1 //===--- Expr.cpp - Expression AST Node Implementation --------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Expr class and subclasses.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "clang/AST/APValue.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/Attr.h"
17 #include "clang/AST/DeclCXX.h"
18 #include "clang/AST/DeclObjC.h"
19 #include "clang/AST/DeclTemplate.h"
20 #include "clang/AST/EvaluatedExprVisitor.h"
21 #include "clang/AST/Expr.h"
22 #include "clang/AST/ExprCXX.h"
23 #include "clang/AST/Mangle.h"
24 #include "clang/AST/RecordLayout.h"
25 #include "clang/AST/StmtVisitor.h"
26 #include "clang/Basic/Builtins.h"
27 #include "clang/Basic/CharInfo.h"
28 #include "clang/Basic/SourceManager.h"
29 #include "clang/Basic/TargetInfo.h"
30 #include "clang/Lex/Lexer.h"
31 #include "clang/Lex/LiteralSupport.h"
32 #include "clang/Sema/SemaDiagnostic.h"
33 #include "llvm/Support/ErrorHandling.h"
34 #include "llvm/Support/raw_ostream.h"
35 #include <algorithm>
36 #include <cstring>
37 using namespace clang;
38
getBestDynamicClassType() const39 const CXXRecordDecl *Expr::getBestDynamicClassType() const {
40 const Expr *E = ignoreParenBaseCasts();
41
42 QualType DerivedType = E->getType();
43 if (const PointerType *PTy = DerivedType->getAs<PointerType>())
44 DerivedType = PTy->getPointeeType();
45
46 if (DerivedType->isDependentType())
47 return nullptr;
48
49 const RecordType *Ty = DerivedType->castAs<RecordType>();
50 Decl *D = Ty->getDecl();
51 return cast<CXXRecordDecl>(D);
52 }
53
skipRValueSubobjectAdjustments(SmallVectorImpl<const Expr * > & CommaLHSs,SmallVectorImpl<SubobjectAdjustment> & Adjustments) const54 const Expr *Expr::skipRValueSubobjectAdjustments(
55 SmallVectorImpl<const Expr *> &CommaLHSs,
56 SmallVectorImpl<SubobjectAdjustment> &Adjustments) const {
57 const Expr *E = this;
58 while (true) {
59 E = E->IgnoreParens();
60
61 if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
62 if ((CE->getCastKind() == CK_DerivedToBase ||
63 CE->getCastKind() == CK_UncheckedDerivedToBase) &&
64 E->getType()->isRecordType()) {
65 E = CE->getSubExpr();
66 CXXRecordDecl *Derived
67 = cast<CXXRecordDecl>(E->getType()->getAs<RecordType>()->getDecl());
68 Adjustments.push_back(SubobjectAdjustment(CE, Derived));
69 continue;
70 }
71
72 if (CE->getCastKind() == CK_NoOp) {
73 E = CE->getSubExpr();
74 continue;
75 }
76 } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
77 if (!ME->isArrow()) {
78 assert(ME->getBase()->getType()->isRecordType());
79 if (FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
80 if (!Field->isBitField() && !Field->getType()->isReferenceType()) {
81 E = ME->getBase();
82 Adjustments.push_back(SubobjectAdjustment(Field));
83 continue;
84 }
85 }
86 }
87 } else if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
88 if (BO->isPtrMemOp()) {
89 assert(BO->getRHS()->isRValue());
90 E = BO->getLHS();
91 const MemberPointerType *MPT =
92 BO->getRHS()->getType()->getAs<MemberPointerType>();
93 Adjustments.push_back(SubobjectAdjustment(MPT, BO->getRHS()));
94 continue;
95 } else if (BO->getOpcode() == BO_Comma) {
96 CommaLHSs.push_back(BO->getLHS());
97 E = BO->getRHS();
98 continue;
99 }
100 }
101
102 // Nothing changed.
103 break;
104 }
105 return E;
106 }
107
108 /// isKnownToHaveBooleanValue - Return true if this is an integer expression
109 /// that is known to return 0 or 1. This happens for _Bool/bool expressions
110 /// but also int expressions which are produced by things like comparisons in
111 /// C.
isKnownToHaveBooleanValue() const112 bool Expr::isKnownToHaveBooleanValue() const {
113 const Expr *E = IgnoreParens();
114
115 // If this value has _Bool type, it is obvious 0/1.
116 if (E->getType()->isBooleanType()) return true;
117 // If this is a non-scalar-integer type, we don't care enough to try.
118 if (!E->getType()->isIntegralOrEnumerationType()) return false;
119
120 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
121 switch (UO->getOpcode()) {
122 case UO_Plus:
123 return UO->getSubExpr()->isKnownToHaveBooleanValue();
124 case UO_LNot:
125 return true;
126 default:
127 return false;
128 }
129 }
130
131 // Only look through implicit casts. If the user writes
132 // '(int) (a && b)' treat it as an arbitrary int.
133 if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E))
134 return CE->getSubExpr()->isKnownToHaveBooleanValue();
135
136 if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
137 switch (BO->getOpcode()) {
138 default: return false;
139 case BO_LT: // Relational operators.
140 case BO_GT:
141 case BO_LE:
142 case BO_GE:
143 case BO_EQ: // Equality operators.
144 case BO_NE:
145 case BO_LAnd: // AND operator.
146 case BO_LOr: // Logical OR operator.
147 return true;
148
149 case BO_And: // Bitwise AND operator.
150 case BO_Xor: // Bitwise XOR operator.
151 case BO_Or: // Bitwise OR operator.
152 // Handle things like (x==2)|(y==12).
153 return BO->getLHS()->isKnownToHaveBooleanValue() &&
154 BO->getRHS()->isKnownToHaveBooleanValue();
155
156 case BO_Comma:
157 case BO_Assign:
158 return BO->getRHS()->isKnownToHaveBooleanValue();
159 }
160 }
161
162 if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E))
163 return CO->getTrueExpr()->isKnownToHaveBooleanValue() &&
164 CO->getFalseExpr()->isKnownToHaveBooleanValue();
165
166 return false;
167 }
168
169 // Amusing macro metaprogramming hack: check whether a class provides
170 // a more specific implementation of getExprLoc().
171 //
172 // See also Stmt.cpp:{getLocStart(),getLocEnd()}.
173 namespace {
174 /// This implementation is used when a class provides a custom
175 /// implementation of getExprLoc.
176 template <class E, class T>
getExprLocImpl(const Expr * expr,SourceLocation (T::* v)()const)177 SourceLocation getExprLocImpl(const Expr *expr,
178 SourceLocation (T::*v)() const) {
179 return static_cast<const E*>(expr)->getExprLoc();
180 }
181
182 /// This implementation is used when a class doesn't provide
183 /// a custom implementation of getExprLoc. Overload resolution
184 /// should pick it over the implementation above because it's
185 /// more specialized according to function template partial ordering.
186 template <class E>
getExprLocImpl(const Expr * expr,SourceLocation (Expr::* v)()const)187 SourceLocation getExprLocImpl(const Expr *expr,
188 SourceLocation (Expr::*v)() const) {
189 return static_cast<const E*>(expr)->getLocStart();
190 }
191 }
192
getExprLoc() const193 SourceLocation Expr::getExprLoc() const {
194 switch (getStmtClass()) {
195 case Stmt::NoStmtClass: llvm_unreachable("statement without class");
196 #define ABSTRACT_STMT(type)
197 #define STMT(type, base) \
198 case Stmt::type##Class: llvm_unreachable(#type " is not an Expr"); break;
199 #define EXPR(type, base) \
200 case Stmt::type##Class: return getExprLocImpl<type>(this, &type::getExprLoc);
201 #include "clang/AST/StmtNodes.inc"
202 }
203 llvm_unreachable("unknown statement kind");
204 }
205
206 //===----------------------------------------------------------------------===//
207 // Primary Expressions.
208 //===----------------------------------------------------------------------===//
209
210 /// \brief Compute the type-, value-, and instantiation-dependence of a
211 /// declaration reference
212 /// based on the declaration being referenced.
computeDeclRefDependence(const ASTContext & Ctx,NamedDecl * D,QualType T,bool & TypeDependent,bool & ValueDependent,bool & InstantiationDependent)213 static void computeDeclRefDependence(const ASTContext &Ctx, NamedDecl *D,
214 QualType T, bool &TypeDependent,
215 bool &ValueDependent,
216 bool &InstantiationDependent) {
217 TypeDependent = false;
218 ValueDependent = false;
219 InstantiationDependent = false;
220
221 // (TD) C++ [temp.dep.expr]p3:
222 // An id-expression is type-dependent if it contains:
223 //
224 // and
225 //
226 // (VD) C++ [temp.dep.constexpr]p2:
227 // An identifier is value-dependent if it is:
228
229 // (TD) - an identifier that was declared with dependent type
230 // (VD) - a name declared with a dependent type,
231 if (T->isDependentType()) {
232 TypeDependent = true;
233 ValueDependent = true;
234 InstantiationDependent = true;
235 return;
236 } else if (T->isInstantiationDependentType()) {
237 InstantiationDependent = true;
238 }
239
240 // (TD) - a conversion-function-id that specifies a dependent type
241 if (D->getDeclName().getNameKind()
242 == DeclarationName::CXXConversionFunctionName) {
243 QualType T = D->getDeclName().getCXXNameType();
244 if (T->isDependentType()) {
245 TypeDependent = true;
246 ValueDependent = true;
247 InstantiationDependent = true;
248 return;
249 }
250
251 if (T->isInstantiationDependentType())
252 InstantiationDependent = true;
253 }
254
255 // (VD) - the name of a non-type template parameter,
256 if (isa<NonTypeTemplateParmDecl>(D)) {
257 ValueDependent = true;
258 InstantiationDependent = true;
259 return;
260 }
261
262 // (VD) - a constant with integral or enumeration type and is
263 // initialized with an expression that is value-dependent.
264 // (VD) - a constant with literal type and is initialized with an
265 // expression that is value-dependent [C++11].
266 // (VD) - FIXME: Missing from the standard:
267 // - an entity with reference type and is initialized with an
268 // expression that is value-dependent [C++11]
269 if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
270 if ((Ctx.getLangOpts().CPlusPlus11 ?
271 Var->getType()->isLiteralType(Ctx) :
272 Var->getType()->isIntegralOrEnumerationType()) &&
273 (Var->getType().isConstQualified() ||
274 Var->getType()->isReferenceType())) {
275 if (const Expr *Init = Var->getAnyInitializer())
276 if (Init->isValueDependent()) {
277 ValueDependent = true;
278 InstantiationDependent = true;
279 }
280 }
281
282 // (VD) - FIXME: Missing from the standard:
283 // - a member function or a static data member of the current
284 // instantiation
285 if (Var->isStaticDataMember() &&
286 Var->getDeclContext()->isDependentContext()) {
287 ValueDependent = true;
288 InstantiationDependent = true;
289 TypeSourceInfo *TInfo = Var->getFirstDecl()->getTypeSourceInfo();
290 if (TInfo->getType()->isIncompleteArrayType())
291 TypeDependent = true;
292 }
293
294 return;
295 }
296
297 // (VD) - FIXME: Missing from the standard:
298 // - a member function or a static data member of the current
299 // instantiation
300 if (isa<CXXMethodDecl>(D) && D->getDeclContext()->isDependentContext()) {
301 ValueDependent = true;
302 InstantiationDependent = true;
303 }
304 }
305
computeDependence(const ASTContext & Ctx)306 void DeclRefExpr::computeDependence(const ASTContext &Ctx) {
307 bool TypeDependent = false;
308 bool ValueDependent = false;
309 bool InstantiationDependent = false;
310 computeDeclRefDependence(Ctx, getDecl(), getType(), TypeDependent,
311 ValueDependent, InstantiationDependent);
312
313 // (TD) C++ [temp.dep.expr]p3:
314 // An id-expression is type-dependent if it contains:
315 //
316 // and
317 //
318 // (VD) C++ [temp.dep.constexpr]p2:
319 // An identifier is value-dependent if it is:
320 if (!TypeDependent && !ValueDependent &&
321 hasExplicitTemplateArgs() &&
322 TemplateSpecializationType::anyDependentTemplateArguments(
323 getTemplateArgs(),
324 getNumTemplateArgs(),
325 InstantiationDependent)) {
326 TypeDependent = true;
327 ValueDependent = true;
328 InstantiationDependent = true;
329 }
330
331 ExprBits.TypeDependent = TypeDependent;
332 ExprBits.ValueDependent = ValueDependent;
333 ExprBits.InstantiationDependent = InstantiationDependent;
334
335 // Is the declaration a parameter pack?
336 if (getDecl()->isParameterPack())
337 ExprBits.ContainsUnexpandedParameterPack = true;
338 }
339
DeclRefExpr(const ASTContext & Ctx,NestedNameSpecifierLoc QualifierLoc,SourceLocation TemplateKWLoc,ValueDecl * D,bool RefersToEnclosingLocal,const DeclarationNameInfo & NameInfo,NamedDecl * FoundD,const TemplateArgumentListInfo * TemplateArgs,QualType T,ExprValueKind VK)340 DeclRefExpr::DeclRefExpr(const ASTContext &Ctx,
341 NestedNameSpecifierLoc QualifierLoc,
342 SourceLocation TemplateKWLoc,
343 ValueDecl *D, bool RefersToEnclosingLocal,
344 const DeclarationNameInfo &NameInfo,
345 NamedDecl *FoundD,
346 const TemplateArgumentListInfo *TemplateArgs,
347 QualType T, ExprValueKind VK)
348 : Expr(DeclRefExprClass, T, VK, OK_Ordinary, false, false, false, false),
349 D(D), Loc(NameInfo.getLoc()), DNLoc(NameInfo.getInfo()) {
350 DeclRefExprBits.HasQualifier = QualifierLoc ? 1 : 0;
351 if (QualifierLoc)
352 getInternalQualifierLoc() = QualifierLoc;
353 DeclRefExprBits.HasFoundDecl = FoundD ? 1 : 0;
354 if (FoundD)
355 getInternalFoundDecl() = FoundD;
356 DeclRefExprBits.HasTemplateKWAndArgsInfo
357 = (TemplateArgs || TemplateKWLoc.isValid()) ? 1 : 0;
358 DeclRefExprBits.RefersToEnclosingLocal = RefersToEnclosingLocal;
359 if (TemplateArgs) {
360 bool Dependent = false;
361 bool InstantiationDependent = false;
362 bool ContainsUnexpandedParameterPack = false;
363 getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc, *TemplateArgs,
364 Dependent,
365 InstantiationDependent,
366 ContainsUnexpandedParameterPack);
367 if (InstantiationDependent)
368 setInstantiationDependent(true);
369 } else if (TemplateKWLoc.isValid()) {
370 getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc);
371 }
372 DeclRefExprBits.HadMultipleCandidates = 0;
373
374 computeDependence(Ctx);
375 }
376
Create(const ASTContext & Context,NestedNameSpecifierLoc QualifierLoc,SourceLocation TemplateKWLoc,ValueDecl * D,bool RefersToEnclosingLocal,SourceLocation NameLoc,QualType T,ExprValueKind VK,NamedDecl * FoundD,const TemplateArgumentListInfo * TemplateArgs)377 DeclRefExpr *DeclRefExpr::Create(const ASTContext &Context,
378 NestedNameSpecifierLoc QualifierLoc,
379 SourceLocation TemplateKWLoc,
380 ValueDecl *D,
381 bool RefersToEnclosingLocal,
382 SourceLocation NameLoc,
383 QualType T,
384 ExprValueKind VK,
385 NamedDecl *FoundD,
386 const TemplateArgumentListInfo *TemplateArgs) {
387 return Create(Context, QualifierLoc, TemplateKWLoc, D,
388 RefersToEnclosingLocal,
389 DeclarationNameInfo(D->getDeclName(), NameLoc),
390 T, VK, FoundD, TemplateArgs);
391 }
392
Create(const ASTContext & Context,NestedNameSpecifierLoc QualifierLoc,SourceLocation TemplateKWLoc,ValueDecl * D,bool RefersToEnclosingLocal,const DeclarationNameInfo & NameInfo,QualType T,ExprValueKind VK,NamedDecl * FoundD,const TemplateArgumentListInfo * TemplateArgs)393 DeclRefExpr *DeclRefExpr::Create(const ASTContext &Context,
394 NestedNameSpecifierLoc QualifierLoc,
395 SourceLocation TemplateKWLoc,
396 ValueDecl *D,
397 bool RefersToEnclosingLocal,
398 const DeclarationNameInfo &NameInfo,
399 QualType T,
400 ExprValueKind VK,
401 NamedDecl *FoundD,
402 const TemplateArgumentListInfo *TemplateArgs) {
403 // Filter out cases where the found Decl is the same as the value refenenced.
404 if (D == FoundD)
405 FoundD = nullptr;
406
407 std::size_t Size = sizeof(DeclRefExpr);
408 if (QualifierLoc)
409 Size += sizeof(NestedNameSpecifierLoc);
410 if (FoundD)
411 Size += sizeof(NamedDecl *);
412 if (TemplateArgs)
413 Size += ASTTemplateKWAndArgsInfo::sizeFor(TemplateArgs->size());
414 else if (TemplateKWLoc.isValid())
415 Size += ASTTemplateKWAndArgsInfo::sizeFor(0);
416
417 void *Mem = Context.Allocate(Size, llvm::alignOf<DeclRefExpr>());
418 return new (Mem) DeclRefExpr(Context, QualifierLoc, TemplateKWLoc, D,
419 RefersToEnclosingLocal,
420 NameInfo, FoundD, TemplateArgs, T, VK);
421 }
422
CreateEmpty(const ASTContext & Context,bool HasQualifier,bool HasFoundDecl,bool HasTemplateKWAndArgsInfo,unsigned NumTemplateArgs)423 DeclRefExpr *DeclRefExpr::CreateEmpty(const ASTContext &Context,
424 bool HasQualifier,
425 bool HasFoundDecl,
426 bool HasTemplateKWAndArgsInfo,
427 unsigned NumTemplateArgs) {
428 std::size_t Size = sizeof(DeclRefExpr);
429 if (HasQualifier)
430 Size += sizeof(NestedNameSpecifierLoc);
431 if (HasFoundDecl)
432 Size += sizeof(NamedDecl *);
433 if (HasTemplateKWAndArgsInfo)
434 Size += ASTTemplateKWAndArgsInfo::sizeFor(NumTemplateArgs);
435
436 void *Mem = Context.Allocate(Size, llvm::alignOf<DeclRefExpr>());
437 return new (Mem) DeclRefExpr(EmptyShell());
438 }
439
getLocStart() const440 SourceLocation DeclRefExpr::getLocStart() const {
441 if (hasQualifier())
442 return getQualifierLoc().getBeginLoc();
443 return getNameInfo().getLocStart();
444 }
getLocEnd() const445 SourceLocation DeclRefExpr::getLocEnd() const {
446 if (hasExplicitTemplateArgs())
447 return getRAngleLoc();
448 return getNameInfo().getLocEnd();
449 }
450
451 // FIXME: Maybe this should use DeclPrinter with a special "print predefined
452 // expr" policy instead.
ComputeName(IdentType IT,const Decl * CurrentDecl)453 std::string PredefinedExpr::ComputeName(IdentType IT, const Decl *CurrentDecl) {
454 ASTContext &Context = CurrentDecl->getASTContext();
455
456 if (IT == PredefinedExpr::FuncDName) {
457 if (const NamedDecl *ND = dyn_cast<NamedDecl>(CurrentDecl)) {
458 std::unique_ptr<MangleContext> MC;
459 MC.reset(Context.createMangleContext());
460
461 if (MC->shouldMangleDeclName(ND)) {
462 SmallString<256> Buffer;
463 llvm::raw_svector_ostream Out(Buffer);
464 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(ND))
465 MC->mangleCXXCtor(CD, Ctor_Base, Out);
466 else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(ND))
467 MC->mangleCXXDtor(DD, Dtor_Base, Out);
468 else
469 MC->mangleName(ND, Out);
470
471 Out.flush();
472 if (!Buffer.empty() && Buffer.front() == '\01')
473 return Buffer.substr(1);
474 return Buffer.str();
475 } else
476 return ND->getIdentifier()->getName();
477 }
478 return "";
479 }
480 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CurrentDecl)) {
481 if (IT != PrettyFunction && IT != PrettyFunctionNoVirtual && IT != FuncSig)
482 return FD->getNameAsString();
483
484 SmallString<256> Name;
485 llvm::raw_svector_ostream Out(Name);
486
487 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
488 if (MD->isVirtual() && IT != PrettyFunctionNoVirtual)
489 Out << "virtual ";
490 if (MD->isStatic())
491 Out << "static ";
492 }
493
494 PrintingPolicy Policy(Context.getLangOpts());
495 std::string Proto;
496 llvm::raw_string_ostream POut(Proto);
497
498 const FunctionDecl *Decl = FD;
499 if (const FunctionDecl* Pattern = FD->getTemplateInstantiationPattern())
500 Decl = Pattern;
501 const FunctionType *AFT = Decl->getType()->getAs<FunctionType>();
502 const FunctionProtoType *FT = nullptr;
503 if (FD->hasWrittenPrototype())
504 FT = dyn_cast<FunctionProtoType>(AFT);
505
506 if (IT == FuncSig) {
507 switch (FT->getCallConv()) {
508 case CC_C: POut << "__cdecl "; break;
509 case CC_X86StdCall: POut << "__stdcall "; break;
510 case CC_X86FastCall: POut << "__fastcall "; break;
511 case CC_X86ThisCall: POut << "__thiscall "; break;
512 // Only bother printing the conventions that MSVC knows about.
513 default: break;
514 }
515 }
516
517 FD->printQualifiedName(POut, Policy);
518
519 POut << "(";
520 if (FT) {
521 for (unsigned i = 0, e = Decl->getNumParams(); i != e; ++i) {
522 if (i) POut << ", ";
523 POut << Decl->getParamDecl(i)->getType().stream(Policy);
524 }
525
526 if (FT->isVariadic()) {
527 if (FD->getNumParams()) POut << ", ";
528 POut << "...";
529 }
530 }
531 POut << ")";
532
533 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
534 const FunctionType *FT = MD->getType()->castAs<FunctionType>();
535 if (FT->isConst())
536 POut << " const";
537 if (FT->isVolatile())
538 POut << " volatile";
539 RefQualifierKind Ref = MD->getRefQualifier();
540 if (Ref == RQ_LValue)
541 POut << " &";
542 else if (Ref == RQ_RValue)
543 POut << " &&";
544 }
545
546 typedef SmallVector<const ClassTemplateSpecializationDecl *, 8> SpecsTy;
547 SpecsTy Specs;
548 const DeclContext *Ctx = FD->getDeclContext();
549 while (Ctx && isa<NamedDecl>(Ctx)) {
550 const ClassTemplateSpecializationDecl *Spec
551 = dyn_cast<ClassTemplateSpecializationDecl>(Ctx);
552 if (Spec && !Spec->isExplicitSpecialization())
553 Specs.push_back(Spec);
554 Ctx = Ctx->getParent();
555 }
556
557 std::string TemplateParams;
558 llvm::raw_string_ostream TOut(TemplateParams);
559 for (SpecsTy::reverse_iterator I = Specs.rbegin(), E = Specs.rend();
560 I != E; ++I) {
561 const TemplateParameterList *Params
562 = (*I)->getSpecializedTemplate()->getTemplateParameters();
563 const TemplateArgumentList &Args = (*I)->getTemplateArgs();
564 assert(Params->size() == Args.size());
565 for (unsigned i = 0, numParams = Params->size(); i != numParams; ++i) {
566 StringRef Param = Params->getParam(i)->getName();
567 if (Param.empty()) continue;
568 TOut << Param << " = ";
569 Args.get(i).print(Policy, TOut);
570 TOut << ", ";
571 }
572 }
573
574 FunctionTemplateSpecializationInfo *FSI
575 = FD->getTemplateSpecializationInfo();
576 if (FSI && !FSI->isExplicitSpecialization()) {
577 const TemplateParameterList* Params
578 = FSI->getTemplate()->getTemplateParameters();
579 const TemplateArgumentList* Args = FSI->TemplateArguments;
580 assert(Params->size() == Args->size());
581 for (unsigned i = 0, e = Params->size(); i != e; ++i) {
582 StringRef Param = Params->getParam(i)->getName();
583 if (Param.empty()) continue;
584 TOut << Param << " = ";
585 Args->get(i).print(Policy, TOut);
586 TOut << ", ";
587 }
588 }
589
590 TOut.flush();
591 if (!TemplateParams.empty()) {
592 // remove the trailing comma and space
593 TemplateParams.resize(TemplateParams.size() - 2);
594 POut << " [" << TemplateParams << "]";
595 }
596
597 POut.flush();
598
599 // Print "auto" for all deduced return types. This includes C++1y return
600 // type deduction and lambdas. For trailing return types resolve the
601 // decltype expression. Otherwise print the real type when this is
602 // not a constructor or destructor.
