1 /*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 /* This file contains codegen for the Thumb2 ISA. */
18
19 #include "arm_lir.h"
20 #include "codegen_arm.h"
21 #include "dex/quick/mir_to_lir-inl.h"
22 #include "dex/reg_storage_eq.h"
23 #include "entrypoints/quick/quick_entrypoints.h"
24 #include "mirror/array.h"
25
26 namespace art {
27
OpCmpBranch(ConditionCode cond,RegStorage src1,RegStorage src2,LIR * target)28 LIR* ArmMir2Lir::OpCmpBranch(ConditionCode cond, RegStorage src1, RegStorage src2, LIR* target) {
29 OpRegReg(kOpCmp, src1, src2);
30 return OpCondBranch(cond, target);
31 }
32
33 /*
34 * Generate a Thumb2 IT instruction, which can nullify up to
35 * four subsequent instructions based on a condition and its
36 * inverse. The condition applies to the first instruction, which
37 * is executed if the condition is met. The string "guide" consists
38 * of 0 to 3 chars, and applies to the 2nd through 4th instruction.
39 * A "T" means the instruction is executed if the condition is
40 * met, and an "E" means the instruction is executed if the condition
41 * is not met.
42 */
OpIT(ConditionCode ccode,const char * guide)43 LIR* ArmMir2Lir::OpIT(ConditionCode ccode, const char* guide) {
44 int mask;
45 int mask3 = 0;
46 int mask2 = 0;
47 int mask1 = 0;
48 ArmConditionCode code = ArmConditionEncoding(ccode);
49 int cond_bit = code & 1;
50 int alt_bit = cond_bit ^ 1;
51
52 // Note: case fallthroughs intentional
53 switch (strlen(guide)) {
54 case 3:
55 mask1 = (guide[2] == 'T') ? cond_bit : alt_bit;
56 case 2:
57 mask2 = (guide[1] == 'T') ? cond_bit : alt_bit;
58 case 1:
59 mask3 = (guide[0] == 'T') ? cond_bit : alt_bit;
60 break;
61 case 0:
62 break;
63 default:
64 LOG(FATAL) << "OAT: bad case in OpIT";
65 }
66 mask = (mask3 << 3) | (mask2 << 2) | (mask1 << 1) |
67 (1 << (3 - strlen(guide)));
68 return NewLIR2(kThumb2It, code, mask);
69 }
70
UpdateIT(LIR * it,const char * new_guide)71 void ArmMir2Lir::UpdateIT(LIR* it, const char* new_guide) {
72 int mask;
73 int mask3 = 0;
74 int mask2 = 0;
75 int mask1 = 0;
76 ArmConditionCode code = static_cast<ArmConditionCode>(it->operands[0]);
77 int cond_bit = code & 1;
78 int alt_bit = cond_bit ^ 1;
79
80 // Note: case fallthroughs intentional
81 switch (strlen(new_guide)) {
82 case 3:
83 mask1 = (new_guide[2] == 'T') ? cond_bit : alt_bit;
84 case 2:
85 mask2 = (new_guide[1] == 'T') ? cond_bit : alt_bit;
86 case 1:
87 mask3 = (new_guide[0] == 'T') ? cond_bit : alt_bit;
88 break;
89 case 0:
90 break;
91 default:
92 LOG(FATAL) << "OAT: bad case in UpdateIT";
93 }
94 mask = (mask3 << 3) | (mask2 << 2) | (mask1 << 1) |
95 (1 << (3 - strlen(new_guide)));
96 it->operands[1] = mask;
97 }
98
OpEndIT(LIR * it)99 void ArmMir2Lir::OpEndIT(LIR* it) {
100 // TODO: use the 'it' pointer to do some checks with the LIR, for example
101 // we could check that the number of instructions matches the mask
102 // in the IT instruction.
103 CHECK(it != nullptr);
104 GenBarrier();
105 }
106
107 /*
108 * 64-bit 3way compare function.
109 * mov rX, #-1
110 * cmp op1hi, op2hi
111 * blt done
112 * bgt flip
113 * sub rX, op1lo, op2lo (treat as unsigned)
114 * beq done
115 * ite hi
116 * mov(hi) rX, #-1
117 * mov(!hi) rX, #1
118 * flip:
119 * neg rX
120 * done:
121 */
GenCmpLong(RegLocation rl_dest,RegLocation rl_src1,RegLocation rl_src2)122 void ArmMir2Lir::GenCmpLong(RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2) {
123 LIR* target1;
124 LIR* target2;
125 rl_src1 = LoadValueWide(rl_src1, kCoreReg);
126 rl_src2 = LoadValueWide(rl_src2, kCoreReg);
127 RegStorage t_reg = AllocTemp();
128 LoadConstant(t_reg, -1);
129 OpRegReg(kOpCmp, rl_src1.reg.GetHigh(), rl_src2.reg.GetHigh());
130 LIR* branch1 = OpCondBranch(kCondLt, NULL);
131 LIR* branch2 = OpCondBranch(kCondGt, NULL);
132 OpRegRegReg(kOpSub, t_reg, rl_src1.reg.GetLow(), rl_src2.reg.GetLow());
133 LIR* branch3 = OpCondBranch(kCondEq, NULL);
134
135 LIR* it = OpIT(kCondHi, "E");
136 NewLIR2(kThumb2MovI8M, t_reg.GetReg(), ModifiedImmediate(-1));
137 LoadConstant(t_reg, 1);
138 OpEndIT(it);
139
140 target2 = NewLIR0(kPseudoTargetLabel);
141 OpRegReg(kOpNeg, t_reg, t_reg);
142
143 target1 = NewLIR0(kPseudoTargetLabel);
144
145 RegLocation rl_temp = LocCReturn(); // Just using as template, will change
146 rl_temp.reg.SetReg(t_reg.GetReg());
147 StoreValue(rl_dest, rl_temp);
148 FreeTemp(t_reg);
149
150 branch1->target = target1;
151 branch2->target = target2;
152 branch3->target = branch1->target;
153 }
154
GenFusedLongCmpImmBranch(BasicBlock * bb,RegLocation rl_src1,int64_t val,ConditionCode ccode)155 void ArmMir2Lir::GenFusedLongCmpImmBranch(BasicBlock* bb, RegLocation rl_src1,
156 int64_t val, ConditionCode ccode) {
157 int32_t val_lo = Low32Bits(val);
158 int32_t val_hi = High32Bits(val);
159 DCHECK_GE(ModifiedImmediate(val_lo), 0);
160 DCHECK_GE(ModifiedImmediate(val_hi), 0);
161 LIR* taken = &block_label_list_[bb->taken];
162 LIR* not_taken = &block_label_list_[bb->fall_through];
163 rl_src1 = LoadValueWide(rl_src1, kCoreReg);
164 RegStorage low_reg = rl_src1.reg.GetLow();
165 RegStorage high_reg = rl_src1.reg.GetHigh();
166
167 if (val == 0 && (ccode == kCondEq || ccode == kCondNe)) {
168 RegStorage t_reg = AllocTemp();
169 NewLIR4(kThumb2OrrRRRs, t_reg.GetReg(), low_reg.GetReg(), high_reg.GetReg(), 0);
170 FreeTemp(t_reg);
171 OpCondBranch(ccode, taken);
172 return;
173 }
174
175 switch (ccode) {
176 case kCondEq:
177 case kCondNe:
178 OpCmpImmBranch(kCondNe, high_reg, val_hi, (ccode == kCondEq) ? not_taken : taken);
179 break;
180 case kCondLt:
181 OpCmpImmBranch(kCondLt, high_reg, val_hi, taken);
182 OpCmpImmBranch(kCondGt, high_reg, val_hi, not_taken);
183 ccode = kCondUlt;
184 break;
185 case kCondLe:
186 OpCmpImmBranch(kCondLt, high_reg, val_hi, taken);
187 OpCmpImmBranch(kCondGt, high_reg, val_hi, not_taken);
188 ccode = kCondLs;
189 break;
190 case kCondGt:
191 OpCmpImmBranch(kCondGt, high_reg, val_hi, taken);
192 OpCmpImmBranch(kCondLt, high_reg, val_hi, not_taken);
193 ccode = kCondHi;
194 break;
195 case kCondGe:
196 OpCmpImmBranch(kCondGt, high_reg, val_hi, taken);
197 OpCmpImmBranch(kCondLt, high_reg, val_hi, not_taken);
198 ccode = kCondUge;
199 break;
200 default:
201 LOG(FATAL) << "Unexpected ccode: " << ccode;
202 }
203 OpCmpImmBranch(ccode, low_reg, val_lo, taken);
204 }
205
GenSelectConst32(RegStorage left_op,RegStorage right_op,ConditionCode code,int32_t true_val,int32_t false_val,RegStorage rs_dest,int dest_reg_class)206 void ArmMir2Lir::GenSelectConst32(RegStorage left_op, RegStorage right_op, ConditionCode code,
207 int32_t true_val, int32_t false_val, RegStorage rs_dest,
208 int dest_reg_class) {
209 // TODO: Generalize the IT below to accept more than one-instruction loads.
210 DCHECK(InexpensiveConstantInt(true_val));
211 DCHECK(InexpensiveConstantInt(false_val));
212
213 if ((true_val == 0 && code == kCondEq) ||
214 (false_val == 0 && code == kCondNe)) {
215 OpRegRegReg(kOpSub, rs_dest, left_op, right_op);
216 DCHECK(last_lir_insn_->u.m.def_mask->HasBit(ResourceMask::kCCode));
217 LIR* it = OpIT(kCondNe, "");
218 LoadConstant(rs_dest, code == kCondEq ? false_val : true_val);
219 OpEndIT(it);
220 return;
221 }
222
223 OpRegReg(kOpCmp, left_op, right_op); // Same?
224 LIR* it = OpIT(code, "E"); // if-convert the test
225 LoadConstant(rs_dest, true_val); // .eq case - load true
226 LoadConstant(rs_dest, false_val); // .eq case - load true
227 OpEndIT(it);
228 }
229
GenSelect(BasicBlock * bb,MIR * mir)230 void ArmMir2Lir::GenSelect(BasicBlock* bb, MIR* mir) {
231 RegLocation rl_result;
232 RegLocation rl_src = mir_graph_->GetSrc(mir, 0);
233 RegLocation rl_dest = mir_graph_->GetDest(mir);
234 // Avoid using float regs here.
