1 /*
2 * Copyright (C) 2006, 2008 Apple Inc. All rights reserved.
3 * Copyright (C) 2009 Google Inc. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY APPLE COMPUTER, INC. ``AS IS'' AND ANY
15 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
17 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE COMPUTER, INC. OR
18 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
19 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
20 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
21 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
22 * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
24 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 */
26
27 #include "config.h"
28 #include "platform/Timer.h"
29
30 #include "platform/PlatformThreadData.h"
31 #include "platform/ThreadTimers.h"
32 #include "wtf/CurrentTime.h"
33 #include "wtf/HashSet.h"
34 #include <limits.h>
35 #include <math.h>
36 #include <limits>
37
38 using namespace std;
39
40 namespace WebCore {
41
42 class TimerHeapReference;
43
44 // Timers are stored in a heap data structure, used to implement a priority queue.
45 // This allows us to efficiently determine which timer needs to fire the soonest.
46 // Then we set a single shared system timer to fire at that time.
47 //
48 // When a timer's "next fire time" changes, we need to move it around in the priority queue.
threadGlobalTimerHeap()49 static Vector<TimerBase*>& threadGlobalTimerHeap()
50 {
51 return PlatformThreadData::current().threadTimers().timerHeap();
52 }
53 // ----------------
54
55 class TimerHeapPointer {
56 public:
TimerHeapPointer(TimerBase ** pointer)57 TimerHeapPointer(TimerBase** pointer) : m_pointer(pointer) { }
58 TimerHeapReference operator*() const;
operator ->() const59 TimerBase* operator->() const { return *m_pointer; }
60 private:
61 TimerBase** m_pointer;
62 };
63
64 class TimerHeapReference {
65 public:
TimerHeapReference(TimerBase * & reference)66 TimerHeapReference(TimerBase*& reference) : m_reference(reference) { }
operator TimerBase*() const67 operator TimerBase*() const { return m_reference; }
operator &() const68 TimerHeapPointer operator&() const { return &m_reference; }
69 TimerHeapReference& operator=(TimerBase*);
70 TimerHeapReference& operator=(TimerHeapReference);
71 private:
72 TimerBase*& m_reference;
73 };
74
operator *() const75 inline TimerHeapReference TimerHeapPointer::operator*() const
76 {
77 return *m_pointer;
78 }
79
operator =(TimerBase * timer)80 inline TimerHeapReference& TimerHeapReference::operator=(TimerBase* timer)
81 {
82 m_reference = timer;
83 Vector<TimerBase*>& heap = timer->timerHeap();
84 if (&m_reference >= heap.data() && &m_reference < heap.data() + heap.size())
85 timer->m_heapIndex = &m_reference - heap.data();
86 return *this;
87 }
88
operator =(TimerHeapReference b)89 inline TimerHeapReference& TimerHeapReference::operator=(TimerHeapReference b)
90 {
91 TimerBase* timer = b;
92 return *this = timer;
93 }
94
swap(TimerHeapReference a,TimerHeapReference b)95 inline void swap(TimerHeapReference a, TimerHeapReference b)
96 {
97 TimerBase* timerA = a;
98 TimerBase* timerB = b;
99
100 // Invoke the assignment operator, since that takes care of updating m_heapIndex.
101 a = timerB;
102 b = timerA;
103 }
104
105 // ----------------
106
107 // Class to represent iterators in the heap when calling the standard library heap algorithms.
108 // Uses a custom pointer and reference type that update indices for pointers in the heap.