603 if ((isa<CXXMethodDecl>(FD) &&
604 cast<CXXMethodDecl>(FD)->getParent()->isLambda()) ||
605 (FT && FT->getReturnType()->getAs<AutoType>()))
606 Proto = "auto " + Proto;
607 else if (FT && FT->getReturnType()->getAs<DecltypeType>())
608 FT->getReturnType()
609 ->getAs<DecltypeType>()
610 ->getUnderlyingType()
611 .getAsStringInternal(Proto, Policy);
612 else if (!isa<CXXConstructorDecl>(FD) && !isa<CXXDestructorDecl>(FD))
613 AFT->getReturnType().getAsStringInternal(Proto, Policy);
614
615 Out << Proto;
616
617 Out.flush();
618 return Name.str().str();
619 }
620 if (const CapturedDecl *CD = dyn_cast<CapturedDecl>(CurrentDecl)) {
621 for (const DeclContext *DC = CD->getParent(); DC; DC = DC->getParent())
622 // Skip to its enclosing function or method, but not its enclosing
623 // CapturedDecl.
624 if (DC->isFunctionOrMethod() && (DC->getDeclKind() != Decl::Captured)) {
625 const Decl *D = Decl::castFromDeclContext(DC);
626 return ComputeName(IT, D);
627 }
628 llvm_unreachable("CapturedDecl not inside a function or method");
629 }
630 if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(CurrentDecl)) {
631 SmallString<256> Name;
632 llvm::raw_svector_ostream Out(Name);
633 Out << (MD->isInstanceMethod() ? '-' : '+');
634 Out << '[';
635
636 // For incorrect code, there might not be an ObjCInterfaceDecl. Do
637 // a null check to avoid a crash.
638 if (const ObjCInterfaceDecl *ID = MD->getClassInterface())
639 Out << *ID;
640
641 if (const ObjCCategoryImplDecl *CID =
642 dyn_cast<ObjCCategoryImplDecl>(MD->getDeclContext()))
643 Out << '(' << *CID << ')';
644
645 Out << ' ';
646 MD->getSelector().print(Out);
647 Out << ']';
648
649 Out.flush();
650 return Name.str().str();
651 }
652 if (isa<TranslationUnitDecl>(CurrentDecl) && IT == PrettyFunction) {
653 // __PRETTY_FUNCTION__ -> "top level", the others produce an empty string.
654 return "top level";
655 }
656 return "";
657 }
658
setIntValue(const ASTContext & C,const llvm::APInt & Val)659 void APNumericStorage::setIntValue(const ASTContext &C,
660 const llvm::APInt &Val) {
661 if (hasAllocation())
662 C.Deallocate(pVal);
663
664 BitWidth = Val.getBitWidth();
665 unsigned NumWords = Val.getNumWords();
666 const uint64_t* Words = Val.getRawData();
667 if (NumWords > 1) {
668 pVal = new (C) uint64_t[NumWords];
669 std::copy(Words, Words + NumWords, pVal);
670 } else if (NumWords == 1)
671 VAL = Words[0];
672 else
673 VAL = 0;
674 }
675
IntegerLiteral(const ASTContext & C,const llvm::APInt & V,QualType type,SourceLocation l)676 IntegerLiteral::IntegerLiteral(const ASTContext &C, const llvm::APInt &V,
677 QualType type, SourceLocation l)
678 : Expr(IntegerLiteralClass, type, VK_RValue, OK_Ordinary, false, false,
679 false, false),
680 Loc(l) {
681 assert(type->isIntegerType() && "Illegal type in IntegerLiteral");
682 assert(V.getBitWidth() == C.getIntWidth(type) &&
683 "Integer type is not the correct size for constant.");
684 setValue(C, V);
685 }
686
687 IntegerLiteral *
Create(const ASTContext & C,const llvm::APInt & V,QualType type,SourceLocation l)688 IntegerLiteral::Create(const ASTContext &C, const llvm::APInt &V,
689 QualType type, SourceLocation l) {
690 return new (C) IntegerLiteral(C, V, type, l);
691 }
692
693 IntegerLiteral *
Create(const ASTContext & C,EmptyShell Empty)694 IntegerLiteral::Create(const ASTContext &C, EmptyShell Empty) {
695 return new (C) IntegerLiteral(Empty);
696 }
697
FloatingLiteral(const ASTContext & C,const llvm::APFloat & V,bool isexact,QualType Type,SourceLocation L)698 FloatingLiteral::FloatingLiteral(const ASTContext &C, const llvm::APFloat &V,
699 bool isexact, QualType Type, SourceLocation L)
700 : Expr(FloatingLiteralClass, Type, VK_RValue, OK_Ordinary, false, false,
701 false, false), Loc(L) {
702 setSemantics(V.getSemantics());
703 FloatingLiteralBits.IsExact = isexact;
704 setValue(C, V);
705 }
706
FloatingLiteral(const ASTContext & C,EmptyShell Empty)707 FloatingLiteral::FloatingLiteral(const ASTContext &C, EmptyShell Empty)
708 : Expr(FloatingLiteralClass, Empty) {
709 setRawSemantics(IEEEhalf);
710 FloatingLiteralBits.IsExact = false;
711 }
712
713 FloatingLiteral *
Create(const ASTContext & C,const llvm::APFloat & V,bool isexact,QualType Type,SourceLocation L)714 FloatingLiteral::Create(const ASTContext &C, const llvm::APFloat &V,
715 bool isexact, QualType Type, SourceLocation L) {
716 return new (C) FloatingLiteral(C, V, isexact, Type, L);
717 }
718
719 FloatingLiteral *
Create(const ASTContext & C,EmptyShell Empty)720 FloatingLiteral::Create(const ASTContext &C, EmptyShell Empty) {
721 return new (C) FloatingLiteral(C, Empty);
722 }
723
getSemantics() const724 const llvm::fltSemantics &FloatingLiteral::getSemantics() const {
725 switch(FloatingLiteralBits.Semantics) {
726 case IEEEhalf:
727 return llvm::APFloat::IEEEhalf;
728 case IEEEsingle:
729 return llvm::APFloat::IEEEsingle;
730 case IEEEdouble:
731 return llvm::APFloat::IEEEdouble;
732 case x87DoubleExtended:
733 return llvm::APFloat::x87DoubleExtended;
734 case IEEEquad:
735 return llvm::APFloat::IEEEquad;
736 case PPCDoubleDouble:
737 return llvm::APFloat::PPCDoubleDouble;
738 }
739 llvm_unreachable("Unrecognised floating semantics");
740 }
741
setSemantics(const llvm::fltSemantics & Sem)742 void FloatingLiteral::setSemantics(const llvm::fltSemantics &Sem) {
743 if (&Sem == &llvm::APFloat::IEEEhalf)
744 FloatingLiteralBits.Semantics = IEEEhalf;
745 else if (&Sem == &llvm::APFloat::IEEEsingle)
746 FloatingLiteralBits.Semantics = IEEEsingle;
747 else if (&Sem == &llvm::APFloat::IEEEdouble)
748 FloatingLiteralBits.Semantics = IEEEdouble;
749 else if (&Sem == &llvm::APFloat::x87DoubleExtended)
750 FloatingLiteralBits.Semantics = x87DoubleExtended;
751 else if (&Sem == &llvm::APFloat::IEEEquad)
752 FloatingLiteralBits.Semantics = IEEEquad;
753 else if (&Sem == &llvm::APFloat::PPCDoubleDouble)
754 FloatingLiteralBits.Semantics = PPCDoubleDouble;
755 else
756 llvm_unreachable("Unknown floating semantics");
757 }
758
759 /// getValueAsApproximateDouble - This returns the value as an inaccurate
760 /// double. Note that this may cause loss of precision, but is useful for
761 /// debugging dumps, etc.
getValueAsApproximateDouble() const762 double FloatingLiteral::getValueAsApproximateDouble() const {
763 llvm::APFloat V = getValue();
764 bool ignored;
765 V.convert(llvm::APFloat::IEEEdouble, llvm::APFloat::rmNearestTiesToEven,
766 &ignored);
767 return V.convertToDouble();
768 }
769
mapCharByteWidth(TargetInfo const & target,StringKind k)770 int StringLiteral::mapCharByteWidth(TargetInfo const &target,StringKind k) {
771 int CharByteWidth = 0;
772 switch(k) {
773 case Ascii:
774 case UTF8:
775 CharByteWidth = target.getCharWidth();
776 break;
777 case Wide:
778 CharByteWidth = target.getWCharWidth();
779 break;
780 case UTF16:
781 CharByteWidth = target.getChar16Width();
782 break;
783 case UTF32:
784 CharByteWidth = target.getChar32Width();
785 break;
786 }
787 assert((CharByteWidth & 7) == 0 && "Assumes character size is byte multiple");
788 CharByteWidth /= 8;
789 assert((CharByteWidth==1 || CharByteWidth==2 || CharByteWidth==4)
790 && "character byte widths supported are 1, 2, and 4 only");
791 return CharByteWidth;
792 }
793
Create(const ASTContext & C,StringRef Str,StringKind Kind,bool Pascal,QualType Ty,const SourceLocation * Loc,unsigned NumStrs)794 StringLiteral *StringLiteral::Create(const ASTContext &C, StringRef Str,
795 StringKind Kind, bool Pascal, QualType Ty,
796 const SourceLocation *Loc,
797 unsigned NumStrs) {
798 assert(C.getAsConstantArrayType(Ty) &&
799 "StringLiteral must be of constant array type!");
800
801 // Allocate enough space for the StringLiteral plus an array of locations for
802 // any concatenated string tokens.
803 void *Mem = C.Allocate(sizeof(StringLiteral)+
804 sizeof(SourceLocation)*(NumStrs-1),
805 llvm::alignOf<StringLiteral>());
806 StringLiteral *SL = new (Mem) StringLiteral(Ty);
807
808 // OPTIMIZE: could allocate this appended to the StringLiteral.
809 SL->setString(C,Str,Kind,Pascal);
810
811 SL->TokLocs[0] = Loc[0];
812 SL->NumConcatenated = NumStrs;
813
814 if (NumStrs != 1)
815 memcpy(&SL->TokLocs[1], Loc+1, sizeof(SourceLocation)*(NumStrs-1));
816 return SL;
817 }
818
CreateEmpty(const ASTContext & C,unsigned NumStrs)819 StringLiteral *StringLiteral::CreateEmpty(const ASTContext &C,
820 unsigned NumStrs) {
821 void *Mem = C.Allocate(sizeof(StringLiteral)+
822 sizeof(SourceLocation)*(NumStrs-1),
823 llvm::alignOf<StringLiteral>());
824 StringLiteral *SL = new (Mem) StringLiteral(QualType());
825 SL->CharByteWidth = 0;
826 SL->Length = 0;
827 SL->NumConcatenated = NumStrs;
828 return SL;
829 }
830
outputString(raw_ostream & OS) const831 void StringLiteral::outputString(raw_ostream &OS) const {
832 switch (getKind()) {
833 case Ascii: break; // no prefix.
834 case Wide: OS << 'L'; break;
835 case UTF8: OS << "u8"; break;
836 case UTF16: OS << 'u'; break;
837 case UTF32: OS << 'U'; break;
838 }
839 OS << '"';
840 static const char Hex[] = "0123456789ABCDEF";
841
842 unsigned LastSlashX = getLength();
843 for (unsigned I = 0, N = getLength(); I != N; ++I) {
844 switch (uint32_t Char = getCodeUnit(I)) {
845 default:
846 // FIXME: Convert UTF-8 back to codepoints before rendering.
847
848 // Convert UTF-16 surrogate pairs back to codepoints before rendering.
849 // Leave invalid surrogates alone; we'll use \x for those.
850 if (getKind() == UTF16 && I != N - 1 && Char >= 0xd800 &&
851 Char <= 0xdbff) {
852 uint32_t Trail = getCodeUnit(I + 1);
853 if (Trail >= 0xdc00 && Trail <= 0xdfff) {
854 Char = 0x10000 + ((Char - 0xd800) << 10) + (Trail - 0xdc00);
855 ++I;
856 }
857 }
858
859 if (Char > 0xff) {
860 // If this is a wide string, output characters over 0xff using \x
861 // escapes. Otherwise, this is a UTF-16 or UTF-32 string, and Char is a
862 // codepoint: use \x escapes for invalid codepoints.
863 if (getKind() == Wide ||
864 (Char >= 0xd800 && Char <= 0xdfff) || Char >= 0x110000) {
865 // FIXME: Is this the best way to print wchar_t?
866 OS << "\\x";
867 int Shift = 28;
868 while ((Char >> Shift) == 0)
869 Shift -= 4;
870 for (/**/; Shift >= 0; Shift -= 4)
871 OS << Hex[(Char >> Shift) & 15];
872 LastSlashX = I;
873 break;
874 }
875
876 if (Char > 0xffff)
877 OS << "\\U00"
878 << Hex[(Char >> 20) & 15]
879 << Hex[(Char >> 16) & 15];
880 else
881 OS << "\\u";
882 OS << Hex[(Char >> 12) & 15]
883 << Hex[(Char >> 8) & 15]
884 << Hex[(Char >> 4) & 15]
885 << Hex[(Char >> 0) & 15];
886 break;
887 }
888
889 // If we used \x... for the previous character, and this character is a
890 // hexadecimal digit, prevent it being slurped as part of the \x.
891 if (LastSlashX + 1 == I) {
892 switch (Char) {
893 case '0': case '1': case '2': case '3': case '4':
894 case '5': case '6': case '7': case '8': case '9':
895 case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
896 case 'A': case 'B': case 'C': case 'D': case 'E': case 'F':
897 OS << "\"\"";
898 }
899 }
900
901 assert(Char <= 0xff &&
902 "Characters above 0xff should already have been handled.");
903
904 if (isPrintable(Char))
905 OS << (char)Char;
906 else // Output anything hard as an octal escape.
907 OS << '\\'
908 << (char)('0' + ((Char >> 6) & 7))
909 << (char)('0' + ((Char >> 3) & 7))
910 << (char)('0' + ((Char >> 0) & 7));
911 break;
912 // Handle some common non-printable cases to make dumps prettier.
913 case '\\': OS << "\\\\"; break;
914 case '"': OS << "\\\""; break;
915 case '\n': OS << "\\n"; break;
916 case '\t': OS << "\\t"; break;
917 case '\a': OS << "\\a"; break;
918 case '\b': OS << "\\b"; break;
919 }
920 }
921 OS << '"';
922 }
923
setString(const ASTContext & C,StringRef Str,StringKind Kind,bool IsPascal)924 void StringLiteral::setString(const ASTContext &C, StringRef Str,
925 StringKind Kind, bool IsPascal) {
926 //FIXME: we assume that the string data comes from a target that uses the same
927 // code unit size and endianess for the type of string.
928 this->Kind = Kind;
929 this->IsPascal = IsPascal;
930
931 CharByteWidth = mapCharByteWidth(C.getTargetInfo(),Kind);
932 assert((Str.size()%CharByteWidth == 0)
933 && "size of data must be multiple of CharByteWidth");
934 Length = Str.size()/CharByteWidth;
935
936 switch(CharByteWidth) {
937 case 1: {
938 char *AStrData = new (C) char[Length];
939 std::memcpy(AStrData,Str.data(),Length*sizeof(*AStrData));
940 StrData.asChar = AStrData;
941 break;
942 }
943 case 2: {
944 uint16_t *AStrData = new (C) uint16_t[Length];
945 std::memcpy(AStrData,Str.data(),Length*sizeof(*AStrData));
946 StrData.asUInt16 = AStrData;
947 break;
948 }
949 case 4: {
950 uint32_t *AStrData = new (C) uint32_t[Length];
951 std::memcpy(AStrData,Str.data(),Length*sizeof(*AStrData));
952 StrData.asUInt32 = AStrData;
953 break;
954 }
955 default:
956 assert(false && "unsupported CharByteWidth");
957 }
958 }
959
960 /// getLocationOfByte - Return a source location that points to the specified
961 /// byte of this string literal.
962 ///
963 /// Strings are amazingly complex. They can be formed from multiple tokens and
964 /// can have escape sequences in them in addition to the usual trigraph and
965 /// escaped newline business. This routine handles this complexity.
966 ///
967 SourceLocation StringLiteral::
getLocationOfByte(unsigned ByteNo,const SourceManager & SM,const LangOptions & Features,const TargetInfo & Target) const968 getLocationOfByte(unsigned ByteNo, const SourceManager &SM,
969 const LangOptions &Features, const TargetInfo &Target) const {
970 assert((Kind == StringLiteral::Ascii || Kind == StringLiteral::UTF8) &&
971 "Only narrow string literals are currently supported");
972
973 // Loop over all of the tokens in this string until we find the one that
974 // contains the byte we're looking for.
975 unsigned TokNo = 0;
976 while (1) {
977 assert(TokNo < getNumConcatenated() && "Invalid byte number!");
978 SourceLocation StrTokLoc = getStrTokenLoc(TokNo);
979
980 // Get the spelling of the string so that we can get the data that makes up
981 // the string literal, not the identifier for the macro it is potentially
982 // expanded through.
983 SourceLocation StrTokSpellingLoc = SM.getSpellingLoc(StrTokLoc);
984
985 // Re-lex the token to get its length and original spelling.
986 std::pair<FileID, unsigned> LocInfo =SM.getDecomposedLoc(StrTokSpellingLoc);
987 bool Invalid = false;
988 StringRef Buffer = SM.getBufferData(LocInfo.first, &Invalid);
989 if (Invalid)
990 return StrTokSpellingLoc;
991
992 const char *StrData = Buffer.data()+LocInfo.second;
993
994 // Create a lexer starting at the beginning of this token.
995 Lexer TheLexer(SM.getLocForStartOfFile(LocInfo.first), Features,
996 Buffer.begin(), StrData, Buffer.end());
997 Token TheTok;
998 TheLexer.LexFromRawLexer(TheTok);
999
1000 // Use the StringLiteralParser to compute the length of the string in bytes.
1001 StringLiteralParser SLP(TheTok, SM, Features, Target);
1002 unsigned TokNumBytes = SLP.GetStringLength();
1003
1004 // If the byte is in this token, return the location of the byte.
1005 if (ByteNo < TokNumBytes ||
1006 (ByteNo == TokNumBytes && TokNo == getNumConcatenated() - 1)) {
1007 unsigned Offset = SLP.getOffsetOfStringByte(TheTok, ByteNo);
1008
1009 // Now that we know the offset of the token in the spelling, use the
1010 // preprocessor to get the offset in the original source.
1011 return Lexer::AdvanceToTokenCharacter(StrTokLoc, Offset, SM, Features);
1012 }
1013
1014 // Move to the next string token.
1015 ++TokNo;
1016 ByteNo -= TokNumBytes;
1017 }
1018 }
1019
1020
1021
1022 /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
1023 /// corresponds to, e.g. "sizeof" or "[pre]++".
getOpcodeStr(Opcode Op)1024 StringRef UnaryOperator::getOpcodeStr(Opcode Op) {
1025 switch (Op) {
1026 case UO_PostInc: return "++";
1027 case UO_PostDec: return "--";
1028 case UO_PreInc: return "++";
1029 case UO_PreDec: return "--";
1030 case UO_AddrOf: return "&";
1031 case UO_Deref: return "*";
1032 case UO_Plus: return "+";
1033 case UO_Minus: return "-";
1034 case UO_Not: return "~";
1035 case UO_LNot: return "!";
1036 case UO_Real: return "__real";
1037 case UO_Imag: return "__imag";
1038 case UO_Extension: return "__extension__";
1039 }
1040 llvm_unreachable("Unknown unary operator");
1041 }
1042
1043 UnaryOperatorKind
getOverloadedOpcode(OverloadedOperatorKind OO,bool Postfix)1044 UnaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix) {
1045 switch (OO) {
1046 default: llvm_unreachable("No unary operator for overloaded function");
1047 case OO_PlusPlus: return Postfix ? UO_PostInc : UO_PreInc;
1048 case OO_MinusMinus: return Postfix ? UO_PostDec : UO_PreDec;
1049 case OO_Amp: return UO_AddrOf;
1050 case OO_Star: return UO_Deref;
1051 case OO_Plus: return UO_Plus;
1052 case OO_Minus: return UO_Minus;
1053 case OO_Tilde: return UO_Not;
1054 case OO_Exclaim: return UO_LNot;
1055 }
1056 }
1057
getOverloadedOperator(Opcode Opc)1058 OverloadedOperatorKind UnaryOperator::getOverloadedOperator(Opcode Opc) {
1059 switch (Opc) {
1060 case UO_PostInc: case UO_PreInc: return OO_PlusPlus;
1061 case UO_PostDec: case UO_PreDec: return OO_MinusMinus;
1062 case UO_AddrOf: return OO_Amp;
1063 case UO_Deref: return OO_Star;
1064 case UO_Plus: return OO_Plus;
1065 case UO_Minus: return OO_Minus;
1066 case UO_Not: return OO_Tilde;
1067 case UO_LNot: return OO_Exclaim;
1068 default: return OO_None;
1069 }
1070 }
1071
1072
1073 //===----------------------------------------------------------------------===//
1074 // Postfix Operators.
1075 //===----------------------------------------------------------------------===//
1076
CallExpr(const ASTContext & C,StmtClass SC,Expr * fn,unsigned NumPreArgs,ArrayRef<Expr * > args,QualType t,ExprValueKind VK,SourceLocation rparenloc)1077 CallExpr::CallExpr(const ASTContext& C, StmtClass SC, Expr *fn,
1078 unsigned NumPreArgs, ArrayRef<Expr*> args, QualType t,
1079 ExprValueKind VK, SourceLocation rparenloc)
1080 : Expr(SC, t, VK, OK_Ordinary,
1081 fn->isTypeDependent(),
1082 fn->isValueDependent(),
1083 fn->isInstantiationDependent(),
1084 fn->containsUnexpandedParameterPack()),
1085 NumArgs(args.size()) {
1086
1087 SubExprs = new (C) Stmt*[args.size()+PREARGS_START+NumPreArgs];
1088 SubExprs[FN] = fn;
1089 for (unsigned i = 0; i != args.size(); ++i) {
1090 if (args[i]->isTypeDependent())
1091 ExprBits.TypeDependent = true;
1092 if (args[i]->isValueDependent())
1093 ExprBits.ValueDependent = true;
1094 if (args[i]->isInstantiationDependent())
1095 ExprBits.InstantiationDependent = true;
1096 if (args[i]->containsUnexpandedParameterPack())
1097 ExprBits.ContainsUnexpandedParameterPack = true;
1098
1099 SubExprs[i+PREARGS_START+NumPreArgs] = args[i];
1100 }
1101
1102 CallExprBits.NumPreArgs = NumPreArgs;
1103 RParenLoc = rparenloc;
1104 }
1105
CallExpr(const ASTContext & C,Expr * fn,ArrayRef<Expr * > args,QualType t,ExprValueKind VK,SourceLocation rparenloc)1106 CallExpr::CallExpr(const ASTContext& C, Expr *fn, ArrayRef<Expr*> args,
1107 QualType t, ExprValueKind VK, SourceLocation rparenloc)
1108 : Expr(CallExprClass, t, VK, OK_Ordinary,
1109 fn->isTypeDependent(),
1110 fn->isValueDependent(),
1111 fn->isInstantiationDependent(),
1112 fn->containsUnexpandedParameterPack()),
1113 NumArgs(args.size()) {
1114
1115 SubExprs = new (C) Stmt*[args.size()+PREARGS_START];
1116 SubExprs[FN] = fn;
1117 for (unsigned i = 0; i != args.size(); ++i) {
1118 if (args[i]->isTypeDependent())
1119 ExprBits.TypeDependent = true;
1120 if (args[i]->isValueDependent())
1121 ExprBits.ValueDependent = true;
1122 if (args[i]->isInstantiationDependent())
1123 ExprBits.InstantiationDependent = true;
1124 if (args[i]->containsUnexpandedParameterPack())
1125 ExprBits.ContainsUnexpandedParameterPack = true;
1126
1127 SubExprs[i+PREARGS_START] = args[i];
1128 }
1129
1130 CallExprBits.NumPreArgs = 0;
1131 RParenLoc = rparenloc;
1132 }
1133
CallExpr(const ASTContext & C,StmtClass SC,EmptyShell Empty)1134 CallExpr::CallExpr(const ASTContext &C, StmtClass SC, EmptyShell Empty)
1135 : Expr(SC, Empty), SubExprs(nullptr), NumArgs(0) {
1136 // FIXME: Why do we allocate this?