235 RegisterClass src_reg_class = rl_src.ref ? kRefReg : kCoreReg;
236 RegisterClass result_reg_class = rl_dest.ref ? kRefReg : kCoreReg;
237 rl_src = LoadValue(rl_src, src_reg_class);
238 ConditionCode ccode = mir->meta.ccode;
239 if (mir->ssa_rep->num_uses == 1) {
240 // CONST case
241 int true_val = mir->dalvikInsn.vB;
242 int false_val = mir->dalvikInsn.vC;
243 rl_result = EvalLoc(rl_dest, result_reg_class, true);
244 // Change kCondNe to kCondEq for the special cases below.
245 if (ccode == kCondNe) {
246 ccode = kCondEq;
247 std::swap(true_val, false_val);
248 }
249 bool cheap_false_val = InexpensiveConstantInt(false_val);
250 if (cheap_false_val && ccode == kCondEq && (true_val == 0 || true_val == -1)) {
251 OpRegRegImm(kOpSub, rl_result.reg, rl_src.reg, -true_val);
252 DCHECK(last_lir_insn_->u.m.def_mask->HasBit(ResourceMask::kCCode));
253 LIR* it = OpIT(true_val == 0 ? kCondNe : kCondUge, "");
254 LoadConstant(rl_result.reg, false_val);
255 OpEndIT(it); // Add a scheduling barrier to keep the IT shadow intact
256 } else if (cheap_false_val && ccode == kCondEq && true_val == 1) {
257 OpRegRegImm(kOpRsub, rl_result.reg, rl_src.reg, 1);
258 DCHECK(last_lir_insn_->u.m.def_mask->HasBit(ResourceMask::kCCode));
259 LIR* it = OpIT(kCondLs, "");
260 LoadConstant(rl_result.reg, false_val);
261 OpEndIT(it); // Add a scheduling barrier to keep the IT shadow intact
262 } else if (cheap_false_val && InexpensiveConstantInt(true_val)) {
263 OpRegImm(kOpCmp, rl_src.reg, 0);
264 LIR* it = OpIT(ccode, "E");
265 LoadConstant(rl_result.reg, true_val);
266 LoadConstant(rl_result.reg, false_val);
267 OpEndIT(it); // Add a scheduling barrier to keep the IT shadow intact
268 } else {
269 // Unlikely case - could be tuned.
270 RegStorage t_reg1 = AllocTypedTemp(false, result_reg_class);
271 RegStorage t_reg2 = AllocTypedTemp(false, result_reg_class);
272 LoadConstant(t_reg1, true_val);
273 LoadConstant(t_reg2, false_val);
274 OpRegImm(kOpCmp, rl_src.reg, 0);
275 LIR* it = OpIT(ccode, "E");
276 OpRegCopy(rl_result.reg, t_reg1);
277 OpRegCopy(rl_result.reg, t_reg2);
278 OpEndIT(it); // Add a scheduling barrier to keep the IT shadow intact
279 }
280 } else {
281 // MOVE case
282 RegLocation rl_true = mir_graph_->reg_location_[mir->ssa_rep->uses[1]];
283 RegLocation rl_false = mir_graph_->reg_location_[mir->ssa_rep->uses[2]];
284 rl_true = LoadValue(rl_true, result_reg_class);
285 rl_false = LoadValue(rl_false, result_reg_class);
286 rl_result = EvalLoc(rl_dest, result_reg_class, true);
287 OpRegImm(kOpCmp, rl_src.reg, 0);
288 LIR* it = nullptr;
289 if (rl_result.reg.GetReg() == rl_true.reg.GetReg()) { // Is the "true" case already in place?
290 it = OpIT(NegateComparison(ccode), "");
291 OpRegCopy(rl_result.reg, rl_false.reg);
292 } else if (rl_result.reg.GetReg() == rl_false.reg.GetReg()) { // False case in place?
293 it = OpIT(ccode, "");
294 OpRegCopy(rl_result.reg, rl_true.reg);
295 } else { // Normal - select between the two.
296 it = OpIT(ccode, "E");
297 OpRegCopy(rl_result.reg, rl_true.reg);
298 OpRegCopy(rl_result.reg, rl_false.reg);
299 }
300 OpEndIT(it); // Add a scheduling barrier to keep the IT shadow intact
301 }
302 StoreValue(rl_dest, rl_result);
303 }
304
GenFusedLongCmpBranch(BasicBlock * bb,MIR * mir)305 void ArmMir2Lir::GenFusedLongCmpBranch(BasicBlock* bb, MIR* mir) {
306 RegLocation rl_src1 = mir_graph_->GetSrcWide(mir, 0);
307 RegLocation rl_src2 = mir_graph_->GetSrcWide(mir, 2);
308 // Normalize such that if either operand is constant, src2 will be constant.
309 ConditionCode ccode = mir->meta.ccode;
310 if (rl_src1.is_const) {
311 std::swap(rl_src1, rl_src2);
312 ccode = FlipComparisonOrder(ccode);
313 }
314 if (rl_src2.is_const) {
315 rl_src2 = UpdateLocWide(rl_src2);
316 // Do special compare/branch against simple const operand if not already in registers.
317 int64_t val = mir_graph_->ConstantValueWide(rl_src2);
318 if ((rl_src2.location != kLocPhysReg) &&
319 ((ModifiedImmediate(Low32Bits(val)) >= 0) && (ModifiedImmediate(High32Bits(val)) >= 0))) {
320 GenFusedLongCmpImmBranch(bb, rl_src1, val, ccode);
321 return;
322 }
323 }
324 LIR* taken = &block_label_list_[bb->taken];
325 LIR* not_taken = &block_label_list_[bb->fall_through];
326 rl_src1 = LoadValueWide(rl_src1, kCoreReg);
327 rl_src2 = LoadValueWide(rl_src2, kCoreReg);
328 OpRegReg(kOpCmp, rl_src1.reg.GetHigh(), rl_src2.reg.GetHigh());
329 switch (ccode) {
330 case kCondEq:
331 OpCondBranch(kCondNe, not_taken);
332 break;
333 case kCondNe:
334 OpCondBranch(kCondNe, taken);
335 break;
336 case kCondLt:
337 OpCondBranch(kCondLt, taken);
338 OpCondBranch(kCondGt, not_taken);
339 ccode = kCondUlt;
340 break;
341 case kCondLe:
342 OpCondBranch(kCondLt, taken);
343 OpCondBranch(kCondGt, not_taken);
344 ccode = kCondLs;
345 break;
346 case kCondGt:
347 OpCondBranch(kCondGt, taken);
348 OpCondBranch(kCondLt, not_taken);
349 ccode = kCondHi;
350 break;
351 case kCondGe:
352 OpCondBranch(kCondGt, taken);
353 OpCondBranch(kCondLt, not_taken);
354 ccode = kCondUge;
355 break;
356 default:
357 LOG(FATAL) << "Unexpected ccode: " << ccode;
358 }
359 OpRegReg(kOpCmp, rl_src1.reg.GetLow(), rl_src2.reg.GetLow());
360 OpCondBranch(ccode, taken);
361 }
362
363 /*
364 * Generate a register comparison to an immediate and branch. Caller
365 * is responsible for setting branch target field.
366 */
OpCmpImmBranch(ConditionCode cond,RegStorage reg,int check_value,LIR * target)367 LIR* ArmMir2Lir::OpCmpImmBranch(ConditionCode cond, RegStorage reg, int check_value, LIR* target) {
368 LIR* branch = nullptr;
369 ArmConditionCode arm_cond = ArmConditionEncoding(cond);
370 /*
371 * A common use of OpCmpImmBranch is for null checks, and using the Thumb 16-bit
372 * compare-and-branch if zero is ideal if it will reach. However, because null checks
373 * branch forward to a slow path, they will frequently not reach - and thus have to
374 * be converted to a long form during assembly (which will trigger another assembly
375 * pass). Here we estimate the branch distance for checks, and if large directly
376 * generate the long form in an attempt to avoid an extra assembly pass.
377 * TODO: consider interspersing slowpaths in code following unconditional branches.
378 */
379 bool skip = ((target != NULL) && (target->opcode == kPseudoThrowTarget));
380 skip &= ((cu_->code_item->insns_size_in_code_units_ - current_dalvik_offset_) > 64);
381 if (!skip && reg.Low8() && (check_value == 0)) {
382 if (arm_cond == kArmCondEq || arm_cond == kArmCondNe) {
383 branch = NewLIR2((arm_cond == kArmCondEq) ? kThumb2Cbz : kThumb2Cbnz,
384 reg.GetReg(), 0);
385 } else if (arm_cond == kArmCondLs) {
386 // kArmCondLs is an unsigned less or equal. A comparison r <= 0 is then the same as cbz.
387 // This case happens for a bounds check of array[0].
388 branch = NewLIR2(kThumb2Cbz, reg.GetReg(), 0);
389 }
390 }
391
392 if (branch == nullptr) {
393 OpRegImm(kOpCmp, reg, check_value);
394 branch = NewLIR2(kThumbBCond, 0, arm_cond);
395 }
396
397 branch->target = target;
398 return branch;
399 }
400
OpRegCopyNoInsert(RegStorage r_dest,RegStorage r_src)401 LIR* ArmMir2Lir::OpRegCopyNoInsert(RegStorage r_dest, RegStorage r_src) {
402 LIR* res;
403 int opcode;
404 // If src or dest is a pair, we'll be using low reg.