109 class TimerHeapIterator : public iterator<random_access_iterator_tag, TimerBase*, ptrdiff_t, TimerHeapPointer, TimerHeapReference> {
110 public:
TimerHeapIterator(TimerBase ** pointer)111 explicit TimerHeapIterator(TimerBase** pointer) : m_pointer(pointer) { checkConsistency(); }
112
operator ++()113 TimerHeapIterator& operator++() { checkConsistency(); ++m_pointer; checkConsistency(); return *this; }
operator ++(int)114 TimerHeapIterator operator++(int) { checkConsistency(1); return TimerHeapIterator(m_pointer++); }
115
operator --()116 TimerHeapIterator& operator--() { checkConsistency(); --m_pointer; checkConsistency(); return *this; }
operator --(int)117 TimerHeapIterator operator--(int) { checkConsistency(-1); return TimerHeapIterator(m_pointer--); }
118
operator +=(ptrdiff_t i)119 TimerHeapIterator& operator+=(ptrdiff_t i) { checkConsistency(); m_pointer += i; checkConsistency(); return *this; }
operator -=(ptrdiff_t i)120 TimerHeapIterator& operator-=(ptrdiff_t i) { checkConsistency(); m_pointer -= i; checkConsistency(); return *this; }
121
operator *() const122 TimerHeapReference operator*() const { return TimerHeapReference(*m_pointer); }
operator [](ptrdiff_t i) const123 TimerHeapReference operator[](ptrdiff_t i) const { return TimerHeapReference(m_pointer[i]); }
operator ->() const124 TimerBase* operator->() const { return *m_pointer; }
125
126 private:
checkConsistency(ptrdiff_t offset=0) const127 void checkConsistency(ptrdiff_t offset = 0) const
128 {
129 ASSERT(m_pointer >= threadGlobalTimerHeap().data());
130 ASSERT(m_pointer <= threadGlobalTimerHeap().data() + threadGlobalTimerHeap().size());
131 ASSERT_UNUSED(offset, m_pointer + offset >= threadGlobalTimerHeap().data());
132 ASSERT_UNUSED(offset, m_pointer + offset <= threadGlobalTimerHeap().data() + threadGlobalTimerHeap().size());
133 }
134
135 friend bool operator==(TimerHeapIterator, TimerHeapIterator);
136 friend bool operator!=(TimerHeapIterator, TimerHeapIterator);
137 friend bool operator<(TimerHeapIterator, TimerHeapIterator);
138 friend bool operator>(TimerHeapIterator, TimerHeapIterator);
139 friend bool operator<=(TimerHeapIterator, TimerHeapIterator);
140 friend bool operator>=(TimerHeapIterator, TimerHeapIterator);
141
142 friend TimerHeapIterator operator+(TimerHeapIterator, size_t);
143 friend TimerHeapIterator operator+(size_t, TimerHeapIterator);
144
145 friend TimerHeapIterator operator-(TimerHeapIterator, size_t);
146 friend ptrdiff_t operator-(TimerHeapIterator, TimerHeapIterator);
147
148 TimerBase** m_pointer;
149 };
150
operator ==(TimerHeapIterator a,TimerHeapIterator b)151 inline bool operator==(TimerHeapIterator a, TimerHeapIterator b) { return a.m_pointer == b.m_pointer; }
operator !=(TimerHeapIterator a,TimerHeapIterator b)152 inline bool operator!=(TimerHeapIterator a, TimerHeapIterator b) { return a.m_pointer != b.m_pointer; }
operator <(TimerHeapIterator a,TimerHeapIterator b)153 inline bool operator<(TimerHeapIterator a, TimerHeapIterator b) { return a.m_pointer < b.m_pointer; }
operator >(TimerHeapIterator a,TimerHeapIterator b)154 inline bool operator>(TimerHeapIterator a, TimerHeapIterator b) { return a.m_pointer > b.m_pointer; }
operator <=(TimerHeapIterator a,TimerHeapIterator b)155 inline bool operator<=(TimerHeapIterator a, TimerHeapIterator b) { return a.m_pointer <= b.m_pointer; }
operator >=(TimerHeapIterator a,TimerHeapIterator b)156 inline bool operator>=(TimerHeapIterator a, TimerHeapIterator b) { return a.m_pointer >= b.m_pointer; }
157
operator +(TimerHeapIterator a,size_t b)158 inline TimerHeapIterator operator+(TimerHeapIterator a, size_t b) { return TimerHeapIterator(a.m_pointer + b); }
operator +(size_t a,TimerHeapIterator b)159 inline TimerHeapIterator operator+(size_t a, TimerHeapIterator b) { return TimerHeapIterator(a + b.m_pointer); }
160
operator -(TimerHeapIterator a,size_t b)161 inline TimerHeapIterator operator-(TimerHeapIterator a, size_t b) { return TimerHeapIterator(a.m_pointer - b); }
operator -(TimerHeapIterator a,TimerHeapIterator b)162 inline ptrdiff_t operator-(TimerHeapIterator a, TimerHeapIterator b) { return a.m_pointer - b.m_pointer; }
163
164 // ----------------
165
166 class TimerHeapLessThanFunction {
167 public:
168 bool operator()(const TimerBase*, const TimerBase*) const;
169 };
170
operator ()(const TimerBase * a,const TimerBase * b) const171 inline bool TimerHeapLessThanFunction::operator()(const TimerBase* a, const TimerBase* b) const
172 {
173 // The comparisons below are "backwards" because the heap puts the largest
174 // element first and we want the lowest time to be the first one in the heap.
175 double aFireTime = a->m_nextFireTime;
176 double bFireTime = b->m_nextFireTime;
177 if (bFireTime != aFireTime)
178 return bFireTime < aFireTime;
179
180 // We need to look at the difference of the insertion orders instead of comparing the two
181 // outright in case of overflow.
