• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright (c) 2013 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #ifndef TOOLS_GN_SCOPE_H_
6 #define TOOLS_GN_SCOPE_H_
7 
8 #include <map>
9 #include <set>
10 
11 #include "base/basictypes.h"
12 #include "base/containers/hash_tables.h"
13 #include "base/memory/ref_counted.h"
14 #include "base/memory/scoped_ptr.h"
15 #include "base/memory/scoped_vector.h"
16 #include "tools/gn/err.h"
17 #include "tools/gn/pattern.h"
18 #include "tools/gn/source_dir.h"
19 #include "tools/gn/value.h"
20 
21 class FunctionCallNode;
22 class ImportManager;
23 class Item;
24 class ParseNode;
25 class Settings;
26 class TargetManager;
27 class Template;
28 
29 // Scope for the script execution.
30 //
31 // Scopes are nested. Writing goes into the toplevel scope, reading checks
32 // values resursively down the stack until a match is found or there are no
33 // more containing scopes.
34 //
35 // A containing scope can be const or non-const. The const containing scope is
36 // used primarily to refer to the master build config which is shared across
37 // many invocations. A const containing scope, however, prevents us from
38 // marking variables "used" which prevents us from issuing errors on unused
39 // variables. So you should use a non-const containing scope whenever possible.
40 class Scope {
41  public:
42   typedef base::hash_map<base::StringPiece, Value> KeyValueMap;
43   // Holds an owning list of scoped_ptrs of Items (since we can't make a vector
44   // of scoped_ptrs).
45   typedef ScopedVector< scoped_ptr<Item> > ItemVector;
46 
47   // Allows code to provide values for built-in variables. This class will
48   // automatically register itself on construction and deregister itself on
49   // destruction.
50   class ProgrammaticProvider {
51    public:
ProgrammaticProvider(Scope * scope)52     ProgrammaticProvider(Scope* scope) : scope_(scope) {
53       scope_->AddProvider(this);
54     }
~ProgrammaticProvider()55     ~ProgrammaticProvider() {
56       scope_->RemoveProvider(this);
57     }
58 
59     // Returns a non-null value if the given value can be programmatically
60     // generated, or NULL if there is none.
61     virtual const Value* GetProgrammaticValue(
62         const base::StringPiece& ident) = 0;
63 
64    protected:
65     Scope* scope_;
66   };
67 
68   // Options for configuring scope merges.
69   struct MergeOptions {
70     // Defaults to all false, which are the things least likely to cause errors.
MergeOptionsMergeOptions71     MergeOptions()
72         : clobber_existing(false),
73           skip_private_vars(false),
74           mark_used(false) {
75     }
76 
77     // When set, all existing avlues in the destination scope will be
78     // overwritten.
79     //
80     // When false, it will be an error to merge a variable into another scope
81     // where a variable with the same name is already set. The exception is
82     // if both of the variables have the same value (which happens if you
83     // somehow multiply import the same file, for example). This case will be
84     // ignored since there is nothing getting lost.
85     bool clobber_existing;
86 
87     // When true, private variables (names beginning with an underscore) will
88     // be copied to the destination scope. When false, private values will be
89     // skipped.
90     bool skip_private_vars;
91 
92     // When set, values copied to the destination scope will be marked as used
93     // so won't trigger an unused variable warning. You want this when doing an
94     // import, for example, or files that don't need a variable from the .gni
95     // file will throw an error.
96     bool mark_used;
97   };
98 
99   // Creates an empty toplevel scope.
100   Scope(const Settings* settings);
101 
102   // Creates a dependent scope.
103   Scope(Scope* parent);
104   Scope(const Scope* parent);
105 
106   ~Scope();
107 
settings()108   const Settings* settings() const { return settings_; }
109 
110   // See the const_/mutable_containing_ var declaraions below. Yes, it's a
111   // bit weird that we can have a const pointer to the "mutable" one.
mutable_containing()112   Scope* mutable_containing() { return mutable_containing_; }
mutable_containing()113   const Scope* mutable_containing() const { return mutable_containing_; }
const_containing()114   const Scope* const_containing() const { return const_containing_; }
containing()115   const Scope* containing() const {
116     return mutable_containing_ ? mutable_containing_ : const_containing_;
117   }
118 
119   // Returns NULL if there's no such value.
120   //
121   // counts_as_used should be set if the variable is being read in a way that
122   // should count for unused variable checking.
123   const Value* GetValue(const base::StringPiece& ident,
124                         bool counts_as_used);
125   const Value* GetValue(const base::StringPiece& ident) const;
126 
127   // Returns the requested value as a mutable one if possible. If the value
128   // is not found in a mutable scope, then returns null. Note that the value
129   // could still exist in a const scope, so GetValue() could still return
130   // non-null in this case.