1137 SubExprs = new (C) Stmt*[PREARGS_START];
1138 CallExprBits.NumPreArgs = 0;
1139 }
1140
CallExpr(const ASTContext & C,StmtClass SC,unsigned NumPreArgs,EmptyShell Empty)1141 CallExpr::CallExpr(const ASTContext &C, StmtClass SC, unsigned NumPreArgs,
1142 EmptyShell Empty)
1143 : Expr(SC, Empty), SubExprs(nullptr), NumArgs(0) {
1144 // FIXME: Why do we allocate this?
1145 SubExprs = new (C) Stmt*[PREARGS_START+NumPreArgs];
1146 CallExprBits.NumPreArgs = NumPreArgs;
1147 }
1148
getCalleeDecl()1149 Decl *CallExpr::getCalleeDecl() {
1150 Expr *CEE = getCallee()->IgnoreParenImpCasts();
1151
1152 while (SubstNonTypeTemplateParmExpr *NTTP
1153 = dyn_cast<SubstNonTypeTemplateParmExpr>(CEE)) {
1154 CEE = NTTP->getReplacement()->IgnoreParenCasts();
1155 }
1156
1157 // If we're calling a dereference, look at the pointer instead.
1158 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CEE)) {
1159 if (BO->isPtrMemOp())
1160 CEE = BO->getRHS()->IgnoreParenCasts();
1161 } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(CEE)) {
1162 if (UO->getOpcode() == UO_Deref)
1163 CEE = UO->getSubExpr()->IgnoreParenCasts();
1164 }
1165 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE))
1166 return DRE->getDecl();
1167 if (MemberExpr *ME = dyn_cast<MemberExpr>(CEE))
1168 return ME->getMemberDecl();
1169
1170 return nullptr;
1171 }
1172
getDirectCallee()1173 FunctionDecl *CallExpr::getDirectCallee() {
1174 return dyn_cast_or_null<FunctionDecl>(getCalleeDecl());
1175 }
1176
1177 /// setNumArgs - This changes the number of arguments present in this call.
1178 /// Any orphaned expressions are deleted by this, and any new operands are set
1179 /// to null.
setNumArgs(const ASTContext & C,unsigned NumArgs)1180 void CallExpr::setNumArgs(const ASTContext& C, unsigned NumArgs) {
1181 // No change, just return.
1182 if (NumArgs == getNumArgs()) return;
1183
1184 // If shrinking # arguments, just delete the extras and forgot them.
1185 if (NumArgs < getNumArgs()) {
1186 this->NumArgs = NumArgs;
1187 return;
1188 }
1189
1190 // Otherwise, we are growing the # arguments. New an bigger argument array.
1191 unsigned NumPreArgs = getNumPreArgs();
1192 Stmt **NewSubExprs = new (C) Stmt*[NumArgs+PREARGS_START+NumPreArgs];
1193 // Copy over args.
1194 for (unsigned i = 0; i != getNumArgs()+PREARGS_START+NumPreArgs; ++i)
1195 NewSubExprs[i] = SubExprs[i];
1196 // Null out new args.
1197 for (unsigned i = getNumArgs()+PREARGS_START+NumPreArgs;
1198 i != NumArgs+PREARGS_START+NumPreArgs; ++i)
1199 NewSubExprs[i] = nullptr;
1200
1201 if (SubExprs) C.Deallocate(SubExprs);
1202 SubExprs = NewSubExprs;
1203 this->NumArgs = NumArgs;
1204 }
1205
1206 /// getBuiltinCallee - If this is a call to a builtin, return the builtin ID. If
1207 /// not, return 0.
getBuiltinCallee() const1208 unsigned CallExpr::getBuiltinCallee() const {
1209 // All simple function calls (e.g. func()) are implicitly cast to pointer to
1210 // function. As a result, we try and obtain the DeclRefExpr from the
1211 // ImplicitCastExpr.
1212 const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(getCallee());
1213 if (!ICE) // FIXME: deal with more complex calls (e.g. (func)(), (*func)()).
1214 return 0;
1215
1216 const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr());
1217 if (!DRE)
1218 return 0;
1219
1220 const FunctionDecl *FDecl = dyn_cast<FunctionDecl>(DRE->getDecl());
1221 if (!FDecl)
1222 return 0;
1223
1224 if (!FDecl->getIdentifier())
1225 return 0;
1226
1227 return FDecl->getBuiltinID();
1228 }
1229
isUnevaluatedBuiltinCall(ASTContext & Ctx) const1230 bool CallExpr::isUnevaluatedBuiltinCall(ASTContext &Ctx) const {
1231 if (unsigned BI = getBuiltinCallee())
1232 return Ctx.BuiltinInfo.isUnevaluated(BI);
1233 return false;
1234 }
1235
getCallReturnType() const1236 QualType CallExpr::getCallReturnType() const {
1237 QualType CalleeType = getCallee()->getType();
1238 if (const PointerType *FnTypePtr = CalleeType->getAs<PointerType>())
1239 CalleeType = FnTypePtr->getPointeeType();
1240 else if (const BlockPointerType *BPT = CalleeType->getAs<BlockPointerType>())
1241 CalleeType = BPT->getPointeeType();
1242 else if (CalleeType->isSpecificPlaceholderType(BuiltinType::BoundMember))
1243 // This should never be overloaded and so should never return null.
1244 CalleeType = Expr::findBoundMemberType(getCallee());
1245
1246 const FunctionType *FnType = CalleeType->castAs<FunctionType>();
1247 return FnType->getReturnType();
1248 }
1249
getLocStart() const1250 SourceLocation CallExpr::getLocStart() const {
1251 if (isa<CXXOperatorCallExpr>(this))
1252 return cast<CXXOperatorCallExpr>(this)->getLocStart();
1253
1254 SourceLocation begin = getCallee()->getLocStart();
1255 if (begin.isInvalid() && getNumArgs() > 0)
1256 begin = getArg(0)->getLocStart();
1257 return begin;
1258 }
getLocEnd() const1259 SourceLocation CallExpr::getLocEnd() const {
1260 if (isa<CXXOperatorCallExpr>(this))
1261 return cast<CXXOperatorCallExpr>(this)->getLocEnd();
1262
1263 SourceLocation end = getRParenLoc();
1264 if (end.isInvalid() && getNumArgs() > 0)
1265 end = getArg(getNumArgs() - 1)->getLocEnd();
1266 return end;
1267 }
1268
Create(const ASTContext & C,QualType type,SourceLocation OperatorLoc,TypeSourceInfo * tsi,ArrayRef<OffsetOfNode> comps,ArrayRef<Expr * > exprs,SourceLocation RParenLoc)1269 OffsetOfExpr *OffsetOfExpr::Create(const ASTContext &C, QualType type,
1270 SourceLocation OperatorLoc,
1271 TypeSourceInfo *tsi,
1272 ArrayRef<OffsetOfNode> comps,
1273 ArrayRef<Expr*> exprs,
1274 SourceLocation RParenLoc) {
1275 void *Mem = C.Allocate(sizeof(OffsetOfExpr) +
1276 sizeof(OffsetOfNode) * comps.size() +
1277 sizeof(Expr*) * exprs.size());
1278
1279 return new (Mem) OffsetOfExpr(C, type, OperatorLoc, tsi, comps, exprs,
1280 RParenLoc);
1281 }
1282
CreateEmpty(const ASTContext & C,unsigned numComps,unsigned numExprs)1283 OffsetOfExpr *OffsetOfExpr::CreateEmpty(const ASTContext &C,
1284 unsigned numComps, unsigned numExprs) {
1285 void *Mem = C.Allocate(sizeof(OffsetOfExpr) +
1286 sizeof(OffsetOfNode) * numComps +
1287 sizeof(Expr*) * numExprs);
1288 return new (Mem) OffsetOfExpr(numComps, numExprs);
1289 }
1290
OffsetOfExpr(const ASTContext & C,QualType type,SourceLocation OperatorLoc,TypeSourceInfo * tsi,ArrayRef<OffsetOfNode> comps,ArrayRef<Expr * > exprs,SourceLocation RParenLoc)1291 OffsetOfExpr::OffsetOfExpr(const ASTContext &C, QualType type,
1292 SourceLocation OperatorLoc, TypeSourceInfo *tsi,
1293 ArrayRef<OffsetOfNode> comps, ArrayRef<Expr*> exprs,
1294 SourceLocation RParenLoc)
1295 : Expr(OffsetOfExprClass, type, VK_RValue, OK_Ordinary,
1296 /*TypeDependent=*/false,
1297 /*ValueDependent=*/tsi->getType()->isDependentType(),
1298 tsi->getType()->isInstantiationDependentType(),
1299 tsi->getType()->containsUnexpandedParameterPack()),
1300 OperatorLoc(OperatorLoc), RParenLoc(RParenLoc), TSInfo(tsi),
1301 NumComps(comps.size()), NumExprs(exprs.size())
1302 {
1303 for (unsigned i = 0; i != comps.size(); ++i) {
1304 setComponent(i, comps[i]);
1305 }
1306
1307 for (unsigned i = 0; i != exprs.size(); ++i) {
1308 if (exprs[i]->isTypeDependent() || exprs[i]->isValueDependent())
1309 ExprBits.ValueDependent = true;
1310 if (exprs[i]->containsUnexpandedParameterPack())
1311 ExprBits.ContainsUnexpandedParameterPack = true;
1312
1313 setIndexExpr(i, exprs[i]);
1314 }
1315 }
1316
getFieldName() const1317 IdentifierInfo *OffsetOfExpr::OffsetOfNode::getFieldName() const {
1318 assert(getKind() == Field || getKind() == Identifier);
1319 if (getKind() == Field)
1320 return getField()->getIdentifier();
1321
1322 return reinterpret_cast<IdentifierInfo *> (Data & ~(uintptr_t)Mask);
1323 }
1324
Create(const ASTContext & C,Expr * base,bool isarrow,NestedNameSpecifierLoc QualifierLoc,SourceLocation TemplateKWLoc,ValueDecl * memberdecl,DeclAccessPair founddecl,DeclarationNameInfo nameinfo,const TemplateArgumentListInfo * targs,QualType ty,ExprValueKind vk,ExprObjectKind ok)1325 MemberExpr *MemberExpr::Create(const ASTContext &C, Expr *base, bool isarrow,
1326 NestedNameSpecifierLoc QualifierLoc,
1327 SourceLocation TemplateKWLoc,
1328 ValueDecl *memberdecl,
1329 DeclAccessPair founddecl,
1330 DeclarationNameInfo nameinfo,
1331 const TemplateArgumentListInfo *targs,
1332 QualType ty,
1333 ExprValueKind vk,
1334 ExprObjectKind ok) {
1335 std::size_t Size = sizeof(MemberExpr);
1336
1337 bool hasQualOrFound = (QualifierLoc ||
1338 founddecl.getDecl() != memberdecl ||
1339 founddecl.getAccess() != memberdecl->getAccess());
1340 if (hasQualOrFound)
1341 Size += sizeof(MemberNameQualifier);
1342
1343 if (targs)
1344 Size += ASTTemplateKWAndArgsInfo::sizeFor(targs->size());
1345 else if (TemplateKWLoc.isValid())
1346 Size += ASTTemplateKWAndArgsInfo::sizeFor(0);
1347
1348 void *Mem = C.Allocate(Size, llvm::alignOf<MemberExpr>());
1349 MemberExpr *E = new (Mem) MemberExpr(base, isarrow, memberdecl, nameinfo,
1350 ty, vk, ok);
1351
1352 if (hasQualOrFound) {
1353 // FIXME: Wrong. We should be looking at the member declaration we found.
1354 if (QualifierLoc && QualifierLoc.getNestedNameSpecifier()->isDependent()) {
1355 E->setValueDependent(true);
1356 E->setTypeDependent(true);
1357 E->setInstantiationDependent(true);
1358 }
1359 else if (QualifierLoc &&
1360 QualifierLoc.getNestedNameSpecifier()->isInstantiationDependent())
1361 E->setInstantiationDependent(true);
1362
1363 E->HasQualifierOrFoundDecl = true;
1364
1365 MemberNameQualifier *NQ = E->getMemberQualifier();
1366 NQ->QualifierLoc = QualifierLoc;
1367 NQ->FoundDecl = founddecl;
1368 }
1369
1370 E->HasTemplateKWAndArgsInfo = (targs || TemplateKWLoc.isValid());
1371
1372 if (targs) {
1373 bool Dependent = false;
1374 bool InstantiationDependent = false;
1375 bool ContainsUnexpandedParameterPack = false;
1376 E->getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc, *targs,
1377 Dependent,
1378 InstantiationDependent,
1379 ContainsUnexpandedParameterPack);
1380 if (InstantiationDependent)
1381 E->setInstantiationDependent(true);
1382 } else if (TemplateKWLoc.isValid()) {
1383 E->getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc);
1384 }
1385
1386 return E;
1387 }
1388
getLocStart() const1389 SourceLocation MemberExpr::getLocStart() const {
1390 if (isImplicitAccess()) {
1391 if (hasQualifier())
1392 return getQualifierLoc().getBeginLoc();
1393 return MemberLoc;
1394 }
1395
1396 // FIXME: We don't want this to happen. Rather, we should be able to
1397 // detect all kinds of implicit accesses more cleanly.
1398 SourceLocation BaseStartLoc = getBase()->getLocStart();
1399 if (BaseStartLoc.isValid())
1400 return BaseStartLoc;
1401 return MemberLoc;
1402 }
getLocEnd() const1403 SourceLocation MemberExpr::getLocEnd() const {
1404 SourceLocation EndLoc = getMemberNameInfo().getEndLoc();
1405 if (hasExplicitTemplateArgs())
1406 EndLoc = getRAngleLoc();
1407 else if (EndLoc.isInvalid())
1408 EndLoc = getBase()->getLocEnd();
1409 return EndLoc;
1410 }
1411
CastConsistency() const1412 bool CastExpr::CastConsistency() const {
1413 switch (getCastKind()) {
1414 case CK_DerivedToBase:
1415 case CK_UncheckedDerivedToBase:
1416 case CK_DerivedToBaseMemberPointer:
1417 case CK_BaseToDerived:
1418 case CK_BaseToDerivedMemberPointer:
1419 assert(!path_empty() && "Cast kind should have a base path!");
1420 break;
1421
1422 case CK_CPointerToObjCPointerCast:
1423 assert(getType()->isObjCObjectPointerType());
1424 assert(getSubExpr()->getType()->isPointerType());
1425 goto CheckNoBasePath;
1426
1427 case CK_BlockPointerToObjCPointerCast:
1428 assert(getType()->isObjCObjectPointerType());
1429 assert(getSubExpr()->getType()->isBlockPointerType());
1430 goto CheckNoBasePath;
1431
1432 case CK_ReinterpretMemberPointer:
1433 assert(getType()->isMemberPointerType());
1434 assert(getSubExpr()->getType()->isMemberPointerType());
1435 goto CheckNoBasePath;
1436
1437 case CK_BitCast:
1438 // Arbitrary casts to C pointer types count as bitcasts.
1439 // Otherwise, we should only have block and ObjC pointer casts
1440 // here if they stay within the type kind.
1441 if (!getType()->isPointerType()) {
1442 assert(getType()->isObjCObjectPointerType() ==
1443 getSubExpr()->getType()->isObjCObjectPointerType());
1444 assert(getType()->isBlockPointerType() ==
1445 getSubExpr()->getType()->isBlockPointerType());
1446 }
1447 goto CheckNoBasePath;
1448
1449 case CK_AnyPointerToBlockPointerCast:
1450 assert(getType()->isBlockPointerType());
1451 assert(getSubExpr()->getType()->isAnyPointerType() &&
1452 !getSubExpr()->getType()->isBlockPointerType());
1453 goto CheckNoBasePath;
1454
1455 case CK_CopyAndAutoreleaseBlockObject:
1456 assert(getType()->isBlockPointerType());
1457 assert(getSubExpr()->getType()->isBlockPointerType());
1458 goto CheckNoBasePath;
1459
1460 case CK_FunctionToPointerDecay:
1461 assert(getType()->isPointerType());
1462 assert(getSubExpr()->getType()->isFunctionType());
1463 goto CheckNoBasePath;
1464
1465 case CK_AddressSpaceConversion:
1466 assert(getType()->isPointerType());
1467 assert(getSubExpr()->getType()->isPointerType());
1468 assert(getType()->getPointeeType().getAddressSpace() !=
1469 getSubExpr()->getType()->getPointeeType().getAddressSpace());
1470 // These should not have an inheritance path.
1471 case CK_Dynamic:
1472 case CK_ToUnion:
1473 case CK_ArrayToPointerDecay:
1474 case CK_NullToMemberPointer:
1475 case CK_NullToPointer:
1476 case CK_ConstructorConversion:
1477 case CK_IntegralToPointer:
1478 case CK_PointerToIntegral:
1479 case CK_ToVoid:
1480 case CK_VectorSplat:
1481 case CK_IntegralCast:
1482 case CK_IntegralToFloating:
1483 case CK_FloatingToIntegral:
1484 case CK_FloatingCast:
1485 case CK_ObjCObjectLValueCast:
1486 case CK_FloatingRealToComplex:
1487 case CK_FloatingComplexToReal:
1488 case CK_FloatingComplexCast:
1489 case CK_FloatingComplexToIntegralComplex:
1490 case CK_IntegralRealToComplex:
1491 case CK_IntegralComplexToReal:
1492 case CK_IntegralComplexCast:
1493 case CK_IntegralComplexToFloatingComplex:
1494 case CK_ARCProduceObject:
1495 case CK_ARCConsumeObject:
1496 case CK_ARCReclaimReturnedObject:
1497 case CK_ARCExtendBlockObject:
1498 case CK_ZeroToOCLEvent:
1499 assert(!getType()->isBooleanType() && "unheralded conversion to bool");
1500 goto CheckNoBasePath;
1501
1502 case CK_Dependent:
1503 case CK_LValueToRValue:
1504 case CK_NoOp:
1505 case CK_AtomicToNonAtomic:
1506 case CK_NonAtomicToAtomic:
1507 case CK_PointerToBoolean:
1508 case CK_IntegralToBoolean:
1509 case CK_FloatingToBoolean:
1510 case CK_MemberPointerToBoolean:
1511 case CK_FloatingComplexToBoolean:
1512 case CK_IntegralComplexToBoolean:
1513 case CK_LValueBitCast: // -> bool&
1514 case CK_UserDefinedConversion: // operator bool()
1515 case CK_BuiltinFnToFnPtr:
1516 CheckNoBasePath:
1517 assert(path_empty() && "Cast kind should not have a base path!");
1518 break;
1519 }
1520 return true;
1521 }
1522
getCastKindName() const1523 const char *CastExpr::getCastKindName() const {
1524 switch (getCastKind()) {
1525 case CK_Dependent:
1526 return "Dependent";
1527 case CK_BitCast:
1528 return "BitCast";
1529 case CK_LValueBitCast:
1530 return "LValueBitCast";
1531 case CK_LValueToRValue:
1532 return "LValueToRValue";
1533 case CK_NoOp:
1534 return "NoOp";
1535 case CK_BaseToDerived:
1536 return "BaseToDerived";
1537 case CK_DerivedToBase:
1538 return "DerivedToBase";
1539 case CK_UncheckedDerivedToBase:
1540 return "UncheckedDerivedToBase";
1541 case CK_Dynamic:
1542 return "Dynamic";
1543 case CK_ToUnion:
1544 return "ToUnion";
1545 case CK_ArrayToPointerDecay:
1546 return "ArrayToPointerDecay";
1547 case CK_FunctionToPointerDecay:
1548 return "FunctionToPointerDecay";
1549 case CK_NullToMemberPointer:
1550 return "NullToMemberPointer";
1551 case CK_NullToPointer:
1552 return "NullToPointer";
1553 case CK_BaseToDerivedMemberPointer:
1554 return "BaseToDerivedMemberPointer";
1555 case CK_DerivedToBaseMemberPointer:
1556 return "DerivedToBaseMemberPointer";
1557 case CK_ReinterpretMemberPointer:
1558 return "ReinterpretMemberPointer";
1559 case CK_UserDefinedConversion:
1560 return "UserDefinedConversion";
1561 case CK_ConstructorConversion:
1562 return "ConstructorConversion";
1563 case CK_IntegralToPointer:
1564 return "IntegralToPointer";
1565 case CK_PointerToIntegral:
1566 return "PointerToIntegral";
1567 case CK_PointerToBoolean:
1568 return "PointerToBoolean";
1569 case CK_ToVoid:
1570 return "ToVoid";
1571 case CK_VectorSplat:
1572 return "VectorSplat";
1573 case CK_IntegralCast:
1574 return "IntegralCast";
1575 case CK_IntegralToBoolean:
1576 return "IntegralToBoolean";
1577 case CK_IntegralToFloating:
1578 return "IntegralToFloating";
1579 case CK_FloatingToIntegral:
1580 return "FloatingToIntegral";
1581 case CK_FloatingCast:
1582 return "FloatingCast";
1583 case CK_FloatingToBoolean:
1584 return "FloatingToBoolean";
1585 case CK_MemberPointerToBoolean:
1586 return "MemberPointerToBoolean";
1587 case CK_CPointerToObjCPointerCast:
1588 return "CPointerToObjCPointerCast";
1589 case CK_BlockPointerToObjCPointerCast:
1590 return "BlockPointerToObjCPointerCast";
1591 case CK_AnyPointerToBlockPointerCast:
1592 return "AnyPointerToBlockPointerCast";
1593 case CK_ObjCObjectLValueCast:
1594 return "ObjCObjectLValueCast";
1595 case CK_FloatingRealToComplex:
1596 return "FloatingRealToComplex";
1597 case CK_FloatingComplexToReal:
1598 return "FloatingComplexToReal";
1599 case CK_FloatingComplexToBoolean:
1600 return "FloatingComplexToBoolean";
1601 case CK_FloatingComplexCast:
1602 return "FloatingComplexCast";
1603 case CK_FloatingComplexToIntegralComplex:
1604 return "FloatingComplexToIntegralComplex";
1605 case CK_IntegralRealToComplex:
1606 return "IntegralRealToComplex";
1607 case CK_IntegralComplexToReal:
1608 return "IntegralComplexToReal";
1609 case CK_IntegralComplexToBoolean:
1610 return "IntegralComplexToBoolean";
1611 case CK_IntegralComplexCast:
1612 return "IntegralComplexCast";
1613 case CK_IntegralComplexToFloatingComplex:
1614 return "IntegralComplexToFloatingComplex";
1615 case CK_ARCConsumeObject:
1616 return "ARCConsumeObject";
1617 case CK_ARCProduceObject:
1618 return "ARCProduceObject";
1619 case CK_ARCReclaimReturnedObject:
1620 return "ARCReclaimReturnedObject";
1621 case CK_ARCExtendBlockObject:
1622 return "ARCExtendBlockObject";
1623 case CK_AtomicToNonAtomic:
1624 return "AtomicToNonAtomic";
1625 case CK_NonAtomicToAtomic:
1626 return "NonAtomicToAtomic";
1627 case CK_CopyAndAutoreleaseBlockObject:
1628 return "CopyAndAutoreleaseBlockObject";
1629 case CK_BuiltinFnToFnPtr:
1630 return "BuiltinFnToFnPtr";
1631 case CK_ZeroToOCLEvent:
1632 return "ZeroToOCLEvent";
1633 case CK_AddressSpaceConversion:
1634 return "AddressSpaceConversion";
1635 }
1636
1637 llvm_unreachable("Unhandled cast kind!");
1638 }
1639
getSubExprAsWritten()1640 Expr *CastExpr::getSubExprAsWritten() {
1641 Expr *SubExpr = nullptr;
1642 CastExpr *E = this;
1643 do {
1644 SubExpr = E->getSubExpr();
1645
1646 // Skip through reference binding to temporary.