405 if (r_dest.IsPair()) {
406 r_dest = r_dest.GetLow();
407 }
408 if (r_src.IsPair()) {
409 r_src = r_src.GetLow();
410 }
411 if (r_dest.IsFloat() || r_src.IsFloat())
412 return OpFpRegCopy(r_dest, r_src);
413 if (r_dest.Low8() && r_src.Low8())
414 opcode = kThumbMovRR;
415 else if (!r_dest.Low8() && !r_src.Low8())
416 opcode = kThumbMovRR_H2H;
417 else if (r_dest.Low8())
418 opcode = kThumbMovRR_H2L;
419 else
420 opcode = kThumbMovRR_L2H;
421 res = RawLIR(current_dalvik_offset_, opcode, r_dest.GetReg(), r_src.GetReg());
422 if (!(cu_->disable_opt & (1 << kSafeOptimizations)) && r_dest == r_src) {
423 res->flags.is_nop = true;
424 }
425 return res;
426 }
427
OpRegCopy(RegStorage r_dest,RegStorage r_src)428 void ArmMir2Lir::OpRegCopy(RegStorage r_dest, RegStorage r_src) {
429 if (r_dest != r_src) {
430 LIR* res = OpRegCopyNoInsert(r_dest, r_src);
431 AppendLIR(res);
432 }
433 }
434
OpRegCopyWide(RegStorage r_dest,RegStorage r_src)435 void ArmMir2Lir::OpRegCopyWide(RegStorage r_dest, RegStorage r_src) {
436 if (r_dest != r_src) {
437 bool dest_fp = r_dest.IsFloat();
438 bool src_fp = r_src.IsFloat();
439 DCHECK(r_dest.Is64Bit());
440 DCHECK(r_src.Is64Bit());
441 if (dest_fp) {
442 if (src_fp) {
443 OpRegCopy(r_dest, r_src);
444 } else {
445 NewLIR3(kThumb2Fmdrr, r_dest.GetReg(), r_src.GetLowReg(), r_src.GetHighReg());
446 }
447 } else {
448 if (src_fp) {
449 NewLIR3(kThumb2Fmrrd, r_dest.GetLowReg(), r_dest.GetHighReg(), r_src.GetReg());
450 } else {
451 // Handle overlap
452 if (r_src.GetHighReg() == r_dest.GetLowReg()) {
453 DCHECK_NE(r_src.GetLowReg(), r_dest.GetHighReg());
454 OpRegCopy(r_dest.GetHigh(), r_src.GetHigh());
455 OpRegCopy(r_dest.GetLow(), r_src.GetLow());
456 } else {
457 OpRegCopy(r_dest.GetLow(), r_src.GetLow());
458 OpRegCopy(r_dest.GetHigh(), r_src.GetHigh());
459 }
460 }
461 }
462 }
463 }
464
465 // Table of magic divisors
466 struct MagicTable {
467 uint32_t magic;
468 uint32_t shift;
469 DividePattern pattern;
470 };
471
472 static const MagicTable magic_table[] = {
473 {0, 0, DivideNone}, // 0
474 {0, 0, DivideNone}, // 1
475 {0, 0, DivideNone}, // 2
476 {0x55555556, 0, Divide3}, // 3
477 {0, 0, DivideNone}, // 4
478 {0x66666667, 1, Divide5}, // 5
479 {0x2AAAAAAB, 0, Divide3}, // 6
480 {0x92492493, 2, Divide7}, // 7
481 {0, 0, DivideNone}, // 8
482 {0x38E38E39, 1, Divide5}, // 9
483 {0x66666667, 2, Divide5}, // 10
484 {0x2E8BA2E9, 1, Divide5}, // 11
485 {0x2AAAAAAB, 1, Divide5}, // 12
486 {0x4EC4EC4F, 2, Divide5}, // 13
487 {0x92492493, 3, Divide7}, // 14
488 {0x88888889, 3, Divide7}, // 15
489 };
490
491 // Integer division by constant via reciprocal multiply (Hacker's Delight, 10-4)
SmallLiteralDivRem(Instruction::Code dalvik_opcode,bool is_div,RegLocation rl_src,RegLocation rl_dest,int lit)492 bool ArmMir2Lir::SmallLiteralDivRem(Instruction::Code dalvik_opcode, bool is_div,
493 RegLocation rl_src, RegLocation rl_dest, int lit) {
494 if ((lit < 0) || (lit >= static_cast<int>(sizeof(magic_table)/sizeof(magic_table[0])))) {
495 return false;
496 }
497 DividePattern pattern = magic_table[lit].pattern;
498 if (pattern == DivideNone) {
499 return false;
500 }
501
502 RegStorage r_magic = AllocTemp();
503 LoadConstant(r_magic, magic_table[lit].magic);
504 rl_src = LoadValue(rl_src, kCoreReg);
505 RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
506 RegStorage r_hi = AllocTemp();
507 RegStorage r_lo = AllocTemp();
508
509 // rl_dest and rl_src might overlap.
510 // Reuse r_hi to save the div result for reminder case.
511 RegStorage r_div_result = is_div ? rl_result.reg : r_hi;
512
513 NewLIR4(kThumb2Smull, r_lo.GetReg(), r_hi.GetReg(), r_magic.GetReg(), rl_src.reg.GetReg());
514 switch (pattern) {
515 case Divide3:
516 OpRegRegRegShift(kOpSub, r_div_result, r_hi, rl_src.reg, EncodeShift(kArmAsr, 31));
517 break;
518 case Divide5:
519 OpRegRegImm(kOpAsr, r_lo, rl_src.reg, 31);
520 OpRegRegRegShift(kOpRsub, r_div_result, r_lo, r_hi,
521 EncodeShift(kArmAsr, magic_table[lit].shift));
522 break;
523 case Divide7:
524 OpRegReg(kOpAdd, r_hi, rl_src.reg);
525 OpRegRegImm(kOpAsr, r_lo, rl_src.reg, 31);
526 OpRegRegRegShift(kOpRsub, r_div_result, r_lo, r_hi,
527 EncodeShift(kArmAsr, magic_table[lit].shift));
528 break;
529 default:
530 LOG(FATAL) << "Unexpected pattern: " << pattern;
531 }
532
533 if (!is_div) {
534 // div_result = src / lit
535 // tmp1 = div_result * lit
536 // dest = src - tmp1
537 RegStorage tmp1 = r_lo;
538 EasyMultiplyOp ops[2];
539
540 bool canEasyMultiply = GetEasyMultiplyTwoOps(lit, ops);
541 DCHECK_NE(canEasyMultiply, false);
542
543 GenEasyMultiplyTwoOps(tmp1, r_div_result, ops);
544 OpRegRegReg(kOpSub, rl_result.reg, rl_src.reg, tmp1);
545 }
546
547 StoreValue(rl_dest, rl_result);
548 return true;
549 }
550
551 // Try to convert *lit to 1 RegRegRegShift/RegRegShift form.
GetEasyMultiplyOp(int lit,ArmMir2Lir::EasyMultiplyOp * op)552 bool ArmMir2Lir::GetEasyMultiplyOp(int lit, ArmMir2Lir::EasyMultiplyOp* op) {
553 if (IsPowerOfTwo(lit)) {
554 op->op = kOpLsl;
555 op->shift = LowestSetBit(lit);
556 return true;
557 }
558
559 if (IsPowerOfTwo(lit - 1)) {
560 op->op = kOpAdd;
561 op->shift = LowestSetBit(lit - 1);
562 return true;
563 }
564
565 if (IsPowerOfTwo(lit + 1)) {
566 op->op = kOpRsub;
567 op->shift = LowestSetBit(lit + 1);
568 return true;
569 }
570
571 op->op = kOpInvalid;
572 op->shift = 0;
573 return false;
574 }
575
576 // Try to convert *lit to 1~2 RegRegRegShift/RegRegShift forms.
GetEasyMultiplyTwoOps(int lit,EasyMultiplyOp * ops)577 bool ArmMir2Lir::GetEasyMultiplyTwoOps(int lit, EasyMultiplyOp* ops) {
578 GetEasyMultiplyOp(lit, &ops[0]);
579 if (GetEasyMultiplyOp(lit, &ops[0])) {
580 ops[1].op = kOpInvalid;
581 ops[1].shift = 0;
582 return true;
583 }
584
585 int lit1 = lit;
586 uint32_t shift = LowestSetBit(lit1);
587 if (GetEasyMultiplyOp(lit1 >> shift, &ops[0])) {
588 ops[1].op = kOpLsl;
589 ops[1].shift = shift;
590 return true;
591 }
592
593 lit1 = lit - 1;
594 shift = LowestSetBit(lit1);
595 if (GetEasyMultiplyOp(lit1 >> shift, &ops[0])) {
596 ops[1].op = kOpAdd;
597 ops[1].shift = shift;
598 return true;
599 }
600
601 lit1 = lit + 1;
602 shift = LowestSetBit(lit1);
603 if (GetEasyMultiplyOp(lit1 >> shift, &ops[0])) {
604 ops[1].op = kOpRsub;
605 ops[1].shift = shift;
606 return true;
607 }
608
609 return false;
610 }
611
612 // Generate instructions to do multiply.
613 // Additional temporary register is required,
614 // if it need to generate 2 instructions and src/dest overlap.
GenEasyMultiplyTwoOps(RegStorage r_dest,RegStorage r_src,EasyMultiplyOp * ops)615 void ArmMir2Lir::GenEasyMultiplyTwoOps(RegStorage r_dest, RegStorage r_src, EasyMultiplyOp* ops) {
616 // tmp1 = ( src << shift1) + [ src | -src | 0 ]
617 // dest = (tmp1 << shift2) + [ src | -src | 0 ]
618
619 RegStorage r_tmp1;
620 if (ops[1].op == kOpInvalid) {
621 r_tmp1 = r_dest;
622 } else if (r_dest.GetReg() != r_src.GetReg()) {
623 r_tmp1 = r_dest;
624 } else {
625 r_tmp1 = AllocTemp();
626 }
627
628 switch (ops[0].op) {
629 case kOpLsl:
630 OpRegRegImm(kOpLsl, r_tmp1, r_src, ops[0].shift);
631 break;
632 case kOpAdd:
633 OpRegRegRegShift(kOpAdd, r_tmp1, r_src, r_src, EncodeShift(kArmLsl, ops[0].shift));
634 break;
635 case kOpRsub:
636 OpRegRegRegShift(kOpRsub, r_tmp1, r_src, r_src, EncodeShift(kArmLsl, ops[0].shift));
637 break;
638 default:
639 DCHECK_EQ(ops[0].op, kOpInvalid);
640 break;
641 }
642
643 switch (ops[1].op) {
644 case kOpInvalid:
645 return;
646 case kOpLsl:
647 OpRegRegImm(kOpLsl, r_dest, r_tmp1, ops[1].shift);
648 break;
649 case kOpAdd:
650 OpRegRegRegShift(kOpAdd, r_dest, r_src, r_tmp1, EncodeShift(kArmLsl, ops[1].shift));
651 break;
652 case kOpRsub:
653 OpRegRegRegShift(kOpRsub, r_dest, r_src, r_tmp1, EncodeShift(kArmLsl, ops[1].shift));
654 break;
655 default:
656 LOG(FATAL) << "Unexpected opcode passed to GenEasyMultiplyTwoOps";
657 break;
658 }
659 }
660
EasyMultiply(RegLocation rl_src,RegLocation rl_dest,int lit)661 bool ArmMir2Lir::EasyMultiply(RegLocation rl_src, RegLocation rl_dest, int lit) {
662 EasyMultiplyOp ops[2];
663
664 if (!GetEasyMultiplyTwoOps(lit, ops)) {
665 return false;
666 }
667
668 rl_src = LoadValue(rl_src, kCoreReg);
669 RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
670
671 GenEasyMultiplyTwoOps(rl_result.reg, rl_src.reg, ops);
672 StoreValue(rl_dest, rl_result);
673 return true;
674 }
675
GenDivRem(RegLocation rl_dest,RegLocation rl_src1,RegLocation rl_src2,bool is_div,bool check_zero)676 RegLocation ArmMir2Lir::GenDivRem(RegLocation rl_dest, RegLocation rl_src1,
677 RegLocation rl_src2, bool is_div, bool check_zero) {
678 LOG(FATAL) << "Unexpected use of GenDivRem for Arm";
679 return rl_dest;
680 }
681
GenDivRemLit(RegLocation rl_dest,RegLocation rl_src1,int lit,bool is_div)682 RegLocation ArmMir2Lir::GenDivRemLit(RegLocation rl_dest, RegLocation rl_src1, int lit, bool is_div) {
683 LOG(FATAL) << "Unexpected use of GenDivRemLit for Arm";
684 return rl_dest;
685 }
686
GenDivRemLit(RegLocation rl_dest,RegStorage reg1,int lit,bool is_div)687 RegLocation ArmMir2Lir::GenDivRemLit(RegLocation rl_dest, RegStorage reg1, int lit, bool is_div) {
688 RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
689
690 // Put the literal in a temp.