182 unsigned difference = a->m_heapInsertionOrder - b->m_heapInsertionOrder;
183 return difference < numeric_limits<unsigned>::max() / 2;
184 }
185
186 // ----------------
187
TimerBase()188 TimerBase::TimerBase()
189 : m_nextFireTime(0)
190 , m_unalignedNextFireTime(0)
191 , m_repeatInterval(0)
192 , m_heapIndex(-1)
193 , m_cachedThreadGlobalTimerHeap(0)
194 #ifndef NDEBUG
195 , m_thread(currentThread())
196 #endif
197 {
198 }
199
~TimerBase()200 TimerBase::~TimerBase()
201 {
202 stop();
203 ASSERT(!inHeap());
204 }
205
start(double nextFireInterval,double repeatInterval,const TraceLocation & caller)206 void TimerBase::start(double nextFireInterval, double repeatInterval, const TraceLocation& caller)
207 {
208 ASSERT(m_thread == currentThread());
209
210 m_location = caller;
211 m_repeatInterval = repeatInterval;
212 setNextFireTime(monotonicallyIncreasingTime() + nextFireInterval);
213 }
214
stop()215 void TimerBase::stop()
216 {
217 ASSERT(m_thread == currentThread());
218
219 m_repeatInterval = 0;
220 setNextFireTime(0);
221
222 ASSERT(m_nextFireTime == 0);
223 ASSERT(m_repeatInterval == 0);
224 ASSERT(!inHeap());
225 }
226
nextFireInterval() const227 double TimerBase::nextFireInterval() const
228 {
229 ASSERT(isActive());
230 double current = monotonicallyIncreasingTime();
231 if (m_nextFireTime < current)
232 return 0;
233 return m_nextFireTime - current;
234 }
235
checkHeapIndex() const236 inline void TimerBase::checkHeapIndex() const
237 {
238 ASSERT(timerHeap() == threadGlobalTimerHeap());
239 ASSERT(!timerHeap().isEmpty());
240 ASSERT(m_heapIndex >= 0);
241 ASSERT(m_heapIndex < static_cast<int>(timerHeap().size()));
242 ASSERT(timerHeap()[m_heapIndex] == this);
243 }
244
checkConsistency() const245 inline void TimerBase::checkConsistency() const
246 {
247 // Timers should be in the heap if and only if they have a non-zero next fire time.
248 ASSERT(inHeap() == (m_nextFireTime != 0));
249 if (inHeap())
250 checkHeapIndex();
251 }
252
heapDecreaseKey()253 void TimerBase::heapDecreaseKey()
254 {
255 ASSERT(m_nextFireTime != 0);
256 checkHeapIndex();
257 TimerBase** heapData = timerHeap().data();
258 push_heap(TimerHeapIterator(heapData), TimerHeapIterator(heapData + m_heapIndex + 1), TimerHeapLessThanFunction());
259 checkHeapIndex();
260 }
261
heapDelete()262 inline void TimerBase::heapDelete()
263 {
264 ASSERT(m_nextFireTime == 0);
265 heapPop();
266 timerHeap().removeLast();
267 m_heapIndex = -1;
268 }
269
heapDeleteMin()270 void TimerBase::heapDeleteMin()
271 {
272 ASSERT(m_nextFireTime == 0);
273 heapPopMin();
274 timerHeap().removeLast();
275 m_heapIndex = -1;
276 }
277
heapIncreaseKey()278 inline void TimerBase::heapIncreaseKey()
279 {
280 ASSERT(m_nextFireTime != 0);
281 heapPop();
282 heapDecreaseKey();
283 }
284
heapInsert()285 inline void TimerBase::heapInsert()
286 {
287 ASSERT(!inHeap());
288 timerHeap().append(this);
289 m_heapIndex = timerHeap().size() - 1;
290 heapDecreaseKey();
291 }
292
heapPop()293 inline void TimerBase::heapPop()
294 {
295 // Temporarily force this timer to have the minimum key so we can pop it.