1647 if (MaterializeTemporaryExpr *Materialize
1648 = dyn_cast<MaterializeTemporaryExpr>(SubExpr))
1649 SubExpr = Materialize->GetTemporaryExpr();
1650
1651 // Skip any temporary bindings; they're implicit.
1652 if (CXXBindTemporaryExpr *Binder = dyn_cast<CXXBindTemporaryExpr>(SubExpr))
1653 SubExpr = Binder->getSubExpr();
1654
1655 // Conversions by constructor and conversion functions have a
1656 // subexpression describing the call; strip it off.
1657 if (E->getCastKind() == CK_ConstructorConversion)
1658 SubExpr = cast<CXXConstructExpr>(SubExpr)->getArg(0);
1659 else if (E->getCastKind() == CK_UserDefinedConversion)
1660 SubExpr = cast<CXXMemberCallExpr>(SubExpr)->getImplicitObjectArgument();
1661
1662 // If the subexpression we're left with is an implicit cast, look
1663 // through that, too.
1664 } while ((E = dyn_cast<ImplicitCastExpr>(SubExpr)));
1665
1666 return SubExpr;
1667 }
1668
path_buffer()1669 CXXBaseSpecifier **CastExpr::path_buffer() {
1670 switch (getStmtClass()) {
1671 #define ABSTRACT_STMT(x)
1672 #define CASTEXPR(Type, Base) \
1673 case Stmt::Type##Class: \
1674 return reinterpret_cast<CXXBaseSpecifier**>(static_cast<Type*>(this)+1);
1675 #define STMT(Type, Base)
1676 #include "clang/AST/StmtNodes.inc"
1677 default:
1678 llvm_unreachable("non-cast expressions not possible here");
1679 }
1680 }
1681
setCastPath(const CXXCastPath & Path)1682 void CastExpr::setCastPath(const CXXCastPath &Path) {
1683 assert(Path.size() == path_size());
1684 memcpy(path_buffer(), Path.data(), Path.size() * sizeof(CXXBaseSpecifier*));
1685 }
1686
Create(const ASTContext & C,QualType T,CastKind Kind,Expr * Operand,const CXXCastPath * BasePath,ExprValueKind VK)1687 ImplicitCastExpr *ImplicitCastExpr::Create(const ASTContext &C, QualType T,
1688 CastKind Kind, Expr *Operand,
1689 const CXXCastPath *BasePath,
1690 ExprValueKind VK) {
1691 unsigned PathSize = (BasePath ? BasePath->size() : 0);
1692 void *Buffer =
1693 C.Allocate(sizeof(ImplicitCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
1694 ImplicitCastExpr *E =
1695 new (Buffer) ImplicitCastExpr(T, Kind, Operand, PathSize, VK);
1696 if (PathSize) E->setCastPath(*BasePath);
1697 return E;
1698 }
1699
CreateEmpty(const ASTContext & C,unsigned PathSize)1700 ImplicitCastExpr *ImplicitCastExpr::CreateEmpty(const ASTContext &C,
1701 unsigned PathSize) {
1702 void *Buffer =
1703 C.Allocate(sizeof(ImplicitCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
1704 return new (Buffer) ImplicitCastExpr(EmptyShell(), PathSize);
1705 }
1706
1707
Create(const ASTContext & C,QualType T,ExprValueKind VK,CastKind K,Expr * Op,const CXXCastPath * BasePath,TypeSourceInfo * WrittenTy,SourceLocation L,SourceLocation R)1708 CStyleCastExpr *CStyleCastExpr::Create(const ASTContext &C, QualType T,
1709 ExprValueKind VK, CastKind K, Expr *Op,
1710 const CXXCastPath *BasePath,
1711 TypeSourceInfo *WrittenTy,
1712 SourceLocation L, SourceLocation R) {
1713 unsigned PathSize = (BasePath ? BasePath->size() : 0);
1714 void *Buffer =
1715 C.Allocate(sizeof(CStyleCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
1716 CStyleCastExpr *E =
1717 new (Buffer) CStyleCastExpr(T, VK, K, Op, PathSize, WrittenTy, L, R);
1718 if (PathSize) E->setCastPath(*BasePath);
1719 return E;
1720 }
1721
CreateEmpty(const ASTContext & C,unsigned PathSize)1722 CStyleCastExpr *CStyleCastExpr::CreateEmpty(const ASTContext &C,
1723 unsigned PathSize) {
1724 void *Buffer =
1725 C.Allocate(sizeof(CStyleCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
1726 return new (Buffer) CStyleCastExpr(EmptyShell(), PathSize);
1727 }
1728
1729 /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
1730 /// corresponds to, e.g. "<<=".
getOpcodeStr(Opcode Op)1731 StringRef BinaryOperator::getOpcodeStr(Opcode Op) {
1732 switch (Op) {
1733 case BO_PtrMemD: return ".*";
1734 case BO_PtrMemI: return "->*";
1735 case BO_Mul: return "*";
1736 case BO_Div: return "/";
1737 case BO_Rem: return "%";
1738 case BO_Add: return "+";
1739 case BO_Sub: return "-";
1740 case BO_Shl: return "<<";
1741 case BO_Shr: return ">>";
1742 case BO_LT: return "<";
1743 case BO_GT: return ">";
1744 case BO_LE: return "<=";
1745 case BO_GE: return ">=";
1746 case BO_EQ: return "==";
1747 case BO_NE: return "!=";
1748 case BO_And: return "&";
1749 case BO_Xor: return "^";
1750 case BO_Or: return "|";
1751 case BO_LAnd: return "&&";
1752 case BO_LOr: return "||";
1753 case BO_Assign: return "=";
1754 case BO_MulAssign: return "*=";
1755 case BO_DivAssign: return "/=";
1756 case BO_RemAssign: return "%=";
1757 case BO_AddAssign: return "+=";
1758 case BO_SubAssign: return "-=";
1759 case BO_ShlAssign: return "<<=";
1760 case BO_ShrAssign: return ">>=";
1761 case BO_AndAssign: return "&=";
1762 case BO_XorAssign: return "^=";
1763 case BO_OrAssign: return "|=";
1764 case BO_Comma: return ",";
1765 }
1766
1767 llvm_unreachable("Invalid OpCode!");
1768 }
1769
1770 BinaryOperatorKind
getOverloadedOpcode(OverloadedOperatorKind OO)1771 BinaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO) {
1772 switch (OO) {
1773 default: llvm_unreachable("Not an overloadable binary operator");
1774 case OO_Plus: return BO_Add;
1775 case OO_Minus: return BO_Sub;
1776 case OO_Star: return BO_Mul;
1777 case OO_Slash: return BO_Div;
1778 case OO_Percent: return BO_Rem;
1779 case OO_Caret: return BO_Xor;
1780 case OO_Amp: return BO_And;
1781 case OO_Pipe: return BO_Or;
1782 case OO_Equal: return BO_Assign;
1783 case OO_Less: return BO_LT;
1784 case OO_Greater: return BO_GT;
1785 case OO_PlusEqual: return BO_AddAssign;
1786 case OO_MinusEqual: return BO_SubAssign;
1787 case OO_StarEqual: return BO_MulAssign;
1788 case OO_SlashEqual: return BO_DivAssign;
1789 case OO_PercentEqual: return BO_RemAssign;
1790 case OO_CaretEqual: return BO_XorAssign;
1791 case OO_AmpEqual: return BO_AndAssign;
1792 case OO_PipeEqual: return BO_OrAssign;
1793 case OO_LessLess: return BO_Shl;
1794 case OO_GreaterGreater: return BO_Shr;
1795 case OO_LessLessEqual: return BO_ShlAssign;
1796 case OO_GreaterGreaterEqual: return BO_ShrAssign;
1797 case OO_EqualEqual: return BO_EQ;
1798 case OO_ExclaimEqual: return BO_NE;
1799 case OO_LessEqual: return BO_LE;
1800 case OO_GreaterEqual: return BO_GE;
1801 case OO_AmpAmp: return BO_LAnd;
1802 case OO_PipePipe: return BO_LOr;
1803 case OO_Comma: return BO_Comma;
1804 case OO_ArrowStar: return BO_PtrMemI;
1805 }
1806 }
1807
getOverloadedOperator(Opcode Opc)1808 OverloadedOperatorKind BinaryOperator::getOverloadedOperator(Opcode Opc) {
1809 static const OverloadedOperatorKind OverOps[] = {
1810 /* .* Cannot be overloaded */OO_None, OO_ArrowStar,
1811 OO_Star, OO_Slash, OO_Percent,
1812 OO_Plus, OO_Minus,
1813 OO_LessLess, OO_GreaterGreater,
1814 OO_Less, OO_Greater, OO_LessEqual, OO_GreaterEqual,
1815 OO_EqualEqual, OO_ExclaimEqual,
1816 OO_Amp,
1817 OO_Caret,
1818 OO_Pipe,
1819 OO_AmpAmp,
1820 OO_PipePipe,
1821 OO_Equal, OO_StarEqual,
1822 OO_SlashEqual, OO_PercentEqual,
1823 OO_PlusEqual, OO_MinusEqual,
1824 OO_LessLessEqual, OO_GreaterGreaterEqual,
1825 OO_AmpEqual, OO_CaretEqual,
1826 OO_PipeEqual,
1827 OO_Comma
1828 };
1829 return OverOps[Opc];
1830 }
1831
InitListExpr(const ASTContext & C,SourceLocation lbraceloc,ArrayRef<Expr * > initExprs,SourceLocation rbraceloc)1832 InitListExpr::InitListExpr(const ASTContext &C, SourceLocation lbraceloc,
1833 ArrayRef<Expr*> initExprs, SourceLocation rbraceloc)
1834 : Expr(InitListExprClass, QualType(), VK_RValue, OK_Ordinary, false, false,
1835 false, false),
1836 InitExprs(C, initExprs.size()),
1837 LBraceLoc(lbraceloc), RBraceLoc(rbraceloc), AltForm(nullptr, true)
1838 {
1839 sawArrayRangeDesignator(false);
1840 for (unsigned I = 0; I != initExprs.size(); ++I) {
1841 if (initExprs[I]->isTypeDependent())
1842 ExprBits.TypeDependent = true;
1843 if (initExprs[I]->isValueDependent())
1844 ExprBits.ValueDependent = true;
1845 if (initExprs[I]->isInstantiationDependent())
1846 ExprBits.InstantiationDependent = true;
1847 if (initExprs[I]->containsUnexpandedParameterPack())
1848 ExprBits.ContainsUnexpandedParameterPack = true;
1849 }
1850
1851 InitExprs.insert(C, InitExprs.end(), initExprs.begin(), initExprs.end());
1852 }
1853
reserveInits(const ASTContext & C,unsigned NumInits)1854 void InitListExpr::reserveInits(const ASTContext &C, unsigned NumInits) {
1855 if (NumInits > InitExprs.size())
1856 InitExprs.reserve(C, NumInits);
1857 }
1858
resizeInits(const ASTContext & C,unsigned NumInits)1859 void InitListExpr::resizeInits(const ASTContext &C, unsigned NumInits) {
1860 InitExprs.resize(C, NumInits, nullptr);
1861 }
1862
updateInit(const ASTContext & C,unsigned Init,Expr * expr)1863 Expr *InitListExpr::updateInit(const ASTContext &C, unsigned Init, Expr *expr) {
1864 if (Init >= InitExprs.size()) {
1865 InitExprs.insert(C, InitExprs.end(), Init - InitExprs.size() + 1, nullptr);
1866 setInit(Init, expr);
1867 return nullptr;
1868 }
1869
1870 Expr *Result = cast_or_null<Expr>(InitExprs[Init]);
1871 setInit(Init, expr);
1872 return Result;
1873 }
1874
setArrayFiller(Expr * filler)1875 void InitListExpr::setArrayFiller(Expr *filler) {
1876 assert(!hasArrayFiller() && "Filler already set!");
1877 ArrayFillerOrUnionFieldInit = filler;
1878 // Fill out any "holes" in the array due to designated initializers.
1879 Expr **inits = getInits();
1880 for (unsigned i = 0, e = getNumInits(); i != e; ++i)
1881 if (inits[i] == nullptr)
1882 inits[i] = filler;
1883 }
1884
isStringLiteralInit() const1885 bool InitListExpr::isStringLiteralInit() const {
1886 if (getNumInits() != 1)
1887 return false;
1888 const ArrayType *AT = getType()->getAsArrayTypeUnsafe();
1889 if (!AT || !AT->getElementType()->isIntegerType())
1890 return false;
1891 // It is possible for getInit() to return null.
1892 const Expr *Init = getInit(0);
1893 if (!Init)
1894 return false;
1895 Init = Init->IgnoreParens();
1896 return isa<StringLiteral>(Init) || isa<ObjCEncodeExpr>(Init);
1897 }
1898
getLocStart() const1899 SourceLocation InitListExpr::getLocStart() const {
1900 if (InitListExpr *SyntacticForm = getSyntacticForm())
1901 return SyntacticForm->getLocStart();
1902 SourceLocation Beg = LBraceLoc;
1903 if (Beg.isInvalid()) {
1904 // Find the first non-null initializer.
1905 for (InitExprsTy::const_iterator I = InitExprs.begin(),
1906 E = InitExprs.end();
1907 I != E; ++I) {
1908 if (Stmt *S = *I) {
1909 Beg = S->getLocStart();
1910 break;
1911 }
1912 }
1913 }
1914 return Beg;
1915 }
1916
getLocEnd() const1917 SourceLocation InitListExpr::getLocEnd() const {
1918 if (InitListExpr *SyntacticForm = getSyntacticForm())
1919 return SyntacticForm->getLocEnd();
1920 SourceLocation End = RBraceLoc;
1921 if (End.isInvalid()) {
1922 // Find the first non-null initializer from the end.
1923 for (InitExprsTy::const_reverse_iterator I = InitExprs.rbegin(),
1924 E = InitExprs.rend();
1925 I != E; ++I) {
1926 if (Stmt *S = *I) {
1927 End = S->getLocEnd();
1928 break;
1929 }
1930 }
1931 }
1932 return End;
1933 }
1934
1935 /// getFunctionType - Return the underlying function type for this block.
1936 ///
getFunctionType() const1937 const FunctionProtoType *BlockExpr::getFunctionType() const {
1938 // The block pointer is never sugared, but the function type might be.
1939 return cast<BlockPointerType>(getType())
1940 ->getPointeeType()->castAs<FunctionProtoType>();
1941 }
1942
getCaretLocation() const1943 SourceLocation BlockExpr::getCaretLocation() const {
1944 return TheBlock->getCaretLocation();
1945 }
getBody() const1946 const Stmt *BlockExpr::getBody() const {
1947 return TheBlock->getBody();
1948 }
getBody()1949 Stmt *BlockExpr::getBody() {
1950 return TheBlock->getBody();
1951 }
1952
1953
1954 //===----------------------------------------------------------------------===//
1955 // Generic Expression Routines
1956 //===----------------------------------------------------------------------===//
1957
1958 /// isUnusedResultAWarning - Return true if this immediate expression should
1959 /// be warned about if the result is unused. If so, fill in Loc and Ranges
1960 /// with location to warn on and the source range[s] to report with the
1961 /// warning.
isUnusedResultAWarning(const Expr * & WarnE,SourceLocation & Loc,SourceRange & R1,SourceRange & R2,ASTContext & Ctx) const1962 bool Expr::isUnusedResultAWarning(const Expr *&WarnE, SourceLocation &Loc,
1963 SourceRange &R1, SourceRange &R2,
1964 ASTContext &Ctx) const {
1965 // Don't warn if the expr is type dependent. The type could end up
1966 // instantiating to void.
1967 if (isTypeDependent())
1968 return false;
1969
1970 switch (getStmtClass()) {
1971 default:
1972 if (getType()->isVoidType())
1973 return false;
1974 WarnE = this;
1975 Loc = getExprLoc();
1976 R1 = getSourceRange();
1977 return true;
1978 case ParenExprClass:
1979 return cast<ParenExpr>(this)->getSubExpr()->
1980 isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
1981 case GenericSelectionExprClass:
1982 return cast<GenericSelectionExpr>(this)->getResultExpr()->
1983 isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
1984 case ChooseExprClass:
1985 return cast<ChooseExpr>(this)->getChosenSubExpr()->
1986 isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
1987 case UnaryOperatorClass: {
1988 const UnaryOperator *UO = cast<UnaryOperator>(this);
1989
1990 switch (UO->getOpcode()) {
1991 case UO_Plus:
1992 case UO_Minus:
1993 case UO_AddrOf:
1994 case UO_Not:
1995 case UO_LNot:
1996 case UO_Deref:
1997 break;
1998 case UO_PostInc:
1999 case UO_PostDec:
2000 case UO_PreInc:
2001 case UO_PreDec: // ++/--
2002 return false; // Not a warning.
2003 case UO_Real:
2004 case UO_Imag:
2005 // accessing a piece of a volatile complex is a side-effect.
2006 if (Ctx.getCanonicalType(UO->getSubExpr()->getType())
2007 .isVolatileQualified())
2008 return false;
2009 break;
2010 case UO_Extension:
2011 return UO->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2012 }
2013 WarnE = this;
2014 Loc = UO->getOperatorLoc();
2015 R1 = UO->getSubExpr()->getSourceRange();
2016 return true;
2017 }
2018 case BinaryOperatorClass: {
2019 const BinaryOperator *BO = cast<BinaryOperator>(this);
2020 switch (BO->getOpcode()) {
2021 default:
2022 break;
2023 // Consider the RHS of comma for side effects. LHS was checked by
2024 // Sema::CheckCommaOperands.
2025 case BO_Comma:
2026 // ((foo = <blah>), 0) is an idiom for hiding the result (and
2027 // lvalue-ness) of an assignment written in a macro.
2028 if (IntegerLiteral *IE =
2029 dyn_cast<IntegerLiteral>(BO->getRHS()->IgnoreParens()))
2030 if (IE->getValue() == 0)
2031 return false;
2032 return BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2033 // Consider '||', '&&' to have side effects if the LHS or RHS does.
2034 case BO_LAnd:
2035 case BO_LOr:
2036 if (!BO->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx) ||
2037 !BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx))
2038 return false;
2039 break;
2040 }
2041 if (BO->isAssignmentOp())
2042 return false;
2043 WarnE = this;
2044 Loc = BO->getOperatorLoc();
2045 R1 = BO->getLHS()->getSourceRange();
2046 R2 = BO->getRHS()->getSourceRange();
2047 return true;
2048 }
2049 case CompoundAssignOperatorClass:
2050 case VAArgExprClass:
2051 case AtomicExprClass:
2052 return false;
2053
2054 case ConditionalOperatorClass: {
2055 // If only one of the LHS or RHS is a warning, the operator might
2056 // be being used for control flow. Only warn if both the LHS and
2057 // RHS are warnings.
2058 const ConditionalOperator *Exp = cast<ConditionalOperator>(this);
2059 if (!Exp->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx))
2060 return false;
2061 if (!Exp->getLHS())
2062 return true;
2063 return Exp->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2064 }
2065
2066 case MemberExprClass:
2067 WarnE = this;
2068 Loc = cast<MemberExpr>(this)->getMemberLoc();
2069 R1 = SourceRange(Loc, Loc);
2070 R2 = cast<MemberExpr>(this)->getBase()->getSourceRange();
2071 return true;
2072
2073 case ArraySubscriptExprClass:
2074 WarnE = this;
2075 Loc = cast<ArraySubscriptExpr>(this)->getRBracketLoc();
2076 R1 = cast<ArraySubscriptExpr>(this)->getLHS()->getSourceRange();
2077 R2 = cast<ArraySubscriptExpr>(this)->getRHS()->getSourceRange();
2078 return true;
2079
2080 case CXXOperatorCallExprClass: {
2081 // Warn about operator ==,!=,<,>,<=, and >= even when user-defined operator
2082 // overloads as there is no reasonable way to define these such that they
2083 // have non-trivial, desirable side-effects. See the -Wunused-comparison
2084 // warning: operators == and != are commonly typo'ed, and so warning on them
2085 // provides additional value as well. If this list is updated,
2086 // DiagnoseUnusedComparison should be as well.
2087 const CXXOperatorCallExpr *Op = cast<CXXOperatorCallExpr>(this);
2088 switch (Op->getOperator()) {
2089 default:
2090 break;
2091 case OO_EqualEqual:
2092 case OO_ExclaimEqual:
2093 case OO_Less:
2094 case OO_Greater:
2095 case OO_GreaterEqual:
2096 case OO_LessEqual:
2097 if (Op->getCallReturnType()->isReferenceType() ||
2098 Op->getCallReturnType()->isVoidType())
2099 break;
2100 WarnE = this;
2101 Loc = Op->getOperatorLoc();
2102 R1 = Op->getSourceRange();
2103 return true;
2104 }
2105
2106 // Fallthrough for generic call handling.
2107 }
2108 case CallExprClass:
2109 case CXXMemberCallExprClass:
2110 case UserDefinedLiteralClass: {
2111 // If this is a direct call, get the callee.
2112 const CallExpr *CE = cast<CallExpr>(this);
2113 if (const Decl *FD = CE->getCalleeDecl()) {
2114 // If the callee has attribute pure, const, or warn_unused_result, warn
2115 // about it. void foo() { strlen("bar"); } should warn.
2116 //
2117 // Note: If new cases are added here, DiagnoseUnusedExprResult should be
2118 // updated to match for QoI.
2119 if (FD->hasAttr<WarnUnusedResultAttr>() ||
2120 FD->hasAttr<PureAttr>() || FD->hasAttr<ConstAttr>()) {
2121 WarnE = this;
2122 Loc = CE->getCallee()->getLocStart();
2123 R1 = CE->getCallee()->getSourceRange();
2124
2125 if (unsigned NumArgs = CE->getNumArgs())
2126 R2 = SourceRange(CE->getArg(0)->getLocStart(),
2127 CE->getArg(NumArgs-1)->getLocEnd());
2128 return true;
2129 }
2130 }
2131 return false;
2132 }
2133
2134 // If we don't know precisely what we're looking at, let's not warn.