131   //
132   // Say you have a local scope that then refers to the const root scope from
133   // the master build config. You can't change the values from the master
134   // build config (it's read-only so it can be read from multiple threads
135   // without locking). Read-only operations would work on values from the root
136   // scope, but write operations would only work on values in the derived
137   // scope(s).
138   //
139   // Be careful when calling this. It's not normally correct to modify values,
140   // but you should instead do a new Set each time.
141   //
142   // Consider this code:
143   //   a = 5
144   //    {
145   //       a = 6
146   //    }
147   // The 6 should get set on the nested scope rather than modify the value
148   // in the outer one.
149   Value* GetMutableValue(const base::StringPiece& ident, bool counts_as_used);
150 
151   // Same as GetValue, but if the value exists in a parent scope, we'll copy
152   // it to the current scope. If the return value is non-null, the value is
153   // guaranteed to be set in the current scope. Generatlly this will be used
154   // if the calling code is planning on modifying the value in-place.
155   //
156   // Since this is used when doing read-modifies, we never count this access
157   // as reading the variable, since we assume it will be written to.
158   Value* GetValueForcedToCurrentScope(const base::StringPiece& ident,
159                                       const ParseNode* set_node);
160 
161   // The set_node indicates the statement that caused the set, for displaying
162   // errors later. Returns a pointer to the value in the current scope (a copy
163   // is made for storage).
164   Value* SetValue(const base::StringPiece& ident,
165                   const Value& v,
166                   const ParseNode* set_node);
167 
168   // Removes the value with the given identifier if it exists on the current
169   // scope. This does not search recursive scopes. Does nothing if not found.
170   void RemoveIdentifier(const base::StringPiece& ident);
171 
172   // Removes from this scope all identifiers and templates that are considered
173   // private.
174   void RemovePrivateIdentifiers();
175 
176   // Templates associated with this scope. A template can only be set once, so
177   // AddTemplate will fail and return false if a rule with that name already
178   // exists. GetTemplate returns NULL if the rule doesn't exist, and it will
179   // check all containing scoped rescursively.
180   bool AddTemplate(const std::string& name, const Template* templ);
181   const Template* GetTemplate(const std::string& name) const;
182 
183   // Marks the given identifier as (un)used in the current scope.
184   void MarkUsed(const base::StringPiece& ident);
185   void MarkUnused(const base::StringPiece& ident);
186 
187   // Checks to see if the scope has a var set that hasn't been used. This is
188   // called before replacing the var with a different one. It does not check
189   // containing scopes.
190   //
191   // If the identifier is present but hasnn't been used, return true.
192   bool IsSetButUnused(const base::StringPiece& ident) const;
193 
194   // Checks the scope to see if any values were set but not used, and fills in
195   // the error and returns false if they were.
196   bool CheckForUnusedVars(Err* err) const;
197 
198   // Returns all values set in the current scope, without going to the parent
199   // scopes.
200   void GetCurrentScopeValues(KeyValueMap* output) const;
201 
202   // Copies this scope's values into the destination. Values from the
203   // containing scope(s) (normally shadowed into the current one) will not be
204   // copied, neither will the reference to the containing scope (this is why
205   // it's "non-recursive").
206   //
207   // This is used in different contexts. When generating the error, the given
208   // parse node will be blamed, and the given desc will be used to describe
209   // the operation that doesn't support doing this. For example, desc_for_err
210   // would be "import" when doing an import, and the error string would say
211   // something like "The import contains...".
212   bool NonRecursiveMergeTo(Scope* dest,
213                            const MergeOptions& options,
214                            const ParseNode* node_for_err,
215                            const char* desc_for_err,
216                            Err* err) const;
217 
218   // Constructs a scope that is a copy of the current one. Nested scopes will
219   // be collapsed until we reach a const containing scope. Private values will
220   // be included. The resulting closure will reference the const containing
221   // scope as its containing scope (since we assume the const scope won't
222   // change, we don't have to copy its values).
223   scoped_ptr<Scope> MakeClosure() const;
224 
225   // Makes an empty scope with the given name. Returns NULL if the name is
226   // already set.
227   Scope* MakeTargetDefaults(const std::string& target_type);
228 
229   // Gets the scope associated with the given target name, or null if it hasn't
230   // been set.
231   const Scope* GetTargetDefaults(const std::string& target_type) const;
232 
233   // Filter to apply when the sources variable is assigned. May return NULL.
234   const PatternList* GetSourcesAssignmentFilter() const;
set_sources_assignment_filter(scoped_ptr<PatternList> f)235   void set_sources_assignment_filter(
236       scoped_ptr<PatternList> f) {
237     sources_assignment_filter_ = f.Pass();
238   }
239 
240   // Indicates if we're currently processing the build configuration file.