691 RegStorage lit_temp = AllocTemp();
692 LoadConstant(lit_temp, lit);
693 // Use the generic case for div/rem with arg2 in a register.
694 // TODO: The literal temp can be freed earlier during a modulus to reduce reg pressure.
695 rl_result = GenDivRem(rl_result, reg1, lit_temp, is_div);
696 FreeTemp(lit_temp);
697
698 return rl_result;
699 }
700
GenDivRem(RegLocation rl_dest,RegStorage reg1,RegStorage reg2,bool is_div)701 RegLocation ArmMir2Lir::GenDivRem(RegLocation rl_dest, RegStorage reg1, RegStorage reg2,
702 bool is_div) {
703 RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
704 if (is_div) {
705 // Simple case, use sdiv instruction.
706 OpRegRegReg(kOpDiv, rl_result.reg, reg1, reg2);
707 } else {
708 // Remainder case, use the following code:
709 // temp = reg1 / reg2 - integer division
710 // temp = temp * reg2
711 // dest = reg1 - temp
712
713 RegStorage temp = AllocTemp();
714 OpRegRegReg(kOpDiv, temp, reg1, reg2);
715 OpRegReg(kOpMul, temp, reg2);
716 OpRegRegReg(kOpSub, rl_result.reg, reg1, temp);
717 FreeTemp(temp);
718 }
719
720 return rl_result;
721 }
722
GenInlinedMinMax(CallInfo * info,bool is_min,bool is_long)723 bool ArmMir2Lir::GenInlinedMinMax(CallInfo* info, bool is_min, bool is_long) {
724 DCHECK_EQ(cu_->instruction_set, kThumb2);
725 if (is_long) {
726 return false;
727 }
728 RegLocation rl_src1 = info->args[0];
729 RegLocation rl_src2 = info->args[1];
730 rl_src1 = LoadValue(rl_src1, kCoreReg);
731 rl_src2 = LoadValue(rl_src2, kCoreReg);
732 RegLocation rl_dest = InlineTarget(info);
733 RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
734 OpRegReg(kOpCmp, rl_src1.reg, rl_src2.reg);
735 LIR* it = OpIT((is_min) ? kCondGt : kCondLt, "E");
736 OpRegReg(kOpMov, rl_result.reg, rl_src2.reg);
737 OpRegReg(kOpMov, rl_result.reg, rl_src1.reg);
738 OpEndIT(it);
739 StoreValue(rl_dest, rl_result);
740 return true;
741 }
742
GenInlinedPeek(CallInfo * info,OpSize size)743 bool ArmMir2Lir::GenInlinedPeek(CallInfo* info, OpSize size) {
744 RegLocation rl_src_address = info->args[0]; // long address
745 rl_src_address = NarrowRegLoc(rl_src_address); // ignore high half in info->args[1]
746 RegLocation rl_dest = InlineTarget(info);
747 RegLocation rl_address = LoadValue(rl_src_address, kCoreReg);
748 RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
749 if (size == k64) {
750 // Fake unaligned LDRD by two unaligned LDR instructions on ARMv7 with SCTLR.A set to 0.
751 if (rl_address.reg.GetReg() != rl_result.reg.GetLowReg()) {
752 Load32Disp(rl_address.reg, 0, rl_result.reg.GetLow());
753 Load32Disp(rl_address.reg, 4, rl_result.reg.GetHigh());
754 } else {
755 Load32Disp(rl_address.reg, 4, rl_result.reg.GetHigh());
756 Load32Disp(rl_address.reg, 0, rl_result.reg.GetLow());
757 }
758 StoreValueWide(rl_dest, rl_result);
759 } else {
760 DCHECK(size == kSignedByte || size == kSignedHalf || size == k32);
761 // Unaligned load with LDR and LDRSH is allowed on ARMv7 with SCTLR.A set to 0.
762 LoadBaseDisp(rl_address.reg, 0, rl_result.reg, size, kNotVolatile);
763 StoreValue(rl_dest, rl_result);
764 }
765 return true;
766 }
767
GenInlinedPoke(CallInfo * info,OpSize size)768 bool ArmMir2Lir::GenInlinedPoke(CallInfo* info, OpSize size) {
769 RegLocation rl_src_address = info->args[0]; // long address
770 rl_src_address = NarrowRegLoc(rl_src_address); // ignore high half in info->args[1]
771 RegLocation rl_src_value = info->args[2]; // [size] value
772 RegLocation rl_address = LoadValue(rl_src_address, kCoreReg);
773 if (size == k64) {
774 // Fake unaligned STRD by two unaligned STR instructions on ARMv7 with SCTLR.A set to 0.
775 RegLocation rl_value = LoadValueWide(rl_src_value, kCoreReg);
776 StoreBaseDisp(rl_address.reg, 0, rl_value.reg.GetLow(), k32, kNotVolatile);
777 StoreBaseDisp(rl_address.reg, 4, rl_value.reg.GetHigh(), k32, kNotVolatile);
778 } else {
779 DCHECK(size == kSignedByte || size == kSignedHalf || size == k32);
780 // Unaligned store with STR and STRSH is allowed on ARMv7 with SCTLR.A set to 0.
781 RegLocation rl_value = LoadValue(rl_src_value, kCoreReg);
782 StoreBaseDisp(rl_address.reg, 0, rl_value.reg, size, kNotVolatile);
783 }
784 return true;
785 }
786
787 // Generate a CAS with memory_order_seq_cst semantics.
GenInlinedCas(CallInfo * info,bool is_long,bool is_object)788 bool ArmMir2Lir::GenInlinedCas(CallInfo* info, bool is_long, bool is_object) {
789 DCHECK_EQ(cu_->instruction_set, kThumb2);
790 // Unused - RegLocation rl_src_unsafe = info->args[0];
791 RegLocation rl_src_obj = info->args[1]; // Object - known non-null
792 RegLocation rl_src_offset = info->args[2]; // long low
793 rl_src_offset = NarrowRegLoc(rl_src_offset); // ignore high half in info->args[3]
794 RegLocation rl_src_expected = info->args[4]; // int, long or Object
795 // If is_long, high half is in info->args[5]
796 RegLocation rl_src_new_value = info->args[is_long ? 6 : 5]; // int, long or Object
797 // If is_long, high half is in info->args[7]
798 RegLocation rl_dest = InlineTarget(info); // boolean place for result
799
800 // We have only 5 temporary registers available and actually only 4 if the InlineTarget
801 // above locked one of the temps. For a straightforward CAS64 we need 7 registers:
802 // r_ptr (1), new_value (2), expected(2) and ldrexd result (2). If neither expected nor
803 // new_value is in a non-temp core register we shall reload them in the ldrex/strex loop
804 // into the same temps, reducing the number of required temps down to 5. We shall work
805 // around the potentially locked temp by using LR for r_ptr, unconditionally.
806 // TODO: Pass information about the need for more temps to the stack frame generation
807 // code so that we can rely on being able to allocate enough temps.
808 DCHECK(!GetRegInfo(rs_rARM_LR)->IsTemp());
809 MarkTemp(rs_rARM_LR);
810 FreeTemp(rs_rARM_LR);
811 LockTemp(rs_rARM_LR);
812 bool load_early = true;
813 if (is_long) {
814 RegStorage expected_reg = rl_src_expected.reg.IsPair() ? rl_src_expected.reg.GetLow() :
815 rl_src_expected.reg;
816 RegStorage new_val_reg = rl_src_new_value.reg.IsPair() ? rl_src_new_value.reg.GetLow() :
817 rl_src_new_value.reg;
818 bool expected_is_core_reg = rl_src_expected.location == kLocPhysReg && !expected_reg.IsFloat();
819 bool new_value_is_core_reg = rl_src_new_value.location == kLocPhysReg && !new_val_reg.IsFloat();
820 bool expected_is_good_reg = expected_is_core_reg && !IsTemp(expected_reg);
821 bool new_value_is_good_reg = new_value_is_core_reg && !IsTemp(new_val_reg);
822
823 if (!expected_is_good_reg && !new_value_is_good_reg) {
824 // None of expected/new_value is non-temp reg, need to load both late
825 load_early = false;
826 // Make sure they are not in the temp regs and the load will not be skipped.
827 if (expected_is_core_reg) {
828 FlushRegWide(rl_src_expected.reg);
829 ClobberSReg(rl_src_expected.s_reg_low);
830 ClobberSReg(GetSRegHi(rl_src_expected.s_reg_low));
831 rl_src_expected.location = kLocDalvikFrame;
832 }
833 if (new_value_is_core_reg) {
834 FlushRegWide(rl_src_new_value.reg);
835 ClobberSReg(rl_src_new_value.s_reg_low);
836 ClobberSReg(GetSRegHi(rl_src_new_value.s_reg_low));
837 rl_src_new_value.location = kLocDalvikFrame;
838 }
839 }
840 }
841
842 // Prevent reordering with prior memory operations.
843 GenMemBarrier(kAnyStore);
844
845 RegLocation rl_object = LoadValue(rl_src_obj, kRefReg);
846 RegLocation rl_new_value;
847 if (!is_long) {
848 rl_new_value = LoadValue(rl_src_new_value);
849 } else if (load_early) {
850 rl_new_value = LoadValueWide(rl_src_new_value, kCoreReg);
851 }
852
853 if (is_object && !mir_graph_->IsConstantNullRef(rl_new_value)) {
854 // Mark card for object assuming new value is stored.