2135 case UnresolvedLookupExprClass:
2136 case CXXUnresolvedConstructExprClass:
2137 return false;
2138
2139 case CXXTemporaryObjectExprClass:
2140 case CXXConstructExprClass: {
2141 if (const CXXRecordDecl *Type = getType()->getAsCXXRecordDecl()) {
2142 if (Type->hasAttr<WarnUnusedAttr>()) {
2143 WarnE = this;
2144 Loc = getLocStart();
2145 R1 = getSourceRange();
2146 return true;
2147 }
2148 }
2149 return false;
2150 }
2151
2152 case ObjCMessageExprClass: {
2153 const ObjCMessageExpr *ME = cast<ObjCMessageExpr>(this);
2154 if (Ctx.getLangOpts().ObjCAutoRefCount &&
2155 ME->isInstanceMessage() &&
2156 !ME->getType()->isVoidType() &&
2157 ME->getMethodFamily() == OMF_init) {
2158 WarnE = this;
2159 Loc = getExprLoc();
2160 R1 = ME->getSourceRange();
2161 return true;
2162 }
2163
2164 const ObjCMethodDecl *MD = ME->getMethodDecl();
2165 if (MD && MD->hasAttr<WarnUnusedResultAttr>()) {
2166 WarnE = this;
2167 Loc = getExprLoc();
2168 return true;
2169 }
2170 return false;
2171 }
2172
2173 case ObjCPropertyRefExprClass:
2174 WarnE = this;
2175 Loc = getExprLoc();
2176 R1 = getSourceRange();
2177 return true;
2178
2179 case PseudoObjectExprClass: {
2180 const PseudoObjectExpr *PO = cast<PseudoObjectExpr>(this);
2181
2182 // Only complain about things that have the form of a getter.
2183 if (isa<UnaryOperator>(PO->getSyntacticForm()) ||
2184 isa<BinaryOperator>(PO->getSyntacticForm()))
2185 return false;
2186
2187 WarnE = this;
2188 Loc = getExprLoc();
2189 R1 = getSourceRange();
2190 return true;
2191 }
2192
2193 case StmtExprClass: {
2194 // Statement exprs don't logically have side effects themselves, but are
2195 // sometimes used in macros in ways that give them a type that is unused.
2196 // For example ({ blah; foo(); }) will end up with a type if foo has a type.
2197 // however, if the result of the stmt expr is dead, we don't want to emit a
2198 // warning.
2199 const CompoundStmt *CS = cast<StmtExpr>(this)->getSubStmt();
2200 if (!CS->body_empty()) {
2201 if (const Expr *E = dyn_cast<Expr>(CS->body_back()))
2202 return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2203 if (const LabelStmt *Label = dyn_cast<LabelStmt>(CS->body_back()))
2204 if (const Expr *E = dyn_cast<Expr>(Label->getSubStmt()))
2205 return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2206 }
2207
2208 if (getType()->isVoidType())
2209 return false;
2210 WarnE = this;
2211 Loc = cast<StmtExpr>(this)->getLParenLoc();
2212 R1 = getSourceRange();
2213 return true;
2214 }
2215 case CXXFunctionalCastExprClass:
2216 case CStyleCastExprClass: {
2217 // Ignore an explicit cast to void unless the operand is a non-trivial
2218 // volatile lvalue.
2219 const CastExpr *CE = cast<CastExpr>(this);
2220 if (CE->getCastKind() == CK_ToVoid) {
2221 if (CE->getSubExpr()->isGLValue() &&
2222 CE->getSubExpr()->getType().isVolatileQualified()) {
2223 const DeclRefExpr *DRE =
2224 dyn_cast<DeclRefExpr>(CE->getSubExpr()->IgnoreParens());
2225 if (!(DRE && isa<VarDecl>(DRE->getDecl()) &&
2226 cast<VarDecl>(DRE->getDecl())->hasLocalStorage())) {
2227 return CE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc,
2228 R1, R2, Ctx);
2229 }
2230 }
2231 return false;
2232 }
2233
2234 // If this is a cast to a constructor conversion, check the operand.
2235 // Otherwise, the result of the cast is unused.
2236 if (CE->getCastKind() == CK_ConstructorConversion)
2237 return CE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2238
2239 WarnE = this;
2240 if (const CXXFunctionalCastExpr *CXXCE =
2241 dyn_cast<CXXFunctionalCastExpr>(this)) {
2242 Loc = CXXCE->getLocStart();
2243 R1 = CXXCE->getSubExpr()->getSourceRange();
2244 } else {
2245 const CStyleCastExpr *CStyleCE = cast<CStyleCastExpr>(this);
2246 Loc = CStyleCE->getLParenLoc();
2247 R1 = CStyleCE->getSubExpr()->getSourceRange();
2248 }
2249 return true;
2250 }
2251 case ImplicitCastExprClass: {
2252 const CastExpr *ICE = cast<ImplicitCastExpr>(this);
2253
2254 // lvalue-to-rvalue conversion on a volatile lvalue is a side-effect.
2255 if (ICE->getCastKind() == CK_LValueToRValue &&
2256 ICE->getSubExpr()->getType().isVolatileQualified())
2257 return false;
2258
2259 return ICE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2260 }
2261 case CXXDefaultArgExprClass:
2262 return (cast<CXXDefaultArgExpr>(this)
2263 ->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
2264 case CXXDefaultInitExprClass:
2265 return (cast<CXXDefaultInitExpr>(this)
2266 ->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
2267
2268 case CXXNewExprClass:
2269 // FIXME: In theory, there might be new expressions that don't have side
2270 // effects (e.g. a placement new with an uninitialized POD).
2271 case CXXDeleteExprClass:
2272 return false;
2273 case CXXBindTemporaryExprClass:
2274 return (cast<CXXBindTemporaryExpr>(this)
2275 ->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
2276 case ExprWithCleanupsClass:
2277 return (cast<ExprWithCleanups>(this)
2278 ->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
2279 }
2280 }
2281
2282 /// isOBJCGCCandidate - Check if an expression is objc gc'able.
2283 /// returns true, if it is; false otherwise.
isOBJCGCCandidate(ASTContext & Ctx) const2284 bool Expr::isOBJCGCCandidate(ASTContext &Ctx) const {
2285 const Expr *E = IgnoreParens();
2286 switch (E->getStmtClass()) {
2287 default:
2288 return false;
2289 case ObjCIvarRefExprClass:
2290 return true;
2291 case Expr::UnaryOperatorClass:
2292 return cast<UnaryOperator>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
2293 case ImplicitCastExprClass:
2294 return cast<ImplicitCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
2295 case MaterializeTemporaryExprClass:
2296 return cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr()
2297 ->isOBJCGCCandidate(Ctx);
2298 case CStyleCastExprClass:
2299 return cast<CStyleCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
2300 case DeclRefExprClass: {
2301 const Decl *D = cast<DeclRefExpr>(E)->getDecl();
2302
2303 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
2304 if (VD->hasGlobalStorage())
2305 return true;
2306 QualType T = VD->getType();
2307 // dereferencing to a pointer is always a gc'able candidate,
2308 // unless it is __weak.
2309 return T->isPointerType() &&
2310 (Ctx.getObjCGCAttrKind(T) != Qualifiers::Weak);
2311 }
2312 return false;
2313 }
2314 case MemberExprClass: {
2315 const MemberExpr *M = cast<MemberExpr>(E);
2316 return M->getBase()->isOBJCGCCandidate(Ctx);
2317 }
2318 case ArraySubscriptExprClass:
2319 return cast<ArraySubscriptExpr>(E)->getBase()->isOBJCGCCandidate(Ctx);
2320 }
2321 }
2322
isBoundMemberFunction(ASTContext & Ctx) const2323 bool Expr::isBoundMemberFunction(ASTContext &Ctx) const {
2324 if (isTypeDependent())
2325 return false;
2326 return ClassifyLValue(Ctx) == Expr::LV_MemberFunction;
2327 }
2328
findBoundMemberType(const Expr * expr)2329 QualType Expr::findBoundMemberType(const Expr *expr) {
2330 assert(expr->hasPlaceholderType(BuiltinType::BoundMember));
2331
2332 // Bound member expressions are always one of these possibilities:
2333 // x->m x.m x->*y x.*y
2334 // (possibly parenthesized)
2335
2336 expr = expr->IgnoreParens();
2337 if (const MemberExpr *mem = dyn_cast<MemberExpr>(expr)) {
2338 assert(isa<CXXMethodDecl>(mem->getMemberDecl()));
2339 return mem->getMemberDecl()->getType();
2340 }
2341
2342 if (const BinaryOperator *op = dyn_cast<BinaryOperator>(expr)) {
2343 QualType type = op->getRHS()->getType()->castAs<MemberPointerType>()
2344 ->getPointeeType();
2345 assert(type->isFunctionType());
2346 return type;
2347 }
2348
2349 assert(isa<UnresolvedMemberExpr>(expr));
2350 return QualType();
2351 }
2352
IgnoreParens()2353 Expr* Expr::IgnoreParens() {
2354 Expr* E = this;
2355 while (true) {
2356 if (ParenExpr* P = dyn_cast<ParenExpr>(E)) {
2357 E = P->getSubExpr();
2358 continue;
2359 }
2360 if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) {
2361 if (P->getOpcode() == UO_Extension) {
2362 E = P->getSubExpr();
2363 continue;
2364 }
2365 }
2366 if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) {
2367 if (!P->isResultDependent()) {
2368 E = P->getResultExpr();
2369 continue;
2370 }
2371 }
2372 if (ChooseExpr* P = dyn_cast<ChooseExpr>(E)) {
2373 if (!P->isConditionDependent()) {
2374 E = P->getChosenSubExpr();
2375 continue;
2376 }
2377 }
2378 return E;
2379 }
2380 }
2381
2382 /// IgnoreParenCasts - Ignore parentheses and casts. Strip off any ParenExpr
2383 /// or CastExprs or ImplicitCastExprs, returning their operand.
IgnoreParenCasts()2384 Expr *Expr::IgnoreParenCasts() {
2385 Expr *E = this;
2386 while (true) {
2387 E = E->IgnoreParens();
2388 if (CastExpr *P = dyn_cast<CastExpr>(E)) {
2389 E = P->getSubExpr();
2390 continue;
2391 }
2392 if (MaterializeTemporaryExpr *Materialize
2393 = dyn_cast<MaterializeTemporaryExpr>(E)) {
2394 E = Materialize->GetTemporaryExpr();
2395 continue;
2396 }
2397 if (SubstNonTypeTemplateParmExpr *NTTP
2398 = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
2399 E = NTTP->getReplacement();
2400 continue;
2401 }
2402 return E;
2403 }
2404 }
2405
IgnoreCasts()2406 Expr *Expr::IgnoreCasts() {
2407 Expr *E = this;
2408 while (true) {
2409 if (CastExpr *P = dyn_cast<CastExpr>(E)) {
2410 E = P->getSubExpr();
2411 continue;
2412 }
2413 if (MaterializeTemporaryExpr *Materialize
2414 = dyn_cast<MaterializeTemporaryExpr>(E)) {
2415 E = Materialize->GetTemporaryExpr();
2416 continue;
2417 }
2418 if (SubstNonTypeTemplateParmExpr *NTTP
2419 = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
2420 E = NTTP->getReplacement();
2421 continue;
2422 }
2423 return E;
2424 }
2425 }
2426
2427 /// IgnoreParenLValueCasts - Ignore parentheses and lvalue-to-rvalue
2428 /// casts. This is intended purely as a temporary workaround for code
2429 /// that hasn't yet been rewritten to do the right thing about those
2430 /// casts, and may disappear along with the last internal use.
IgnoreParenLValueCasts()2431 Expr *Expr::IgnoreParenLValueCasts() {
2432 Expr *E = this;
2433 while (true) {
2434 E = E->IgnoreParens();
2435 if (CastExpr *P = dyn_cast<CastExpr>(E)) {
2436 if (P->getCastKind() == CK_LValueToRValue) {
2437 E = P->getSubExpr();
2438 continue;
2439 }
2440 } else if (MaterializeTemporaryExpr *Materialize
2441 = dyn_cast<MaterializeTemporaryExpr>(E)) {
2442 E = Materialize->GetTemporaryExpr();
2443 continue;
2444 } else if (SubstNonTypeTemplateParmExpr *NTTP
2445 = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
2446 E = NTTP->getReplacement();
2447 continue;
2448 }
2449 break;
2450 }
2451 return E;
2452 }
2453
ignoreParenBaseCasts()2454 Expr *Expr::ignoreParenBaseCasts() {
2455 Expr *E = this;
2456 while (true) {
2457 E = E->IgnoreParens();
2458 if (CastExpr *CE = dyn_cast<CastExpr>(E)) {
2459 if (CE->getCastKind() == CK_DerivedToBase ||
2460 CE->getCastKind() == CK_UncheckedDerivedToBase ||
2461 CE->getCastKind() == CK_NoOp) {
2462 E = CE->getSubExpr();
2463 continue;
2464 }
2465 }
2466
2467 return E;
2468 }
2469 }
2470
IgnoreParenImpCasts()2471 Expr *Expr::IgnoreParenImpCasts() {
2472 Expr *E = this;
2473 while (true) {
2474 E = E->IgnoreParens();
2475 if (ImplicitCastExpr *P = dyn_cast<ImplicitCastExpr>(E)) {
2476 E = P->getSubExpr();
2477 continue;
2478 }
2479 if (MaterializeTemporaryExpr *Materialize
2480 = dyn_cast<MaterializeTemporaryExpr>(E)) {
2481 E = Materialize->GetTemporaryExpr();
2482 continue;
2483 }
2484 if (SubstNonTypeTemplateParmExpr *NTTP
2485 = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
2486 E = NTTP->getReplacement();
2487 continue;
2488 }
2489 return E;
2490 }
2491 }
2492
IgnoreConversionOperator()2493 Expr *Expr::IgnoreConversionOperator() {
2494 if (CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(this)) {
2495 if (MCE->getMethodDecl() && isa<CXXConversionDecl>(MCE->getMethodDecl()))
2496 return MCE->getImplicitObjectArgument();
2497 }
2498 return this;
2499 }
2500
2501 /// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the
2502 /// value (including ptr->int casts of the same size). Strip off any
2503 /// ParenExpr or CastExprs, returning their operand.
IgnoreParenNoopCasts(ASTContext & Ctx)2504 Expr *Expr::IgnoreParenNoopCasts(ASTContext &Ctx) {
2505 Expr *E = this;
2506 while (true) {
2507 E = E->IgnoreParens();
2508
2509 if (CastExpr *P = dyn_cast<CastExpr>(E)) {
2510 // We ignore integer <-> casts that are of the same width, ptr<->ptr and
2511 // ptr<->int casts of the same width. We also ignore all identity casts.
2512 Expr *SE = P->getSubExpr();
2513
2514 if (Ctx.hasSameUnqualifiedType(E->getType(), SE->getType())) {
2515 E = SE;
2516 continue;
2517 }
2518
2519 if ((E->getType()->isPointerType() ||
2520 E->getType()->isIntegralType(Ctx)) &&
2521 (SE->getType()->isPointerType() ||
2522 SE->getType()->isIntegralType(Ctx)) &&
2523 Ctx.getTypeSize(E->getType()) == Ctx.getTypeSize(SE->getType())) {
2524 E = SE;
2525 continue;
2526 }
2527 }
2528
2529 if (SubstNonTypeTemplateParmExpr *NTTP
2530 = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
2531 E = NTTP->getReplacement();
2532 continue;
2533 }
2534
2535 return E;
2536 }
2537 }
2538
isDefaultArgument() const2539 bool Expr::isDefaultArgument() const {
2540 const Expr *E = this;
2541 if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E))
2542 E = M->GetTemporaryExpr();
2543
2544 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
2545 E = ICE->getSubExprAsWritten();
2546
2547 return isa<CXXDefaultArgExpr>(E);
2548 }
2549
2550 /// \brief Skip over any no-op casts and any temporary-binding
2551 /// expressions.
skipTemporaryBindingsNoOpCastsAndParens(const Expr * E)2552 static const Expr *skipTemporaryBindingsNoOpCastsAndParens(const Expr *E) {
2553 if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E))
2554 E = M->GetTemporaryExpr();
2555
2556 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
2557 if (ICE->getCastKind() == CK_NoOp)
2558 E = ICE->getSubExpr();
2559 else
2560 break;
2561 }
2562
2563 while (const CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(E))
2564 E = BE->getSubExpr();
2565
2566 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
2567 if (ICE->getCastKind() == CK_NoOp)
2568 E = ICE->getSubExpr();
2569 else
2570 break;
2571 }
2572
2573 return E->IgnoreParens();
2574 }
2575
2576 /// isTemporaryObject - Determines if this expression produces a
2577 /// temporary of the given class type.
isTemporaryObject(ASTContext & C,const CXXRecordDecl * TempTy) const2578 bool Expr::isTemporaryObject(ASTContext &C, const CXXRecordDecl *TempTy) const {
2579 if (!C.hasSameUnqualifiedType(getType(), C.getTypeDeclType(TempTy)))
2580 return false;
2581
2582 const Expr *E = skipTemporaryBindingsNoOpCastsAndParens(this);
2583
2584 // Temporaries are by definition pr-values of class type.
2585 if (!E->Classify(C).isPRValue()) {
2586 // In this context, property reference is a message call and is pr-value.
2587 if (!isa<ObjCPropertyRefExpr>(E))
2588 return false;
2589 }
2590
2591 // Black-list a few cases which yield pr-values of class type that don't
2592 // refer to temporaries of that type:
2593
2594 // - implicit derived-to-base conversions
2595 if (isa<ImplicitCastExpr>(E)) {
2596 switch (cast<ImplicitCastExpr>(E)->getCastKind()) {
2597 case CK_DerivedToBase:
2598 case CK_UncheckedDerivedToBase:
2599 return false;
2600 default:
2601 break;
2602 }
2603 }
2604
2605 // - member expressions (all)
2606 if (isa<MemberExpr>(E))
2607 return false;
2608
2609 if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E))
2610 if (BO->isPtrMemOp())
2611 return false;
2612
2613 // - opaque values (all)
2614 if (isa<OpaqueValueExpr>(E))
2615 return false;
2616
2617 return true;
2618 }
2619
isImplicitCXXThis() const2620 bool Expr::isImplicitCXXThis() const {
2621 const Expr *E = this;
2622
2623 // Strip away parentheses and casts we don't care about.
2624 while (true) {
2625 if (const ParenExpr *Paren = dyn_cast<ParenExpr>(E)) {
2626 E = Paren->getSubExpr();
2627 continue;
2628 }
2629
2630 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
2631 if (ICE->getCastKind() == CK_NoOp ||
2632 ICE->getCastKind() == CK_LValueToRValue ||
2633 ICE->getCastKind() == CK_DerivedToBase ||
2634 ICE->getCastKind() == CK_UncheckedDerivedToBase) {
2635 E = ICE->getSubExpr();
2636 continue;
2637 }
2638 }
2639
2640 if (const UnaryOperator* UnOp = dyn_cast<UnaryOperator>(E)) {
2641 if (UnOp->getOpcode() == UO_Extension) {
2642 E = UnOp->getSubExpr();
2643 continue;
2644 }
2645 }
2646
2647 if (const MaterializeTemporaryExpr *M
2648 = dyn_cast<MaterializeTemporaryExpr>(E)) {
2649 E = M->GetTemporaryExpr();
2650 continue;
2651 }
2652
2653 break;
2654 }
2655
2656 if (const CXXThisExpr *This = dyn_cast<CXXThisExpr>(E))
2657 return This->isImplicit();
2658
2659 return false;
2660 }
2661
2662 /// hasAnyTypeDependentArguments - Determines if any of the expressions
2663 /// in Exprs is type-dependent.
hasAnyTypeDependentArguments(ArrayRef<Expr * > Exprs)2664 bool Expr::hasAnyTypeDependentArguments(ArrayRef<Expr *> Exprs) {
2665 for (unsigned I = 0; I < Exprs.size(); ++I)
2666 if (Exprs[I]->isTypeDependent())
2667 return true;
2668
2669 return false;
2670 }
2671
isConstantInitializer(ASTContext & Ctx,bool IsForRef,const Expr ** Culprit) const2672 bool Expr::isConstantInitializer(ASTContext &Ctx, bool IsForRef,
2673 const Expr **Culprit) const {
2674 // This function is attempting whether an expression is an initializer
2675 // which can be evaluated at compile-time. It very closely parallels
2676 // ConstExprEmitter in CGExprConstant.cpp; if they don't match, it
2677 // will lead to unexpected results. Like ConstExprEmitter, it falls back
2678 // to isEvaluatable most of the time.
2679 //
2680 // If we ever capture reference-binding directly in the AST, we can
2681 // kill the second parameter.
2682
2683 if (IsForRef) {
2684 EvalResult Result;
2685 if (EvaluateAsLValue(Result, Ctx) && !Result.HasSideEffects)
2686 return true;
2687 if (Culprit)
2688 *Culprit = this;
2689 return false;
2690 }
2691
2692 switch (getStmtClass()) {
2693 default: break;
2694 case StringLiteralClass:
2695 case ObjCEncodeExprClass:
2696 return true;
2697 case CXXTemporaryObjectExprClass:
2698 case CXXConstructExprClass: {
2699 const CXXConstructExpr *CE = cast<CXXConstructExpr>(this);
2700
2701 if (CE->getConstructor()->isTrivial() &&
2702 CE->getConstructor()->getParent()->hasTrivialDestructor()) {
2703 // Trivial default constructor
2704 if (!CE->getNumArgs()) return true;
2705
2706 // Trivial copy constructor
2707 assert(CE->getNumArgs() == 1 && "trivial ctor with > 1 argument");
2708 return CE->getArg(0)->isConstantInitializer(Ctx, false, Culprit);
2709 }
2710
2711 break;
2712 }
2713 case CompoundLiteralExprClass: {
2714 // This handles gcc's extension that allows global initializers like
2715 // "struct x {int x;} x = (struct x) {};".
2716 // FIXME: This accepts other cases it shouldn't!
2717 const Expr *Exp = cast<CompoundLiteralExpr>(this)->getInitializer();
2718 return Exp->isConstantInitializer(Ctx, false, Culprit);
2719 }
2720 case InitListExprClass: {
2721 const InitListExpr *ILE = cast<InitListExpr>(this);
2722 if (ILE->getType()->isArrayType()) {
2723 unsigned numInits = ILE->getNumInits();
2724 for (unsigned i = 0; i < numInits; i++) {
2725 if (!ILE->getInit(i)->isConstantInitializer(Ctx, false, Culprit))
2726 return false;
2727 }
2728 return true;
2729 }
2730
2731 if (ILE->getType()->isRecordType()) {
2732 unsigned ElementNo = 0;
2733 RecordDecl *RD = ILE->getType()->getAs<RecordType>()->getDecl();
2734 for (RecordDecl::field_iterator Field = RD->field_begin(),
2735 FieldEnd = RD->field_end(); Field != FieldEnd; ++Field) {
2736 // If this is a union, skip all the fields that aren't being initialized.
2737 if (RD->isUnion() && ILE->getInitializedFieldInUnion() != *Field)
2738 continue;
2739
2740 // Don't emit anonymous bitfields, they just affect layout.
2741 if (Field->isUnnamedBitfield())
2742 continue;
2743
2744 if (ElementNo < ILE->getNumInits()) {
2745 const Expr *Elt = ILE->getInit(ElementNo++);
2746 if (Field->isBitField()) {
2747 // Bitfields have to evaluate to an integer.
2748 llvm::APSInt ResultTmp;
2749 if (!Elt->EvaluateAsInt(ResultTmp, Ctx)) {
2750 if (Culprit)
2751 *Culprit = Elt;
2752 return false;
2753 }
2754 } else {
2755 bool RefType = Field->getType()->isReferenceType();
2756 if (!Elt->isConstantInitializer(Ctx, RefType, Culprit))
2757 return false;
2758 }
2759 }
2760 }
2761 return true;
2762 }
2763
2764 break;
2765 }
2766 case ImplicitValueInitExprClass:
2767 return true;
2768 case ParenExprClass:
2769 return cast<ParenExpr>(this)->getSubExpr()
2770 ->isConstantInitializer(Ctx, IsForRef, Culprit);
2771 case GenericSelectionExprClass:
2772 return cast<GenericSelectionExpr>(this)->getResultExpr()
2773 ->isConstantInitializer(Ctx, IsForRef, Culprit);
2774 case ChooseExprClass:
2775 if (cast<ChooseExpr>(this)->isConditionDependent()) {
2776 if (Culprit)
2777 *Culprit = this;
2778 return false;
2779 }
2780 return cast<ChooseExpr>(this)->getChosenSubExpr()
2781 ->isConstantInitializer(Ctx, IsForRef, Culprit);
2782 case UnaryOperatorClass: {
2783 const UnaryOperator* Exp = cast<UnaryOperator>(this);
2784 if (Exp->getOpcode() == UO_Extension)
2785 return Exp->getSubExpr()->isConstantInitializer(Ctx, false, Culprit);
2786 break;
2787 }
2788 case CXXFunctionalCastExprClass:
2789 case CXXStaticCastExprClass:
2790 case ImplicitCastExprClass:
2791 case CStyleCastExprClass:
2792 case ObjCBridgedCastExprClass:
2793 case CXXDynamicCastExprClass:
2794 case CXXReinterpretCastExprClass:
2795 case CXXConstCastExprClass: {
2796 const CastExpr *CE = cast<CastExpr>(this);
2797
2798 // Handle misc casts we want to ignore.
