1 //===-- APFloat.cpp - Implement APFloat class -----------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements a class to represent arbitrary precision floating
11 // point values and provide a variety of arithmetic operations on them.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APSInt.h"
17 #include "llvm/ADT/FoldingSet.h"
18 #include "llvm/ADT/Hashing.h"
19 #include "llvm/ADT/StringExtras.h"
20 #include "llvm/ADT/StringRef.h"
21 #include "llvm/Support/ErrorHandling.h"
22 #include "llvm/Support/MathExtras.h"
23 #include <cstring>
24 #include <limits.h>
25
26 using namespace llvm;
27
28 /// A macro used to combine two fcCategory enums into one key which can be used
29 /// in a switch statement to classify how the interaction of two APFloat's
30 /// categories affects an operation.
31 ///
32 /// TODO: If clang source code is ever allowed to use constexpr in its own
33 /// codebase, change this into a static inline function.
34 #define PackCategoriesIntoKey(_lhs, _rhs) ((_lhs) * 4 + (_rhs))
35
36 /* Assumed in hexadecimal significand parsing, and conversion to
37 hexadecimal strings. */
38 #define COMPILE_TIME_ASSERT(cond) extern int CTAssert[(cond) ? 1 : -1]
39 COMPILE_TIME_ASSERT(integerPartWidth % 4 == 0);
40
41 namespace llvm {
42
43 /* Represents floating point arithmetic semantics. */
44 struct fltSemantics {
45 /* The largest E such that 2^E is representable; this matches the
46 definition of IEEE 754. */
47 APFloat::ExponentType maxExponent;
48
49 /* The smallest E such that 2^E is a normalized number; this
50 matches the definition of IEEE 754. */
51 APFloat::ExponentType minExponent;
52
53 /* Number of bits in the significand. This includes the integer
54 bit. */
55 unsigned int precision;
56 };
57
58 const fltSemantics APFloat::IEEEhalf = { 15, -14, 11 };
59 const fltSemantics APFloat::IEEEsingle = { 127, -126, 24 };
60 const fltSemantics APFloat::IEEEdouble = { 1023, -1022, 53 };
61 const fltSemantics APFloat::IEEEquad = { 16383, -16382, 113 };
62 const fltSemantics APFloat::x87DoubleExtended = { 16383, -16382, 64 };
63 const fltSemantics APFloat::Bogus = { 0, 0, 0 };
64
65 /* The PowerPC format consists of two doubles. It does not map cleanly
66 onto the usual format above. It is approximated using twice the
67 mantissa bits. Note that for exponents near the double minimum,
68 we no longer can represent the full 106 mantissa bits, so those
69 will be treated as denormal numbers.
70
71 FIXME: While this approximation is equivalent to what GCC uses for
72 compile-time arithmetic on PPC double-double numbers, it is not able
73 to represent all possible values held by a PPC double-double number,
74 for example: (long double) 1.0 + (long double) 0x1p-106
75 Should this be replaced by a full emulation of PPC double-double? */
76 const fltSemantics APFloat::PPCDoubleDouble = { 1023, -1022 + 53, 53 + 53 };
77
78 /* A tight upper bound on number of parts required to hold the value
79 pow(5, power) is
80
81 power * 815 / (351 * integerPartWidth) + 1
82
83 However, whilst the result may require only this many parts,
84 because we are multiplying two values to get it, the
85 multiplication may require an extra part with the excess part
86 being zero (consider the trivial case of 1 * 1, tcFullMultiply
87 requires two parts to hold the single-part result). So we add an
88 extra one to guarantee enough space whilst multiplying. */
89 const unsigned int maxExponent = 16383;
90 const unsigned int maxPrecision = 113;
91 const unsigned int maxPowerOfFiveExponent = maxExponent + maxPrecision - 1;
92 const unsigned int maxPowerOfFiveParts = 2 + ((maxPowerOfFiveExponent * 815)
93 / (351 * integerPartWidth));
94 }
95
96 /* A bunch of private, handy routines. */
97
98 static inline unsigned int
partCountForBits(unsigned int bits)99 partCountForBits(unsigned int bits)
100 {
101 return ((bits) + integerPartWidth - 1) / integerPartWidth;
102 }
103
104 /* Returns 0U-9U. Return values >= 10U are not digits. */
105 static inline unsigned int
decDigitValue(unsigned int c)106 decDigitValue(unsigned int c)
107 {
108 return c - '0';
109 }
110
111 /* Return the value of a decimal exponent of the form
112 [+-]ddddddd.
113
114 If the exponent overflows, returns a large exponent with the
115 appropriate sign. */
116 static int
readExponent(StringRef::iterator begin,StringRef::iterator end)117 readExponent(StringRef::iterator begin, StringRef::iterator end)
118 {
119 bool isNegative;
120 unsigned int absExponent;
121 const unsigned int overlargeExponent = 24000; /* FIXME. */
122 StringRef::iterator p = begin;
123
124 assert(p != end && "Exponent has no digits");
125
126 isNegative = (*p == '-');
127 if (*p == '-' || *p == '+') {
128 p++;
129 assert(p != end && "Exponent has no digits");
130 }
131
132 absExponent = decDigitValue(*p++);
133 assert(absExponent < 10U && "Invalid character in exponent");
134
135 for (; p != end; ++p) {
136 unsigned int value;
137
138 value = decDigitValue(*p);
139 assert(value < 10U && "Invalid character in exponent");
140
141 value += absExponent * 10;
142 if (absExponent >= overlargeExponent) {
143 absExponent = overlargeExponent;
144 p = end; /* outwit assert below */
145 break;
146 }
147 absExponent = value;
148 }
149
150 assert(p == end && "Invalid exponent in exponent");
151
152 if (isNegative)
153 return -(int) absExponent;
154 else
155 return (int) absExponent;
156 }
157
158 /* This is ugly and needs cleaning up, but I don't immediately see
159 how whilst remaining safe. */
160 static int
totalExponent(StringRef::iterator p,StringRef::iterator end,int exponentAdjustment)161 totalExponent(StringRef::iterator p, StringRef::iterator end,
162 int exponentAdjustment)
163 {
164 int unsignedExponent;
165 bool negative, overflow;
166 int exponent = 0;
167
168 assert(p != end && "Exponent has no digits");
169
170 negative = *p == '-';
171 if (*p == '-' || *p == '+') {
172 p++;
173 assert(p != end && "Exponent has no digits");
174 }
175
176 unsignedExponent = 0;
177 overflow = false;
178 for (; p != end; ++p) {
179 unsigned int value;
180
181 value = decDigitValue(*p);
182 assert(value < 10U && "Invalid character in exponent");
183
184 unsignedExponent = unsignedExponent * 10 + value;
185 if (unsignedExponent > 32767) {
186 overflow = true;
187 break;
188 }
189 }
190
191 if (exponentAdjustment > 32767 || exponentAdjustment < -32768)
192 overflow = true;
193
194 if (!overflow) {
195 exponent = unsignedExponent;
196 if (negative)
197 exponent = -exponent;
198 exponent += exponentAdjustment;
199 if (exponent > 32767 || exponent < -32768)
200 overflow = true;
201 }
202
203 if (overflow)
204 exponent = negative ? -32768: 32767;
205
206 return exponent;
207 }
208
209 static StringRef::iterator
skipLeadingZeroesAndAnyDot(StringRef::iterator begin,StringRef::iterator end,StringRef::iterator * dot)210 skipLeadingZeroesAndAnyDot(StringRef::iterator begin, StringRef::iterator end,
211 StringRef::iterator *dot)
212 {
213 StringRef::iterator p = begin;
214 *dot = end;
215 while (*p == '0' && p != end)
216 p++;
217
218 if (*p == '.') {
219 *dot = p++;
220
221 assert(end - begin != 1 && "Significand has no digits");
222
223 while (*p == '0' && p != end)
224 p++;
225 }
226
227 return p;
228 }
229
230 /* Given a normal decimal floating point number of the form
231
232 dddd.dddd[eE][+-]ddd
233
234 where the decimal point and exponent are optional, fill out the
235 structure D. Exponent is appropriate if the significand is
236 treated as an integer, and normalizedExponent if the significand
237 is taken to have the decimal point after a single leading
238 non-zero digit.
239
240 If the value is zero, V->firstSigDigit points to a non-digit, and
241 the return exponent is zero.
242 */
243 struct decimalInfo {
244 const char *firstSigDigit;
245 const char *lastSigDigit;
246 int exponent;
247 int normalizedExponent;
248 };
249
250 static void
interpretDecimal(StringRef::iterator begin,StringRef::iterator end,decimalInfo * D)251 interpretDecimal(StringRef::iterator begin, StringRef::iterator end,
252 decimalInfo *D)
253 {
254 StringRef::iterator dot = end;
255 StringRef::iterator p = skipLeadingZeroesAndAnyDot (begin, end, &dot);
256
257 D->firstSigDigit = p;
258 D->exponent = 0;
259 D->normalizedExponent = 0;
260
261 for (; p != end; ++p) {
262 if (*p == '.') {
263 assert(dot == end && "String contains multiple dots");
264 dot = p++;
265 if (p == end)
266 break;
267 }
268 if (decDigitValue(*p) >= 10U)
269 break;
270 }
271
272 if (p != end) {
273 assert((*p == 'e' || *p == 'E') && "Invalid character in significand");
274 assert(p != begin && "Significand has no digits");
275 assert((dot == end || p - begin != 1) && "Significand has no digits");
276
277 /* p points to the first non-digit in the string */
278 D->exponent = readExponent(p + 1, end);
279
280 /* Implied decimal point? */
281 if (dot == end)
282 dot = p;
283 }
284
285 /* If number is all zeroes accept any exponent. */
286 if (p != D->firstSigDigit) {
287 /* Drop insignificant trailing zeroes. */
288 if (p != begin) {
289 do
290 do
291 p--;
292 while (p != begin && *p == '0');
293 while (p != begin && *p == '.');
294 }
295
296 /* Adjust the exponents for any decimal point. */
297 D->exponent += static_cast<APFloat::ExponentType>((dot - p) - (dot > p));
298 D->normalizedExponent = (D->exponent +
299 static_cast<APFloat::ExponentType>((p - D->firstSigDigit)
300 - (dot > D->firstSigDigit && dot < p)));
301 }
302
303 D->lastSigDigit = p;
304 }
305
306 /* Return the trailing fraction of a hexadecimal number.
307 DIGITVALUE is the first hex digit of the fraction, P points to
308 the next digit. */
309 static lostFraction
trailingHexadecimalFraction(StringRef::iterator p,StringRef::iterator end,unsigned int digitValue)310 trailingHexadecimalFraction(StringRef::iterator p, StringRef::iterator end,
311 unsigned int digitValue)
312 {
313 unsigned int hexDigit;
314
315 /* If the first trailing digit isn't 0 or 8 we can work out the
316 fraction immediately. */
317 if (digitValue > 8)
318 return lfMoreThanHalf;
319 else if (digitValue < 8 && digitValue > 0)
320 return lfLessThanHalf;
321
322 // Otherwise we need to find the first non-zero digit.
323 while (p != end && (*p == '0' || *p == '.'))
324 p++;
325
326 assert(p != end && "Invalid trailing hexadecimal fraction!");
327
328 hexDigit = hexDigitValue(*p);
329
330 /* If we ran off the end it is exactly zero or one-half, otherwise
331 a little more. */
332 if (hexDigit == -1U)
333 return digitValue == 0 ? lfExactlyZero: lfExactlyHalf;
334 else
335 return digitValue == 0 ? lfLessThanHalf: lfMoreThanHalf;
336 }
337
338 /* Return the fraction lost were a bignum truncated losing the least
339 significant BITS bits. */
340 static lostFraction
lostFractionThroughTruncation(const integerPart * parts,unsigned int partCount,unsigned int bits)341 lostFractionThroughTruncation(const integerPart *parts,
342 unsigned int partCount,
343 unsigned int bits)
344 {
345 unsigned int lsb;
346
347 lsb = APInt::tcLSB(parts, partCount);
348
349 /* Note this is guaranteed true if bits == 0, or LSB == -1U. */
350 if (bits <= lsb)
351 return lfExactlyZero;
352 if (bits == lsb + 1)
353 return lfExactlyHalf;
354 if (bits <= partCount * integerPartWidth &&
355 APInt::tcExtractBit(parts, bits - 1))
356 return lfMoreThanHalf;
357
358 return lfLessThanHalf;
359 }
360
361 /* Shift DST right BITS bits noting lost fraction. */
362 static lostFraction
shiftRight(integerPart * dst,unsigned int parts,unsigned int bits)363 shiftRight(integerPart *dst, unsigned int parts, unsigned int bits)
364 {
365 lostFraction lost_fraction;
366
367 lost_fraction = lostFractionThroughTruncation(dst, parts, bits);
368
369 APInt::tcShiftRight(dst, parts, bits);
370
371 return lost_fraction;
372 }
373
374 /* Combine the effect of two lost fractions. */
375 static lostFraction
combineLostFractions(lostFraction moreSignificant,lostFraction lessSignificant)376 combineLostFractions(lostFraction moreSignificant,
377 lostFraction lessSignificant)
378 {
379 if (lessSignificant != lfExactlyZero) {
380 if (moreSignificant == lfExactlyZero)
381 moreSignificant = lfLessThanHalf;
382 else if (moreSignificant == lfExactlyHalf)
383 moreSignificant = lfMoreThanHalf;
384 }
385
386 return moreSignificant;
387 }
388
389 /* The error from the true value, in half-ulps, on multiplying two
390 floating point numbers, which differ from the value they
391 approximate by at most HUE1 and HUE2 half-ulps, is strictly less
392 than the returned value.
393
394 See "How to Read Floating Point Numbers Accurately" by William D
395 Clinger. */
396 static unsigned int
HUerrBound(bool inexactMultiply,unsigned int HUerr1,unsigned int HUerr2)397 HUerrBound(bool inexactMultiply, unsigned int HUerr1, unsigned int HUerr2)
398 {
399 assert(HUerr1 < 2 || HUerr2 < 2 || (HUerr1 + HUerr2 < 8));
400
401 if (HUerr1 + HUerr2 == 0)
402 return inexactMultiply * 2; /* <= inexactMultiply half-ulps. */
403 else
404 return inexactMultiply + 2 * (HUerr1 + HUerr2);
405 }
406
407 /* The number of ulps from the boundary (zero, or half if ISNEAREST)
408 when the least significant BITS are truncated. BITS cannot be
409 zero. */
410 static integerPart
ulpsFromBoundary(const integerPart * parts,unsigned int bits,bool isNearest)411 ulpsFromBoundary(const integerPart *parts, unsigned int bits, bool isNearest)
412 {
413 unsigned int count, partBits;
414 integerPart part, boundary;
415
416 assert(bits != 0);
417
418 bits--;
419 count = bits / integerPartWidth;
420 partBits = bits % integerPartWidth + 1;
421
422 part = parts[count] & (~(integerPart) 0 >> (integerPartWidth - partBits));
423
424 if (isNearest)
425 boundary = (integerPart) 1 << (partBits - 1);
426 else
427 boundary = 0;
428
429 if (count == 0) {
430 if (part - boundary <= boundary - part)
431 return part - boundary;
432 else
433 return boundary - part;
434 }
435
436 if (part == boundary) {
437 while (--count)
438 if (parts[count])
439 return ~(integerPart) 0; /* A lot. */
440
441 return parts[0];
442 } else if (part == boundary - 1) {
443 while (--count)
444 if (~parts[count])
445 return ~(integerPart) 0; /* A lot. */
446
447 return -parts[0];
448 }
449
450 return ~(integerPart) 0; /* A lot. */
451 }
452
453 /* Place pow(5, power) in DST, and return the number of parts used.
454 DST must be at least one part larger than size of the answer. */
455 static unsigned int
powerOf5(integerPart * dst,unsigned int power)456 powerOf5(integerPart *dst, unsigned int power)
457 {
458 static const integerPart firstEightPowers[] = { 1, 5, 25, 125, 625, 3125,
459 15625, 78125 };
460 integerPart pow5s[maxPowerOfFiveParts * 2 + 5];
461 pow5s[0] = 78125 * 5;
462
463 unsigned int partsCount[16] = { 1 };
464 integerPart scratch[maxPowerOfFiveParts], *p1, *p2, *pow5;
465 unsigned int result;
466 assert(power <= maxExponent);
467
468 p1 = dst;
469 p2 = scratch;
470
471 *p1 = firstEightPowers[power & 7];
472 power >>= 3;
473
474 result = 1;
475 pow5 = pow5s;
476
477 for (unsigned int n = 0; power; power >>= 1, n++) {
478 unsigned int pc;
479
480 pc = partsCount[n];
481
482 /* Calculate pow(5,pow(2,n+3)) if we haven't yet. */
483 if (pc == 0) {
484 pc = partsCount[n - 1];
485 APInt::tcFullMultiply(pow5, pow5 - pc, pow5 - pc, pc, pc);
486 pc *= 2;
487 if (pow5[pc - 1] == 0)
488 pc--;
489 partsCount[n] = pc;
490 }
491
492 if (power & 1) {
493 integerPart *tmp;
494
495 APInt::tcFullMultiply(p2, p1, pow5, result, pc);
496 result += pc;
497 if (p2[result - 1] == 0)
498 result--;
499
500 /* Now result is in p1 with partsCount parts and p2 is scratch
501 space. */
502 tmp = p1, p1 = p2, p2 = tmp;
503 }
504
505 pow5 += pc;
506 }
507
508 if (p1 != dst)
509 APInt::tcAssign(dst, p1, result);
510
511 return result;
512 }
513
514 /* Zero at the end to avoid modular arithmetic when adding one; used
515 when rounding up during hexadecimal output. */
516 static const char hexDigitsLower[] = "0123456789abcdef0";
517 static const char hexDigitsUpper[] = "0123456789ABCDEF0";
518 static const char infinityL[] = "infinity";
519 static const char infinityU[] = "INFINITY";
520 static const char NaNL[] = "nan";
521 static const char NaNU[] = "NAN";
522
523 /* Write out an integerPart in hexadecimal, starting with the most
524 significant nibble. Write out exactly COUNT hexdigits, return
525 COUNT. */
526 static unsigned int
partAsHex(char * dst,integerPart part,unsigned int count,const char * hexDigitChars)527 partAsHex (char *dst, integerPart part, unsigned int count,
528 const char *hexDigitChars)
529 {
530 unsigned int result = count;
531
532 assert(count != 0 && count <= integerPartWidth / 4);
533
534 part >>= (integerPartWidth - 4 * count);
535 while (count--) {
536 dst[count] = hexDigitChars[part & 0xf];
537 part >>= 4;
538 }
539
540 return result;
541 }
542
543 /* Write out an unsigned decimal integer. */
544 static char *
writeUnsignedDecimal(char * dst,unsigned int n)545 writeUnsignedDecimal (char *dst, unsigned int n)
546 {
547 char buff[40], *p;
548
549 p = buff;
550 do
551 *p++ = '0' + n % 10;
552 while (n /= 10);
553
554 do
555 *dst++ = *--p;
556 while (p != buff);
557
558 return dst;
559 }
560
561 /* Write out a signed decimal integer. */
562 static char *
writeSignedDecimal(char * dst,int value)563 writeSignedDecimal (char *dst, int value)
564 {
565 if (value < 0) {
566 *dst++ = '-';
567 dst = writeUnsignedDecimal(dst, -(unsigned) value);
568 } else
569 dst = writeUnsignedDecimal(dst, value);
570
571 return dst;
572 }
573
574 /* Constructors. */
575 void
initialize(const fltSemantics * ourSemantics)576 APFloat::initialize(const fltSemantics *ourSemantics)
577 {
578 unsigned int count;
579
580 semantics = ourSemantics;
581 count = partCount();
582 if (count > 1)
583 significand.parts = new integerPart[count];
584 }
585
586 void
freeSignificand()587 APFloat::freeSignificand()
588 {
589 if (needsCleanup())
590 delete [] significand.parts;
591 }
592
593 void
assign(const APFloat & rhs)594 APFloat::assign(const APFloat &rhs)
595 {
596 assert(semantics == rhs.semantics);
597
598 sign = rhs.sign;
599 category = rhs.category;
600 exponent = rhs.exponent;
601 if (isFiniteNonZero() || category == fcNaN)
602 copySignificand(rhs);
603 }
604
605 void
copySignificand(const APFloat & rhs)606 APFloat::copySignificand(const APFloat &rhs)
607 {
608 assert(isFiniteNonZero() || category == fcNaN);
609 assert(rhs.partCount() >= partCount());
610
611 APInt::tcAssign(significandParts(), rhs.significandParts(),
612 partCount());
613 }
614
615 /* Make this number a NaN, with an arbitrary but deterministic value
616 for the significand. If double or longer, this is a signalling NaN,
617 which may not be ideal. If float, this is QNaN(0). */
makeNaN(bool SNaN,bool Negative,const APInt * fill)618 void APFloat::makeNaN(bool SNaN, bool Negative, const APInt *fill)
619 {
620 category = fcNaN;
621 sign = Negative;
622
623 integerPart *significand = significandParts();
624 unsigned numParts = partCount();
625
626 // Set the significand bits to the fill.