855 MarkGCCard(rl_new_value.reg, rl_object.reg);
856 }
857
858 RegLocation rl_offset = LoadValue(rl_src_offset, kCoreReg);
859
860 RegStorage r_ptr = rs_rARM_LR;
861 OpRegRegReg(kOpAdd, r_ptr, rl_object.reg, rl_offset.reg);
862
863 // Free now unneeded rl_object and rl_offset to give more temps.
864 ClobberSReg(rl_object.s_reg_low);
865 FreeTemp(rl_object.reg);
866 ClobberSReg(rl_offset.s_reg_low);
867 FreeTemp(rl_offset.reg);
868
869 RegLocation rl_expected;
870 if (!is_long) {
871 rl_expected = LoadValue(rl_src_expected);
872 } else if (load_early) {
873 rl_expected = LoadValueWide(rl_src_expected, kCoreReg);
874 } else {
875 // NOTE: partially defined rl_expected & rl_new_value - but we just want the regs.
876 RegStorage low_reg = AllocTemp();
877 RegStorage high_reg = AllocTemp();
878 rl_new_value.reg = RegStorage::MakeRegPair(low_reg, high_reg);
879 rl_expected = rl_new_value;
880 }
881
882 // do {
883 // tmp = [r_ptr] - expected;
884 // } while (tmp == 0 && failure([r_ptr] <- r_new_value));
885 // result = tmp != 0;
886
887 RegStorage r_tmp = AllocTemp();
888 LIR* target = NewLIR0(kPseudoTargetLabel);
889
890 LIR* it = nullptr;
891 if (is_long) {
892 RegStorage r_tmp_high = AllocTemp();
893 if (!load_early) {
894 LoadValueDirectWide(rl_src_expected, rl_expected.reg);
895 }
896 NewLIR3(kThumb2Ldrexd, r_tmp.GetReg(), r_tmp_high.GetReg(), r_ptr.GetReg());
897 OpRegReg(kOpSub, r_tmp, rl_expected.reg.GetLow());
898 OpRegReg(kOpSub, r_tmp_high, rl_expected.reg.GetHigh());
899 if (!load_early) {
900 LoadValueDirectWide(rl_src_new_value, rl_new_value.reg);
901 }
902 // Make sure we use ORR that sets the ccode
903 if (r_tmp.Low8() && r_tmp_high.Low8()) {
904 NewLIR2(kThumbOrr, r_tmp.GetReg(), r_tmp_high.GetReg());
905 } else {
906 NewLIR4(kThumb2OrrRRRs, r_tmp.GetReg(), r_tmp.GetReg(), r_tmp_high.GetReg(), 0);
907 }
908 FreeTemp(r_tmp_high); // Now unneeded
909
910 DCHECK(last_lir_insn_->u.m.def_mask->HasBit(ResourceMask::kCCode));
911 it = OpIT(kCondEq, "T");
912 NewLIR4(kThumb2Strexd /* eq */, r_tmp.GetReg(), rl_new_value.reg.GetLowReg(), rl_new_value.reg.GetHighReg(), r_ptr.GetReg());
913
914 } else {
915 NewLIR3(kThumb2Ldrex, r_tmp.GetReg(), r_ptr.GetReg(), 0);
916 OpRegReg(kOpSub, r_tmp, rl_expected.reg);
917 DCHECK(last_lir_insn_->u.m.def_mask->HasBit(ResourceMask::kCCode));
918 it = OpIT(kCondEq, "T");
919 NewLIR4(kThumb2Strex /* eq */, r_tmp.GetReg(), rl_new_value.reg.GetReg(), r_ptr.GetReg(), 0);
920 }
921
922 // Still one conditional left from OpIT(kCondEq, "T") from either branch
923 OpRegImm(kOpCmp /* eq */, r_tmp, 1);
924 OpEndIT(it);
925
926 OpCondBranch(kCondEq, target);
927
928 if (!load_early) {
929 FreeTemp(rl_expected.reg); // Now unneeded.
930 }
931
932 // Prevent reordering with subsequent memory operations.
933 GenMemBarrier(kLoadAny);
934
935 // result := (tmp1 != 0) ? 0 : 1;
936 RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
937 OpRegRegImm(kOpRsub, rl_result.reg, r_tmp, 1);
938 DCHECK(last_lir_insn_->u.m.def_mask->HasBit(ResourceMask::kCCode));
939 it = OpIT(kCondUlt, "");
940 LoadConstant(rl_result.reg, 0); /* cc */
941 FreeTemp(r_tmp); // Now unneeded.
942 OpEndIT(it); // Barrier to terminate OpIT.
943
944 StoreValue(rl_dest, rl_result);
945
946 // Now, restore lr to its non-temp status.
947 Clobber(rs_rARM_LR);
948 UnmarkTemp(rs_rARM_LR);
949 return true;
950 }
951
GenInlinedArrayCopyCharArray(CallInfo * info)952 bool ArmMir2Lir::GenInlinedArrayCopyCharArray(CallInfo* info) {
953 constexpr int kLargeArrayThreshold = 256;
954
955 RegLocation rl_src = info->args[0];
956 RegLocation rl_src_pos = info->args[1];
957 RegLocation rl_dst = info->args[2];
958 RegLocation rl_dst_pos = info->args[3];
959 RegLocation rl_length = info->args[4];
960 // Compile time check, handle exception by non-inline method to reduce related meta-data.
961 if ((rl_src_pos.is_const && (mir_graph_->ConstantValue(rl_src_pos) < 0)) ||
962 (rl_dst_pos.is_const && (mir_graph_->ConstantValue(rl_dst_pos) < 0)) ||
963 (rl_length.is_const && (mir_graph_->ConstantValue(rl_length) < 0))) {
964 return false;
965 }
966
967 ClobberCallerSave();
968 LockCallTemps(); // Prepare for explicit register usage.
969 LockTemp(rs_r12);
970 RegStorage rs_src = rs_r0;
971 RegStorage rs_dst = rs_r1;
972 LoadValueDirectFixed(rl_src, rs_src);
973 LoadValueDirectFixed(rl_dst, rs_dst);
974
975 // Handle null pointer exception in slow-path.
976 LIR* src_check_branch = OpCmpImmBranch(kCondEq, rs_src, 0, nullptr);
977 LIR* dst_check_branch = OpCmpImmBranch(kCondEq, rs_dst, 0, nullptr);
978 // Handle potential overlapping in slow-path.
979 LIR* src_dst_same = OpCmpBranch(kCondEq, rs_src, rs_dst, nullptr);
980 // Handle exception or big length in slow-path.
981 RegStorage rs_length = rs_r2;
982 LoadValueDirectFixed(rl_length, rs_length);
983 LIR* len_neg_or_too_big = OpCmpImmBranch(kCondHi, rs_length, kLargeArrayThreshold, nullptr);
984 // Src bounds check.
985 RegStorage rs_pos = rs_r3;
986 RegStorage rs_arr_length = rs_r12;
987 LoadValueDirectFixed(rl_src_pos, rs_pos);
988 LIR* src_pos_negative = OpCmpImmBranch(kCondLt, rs_pos, 0, nullptr);
989 Load32Disp(rs_src, mirror::Array::LengthOffset().Int32Value(), rs_arr_length);
990 OpRegReg(kOpSub, rs_arr_length, rs_pos);
991 LIR* src_bad_len = OpCmpBranch(kCondLt, rs_arr_length, rs_length, nullptr);
992 // Dst bounds check.
993 LoadValueDirectFixed(rl_dst_pos, rs_pos);
994 LIR* dst_pos_negative = OpCmpImmBranch(kCondLt, rs_pos, 0, nullptr);
995 Load32Disp(rs_dst, mirror::Array::LengthOffset().Int32Value(), rs_arr_length);
996 OpRegReg(kOpSub, rs_arr_length, rs_pos);
997 LIR* dst_bad_len = OpCmpBranch(kCondLt, rs_arr_length, rs_length, nullptr);
998
999 // Everything is checked now.
1000 OpRegImm(kOpAdd, rs_dst, mirror::Array::DataOffset(2).Int32Value());
1001 OpRegReg(kOpAdd, rs_dst, rs_pos);
1002 OpRegReg(kOpAdd, rs_dst, rs_pos);
1003 OpRegImm(kOpAdd, rs_src, mirror::Array::DataOffset(2).Int32Value());
1004 LoadValueDirectFixed(rl_src_pos, rs_pos);
1005 OpRegReg(kOpAdd, rs_src, rs_pos);
1006 OpRegReg(kOpAdd, rs_src, rs_pos);
1007
1008 RegStorage rs_tmp = rs_pos;
1009 OpRegRegImm(kOpLsl, rs_length, rs_length, 1);
1010
1011 // Copy one element.
1012 OpRegRegImm(kOpAnd, rs_tmp, rs_length, 2);
1013 LIR* jmp_to_begin_loop = OpCmpImmBranch(kCondEq, rs_tmp, 0, nullptr);
1014 OpRegImm(kOpSub, rs_length, 2);
1015 LoadBaseIndexed(rs_src, rs_length, rs_tmp, 0, kSignedHalf);
1016 StoreBaseIndexed(rs_dst, rs_length, rs_tmp, 0, kSignedHalf);
1017
1018 // Copy two elements.