2799 if (CE->getCastKind() == CK_NoOp ||
2800 CE->getCastKind() == CK_LValueToRValue ||
2801 CE->getCastKind() == CK_ToUnion ||
2802 CE->getCastKind() == CK_ConstructorConversion ||
2803 CE->getCastKind() == CK_NonAtomicToAtomic ||
2804 CE->getCastKind() == CK_AtomicToNonAtomic)
2805 return CE->getSubExpr()->isConstantInitializer(Ctx, false, Culprit);
2806
2807 break;
2808 }
2809 case MaterializeTemporaryExprClass:
2810 return cast<MaterializeTemporaryExpr>(this)->GetTemporaryExpr()
2811 ->isConstantInitializer(Ctx, false, Culprit);
2812
2813 case SubstNonTypeTemplateParmExprClass:
2814 return cast<SubstNonTypeTemplateParmExpr>(this)->getReplacement()
2815 ->isConstantInitializer(Ctx, false, Culprit);
2816 case CXXDefaultArgExprClass:
2817 return cast<CXXDefaultArgExpr>(this)->getExpr()
2818 ->isConstantInitializer(Ctx, false, Culprit);
2819 case CXXDefaultInitExprClass:
2820 return cast<CXXDefaultInitExpr>(this)->getExpr()
2821 ->isConstantInitializer(Ctx, false, Culprit);
2822 }
2823 if (isEvaluatable(Ctx))
2824 return true;
2825 if (Culprit)
2826 *Culprit = this;
2827 return false;
2828 }
2829
HasSideEffects(const ASTContext & Ctx) const2830 bool Expr::HasSideEffects(const ASTContext &Ctx) const {
2831 if (isInstantiationDependent())
2832 return true;
2833
2834 switch (getStmtClass()) {
2835 case NoStmtClass:
2836 #define ABSTRACT_STMT(Type)
2837 #define STMT(Type, Base) case Type##Class:
2838 #define EXPR(Type, Base)
2839 #include "clang/AST/StmtNodes.inc"
2840 llvm_unreachable("unexpected Expr kind");
2841
2842 case DependentScopeDeclRefExprClass:
2843 case CXXUnresolvedConstructExprClass:
2844 case CXXDependentScopeMemberExprClass:
2845 case UnresolvedLookupExprClass:
2846 case UnresolvedMemberExprClass:
2847 case PackExpansionExprClass:
2848 case SubstNonTypeTemplateParmPackExprClass:
2849 case FunctionParmPackExprClass:
2850 llvm_unreachable("shouldn't see dependent / unresolved nodes here");
2851
2852 case DeclRefExprClass:
2853 case ObjCIvarRefExprClass:
2854 case PredefinedExprClass:
2855 case IntegerLiteralClass:
2856 case FloatingLiteralClass:
2857 case ImaginaryLiteralClass:
2858 case StringLiteralClass:
2859 case CharacterLiteralClass:
2860 case OffsetOfExprClass:
2861 case ImplicitValueInitExprClass:
2862 case UnaryExprOrTypeTraitExprClass:
2863 case AddrLabelExprClass:
2864 case GNUNullExprClass:
2865 case CXXBoolLiteralExprClass:
2866 case CXXNullPtrLiteralExprClass:
2867 case CXXThisExprClass:
2868 case CXXScalarValueInitExprClass:
2869 case TypeTraitExprClass:
2870 case ArrayTypeTraitExprClass:
2871 case ExpressionTraitExprClass:
2872 case CXXNoexceptExprClass:
2873 case SizeOfPackExprClass:
2874 case ObjCStringLiteralClass:
2875 case ObjCEncodeExprClass:
2876 case ObjCBoolLiteralExprClass:
2877 case CXXUuidofExprClass:
2878 case OpaqueValueExprClass:
2879 // These never have a side-effect.
2880 return false;
2881
2882 case CallExprClass:
2883 case MSPropertyRefExprClass:
2884 case CompoundAssignOperatorClass:
2885 case VAArgExprClass:
2886 case AtomicExprClass:
2887 case StmtExprClass:
2888 case CXXOperatorCallExprClass:
2889 case CXXMemberCallExprClass:
2890 case UserDefinedLiteralClass:
2891 case CXXThrowExprClass:
2892 case CXXNewExprClass:
2893 case CXXDeleteExprClass:
2894 case ExprWithCleanupsClass:
2895 case CXXBindTemporaryExprClass:
2896 case BlockExprClass:
2897 case CUDAKernelCallExprClass:
2898 // These always have a side-effect.
2899 return true;
2900
2901 case ParenExprClass:
2902 case ArraySubscriptExprClass:
2903 case MemberExprClass:
2904 case ConditionalOperatorClass:
2905 case BinaryConditionalOperatorClass:
2906 case CompoundLiteralExprClass:
2907 case ExtVectorElementExprClass:
2908 case DesignatedInitExprClass:
2909 case ParenListExprClass:
2910 case CXXPseudoDestructorExprClass:
2911 case CXXStdInitializerListExprClass:
2912 case SubstNonTypeTemplateParmExprClass:
2913 case MaterializeTemporaryExprClass:
2914 case ShuffleVectorExprClass:
2915 case ConvertVectorExprClass:
2916 case AsTypeExprClass:
2917 // These have a side-effect if any subexpression does.
2918 break;
2919
2920 case UnaryOperatorClass:
2921 if (cast<UnaryOperator>(this)->isIncrementDecrementOp())
2922 return true;
2923 break;
2924
2925 case BinaryOperatorClass:
2926 if (cast<BinaryOperator>(this)->isAssignmentOp())
2927 return true;
2928 break;
2929
2930 case InitListExprClass:
2931 // FIXME: The children for an InitListExpr doesn't include the array filler.
2932 if (const Expr *E = cast<InitListExpr>(this)->getArrayFiller())
2933 if (E->HasSideEffects(Ctx))
2934 return true;
2935 break;
2936
2937 case GenericSelectionExprClass:
2938 return cast<GenericSelectionExpr>(this)->getResultExpr()->
2939 HasSideEffects(Ctx);
2940
2941 case ChooseExprClass:
2942 return cast<ChooseExpr>(this)->getChosenSubExpr()->HasSideEffects(Ctx);
2943
2944 case CXXDefaultArgExprClass:
2945 return cast<CXXDefaultArgExpr>(this)->getExpr()->HasSideEffects(Ctx);
2946
2947 case CXXDefaultInitExprClass:
2948 if (const Expr *E = cast<CXXDefaultInitExpr>(this)->getExpr())
2949 return E->HasSideEffects(Ctx);
2950 // If we've not yet parsed the initializer, assume it has side-effects.
2951 return true;
2952
2953 case CXXDynamicCastExprClass: {
2954 // A dynamic_cast expression has side-effects if it can throw.
2955 const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(this);
2956 if (DCE->getTypeAsWritten()->isReferenceType() &&
2957 DCE->getCastKind() == CK_Dynamic)
2958 return true;
2959 } // Fall through.
2960 case ImplicitCastExprClass:
2961 case CStyleCastExprClass:
2962 case CXXStaticCastExprClass:
2963 case CXXReinterpretCastExprClass:
2964 case CXXConstCastExprClass:
2965 case CXXFunctionalCastExprClass: {
2966 const CastExpr *CE = cast<CastExpr>(this);
2967 if (CE->getCastKind() == CK_LValueToRValue &&
2968 CE->getSubExpr()->getType().isVolatileQualified())
2969 return true;
2970 break;
2971 }
2972
2973 case CXXTypeidExprClass:
2974 // typeid might throw if its subexpression is potentially-evaluated, so has
2975 // side-effects in that case whether or not its subexpression does.
2976 return cast<CXXTypeidExpr>(this)->isPotentiallyEvaluated();
2977
2978 case CXXConstructExprClass:
2979 case CXXTemporaryObjectExprClass: {
2980 const CXXConstructExpr *CE = cast<CXXConstructExpr>(this);
2981 if (!CE->getConstructor()->isTrivial())
2982 return true;
2983 // A trivial constructor does not add any side-effects of its own. Just look
2984 // at its arguments.
2985 break;
2986 }
2987
2988 case LambdaExprClass: {
2989 const LambdaExpr *LE = cast<LambdaExpr>(this);
2990 for (LambdaExpr::capture_iterator I = LE->capture_begin(),
2991 E = LE->capture_end(); I != E; ++I)
2992 if (I->getCaptureKind() == LCK_ByCopy)
2993 // FIXME: Only has a side-effect if the variable is volatile or if
2994 // the copy would invoke a non-trivial copy constructor.
2995 return true;
2996 return false;
2997 }
2998
2999 case PseudoObjectExprClass: {
3000 // Only look for side-effects in the semantic form, and look past
3001 // OpaqueValueExpr bindings in that form.
3002 const PseudoObjectExpr *PO = cast<PseudoObjectExpr>(this);
3003 for (PseudoObjectExpr::const_semantics_iterator I = PO->semantics_begin(),
3004 E = PO->semantics_end();
3005 I != E; ++I) {
3006 const Expr *Subexpr = *I;
3007 if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(Subexpr))
3008 Subexpr = OVE->getSourceExpr();
3009 if (Subexpr->HasSideEffects(Ctx))
3010 return true;
3011 }
3012 return false;
3013 }
3014
3015 case ObjCBoxedExprClass:
3016 case ObjCArrayLiteralClass:
3017 case ObjCDictionaryLiteralClass:
3018 case ObjCMessageExprClass:
3019 case ObjCSelectorExprClass:
3020 case ObjCProtocolExprClass:
3021 case ObjCPropertyRefExprClass:
3022 case ObjCIsaExprClass:
3023 case ObjCIndirectCopyRestoreExprClass:
3024 case ObjCSubscriptRefExprClass:
3025 case ObjCBridgedCastExprClass:
3026 // FIXME: Classify these cases better.
3027 return true;
3028 }
3029
3030 // Recurse to children.
3031 for (const_child_range SubStmts = children(); SubStmts; ++SubStmts)
3032 if (const Stmt *S = *SubStmts)
3033 if (cast<Expr>(S)->HasSideEffects(Ctx))
3034 return true;
3035
3036 return false;
3037 }
3038
3039 namespace {
3040 /// \brief Look for a call to a non-trivial function within an expression.
3041 class NonTrivialCallFinder : public EvaluatedExprVisitor<NonTrivialCallFinder>
3042 {
3043 typedef EvaluatedExprVisitor<NonTrivialCallFinder> Inherited;
3044
3045 bool NonTrivial;
3046
3047 public:
NonTrivialCallFinder(ASTContext & Context)3048 explicit NonTrivialCallFinder(ASTContext &Context)
3049 : Inherited(Context), NonTrivial(false) { }
3050
hasNonTrivialCall() const3051 bool hasNonTrivialCall() const { return NonTrivial; }
3052
VisitCallExpr(CallExpr * E)3053 void VisitCallExpr(CallExpr *E) {
3054 if (CXXMethodDecl *Method
3055 = dyn_cast_or_null<CXXMethodDecl>(E->getCalleeDecl())) {
3056 if (Method->isTrivial()) {
3057 // Recurse to children of the call.
3058 Inherited::VisitStmt(E);
3059 return;
3060 }
3061 }
3062
3063 NonTrivial = true;
3064 }
3065
VisitCXXConstructExpr(CXXConstructExpr * E)3066 void VisitCXXConstructExpr(CXXConstructExpr *E) {
3067 if (E->getConstructor()->isTrivial()) {
3068 // Recurse to children of the call.
3069 Inherited::VisitStmt(E);
3070 return;
3071 }
3072
3073 NonTrivial = true;
3074 }
3075
VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr * E)3076 void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
3077 if (E->getTemporary()->getDestructor()->isTrivial()) {
3078 Inherited::VisitStmt(E);
3079 return;
3080 }
3081
3082 NonTrivial = true;
3083 }
3084 };
3085 }
3086
hasNonTrivialCall(ASTContext & Ctx)3087 bool Expr::hasNonTrivialCall(ASTContext &Ctx) {
3088 NonTrivialCallFinder Finder(Ctx);
3089 Finder.Visit(this);
3090 return Finder.hasNonTrivialCall();
3091 }
3092
3093 /// isNullPointerConstant - C99 6.3.2.3p3 - Return whether this is a null
3094 /// pointer constant or not, as well as the specific kind of constant detected.
3095 /// Null pointer constants can be integer constant expressions with the
3096 /// value zero, casts of zero to void*, nullptr (C++0X), or __null
3097 /// (a GNU extension).
3098 Expr::NullPointerConstantKind
isNullPointerConstant(ASTContext & Ctx,NullPointerConstantValueDependence NPC) const3099 Expr::isNullPointerConstant(ASTContext &Ctx,
3100 NullPointerConstantValueDependence NPC) const {
3101 if (isValueDependent() &&
3102 (!Ctx.getLangOpts().CPlusPlus11 || Ctx.getLangOpts().MSVCCompat)) {
3103 switch (NPC) {
3104 case NPC_NeverValueDependent:
3105 llvm_unreachable("Unexpected value dependent expression!");
3106 case NPC_ValueDependentIsNull:
3107 if (isTypeDependent() || getType()->isIntegralType(Ctx))
3108 return NPCK_ZeroExpression;
3109 else
3110 return NPCK_NotNull;
3111
3112 case NPC_ValueDependentIsNotNull:
3113 return NPCK_NotNull;
3114 }
3115 }
3116
3117 // Strip off a cast to void*, if it exists. Except in C++.
3118 if (const ExplicitCastExpr *CE = dyn_cast<ExplicitCastExpr>(this)) {
3119 if (!Ctx.getLangOpts().CPlusPlus) {
3120 // Check that it is a cast to void*.
3121 if (const PointerType *PT = CE->getType()->getAs<PointerType>()) {
3122 QualType Pointee = PT->getPointeeType();
3123 if (!Pointee.hasQualifiers() &&
3124 Pointee->isVoidType() && // to void*
3125 CE->getSubExpr()->getType()->isIntegerType()) // from int.
3126 return CE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
3127 }
3128 }
3129 } else if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(this)) {
3130 // Ignore the ImplicitCastExpr type entirely.
3131 return ICE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
3132 } else if (const ParenExpr *PE = dyn_cast<ParenExpr>(this)) {
3133 // Accept ((void*)0) as a null pointer constant, as many other
3134 // implementations do.
3135 return PE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
3136 } else if (const GenericSelectionExpr *GE =
3137 dyn_cast<GenericSelectionExpr>(this)) {
3138 if (GE->isResultDependent())
3139 return NPCK_NotNull;
3140 return GE->getResultExpr()->isNullPointerConstant(Ctx, NPC);
3141 } else if (const ChooseExpr *CE = dyn_cast<ChooseExpr>(this)) {
3142 if (CE->isConditionDependent())
3143 return NPCK_NotNull;
3144 return CE->getChosenSubExpr()->isNullPointerConstant(Ctx, NPC);
3145 } else if (const CXXDefaultArgExpr *DefaultArg
3146 = dyn_cast<CXXDefaultArgExpr>(this)) {
3147 // See through default argument expressions.
3148 return DefaultArg->getExpr()->isNullPointerConstant(Ctx, NPC);
3149 } else if (const CXXDefaultInitExpr *DefaultInit
3150 = dyn_cast<CXXDefaultInitExpr>(this)) {
3151 // See through default initializer expressions.
3152 return DefaultInit->getExpr()->isNullPointerConstant(Ctx, NPC);
3153 } else if (isa<GNUNullExpr>(this)) {
3154 // The GNU __null extension is always a null pointer constant.
3155 return NPCK_GNUNull;
3156 } else if (const MaterializeTemporaryExpr *M
3157 = dyn_cast<MaterializeTemporaryExpr>(this)) {
3158 return M->GetTemporaryExpr()->isNullPointerConstant(Ctx, NPC);
3159 } else if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(this)) {
3160 if (const Expr *Source = OVE->getSourceExpr())
3161 return Source->isNullPointerConstant(Ctx, NPC);
3162 }
3163
3164 // C++11 nullptr_t is always a null pointer constant.
3165 if (getType()->isNullPtrType())
3166 return NPCK_CXX11_nullptr;
3167
3168 if (const RecordType *UT = getType()->getAsUnionType())
3169 if (!Ctx.getLangOpts().CPlusPlus11 &&
3170 UT && UT->getDecl()->hasAttr<TransparentUnionAttr>())
3171 if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(this)){
3172 const Expr *InitExpr = CLE->getInitializer();
3173 if (const InitListExpr *ILE = dyn_cast<InitListExpr>(InitExpr))
3174 return ILE->getInit(0)->isNullPointerConstant(Ctx, NPC);
3175 }
3176 // This expression must be an integer type.
3177 if (!getType()->isIntegerType() ||
3178 (Ctx.getLangOpts().CPlusPlus && getType()->isEnumeralType()))
3179 return NPCK_NotNull;
3180
3181 if (Ctx.getLangOpts().CPlusPlus11) {
3182 // C++11 [conv.ptr]p1: A null pointer constant is an integer literal with
3183 // value zero or a prvalue of type std::nullptr_t.
3184 // Microsoft mode permits C++98 rules reflecting MSVC behavior.
3185 const IntegerLiteral *Lit = dyn_cast<IntegerLiteral>(this);
3186 if (Lit && !Lit->getValue())
3187 return NPCK_ZeroLiteral;
3188 else if (!Ctx.getLangOpts().MSVCCompat || !isCXX98IntegralConstantExpr(Ctx))
3189 return NPCK_NotNull;
3190 } else {
3191 // If we have an integer constant expression, we need to *evaluate* it and
3192 // test for the value 0.
3193 if (!isIntegerConstantExpr(Ctx))
3194 return NPCK_NotNull;
3195 }
3196
3197 if (EvaluateKnownConstInt(Ctx) != 0)
3198 return NPCK_NotNull;
3199
3200 if (isa<IntegerLiteral>(this))
3201 return NPCK_ZeroLiteral;
3202 return NPCK_ZeroExpression;
3203 }
3204
3205 /// \brief If this expression is an l-value for an Objective C
3206 /// property, find the underlying property reference expression.
getObjCProperty() const3207 const ObjCPropertyRefExpr *Expr::getObjCProperty() const {
3208 const Expr *E = this;
3209 while (true) {
3210 assert((E->getValueKind() == VK_LValue &&
3211 E->getObjectKind() == OK_ObjCProperty) &&
3212 "expression is not a property reference");
3213 E = E->IgnoreParenCasts();
3214 if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
3215 if (BO->getOpcode() == BO_Comma) {
3216 E = BO->getRHS();
3217 continue;
3218 }
3219 }
3220
3221 break;
3222 }
3223
3224 return cast<ObjCPropertyRefExpr>(E);
3225 }
3226
isObjCSelfExpr() const3227 bool Expr::isObjCSelfExpr() const {
3228 const Expr *E = IgnoreParenImpCasts();
3229
3230 const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
3231 if (!DRE)
3232 return false;
3233
3234 const ImplicitParamDecl *Param = dyn_cast<ImplicitParamDecl>(DRE->getDecl());
3235 if (!Param)
3236 return false;
3237
3238 const ObjCMethodDecl *M = dyn_cast<ObjCMethodDecl>(Param->getDeclContext());
3239 if (!M)
3240 return false;
3241
3242 return M->getSelfDecl() == Param;
3243 }
3244
getSourceBitField()3245 FieldDecl *Expr::getSourceBitField() {
3246 Expr *E = this->IgnoreParens();
3247
3248 while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
3249 if (ICE->getCastKind() == CK_LValueToRValue ||
3250 (ICE->getValueKind() != VK_RValue && ICE->getCastKind() == CK_NoOp))
3251 E = ICE->getSubExpr()->IgnoreParens();
3252 else
3253 break;
3254 }
3255
3256 if (MemberExpr *MemRef = dyn_cast<MemberExpr>(E))
3257 if (FieldDecl *Field = dyn_cast<FieldDecl>(MemRef->getMemberDecl()))
3258 if (Field->isBitField())
3259 return Field;
3260
3261 if (ObjCIvarRefExpr *IvarRef = dyn_cast<ObjCIvarRefExpr>(E))
3262 if (FieldDecl *Ivar = dyn_cast<FieldDecl>(IvarRef->getDecl()))
3263 if (Ivar->isBitField())
3264 return Ivar;
3265
3266 if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E))
3267 if (FieldDecl *Field = dyn_cast<FieldDecl>(DeclRef->getDecl()))
3268 if (Field->isBitField())
3269 return Field;
3270
3271 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(E)) {
3272 if (BinOp->isAssignmentOp() && BinOp->getLHS())
3273 return BinOp->getLHS()->getSourceBitField();
3274
3275 if (BinOp->getOpcode() == BO_Comma && BinOp->getRHS())
3276 return BinOp->getRHS()->getSourceBitField();
3277 }
3278
3279 return nullptr;
3280 }
3281
refersToVectorElement() const3282 bool Expr::refersToVectorElement() const {
3283 const Expr *E = this->IgnoreParens();
3284
3285 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
3286 if (ICE->getValueKind() != VK_RValue &&
3287 ICE->getCastKind() == CK_NoOp)
3288 E = ICE->getSubExpr()->IgnoreParens();
3289 else
3290 break;
3291 }
3292
3293 if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(E))
3294 return ASE->getBase()->getType()->isVectorType();
3295
3296 if (isa<ExtVectorElementExpr>(E))
3297 return true;
3298
3299 return false;
3300 }
3301
3302 /// isArrow - Return true if the base expression is a pointer to vector,
3303 /// return false if the base expression is a vector.
isArrow() const3304 bool ExtVectorElementExpr::isArrow() const {
3305 return getBase()->getType()->isPointerType();
3306 }
3307
getNumElements() const3308 unsigned ExtVectorElementExpr::getNumElements() const {
3309 if (const VectorType *VT = getType()->getAs<VectorType>())
3310 return VT->getNumElements();
3311 return 1;
3312 }
3313
3314 /// containsDuplicateElements - Return true if any element access is repeated.
containsDuplicateElements() const3315 bool ExtVectorElementExpr::containsDuplicateElements() const {
3316 // FIXME: Refactor this code to an accessor on the AST node which returns the
3317 // "type" of component access, and share with code below and in Sema.
3318 StringRef Comp = Accessor->getName();
3319
3320 // Halving swizzles do not contain duplicate elements.
3321 if (Comp == "hi" || Comp == "lo" || Comp == "even" || Comp == "odd")
3322 return false;
3323
3324 // Advance past s-char prefix on hex swizzles.