627 if (!fill || fill->getNumWords() < numParts)
628 APInt::tcSet(significand, 0, numParts);
629 if (fill) {
630 APInt::tcAssign(significand, fill->getRawData(),
631 std::min(fill->getNumWords(), numParts));
632
633 // Zero out the excess bits of the significand.
634 unsigned bitsToPreserve = semantics->precision - 1;
635 unsigned part = bitsToPreserve / 64;
636 bitsToPreserve %= 64;
637 significand[part] &= ((1ULL << bitsToPreserve) - 1);
638 for (part++; part != numParts; ++part)
639 significand[part] = 0;
640 }
641
642 unsigned QNaNBit = semantics->precision - 2;
643
644 if (SNaN) {
645 // We always have to clear the QNaN bit to make it an SNaN.
646 APInt::tcClearBit(significand, QNaNBit);
647
648 // If there are no bits set in the payload, we have to set
649 // *something* to make it a NaN instead of an infinity;
650 // conventionally, this is the next bit down from the QNaN bit.
651 if (APInt::tcIsZero(significand, numParts))
652 APInt::tcSetBit(significand, QNaNBit - 1);
653 } else {
654 // We always have to set the QNaN bit to make it a QNaN.
655 APInt::tcSetBit(significand, QNaNBit);
656 }
657
658 // For x87 extended precision, we want to make a NaN, not a
659 // pseudo-NaN. Maybe we should expose the ability to make
660 // pseudo-NaNs?
661 if (semantics == &APFloat::x87DoubleExtended)
662 APInt::tcSetBit(significand, QNaNBit + 1);
663 }
664
makeNaN(const fltSemantics & Sem,bool SNaN,bool Negative,const APInt * fill)665 APFloat APFloat::makeNaN(const fltSemantics &Sem, bool SNaN, bool Negative,
666 const APInt *fill) {
667 APFloat value(Sem, uninitialized);
668 value.makeNaN(SNaN, Negative, fill);
669 return value;
670 }
671
672 APFloat &
operator =(const APFloat & rhs)673 APFloat::operator=(const APFloat &rhs)
674 {
675 if (this != &rhs) {
676 if (semantics != rhs.semantics) {
677 freeSignificand();
678 initialize(rhs.semantics);
679 }
680 assign(rhs);
681 }
682
683 return *this;
684 }
685
686 APFloat &
operator =(APFloat && rhs)687 APFloat::operator=(APFloat &&rhs) {
688 freeSignificand();
689
690 semantics = rhs.semantics;
691 significand = rhs.significand;
692 exponent = rhs.exponent;
693 category = rhs.category;
694 sign = rhs.sign;
695
696 rhs.semantics = &Bogus;
697 return *this;
698 }
699
700 bool
isDenormal() const701 APFloat::isDenormal() const {
702 return isFiniteNonZero() && (exponent == semantics->minExponent) &&
703 (APInt::tcExtractBit(significandParts(),
704 semantics->precision - 1) == 0);
705 }
706
707 bool
isSmallest() const708 APFloat::isSmallest() const {
709 // The smallest number by magnitude in our format will be the smallest
710 // denormal, i.e. the floating point number with exponent being minimum
711 // exponent and significand bitwise equal to 1 (i.e. with MSB equal to 0).
712 return isFiniteNonZero() && exponent == semantics->minExponent &&
713 significandMSB() == 0;
714 }
715
isSignificandAllOnes() const716 bool APFloat::isSignificandAllOnes() const {
717 // Test if the significand excluding the integral bit is all ones. This allows
718 // us to test for binade boundaries.
719 const integerPart *Parts = significandParts();
720 const unsigned PartCount = partCount();
721 for (unsigned i = 0; i < PartCount - 1; i++)
722 if (~Parts[i])
723 return false;
724
725 // Set the unused high bits to all ones when we compare.
726 const unsigned NumHighBits =
727 PartCount*integerPartWidth - semantics->precision + 1;
728 assert(NumHighBits <= integerPartWidth && "Can not have more high bits to "
729 "fill than integerPartWidth");
730 const integerPart HighBitFill =
731 ~integerPart(0) << (integerPartWidth - NumHighBits);
732 if (~(Parts[PartCount - 1] | HighBitFill))
733 return false;
734
735 return true;
736 }
737
isSignificandAllZeros() const738 bool APFloat::isSignificandAllZeros() const {
739 // Test if the significand excluding the integral bit is all zeros. This
740 // allows us to test for binade boundaries.
741 const integerPart *Parts = significandParts();
742 const unsigned PartCount = partCount();
743
744 for (unsigned i = 0; i < PartCount - 1; i++)
745 if (Parts[i])
746 return false;
747
748 const unsigned NumHighBits =
749 PartCount*integerPartWidth - semantics->precision + 1;
750 assert(NumHighBits <= integerPartWidth && "Can not have more high bits to "
751 "clear than integerPartWidth");
752 const integerPart HighBitMask = ~integerPart(0) >> NumHighBits;
753
754 if (Parts[PartCount - 1] & HighBitMask)
755 return false;
756
757 return true;
758 }
759
760 bool
isLargest() const761 APFloat::isLargest() const {
762 // The largest number by magnitude in our format will be the floating point
763 // number with maximum exponent and with significand that is all ones.
764 return isFiniteNonZero() && exponent == semantics->maxExponent
765 && isSignificandAllOnes();
766 }
767
768 bool
bitwiseIsEqual(const APFloat & rhs) const769 APFloat::bitwiseIsEqual(const APFloat &rhs) const {
770 if (this == &rhs)
771 return true;
772 if (semantics != rhs.semantics ||
773 category != rhs.category ||
774 sign != rhs.sign)
775 return false;
776 if (category==fcZero || category==fcInfinity)
777 return true;
778 else if (isFiniteNonZero() && exponent!=rhs.exponent)
779 return false;
780 else {
781 int i= partCount();
782 const integerPart* p=significandParts();
783 const integerPart* q=rhs.significandParts();
784 for (; i>0; i--, p++, q++) {
785 if (*p != *q)
786 return false;
787 }
788 return true;
789 }
790 }
791
APFloat(const fltSemantics & ourSemantics,integerPart value)792 APFloat::APFloat(const fltSemantics &ourSemantics, integerPart value) {
793 initialize(&ourSemantics);
794 sign = 0;
795 category = fcNormal;
796 zeroSignificand();
797 exponent = ourSemantics.precision - 1;
798 significandParts()[0] = value;
799 normalize(rmNearestTiesToEven, lfExactlyZero);
800 }
801
APFloat(const fltSemantics & ourSemantics)802 APFloat::APFloat(const fltSemantics &ourSemantics) {
803 initialize(&ourSemantics);
804 category = fcZero;
805 sign = false;
806 }
807
APFloat(const fltSemantics & ourSemantics,uninitializedTag tag)808 APFloat::APFloat(const fltSemantics &ourSemantics, uninitializedTag tag) {
809 // Allocates storage if necessary but does not initialize it.
810 initialize(&ourSemantics);
811 }
812
APFloat(const fltSemantics & ourSemantics,StringRef text)813 APFloat::APFloat(const fltSemantics &ourSemantics, StringRef text) {
814 initialize(&ourSemantics);
815 convertFromString(text, rmNearestTiesToEven);
816 }
817
APFloat(const APFloat & rhs)818 APFloat::APFloat(const APFloat &rhs) {
819 initialize(rhs.semantics);
820 assign(rhs);
821 }
822
APFloat(APFloat && rhs)823 APFloat::APFloat(APFloat &&rhs) : semantics(&Bogus) {
824 *this = std::move(rhs);
825 }
826
~APFloat()827 APFloat::~APFloat()
828 {
829 freeSignificand();
830 }
831
832 // Profile - This method 'profiles' an APFloat for use with FoldingSet.
Profile(FoldingSetNodeID & ID) const833 void APFloat::Profile(FoldingSetNodeID& ID) const {
834 ID.Add(bitcastToAPInt());
835 }
836
837 unsigned int
partCount() const838 APFloat::partCount() const
839 {
840 return partCountForBits(semantics->precision + 1);
841 }
842
843 unsigned int
semanticsPrecision(const fltSemantics & semantics)844 APFloat::semanticsPrecision(const fltSemantics &semantics)
845 {
846 return semantics.precision;
847 }
848
849 const integerPart *
significandParts() const850 APFloat::significandParts() const
851 {
852 return const_cast<APFloat *>(this)->significandParts();
853 }
854
855 integerPart *
significandParts()856 APFloat::significandParts()
857 {
858 if (partCount() > 1)
859 return significand.parts;
860 else
861 return &significand.part;
862 }
863
864 void
zeroSignificand()865 APFloat::zeroSignificand()
866 {
867 APInt::tcSet(significandParts(), 0, partCount());
868 }
869
870 /* Increment an fcNormal floating point number's significand. */
871 void
incrementSignificand()872 APFloat::incrementSignificand()
873 {
874 integerPart carry;
875
876 carry = APInt::tcIncrement(significandParts(), partCount());
877
878 /* Our callers should never cause us to overflow. */
879 assert(carry == 0);
880 (void)carry;
881 }
882
883 /* Add the significand of the RHS. Returns the carry flag. */
884 integerPart
addSignificand(const APFloat & rhs)885 APFloat::addSignificand(const APFloat &rhs)
886 {
887 integerPart *parts;
888
889 parts = significandParts();
890
891 assert(semantics == rhs.semantics);
892 assert(exponent == rhs.exponent);
893
894 return APInt::tcAdd(parts, rhs.significandParts(), 0, partCount());
895 }
896
897 /* Subtract the significand of the RHS with a borrow flag. Returns
898 the borrow flag. */
899 integerPart
subtractSignificand(const APFloat & rhs,integerPart borrow)900 APFloat::subtractSignificand(const APFloat &rhs, integerPart borrow)
901 {
902 integerPart *parts;
903
904 parts = significandParts();
905
906 assert(semantics == rhs.semantics);
907 assert(exponent == rhs.exponent);
908
909 return APInt::tcSubtract(parts, rhs.significandParts(), borrow,
910 partCount());
911 }
912
913 /* Multiply the significand of the RHS. If ADDEND is non-NULL, add it
914 on to the full-precision result of the multiplication. Returns the
915 lost fraction. */
916 lostFraction
multiplySignificand(const APFloat & rhs,const APFloat * addend)917 APFloat::multiplySignificand(const APFloat &rhs, const APFloat *addend)
918 {
919 unsigned int omsb; // One, not zero, based MSB.
920 unsigned int partsCount, newPartsCount, precision;
921 integerPart *lhsSignificand;
922 integerPart scratch[4];
923 integerPart *fullSignificand;
924 lostFraction lost_fraction;
925 bool ignored;
926
927 assert(semantics == rhs.semantics);
928
929 precision = semantics->precision;
930 newPartsCount = partCountForBits(precision * 2);
931
932 if (newPartsCount > 4)
933 fullSignificand = new integerPart[newPartsCount];
934 else
935 fullSignificand = scratch;
936
937 lhsSignificand = significandParts();
938 partsCount = partCount();
939
940 APInt::tcFullMultiply(fullSignificand, lhsSignificand,
941 rhs.significandParts(), partsCount, partsCount);
942
943 lost_fraction = lfExactlyZero;
944 omsb = APInt::tcMSB(fullSignificand, newPartsCount) + 1;
945 exponent += rhs.exponent;
946
947 // Assume the operands involved in the multiplication are single-precision
948 // FP, and the two multiplicants are:
949 // *this = a23 . a22 ... a0 * 2^e1
950 // rhs = b23 . b22 ... b0 * 2^e2
951 // the result of multiplication is:
952 // *this = c47 c46 . c45 ... c0 * 2^(e1+e2)
953 // Note that there are two significant bits at the left-hand side of the
954 // radix point. Move the radix point toward left by one bit, and adjust
955 // exponent accordingly.
956 exponent += 1;
957
958 if (addend) {
959 // The intermediate result of the multiplication has "2 * precision"
960 // signicant bit; adjust the addend to be consistent with mul result.
961 //
962 Significand savedSignificand = significand;
963 const fltSemantics *savedSemantics = semantics;
964 fltSemantics extendedSemantics;
965 opStatus status;
966 unsigned int extendedPrecision;
967
968 /* Normalize our MSB. */
969 extendedPrecision = 2 * precision;
970 if (omsb != extendedPrecision) {
971 assert(extendedPrecision > omsb);
972 APInt::tcShiftLeft(fullSignificand, newPartsCount,
973 extendedPrecision - omsb);
974 exponent -= extendedPrecision - omsb;
975 }
976
977 /* Create new semantics. */
978 extendedSemantics = *semantics;
979 extendedSemantics.precision = extendedPrecision;
980
981 if (newPartsCount == 1)
982 significand.part = fullSignificand[0];
983 else
984 significand.parts = fullSignificand;
985 semantics = &extendedSemantics;
986
987 APFloat extendedAddend(*addend);
988 status = extendedAddend.convert(extendedSemantics, rmTowardZero, &ignored);
989 assert(status == opOK);
990 (void)status;
991 lost_fraction = addOrSubtractSignificand(extendedAddend, false);
992
993 /* Restore our state. */
994 if (newPartsCount == 1)
995 fullSignificand[0] = significand.part;
996 significand = savedSignificand;
997 semantics = savedSemantics;
998
999 omsb = APInt::tcMSB(fullSignificand, newPartsCount) + 1;
1000 }
1001
1002 // Convert the result having "2 * precision" significant-bits back to the one
1003 // having "precision" significant-bits. First, move the radix point from
1004 // poision "2*precision - 1" to "precision - 1". The exponent need to be
1005 // adjusted by "2*precision - 1" - "precision - 1" = "precision".
1006 exponent -= precision;
1007
1008 // In case MSB resides at the left-hand side of radix point, shift the
1009 // mantissa right by some amount to make sure the MSB reside right before
1010 // the radix point (i.e. "MSB . rest-significant-bits").
1011 //
1012 // Note that the result is not normalized when "omsb < precision". So, the
1013 // caller needs to call APFloat::normalize() if normalized value is expected.
1014 if (omsb > precision) {
1015 unsigned int bits, significantParts;
1016 lostFraction lf;
1017
1018 bits = omsb - precision;
1019 significantParts = partCountForBits(omsb);
1020 lf = shiftRight(fullSignificand, significantParts, bits);
1021 lost_fraction = combineLostFractions(lf, lost_fraction);
1022 exponent += bits;
1023 }
1024
1025 APInt::tcAssign(lhsSignificand, fullSignificand, partsCount);
1026
1027 if (newPartsCount > 4)
1028 delete [] fullSignificand;
1029
1030 return lost_fraction;
1031 }
1032
1033 /* Multiply the significands of LHS and RHS to DST. */
1034 lostFraction
divideSignificand(const APFloat & rhs)1035 APFloat::divideSignificand(const APFloat &rhs)
1036 {
1037 unsigned int bit, i, partsCount;
1038 const integerPart *rhsSignificand;
1039 integerPart *lhsSignificand, *dividend, *divisor;
1040 integerPart scratch[4];
1041 lostFraction lost_fraction;
1042
1043 assert(semantics == rhs.semantics);
1044
1045 lhsSignificand = significandParts();
1046 rhsSignificand = rhs.significandParts();
1047 partsCount = partCount();
1048
1049 if (partsCount > 2)
1050 dividend = new integerPart[partsCount * 2];
1051 else
1052 dividend = scratch;
1053
1054 divisor = dividend + partsCount;
1055
1056 /* Copy the dividend and divisor as they will be modified in-place. */
1057 for (i = 0; i < partsCount; i++) {
1058 dividend[i] = lhsSignificand[i];
1059 divisor[i] = rhsSignificand[i];
1060 lhsSignificand[i] = 0;
1061 }
1062
1063 exponent -= rhs.exponent;
1064
1065 unsigned int precision = semantics->precision;
1066
1067 /* Normalize the divisor. */
1068 bit = precision - APInt::tcMSB(divisor, partsCount) - 1;
1069 if (bit) {
1070 exponent += bit;
1071 APInt::tcShiftLeft(divisor, partsCount, bit);
1072 }
1073
1074 /* Normalize the dividend. */
1075 bit = precision - APInt::tcMSB(dividend, partsCount) - 1;
1076 if (bit) {
1077 exponent -= bit;
1078 APInt::tcShiftLeft(dividend, partsCount, bit);
1079 }
1080
1081 /* Ensure the dividend >= divisor initially for the loop below.