1019 LIR *begin_loop = NewLIR0(kPseudoTargetLabel);
1020 LIR* jmp_to_ret = OpCmpImmBranch(kCondEq, rs_length, 0, nullptr);
1021 OpRegImm(kOpSub, rs_length, 4);
1022 LoadBaseIndexed(rs_src, rs_length, rs_tmp, 0, k32);
1023 StoreBaseIndexed(rs_dst, rs_length, rs_tmp, 0, k32);
1024 OpUnconditionalBranch(begin_loop);
1025
1026 LIR *check_failed = NewLIR0(kPseudoTargetLabel);
1027 LIR* launchpad_branch = OpUnconditionalBranch(nullptr);
1028 LIR* return_point = NewLIR0(kPseudoTargetLabel);
1029
1030 src_check_branch->target = check_failed;
1031 dst_check_branch->target = check_failed;
1032 src_dst_same->target = check_failed;
1033 len_neg_or_too_big->target = check_failed;
1034 src_pos_negative->target = check_failed;
1035 src_bad_len->target = check_failed;
1036 dst_pos_negative->target = check_failed;
1037 dst_bad_len->target = check_failed;
1038 jmp_to_begin_loop->target = begin_loop;
1039 jmp_to_ret->target = return_point;
1040
1041 AddIntrinsicSlowPath(info, launchpad_branch, return_point);
1042 ClobberCallerSave(); // We must clobber everything because slow path will return here
1043
1044 return true;
1045 }
1046
OpPcRelLoad(RegStorage reg,LIR * target)1047 LIR* ArmMir2Lir::OpPcRelLoad(RegStorage reg, LIR* target) {
1048 return RawLIR(current_dalvik_offset_, kThumb2LdrPcRel12, reg.GetReg(), 0, 0, 0, 0, target);
1049 }
1050
OpVldm(RegStorage r_base,int count)1051 LIR* ArmMir2Lir::OpVldm(RegStorage r_base, int count) {
1052 return NewLIR3(kThumb2Vldms, r_base.GetReg(), rs_fr0.GetReg(), count);
1053 }
1054
OpVstm(RegStorage r_base,int count)1055 LIR* ArmMir2Lir::OpVstm(RegStorage r_base, int count) {
1056 return NewLIR3(kThumb2Vstms, r_base.GetReg(), rs_fr0.GetReg(), count);
1057 }
1058
GenMultiplyByTwoBitMultiplier(RegLocation rl_src,RegLocation rl_result,int lit,int first_bit,int second_bit)1059 void ArmMir2Lir::GenMultiplyByTwoBitMultiplier(RegLocation rl_src,
1060 RegLocation rl_result, int lit,
1061 int first_bit, int second_bit) {
1062 OpRegRegRegShift(kOpAdd, rl_result.reg, rl_src.reg, rl_src.reg,
1063 EncodeShift(kArmLsl, second_bit - first_bit));
1064 if (first_bit != 0) {
1065 OpRegRegImm(kOpLsl, rl_result.reg, rl_result.reg, first_bit);
1066 }
1067 }
1068
GenDivZeroCheckWide(RegStorage reg)1069 void ArmMir2Lir::GenDivZeroCheckWide(RegStorage reg) {
1070 DCHECK(reg.IsPair()); // TODO: support k64BitSolo.
1071 RegStorage t_reg = AllocTemp();
1072 NewLIR4(kThumb2OrrRRRs, t_reg.GetReg(), reg.GetLowReg(), reg.GetHighReg(), 0);
1073 FreeTemp(t_reg);
1074 GenDivZeroCheck(kCondEq);
1075 }
1076
1077 // Test suspend flag, return target of taken suspend branch
OpTestSuspend(LIR * target)1078 LIR* ArmMir2Lir::OpTestSuspend(LIR* target) {
1079 #ifdef ARM_R4_SUSPEND_FLAG
1080 NewLIR2(kThumbSubRI8, rs_rARM_SUSPEND.GetReg(), 1);
1081 return OpCondBranch((target == NULL) ? kCondEq : kCondNe, target);
1082 #else
1083 RegStorage t_reg = AllocTemp();
1084 LoadBaseDisp(rs_rARM_SELF, Thread::ThreadFlagsOffset<4>().Int32Value(),
1085 t_reg, kUnsignedHalf);
1086 LIR* cmp_branch = OpCmpImmBranch((target == NULL) ? kCondNe : kCondEq, t_reg,
1087 0, target);
1088 FreeTemp(t_reg);
1089 return cmp_branch;
1090 #endif
1091 }
1092
1093 // Decrement register and branch on condition
OpDecAndBranch(ConditionCode c_code,RegStorage reg,LIR * target)1094 LIR* ArmMir2Lir::OpDecAndBranch(ConditionCode c_code, RegStorage reg, LIR* target) {
1095 // Combine sub & test using sub setflags encoding here
1096 OpRegRegImm(kOpSub, reg, reg, 1); // For value == 1, this should set flags.
1097 DCHECK(last_lir_insn_->u.m.def_mask->HasBit(ResourceMask::kCCode));
1098 return OpCondBranch(c_code, target);
1099 }
1100
GenMemBarrier(MemBarrierKind barrier_kind)1101 bool ArmMir2Lir::GenMemBarrier(MemBarrierKind barrier_kind) {
1102 #if ANDROID_SMP != 0
1103 // Start off with using the last LIR as the barrier. If it is not enough, then we will generate one.
1104 LIR* barrier = last_lir_insn_;
1105
1106 int dmb_flavor;
1107 // TODO: revisit Arm barrier kinds
1108 switch (barrier_kind) {
1109 case kAnyStore: dmb_flavor = kISH; break;
1110 case kLoadAny: dmb_flavor = kISH; break;
1111 case kStoreStore: dmb_flavor = kISHST; break;
1112 case kAnyAny: dmb_flavor = kISH; break;
1113 default:
1114 LOG(FATAL) << "Unexpected MemBarrierKind: " << barrier_kind;
1115 dmb_flavor = kSY; // quiet gcc.
1116 break;
1117 }
1118
1119 bool ret = false;
1120
1121 // If the same barrier already exists, don't generate another.
1122 if (barrier == nullptr
1123 || (barrier != nullptr && (barrier->opcode != kThumb2Dmb || barrier->operands[0] != dmb_flavor))) {
1124 barrier = NewLIR1(kThumb2Dmb, dmb_flavor);
1125 ret = true;
1126 }
1127
1128 // At this point we must have a memory barrier. Mark it as a scheduling barrier as well.
1129 DCHECK(!barrier->flags.use_def_invalid);
1130 barrier->u.m.def_mask = &kEncodeAll;
1131 return ret;
1132 #else
1133 return false;
1134 #endif
1135 }
1136
GenNegLong(RegLocation rl_dest,RegLocation rl_src)1137 void ArmMir2Lir::GenNegLong(RegLocation rl_dest, RegLocation rl_src) {
1138 rl_src = LoadValueWide(rl_src, kCoreReg);
1139 RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
1140 RegStorage z_reg = AllocTemp();
1141 LoadConstantNoClobber(z_reg, 0);
1142 // Check for destructive overlap
1143 if (rl_result.reg.GetLowReg() == rl_src.reg.GetHighReg()) {
1144 RegStorage t_reg = AllocTemp();
1145 OpRegRegReg(kOpSub, rl_result.reg.GetLow(), z_reg, rl_src.reg.GetLow());
1146 OpRegRegReg(kOpSbc, rl_result.reg.GetHigh(), z_reg, t_reg);
1147 FreeTemp(t_reg);
1148 } else {
1149 OpRegRegReg(kOpSub, rl_result.reg.GetLow(), z_reg, rl_src.reg.GetLow());
1150 OpRegRegReg(kOpSbc, rl_result.reg.GetHigh(), z_reg, rl_src.reg.GetHigh());
1151 }
1152 FreeTemp(z_reg);
1153 StoreValueWide(rl_dest, rl_result);
1154 }
1155
GenMulLong(Instruction::Code opcode,RegLocation rl_dest,RegLocation rl_src1,RegLocation rl_src2)1156 void ArmMir2Lir::GenMulLong(Instruction::Code opcode, RegLocation rl_dest,
1157 RegLocation rl_src1, RegLocation rl_src2) {
1158 /*
1159 * tmp1 = src1.hi * src2.lo; // src1.hi is no longer needed
1160 * dest = src1.lo * src2.lo;
1161 * tmp1 += src1.lo * src2.hi;
1162 * dest.hi += tmp1;
1163 *
1164 * To pull off inline multiply, we have a worst-case requirement of 7 temporary
1165 * registers. Normally for Arm, we get 5. We can get to 6 by including
1166 * lr in the temp set. The only problematic case is all operands and result are
1167 * distinct, and none have been promoted. In that case, we can succeed by aggressively
1168 * freeing operand temp registers after they are no longer needed. All other cases
1169 * can proceed normally. We'll just punt on the case of the result having a misaligned
1170 * overlap with either operand and send that case to a runtime handler.
1171 */
1172 RegLocation rl_result;
1173 if (BadOverlap(rl_src1, rl_dest) || (BadOverlap(rl_src2, rl_dest))) {
1174 FlushAllRegs();
1175 CallRuntimeHelperRegLocationRegLocation(kQuickLmul, rl_src1, rl_src2, false);
1176 rl_result = GetReturnWide(kCoreReg);
1177 StoreValueWide(rl_dest, rl_result);
1178 return;
1179 }
1180
1181 rl_src1 = LoadValueWide(rl_src1, kCoreReg);
1182 rl_src2 = LoadValueWide(rl_src2, kCoreReg);
1183
1184 int reg_status = 0;
1185 RegStorage res_lo;
1186 RegStorage res_hi;
1187 bool dest_promoted = rl_dest.location == kLocPhysReg && rl_dest.reg.Valid() &&
1188 !IsTemp(rl_dest.reg.GetLow()) && !IsTemp(rl_dest.reg.GetHigh());
1189 bool src1_promoted = !IsTemp(rl_src1.reg.GetLow()) && !IsTemp(rl_src1.reg.GetHigh());
1190 bool src2_promoted = !IsTemp(rl_src2.reg.GetLow()) && !IsTemp(rl_src2.reg.GetHigh());
1191 // Check if rl_dest is *not* either operand and we have enough temp registers.
1192 if ((rl_dest.s_reg_low != rl_src1.s_reg_low && rl_dest.s_reg_low != rl_src2.s_reg_low) &&
1193 (dest_promoted || src1_promoted || src2_promoted)) {
1194 // In this case, we do not need to manually allocate temp registers for result.
1195 rl_result = EvalLoc(rl_dest, kCoreReg, true);
1196 res_lo = rl_result.reg.GetLow();
1197 res_hi = rl_result.reg.GetHigh();
1198 } else {
1199 res_lo = AllocTemp();
1200 if ((rl_src1.s_reg_low == rl_src2.s_reg_low) || src1_promoted || src2_promoted) {
1201 // In this case, we have enough temp registers to be allocated for result.
1202 res_hi = AllocTemp();
1203 reg_status = 1;
1204 } else {
1205 // In this case, all temps are now allocated.
1206 // res_hi will be allocated after we can free src1_hi.
1207 reg_status = 2;
1208 }
1209 }
1210
1211 // Temporarily add LR to the temp pool, and assign it to tmp1
1212 MarkTemp(rs_rARM_LR);
1213 FreeTemp(rs_rARM_LR);
1214 RegStorage tmp1 = rs_rARM_LR;
1215 LockTemp(rs_rARM_LR);
1216
1217 if (rl_src1.reg == rl_src2.reg) {
1218 DCHECK(res_hi.Valid());
1219 DCHECK(res_lo.Valid());
1220 NewLIR3(kThumb2MulRRR, tmp1.GetReg(), rl_src1.reg.GetLowReg(), rl_src1.reg.GetHighReg());
1221 NewLIR4(kThumb2Umull, res_lo.GetReg(), res_hi.GetReg(), rl_src1.reg.GetLowReg(),
1222 rl_src1.reg.GetLowReg());
1223 OpRegRegRegShift(kOpAdd, res_hi, res_hi, tmp1, EncodeShift(kArmLsl, 1));
1224 } else {
1225 NewLIR3(kThumb2MulRRR, tmp1.GetReg(), rl_src2.reg.GetLowReg(), rl_src1.reg.GetHighReg());
1226 if (reg_status == 2) {
1227 DCHECK(!res_hi.Valid());
1228 DCHECK_NE(rl_src1.reg.GetLowReg(), rl_src2.reg.GetLowReg());
1229 DCHECK_NE(rl_src1.reg.GetHighReg(), rl_src2.reg.GetHighReg());
1230 // Will force free src1_hi, so must clobber.
