnyUse(false),
779 currentBlock(0) {}
780
~PruneBlocksHandler__anonfcb5b39c0611::PruneBlocksHandler781 virtual ~PruneBlocksHandler() {}
782
783 /// Records if a CFGBlock had a potential use of an uninitialized variable.
784 llvm::BitVector hadUse;
785
786 /// Records if any CFGBlock had a potential use of an uninitialized variable.
787 bool hadAnyUse;
788
789 /// The current block to scribble use information.
790 unsigned currentBlock;
791
handleUseOfUninitVariable__anonfcb5b39c0611::PruneBlocksHandler792 void handleUseOfUninitVariable(const VarDecl *vd,
793 const UninitUse &use) override {
794 hadUse[currentBlock] = true;
795 hadAnyUse = true;
796 }
797
798 /// Called when the uninitialized variable analysis detects the
799 /// idiom 'int x = x'. All other uses of 'x' within the initializer
800 /// are handled by handleUseOfUninitVariable.
handleSelfInit__anonfcb5b39c0611::PruneBlocksHandler801 void handleSelfInit(const VarDecl *vd) override {
802 hadUse[currentBlock] = true;
803 hadAnyUse = true;
804 }
805 };
806 }
807
runUninitializedVariablesAnalysis(const DeclContext & dc,const CFG & cfg,AnalysisDeclContext & ac,UninitVariablesHandler & handler,UninitVariablesAnalysisStats & stats)808 void clang::runUninitializedVariablesAnalysis(
809 const DeclContext &dc,
810 const CFG &cfg,
811 AnalysisDeclContext &ac,
812 UninitVariablesHandler &handler,
813 UninitVariablesAnalysisStats &stats) {
814 CFGBlockValues vals(cfg);
815 vals.computeSetOfDeclarations(dc);
816 if (vals.hasNoDeclarations())
817 return;
818
819 stats.NumVariablesAnalyzed = vals.getNumEntries();
820
821 // Precompute which expressions are uses and which are initializations.
822 ClassifyRefs classification(ac);
823 cfg.VisitBlockStmts(classification);
824
825 // Mark all variables uninitialized at the entry.
826 const CFGBlock &entry = cfg.getEntry();
827 ValueVector &vec = vals.getValueVector(&entry);
828 const unsigned n = vals.getNumEntries();
829 for (unsigned j = 0; j < n ; ++j) {
830 vec[j] = Uninitialized;
831 }
832
833 // Proceed with the workist.
834 DataflowWorklist worklist(cfg, *ac.getAnalysis<PostOrderCFGView>());
835 llvm::BitVector previouslyVisited(cfg.getNumBlockIDs());
836 worklist.enqueueSuccessors(&cfg.getEntry());
837 llvm::BitVector wasAnalyzed(cfg.getNumBlockIDs(), false);
838 wasAnalyzed[cfg.getEntry().getBlockID()] = true;
839 PruneBlocksHandler PBH(cfg.getNumBlockIDs());
840
841 while (const CFGBlock *block = worklist.dequeue()) {
842 PBH.currentBlock = block->getBlockID();
843
844 // Did the block change?
845 bool changed = runOnBlock(block, cfg, ac, vals,
846 classification, wasAnalyzed, PBH);
847 ++stats.NumBlockVisits;
848 if (changed || !previouslyVisited[block->getBlockID()])
849 worklist.enqueueSuccessors(block);
850 previouslyVisited[block->getBlockID()] = true;
851 }
852
853 if (!PBH.hadAnyUse)
854 return;
855
856 // Run through the blocks one more time, and report uninitialized variables.
857 for (CFG::const_iterator BI = cfg.begin(), BE = cfg.end(); BI != BE; ++BI) {
858 const CFGBlock *block = *BI;
859 if (PBH.hadUse[block->getBlockID()]) {
860 runOnBlock(block, cfg, ac, vals, classification, wasAnalyzed, handler);
861 ++stats.NumBlockVisits;
862 }
863 }
864 }
865
~UninitVariablesHandler()866 UninitVariablesHandler::~UninitVariablesHandler() {}
867