1082 Incidentally, this means that the division loop below is
1083 guaranteed to set the integer bit to one. */
1084 if (APInt::tcCompare(dividend, divisor, partsCount) < 0) {
1085 exponent--;
1086 APInt::tcShiftLeft(dividend, partsCount, 1);
1087 assert(APInt::tcCompare(dividend, divisor, partsCount) >= 0);
1088 }
1089
1090 /* Long division. */
1091 for (bit = precision; bit; bit -= 1) {
1092 if (APInt::tcCompare(dividend, divisor, partsCount) >= 0) {
1093 APInt::tcSubtract(dividend, divisor, 0, partsCount);
1094 APInt::tcSetBit(lhsSignificand, bit - 1);
1095 }
1096
1097 APInt::tcShiftLeft(dividend, partsCount, 1);
1098 }
1099
1100 /* Figure out the lost fraction. */
1101 int cmp = APInt::tcCompare(dividend, divisor, partsCount);
1102
1103 if (cmp > 0)
1104 lost_fraction = lfMoreThanHalf;
1105 else if (cmp == 0)
1106 lost_fraction = lfExactlyHalf;
1107 else if (APInt::tcIsZero(dividend, partsCount))
1108 lost_fraction = lfExactlyZero;
1109 else
1110 lost_fraction = lfLessThanHalf;
1111
1112 if (partsCount > 2)
1113 delete [] dividend;
1114
1115 return lost_fraction;
1116 }
1117
1118 unsigned int
significandMSB() const1119 APFloat::significandMSB() const
1120 {
1121 return APInt::tcMSB(significandParts(), partCount());
1122 }
1123
1124 unsigned int
significandLSB() const1125 APFloat::significandLSB() const
1126 {
1127 return APInt::tcLSB(significandParts(), partCount());
1128 }
1129
1130 /* Note that a zero result is NOT normalized to fcZero. */
1131 lostFraction
shiftSignificandRight(unsigned int bits)1132 APFloat::shiftSignificandRight(unsigned int bits)
1133 {
1134 /* Our exponent should not overflow. */
1135 assert((ExponentType) (exponent + bits) >= exponent);
1136
1137 exponent += bits;
1138
1139 return shiftRight(significandParts(), partCount(), bits);
1140 }
1141
1142 /* Shift the significand left BITS bits, subtract BITS from its exponent. */
1143 void
shiftSignificandLeft(unsigned int bits)1144 APFloat::shiftSignificandLeft(unsigned int bits)
1145 {
1146 assert(bits < semantics->precision);
1147
1148 if (bits) {
1149 unsigned int partsCount = partCount();
1150
1151 APInt::tcShiftLeft(significandParts(), partsCount, bits);
1152 exponent -= bits;
1153
1154 assert(!APInt::tcIsZero(significandParts(), partsCount));
1155 }
1156 }
1157
1158 APFloat::cmpResult
compareAbsoluteValue(const APFloat & rhs) const1159 APFloat::compareAbsoluteValue(const APFloat &rhs) const
1160 {
1161 int compare;
1162
1163 assert(semantics == rhs.semantics);
1164 assert(isFiniteNonZero());
1165 assert(rhs.isFiniteNonZero());
1166
1167 compare = exponent - rhs.exponent;
1168
1169 /* If exponents are equal, do an unsigned bignum comparison of the
1170 significands. */
1171 if (compare == 0)
1172 compare = APInt::tcCompare(significandParts(), rhs.significandParts(),
1173 partCount());
1174
1175 if (compare > 0)
1176 return cmpGreaterThan;
1177 else if (compare < 0)
1178 return cmpLessThan;
1179 else
1180 return cmpEqual;
1181 }
1182
1183 /* Handle overflow. Sign is preserved. We either become infinity or
1184 the largest finite number. */
1185 APFloat::opStatus
handleOverflow(roundingMode rounding_mode)1186 APFloat::handleOverflow(roundingMode rounding_mode)
1187 {
1188 /* Infinity? */
1189 if (rounding_mode == rmNearestTiesToEven ||
1190 rounding_mode == rmNearestTiesToAway ||
1191 (rounding_mode == rmTowardPositive && !sign) ||
1192 (rounding_mode == rmTowardNegative && sign)) {
1193 category = fcInfinity;
1194 return (opStatus) (opOverflow | opInexact);
1195 }
1196
1197 /* Otherwise we become the largest finite number. */
1198 category = fcNormal;
1199 exponent = semantics->maxExponent;
1200 APInt::tcSetLeastSignificantBits(significandParts(), partCount(),
1201 semantics->precision);
1202
1203 return opInexact;
1204 }
1205
1206 /* Returns TRUE if, when truncating the current number, with BIT the
1207 new LSB, with the given lost fraction and rounding mode, the result
1208 would need to be rounded away from zero (i.e., by increasing the
1209 signficand). This routine must work for fcZero of both signs, and
1210 fcNormal numbers. */
1211 bool
roundAwayFromZero(roundingMode rounding_mode,lostFraction lost_fraction,unsigned int bit) const1212 APFloat::roundAwayFromZero(roundingMode rounding_mode,
1213 lostFraction lost_fraction,
1214 unsigned int bit) const
1215 {
1216 /* NaNs and infinities should not have lost fractions. */
1217 assert(isFiniteNonZero() || category == fcZero);
1218
1219 /* Current callers never pass this so we don't handle it. */
1220 assert(lost_fraction != lfExactlyZero);
1221
1222 switch (rounding_mode) {
1223 case rmNearestTiesToAway:
1224 return lost_fraction == lfExactlyHalf || lost_fraction == lfMoreThanHalf;
1225
1226 case rmNearestTiesToEven:
1227 if (lost_fraction == lfMoreThanHalf)
1228 return true;
1229
1230 /* Our zeroes don't have a significand to test. */
1231 if (lost_fraction == lfExactlyHalf && category != fcZero)
1232 return APInt::tcExtractBit(significandParts(), bit);
1233
1234 return false;
1235
1236 case rmTowardZero:
1237 return false;
1238
1239 case rmTowardPositive:
1240 return sign == false;
1241
1242 case rmTowardNegative:
1243 return sign == true;
1244 }
1245 llvm_unreachable("Invalid rounding mode found");
1246 }
1247
1248 APFloat::opStatus
normalize(roundingMode rounding_mode,lostFraction lost_fraction)1249 APFloat::normalize(roundingMode rounding_mode,
1250 lostFraction lost_fraction)
1251 {
1252 unsigned int omsb; /* One, not zero, based MSB. */
1253 int exponentChange;
1254
1255 if (!isFiniteNonZero())
1256 return opOK;
1257
1258 /* Before rounding normalize the exponent of fcNormal numbers. */
1259 omsb = significandMSB() + 1;
1260
1261 if (omsb) {
1262 /* OMSB is numbered from 1. We want to place it in the integer
1263 bit numbered PRECISION if possible, with a compensating change in
1264 the exponent. */
1265 exponentChange = omsb - semantics->precision;
1266
1267 /* If the resulting exponent is too high, overflow according to
1268 the rounding mode. */
1269 if (exponent + exponentChange > semantics->maxExponent)
1270 return handleOverflow(rounding_mode);
1271
1272 /* Subnormal numbers have exponent minExponent, and their MSB
1273 is forced based on that. */
1274 if (exponent + exponentChange < semantics->minExponent)
1275 exponentChange = semantics->minExponent - exponent;
1276
1277 /* Shifting left is easy as we don't lose precision. */
1278 if (exponentChange < 0) {
1279 assert(lost_fraction == lfExactlyZero);
1280
1281 shiftSignificandLeft(-exponentChange);
1282
1283 return opOK;
1284 }
1285
1286 if (exponentChange > 0) {
1287 lostFraction lf;
1288
1289 /* Shift right and capture any new lost fraction. */
1290 lf = shiftSignificandRight(exponentChange);
1291
1292 lost_fraction = combineLostFractions(lf, lost_fraction);
1293
1294 /* Keep OMSB up-to-date. */
1295 if (omsb > (unsigned) exponentChange)
1296 omsb -= exponentChange;
1297 else
1298 omsb = 0;
1299 }
1300 }
1301
1302 /* Now round the number according to rounding_mode given the lost
1303 fraction. */
1304
1305 /* As specified in IEEE 754, since we do not trap we do not report
1306 underflow for exact results. */
1307 if (lost_fraction == lfExactlyZero) {
1308 /* Canonicalize zeroes. */
1309 if (omsb == 0)
1310 category = fcZero;
1311
1312 return opOK;
1313 }
1314
1315 /* Increment the significand if we're rounding away from zero. */
1316 if (roundAwayFromZero(rounding_mode, lost_fraction, 0)) {
1317 if (omsb == 0)
1318 exponent = semantics->minExponent;
1319
1320 incrementSignificand();
1321 omsb = significandMSB() + 1;
1322
1323 /* Did the significand increment overflow? */
1324 if (omsb == (unsigned) semantics->precision + 1) {
1325 /* Renormalize by incrementing the exponent and shifting our
1326 significand right one. However if we already have the
1327 maximum exponent we overflow to infinity. */
1328 if (exponent == semantics->maxExponent) {
1329 category = fcInfinity;
1330
1331 return (opStatus) (opOverflow | opInexact);
1332 }
1333
1334 shiftSignificandRight(1);
1335
1336 return opInexact;
1337 }
1338 }
1339
1340 /* The normal case - we were and are not denormal, and any
1341 significand increment above didn't overflow. */
1342 if (omsb == semantics->precision)
1343 return opInexact;
1344
1345 /* We have a non-zero denormal. */
1346 assert(omsb < semantics->precision);
1347
1348 /* Canonicalize zeroes. */
1349 if (omsb == 0)
1350 category = fcZero;
1351
1352 /* The fcZero case is a denormal that underflowed to zero. */
1353 return (opStatus) (opUnderflow | opInexact);
1354 }
1355
1356 APFloat::opStatus
addOrSubtractSpecials(const APFloat & rhs,bool subtract)1357 APFloat::addOrSubtractSpecials(const APFloat &rhs, bool subtract)
1358 {
1359 switch (PackCategoriesIntoKey(category, rhs.category)) {
1360 default:
1361 llvm_unreachable(nullptr);
1362
1363 case PackCategoriesIntoKey(fcNaN, fcZero):
1364 case PackCategoriesIntoKey(fcNaN, fcNormal):
1365 case PackCategoriesIntoKey(fcNaN, fcInfinity):
1366 case PackCategoriesIntoKey(fcNaN, fcNaN):
1367 case PackCategoriesIntoKey(fcNormal, fcZero):
1368 case PackCategoriesIntoKey(fcInfinity, fcNormal):
1369 case PackCategoriesIntoKey(fcInfinity, fcZero):
1370 return opOK;
1371
1372 case PackCategoriesIntoKey(fcZero, fcNaN):
1373 case PackCategoriesIntoKey(fcNormal, fcNaN):
1374 case PackCategoriesIntoKey(fcInfinity, fcNaN):
1375 // We need to be sure to flip the sign here for subtraction because we
1376 // don't have a separate negate operation so -NaN becomes 0 - NaN here.
1377 sign = rhs.sign ^ subtract;
1378 category = fcNaN;
1379 copySignificand(rhs);
1380 return opOK;
1381
1382 case PackCategoriesIntoKey(fcNormal, fcInfinity):
1383 case PackCategoriesIntoKey(fcZero, fcInfinity):
1384 category = fcInfinity;
1385 sign = rhs.sign ^ subtract;
1386 return opOK;
1387
1388 case PackCategoriesIntoKey(fcZero, fcNormal):
1389 assign(rhs);
1390 sign = rhs.sign ^ subtract;
1391 return opOK;
1392
1393 case PackCategoriesIntoKey(fcZero, fcZero):
1394 /* Sign depends on rounding mode; handled by caller. */
1395 return opOK;
1396
1397 case PackCategoriesIntoKey(fcInfinity, fcInfinity):
1398 /* Differently signed infinities can only be validly
1399 subtracted. */
1400 if (((sign ^ rhs.sign)!=0) != subtract) {
1401 makeNaN();
1402 return opInvalidOp;
1403 }
1404
1405 return opOK;
1406
1407 case PackCategoriesIntoKey(fcNormal, fcNormal):
1408 return opDivByZero;
1409 }
1410 }
1411
1412 /* Add or subtract two normal numbers. */
1413 lostFraction
addOrSubtractSignificand(const APFloat & rhs,bool subtract)1414 APFloat::addOrSubtractSignificand(const APFloat &rhs, bool subtract)
1415 {
1416 integerPart carry;
1417 lostFraction lost_fraction;
1418 int bits;
1419
1420 /* Determine if the operation on the absolute values is effectively
1421 an addition or subtraction. */
1422 subtract ^= (sign ^ rhs.sign) ? true : false;
1423
1424 /* Are we bigger exponent-wise than the RHS? */
1425 bits = exponent - rhs.exponent;
1426
1427 /* Subtraction is more subtle than one might naively expect. */
1428 if (subtract) {
1429 APFloat temp_rhs(rhs);
1430 bool reverse;
1431
1432 if (bits == 0) {
1433 reverse = compareAbsoluteValue(temp_rhs) == cmpLessThan;
1434 lost_fraction = lfExactlyZero;
1435 } else if (bits > 0) {
1436 lost_fraction = temp_rhs.shiftSignificandRight(bits - 1);
1437 shiftSignificandLeft(1);
1438 reverse = false;
1439 } else {
1440 lost_fraction = shiftSignificandRight(-bits - 1);
1441 temp_rhs.shiftSignificandLeft(1);
1442 reverse = true;
1443 }
1444
1445 if (reverse) {
1446 carry = temp_rhs.subtractSignificand
1447 (*this, lost_fraction != lfExactlyZero);
1448 copySignificand(temp_rhs);
1449 sign = !sign;
1450 } else {
1451 carry = subtractSignificand
1452 (temp_rhs, lost_fraction != lfExactlyZero);
1453 }
1454
1455 /* Invert the lost fraction - it was on the RHS and
1456 subtracted. */
1457 if (lost_fraction == lfLessThanHalf)
1458 lost_fraction = lfMoreThanHalf;
1459 else if (lost_fraction == lfMoreThanHalf)
1460 lost_fraction = lfLessThanHalf;
1461
1462 /* The code above is intended to ensure that no borrow is
1463 necessary. */
1464 assert(!carry);
1465 (void)carry;
1466 } else {
1467 if (bits > 0) {
1468 APFloat temp_rhs(rhs);
1469
1470 lost_fraction = temp_rhs.shiftSignificandRight(bits);
1471 carry = addSignificand(temp_rhs);
1472 } else {
1473 lost_fraction = shiftSignificandRight(-bits);
1474 carry = addSignificand(rhs);
1475 }
1476
1477 /* We have a guard bit; generating a carry cannot happen. */
1478 assert(!carry);
1479 (void)carry;
1480 }
1481
1482 return lost_fraction;
1483 }
1484
1485 APFloat::opStatus
multiplySpecials(const APFloat & rhs)1486 APFloat::multiplySpecials(const APFloat &rhs)
1487 {
1488 switch (PackCategoriesIntoKey(category, rhs.category)) {
1489 default:
1490 llvm_unreachable(nullptr);
1491
1492 case PackCategoriesIntoKey(fcNaN, fcZero):
1493 case PackCategoriesIntoKey(fcNaN, fcNormal):
1494 case PackCategoriesIntoKey(fcNaN, fcInfinity):
1495 case PackCategoriesIntoKey(fcNaN, fcNaN):
1496 sign = false;
1497 return opOK;
1498
1499 case PackCategoriesIntoKey(fcZero, fcNaN):
1500 case PackCategoriesIntoKey(fcNormal, fcNaN):
1501 case PackCategoriesIntoKey(fcInfinity, fcNaN):
1502 sign = false;
1503 category = fcNaN;
1504 copySignificand(rhs);
1505 return opOK;
1506
1507 case PackCategoriesIntoKey(fcNormal, fcInfinity):
1508 case PackCategoriesIntoKey(fcInfinity, fcNormal):
1509 case PackCategoriesIntoKey(fcInfinity, fcInfinity):
1510 category = fcInfinity;
1511 return opOK;
1512
1513 case PackCategoriesIntoKey(fcZero, fcNormal):
1514 case PackCategoriesIntoKey(fcNormal, fcZero):
1515 case PackCategoriesIntoKey(fcZero, fcZero):
1516 category = fcZero;
1517 return opOK;
1518
1519 case PackCategoriesIntoKey(fcZero, fcInfinity):
1520 case PackCategoriesIntoKey(fcInfinity, fcZero):
1521 makeNaN();
1522 return opInvalidOp;
1523
1524 case PackCategoriesIntoKey(fcNormal, fcNormal):
1525 return opOK;
1526 }
1527 }
1528
1529 APFloat::opStatus
divideSpecials(const APFloat & rhs)1530 APFloat::divideSpecials(const APFloat &rhs)
1531 {
1532 switch (PackCategoriesIntoKey(category, rhs.category)) {
1533 default:
1534 llvm_unreachable(nullptr);
1535
1536 case PackCategoriesIntoKey(fcZero, fcNaN):
1537 case PackCategoriesIntoKey(fcNormal, fcNaN):
1538 case PackCategoriesIntoKey(fcInfinity, fcNaN):
1539 category = fcNaN;
1540 copySignificand(rhs);
1541 case PackCategoriesIntoKey(fcNaN, fcZero):
1542 case PackCategoriesIntoKey(fcNaN, fcNormal):
1543 case PackCategoriesIntoKey(fcNaN, fcInfinity):
1544 case PackCategoriesIntoKey(fcNaN, fcNaN):
1545 sign = false;
1546 case PackCategoriesIntoKey(fcInfinity, fcZero):
1547 case PackCategoriesIntoKey(fcInfinity, fcNormal):
1548 case PackCategoriesIntoKey(fcZero, fcInfinity):
1549 case PackCategoriesIntoKey(fcZero, fcNormal):
1550 return opOK;
1551
1552 case PackCategoriesIntoKey(fcNormal, fcInfinity):
1553 category = fcZero;
1554 return opOK;
1555
1556 case PackCategoriesIntoKey(fcNormal, fcZero):
1557 category = fcInfinity;
1558 return opDivByZero;
1559
1560 case PackCategoriesIntoKey(fcInfinity, fcInfinity):
1561 case PackCategoriesIntoKey(fcZero, fcZero):
1562 makeNaN();
1563 return opInvalidOp;
1564
1565 case PackCategoriesIntoKey(fcNormal, fcNormal):
1566 return opOK;
1567 }
1568 }
1569
1570 APFloat::opStatus
modSpecials(const APFloat & rhs)1571 APFloat::modSpecials(const APFloat &rhs)
1572 {
1573 switch (PackCategoriesIntoKey(category, rhs.category)) {
1574 default:
1575 llvm_unreachable(nullptr);
1576
1577 case PackCategoriesIntoKey(fcNaN, fcZero):
1578 case PackCategoriesIntoKey(fcNaN, fcNormal):