1231 Clobber(rl_src1.reg);
1232 FreeTemp(rl_src1.reg.GetHigh());
1233 res_hi = AllocTemp();
1234 }
1235 DCHECK(res_hi.Valid());
1236 DCHECK(res_lo.Valid());
1237 NewLIR4(kThumb2Umull, res_lo.GetReg(), res_hi.GetReg(), rl_src2.reg.GetLowReg(),
1238 rl_src1.reg.GetLowReg());
1239 NewLIR4(kThumb2Mla, tmp1.GetReg(), rl_src1.reg.GetLowReg(), rl_src2.reg.GetHighReg(),
1240 tmp1.GetReg());
1241 NewLIR4(kThumb2AddRRR, res_hi.GetReg(), tmp1.GetReg(), res_hi.GetReg(), 0);
1242 if (reg_status == 2) {
1243 FreeTemp(rl_src1.reg.GetLow());
1244 }
1245 }
1246
1247 // Now, restore lr to its non-temp status.
1248 FreeTemp(tmp1);
1249 Clobber(rs_rARM_LR);
1250 UnmarkTemp(rs_rARM_LR);
1251
1252 if (reg_status != 0) {
1253 // We had manually allocated registers for rl_result.
1254 // Now construct a RegLocation.
1255 rl_result = GetReturnWide(kCoreReg); // Just using as a template.
1256 rl_result.reg = RegStorage::MakeRegPair(res_lo, res_hi);
1257 }
1258
1259 StoreValueWide(rl_dest, rl_result);
1260 }
1261
GenArithOpLong(Instruction::Code opcode,RegLocation rl_dest,RegLocation rl_src1,RegLocation rl_src2)1262 void ArmMir2Lir::GenArithOpLong(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1,
1263 RegLocation rl_src2) {
1264 switch (opcode) {
1265 case Instruction::MUL_LONG:
1266 case Instruction::MUL_LONG_2ADDR:
1267 GenMulLong(opcode, rl_dest, rl_src1, rl_src2);
1268 return;
1269 case Instruction::NEG_LONG:
1270 GenNegLong(rl_dest, rl_src2);
1271 return;
1272
1273 default:
1274 break;
1275 }
1276
1277 // Fallback for all other ops.
1278 Mir2Lir::GenArithOpLong(opcode, rl_dest, rl_src1, rl_src2);
1279 }
1280
1281 /*
1282 * Generate array load
1283 */
GenArrayGet(int opt_flags,OpSize size,RegLocation rl_array,RegLocation rl_index,RegLocation rl_dest,int scale)1284 void ArmMir2Lir::GenArrayGet(int opt_flags, OpSize size, RegLocation rl_array,
1285 RegLocation rl_index, RegLocation rl_dest, int scale) {
1286 RegisterClass reg_class = RegClassBySize(size);
1287 int len_offset = mirror::Array::LengthOffset().Int32Value();
1288 int data_offset;
1289 RegLocation rl_result;
1290 bool constant_index = rl_index.is_const;
1291 rl_array = LoadValue(rl_array, kRefReg);
1292 if (!constant_index) {
1293 rl_index = LoadValue(rl_index, kCoreReg);
1294 }
1295
1296 if (rl_dest.wide) {
1297 data_offset = mirror::Array::DataOffset(sizeof(int64_t)).Int32Value();
1298 } else {
1299 data_offset = mirror::Array::DataOffset(sizeof(int32_t)).Int32Value();
1300 }
1301
1302 // If index is constant, just fold it into the data offset
1303 if (constant_index) {
1304 data_offset += mir_graph_->ConstantValue(rl_index) << scale;
1305 }
1306
1307 /* null object? */
1308 GenNullCheck(rl_array.reg, opt_flags);
1309
1310 bool needs_range_check = (!(opt_flags & MIR_IGNORE_RANGE_CHECK));
1311 RegStorage reg_len;
1312 if (needs_range_check) {
1313 reg_len = AllocTemp();
1314 /* Get len */
1315 Load32Disp(rl_array.reg, len_offset, reg_len);
1316 MarkPossibleNullPointerException(opt_flags);
1317 } else {
1318 ForceImplicitNullCheck(rl_array.reg, opt_flags);
1319 }
1320 if (rl_dest.wide || rl_dest.fp || constant_index) {
1321 RegStorage reg_ptr;
1322 if (constant_index) {
1323 reg_ptr = rl_array.reg; // NOTE: must not alter reg_ptr in constant case.
1324 } else {
1325 // No special indexed operation, lea + load w/ displacement
1326 reg_ptr = AllocTempRef();
1327 OpRegRegRegShift(kOpAdd, reg_ptr, rl_array.reg, rl_index.reg, EncodeShift(kArmLsl, scale));
1328 FreeTemp(rl_index.reg);
1329 }
1330 rl_result = EvalLoc(rl_dest, reg_class, true);
1331
1332 if (needs_range_check) {
1333 if (constant_index) {
1334 GenArrayBoundsCheck(mir_graph_->ConstantValue(rl_index), reg_len);
1335 } else {
1336 GenArrayBoundsCheck(rl_index.reg, reg_len);
1337 }
1338 FreeTemp(reg_len);
1339 }
1340 LoadBaseDisp(reg_ptr, data_offset, rl_result.reg, size, kNotVolatile);
1341 MarkPossibleNullPointerException(opt_flags);
1342 if (!constant_index) {
1343 FreeTemp(reg_ptr);
1344 }
1345 if (rl_dest.wide) {
1346 StoreValueWide(rl_dest, rl_result);
1347 } else {
1348 StoreValue(rl_dest, rl_result);
1349 }
1350 } else {
1351 // Offset base, then use indexed load
1352 RegStorage reg_ptr = AllocTempRef();
1353 OpRegRegImm(kOpAdd, reg_ptr, rl_array.reg, data_offset);
1354 FreeTemp(rl_array.reg);
1355 rl_result = EvalLoc(rl_dest, reg_class, true);
1356
1357 if (needs_range_check) {
1358 GenArrayBoundsCheck(rl_index.reg, reg_len);
1359 FreeTemp(reg_len);
1360 }
1361 LoadBaseIndexed(reg_ptr, rl_index.reg, rl_result.reg, scale, size);
1362 MarkPossibleNullPointerException(opt_flags);
1363 FreeTemp(reg_ptr);
1364 StoreValue(rl_dest, rl_result);
1365 }
1366 }
1367
1368 /*
1369 * Generate array store
1370 *
1371 */
GenArrayPut(int opt_flags,OpSize size,RegLocation rl_array,RegLocation rl_index,RegLocation rl_src,int scale,bool card_mark)1372 void ArmMir2Lir::GenArrayPut(int opt_flags, OpSize size, RegLocation rl_array,
1373 RegLocation rl_index, RegLocation rl_src, int scale, bool card_mark) {
1374 RegisterClass reg_class = RegClassBySize(size);
1375 int len_offset = mirror::Array::LengthOffset().Int32Value();
1376 bool constant_index = rl_index.is_const;
1377
1378 int data_offset;
1379 if (size == k64 || size == kDouble) {
1380 data_offset = mirror::Array::DataOffset(sizeof(int64_t)).Int32Value();
1381 } else {
1382 data_offset = mirror::Array::DataOffset(sizeof(int32_t)).Int32Value();
1383 }
1384
1385 // If index is constant, just fold it into the data offset.
1386 if (constant_index) {
1387 data_offset += mir_graph_->ConstantValue(rl_index) << scale;
1388 }
1389
1390 rl_array = LoadValue(rl_array, kRefReg);
1391 if (!constant_index) {
1392 rl_index = LoadValue(rl_index, kCoreReg);
1393 }
1394
1395 RegStorage reg_ptr;
1396 bool allocated_reg_ptr_temp = false;
1397 if (constant_index) {
1398 reg_ptr = rl_array.reg;
1399 } else if (IsTemp(rl_array.reg) && !card_mark) {
1400 Clobber(rl_array.reg);
1401 reg_ptr = rl_array.reg;
1402 } else {
1403 allocated_reg_ptr_temp = true;
1404 reg_ptr = AllocTempRef();
1405 }
1406
1407 /* null object? */
1408 GenNullCheck(rl_array.reg, opt_flags);
1409
1410 bool needs_range_check = (!(opt_flags & MIR_IGNORE_RANGE_CHECK));
1411 RegStorage reg_len;
1412 if (needs_range_check) {
1413 reg_len = AllocTemp();
1414 // NOTE: max live temps(4) here.
1415 /* Get len */
1416 Load32Disp(rl_array.reg, len_offset, reg_len);
1417 MarkPossibleNullPointerException(opt_flags);
1418 } else {
1419 ForceImplicitNullCheck(rl_array.reg, opt_flags);
1420 }
1421 /* at this point, reg_ptr points to array, 2 live temps */
1422 if (rl_src.wide || rl_src.fp || constant_index) {
1423 if (rl_src.wide) {
1424 rl_src = LoadValueWide(rl_src, reg_class);
1425 } else {
1426 rl_src = LoadValue(rl_src, reg_class);
1427 }
1428 if (!constant_index) {
1429 OpRegRegRegShift(kOpAdd, reg_ptr, rl_array.reg, rl_index.reg, EncodeShift(kArmLsl, scale));
1430 }
1431 if (needs_range_check) {
1432 if (constant_index) {
1433 GenArrayBoundsCheck(mir_graph_->ConstantValue(rl_index), reg_len);
1434 } else {
1435 GenArrayBoundsCheck(rl_index.reg, reg_len);
1436 }
1437 FreeTemp(reg_len);
1438 }
1439
1440 StoreBaseDisp(reg_ptr, data_offset, rl_src.reg, size, kNotVolatile);
1441 MarkPossibleNullPointerException(opt_flags);
1442 } else {
1443 /* reg_ptr -> array data */
1444 OpRegRegImm(kOpAdd, reg_ptr, rl_array.reg, data_offset);
1445 rl_src = LoadValue(rl_src, reg_class);
1446 if (needs_range_check) {
1447 GenArrayBoundsCheck(rl_index.reg, reg_len);
1448 FreeTemp(reg_len);
1449 }
1450 StoreBaseIndexed(reg_ptr, rl_index.reg, rl_src.reg, scale, size);
1451 MarkPossibleNullPointerException(opt_flags);
1452 }
1453 if (allocated_reg_ptr_temp) {
1454 FreeTemp(reg_ptr);
1455 }
1456 if (card_mark) {
1457 MarkGCCard(rl_src.reg, rl_array.reg);
1458 }
1459 }
1460
1461
GenShiftImmOpLong(Instruction::Code opcode,RegLocation rl_dest,RegLocation rl_src,RegLocation rl_shift)1462 void ArmMir2Lir::GenShiftImmOpLong(Instruction::Code opcode,
1463 RegLocation rl_dest, RegLocation rl_src, RegLocation rl_shift) {
1464 rl_src = LoadValueWide(rl_src, kCoreReg);
1465 // Per spec, we only care about low 6 bits of shift amount.