241   // This is true when processing the config file for any toolchain.
242   //
243   // To set or clear the flag, it must currently be in the opposite state in
244   // the current scope. Note that querying the state of the flag recursively
245   // checks all containing scopes until it reaches the top or finds the flag
246   // set.
247   void SetProcessingBuildConfig();
248   void ClearProcessingBuildConfig();
249   bool IsProcessingBuildConfig() const;
250 
251   // Indicates if we're currently processing an import file.
252   //
253   // See SetProcessingBaseConfig for how flags work.
254   void SetProcessingImport();
255   void ClearProcessingImport();
256   bool IsProcessingImport() const;
257 
258   // The source directory associated with this scope. This will check embedded
259   // scopes until it finds a nonempty source directory. This will default to
260   // an empty dir if no containing scope has a source dir set.
261   const SourceDir& GetSourceDir() const;
set_source_dir(const SourceDir & d)262   void set_source_dir(const SourceDir& d) { source_dir_ = d; }
263 
264   // The item collector is where Items (Targets, Configs, etc.) go that have
265   // been defined. If a scope can generate items, this non-owning pointer will
266   // point to the storage for such items. The creator of this scope will be
267   // responsible for setting up the collector and then dealing with the
268   // collected items once execution of the context is complete.
269   //
270   // The items in a scope are collected as we go and then dispatched at the end
271   // of execution of a scope so that we can query the previously-generated
272   // targets (like getting the outputs).
273   //
274   // This can be null if the current scope can not generate items (like for
275   // imports and such).
276   //
277   // When retrieving the collector, the non-const scopes are recursively
278   // queried. The collector is not copied for closures, etc.
set_item_collector(ItemVector * collector)279   void set_item_collector(ItemVector* collector) {
280     item_collector_ = collector;
281   }
282   ItemVector* GetItemCollector();
283 
284   // Properties are opaque pointers that code can use to set state on a Scope
285   // that it can retrieve later.
286   //
287   // The key should be a pointer to some use-case-specific object (to avoid
288   // collisions, otherwise it doesn't matter). Memory management is up to the
289   // setter. Setting the value to NULL will delete the property.
290   //
291   // Getting a property recursively searches all scopes, and the optional
292   // |found_on_scope| variable will be filled with the actual scope containing
293   // the key (if the pointer is non-NULL).
294   void SetProperty(const void* key, void* value);
295   void* GetProperty(const void* key, const Scope** found_on_scope) const;
296 
297  private:
298   friend class ProgrammaticProvider;
299 
300   struct Record {
RecordRecord301     Record() : used(false) {}
RecordRecord302     Record(const Value& v) : used(false), value(v) {}
303 
304     bool used;  // Set to true when the variable is used.
305     Value value;
306   };
307 
308   void AddProvider(ProgrammaticProvider* p);
309   void RemoveProvider(ProgrammaticProvider* p);
310 
311   // Scopes can have no containing scope (both null), a mutable containing
312   // scope, or a const containing scope. The reason is that when we're doing
313   // a new target, we want to refer to the base_config scope which will be read
314   // by multiple threads at the same time, so we REALLY want it to be const.
315   // When you jsut do a nested {}, however, we sometimes want to be able to
316   // change things (especially marking unused vars).
317   const Scope* const_containing_;
318   Scope* mutable_containing_;
319 
320   const Settings* settings_;
321 
322   // Bits set for different modes. See the flag definitions in the .cc file
323   // for more.
324   unsigned mode_flags_;
325 
326   typedef base::hash_map<base::StringPiece, Record> RecordMap;
327   RecordMap values_;
328 
329   // Owning pointers. Note that this can't use string pieces since the names
330   // are constructed from Values which might be deallocated before this goes
331   // out of scope.
332   typedef base::hash_map<std::string, Scope*> NamedScopeMap;
333   NamedScopeMap target_defaults_;
334 
335   // Null indicates not set and that we should fallback to the containing
336   // scope's filter.
337   scoped_ptr<PatternList> sources_assignment_filter_;
338 
339   // Owning pointers, must be deleted.
340   typedef std::map<std::string, scoped_refptr<const Template> > TemplateMap;
341   TemplateMap templates_;
342 
343   ItemVector* item_collector_;
344 
345   // Opaque pointers. See SetProperty() above.
346   typedef std::map<const void*, void*> PropertyMap;
347   PropertyMap properties_;
348 
349   typedef std::set<ProgrammaticProvider*> ProviderSet;
350   ProviderSet programmatic_providers_;
351 
352   SourceDir source_dir_;
353 
354   DISALLOW_COPY_AND_ASSIGN(Scope);
355 };
356 
357 #endif  // TOOLS_GN_SCOPE_H_
358