1579 case PackCategoriesIntoKey(fcNaN, fcInfinity):
1580 case PackCategoriesIntoKey(fcNaN, fcNaN):
1581 case PackCategoriesIntoKey(fcZero, fcInfinity):
1582 case PackCategoriesIntoKey(fcZero, fcNormal):
1583 case PackCategoriesIntoKey(fcNormal, fcInfinity):
1584 return opOK;
1585
1586 case PackCategoriesIntoKey(fcZero, fcNaN):
1587 case PackCategoriesIntoKey(fcNormal, fcNaN):
1588 case PackCategoriesIntoKey(fcInfinity, fcNaN):
1589 sign = false;
1590 category = fcNaN;
1591 copySignificand(rhs);
1592 return opOK;
1593
1594 case PackCategoriesIntoKey(fcNormal, fcZero):
1595 case PackCategoriesIntoKey(fcInfinity, fcZero):
1596 case PackCategoriesIntoKey(fcInfinity, fcNormal):
1597 case PackCategoriesIntoKey(fcInfinity, fcInfinity):
1598 case PackCategoriesIntoKey(fcZero, fcZero):
1599 makeNaN();
1600 return opInvalidOp;
1601
1602 case PackCategoriesIntoKey(fcNormal, fcNormal):
1603 return opOK;
1604 }
1605 }
1606
1607 /* Change sign. */
1608 void
changeSign()1609 APFloat::changeSign()
1610 {
1611 /* Look mummy, this one's easy. */
1612 sign = !sign;
1613 }
1614
1615 void
clearSign()1616 APFloat::clearSign()
1617 {
1618 /* So is this one. */
1619 sign = 0;
1620 }
1621
1622 void
copySign(const APFloat & rhs)1623 APFloat::copySign(const APFloat &rhs)
1624 {
1625 /* And this one. */
1626 sign = rhs.sign;
1627 }
1628
1629 /* Normalized addition or subtraction. */
1630 APFloat::opStatus
addOrSubtract(const APFloat & rhs,roundingMode rounding_mode,bool subtract)1631 APFloat::addOrSubtract(const APFloat &rhs, roundingMode rounding_mode,
1632 bool subtract)
1633 {
1634 opStatus fs;
1635
1636 fs = addOrSubtractSpecials(rhs, subtract);
1637
1638 /* This return code means it was not a simple case. */
1639 if (fs == opDivByZero) {
1640 lostFraction lost_fraction;
1641
1642 lost_fraction = addOrSubtractSignificand(rhs, subtract);
1643 fs = normalize(rounding_mode, lost_fraction);
1644
1645 /* Can only be zero if we lost no fraction. */
1646 assert(category != fcZero || lost_fraction == lfExactlyZero);
1647 }
1648
1649 /* If two numbers add (exactly) to zero, IEEE 754 decrees it is a
1650 positive zero unless rounding to minus infinity, except that
1651 adding two like-signed zeroes gives that zero. */
1652 if (category == fcZero) {
1653 if (rhs.category != fcZero || (sign == rhs.sign) == subtract)
1654 sign = (rounding_mode == rmTowardNegative);
1655 }
1656
1657 return fs;
1658 }
1659
1660 /* Normalized addition. */
1661 APFloat::opStatus
add(const APFloat & rhs,roundingMode rounding_mode)1662 APFloat::add(const APFloat &rhs, roundingMode rounding_mode)
1663 {
1664 return addOrSubtract(rhs, rounding_mode, false);
1665 }
1666
1667 /* Normalized subtraction. */
1668 APFloat::opStatus
subtract(const APFloat & rhs,roundingMode rounding_mode)1669 APFloat::subtract(const APFloat &rhs, roundingMode rounding_mode)
1670 {
1671 return addOrSubtract(rhs, rounding_mode, true);
1672 }
1673
1674 /* Normalized multiply. */
1675 APFloat::opStatus
multiply(const APFloat & rhs,roundingMode rounding_mode)1676 APFloat::multiply(const APFloat &rhs, roundingMode rounding_mode)
1677 {
1678 opStatus fs;
1679
1680 sign ^= rhs.sign;
1681 fs = multiplySpecials(rhs);
1682
1683 if (isFiniteNonZero()) {
1684 lostFraction lost_fraction = multiplySignificand(rhs, nullptr);
1685 fs = normalize(rounding_mode, lost_fraction);
1686 if (lost_fraction != lfExactlyZero)
1687 fs = (opStatus) (fs | opInexact);
1688 }
1689
1690 return fs;
1691 }
1692
1693 /* Normalized divide. */
1694 APFloat::opStatus
divide(const APFloat & rhs,roundingMode rounding_mode)1695 APFloat::divide(const APFloat &rhs, roundingMode rounding_mode)
1696 {
1697 opStatus fs;
1698
1699 sign ^= rhs.sign;
1700 fs = divideSpecials(rhs);
1701
1702 if (isFiniteNonZero()) {
1703 lostFraction lost_fraction = divideSignificand(rhs);
1704 fs = normalize(rounding_mode, lost_fraction);
1705 if (lost_fraction != lfExactlyZero)
1706 fs = (opStatus) (fs | opInexact);
1707 }
1708
1709 return fs;
1710 }
1711
1712 /* Normalized remainder. This is not currently correct in all cases. */
1713 APFloat::opStatus
remainder(const APFloat & rhs)1714 APFloat::remainder(const APFloat &rhs)
1715 {
1716 opStatus fs;
1717 APFloat V = *this;
1718 unsigned int origSign = sign;
1719
1720 fs = V.divide(rhs, rmNearestTiesToEven);
1721 if (fs == opDivByZero)
1722 return fs;
1723
1724 int parts = partCount();
1725 integerPart *x = new integerPart[parts];
1726 bool ignored;
1727 fs = V.convertToInteger(x, parts * integerPartWidth, true,
1728 rmNearestTiesToEven, &ignored);
1729 if (fs==opInvalidOp)
1730 return fs;
1731
1732 fs = V.convertFromZeroExtendedInteger(x, parts * integerPartWidth, true,
1733 rmNearestTiesToEven);
1734 assert(fs==opOK); // should always work
1735
1736 fs = V.multiply(rhs, rmNearestTiesToEven);
1737 assert(fs==opOK || fs==opInexact); // should not overflow or underflow
1738
1739 fs = subtract(V, rmNearestTiesToEven);
1740 assert(fs==opOK || fs==opInexact); // likewise
1741
1742 if (isZero())
1743 sign = origSign; // IEEE754 requires this
1744 delete[] x;
1745 return fs;
1746 }
1747
1748 /* Normalized llvm frem (C fmod).
1749 This is not currently correct in all cases. */
1750 APFloat::opStatus
mod(const APFloat & rhs,roundingMode rounding_mode)1751 APFloat::mod(const APFloat &rhs, roundingMode rounding_mode)
1752 {
1753 opStatus fs;
1754 fs = modSpecials(rhs);
1755
1756 if (isFiniteNonZero() && rhs.isFiniteNonZero()) {
1757 APFloat V = *this;
1758 unsigned int origSign = sign;
1759
1760 fs = V.divide(rhs, rmNearestTiesToEven);
1761 if (fs == opDivByZero)
1762 return fs;
1763
1764 int parts = partCount();
1765 integerPart *x = new integerPart[parts];
1766 bool ignored;
1767 fs = V.convertToInteger(x, parts * integerPartWidth, true,
1768 rmTowardZero, &ignored);
1769 if (fs==opInvalidOp)
1770 return fs;
1771
1772 fs = V.convertFromZeroExtendedInteger(x, parts * integerPartWidth, true,
1773 rmNearestTiesToEven);
1774 assert(fs==opOK); // should always work
1775
1776 fs = V.multiply(rhs, rounding_mode);
1777 assert(fs==opOK || fs==opInexact); // should not overflow or underflow
1778
1779 fs = subtract(V, rounding_mode);
1780 assert(fs==opOK || fs==opInexact); // likewise
1781
1782 if (isZero())
1783 sign = origSign; // IEEE754 requires this
1784 delete[] x;
1785 }
1786 return fs;
1787 }
1788
1789 /* Normalized fused-multiply-add. */
1790 APFloat::opStatus
fusedMultiplyAdd(const APFloat & multiplicand,const APFloat & addend,roundingMode rounding_mode)1791 APFloat::fusedMultiplyAdd(const APFloat &multiplicand,
1792 const APFloat &addend,
1793 roundingMode rounding_mode)
1794 {
1795 opStatus fs;
1796
1797 /* Post-multiplication sign, before addition. */
1798 sign ^= multiplicand.sign;
1799
1800 /* If and only if all arguments are normal do we need to do an
1801 extended-precision calculation. */
1802 if (isFiniteNonZero() &&
1803 multiplicand.isFiniteNonZero() &&
1804 addend.isFiniteNonZero()) {
1805 lostFraction lost_fraction;
1806
1807 lost_fraction = multiplySignificand(multiplicand, &addend);
1808 fs = normalize(rounding_mode, lost_fraction);
1809 if (lost_fraction != lfExactlyZero)
1810 fs = (opStatus) (fs | opInexact);
1811
1812 /* If two numbers add (exactly) to zero, IEEE 754 decrees it is a
1813 positive zero unless rounding to minus infinity, except that
1814 adding two like-signed zeroes gives that zero. */
1815 if (category == fcZero && sign != addend.sign)
1816 sign = (rounding_mode == rmTowardNegative);
1817 } else {
1818 fs = multiplySpecials(multiplicand);
1819
1820 /* FS can only be opOK or opInvalidOp. There is no more work
1821 to do in the latter case. The IEEE-754R standard says it is
1822 implementation-defined in this case whether, if ADDEND is a
1823 quiet NaN, we raise invalid op; this implementation does so.
1824
1825 If we need to do the addition we can do so with normal
1826 precision. */
1827 if (fs == opOK)
1828 fs = addOrSubtract(addend, rounding_mode, false);
1829 }
1830
1831 return fs;
1832 }
1833
1834 /* Rounding-mode corrrect round to integral value. */
roundToIntegral(roundingMode rounding_mode)1835 APFloat::opStatus APFloat::roundToIntegral(roundingMode rounding_mode) {
1836 opStatus fs;
1837
1838 // If the exponent is large enough, we know that this value is already
1839 // integral, and the arithmetic below would potentially cause it to saturate
1840 // to +/-Inf. Bail out early instead.
1841 if (isFiniteNonZero() && exponent+1 >= (int)semanticsPrecision(*semantics))
1842 return opOK;
1843
1844 // The algorithm here is quite simple: we add 2^(p-1), where p is the
1845 // precision of our format, and then subtract it back off again. The choice
1846 // of rounding modes for the addition/subtraction determines the rounding mode
1847 // for our integral rounding as well.
1848 // NOTE: When the input value is negative, we do subtraction followed by
1849 // addition instead.
1850 APInt IntegerConstant(NextPowerOf2(semanticsPrecision(*semantics)), 1);
1851 IntegerConstant <<= semanticsPrecision(*semantics)-1;
1852 APFloat MagicConstant(*semantics);
1853 fs = MagicConstant.convertFromAPInt(IntegerConstant, false,
1854 rmNearestTiesToEven);
1855 MagicConstant.copySign(*this);
1856
1857 if (fs != opOK)
1858 return fs;
1859
1860 // Preserve the input sign so that we can handle 0.0/-0.0 cases correctly.
1861 bool inputSign = isNegative();
1862
1863 fs = add(MagicConstant, rounding_mode);
1864 if (fs != opOK && fs != opInexact)
1865 return fs;
1866
1867 fs = subtract(MagicConstant, rounding_mode);
1868
1869 // Restore the input sign.
1870 if (inputSign != isNegative())
1871 changeSign();
1872
1873 return fs;
1874 }
1875
1876
1877 /* Comparison requires normalized numbers. */
1878 APFloat::cmpResult
compare(const APFloat & rhs) const1879 APFloat::compare(const APFloat &rhs) const
1880 {
1881 cmpResult result;
1882
1883 assert(semantics == rhs.semantics);
1884
1885 switch (PackCategoriesIntoKey(category, rhs.category)) {
1886 default:
1887 llvm_unreachable(nullptr);
1888
1889 case PackCategoriesIntoKey(fcNaN, fcZero):
1890 case PackCategoriesIntoKey(fcNaN, fcNormal):
1891 case PackCategoriesIntoKey(fcNaN, fcInfinity):
1892 case PackCategoriesIntoKey(fcNaN, fcNaN):
1893 case PackCategoriesIntoKey(fcZero, fcNaN):
1894 case PackCategoriesIntoKey(fcNormal, fcNaN):
1895 case PackCategoriesIntoKey(fcInfinity, fcNaN):
1896 return cmpUnordered;
1897
1898 case PackCategoriesIntoKey(fcInfinity, fcNormal):
1899 case PackCategoriesIntoKey(fcInfinity, fcZero):
1900 case PackCategoriesIntoKey(fcNormal, fcZero):
1901 if (sign)
1902 return cmpLessThan;
1903 else
1904 return cmpGreaterThan;
1905
1906 case PackCategoriesIntoKey(fcNormal, fcInfinity):
1907 case PackCategoriesIntoKey(fcZero, fcInfinity):
1908 case PackCategoriesIntoKey(fcZero, fcNormal):
1909 if (rhs.sign)
1910 return cmpGreaterThan;
1911 else
1912 return cmpLessThan;
1913
1914 case PackCategoriesIntoKey(fcInfinity, fcInfinity):
1915 if (sign == rhs.sign)
1916 return cmpEqual;
1917 else if (sign)
1918 return cmpLessThan;
1919 else
1920 return cmpGreaterThan;
1921
1922 case PackCategoriesIntoKey(fcZero, fcZero):
1923 return cmpEqual;
1924
1925 case PackCategoriesIntoKey(fcNormal, fcNormal):
1926 break;
1927 }
1928
1929 /* Two normal numbers. Do they have the same sign? */
1930 if (sign != rhs.sign) {
1931 if (sign)
1932 result = cmpLessThan;
1933 else
1934 result = cmpGreaterThan;
1935 } else {
1936 /* Compare absolute values; invert result if negative. */
1937 result = compareAbsoluteValue(rhs);
1938
1939 if (sign) {
1940 if (result == cmpLessThan)
1941 result = cmpGreaterThan;
1942 else if (result == cmpGreaterThan)
1943 result = cmpLessThan;
1944 }
1945 }
1946
1947 return result;
1948 }
1949
1950 /// APFloat::convert - convert a value of one floating point type to another.
1951 /// The return value corresponds to the IEEE754 exceptions. *losesInfo
1952 /// records whether the transformation lost information, i.e. whether
1953 /// converting the result back to the original type will produce the
1954 /// original value (this is almost the same as return value==fsOK, but there
1955 /// are edge cases where this is not so).
1956
1957 APFloat::opStatus
convert(const fltSemantics & toSemantics,roundingMode rounding_mode,bool * losesInfo)1958 APFloat::convert(const fltSemantics &toSemantics,
1959 roundingMode rounding_mode, bool *losesInfo)
1960 {
1961 lostFraction lostFraction;
1962 unsigned int newPartCount, oldPartCount;
1963 opStatus fs;
1964 int shift;
1965 const fltSemantics &fromSemantics = *semantics;
1966
1967 lostFraction = lfExactlyZero;
1968 newPartCount = partCountForBits(toSemantics.precision + 1);
1969 oldPartCount = partCount();
1970 shift = toSemantics.precision - fromSemantics.precision;
1971
1972 bool X86SpecialNan = false;
1973 if (&fromSemantics == &APFloat::x87DoubleExtended &&
1974 &toSemantics != &APFloat::x87DoubleExtended && category == fcNaN &&
1975 (!(*significandParts() & 0x8000000000000000ULL) ||
1976 !(*significandParts() & 0x4000000000000000ULL))) {
1977 // x86 has some unusual NaNs which cannot be represented in any other
1978 // format; note them here.
1979 X86SpecialNan = true;
1980 }
1981
1982 // If this is a truncation of a denormal number, and the target semantics
1983 // has larger exponent range than the source semantics (this can happen
1984 // when truncating from PowerPC double-double to double format), the
1985 // right shift could lose result mantissa bits. Adjust exponent instead
1986 // of performing excessive shift.
1987 if (shift < 0 && isFiniteNonZero()) {
1988 int exponentChange = significandMSB() + 1 - fromSemantics.precision;
1989 if (exponent + exponentChange < toSemantics.minExponent)
1990 exponentChange = toSemantics.minExponent - exponent;
1991 if (exponentChange < shift)
1992 exponentChange = shift;
1993 if (exponentChange < 0) {
1994 shift -= exponentChange;
1995 exponent += exponentChange;
1996 }
1997 }
1998
1999 // If this is a truncation, perform the shift before we narrow the storage.
2000 if (shift < 0 && (isFiniteNonZero() || category==fcNaN))
2001 lostFraction = shiftRight(significandParts(), oldPartCount, -shift);
2002
2003 // Fix the storage so it can hold to new value.
2004 if (newPartCount > oldPartCount) {
2005 // The new type requires more storage; make it available.
2006 integerPart *newParts;
2007 newParts = new integerPart[newPartCount];
2008 APInt::tcSet(newParts, 0, newPartCount);
2009 if (isFiniteNonZero() || category==fcNaN)
2010 APInt::tcAssign(newParts, significandParts(), oldPartCount);
2011 freeSignificand();
2012 significand.parts = newParts;
2013 } else if (newPartCount == 1 && oldPartCount != 1) {
2014 // Switch to built-in storage for a single part.
2015 integerPart newPart = 0;
2016 if (isFiniteNonZero() || category==fcNaN)
2017 newPart = significandParts()[0];
2018 freeSignificand();
2019 significand.part = newPart;
2020 }
2021
2022 // Now that we have the right storage, switch the semantics.
2023 semantics = &toSemantics;
2024
2025 // If this is an extension, perform the shift now that the storage is
2026 // available.
2027 if (shift > 0 && (isFiniteNonZero() || category==fcNaN))
2028 APInt::tcShiftLeft(significandParts(), newPartCount, shift);
2029
2030 if (isFiniteNonZero()) {
2031 fs = normalize(rounding_mode, lostFraction);
2032 *losesInfo = (fs != opOK);
2033 } else if (category == fcNaN) {
2034 *losesInfo = lostFraction != lfExactlyZero || X86SpecialNan;
2035
2036 // For x87 extended precision, we want to make a NaN, not a special NaN if
2037 // the input wasn't special either.