1466 int shift_amount = mir_graph_->ConstantValue(rl_shift) & 0x3f;
1467 if (shift_amount == 0) {
1468 StoreValueWide(rl_dest, rl_src);
1469 return;
1470 }
1471 if (BadOverlap(rl_src, rl_dest)) {
1472 GenShiftOpLong(opcode, rl_dest, rl_src, rl_shift);
1473 return;
1474 }
1475 RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
1476 switch (opcode) {
1477 case Instruction::SHL_LONG:
1478 case Instruction::SHL_LONG_2ADDR:
1479 if (shift_amount == 1) {
1480 OpRegRegReg(kOpAdd, rl_result.reg.GetLow(), rl_src.reg.GetLow(), rl_src.reg.GetLow());
1481 OpRegRegReg(kOpAdc, rl_result.reg.GetHigh(), rl_src.reg.GetHigh(), rl_src.reg.GetHigh());
1482 } else if (shift_amount == 32) {
1483 OpRegCopy(rl_result.reg.GetHigh(), rl_src.reg);
1484 LoadConstant(rl_result.reg.GetLow(), 0);
1485 } else if (shift_amount > 31) {
1486 OpRegRegImm(kOpLsl, rl_result.reg.GetHigh(), rl_src.reg.GetLow(), shift_amount - 32);
1487 LoadConstant(rl_result.reg.GetLow(), 0);
1488 } else {
1489 OpRegRegImm(kOpLsl, rl_result.reg.GetHigh(), rl_src.reg.GetHigh(), shift_amount);
1490 OpRegRegRegShift(kOpOr, rl_result.reg.GetHigh(), rl_result.reg.GetHigh(), rl_src.reg.GetLow(),
1491 EncodeShift(kArmLsr, 32 - shift_amount));
1492 OpRegRegImm(kOpLsl, rl_result.reg.GetLow(), rl_src.reg.GetLow(), shift_amount);
1493 }
1494 break;
1495 case Instruction::SHR_LONG:
1496 case Instruction::SHR_LONG_2ADDR:
1497 if (shift_amount == 32) {
1498 OpRegCopy(rl_result.reg.GetLow(), rl_src.reg.GetHigh());
1499 OpRegRegImm(kOpAsr, rl_result.reg.GetHigh(), rl_src.reg.GetHigh(), 31);
1500 } else if (shift_amount > 31) {
1501 OpRegRegImm(kOpAsr, rl_result.reg.GetLow(), rl_src.reg.GetHigh(), shift_amount - 32);
1502 OpRegRegImm(kOpAsr, rl_result.reg.GetHigh(), rl_src.reg.GetHigh(), 31);
1503 } else {
1504 RegStorage t_reg = AllocTemp();
1505 OpRegRegImm(kOpLsr, t_reg, rl_src.reg.GetLow(), shift_amount);
1506 OpRegRegRegShift(kOpOr, rl_result.reg.GetLow(), t_reg, rl_src.reg.GetHigh(),
1507 EncodeShift(kArmLsl, 32 - shift_amount));
1508 FreeTemp(t_reg);
1509 OpRegRegImm(kOpAsr, rl_result.reg.GetHigh(), rl_src.reg.GetHigh(), shift_amount);
1510 }
1511 break;
1512 case Instruction::USHR_LONG:
1513 case Instruction::USHR_LONG_2ADDR:
1514 if (shift_amount == 32) {
1515 OpRegCopy(rl_result.reg.GetLow(), rl_src.reg.GetHigh());
1516 LoadConstant(rl_result.reg.GetHigh(), 0);
1517 } else if (shift_amount > 31) {
1518 OpRegRegImm(kOpLsr, rl_result.reg.GetLow(), rl_src.reg.GetHigh(), shift_amount - 32);
1519 LoadConstant(rl_result.reg.GetHigh(), 0);
1520 } else {
1521 RegStorage t_reg = AllocTemp();
1522 OpRegRegImm(kOpLsr, t_reg, rl_src.reg.GetLow(), shift_amount);
1523 OpRegRegRegShift(kOpOr, rl_result.reg.GetLow(), t_reg, rl_src.reg.GetHigh(),
1524 EncodeShift(kArmLsl, 32 - shift_amount));
1525 FreeTemp(t_reg);
1526 OpRegRegImm(kOpLsr, rl_result.reg.GetHigh(), rl_src.reg.GetHigh(), shift_amount);
1527 }
1528 break;
1529 default:
1530 LOG(FATAL) << "Unexpected case";
1531 }
1532 StoreValueWide(rl_dest, rl_result);
1533 }
1534
GenArithImmOpLong(Instruction::Code opcode,RegLocation rl_dest,RegLocation rl_src1,RegLocation rl_src2)1535 void ArmMir2Lir::GenArithImmOpLong(Instruction::Code opcode,
1536 RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2) {
1537 if ((opcode == Instruction::SUB_LONG_2ADDR) || (opcode == Instruction::SUB_LONG)) {
1538 if (!rl_src2.is_const) {
1539 // Don't bother with special handling for subtract from immediate.
1540 GenArithOpLong(opcode, rl_dest, rl_src1, rl_src2);
1541 return;
1542 }
1543 } else {
1544 // Normalize
1545 if (!rl_src2.is_const) {
1546 DCHECK(rl_src1.is_const);
1547 std::swap(rl_src1, rl_src2);
1548 }
1549 }
1550 if (BadOverlap(rl_src1, rl_dest)) {
1551 GenArithOpLong(opcode, rl_dest, rl_src1, rl_src2);
1552 return;
1553 }
1554 DCHECK(rl_src2.is_const);
1555 int64_t val = mir_graph_->ConstantValueWide(rl_src2);
1556 uint32_t val_lo = Low32Bits(val);
1557 uint32_t val_hi = High32Bits(val);
1558 int32_t mod_imm_lo = ModifiedImmediate(val_lo);
1559 int32_t mod_imm_hi = ModifiedImmediate(val_hi);
1560
1561 // Only a subset of add/sub immediate instructions set carry - so bail if we don't fit
1562 switch (opcode) {
1563 case Instruction::ADD_LONG:
1564 case Instruction::ADD_LONG_2ADDR:
1565 case Instruction::SUB_LONG:
1566 case Instruction::SUB_LONG_2ADDR:
1567 if ((mod_imm_lo < 0) || (mod_imm_hi < 0)) {
1568 GenArithOpLong(opcode, rl_dest, rl_src1, rl_src2);
1569 return;
1570 }
1571 break;
1572 default:
1573 break;
1574 }
1575 rl_src1 = LoadValueWide(rl_src1, kCoreReg);
1576 RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
1577 // NOTE: once we've done the EvalLoc on dest, we can no longer bail.
1578 switch (opcode) {
1579 case Instruction::ADD_LONG:
1580 case Instruction::ADD_LONG_2ADDR:
1581 NewLIR3(kThumb2AddRRI8M, rl_result.reg.GetLowReg(), rl_src1.reg.GetLowReg(), mod_imm_lo);
1582 NewLIR3(kThumb2AdcRRI8M, rl_result.reg.GetHighReg(), rl_src1.reg.GetHighReg(), mod_imm_hi);
1583 break;
1584 case Instruction::OR_LONG:
1585 case Instruction::OR_LONG_2ADDR:
1586 if ((val_lo != 0) || (rl_result.reg.GetLowReg() != rl_src1.reg.GetLowReg())) {
1587 OpRegRegImm(kOpOr, rl_result.reg.GetLow(), rl_src1.reg.GetLow(), val_lo);
1588 }
1589 if ((val_hi != 0) || (rl_result.reg.GetHighReg() != rl_src1.reg.GetHighReg())) {
1590 OpRegRegImm(kOpOr, rl_result.reg.GetHigh(), rl_src1.reg.GetHigh(), val_hi);
1591 }
1592 break;
1593 case Instruction::XOR_LONG:
1594 case Instruction::XOR_LONG_2ADDR:
1595 OpRegRegImm(kOpXor, rl_result.reg.GetLow(), rl_src1.reg.GetLow(), val_lo);
1596 OpRegRegImm(kOpXor, rl_result.reg.GetHigh(), rl_src1.reg.GetHigh(), val_hi);
1597 break;
1598 case Instruction::AND_LONG:
1599 case Instruction::AND_LONG_2ADDR:
1600 if ((val_lo != 0xffffffff) || (rl_result.reg.GetLowReg() != rl_src1.reg.GetLowReg())) {
1601 OpRegRegImm(kOpAnd, rl_result.reg.GetLow(), rl_src1.reg.GetLow(), val_lo);
1602 }
1603 if ((val_hi != 0xffffffff) || (rl_result.reg.GetHighReg() != rl_src1.reg.GetHighReg())) {
1604 OpRegRegImm(kOpAnd, rl_result.reg.GetHigh(), rl_src1.reg.GetHigh(), val_hi);
1605 }
1606 break;
1607 case Instruction::SUB_LONG_2ADDR:
1608 case Instruction::SUB_LONG:
1609 NewLIR3(kThumb2SubRRI8M, rl_result.reg.GetLowReg(), rl_src1.reg.GetLowReg(), mod_imm_lo);
1610 NewLIR3(kThumb2SbcRRI8M, rl_result.reg.GetHighReg(), rl_src1.reg.GetHighReg(), mod_imm_hi);
1611 break;
1612 default:
1613 LOG(FATAL) << "Unexpected opcode " << opcode;
1614 }
1615 StoreValueWide(rl_dest, rl_result);
1616 }
1617
1618 } // namespace art
1619