296 double fireTime = m_nextFireTime;
297 m_nextFireTime = -numeric_limits<double>::infinity();
298 heapDecreaseKey();
299 heapPopMin();
300 m_nextFireTime = fireTime;
301 }
302
heapPopMin()303 void TimerBase::heapPopMin()
304 {
305 ASSERT(this == timerHeap().first());
306 checkHeapIndex();
307 Vector<TimerBase*>& heap = timerHeap();
308 TimerBase** heapData = heap.data();
309 pop_heap(TimerHeapIterator(heapData), TimerHeapIterator(heapData + heap.size()), TimerHeapLessThanFunction());
310 checkHeapIndex();
311 ASSERT(this == timerHeap().last());
312 }
313
parentHeapPropertyHolds(const TimerBase * current,const Vector<TimerBase * > & heap,unsigned currentIndex)314 static inline bool parentHeapPropertyHolds(const TimerBase* current, const Vector<TimerBase*>& heap, unsigned currentIndex)
315 {
316 if (!currentIndex)
317 return true;
318 unsigned parentIndex = (currentIndex - 1) / 2;
319 TimerHeapLessThanFunction compareHeapPosition;
320 return compareHeapPosition(current, heap[parentIndex]);
321 }
322
childHeapPropertyHolds(const TimerBase * current,const Vector<TimerBase * > & heap,unsigned childIndex)323 static inline bool childHeapPropertyHolds(const TimerBase* current, const Vector<TimerBase*>& heap, unsigned childIndex)
324 {
325 if (childIndex >= heap.size())
326 return true;
327 TimerHeapLessThanFunction compareHeapPosition;
328 return compareHeapPosition(heap[childIndex], current);
329 }
330
hasValidHeapPosition() const331 bool TimerBase::hasValidHeapPosition() const
332 {
333 ASSERT(m_nextFireTime);
334 if (!inHeap())
335 return false;
336 // Check if the heap property still holds with the new fire time. If it does we don't need to do anything.
337 // This assumes that the STL heap is a standard binary heap. In an unlikely event it is not, the assertions
338 // in updateHeapIfNeeded() will get hit.
339 const Vector<TimerBase*>& heap = timerHeap();
340 if (!parentHeapPropertyHolds(this, heap, m_heapIndex))
341 return false;
342 unsigned childIndex1 = 2 * m_heapIndex + 1;
343 unsigned childIndex2 = childIndex1 + 1;
344 return childHeapPropertyHolds(this, heap, childIndex1) && childHeapPropertyHolds(this, heap, childIndex2);
345 }
346
updateHeapIfNeeded(double oldTime)347 void TimerBase::updateHeapIfNeeded(double oldTime)
348 {
349 if (m_nextFireTime && hasValidHeapPosition())
350 return;
351 #ifndef NDEBUG
352 int oldHeapIndex = m_heapIndex;
353 #endif
354 if (!oldTime)
355 heapInsert();
356 else if (!m_nextFireTime)
357 heapDelete();
358 else if (m_nextFireTime < oldTime)
359 heapDecreaseKey();
360 else
361 heapIncreaseKey();
362 ASSERT(m_heapIndex != oldHeapIndex);
363 ASSERT(!inHeap() || hasValidHeapPosition());
364 }
365
setNextFireTime(double newUnalignedTime)366 void TimerBase::setNextFireTime(double newUnalignedTime)
367 {
368 ASSERT(m_thread == currentThread());
369
370 if (m_unalignedNextFireTime != newUnalignedTime)
371 m_unalignedNextFireTime = newUnalignedTime;
372
373 // Accessing thread global data is slow. Cache the heap pointer.
374 if (!m_cachedThreadGlobalTimerHeap)
375 m_cachedThreadGlobalTimerHeap = &threadGlobalTimerHeap();
376
377 // Keep heap valid while changing the next-fire time.
378 double oldTime = m_nextFireTime;
379 double newTime = alignedFireTime(newUnalignedTime);
380 if (oldTime != newTime) {
381 m_nextFireTime = newTime;
382 static unsigned currentHeapInsertionOrder;
383 m_heapInsertionOrder = currentHeapInsertionOrder++;
384
385 bool wasFirstTimerInHeap = m_heapIndex == 0;
386
387 updateHeapIfNeeded(oldTime);
388
389 bool isFirstTimerInHeap = m_heapIndex == 0;
390
391 if (wasFirstTimerInHeap || isFirstTimerInHeap)
392 PlatformThreadData::current().threadTimers().updateSharedTimer();
393 }
394
395 checkConsistency();
396 }
397
fireTimersInNestedEventLoop()398 void TimerBase::fireTimersInNestedEventLoop()
399 {
400 // Redirect to ThreadTimers.
401 PlatformThreadData::current().threadTimers().fireTimersInNestedEventLoop();
402 }
403
didChangeAlignmentInterval()404 void TimerBase::didChangeAlignmentInterval()
405 {
406 setNextFireTime(m_unalignedNextFireTime);
407 }
408
nextUnalignedFireInterval() const409 double TimerBase::nextUnalignedFireInterval() const
410 {
411 ASSERT(isActive());
412 return max(m_unalignedNextFireTime - monotonicallyIncreasingTime(), 0.0);
413 }
414
415 } // namespace WebCore
416
417