2038 if (!X86SpecialNan && semantics == &APFloat::x87DoubleExtended)
2039 APInt::tcSetBit(significandParts(), semantics->precision - 1);
2040
2041 // gcc forces the Quiet bit on, which means (float)(double)(float_sNan)
2042 // does not give you back the same bits. This is dubious, and we
2043 // don't currently do it. You're really supposed to get
2044 // an invalid operation signal at runtime, but nobody does that.
2045 fs = opOK;
2046 } else {
2047 *losesInfo = false;
2048 fs = opOK;
2049 }
2050
2051 return fs;
2052 }
2053
2054 /* Convert a floating point number to an integer according to the
2055 rounding mode. If the rounded integer value is out of range this
2056 returns an invalid operation exception and the contents of the
2057 destination parts are unspecified. If the rounded value is in
2058 range but the floating point number is not the exact integer, the C
2059 standard doesn't require an inexact exception to be raised. IEEE
2060 854 does require it so we do that.
2061
2062 Note that for conversions to integer type the C standard requires
2063 round-to-zero to always be used. */
2064 APFloat::opStatus
convertToSignExtendedInteger(integerPart * parts,unsigned int width,bool isSigned,roundingMode rounding_mode,bool * isExact) const2065 APFloat::convertToSignExtendedInteger(integerPart *parts, unsigned int width,
2066 bool isSigned,
2067 roundingMode rounding_mode,
2068 bool *isExact) const
2069 {
2070 lostFraction lost_fraction;
2071 const integerPart *src;
2072 unsigned int dstPartsCount, truncatedBits;
2073
2074 *isExact = false;
2075
2076 /* Handle the three special cases first. */
2077 if (category == fcInfinity || category == fcNaN)
2078 return opInvalidOp;
2079
2080 dstPartsCount = partCountForBits(width);
2081
2082 if (category == fcZero) {
2083 APInt::tcSet(parts, 0, dstPartsCount);
2084 // Negative zero can't be represented as an int.
2085 *isExact = !sign;
2086 return opOK;
2087 }
2088
2089 src = significandParts();
2090
2091 /* Step 1: place our absolute value, with any fraction truncated, in
2092 the destination. */
2093 if (exponent < 0) {
2094 /* Our absolute value is less than one; truncate everything. */
2095 APInt::tcSet(parts, 0, dstPartsCount);
2096 /* For exponent -1 the integer bit represents .5, look at that.
2097 For smaller exponents leftmost truncated bit is 0. */
2098 truncatedBits = semantics->precision -1U - exponent;
2099 } else {
2100 /* We want the most significant (exponent + 1) bits; the rest are
2101 truncated. */
2102 unsigned int bits = exponent + 1U;
2103
2104 /* Hopelessly large in magnitude? */
2105 if (bits > width)
2106 return opInvalidOp;
2107
2108 if (bits < semantics->precision) {
2109 /* We truncate (semantics->precision - bits) bits. */
2110 truncatedBits = semantics->precision - bits;
2111 APInt::tcExtract(parts, dstPartsCount, src, bits, truncatedBits);
2112 } else {
2113 /* We want at least as many bits as are available. */
2114 APInt::tcExtract(parts, dstPartsCount, src, semantics->precision, 0);
2115 APInt::tcShiftLeft(parts, dstPartsCount, bits - semantics->precision);
2116 truncatedBits = 0;
2117 }
2118 }
2119
2120 /* Step 2: work out any lost fraction, and increment the absolute
2121 value if we would round away from zero. */
2122 if (truncatedBits) {
2123 lost_fraction = lostFractionThroughTruncation(src, partCount(),
2124 truncatedBits);
2125 if (lost_fraction != lfExactlyZero &&
2126 roundAwayFromZero(rounding_mode, lost_fraction, truncatedBits)) {
2127 if (APInt::tcIncrement(parts, dstPartsCount))
2128 return opInvalidOp; /* Overflow. */
2129 }
2130 } else {
2131 lost_fraction = lfExactlyZero;
2132 }
2133
2134 /* Step 3: check if we fit in the destination. */
2135 unsigned int omsb = APInt::tcMSB(parts, dstPartsCount) + 1;
2136
2137 if (sign) {
2138 if (!isSigned) {
2139 /* Negative numbers cannot be represented as unsigned. */
2140 if (omsb != 0)
2141 return opInvalidOp;
2142 } else {
2143 /* It takes omsb bits to represent the unsigned integer value.
2144 We lose a bit for the sign, but care is needed as the
2145 maximally negative integer is a special case. */
2146 if (omsb == width && APInt::tcLSB(parts, dstPartsCount) + 1 != omsb)
2147 return opInvalidOp;
2148
2149 /* This case can happen because of rounding. */
2150 if (omsb > width)
2151 return opInvalidOp;
2152 }
2153
2154 APInt::tcNegate (parts, dstPartsCount);
2155 } else {
2156 if (omsb >= width + !isSigned)
2157 return opInvalidOp;
2158 }
2159
2160 if (lost_fraction == lfExactlyZero) {
2161 *isExact = true;
2162 return opOK;
2163 } else
2164 return opInexact;
2165 }
2166
2167 /* Same as convertToSignExtendedInteger, except we provide
2168 deterministic values in case of an invalid operation exception,
2169 namely zero for NaNs and the minimal or maximal value respectively
2170 for underflow or overflow.
2171 The *isExact output tells whether the result is exact, in the sense
2172 that converting it back to the original floating point type produces
2173 the original value. This is almost equivalent to result==opOK,
2174 except for negative zeroes.
2175 */
2176 APFloat::opStatus
convertToInteger(integerPart * parts,unsigned int width,bool isSigned,roundingMode rounding_mode,bool * isExact) const2177 APFloat::convertToInteger(integerPart *parts, unsigned int width,
2178 bool isSigned,
2179 roundingMode rounding_mode, bool *isExact) const
2180 {
2181 opStatus fs;
2182
2183 fs = convertToSignExtendedInteger(parts, width, isSigned, rounding_mode,
2184 isExact);
2185
2186 if (fs == opInvalidOp) {
2187 unsigned int bits, dstPartsCount;
2188
2189 dstPartsCount = partCountForBits(width);
2190
2191 if (category == fcNaN)
2192 bits = 0;
2193 else if (sign)
2194 bits = isSigned;
2195 else
2196 bits = width - isSigned;
2197
2198 APInt::tcSetLeastSignificantBits(parts, dstPartsCount, bits);
2199 if (sign && isSigned)
2200 APInt::tcShiftLeft(parts, dstPartsCount, width - 1);
2201 }
2202
2203 return fs;
2204 }
2205
2206 /* Same as convertToInteger(integerPart*, ...), except the result is returned in
2207 an APSInt, whose initial bit-width and signed-ness are used to determine the
2208 precision of the conversion.
2209 */
2210 APFloat::opStatus
convertToInteger(APSInt & result,roundingMode rounding_mode,bool * isExact) const2211 APFloat::convertToInteger(APSInt &result,
2212 roundingMode rounding_mode, bool *isExact) const
2213 {
2214 unsigned bitWidth = result.getBitWidth();
2215 SmallVector<uint64_t, 4> parts(result.getNumWords());
2216 opStatus status = convertToInteger(
2217 parts.data(), bitWidth, result.isSigned(), rounding_mode, isExact);
2218 // Keeps the original signed-ness.
2219 result = APInt(bitWidth, parts);
2220 return status;
2221 }
2222
2223 /* Convert an unsigned integer SRC to a floating point number,
2224 rounding according to ROUNDING_MODE. The sign of the floating
2225 point number is not modified. */
2226 APFloat::opStatus
convertFromUnsignedParts(const integerPart * src,unsigned int srcCount,roundingMode rounding_mode)2227 APFloat::convertFromUnsignedParts(const integerPart *src,
2228 unsigned int srcCount,
2229 roundingMode rounding_mode)
2230 {
2231 unsigned int omsb, precision, dstCount;
2232 integerPart *dst;
2233 lostFraction lost_fraction;
2234
2235 category = fcNormal;
2236 omsb = APInt::tcMSB(src, srcCount) + 1;
2237 dst = significandParts();
2238 dstCount = partCount();
2239 precision = semantics->precision;
2240
2241 /* We want the most significant PRECISION bits of SRC. There may not
2242 be that many; extract what we can. */
2243 if (precision <= omsb) {
2244 exponent = omsb - 1;
2245 lost_fraction = lostFractionThroughTruncation(src, srcCount,
2246 omsb - precision);
2247 APInt::tcExtract(dst, dstCount, src, precision, omsb - precision);
2248 } else {
2249 exponent = precision - 1;
2250 lost_fraction = lfExactlyZero;
2251 APInt::tcExtract(dst, dstCount, src, omsb, 0);
2252 }
2253
2254 return normalize(rounding_mode, lost_fraction);
2255 }
2256
2257 APFloat::opStatus
convertFromAPInt(const APInt & Val,bool isSigned,roundingMode rounding_mode)2258 APFloat::convertFromAPInt(const APInt &Val,
2259 bool isSigned,
2260 roundingMode rounding_mode)
2261 {
2262 unsigned int partCount = Val.getNumWords();
2263 APInt api = Val;
2264
2265 sign = false;
2266 if (isSigned && api.isNegative()) {
2267 sign = true;
2268 api = -api;
2269 }
2270
2271 return convertFromUnsignedParts(api.getRawData(), partCount, rounding_mode);
2272 }
2273
2274 /* Convert a two's complement integer SRC to a floating point number,
2275 rounding according to ROUNDING_MODE. ISSIGNED is true if the
2276 integer is signed, in which case it must be sign-extended. */
2277 APFloat::opStatus
convertFromSignExtendedInteger(const integerPart * src,unsigned int srcCount,bool isSigned,roundingMode rounding_mode)2278 APFloat::convertFromSignExtendedInteger(const integerPart *src,
2279 unsigned int srcCount,
2280 bool isSigned,
2281 roundingMode rounding_mode)
2282 {
2283 opStatus status;
2284
2285 if (isSigned &&
2286 APInt::tcExtractBit(src, srcCount * integerPartWidth - 1)) {
2287 integerPart *copy;
2288
2289 /* If we're signed and negative negate a copy. */
2290 sign = true;
2291 copy = new integerPart[srcCount];
2292 APInt::tcAssign(copy, src, srcCount);
2293 APInt::tcNegate(copy, srcCount);
2294 status = convertFromUnsignedParts(copy, srcCount, rounding_mode);
2295 delete [] copy;
2296 } else {
2297 sign = false;
2298 status = convertFromUnsignedParts(src, srcCount, rounding_mode);
2299 }
2300
2301 return status;
2302 }
2303
2304 /* FIXME: should this just take a const APInt reference? */
2305 APFloat::opStatus
convertFromZeroExtendedInteger(const integerPart * parts,unsigned int width,bool isSigned,roundingMode rounding_mode)2306 APFloat::convertFromZeroExtendedInteger(const integerPart *parts,
2307 unsigned int width, bool isSigned,
2308 roundingMode rounding_mode)
2309 {
2310 unsigned int partCount = partCountForBits(width);
2311 APInt api = APInt(width, makeArrayRef(parts, partCount));
2312
2313 sign = false;
2314 if (isSigned && APInt::tcExtractBit(parts, width - 1)) {
2315 sign = true;
2316 api = -api;
2317 }
2318
2319 return convertFromUnsignedParts(api.getRawData(), partCount, rounding_mode);
2320 }
2321
2322 APFloat::opStatus
convertFromHexadecimalString(StringRef s,roundingMode rounding_mode)2323 APFloat::convertFromHexadecimalString(StringRef s, roundingMode rounding_mode)
2324 {
2325 lostFraction lost_fraction = lfExactlyZero;
2326
2327 category = fcNormal;
2328 zeroSignificand();
2329 exponent = 0;
2330
2331 integerPart *significand = significandParts();
2332 unsigned partsCount = partCount();
2333 unsigned bitPos = partsCount * integerPartWidth;
2334 bool computedTrailingFraction = false;
2335
2336 // Skip leading zeroes and any (hexa)decimal point.
2337 StringRef::iterator begin = s.begin();
2338 StringRef::iterator end = s.end();
2339 StringRef::iterator dot;
2340 StringRef::iterator p = skipLeadingZeroesAndAnyDot(begin, end, &dot);
2341 StringRef::iterator firstSignificantDigit = p;
2342
2343 while (p != end) {
2344 integerPart hex_value;
2345
2346 if (*p == '.') {
2347 assert(dot == end && "String contains multiple dots");
2348 dot = p++;
2349 continue;
2350 }
2351
2352 hex_value = hexDigitValue(*p);
2353 if (hex_value == -1U)
2354 break;
2355
2356 p++;
2357
2358 // Store the number while we have space.
2359 if (bitPos) {
2360 bitPos -= 4;
2361 hex_value <<= bitPos % integerPartWidth;
2362 significand[bitPos / integerPartWidth] |= hex_value;
2363 } else if (!computedTrailingFraction) {
2364 lost_fraction = trailingHexadecimalFraction(p, end, hex_value);
2365 computedTrailingFraction = true;
2366 }
2367 }
2368
2369 /* Hex floats require an exponent but not a hexadecimal point. */
2370 assert(p != end && "Hex strings require an exponent");
2371 assert((*p == 'p' || *p == 'P') && "Invalid character in significand");
2372 assert(p != begin && "Significand has no digits");
2373 assert((dot == end || p - begin != 1) && "Significand has no digits");
2374
2375 /* Ignore the exponent if we are zero. */
2376 if (p != firstSignificantDigit) {
2377 int expAdjustment;
2378
2379 /* Implicit hexadecimal point? */
2380 if (dot == end)
2381 dot = p;
2382
2383 /* Calculate the exponent adjustment implicit in the number of
2384 significant digits. */
2385 expAdjustment = static_cast<int>(dot - firstSignificantDigit);
2386 if (expAdjustment < 0)
2387 expAdjustment++;
2388 expAdjustment = expAdjustment * 4 - 1;
2389
2390 /* Adjust for writing the significand starting at the most
2391 significant nibble. */
2392 expAdjustment += semantics->precision;
2393 expAdjustment -= partsCount * integerPartWidth;
2394
2395 /* Adjust for the given exponent. */
2396 exponent = totalExponent(p + 1, end, expAdjustment);
2397 }
2398
2399 return normalize(rounding_mode, lost_fraction);
2400 }
2401
2402 APFloat::opStatus
roundSignificandWithExponent(const integerPart * decSigParts,unsigned sigPartCount,int exp,roundingMode rounding_mode)2403 APFloat::roundSignificandWithExponent(const integerPart *decSigParts,
2404 unsigned sigPartCount, int exp,
2405 roundingMode rounding_mode)
2406 {
2407 unsigned int parts, pow5PartCount;
2408 fltSemantics calcSemantics = { 32767, -32767, 0 };
2409 integerPart pow5Parts[maxPowerOfFiveParts];
2410 bool isNearest;
2411
2412 isNearest = (rounding_mode == rmNearestTiesToEven ||
2413 rounding_mode == rmNearestTiesToAway);
2414
2415 parts = partCountForBits(semantics->precision + 11);
2416
2417 /* Calculate pow(5, abs(exp)). */
2418 pow5PartCount = powerOf5(pow5Parts, exp >= 0 ? exp: -exp);
2419
2420 for (;; parts *= 2) {
2421 opStatus sigStatus, powStatus;
2422 unsigned int excessPrecision, truncatedBits;
2423
2424 calcSemantics.precision = parts * integerPartWidth - 1;
2425 excessPrecision = calcSemantics.precision - semantics->precision;
2426 truncatedBits = excessPrecision;
2427
2428 APFloat decSig = APFloat::getZero(calcSemantics, sign);
2429 APFloat pow5(calcSemantics);
2430
2431 sigStatus = decSig.convertFromUnsignedParts(decSigParts, sigPartCount,
2432 rmNearestTiesToEven);
2433 powStatus = pow5.convertFromUnsignedParts(pow5Parts, pow5PartCount,
2434 rmNearestTiesToEven);
2435 /* Add exp, as 10^n = 5^n * 2^n. */
2436 decSig.exponent += exp;
2437
2438 lostFraction calcLostFraction;
2439 integerPart HUerr, HUdistance;
2440 unsigned int powHUerr;
2441
2442 if (exp >= 0) {
2443 /* multiplySignificand leaves the precision-th bit set to 1. */
2444 calcLostFraction = decSig.multiplySignificand(pow5, nullptr);
2445 powHUerr = powStatus != opOK;
2446 } else {
2447 calcLostFraction = decSig.divideSignificand(pow5);
2448 /* Denormal numbers have less precision. */
2449 if (decSig.exponent < semantics->minExponent) {
2450 excessPrecision += (semantics->minExponent - decSig.exponent);
2451 truncatedBits = excessPrecision;
2452 if (excessPrecision > calcSemantics.precision)
2453 excessPrecision = calcSemantics.precision;
2454 }
2455 /* Extra half-ulp lost in reciprocal of exponent. */
2456 powHUerr = (powStatus == opOK && calcLostFraction == lfExactlyZero) ? 0:2;
2457 }
2458
2459 /* Both multiplySignificand and divideSignificand return the
2460 result with the integer bit set. */
2461 assert(APInt::tcExtractBit
2462 (decSig.significandParts(), calcSemantics.precision - 1) == 1);
2463
2464 HUerr = HUerrBound(calcLostFraction != lfExactlyZero, sigStatus != opOK,
2465 powHUerr);
2466 HUdistance = 2 * ulpsFromBoundary(decSig.significandParts(),
2467 excessPrecision, isNearest);
2468
2469 /* Are we guaranteed to round correctly if we truncate? */
2470 if (HUdistance >= HUerr) {
2471 APInt::tcExtract(significandParts(), partCount(), decSig.significandParts(),
2472 calcSemantics.precision - excessPrecision,
2473 excessPrecision);
2474 /* Take the exponent of decSig. If we tcExtract-ed less bits
2475 above we must adjust our exponent to compensate for the
2476 implicit right shift. */
2477 exponent = (decSig.exponent + semantics->precision
2478 - (calcSemantics.precision - excessPrecision));
2479 calcLostFraction = lostFractionThroughTruncation(decSig.significandParts(),
2480 decSig.partCount(),
2481 truncatedBits);
2482 return normalize(rounding_mode, calcLostFraction);
2483 }
2484 }
2485 }
2486
2487 APFloat::opStatus
convertFromDecimalString(StringRef str,roundingMode rounding_mode)2488 APFloat::convertFromDecimalString(StringRef str, roundingMode rounding_mode)
2489 {
2490 decimalInfo D;
2491 opStatus fs;
2492
2493 /* Scan the text. */
2494 StringRef::iterator p = str.begin();
2495 interpretDecimal(p, str.end(), &D);
2496
2497 /* Handle the quick cases. First the case of no significant digits,
2498 i.e. zero, and then exponents that are obviously too large or too
2499 small. Writing L for log 10 / log 2, a number d.ddddd*10^exp
2500 definitely overflows if
2501
2502 (exp - 1) * L >= maxExponent
2503
2504 and definitely underflows to zero where
2505
2506 (exp + 1) * L <= minExponent - precision
2507
2508 With integer arithmetic the tightest bounds for L are
2509
2510 93/28 < L < 196/59 [ numerator <= 256 ]
2511 42039/12655 < L < 28738/8651 [ numerator <= 65536 ]
2512 */
2513
2514 // Test if we have a zero number allowing for strings with no null terminators
2515 // and zero decimals with non-zero exponents.