3325 if (Comp[0] == 's' || Comp[0] == 'S')
3326 Comp = Comp.substr(1);
3327
3328 for (unsigned i = 0, e = Comp.size(); i != e; ++i)
3329 if (Comp.substr(i + 1).find(Comp[i]) != StringRef::npos)
3330 return true;
3331
3332 return false;
3333 }
3334
3335 /// getEncodedElementAccess - We encode the fields as a llvm ConstantArray.
getEncodedElementAccess(SmallVectorImpl<unsigned> & Elts) const3336 void ExtVectorElementExpr::getEncodedElementAccess(
3337 SmallVectorImpl<unsigned> &Elts) const {
3338 StringRef Comp = Accessor->getName();
3339 if (Comp[0] == 's' || Comp[0] == 'S')
3340 Comp = Comp.substr(1);
3341
3342 bool isHi = Comp == "hi";
3343 bool isLo = Comp == "lo";
3344 bool isEven = Comp == "even";
3345 bool isOdd = Comp == "odd";
3346
3347 for (unsigned i = 0, e = getNumElements(); i != e; ++i) {
3348 uint64_t Index;
3349
3350 if (isHi)
3351 Index = e + i;
3352 else if (isLo)
3353 Index = i;
3354 else if (isEven)
3355 Index = 2 * i;
3356 else if (isOdd)
3357 Index = 2 * i + 1;
3358 else
3359 Index = ExtVectorType::getAccessorIdx(Comp[i]);
3360
3361 Elts.push_back(Index);
3362 }
3363 }
3364
ObjCMessageExpr(QualType T,ExprValueKind VK,SourceLocation LBracLoc,SourceLocation SuperLoc,bool IsInstanceSuper,QualType SuperType,Selector Sel,ArrayRef<SourceLocation> SelLocs,SelectorLocationsKind SelLocsK,ObjCMethodDecl * Method,ArrayRef<Expr * > Args,SourceLocation RBracLoc,bool isImplicit)3365 ObjCMessageExpr::ObjCMessageExpr(QualType T,
3366 ExprValueKind VK,
3367 SourceLocation LBracLoc,
3368 SourceLocation SuperLoc,
3369 bool IsInstanceSuper,
3370 QualType SuperType,
3371 Selector Sel,
3372 ArrayRef<SourceLocation> SelLocs,
3373 SelectorLocationsKind SelLocsK,
3374 ObjCMethodDecl *Method,
3375 ArrayRef<Expr *> Args,
3376 SourceLocation RBracLoc,
3377 bool isImplicit)
3378 : Expr(ObjCMessageExprClass, T, VK, OK_Ordinary,
3379 /*TypeDependent=*/false, /*ValueDependent=*/false,
3380 /*InstantiationDependent=*/false,
3381 /*ContainsUnexpandedParameterPack=*/false),
3382 SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method
3383 : Sel.getAsOpaquePtr())),
3384 Kind(IsInstanceSuper? SuperInstance : SuperClass),
3385 HasMethod(Method != nullptr), IsDelegateInitCall(false),
3386 IsImplicit(isImplicit), SuperLoc(SuperLoc), LBracLoc(LBracLoc),
3387 RBracLoc(RBracLoc)
3388 {
3389 initArgsAndSelLocs(Args, SelLocs, SelLocsK);
3390 setReceiverPointer(SuperType.getAsOpaquePtr());
3391 }
3392
ObjCMessageExpr(QualType T,ExprValueKind VK,SourceLocation LBracLoc,TypeSourceInfo * Receiver,Selector Sel,ArrayRef<SourceLocation> SelLocs,SelectorLocationsKind SelLocsK,ObjCMethodDecl * Method,ArrayRef<Expr * > Args,SourceLocation RBracLoc,bool isImplicit)3393 ObjCMessageExpr::ObjCMessageExpr(QualType T,
3394 ExprValueKind VK,
3395 SourceLocation LBracLoc,
3396 TypeSourceInfo *Receiver,
3397 Selector Sel,
3398 ArrayRef<SourceLocation> SelLocs,
3399 SelectorLocationsKind SelLocsK,
3400 ObjCMethodDecl *Method,
3401 ArrayRef<Expr *> Args,
3402 SourceLocation RBracLoc,
3403 bool isImplicit)
3404 : Expr(ObjCMessageExprClass, T, VK, OK_Ordinary, T->isDependentType(),
3405 T->isDependentType(), T->isInstantiationDependentType(),
3406 T->containsUnexpandedParameterPack()),
3407 SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method
3408 : Sel.getAsOpaquePtr())),
3409 Kind(Class),
3410 HasMethod(Method != nullptr), IsDelegateInitCall(false),
3411 IsImplicit(isImplicit), LBracLoc(LBracLoc), RBracLoc(RBracLoc)
3412 {
3413 initArgsAndSelLocs(Args, SelLocs, SelLocsK);
3414 setReceiverPointer(Receiver);
3415 }
3416
ObjCMessageExpr(QualType T,ExprValueKind VK,SourceLocation LBracLoc,Expr * Receiver,Selector Sel,ArrayRef<SourceLocation> SelLocs,SelectorLocationsKind SelLocsK,ObjCMethodDecl * Method,ArrayRef<Expr * > Args,SourceLocation RBracLoc,bool isImplicit)3417 ObjCMessageExpr::ObjCMessageExpr(QualType T,
3418 ExprValueKind VK,
3419 SourceLocation LBracLoc,
3420 Expr *Receiver,
3421 Selector Sel,
3422 ArrayRef<SourceLocation> SelLocs,
3423 SelectorLocationsKind SelLocsK,
3424 ObjCMethodDecl *Method,
3425 ArrayRef<Expr *> Args,
3426 SourceLocation RBracLoc,
3427 bool isImplicit)
3428 : Expr(ObjCMessageExprClass, T, VK, OK_Ordinary, Receiver->isTypeDependent(),
3429 Receiver->isTypeDependent(),
3430 Receiver->isInstantiationDependent(),
3431 Receiver->containsUnexpandedParameterPack()),
3432 SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method
3433 : Sel.getAsOpaquePtr())),
3434 Kind(Instance),
3435 HasMethod(Method != nullptr), IsDelegateInitCall(false),
3436 IsImplicit(isImplicit), LBracLoc(LBracLoc), RBracLoc(RBracLoc)
3437 {
3438 initArgsAndSelLocs(Args, SelLocs, SelLocsK);
3439 setReceiverPointer(Receiver);
3440 }
3441
initArgsAndSelLocs(ArrayRef<Expr * > Args,ArrayRef<SourceLocation> SelLocs,SelectorLocationsKind SelLocsK)3442 void ObjCMessageExpr::initArgsAndSelLocs(ArrayRef<Expr *> Args,
3443 ArrayRef<SourceLocation> SelLocs,
3444 SelectorLocationsKind SelLocsK) {
3445 setNumArgs(Args.size());
3446 Expr **MyArgs = getArgs();
3447 for (unsigned I = 0; I != Args.size(); ++I) {
3448 if (Args[I]->isTypeDependent())
3449 ExprBits.TypeDependent = true;
3450 if (Args[I]->isValueDependent())
3451 ExprBits.ValueDependent = true;
3452 if (Args[I]->isInstantiationDependent())
3453 ExprBits.InstantiationDependent = true;
3454 if (Args[I]->containsUnexpandedParameterPack())
3455 ExprBits.ContainsUnexpandedParameterPack = true;
3456
3457 MyArgs[I] = Args[I];
3458 }
3459
3460 SelLocsKind = SelLocsK;
3461 if (!isImplicit()) {
3462 if (SelLocsK == SelLoc_NonStandard)
3463 std::copy(SelLocs.begin(), SelLocs.end(), getStoredSelLocs());
3464 }
3465 }
3466
Create(const ASTContext & Context,QualType T,ExprValueKind VK,SourceLocation LBracLoc,SourceLocation SuperLoc,bool IsInstanceSuper,QualType SuperType,Selector Sel,ArrayRef<SourceLocation> SelLocs,ObjCMethodDecl * Method,ArrayRef<Expr * > Args,SourceLocation RBracLoc,bool isImplicit)3467 ObjCMessageExpr *ObjCMessageExpr::Create(const ASTContext &Context, QualType T,
3468 ExprValueKind VK,
3469 SourceLocation LBracLoc,
3470 SourceLocation SuperLoc,
3471 bool IsInstanceSuper,
3472 QualType SuperType,
3473 Selector Sel,
3474 ArrayRef<SourceLocation> SelLocs,
3475 ObjCMethodDecl *Method,
3476 ArrayRef<Expr *> Args,
3477 SourceLocation RBracLoc,
3478 bool isImplicit) {
3479 assert((!SelLocs.empty() || isImplicit) &&
3480 "No selector locs for non-implicit message");
3481 ObjCMessageExpr *Mem;
3482 SelectorLocationsKind SelLocsK = SelectorLocationsKind();
3483 if (isImplicit)
3484 Mem = alloc(Context, Args.size(), 0);
3485 else
3486 Mem = alloc(Context, Args, RBracLoc, SelLocs, Sel, SelLocsK);
3487 return new (Mem) ObjCMessageExpr(T, VK, LBracLoc, SuperLoc, IsInstanceSuper,
3488 SuperType, Sel, SelLocs, SelLocsK,
3489 Method, Args, RBracLoc, isImplicit);
3490 }
3491
Create(const ASTContext & Context,QualType T,ExprValueKind VK,SourceLocation LBracLoc,TypeSourceInfo * Receiver,Selector Sel,ArrayRef<SourceLocation> SelLocs,ObjCMethodDecl * Method,ArrayRef<Expr * > Args,SourceLocation RBracLoc,bool isImplicit)3492 ObjCMessageExpr *ObjCMessageExpr::Create(const ASTContext &Context, QualType T,
3493 ExprValueKind VK,
3494 SourceLocation LBracLoc,
3495 TypeSourceInfo *Receiver,
3496 Selector Sel,
3497 ArrayRef<SourceLocation> SelLocs,
3498 ObjCMethodDecl *Method,
3499 ArrayRef<Expr *> Args,
3500 SourceLocation RBracLoc,
3501 bool isImplicit) {
3502 assert((!SelLocs.empty() || isImplicit) &&
3503 "No selector locs for non-implicit message");
3504 ObjCMessageExpr *Mem;
3505 SelectorLocationsKind SelLocsK = SelectorLocationsKind();
3506 if (isImplicit)
3507 Mem = alloc(Context, Args.size(), 0);
3508 else
3509 Mem = alloc(Context, Args, RBracLoc, SelLocs, Sel, SelLocsK);
3510 return new (Mem) ObjCMessageExpr(T, VK, LBracLoc, Receiver, Sel,
3511 SelLocs, SelLocsK, Method, Args, RBracLoc,
3512 isImplicit);
3513 }
3514
Create(const ASTContext & Context,QualType T,ExprValueKind VK,SourceLocation LBracLoc,Expr * Receiver,Selector Sel,ArrayRef<SourceLocation> SelLocs,ObjCMethodDecl * Method,ArrayRef<Expr * > Args,SourceLocation RBracLoc,bool isImplicit)3515 ObjCMessageExpr *ObjCMessageExpr::Create(const ASTContext &Context, QualType T,
3516 ExprValueKind VK,
3517 SourceLocation LBracLoc,
3518 Expr *Receiver,
3519 Selector Sel,
3520 ArrayRef<SourceLocation> SelLocs,
3521 ObjCMethodDecl *Method,
3522 ArrayRef<Expr *> Args,
3523 SourceLocation RBracLoc,
3524 bool isImplicit) {
3525 assert((!SelLocs.empty() || isImplicit) &&
3526 "No selector locs for non-implicit message");
3527 ObjCMessageExpr *Mem;
3528 SelectorLocationsKind SelLocsK = SelectorLocationsKind();
3529 if (isImplicit)
3530 Mem = alloc(Context, Args.size(), 0);
3531 else
3532 Mem = alloc(Context, Args, RBracLoc, SelLocs, Sel, SelLocsK);
3533 return new (Mem) ObjCMessageExpr(T, VK, LBracLoc, Receiver, Sel,
3534 SelLocs, SelLocsK, Method, Args, RBracLoc,
3535 isImplicit);
3536 }
3537
CreateEmpty(const ASTContext & Context,unsigned NumArgs,unsigned NumStoredSelLocs)3538 ObjCMessageExpr *ObjCMessageExpr::CreateEmpty(const ASTContext &Context,
3539 unsigned NumArgs,
3540 unsigned NumStoredSelLocs) {
3541 ObjCMessageExpr *Mem = alloc(Context, NumArgs, NumStoredSelLocs);
3542 return new (Mem) ObjCMessageExpr(EmptyShell(), NumArgs);
3543 }
3544
alloc(const ASTContext & C,ArrayRef<Expr * > Args,SourceLocation RBraceLoc,ArrayRef<SourceLocation> SelLocs,Selector Sel,SelectorLocationsKind & SelLocsK)3545 ObjCMessageExpr *ObjCMessageExpr::alloc(const ASTContext &C,
3546 ArrayRef<Expr *> Args,
3547 SourceLocation RBraceLoc,
3548 ArrayRef<SourceLocation> SelLocs,
3549 Selector Sel,
3550 SelectorLocationsKind &SelLocsK) {
3551 SelLocsK = hasStandardSelectorLocs(Sel, SelLocs, Args, RBraceLoc);
3552 unsigned NumStoredSelLocs = (SelLocsK == SelLoc_NonStandard) ? SelLocs.size()
3553 : 0;
3554 return alloc(C, Args.size(), NumStoredSelLocs);
3555 }
3556
alloc(const ASTContext & C,unsigned NumArgs,unsigned NumStoredSelLocs)3557 ObjCMessageExpr *ObjCMessageExpr::alloc(const ASTContext &C,
3558 unsigned NumArgs,
3559 unsigned NumStoredSelLocs) {
3560 unsigned Size = sizeof(ObjCMessageExpr) + sizeof(void *) +
3561 NumArgs * sizeof(Expr *) + NumStoredSelLocs * sizeof(SourceLocation);
3562 return (ObjCMessageExpr *)C.Allocate(Size,
3563 llvm::AlignOf<ObjCMessageExpr>::Alignment);
3564 }
3565
getSelectorLocs(SmallVectorImpl<SourceLocation> & SelLocs) const3566 void ObjCMessageExpr::getSelectorLocs(
3567 SmallVectorImpl<SourceLocation> &SelLocs) const {
3568 for (unsigned i = 0, e = getNumSelectorLocs(); i != e; ++i)
3569 SelLocs.push_back(getSelectorLoc(i));
3570 }
3571
getReceiverRange() const3572 SourceRange ObjCMessageExpr::getReceiverRange() const {
3573 switch (getReceiverKind()) {
3574 case Instance:
3575 return getInstanceReceiver()->getSourceRange();
3576
3577 case Class:
3578 return getClassReceiverTypeInfo()->getTypeLoc().getSourceRange();
3579
3580 case SuperInstance:
3581 case SuperClass:
3582 return getSuperLoc();
3583 }
3584
3585 llvm_unreachable("Invalid ReceiverKind!");
3586 }
3587
getSelector() const3588 Selector ObjCMessageExpr::getSelector() const {
3589 if (HasMethod)
3590 return reinterpret_cast<const ObjCMethodDecl *>(SelectorOrMethod)
3591 ->getSelector();
3592 return Selector(SelectorOrMethod);
3593 }
3594
getReceiverType() const3595 QualType ObjCMessageExpr::getReceiverType() const {
3596 switch (getReceiverKind()) {
3597 case Instance:
3598 return getInstanceReceiver()->getType();
3599 case Class:
3600 return getClassReceiver();
3601 case SuperInstance:
3602 case SuperClass:
3603 return getSuperType();
3604 }
3605
3606 llvm_unreachable("unexpected receiver kind");
3607 }
3608
getReceiverInterface() const3609 ObjCInterfaceDecl *ObjCMessageExpr::getReceiverInterface() const {
3610 QualType T = getReceiverType();
3611
3612 if (const ObjCObjectPointerType *Ptr = T->getAs<ObjCObjectPointerType>())
3613 return Ptr->getInterfaceDecl();
3614
3615 if (const ObjCObjectType *Ty = T->getAs<ObjCObjectType>())
3616 return Ty->getInterface();
3617
3618 return nullptr;
3619 }
3620
getBridgeKindName() const3621 StringRef ObjCBridgedCastExpr::getBridgeKindName() const {
3622 switch (getBridgeKind()) {
3623 case OBC_Bridge:
3624 return "__bridge";
3625 case OBC_BridgeTransfer:
3626 return "__bridge_transfer";
3627 case OBC_BridgeRetained:
3628 return "__bridge_retained";
3629 }
3630
3631 llvm_unreachable("Invalid BridgeKind!");
3632 }
3633
ShuffleVectorExpr(const ASTContext & C,ArrayRef<Expr * > args,QualType Type,SourceLocation BLoc,SourceLocation RP)3634 ShuffleVectorExpr::ShuffleVectorExpr(const ASTContext &C, ArrayRef<Expr*> args,
3635 QualType Type, SourceLocation BLoc,
3636 SourceLocation RP)
3637 : Expr(ShuffleVectorExprClass, Type, VK_RValue, OK_Ordinary,
3638 Type->isDependentType(), Type->isDependentType(),
3639 Type->isInstantiationDependentType(),
3640 Type->containsUnexpandedParameterPack()),
3641 BuiltinLoc(BLoc), RParenLoc(RP), NumExprs(args.size())
3642 {
3643 SubExprs = new (C) Stmt*[args.size()];
3644 for (unsigned i = 0; i != args.size(); i++) {
3645 if (args[i]->isTypeDependent())
3646 ExprBits.TypeDependent = true;
3647 if (args[i]->isValueDependent())
3648 ExprBits.ValueDependent = true;
3649 if (args[i]->isInstantiationDependent())
3650 ExprBits.InstantiationDependent = true;
3651 if (args[i]->containsUnexpandedParameterPack())
3652 ExprBits.ContainsUnexpandedParameterPack = true;
3653
3654 SubExprs[i] = args[i];
3655 }
3656 }
3657
setExprs(const ASTContext & C,ArrayRef<Expr * > Exprs)3658 void ShuffleVectorExpr::setExprs(const ASTContext &C, ArrayRef<Expr *> Exprs) {
3659 if (SubExprs) C.Deallocate(SubExprs);
3660
3661 this->NumExprs = Exprs.size();
3662 SubExprs = new (C) Stmt*[NumExprs];
3663 memcpy(SubExprs, Exprs.data(), sizeof(Expr *) * Exprs.size());
3664 }
3665
GenericSelectionExpr(const ASTContext & Context,SourceLocation GenericLoc,Expr * ControllingExpr,ArrayRef<TypeSourceInfo * > AssocTypes,ArrayRef<Expr * > AssocExprs,SourceLocation DefaultLoc,SourceLocation RParenLoc,bool ContainsUnexpandedParameterPack,unsigned ResultIndex)3666 GenericSelectionExpr::GenericSelectionExpr(const ASTContext &Context,
3667 SourceLocation GenericLoc, Expr *ControllingExpr,
3668 ArrayRef<TypeSourceInfo*> AssocTypes,
3669 ArrayRef<Expr*> AssocExprs,
3670 SourceLocation DefaultLoc,
3671 SourceLocation RParenLoc,
3672 bool ContainsUnexpandedParameterPack,
3673 unsigned ResultIndex)
3674 : Expr(GenericSelectionExprClass,
3675 AssocExprs[ResultIndex]->getType(),
3676 AssocExprs[ResultIndex]->getValueKind(),
3677 AssocExprs[ResultIndex]->getObjectKind(),
3678 AssocExprs[ResultIndex]->isTypeDependent(),
3679 AssocExprs[ResultIndex]->isValueDependent(),
3680 AssocExprs[ResultIndex]->isInstantiationDependent(),
3681 ContainsUnexpandedParameterPack),
3682 AssocTypes(new (Context) TypeSourceInfo*[AssocTypes.size()]),
3683 SubExprs(new (Context) Stmt*[END_EXPR+AssocExprs.size()]),
3684 NumAssocs(AssocExprs.size()), ResultIndex(ResultIndex),
3685 GenericLoc(GenericLoc), DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) {
3686 SubExprs[CONTROLLING] = ControllingExpr;
3687 assert(AssocTypes.size() == AssocExprs.size());
3688 std::copy(AssocTypes.begin(), AssocTypes.end(), this->AssocTypes);
3689 std::copy(AssocExprs.begin(), AssocExprs.end(), SubExprs+END_EXPR);
3690 }
3691
GenericSelectionExpr(const ASTContext & Context,SourceLocation GenericLoc,Expr * ControllingExpr,ArrayRef<TypeSourceInfo * > AssocTypes,ArrayRef<Expr * > AssocExprs,SourceLocation DefaultLoc,SourceLocation RParenLoc,bool ContainsUnexpandedParameterPack)3692 GenericSelectionExpr::GenericSelectionExpr(const ASTContext &Context,
3693 SourceLocation GenericLoc, Expr *ControllingExpr,
3694 ArrayRef<TypeSourceInfo*> AssocTypes,
3695 ArrayRef<Expr*> AssocExprs,
3696 SourceLocation DefaultLoc,
3697 SourceLocation RParenLoc,
3698 bool ContainsUnexpandedParameterPack)
3699 : Expr(GenericSelectionExprClass,
3700 Context.DependentTy,
3701 VK_RValue,
3702 OK_Ordinary,
3703 /*isTypeDependent=*/true,
3704 /*isValueDependent=*/true,
3705 /*isInstantiationDependent=*/true,
3706 ContainsUnexpandedParameterPack),
3707 AssocTypes(new (Context) TypeSourceInfo*[AssocTypes.size()]),
3708 SubExprs(new (Context) Stmt*[END_EXPR+AssocExprs.size()]),
3709 NumAssocs(AssocExprs.size()), ResultIndex(-1U), GenericLoc(GenericLoc),
3710 DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) {
3711 SubExprs[CONTROLLING] = ControllingExpr;
3712 assert(AssocTypes.size() == AssocExprs.size());
3713 std::copy(AssocTypes.begin(), AssocTypes.end(), this->AssocTypes);
3714 std::copy(AssocExprs.begin(), AssocExprs.end(), SubExprs+END_EXPR);
3715 }
3716
3717 //===----------------------------------------------------------------------===//
3718 // DesignatedInitExpr
3719 //===----------------------------------------------------------------------===//
3720
getFieldName() const3721 IdentifierInfo *DesignatedInitExpr::Designator::getFieldName() const {
3722 assert(Kind == FieldDesignator && "Only valid on a field designator");
3723 if (Field.NameOrField & 0x01)
3724 return reinterpret_cast<IdentifierInfo *>(Field.NameOrField&~0x01);
3725 else
3726 return getField()->getIdentifier();
3727 }
3728
DesignatedInitExpr(const ASTContext & C,QualType Ty,unsigned NumDesignators,const Designator * Designators,SourceLocation EqualOrColonLoc,bool GNUSyntax,ArrayRef<Expr * > IndexExprs,Expr * Init)3729 DesignatedInitExpr::DesignatedInitExpr(const ASTContext &C, QualType Ty,
3730 unsigned NumDesignators,
3731 const Designator *Designators,
3732 SourceLocation EqualOrColonLoc,
3733 bool GNUSyntax,
3734 ArrayRef<Expr*> IndexExprs,
3735 Expr *Init)
3736 : Expr(DesignatedInitExprClass, Ty,
3737 Init->getValueKind(), Init->getObjectKind(),
3738 Init->isTypeDependent(), Init->isValueDependent(),
3739 Init->isInstantiationDependent(),
3740 Init->containsUnexpandedParameterPack()),
3741 EqualOrColonLoc(EqualOrColonLoc), GNUSyntax(GNUSyntax),
3742 NumDesignators(NumDesignators), NumSubExprs(IndexExprs.size() + 1) {
3743 this->Designators = new (C) Designator[NumDesignators];
3744
3745 // Record the initializer itself.
3746 child_range Child = children();
3747 *Child++ = Init;
3748
3749 // Copy the designators and their subexpressions, computing
3750 // value-dependence along the way.
3751 unsigned IndexIdx = 0;
3752 for (unsigned I = 0; I != NumDesignators; ++I) {
3753 this->Designators[I] = Designators[I];
3754
3755 if (this->Designators[I].isArrayDesignator()) {
3756 // Compute type- and value-dependence.
3757 Expr *Index = IndexExprs[IndexIdx];
3758 if (Index->isTypeDependent() || Index->isValueDependent())
3759 ExprBits.ValueDependent = true;
3760 if (Index->isInstantiationDependent())
3761 ExprBits.InstantiationDependent = true;
3762 // Propagate unexpanded parameter packs.
3763 if (Index->containsUnexpandedParameterPack())
3764 ExprBits.ContainsUnexpandedParameterPack = true;
3765
3766 // Copy the index expressions into permanent storage.
3767 *Child++ = IndexExprs[IndexIdx++];
3768 } else if (this->Designators[I].isArrayRangeDesignator()) {
3769 // Compute type- and value-dependence.