2516 //
2517 // We computed firstSigDigit by ignoring all zeros and dots. Thus if
2518 // D->firstSigDigit equals str.end(), every digit must be a zero and there can
2519 // be at most one dot. On the other hand, if we have a zero with a non-zero
2520 // exponent, then we know that D.firstSigDigit will be non-numeric.
2521 if (D.firstSigDigit == str.end() || decDigitValue(*D.firstSigDigit) >= 10U) {
2522 category = fcZero;
2523 fs = opOK;
2524
2525 /* Check whether the normalized exponent is high enough to overflow
2526 max during the log-rebasing in the max-exponent check below. */
2527 } else if (D.normalizedExponent - 1 > INT_MAX / 42039) {
2528 fs = handleOverflow(rounding_mode);
2529
2530 /* If it wasn't, then it also wasn't high enough to overflow max
2531 during the log-rebasing in the min-exponent check. Check that it
2532 won't overflow min in either check, then perform the min-exponent
2533 check. */
2534 } else if (D.normalizedExponent - 1 < INT_MIN / 42039 ||
2535 (D.normalizedExponent + 1) * 28738 <=
2536 8651 * (semantics->minExponent - (int) semantics->precision)) {
2537 /* Underflow to zero and round. */
2538 category = fcNormal;
2539 zeroSignificand();
2540 fs = normalize(rounding_mode, lfLessThanHalf);
2541
2542 /* We can finally safely perform the max-exponent check. */
2543 } else if ((D.normalizedExponent - 1) * 42039
2544 >= 12655 * semantics->maxExponent) {
2545 /* Overflow and round. */
2546 fs = handleOverflow(rounding_mode);
2547 } else {
2548 integerPart *decSignificand;
2549 unsigned int partCount;
2550
2551 /* A tight upper bound on number of bits required to hold an
2552 N-digit decimal integer is N * 196 / 59. Allocate enough space
2553 to hold the full significand, and an extra part required by
2554 tcMultiplyPart. */
2555 partCount = static_cast<unsigned int>(D.lastSigDigit - D.firstSigDigit) + 1;
2556 partCount = partCountForBits(1 + 196 * partCount / 59);
2557 decSignificand = new integerPart[partCount + 1];
2558 partCount = 0;
2559
2560 /* Convert to binary efficiently - we do almost all multiplication
2561 in an integerPart. When this would overflow do we do a single
2562 bignum multiplication, and then revert again to multiplication
2563 in an integerPart. */
2564 do {
2565 integerPart decValue, val, multiplier;
2566
2567 val = 0;
2568 multiplier = 1;
2569
2570 do {
2571 if (*p == '.') {
2572 p++;
2573 if (p == str.end()) {
2574 break;
2575 }
2576 }
2577 decValue = decDigitValue(*p++);
2578 assert(decValue < 10U && "Invalid character in significand");
2579 multiplier *= 10;
2580 val = val * 10 + decValue;
2581 /* The maximum number that can be multiplied by ten with any
2582 digit added without overflowing an integerPart. */
2583 } while (p <= D.lastSigDigit && multiplier <= (~ (integerPart) 0 - 9) / 10);
2584
2585 /* Multiply out the current part. */
2586 APInt::tcMultiplyPart(decSignificand, decSignificand, multiplier, val,
2587 partCount, partCount + 1, false);
2588
2589 /* If we used another part (likely but not guaranteed), increase
2590 the count. */
2591 if (decSignificand[partCount])
2592 partCount++;
2593 } while (p <= D.lastSigDigit);
2594
2595 category = fcNormal;
2596 fs = roundSignificandWithExponent(decSignificand, partCount,
2597 D.exponent, rounding_mode);
2598
2599 delete [] decSignificand;
2600 }
2601
2602 return fs;
2603 }
2604
2605 bool
convertFromStringSpecials(StringRef str)2606 APFloat::convertFromStringSpecials(StringRef str) {
2607 if (str.equals("inf") || str.equals("INFINITY")) {
2608 makeInf(false);
2609 return true;
2610 }
2611
2612 if (str.equals("-inf") || str.equals("-INFINITY")) {
2613 makeInf(true);
2614 return true;
2615 }
2616
2617 if (str.equals("nan") || str.equals("NaN")) {
2618 makeNaN(false, false);
2619 return true;
2620 }
2621
2622 if (str.equals("-nan") || str.equals("-NaN")) {
2623 makeNaN(false, true);
2624 return true;
2625 }
2626
2627 return false;
2628 }
2629
2630 APFloat::opStatus
convertFromString(StringRef str,roundingMode rounding_mode)2631 APFloat::convertFromString(StringRef str, roundingMode rounding_mode)
2632 {
2633 assert(!str.empty() && "Invalid string length");
2634
2635 // Handle special cases.
2636 if (convertFromStringSpecials(str))
2637 return opOK;
2638
2639 /* Handle a leading minus sign. */
2640 StringRef::iterator p = str.begin();
2641 size_t slen = str.size();
2642 sign = *p == '-' ? 1 : 0;
2643 if (*p == '-' || *p == '+') {
2644 p++;
2645 slen--;
2646 assert(slen && "String has no digits");
2647 }
2648
2649 if (slen >= 2 && p[0] == '0' && (p[1] == 'x' || p[1] == 'X')) {
2650 assert(slen - 2 && "Invalid string");
2651 return convertFromHexadecimalString(StringRef(p + 2, slen - 2),
2652 rounding_mode);
2653 }
2654
2655 return convertFromDecimalString(StringRef(p, slen), rounding_mode);
2656 }
2657
2658 /* Write out a hexadecimal representation of the floating point value
2659 to DST, which must be of sufficient size, in the C99 form
2660 [-]0xh.hhhhp[+-]d. Return the number of characters written,
2661 excluding the terminating NUL.
2662
2663 If UPPERCASE, the output is in upper case, otherwise in lower case.
2664
2665 HEXDIGITS digits appear altogether, rounding the value if
2666 necessary. If HEXDIGITS is 0, the minimal precision to display the
2667 number precisely is used instead. If nothing would appear after
2668 the decimal point it is suppressed.
2669
2670 The decimal exponent is always printed and has at least one digit.
2671 Zero values display an exponent of zero. Infinities and NaNs
2672 appear as "infinity" or "nan" respectively.
2673
2674 The above rules are as specified by C99. There is ambiguity about
2675 what the leading hexadecimal digit should be. This implementation
2676 uses whatever is necessary so that the exponent is displayed as
2677 stored. This implies the exponent will fall within the IEEE format
2678 range, and the leading hexadecimal digit will be 0 (for denormals),
2679 1 (normal numbers) or 2 (normal numbers rounded-away-from-zero with
2680 any other digits zero).
2681 */
2682 unsigned int
convertToHexString(char * dst,unsigned int hexDigits,bool upperCase,roundingMode rounding_mode) const2683 APFloat::convertToHexString(char *dst, unsigned int hexDigits,
2684 bool upperCase, roundingMode rounding_mode) const
2685 {
2686 char *p;
2687
2688 p = dst;
2689 if (sign)
2690 *dst++ = '-';
2691
2692 switch (category) {
2693 case fcInfinity:
2694 memcpy (dst, upperCase ? infinityU: infinityL, sizeof infinityU - 1);
2695 dst += sizeof infinityL - 1;
2696 break;
2697
2698 case fcNaN:
2699 memcpy (dst, upperCase ? NaNU: NaNL, sizeof NaNU - 1);
2700 dst += sizeof NaNU - 1;
2701 break;
2702
2703 case fcZero:
2704 *dst++ = '0';
2705 *dst++ = upperCase ? 'X': 'x';
2706 *dst++ = '0';
2707 if (hexDigits > 1) {
2708 *dst++ = '.';
2709 memset (dst, '0', hexDigits - 1);
2710 dst += hexDigits - 1;
2711 }
2712 *dst++ = upperCase ? 'P': 'p';
2713 *dst++ = '0';
2714 break;
2715
2716 case fcNormal:
2717 dst = convertNormalToHexString (dst, hexDigits, upperCase, rounding_mode);
2718 break;
2719 }
2720
2721 *dst = 0;
2722
2723 return static_cast<unsigned int>(dst - p);
2724 }
2725
2726 /* Does the hard work of outputting the correctly rounded hexadecimal
2727 form of a normal floating point number with the specified number of
2728 hexadecimal digits. If HEXDIGITS is zero the minimum number of
2729 digits necessary to print the value precisely is output. */
2730 char *
convertNormalToHexString(char * dst,unsigned int hexDigits,bool upperCase,roundingMode rounding_mode) const2731 APFloat::convertNormalToHexString(char *dst, unsigned int hexDigits,
2732 bool upperCase,
2733 roundingMode rounding_mode) const
2734 {
2735 unsigned int count, valueBits, shift, partsCount, outputDigits;
2736 const char *hexDigitChars;
2737 const integerPart *significand;
2738 char *p;
2739 bool roundUp;
2740
2741 *dst++ = '0';
2742 *dst++ = upperCase ? 'X': 'x';
2743
2744 roundUp = false;
2745 hexDigitChars = upperCase ? hexDigitsUpper: hexDigitsLower;
2746
2747 significand = significandParts();
2748 partsCount = partCount();
2749
2750 /* +3 because the first digit only uses the single integer bit, so
2751 we have 3 virtual zero most-significant-bits. */
2752 valueBits = semantics->precision + 3;
2753 shift = integerPartWidth - valueBits % integerPartWidth;
2754
2755 /* The natural number of digits required ignoring trailing
2756 insignificant zeroes. */
2757 outputDigits = (valueBits - significandLSB () + 3) / 4;
2758
2759 /* hexDigits of zero means use the required number for the
2760 precision. Otherwise, see if we are truncating. If we are,
2761 find out if we need to round away from zero. */
2762 if (hexDigits) {
2763 if (hexDigits < outputDigits) {
2764 /* We are dropping non-zero bits, so need to check how to round.
2765 "bits" is the number of dropped bits. */
2766 unsigned int bits;
2767 lostFraction fraction;
2768
2769 bits = valueBits - hexDigits * 4;
2770 fraction = lostFractionThroughTruncation (significand, partsCount, bits);
2771 roundUp = roundAwayFromZero(rounding_mode, fraction, bits);
2772 }
2773 outputDigits = hexDigits;
2774 }
2775
2776 /* Write the digits consecutively, and start writing in the location
2777 of the hexadecimal point. We move the most significant digit
2778 left and add the hexadecimal point later. */
2779 p = ++dst;
2780
2781 count = (valueBits + integerPartWidth - 1) / integerPartWidth;
2782
2783 while (outputDigits && count) {
2784 integerPart part;
2785
2786 /* Put the most significant integerPartWidth bits in "part". */
2787 if (--count == partsCount)
2788 part = 0; /* An imaginary higher zero part. */
2789 else
2790 part = significand[count] << shift;
2791
2792 if (count && shift)
2793 part |= significand[count - 1] >> (integerPartWidth - shift);
2794
2795 /* Convert as much of "part" to hexdigits as we can. */
2796 unsigned int curDigits = integerPartWidth / 4;
2797
2798 if (curDigits > outputDigits)
2799 curDigits = outputDigits;
2800 dst += partAsHex (dst, part, curDigits, hexDigitChars);
2801 outputDigits -= curDigits;
2802 }
2803
2804 if (roundUp) {
2805 char *q = dst;
2806
2807 /* Note that hexDigitChars has a trailing '0'. */
2808 do {
2809 q--;
2810 *q = hexDigitChars[hexDigitValue (*q) + 1];
2811 } while (*q == '0');
2812 assert(q >= p);
2813 } else {
2814 /* Add trailing zeroes. */
2815 memset (dst, '0', outputDigits);
2816 dst += outputDigits;
2817 }
2818
2819 /* Move the most significant digit to before the point, and if there
2820 is something after the decimal point add it. This must come
2821 after rounding above. */
2822 p[-1] = p[0];
2823 if (dst -1 == p)
2824 dst--;
2825 else
2826 p[0] = '.';
2827
2828 /* Finally output the exponent. */
2829 *dst++ = upperCase ? 'P': 'p';
2830
2831 return writeSignedDecimal (dst, exponent);
2832 }
2833
hash_value(const APFloat & Arg)2834 hash_code llvm::hash_value(const APFloat &Arg) {
2835 if (!Arg.isFiniteNonZero())
2836 return hash_combine((uint8_t)Arg.category,
2837 // NaN has no sign, fix it at zero.
2838 Arg.isNaN() ? (uint8_t)0 : (uint8_t)Arg.sign,
2839 Arg.semantics->precision);
2840
2841 // Normal floats need their exponent and significand hashed.
2842 return hash_combine((uint8_t)Arg.category, (uint8_t)Arg.sign,
2843 Arg.semantics->precision, Arg.exponent,
2844 hash_combine_range(
2845 Arg.significandParts(),
2846 Arg.significandParts() + Arg.partCount()));
2847 }
2848
2849 // Conversion from APFloat to/from host float/double. It may eventually be
2850 // possible to eliminate these and have everybody deal with APFloats, but that
2851 // will take a while. This approach will not easily extend to long double.
2852 // Current implementation requires integerPartWidth==64, which is correct at
2853 // the moment but could be made more general.
2854
2855 // Denormals have exponent minExponent in APFloat, but minExponent-1 in
2856 // the actual IEEE respresentations. We compensate for that here.
2857
2858 APInt
convertF80LongDoubleAPFloatToAPInt() const2859 APFloat::convertF80LongDoubleAPFloatToAPInt() const
2860 {
2861 assert(semantics == (const llvm::fltSemantics*)&x87DoubleExtended);
2862 assert(partCount()==2);
2863
2864 uint64_t myexponent, mysignificand;
2865
2866 if (isFiniteNonZero()) {
2867 myexponent = exponent+16383; //bias
2868 mysignificand = significandParts()[0];
2869 if (myexponent==1 && !(mysignificand & 0x8000000000000000ULL))
2870 myexponent = 0; // denormal
2871 } else if (category==fcZero) {
2872 myexponent = 0;
2873 mysignificand = 0;
2874 } else if (category==fcInfinity) {
2875 myexponent = 0x7fff;
2876 mysignificand = 0x8000000000000000ULL;
2877 } else {
2878 assert(category == fcNaN && "Unknown category");
2879 myexponent = 0x7fff;
2880 mysignificand = significandParts()[0];
2881 }
2882
2883 uint64_t words[2];
2884 words[0] = mysignificand;
2885 words[1] = ((uint64_t)(sign & 1) << 15) |
2886 (myexponent & 0x7fffLL);
2887 return APInt(80, words);
2888 }
2889
2890 APInt
convertPPCDoubleDoubleAPFloatToAPInt() const2891 APFloat::convertPPCDoubleDoubleAPFloatToAPInt() const
2892 {
2893 assert(semantics == (const llvm::fltSemantics*)&PPCDoubleDouble);
2894 assert(partCount()==2);
2895
2896 uint64_t words[2];
2897 opStatus fs;
2898 bool losesInfo;
2899
2900 // Convert number to double. To avoid spurious underflows, we re-
2901 // normalize against the "double" minExponent first, and only *then*
2902 // truncate the mantissa. The result of that second conversion
2903 // may be inexact, but should never underflow.
2904 // Declare fltSemantics before APFloat that uses it (and
2905 // saves pointer to it) to ensure correct destruction order.
2906 fltSemantics extendedSemantics = *semantics;
2907 extendedSemantics.minExponent = IEEEdouble.minExponent;
2908 APFloat extended(*this);
2909 fs = extended.convert(extendedSemantics, rmNearestTiesToEven, &losesInfo);
2910 assert(fs == opOK && !losesInfo);
2911 (void)fs;
2912
2913 APFloat u(extended);
2914 fs = u.convert(IEEEdouble, rmNearestTiesToEven, &losesInfo);
2915 assert(fs == opOK || fs == opInexact);
2916 (void)fs;
2917 words[0] = *u.convertDoubleAPFloatToAPInt().getRawData();
2918
2919 // If conversion was exact or resulted in a special case, we're done;
2920 // just set the second double to zero. Otherwise, re-convert back to
2921 // the extended format and compute the difference. This now should
2922 // convert exactly to double.
2923 if (u.isFiniteNonZero() && losesInfo) {
2924 fs = u.convert(extendedSemantics, rmNearestTiesToEven, &losesInfo);
2925 assert(fs == opOK && !losesInfo);
2926 (void)fs;
2927
2928 APFloat v(extended);
2929 v.subtract(u, rmNearestTiesToEven);
2930 fs = v.convert(IEEEdouble, rmNearestTiesToEven, &losesInfo);
2931 assert(fs == opOK && !losesInfo);
2932 (void)fs;
2933 words[1] = *v.convertDoubleAPFloatToAPInt().getRawData();
2934 } else {
2935 words[1] = 0;
2936 }
2937
2938 return APInt(128, words);
2939 }
2940
2941 APInt
convertQuadrupleAPFloatToAPInt() const2942 APFloat::convertQuadrupleAPFloatToAPInt() const
2943 {
2944 assert(semantics == (const llvm::fltSemantics*)&IEEEquad);
2945 assert(partCount()==2);
2946
2947 uint64_t myexponent, mysignificand, mysignificand2;
2948
2949 if (isFiniteNonZero()) {
2950 myexponent = exponent+16383; //bias
2951 mysignificand = significandParts()[0];
2952 mysignificand2 = significandParts()[1];
2953 if (myexponent==1 && !(mysignificand2 & 0x1000000000000LL))
2954 myexponent = 0; // denormal
2955 } else if (category==fcZero) {
2956 myexponent = 0;
2957 mysignificand = mysignificand2 = 0;
2958 } else if (category==fcInfinity) {
2959 myexponent = 0x7fff;
2960 mysignificand = mysignificand2 = 0;
2961 } else {
2962 assert(category == fcNaN && "Unknown category!");
2963 myexponent = 0x7fff;
2964 mysignificand = significandParts()[0];
2965 mysignificand2 = significandParts()[1];
2966 }
2967
2968 uint64_t words[2];
2969 words[0] = mysignificand;
2970 words[1] = ((uint64_t)(sign & 1) << 63) |
2971 ((myexponent & 0x7fff) << 48) |
2972 (mysignificand2 & 0xffffffffffffLL);
2973
2974 return APInt(128, words);
2975 }
2976
2977 APInt
convertDoubleAPFloatToAPInt() const2978 APFloat::convertDoubleAPFloatToAPInt() const
2979 {
2980 assert(semantics == (const llvm::fltSemantics*)&IEEEdouble);
2981 assert(partCount()==1);
2982
2983 uint64_t myexponent, mysignificand;
2984
2985 if (isFiniteNonZero()) {
2986 myexponent = exponent+1023; //bias
2987 mysignificand = *significandParts();
2988 if (myexponent==1 && !(mysignificand & 0x10000000000000LL))
2989 myexponent = 0; // denormal
2990 } else if (category==fcZero) {
2991 myexponent = 0;
2992 mysignificand = 0;
2993 } else if (category==fcInfinity) {
2994 myexponent = 0x7ff;
2995 mysignificand = 0;
2996 } else {
2997 assert(category == fcNaN && "Unknown category!");
2998 myexponent = 0x7ff;
2999 mysignificand = *significandParts();
3000 }
3001
3002 return APInt(64, ((((uint64_t)(sign & 1) << 63) |
3003 ((myexponent & 0x7ff) << 52) |
3004 (mysignificand & 0xfffffffffffffLL))));
3005 }
3006
3007 APInt
convertFloatAPFloatToAPInt() const3008 APFloat::convertFloatAPFloatToAPInt() const
3009 {
3010 assert(semantics == (const llvm::fltSemantics*)&IEEEsingle);
3011 assert(partCount()==1);
3012
3013 uint32_t myexponent, mysignificand;
3014
3015 if (isFiniteNonZero()) {
3016 myexponent = exponent+127; //bias
3017 mysignificand = (uint32_t)*significandParts();
3018 if (myexponent == 1 && !(mysignificand & 0x800000))
3019 myexponent = 0; // denormal
3020 } else if (category==fcZero) {
3021 myexponent = 0;
3022 mysignificand = 0;
3023 } else if (category==fcInfinity) {
3024 myexponent = 0xff;
3025 mysignificand = 0;
3026 } else {
3027 assert(category == fcNaN && "Unknown category!");
3028 myexponent = 0xff;
3029 mysignificand = (uint32_t)*significandParts();
3030 }
3031
3032 return APInt(32, (((sign&1) << 31) | ((myexponent&0xff) << 23) |
3033 (mysignificand & 0x7fffff)));
3034 }
3035
3036 APInt
convertHalfAPFloatToAPInt() const3037 APFloat::convertHalfAPFloatToAPInt() const
3038 {
3039 assert(semantics == (const llvm::fltSemantics*)&IEEEhalf);
3040 assert(partCount()==1);
3041
3042 uint32_t myexponent, mysignificand;
3043
3044 if (isFiniteNonZero()) {
3045 myexponent = exponent+15; //bias
3046 mysignificand = (uint32_t)*significandParts();
3047 if (myexponent == 1 && !(mysignificand & 0x400))
3048 myexponent = 0; // denormal
3049 } else if (category==fcZero) {
3050 myexponent = 0;
3051 mysignificand = 0;
3052 } else if (category==fcInfinity) {
3053 myexponent = 0x1f;
3054 mysignificand = 0;
3055 } else {
3056 assert(category == fcNaN && "Unknown category!");
3057 myexponent = 0x1f;
3058 mysignificand = (uint32_t)*significandParts();
3059 }
3060
3061 return APInt(16, (((sign&1) << 15) | ((myexponent&0x1f) << 10) |
3062 (mysignificand & 0x3ff)));
3063 }
3064
3065 // This function creates an APInt that is just a bit map of the floating
3066 // point constant as it would appear in memory. It is not a conversion,
3067 // and treating the result as a normal integer is unlikely to be useful.
3068
3069 APInt
bitcastToAPInt() const3070 APFloat::bitcastToAPInt() const
3071 {
3072 if (semantics == (const llvm::fltSemantics*)&IEEEhalf)
3073 return convertHalfAPFloatToAPInt();
3074
3075 if (semantics == (const llvm::fltSemantics*)&IEEEsingle)
3076 return convertFloatAPFloatToAPInt();
3077
3078 if (semantics == (const llvm::fltSemantics*)&IEEEdouble)
3079 return convertDoubleAPFloatToAPInt();
3080
3081 if (semantics == (const llvm::fltSemantics*)&IEEEquad)
3082 return convertQuadrupleAPFloatToAPInt();
3083
3084 if (semantics == (const llvm::fltSemantics*)&PPCDoubleDouble)
3085 return convertPPCDoubleDoubleAPFloatToAPInt();
3086
3087 assert(semantics == (const llvm::fltSemantics*)&x87DoubleExtended &&
3088 "unknown format!");
3089 return convertF80LongDoubleAPFloatToAPInt();
3090 }
3091
3092 float
convertToFloat() const3093 APFloat::convertToFloat() const
3094 {
3095 assert(semantics == (const llvm::fltSemantics*)&IEEEsingle &&
3096 "Float semantics are not IEEEsingle");
3097 APInt api = bitcastToAPInt();
3098 return api.bitsToFloat();
3099 }
3100
3101 double
convertToDouble() const3102 APFloat::convertToDouble() const
3103 {
3104 assert(semantics == (const llvm::fltSemantics*)&IEEEdouble &&
3105 "Float semantics are not IEEEdouble");
3106 APInt api = bitcastToAPInt();
3107 return api.bitsToDouble();
3108 }
3109
3110 /// Integer bit is explicit in this format. Intel hardware (387 and later)
3111 /// does not support these bit patterns:
3112 /// exponent = all 1's, integer bit 0, significand 0 ("pseudoinfinity")
3113 /// exponent = all 1's, integer bit 0, significand nonzero ("pseudoNaN")
3114 /// exponent = 0, integer bit 1 ("pseudodenormal")
3115 /// exponent!=0 nor all 1's, integer bit 0 ("unnormal")
3116 /// At the moment, the first two are treated as NaNs, the second two as Normal.
3117 void
initFromF80LongDoubleAPInt(const APInt & api)3118 APFloat::initFromF80LongDoubleAPInt(const APInt &api)
3119 {
3120 assert(api.getBitWidth()==80);
3121 uint64_t i1 = api.getRawData()[0];
3122 uint64_t i2 = api.getRawData()[1];
3123 uint64_t myexponent = (i2 & 0x7fff);
3124 uint64_t mysignificand = i1;
3125
3126 initialize(&APFloat::x87DoubleExtended);
3127 assert(partCount()==2);
3128
3129 sign = static_cast<unsigned int>(i2>>15);
3130 if (myexponent==0 && mysignificand==0) {
3131 // exponent, significand meaningless
3132 category = fcZero;
3133 } else if (myexponent==0x7fff && mysignificand==0x8000000000000000ULL) {
3134 // exponent, significand meaningless
3135 category = fcInfinity;
3136 } else if (myexponent==0x7fff && mysignificand!=0x8000000000000000ULL) {
3137 // exponent meaningless
3138 category = fcNaN;
3139 significandParts()[0] = mysignificand;
3140 significandParts()[1] = 0;
3141 } else {
3142 category = fcNormal;
3143 exponent = myexponent - 16383;
3144 significandParts()[0] = mysignificand;
3145 significandParts()[1] = 0;
3146 if (myexponent==0) // denormal
3147 exponent = -16382;
3148 }
3149 }
3150
3151 void
initFromPPCDoubleDoubleAPInt(const APInt & api)3152 APFloat::initFromPPCDoubleDoubleAPInt(const APInt &api)
3153 {
3154 assert(api.getBitWidth()==128);
3155 uint64_t i1 = api.getRawData()[0];
3156 uint64_t i2 = api.getRawData()[1];
3157 opStatus fs;
3158 bool losesInfo;
3159
3160 // Get the first double and convert to our format.
3161 initFromDoubleAPInt(APInt(64, i1));
3162 fs = convert(PPCDoubleDouble, rmNearestTiesToEven, &losesInfo);
3163 assert(fs == opOK && !losesInfo);
3164 (void)fs;
3165
3166 // Unless we have a special case, add in second double.
3167 if (isFiniteNonZero()) {
3168 APFloat v(IEEEdouble, APInt(64, i2));
3169 fs = v.convert(PPCDoubleDouble, rmNearestTiesToEven, &losesInfo);
3170 assert(fs == opOK && !losesInfo);
3171 (void)fs;
3172
3173 add(v, rmNearestTiesToEven);
3174 }
3175 }
3176
3177 void
initFromQuadrupleAPInt(const APInt & api)3178 APFloat::initFromQuadrupleAPInt(const APInt &api)
3179 {
3180 assert(api.getBitWidth()==128);
3181 uint64_t i1 = api.getRawData()[0];
3182 uint64_t i2 = api.getRawData()[1];
3183 uint64_t myexponent = (i2 >> 48) & 0x7fff;
3184 uint64_t mysignificand = i1;
3185 uint64_t mysignificand2 = i2 & 0xffffffffffffLL;
3186
3187 initialize(&APFloat::IEEEquad);
3188 assert(partCount()==2);
3189
3190 sign = static_cast<unsigned int>(i2>>63);
3191 if (myexponent==0 &&
3192 (mysignificand==0 && mysignificand2==0)) {
3193 // exponent, significand meaningless
3194 category = fcZero;
3195 } else if (myexponent==0x7fff &&
3196 (mysignificand==0 && mysignificand2==0)) {
3197 // exponent, significand meaningless
3198 category = fcInfinity;
3199 } else if (myexponent==0x7fff &&
3200 (mysignificand!=0 || mysignificand2 !=0)) {
3201 // exponent meaningless
3202 category = fcNaN;
3203 significandParts()[0] = mysignificand;
3204 significandParts()[1] = mysignificand2;
3205 } else {
3206 category = fcNormal;
3207 exponent = myexponent - 16383;
3208 significandParts()[0] = mysignificand;
3209 significandParts()[1] = mysignificand2;
3210 if (myexponent==0) // denormal
3211 exponent = -16382;
3212 else
3213 significandParts()[1] |= 0x1000000000000LL; // integer bit
3214 }
3215 }
3216
3217 void
initFromDoubleAPInt(const APInt & api)3218 APFloat::initFromDoubleAPInt(const APInt &api)
3219 {
3220 assert(api.getBitWidth()==64);
3221 uint64_t i = *api.getRawData();
3222 uint64_t myexponent = (i >> 52) & 0x7ff;
3223 uint64_t mysignificand = i & 0xfffffffffffffLL;
3224
3225 initialize(&APFloat::IEEEdouble);
3226 assert(partCount()==1);
3227
3228 sign = static_cast<unsigned int>(i>>63);
3229 if (myexponent==0 && mysignificand==0) {
3230 // exponent, significand meaningless
3231 category = fcZero;
3232 } else if (myexponent==0x7ff && mysignificand==0) {
3233 // exponent, significand meaningless
3234 category = fcInfinity;
3235 } else if (myexponent==0x7ff && mysignificand!=0) {
3236 // exponent meaningless
3237 category = fcNaN;
3238 *significandParts() = mysignificand;
3239 } else {
3240 category = fcNormal;
3241 exponent = myexponent - 1023;
3242 *significandParts() = mysignificand;
3243 if (myexponent==0) // denormal
3244 exponent = -1022;
3245 else
3246 *significandParts() |= 0x10000000000000LL; // integer bit
3247 }
3248 }
3249
3250 void
initFromFloatAPInt(const APInt & api)3251 APFloat::initFromFloatAPInt(const APInt & api)
3252 {
3253 assert(api.getBitWidth()==32);
3254 uint32_t i = (uint32_t)*api.getRawData();
3255 uint32_t myexponent = (i >> 23) & 0xff;
3256 uint32_t mysignificand = i & 0x7fffff;
3257
3258 initialize(&APFloat::IEEEsingle);
3259 assert(partCount()==1);
3260
3261 sign = i >> 31;
3262 if (myexponent==0 && mysignificand==0) {
3263 // exponent, significand meaningless
3264 category = fcZero;
3265 } else if (myexponent==0xff && mysignificand==0) {
3266 // exponent, significand meaningless
3267 category = fcInfinity;
3268 } else if (myexponent==0xff && mysignificand!=0) {
3269 // sign, exponent, significand meaningless
3270 category = fcNaN;
3271 *significandParts() = mysignificand;
3272 } else {
3273 category = fcNormal;
3274 exponent = myexponent - 127; //bias
3275 *significandParts() = mysignificand;
3276 if (myexponent==0) // denormal
3277 exponent = -126;
3278 else
3279 *significandParts() |= 0x800000; // integer bit
3280 }
3281 }
3282
3283 void
initFromHalfAPInt(const APInt & api)3284 APFloat::initFromHalfAPInt(const APInt & api)
3285 {
3286 assert(api.getBitWidth()==16);
3287 uint32_t i = (uint32_t)*api.getRawData();
3288 uint32_t myexponent = (i >> 10) & 0x1f;
3289 uint32_t mysignificand = i & 0x3ff;
3290
3291 initialize(&APFloat::IEEEhalf);
3292 assert(partCount()==1);
3293
3294 sign = i >> 15;
3295 if (myexponent==0 && mysignificand==0) {
3296 // exponent, significand meaningless
3297 category = fcZero;
3298 } else if (myexponent==0x1f && mysignificand==0) {
3299 // exponent, significand meaningless
3300 category = fcInfinity;
3301 } else if (myexponent==0x1f && mysignificand!=0) {
3302 // sign, exponent, significand meaningless
3303 category = fcNaN;
3304 *significandParts() = mysignificand;
3305 } else {
3306 category = fcNormal;
3307 exponent = myexponent - 15; //bias
3308 *significandParts() = mysignificand;
3309 if (myexponent==0) // denormal
3310 exponent = -14;
3311 else
3312 *significandParts() |= 0x400; // integer bit
3313 }
3314 }
3315
3316 /// Treat api as containing the bits of a floating point number. Currently
3317 /// we infer the floating point type from the size of the APInt. The
3318 /// isIEEE argument distinguishes between PPC128 and IEEE128 (not meaningful
3319 /// when the size is anything else).
3320 void
initFromAPInt(const fltSemantics * Sem,const APInt & api)3321 APFloat::initFromAPInt(const fltSemantics* Sem, const APInt& api)
3322 {
3323 if (Sem == &IEEEhalf)
3324 return initFromHalfAPInt(api);
3325 if (Sem == &IEEEsingle)
3326 return initFromFloatAPInt(api);
3327 if (Sem == &IEEEdouble)
3328 return initFromDoubleAPInt(api);
3329 if (Sem == &x87DoubleExtended)
3330 return initFromF80LongDoubleAPInt(api);
3331 if (Sem == &IEEEquad)
3332 return initFromQuadrupleAPInt(api);
3333 if (Sem == &PPCDoubleDouble)
3334 return initFromPPCDoubleDoubleAPInt(api);
3335
3336 llvm_unreachable(nullptr);
3337 }
3338
3339 APFloat
getAllOnesValue(unsigned BitWidth,bool isIEEE)3340 APFloat::getAllOnesValue(unsigned BitWidth, bool isIEEE)
3341 {
3342 switch (BitWidth) {
3343 case 16:
3344 return APFloat(IEEEhalf, APInt::getAllOnesValue(BitWidth));
3345 case 32:
3346 return APFloat(IEEEsingle, APInt::getAllOnesValue(BitWidth));
3347 case 64:
3348 return APFloat(IEEEdouble, APInt::getAllOnesValue(BitWidth));
3349 case 80:
3350 return APFloat(x87DoubleExtended, APInt::getAllOnesValue(BitWidth));
3351 case 128:
3352 if (isIEEE)
3353 return APFloat(IEEEquad, APInt::getAllOnesValue(BitWidth));
3354 return APFloat(PPCDoubleDouble, APInt::getAllOnesValue(BitWidth));
3355 default:
3356 llvm_unreachable("Unknown floating bit width");
3357 }
3358 }
3359
3360 /// Make this number the largest magnitude normal number in the given
3361 /// semantics.
makeLargest(bool Negative)3362 void APFloat::makeLargest(bool Negative) {
3363 // We want (in interchange format):
3364 // sign = {Negative}
3365 // exponent = 1..10
3366 // significand = 1..1
3367 category = fcNormal;
3368 sign = Negative;
3369 exponent = semantics->maxExponent;
3370
3371 // Use memset to set all but the highest integerPart to all ones.
3372 integerPart *significand = significandParts();
3373 unsigned PartCount = partCount();
3374 memset(significand, 0xFF, sizeof(integerPart)*(PartCount - 1));
3375
3376 // Set the high integerPart especially setting all unused top bits for
3377 // internal consistency.