3770 Expr *Start = IndexExprs[IndexIdx];
3771 Expr *End = IndexExprs[IndexIdx + 1];
3772 if (Start->isTypeDependent() || Start->isValueDependent() ||
3773 End->isTypeDependent() || End->isValueDependent()) {
3774 ExprBits.ValueDependent = true;
3775 ExprBits.InstantiationDependent = true;
3776 } else if (Start->isInstantiationDependent() ||
3777 End->isInstantiationDependent()) {
3778 ExprBits.InstantiationDependent = true;
3779 }
3780
3781 // Propagate unexpanded parameter packs.
3782 if (Start->containsUnexpandedParameterPack() ||
3783 End->containsUnexpandedParameterPack())
3784 ExprBits.ContainsUnexpandedParameterPack = true;
3785
3786 // Copy the start/end expressions into permanent storage.
3787 *Child++ = IndexExprs[IndexIdx++];
3788 *Child++ = IndexExprs[IndexIdx++];
3789 }
3790 }
3791
3792 assert(IndexIdx == IndexExprs.size() && "Wrong number of index expressions");
3793 }
3794
3795 DesignatedInitExpr *
Create(const ASTContext & C,Designator * Designators,unsigned NumDesignators,ArrayRef<Expr * > IndexExprs,SourceLocation ColonOrEqualLoc,bool UsesColonSyntax,Expr * Init)3796 DesignatedInitExpr::Create(const ASTContext &C, Designator *Designators,
3797 unsigned NumDesignators,
3798 ArrayRef<Expr*> IndexExprs,
3799 SourceLocation ColonOrEqualLoc,
3800 bool UsesColonSyntax, Expr *Init) {
3801 void *Mem = C.Allocate(sizeof(DesignatedInitExpr) +
3802 sizeof(Stmt *) * (IndexExprs.size() + 1), 8);
3803 return new (Mem) DesignatedInitExpr(C, C.VoidTy, NumDesignators, Designators,
3804 ColonOrEqualLoc, UsesColonSyntax,
3805 IndexExprs, Init);
3806 }
3807
CreateEmpty(const ASTContext & C,unsigned NumIndexExprs)3808 DesignatedInitExpr *DesignatedInitExpr::CreateEmpty(const ASTContext &C,
3809 unsigned NumIndexExprs) {
3810 void *Mem = C.Allocate(sizeof(DesignatedInitExpr) +
3811 sizeof(Stmt *) * (NumIndexExprs + 1), 8);
3812 return new (Mem) DesignatedInitExpr(NumIndexExprs + 1);
3813 }
3814
setDesignators(const ASTContext & C,const Designator * Desigs,unsigned NumDesigs)3815 void DesignatedInitExpr::setDesignators(const ASTContext &C,
3816 const Designator *Desigs,
3817 unsigned NumDesigs) {
3818 Designators = new (C) Designator[NumDesigs];
3819 NumDesignators = NumDesigs;
3820 for (unsigned I = 0; I != NumDesigs; ++I)
3821 Designators[I] = Desigs[I];
3822 }
3823
getDesignatorsSourceRange() const3824 SourceRange DesignatedInitExpr::getDesignatorsSourceRange() const {
3825 DesignatedInitExpr *DIE = const_cast<DesignatedInitExpr*>(this);
3826 if (size() == 1)
3827 return DIE->getDesignator(0)->getSourceRange();
3828 return SourceRange(DIE->getDesignator(0)->getLocStart(),
3829 DIE->getDesignator(size()-1)->getLocEnd());
3830 }
3831
getLocStart() const3832 SourceLocation DesignatedInitExpr::getLocStart() const {
3833 SourceLocation StartLoc;
3834 Designator &First =
3835 *const_cast<DesignatedInitExpr*>(this)->designators_begin();
3836 if (First.isFieldDesignator()) {
3837 if (GNUSyntax)
3838 StartLoc = SourceLocation::getFromRawEncoding(First.Field.FieldLoc);
3839 else
3840 StartLoc = SourceLocation::getFromRawEncoding(First.Field.DotLoc);
3841 } else
3842 StartLoc =
3843 SourceLocation::getFromRawEncoding(First.ArrayOrRange.LBracketLoc);
3844 return StartLoc;
3845 }
3846
getLocEnd() const3847 SourceLocation DesignatedInitExpr::getLocEnd() const {
3848 return getInit()->getLocEnd();
3849 }
3850
getArrayIndex(const Designator & D) const3851 Expr *DesignatedInitExpr::getArrayIndex(const Designator& D) const {
3852 assert(D.Kind == Designator::ArrayDesignator && "Requires array designator");
3853 Stmt *const *SubExprs = reinterpret_cast<Stmt *const *>(this + 1);
3854 return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1));
3855 }
3856
getArrayRangeStart(const Designator & D) const3857 Expr *DesignatedInitExpr::getArrayRangeStart(const Designator &D) const {
3858 assert(D.Kind == Designator::ArrayRangeDesignator &&
3859 "Requires array range designator");
3860 Stmt *const *SubExprs = reinterpret_cast<Stmt *const *>(this + 1);
3861 return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1));
3862 }
3863
getArrayRangeEnd(const Designator & D) const3864 Expr *DesignatedInitExpr::getArrayRangeEnd(const Designator &D) const {
3865 assert(D.Kind == Designator::ArrayRangeDesignator &&
3866 "Requires array range designator");
3867 Stmt *const *SubExprs = reinterpret_cast<Stmt *const *>(this + 1);
3868 return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 2));
3869 }
3870
3871 /// \brief Replaces the designator at index @p Idx with the series
3872 /// of designators in [First, Last).
ExpandDesignator(const ASTContext & C,unsigned Idx,const Designator * First,const Designator * Last)3873 void DesignatedInitExpr::ExpandDesignator(const ASTContext &C, unsigned Idx,
3874 const Designator *First,
3875 const Designator *Last) {
3876 unsigned NumNewDesignators = Last - First;
3877 if (NumNewDesignators == 0) {
3878 std::copy_backward(Designators + Idx + 1,
3879 Designators + NumDesignators,
3880 Designators + Idx);
3881 --NumNewDesignators;
3882 return;
3883 } else if (NumNewDesignators == 1) {
3884 Designators[Idx] = *First;
3885 return;
3886 }
3887
3888 Designator *NewDesignators
3889 = new (C) Designator[NumDesignators - 1 + NumNewDesignators];
3890 std::copy(Designators, Designators + Idx, NewDesignators);
3891 std::copy(First, Last, NewDesignators + Idx);
3892 std::copy(Designators + Idx + 1, Designators + NumDesignators,
3893 NewDesignators + Idx + NumNewDesignators);
3894 Designators = NewDesignators;
3895 NumDesignators = NumDesignators - 1 + NumNewDesignators;
3896 }
3897
ParenListExpr(const ASTContext & C,SourceLocation lparenloc,ArrayRef<Expr * > exprs,SourceLocation rparenloc)3898 ParenListExpr::ParenListExpr(const ASTContext& C, SourceLocation lparenloc,
3899 ArrayRef<Expr*> exprs,
3900 SourceLocation rparenloc)
3901 : Expr(ParenListExprClass, QualType(), VK_RValue, OK_Ordinary,
3902 false, false, false, false),
3903 NumExprs(exprs.size()), LParenLoc(lparenloc), RParenLoc(rparenloc) {
3904 Exprs = new (C) Stmt*[exprs.size()];
3905 for (unsigned i = 0; i != exprs.size(); ++i) {
3906 if (exprs[i]->isTypeDependent())
3907 ExprBits.TypeDependent = true;
3908 if (exprs[i]->isValueDependent())
3909 ExprBits.ValueDependent = true;
3910 if (exprs[i]->isInstantiationDependent())
3911 ExprBits.InstantiationDependent = true;
3912 if (exprs[i]->containsUnexpandedParameterPack())
3913 ExprBits.ContainsUnexpandedParameterPack = true;
3914
3915 Exprs[i] = exprs[i];
3916 }
3917 }
3918
findInCopyConstruct(const Expr * e)3919 const OpaqueValueExpr *OpaqueValueExpr::findInCopyConstruct(const Expr *e) {
3920 if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(e))
3921 e = ewc->getSubExpr();
3922 if (const MaterializeTemporaryExpr *m = dyn_cast<MaterializeTemporaryExpr>(e))
3923 e = m->GetTemporaryExpr();
3924 e = cast<CXXConstructExpr>(e)->getArg(0);
3925 while (const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(e))
3926 e = ice->getSubExpr();
3927 return cast<OpaqueValueExpr>(e);
3928 }
3929
Create(const ASTContext & Context,EmptyShell sh,unsigned numSemanticExprs)3930 PseudoObjectExpr *PseudoObjectExpr::Create(const ASTContext &Context,
3931 EmptyShell sh,
3932 unsigned numSemanticExprs) {
3933 void *buffer = Context.Allocate(sizeof(PseudoObjectExpr) +
3934 (1 + numSemanticExprs) * sizeof(Expr*),
3935 llvm::alignOf<PseudoObjectExpr>());
3936 return new(buffer) PseudoObjectExpr(sh, numSemanticExprs);
3937 }
3938
PseudoObjectExpr(EmptyShell shell,unsigned numSemanticExprs)3939 PseudoObjectExpr::PseudoObjectExpr(EmptyShell shell, unsigned numSemanticExprs)
3940 : Expr(PseudoObjectExprClass, shell) {
3941 PseudoObjectExprBits.NumSubExprs = numSemanticExprs + 1;
3942 }
3943
Create(const ASTContext & C,Expr * syntax,ArrayRef<Expr * > semantics,unsigned resultIndex)3944 PseudoObjectExpr *PseudoObjectExpr::Create(const ASTContext &C, Expr *syntax,
3945 ArrayRef<Expr*> semantics,
3946 unsigned resultIndex) {
3947 assert(syntax && "no syntactic expression!");
3948 assert(semantics.size() && "no semantic expressions!");
3949
3950 QualType type;
3951 ExprValueKind VK;
3952 if (resultIndex == NoResult) {
3953 type = C.VoidTy;
3954 VK = VK_RValue;
3955 } else {
3956 assert(resultIndex < semantics.size());
3957 type = semantics[resultIndex]->getType();
3958 VK = semantics[resultIndex]->getValueKind();
3959 assert(semantics[resultIndex]->getObjectKind() == OK_Ordinary);
3960 }
3961
3962 void *buffer = C.Allocate(sizeof(PseudoObjectExpr) +
3963 (1 + semantics.size()) * sizeof(Expr*),
3964 llvm::alignOf<PseudoObjectExpr>());
3965 return new(buffer) PseudoObjectExpr(type, VK, syntax, semantics,
3966 resultIndex);
3967 }
3968
PseudoObjectExpr(QualType type,ExprValueKind VK,Expr * syntax,ArrayRef<Expr * > semantics,unsigned resultIndex)3969 PseudoObjectExpr::PseudoObjectExpr(QualType type, ExprValueKind VK,
3970 Expr *syntax, ArrayRef<Expr*> semantics,
3971 unsigned resultIndex)
3972 : Expr(PseudoObjectExprClass, type, VK, OK_Ordinary,
3973 /*filled in at end of ctor*/ false, false, false, false) {
3974 PseudoObjectExprBits.NumSubExprs = semantics.size() + 1;
3975 PseudoObjectExprBits.ResultIndex = resultIndex + 1;
3976
3977 for (unsigned i = 0, e = semantics.size() + 1; i != e; ++i) {
3978 Expr *E = (i == 0 ? syntax : semantics[i-1]);
3979 getSubExprsBuffer()[i] = E;
3980
3981 if (E->isTypeDependent())
3982 ExprBits.TypeDependent = true;
3983 if (E->isValueDependent())
3984 ExprBits.ValueDependent = true;
3985 if (E->isInstantiationDependent())
3986 ExprBits.InstantiationDependent = true;
3987 if (E->containsUnexpandedParameterPack())
3988 ExprBits.ContainsUnexpandedParameterPack = true;
3989
3990 if (isa<OpaqueValueExpr>(E))
3991 assert(cast<OpaqueValueExpr>(E)->getSourceExpr() != nullptr &&
3992 "opaque-value semantic expressions for pseudo-object "
3993 "operations must have sources");
3994 }
3995 }
3996
3997 //===----------------------------------------------------------------------===//
3998 // ExprIterator.
3999 //===----------------------------------------------------------------------===//
4000
operator [](size_t idx)4001 Expr* ExprIterator::operator[](size_t idx) { return cast<Expr>(I[idx]); }
operator *() const4002 Expr* ExprIterator::operator*() const { return cast<Expr>(*I); }
operator ->() const4003 Expr* ExprIterator::operator->() const { return cast<Expr>(*I); }
operator [](size_t idx) const4004 const Expr* ConstExprIterator::operator[](size_t idx) const {
4005 return cast<Expr>(I[idx]);
4006 }
operator *() const4007 const Expr* ConstExprIterator::operator*() const { return cast<Expr>(*I); }
operator ->() const4008 const Expr* ConstExprIterator::operator->() const { return cast<Expr>(*I); }
4009
4010 //===----------------------------------------------------------------------===//
4011 // Child Iterators for iterating over subexpressions/substatements
4012 //===----------------------------------------------------------------------===//
4013
4014 // UnaryExprOrTypeTraitExpr
children()4015 Stmt::child_range UnaryExprOrTypeTraitExpr::children() {
4016 // If this is of a type and the type is a VLA type (and not a typedef), the
4017 // size expression of the VLA needs to be treated as an executable expression.
4018 // Why isn't this weirdness documented better in StmtIterator?
4019 if (isArgumentType()) {
4020 if (const VariableArrayType* T = dyn_cast<VariableArrayType>(
4021 getArgumentType().getTypePtr()))
4022 return child_range(child_iterator(T), child_iterator());
4023 return child_range();
4024 }
4025 return child_range(&Argument.Ex, &Argument.Ex + 1);
4026 }
4027
4028 // ObjCMessageExpr
children()4029 Stmt::child_range ObjCMessageExpr::children() {
4030 Stmt **begin;
4031 if (getReceiverKind() == Instance)
4032 begin = reinterpret_cast<Stmt **>(this + 1);
4033 else
4034 begin = reinterpret_cast<Stmt **>(getArgs());
4035 return child_range(begin,
4036 reinterpret_cast<Stmt **>(getArgs() + getNumArgs()));
4037 }
4038
ObjCArrayLiteral(ArrayRef<Expr * > Elements,QualType T,ObjCMethodDecl * Method,SourceRange SR)4039 ObjCArrayLiteral::ObjCArrayLiteral(ArrayRef<Expr *> Elements,
4040 QualType T, ObjCMethodDecl *Method,
4041 SourceRange SR)
4042 : Expr(ObjCArrayLiteralClass, T, VK_RValue, OK_Ordinary,
4043 false, false, false, false),
4044 NumElements(Elements.size()), Range(SR), ArrayWithObjectsMethod(Method)
4045 {
4046 Expr **SaveElements = getElements();
4047 for (unsigned I = 0, N = Elements.size(); I != N; ++I) {
4048 if (Elements[I]->isTypeDependent() || Elements[I]->isValueDependent())
4049 ExprBits.ValueDependent = true;
4050 if (Elements[I]->isInstantiationDependent())
4051 ExprBits.InstantiationDependent = true;
4052 if (Elements[I]->containsUnexpandedParameterPack())
4053 ExprBits.ContainsUnexpandedParameterPack = true;
4054
4055 SaveElements[I] = Elements[I];
4056 }
4057 }
4058
Create(const ASTContext & C,ArrayRef<Expr * > Elements,QualType T,ObjCMethodDecl * Method,SourceRange SR)4059 ObjCArrayLiteral *ObjCArrayLiteral::Create(const ASTContext &C,
4060 ArrayRef<Expr *> Elements,
4061 QualType T, ObjCMethodDecl * Method,
4062 SourceRange SR) {
4063 void *Mem = C.Allocate(sizeof(ObjCArrayLiteral)
4064 + Elements.size() * sizeof(Expr *));
4065 return new (Mem) ObjCArrayLiteral(Elements, T, Method, SR);
4066 }
4067
CreateEmpty(const ASTContext & C,unsigned NumElements)4068 ObjCArrayLiteral *ObjCArrayLiteral::CreateEmpty(const ASTContext &C,
4069 unsigned NumElements) {
4070
4071 void *Mem = C.Allocate(sizeof(ObjCArrayLiteral)
4072 + NumElements * sizeof(Expr *));
4073 return new (Mem) ObjCArrayLiteral(EmptyShell(), NumElements);
4074 }
4075
ObjCDictionaryLiteral(ArrayRef<ObjCDictionaryElement> VK,bool HasPackExpansions,QualType T,ObjCMethodDecl * method,SourceRange SR)4076 ObjCDictionaryLiteral::ObjCDictionaryLiteral(
4077 ArrayRef<ObjCDictionaryElement> VK,
4078 bool HasPackExpansions,
4079 QualType T, ObjCMethodDecl *method,
4080 SourceRange SR)
4081 : Expr(ObjCDictionaryLiteralClass, T, VK_RValue, OK_Ordinary, false, false,
4082 false, false),
4083 NumElements(VK.size()), HasPackExpansions(HasPackExpansions), Range(SR),
4084 DictWithObjectsMethod(method)
4085 {
4086 KeyValuePair *KeyValues = getKeyValues();
4087 ExpansionData *Expansions = getExpansionData();
4088 for (unsigned I = 0; I < NumElements; I++) {
4089 if (VK[I].Key->isTypeDependent() || VK[I].Key->isValueDependent() ||
4090 VK[I].Value->isTypeDependent() || VK[I].Value->isValueDependent())
4091 ExprBits.ValueDependent = true;
4092 if (VK[I].Key->isInstantiationDependent() ||
4093 VK[I].Value->isInstantiationDependent())
4094 ExprBits.InstantiationDependent = true;
4095 if (VK[I].EllipsisLoc.isInvalid() &&
4096 (VK[I].Key->containsUnexpandedParameterPack() ||
4097 VK[I].Value->containsUnexpandedParameterPack()))
4098 ExprBits.ContainsUnexpandedParameterPack = true;
4099
4100 KeyValues[I].Key = VK[I].Key;
4101 KeyValues[I].Value = VK[I].Value;
4102 if (Expansions) {
4103 Expansions[I].EllipsisLoc = VK[I].EllipsisLoc;
4104 if (VK[I].NumExpansions)
4105 Expansions[I].NumExpansionsPlusOne = *VK[I].NumExpansions + 1;
4106 else
4107 Expansions[I].NumExpansionsPlusOne = 0;
4108 }
4109 }
4110 }
4111
4112 ObjCDictionaryLiteral *
Create(const ASTContext & C,ArrayRef<ObjCDictionaryElement> VK,bool HasPackExpansions,QualType T,ObjCMethodDecl * method,SourceRange SR)4113 ObjCDictionaryLiteral::Create(const ASTContext &C,
4114 ArrayRef<ObjCDictionaryElement> VK,
4115 bool HasPackExpansions,
4116 QualType T, ObjCMethodDecl *method,
4117 SourceRange SR) {
4118 unsigned ExpansionsSize = 0;
4119 if (HasPackExpansions)
4120 ExpansionsSize = sizeof(ExpansionData) * VK.size();
4121
4122 void *Mem = C.Allocate(sizeof(ObjCDictionaryLiteral) +
4123 sizeof(KeyValuePair) * VK.size() + ExpansionsSize);
4124 return new (Mem) ObjCDictionaryLiteral(VK, HasPackExpansions, T, method, SR);
4125 }
4126
4127 ObjCDictionaryLiteral *
CreateEmpty(const ASTContext & C,unsigned NumElements,bool HasPackExpansions)4128 ObjCDictionaryLiteral::CreateEmpty(const ASTContext &C, unsigned NumElements,
4129 bool HasPackExpansions) {
4130 unsigned ExpansionsSize = 0;
4131 if (HasPackExpansions)
4132 ExpansionsSize = sizeof(ExpansionData) * NumElements;
4133 void *Mem = C.Allocate(sizeof(ObjCDictionaryLiteral) +
4134 sizeof(KeyValuePair) * NumElements + ExpansionsSize);
4135 return new (Mem) ObjCDictionaryLiteral(EmptyShell(), NumElements,
4136 HasPackExpansions);
4137 }
4138
Create(const ASTContext & C,Expr * base,Expr * key,QualType T,ObjCMethodDecl * getMethod,ObjCMethodDecl * setMethod,SourceLocation RB)4139 ObjCSubscriptRefExpr *ObjCSubscriptRefExpr::Create(const ASTContext &C,
4140 Expr *base,
4141 Expr *key, QualType T,
4142 ObjCMethodDecl *getMethod,
4143 ObjCMethodDecl *setMethod,
4144 SourceLocation RB) {
4145 void *Mem = C.Allocate(sizeof(ObjCSubscriptRefExpr));
4146 return new (Mem) ObjCSubscriptRefExpr(base, key, T, VK_LValue,
4147 OK_ObjCSubscript,
4148 getMethod, setMethod, RB);
4149 }
4150
AtomicExpr(SourceLocation BLoc,ArrayRef<Expr * > args,QualType t,AtomicOp op,SourceLocation RP)4151 AtomicExpr::AtomicExpr(SourceLocation BLoc, ArrayRef<Expr*> args,
4152 QualType t, AtomicOp op, SourceLocation RP)
4153 : Expr(AtomicExprClass, t, VK_RValue, OK_Ordinary,
4154 false, false, false, false),
4155 NumSubExprs(args.size()), BuiltinLoc(BLoc), RParenLoc(RP), Op(op)
4156 {
4157 assert(args.size() == getNumSubExprs(op) && "wrong number of subexpressions");
4158 for (unsigned i = 0; i != args.size(); i++) {
4159 if (args[i]->isTypeDependent())
4160 ExprBits.TypeDependent = true;
4161 if (args[i]->isValueDependent())
4162 ExprBits.ValueDependent = true;
4163 if (args[i]->isInstantiationDependent())
4164 ExprBits.InstantiationDependent = true;
4165 if (args[i]->containsUnexpandedParameterPack())
4166 ExprBits.ContainsUnexpandedParameterPack = true;
4167
4168 SubExprs[i] = args[i];
4169 }
4170 }
4171
getNumSubExprs(AtomicOp Op)4172 unsigned AtomicExpr::getNumSubExprs(AtomicOp Op) {
4173 switch (Op) {
4174 case AO__c11_atomic_init:
4175 case AO__c11_atomic_load:
4176 case AO__atomic_load_n:
4177 return 2;
4178
4179 case AO__c11_atomic_store:
4180 case AO__c11_atomic_exchange:
4181 case AO__atomic_load:
4182 case AO__atomic_store:
4183 case AO__atomic_store_n:
4184 case AO__atomic_exchange_n:
4185 case AO__c11_atomic_fetch_add:
4186 case AO__c11_atomic_fetch_sub:
4187 case AO__c11_atomic_fetch_and:
4188 case AO__c11_atomic_fetch_or:
4189 case AO__c11_atomic_fetch_xor:
4190 case AO__atomic_fetch_add:
4191 case AO__atomic_fetch_sub:
4192 case AO__atomic_fetch_and:
4193 case AO__atomic_fetch_or:
4194 case AO__atomic_fetch_xor:
4195 case AO__atomic_fetch_nand:
4196 case AO__atomic_add_fetch:
4197 case AO__atomic_sub_fetch:
4198 case AO__atomic_and_fetch:
4199 case AO__atomic_or_fetch:
4200 case AO__atomic_xor_fetch:
4201 case AO__atomic_nand_fetch:
4202 return 3;
4203
4204 case AO__atomic_exchange:
4205 return 4;
4206
4207 case AO__c11_atomic_compare_exchange_strong:
4208 case AO__c11_atomic_compare_exchange_weak:
4209 return 5;
4210
4211 case AO__atomic_compare_exchange:
4212 case AO__atomic_compare_exchange_n:
4213 return 6;
4214 }
4215 llvm_unreachable("unknown atomic op");
4216 }
4217