3378 const unsigned NumUnusedHighBits =
3379 PartCount*integerPartWidth - semantics->precision;
3380 significand[PartCount - 1] = ~integerPart(0) >> NumUnusedHighBits;
3381 }
3382
3383 /// Make this number the smallest magnitude denormal number in the given
3384 /// semantics.
makeSmallest(bool Negative)3385 void APFloat::makeSmallest(bool Negative) {
3386 // We want (in interchange format):
3387 // sign = {Negative}
3388 // exponent = 0..0
3389 // significand = 0..01
3390 category = fcNormal;
3391 sign = Negative;
3392 exponent = semantics->minExponent;
3393 APInt::tcSet(significandParts(), 1, partCount());
3394 }
3395
3396
getLargest(const fltSemantics & Sem,bool Negative)3397 APFloat APFloat::getLargest(const fltSemantics &Sem, bool Negative) {
3398 // We want (in interchange format):
3399 // sign = {Negative}
3400 // exponent = 1..10
3401 // significand = 1..1
3402 APFloat Val(Sem, uninitialized);
3403 Val.makeLargest(Negative);
3404 return Val;
3405 }
3406
getSmallest(const fltSemantics & Sem,bool Negative)3407 APFloat APFloat::getSmallest(const fltSemantics &Sem, bool Negative) {
3408 // We want (in interchange format):
3409 // sign = {Negative}
3410 // exponent = 0..0
3411 // significand = 0..01
3412 APFloat Val(Sem, uninitialized);
3413 Val.makeSmallest(Negative);
3414 return Val;
3415 }
3416
getSmallestNormalized(const fltSemantics & Sem,bool Negative)3417 APFloat APFloat::getSmallestNormalized(const fltSemantics &Sem, bool Negative) {
3418 APFloat Val(Sem, uninitialized);
3419
3420 // We want (in interchange format):
3421 // sign = {Negative}
3422 // exponent = 0..0
3423 // significand = 10..0
3424
3425 Val.category = fcNormal;
3426 Val.zeroSignificand();
3427 Val.sign = Negative;
3428 Val.exponent = Sem.minExponent;
3429 Val.significandParts()[partCountForBits(Sem.precision)-1] |=
3430 (((integerPart) 1) << ((Sem.precision - 1) % integerPartWidth));
3431
3432 return Val;
3433 }
3434
APFloat(const fltSemantics & Sem,const APInt & API)3435 APFloat::APFloat(const fltSemantics &Sem, const APInt &API) {
3436 initFromAPInt(&Sem, API);
3437 }
3438
APFloat(float f)3439 APFloat::APFloat(float f) {
3440 initFromAPInt(&IEEEsingle, APInt::floatToBits(f));
3441 }
3442
APFloat(double d)3443 APFloat::APFloat(double d) {
3444 initFromAPInt(&IEEEdouble, APInt::doubleToBits(d));
3445 }
3446
3447 namespace {
append(SmallVectorImpl<char> & Buffer,StringRef Str)3448 void append(SmallVectorImpl<char> &Buffer, StringRef Str) {
3449 Buffer.append(Str.begin(), Str.end());
3450 }
3451
3452 /// Removes data from the given significand until it is no more
3453 /// precise than is required for the desired precision.
AdjustToPrecision(APInt & significand,int & exp,unsigned FormatPrecision)3454 void AdjustToPrecision(APInt &significand,
3455 int &exp, unsigned FormatPrecision) {
3456 unsigned bits = significand.getActiveBits();
3457
3458 // 196/59 is a very slight overestimate of lg_2(10).
3459 unsigned bitsRequired = (FormatPrecision * 196 + 58) / 59;
3460
3461 if (bits <= bitsRequired) return;
3462
3463 unsigned tensRemovable = (bits - bitsRequired) * 59 / 196;
3464 if (!tensRemovable) return;
3465
3466 exp += tensRemovable;
3467
3468 APInt divisor(significand.getBitWidth(), 1);
3469 APInt powten(significand.getBitWidth(), 10);
3470 while (true) {
3471 if (tensRemovable & 1)
3472 divisor *= powten;
3473 tensRemovable >>= 1;
3474 if (!tensRemovable) break;
3475 powten *= powten;
3476 }
3477
3478 significand = significand.udiv(divisor);
3479
3480 // Truncate the significand down to its active bit count.
3481 significand = significand.trunc(significand.getActiveBits());
3482 }
3483
3484
AdjustToPrecision(SmallVectorImpl<char> & buffer,int & exp,unsigned FormatPrecision)3485 void AdjustToPrecision(SmallVectorImpl<char> &buffer,
3486 int &exp, unsigned FormatPrecision) {
3487 unsigned N = buffer.size();
3488 if (N <= FormatPrecision) return;
3489
3490 // The most significant figures are the last ones in the buffer.
3491 unsigned FirstSignificant = N - FormatPrecision;
3492
3493 // Round.
3494 // FIXME: this probably shouldn't use 'round half up'.
3495
3496 // Rounding down is just a truncation, except we also want to drop
3497 // trailing zeros from the new result.
3498 if (buffer[FirstSignificant - 1] < '5') {
3499 while (FirstSignificant < N && buffer[FirstSignificant] == '0')
3500 FirstSignificant++;
3501
3502 exp += FirstSignificant;
3503 buffer.erase(&buffer[0], &buffer[FirstSignificant]);
3504 return;
3505 }
3506
3507 // Rounding up requires a decimal add-with-carry. If we continue
3508 // the carry, the newly-introduced zeros will just be truncated.
3509 for (unsigned I = FirstSignificant; I != N; ++I) {
3510 if (buffer[I] == '9') {
3511 FirstSignificant++;
3512 } else {
3513 buffer[I]++;
3514 break;
3515 }
3516 }
3517
3518 // If we carried through, we have exactly one digit of precision.
3519 if (FirstSignificant == N) {
3520 exp += FirstSignificant;
3521 buffer.clear();
3522 buffer.push_back('1');
3523 return;
3524 }
3525
3526 exp += FirstSignificant;
3527 buffer.erase(&buffer[0], &buffer[FirstSignificant]);
3528 }
3529 }
3530
toString(SmallVectorImpl<char> & Str,unsigned FormatPrecision,unsigned FormatMaxPadding) const3531 void APFloat::toString(SmallVectorImpl<char> &Str,
3532 unsigned FormatPrecision,
3533 unsigned FormatMaxPadding) const {
3534 switch (category) {
3535 case fcInfinity:
3536 if (isNegative())
3537 return append(Str, "-Inf");
3538 else
3539 return append(Str, "+Inf");
3540
3541 case fcNaN: return append(Str, "NaN");
3542
3543 case fcZero:
3544 if (isNegative())
3545 Str.push_back('-');
3546
3547 if (!FormatMaxPadding)
3548 append(Str, "0.0E+0");
3549 else
3550 Str.push_back('0');
3551 return;
3552
3553 case fcNormal:
3554 break;
3555 }
3556
3557 if (isNegative())
3558 Str.push_back('-');
3559
3560 // Decompose the number into an APInt and an exponent.
3561 int exp = exponent - ((int) semantics->precision - 1);
3562 APInt significand(semantics->precision,
3563 makeArrayRef(significandParts(),
3564 partCountForBits(semantics->precision)));
3565
3566 // Set FormatPrecision if zero. We want to do this before we
3567 // truncate trailing zeros, as those are part of the precision.
3568 if (!FormatPrecision) {
3569 // We use enough digits so the number can be round-tripped back to an
3570 // APFloat. The formula comes from "How to Print Floating-Point Numbers
3571 // Accurately" by Steele and White.
3572 // FIXME: Using a formula based purely on the precision is conservative;
3573 // we can print fewer digits depending on the actual value being printed.
3574
3575 // FormatPrecision = 2 + floor(significandBits / lg_2(10))
3576 FormatPrecision = 2 + semantics->precision * 59 / 196;
3577 }
3578
3579 // Ignore trailing binary zeros.
3580 int trailingZeros = significand.countTrailingZeros();
3581 exp += trailingZeros;
3582 significand = significand.lshr(trailingZeros);
3583
3584 // Change the exponent from 2^e to 10^e.
3585 if (exp == 0) {
3586 // Nothing to do.
3587 } else if (exp > 0) {
3588 // Just shift left.
3589 significand = significand.zext(semantics->precision + exp);
3590 significand <<= exp;
3591 exp = 0;
3592 } else { /* exp < 0 */
3593 int texp = -exp;
3594
3595 // We transform this using the identity:
3596 // (N)(2^-e) == (N)(5^e)(10^-e)
3597 // This means we have to multiply N (the significand) by 5^e.
3598 // To avoid overflow, we have to operate on numbers large
3599 // enough to store N * 5^e:
3600 // log2(N * 5^e) == log2(N) + e * log2(5)
3601 // <= semantics->precision + e * 137 / 59
3602 // (log_2(5) ~ 2.321928 < 2.322034 ~ 137/59)
3603
3604 unsigned precision = semantics->precision + (137 * texp + 136) / 59;
3605
3606 // Multiply significand by 5^e.
3607 // N * 5^0101 == N * 5^(1*1) * 5^(0*2) * 5^(1*4) * 5^(0*8)
3608 significand = significand.zext(precision);
3609 APInt five_to_the_i(precision, 5);
3610 while (true) {
3611 if (texp & 1) significand *= five_to_the_i;
3612
3613 texp >>= 1;
3614 if (!texp) break;
3615 five_to_the_i *= five_to_the_i;
3616 }
3617 }
3618
3619 AdjustToPrecision(significand, exp, FormatPrecision);
3620
3621 SmallVector<char, 256> buffer;
3622
3623 // Fill the buffer.
3624 unsigned precision = significand.getBitWidth();
3625 APInt ten(precision, 10);
3626 APInt digit(precision, 0);
3627
3628 bool inTrail = true;
3629 while (significand != 0) {
3630 // digit <- significand % 10
3631 // significand <- significand / 10
3632 APInt::udivrem(significand, ten, significand, digit);
3633
3634 unsigned d = digit.getZExtValue();
3635
3636 // Drop trailing zeros.
3637 if (inTrail && !d) exp++;
3638 else {
3639 buffer.push_back((char) ('0' + d));
3640 inTrail = false;
3641 }
3642 }
3643
3644 assert(!buffer.empty() && "no characters in buffer!");
3645
3646 // Drop down to FormatPrecision.
3647 // TODO: don't do more precise calculations above than are required.
3648 AdjustToPrecision(buffer, exp, FormatPrecision);
3649
3650 unsigned NDigits = buffer.size();
3651
3652 // Check whether we should use scientific notation.
3653 bool FormatScientific;
3654 if (!FormatMaxPadding)
3655 FormatScientific = true;
3656 else {
3657 if (exp >= 0) {
3658 // 765e3 --> 765000
3659 // ^^^
3660 // But we shouldn't make the number look more precise than it is.
3661 FormatScientific = ((unsigned) exp > FormatMaxPadding ||
3662 NDigits + (unsigned) exp > FormatPrecision);
3663 } else {
3664 // Power of the most significant digit.
3665 int MSD = exp + (int) (NDigits - 1);
3666 if (MSD >= 0) {
3667 // 765e-2 == 7.65
3668 FormatScientific = false;
3669 } else {
3670 // 765e-5 == 0.00765
3671 // ^ ^^
3672 FormatScientific = ((unsigned) -MSD) > FormatMaxPadding;
3673 }
3674 }
3675 }
3676
3677 // Scientific formatting is pretty straightforward.
3678 if (FormatScientific) {
3679 exp += (NDigits - 1);
3680
3681 Str.push_back(buffer[NDigits-1]);
3682 Str.push_back('.');
3683 if (NDigits == 1)
3684 Str.push_back('0');
3685 else
3686 for (unsigned I = 1; I != NDigits; ++I)
3687 Str.push_back(buffer[NDigits-1-I]);
3688 Str.push_back('E');
3689
3690 Str.push_back(exp >= 0 ? '+' : '-');
3691 if (exp < 0) exp = -exp;
3692 SmallVector<char, 6> expbuf;
3693 do {
3694 expbuf.push_back((char) ('0' + (exp % 10)));
3695 exp /= 10;
3696 } while (exp);
3697 for (unsigned I = 0, E = expbuf.size(); I != E; ++I)
3698 Str.push_back(expbuf[E-1-I]);
3699 return;
3700 }
3701
3702 // Non-scientific, positive exponents.
3703 if (exp >= 0) {
3704 for (unsigned I = 0; I != NDigits; ++I)
3705 Str.push_back(buffer[NDigits-1-I]);
3706 for (unsigned I = 0; I != (unsigned) exp; ++I)
3707 Str.push_back('0');
3708 return;
3709 }
3710
3711 // Non-scientific, negative exponents.
3712
3713 // The number of digits to the left of the decimal point.
3714 int NWholeDigits = exp + (int) NDigits;
3715
3716 unsigned I = 0;
3717 if (NWholeDigits > 0) {
3718 for (; I != (unsigned) NWholeDigits; ++I)
3719 Str.push_back(buffer[NDigits-I-1]);
3720 Str.push_back('.');
3721 } else {
3722 unsigned NZeros = 1 + (unsigned) -NWholeDigits;
3723
3724 Str.push_back('0');
3725 Str.push_back('.');
3726 for (unsigned Z = 1; Z != NZeros; ++Z)
3727 Str.push_back('0');
3728 }
3729
3730 for (; I != NDigits; ++I)
3731 Str.push_back(buffer[NDigits-I-1]);
3732 }
3733
getExactInverse(APFloat * inv) const3734 bool APFloat::getExactInverse(APFloat *inv) const {
3735 // Special floats and denormals have no exact inverse.
3736 if (!isFiniteNonZero())
3737 return false;
3738
3739 // Check that the number is a power of two by making sure that only the
3740 // integer bit is set in the significand.
3741 if (significandLSB() != semantics->precision - 1)
3742 return false;
3743
3744 // Get the inverse.
3745 APFloat reciprocal(*semantics, 1ULL);
3746 if (reciprocal.divide(*this, rmNearestTiesToEven) != opOK)
3747 return false;
3748
3749 // Avoid multiplication with a denormal, it is not safe on all platforms and
3750 // may be slower than a normal division.
3751 if (reciprocal.isDenormal())
3752 return false;
3753
3754 assert(reciprocal.isFiniteNonZero() &&
3755 reciprocal.significandLSB() == reciprocal.semantics->precision - 1);
3756
3757 if (inv)
3758 *inv = reciprocal;
3759
3760 return true;
3761 }
3762
isSignaling() const3763 bool APFloat::isSignaling() const {
3764 if (!isNaN())
3765 return false;
3766
3767 // IEEE-754R 2008 6.2.1: A signaling NaN bit string should be encoded with the
3768 // first bit of the trailing significand being 0.
3769 return !APInt::tcExtractBit(significandParts(), semantics->precision - 2);
3770 }
3771
3772 /// IEEE-754R 2008 5.3.1: nextUp/nextDown.
3773 ///
3774 /// *NOTE* since nextDown(x) = -nextUp(-x), we only implement nextUp with
3775 /// appropriate sign switching before/after the computation.
next(bool nextDown)3776 APFloat::opStatus APFloat::next(bool nextDown) {
3777 // If we are performing nextDown, swap sign so we have -x.
3778 if (nextDown)
3779 changeSign();
3780
3781 // Compute nextUp(x)
3782 opStatus result = opOK;
3783
3784 // Handle each float category separately.
3785 switch (category) {
3786 case fcInfinity:
3787 // nextUp(+inf) = +inf
3788 if (!isNegative())
3789 break;
3790 // nextUp(-inf) = -getLargest()
3791 makeLargest(true);
3792 break;
3793 case fcNaN:
3794 // IEEE-754R 2008 6.2 Par 2: nextUp(sNaN) = qNaN. Set Invalid flag.
3795 // IEEE-754R 2008 6.2: nextUp(qNaN) = qNaN. Must be identity so we do not
3796 // change the payload.
3797 if (isSignaling()) {
3798 result = opInvalidOp;
3799 // For consistency, propagate the sign of the sNaN to the qNaN.
3800 makeNaN(false, isNegative(), nullptr);
3801 }
3802 break;
3803 case fcZero:
3804 // nextUp(pm 0) = +getSmallest()
3805 makeSmallest(false);
3806 break;
3807 case fcNormal:
3808 // nextUp(-getSmallest()) = -0
3809 if (isSmallest() && isNegative()) {
3810 APInt::tcSet(significandParts(), 0, partCount());
3811 category = fcZero;
3812 exponent = 0;
3813 break;
3814 }
3815
3816 // nextUp(getLargest()) == INFINITY
3817 if (isLargest() && !isNegative()) {
3818 APInt::tcSet(significandParts(), 0, partCount());
3819 category = fcInfinity;
3820 exponent = semantics->maxExponent + 1;
3821 break;
3822 }
3823
3824 // nextUp(normal) == normal + inc.
3825 if (isNegative()) {
3826 // If we are negative, we need to decrement the significand.
3827
3828 // We only cross a binade boundary that requires adjusting the exponent
3829 // if:
3830 // 1. exponent != semantics->minExponent. This implies we are not in the
3831 // smallest binade or are dealing with denormals.
3832 // 2. Our significand excluding the integral bit is all zeros.
3833 bool WillCrossBinadeBoundary =
3834 exponent != semantics->minExponent && isSignificandAllZeros();
3835
3836 // Decrement the significand.
3837 //
3838 // We always do this since:
3839 // 1. If we are dealing with a non-binade decrement, by definition we
3840 // just decrement the significand.
3841 // 2. If we are dealing with a normal -> normal binade decrement, since
3842 // we have an explicit integral bit the fact that all bits but the
3843 // integral bit are zero implies that subtracting one will yield a
3844 // significand with 0 integral bit and 1 in all other spots. Thus we
3845 // must just adjust the exponent and set the integral bit to 1.
3846 // 3. If we are dealing with a normal -> denormal binade decrement,
3847 // since we set the integral bit to 0 when we represent denormals, we
3848 // just decrement the significand.
3849 integerPart *Parts = significandParts();
3850 APInt::tcDecrement(Parts, partCount());
3851
3852 if (WillCrossBinadeBoundary) {
3853 // Our result is a normal number. Do the following:
3854 // 1. Set the integral bit to 1.
3855 // 2. Decrement the exponent.
3856 APInt::tcSetBit(Parts, semantics->precision - 1);
3857 exponent--;
3858 }
3859 } else {
3860 // If we are positive, we need to increment the significand.
3861
3862 // We only cross a binade boundary that requires adjusting the exponent if
3863 // the input is not a denormal and all of said input's significand bits
3864 // are set. If all of said conditions are true: clear the significand, set
3865 // the integral bit to 1, and increment the exponent. If we have a
3866 // denormal always increment since moving denormals and the numbers in the
3867 // smallest normal binade have the same exponent in our representation.
3868 bool WillCrossBinadeBoundary = !isDenormal() && isSignificandAllOnes();
3869
3870 if (WillCrossBinadeBoundary) {
3871 integerPart *Parts = significandParts();
3872 APInt::tcSet(Parts, 0, partCount());
3873 APInt::tcSetBit(Parts, semantics->precision - 1);
3874 assert(exponent != semantics->maxExponent &&
3875 "We can not increment an exponent beyond the maxExponent allowed"
3876 " by the given floating point semantics.");
3877 exponent++;
3878 } else {
3879 incrementSignificand();
3880 }
3881 }
3882 break;
3883 }
3884
3885 // If we are performing nextDown, swap sign so we have -nextUp(-x)
3886 if (nextDown)
3887 changeSign();
3888
3889 return result;
3890 }
3891
3892 void
makeInf(bool Negative)3893 APFloat::makeInf(bool Negative) {
3894 category = fcInfinity;
3895 sign = Negative;
3896 exponent = semantics->maxExponent + 1;
3897 APInt::tcSet(significandParts(), 0, partCount());
3898 }
3899
3900 void
makeZero(bool Negative)3901 APFloat::makeZero(bool Negative) {
3902 category = fcZero;
3903 sign = Negative;
3904 exponent = semantics->minExponent-1;
3905 APInt::tcSet(significandParts(), 0, partCount());
3906 }
3907