1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains routines used for analyzing expressions and
13 ** for generating VDBE code that evaluates expressions in SQLite.
14 */
15 #include "sqliteInt.h"
16
17 /*
18 ** Return the 'affinity' of the expression pExpr if any.
19 **
20 ** If pExpr is a column, a reference to a column via an 'AS' alias,
21 ** or a sub-select with a column as the return value, then the
22 ** affinity of that column is returned. Otherwise, 0x00 is returned,
23 ** indicating no affinity for the expression.
24 **
25 ** i.e. the WHERE clause expresssions in the following statements all
26 ** have an affinity:
27 **
28 ** CREATE TABLE t1(a);
29 ** SELECT * FROM t1 WHERE a;
30 ** SELECT a AS b FROM t1 WHERE b;
31 ** SELECT * FROM t1 WHERE (select a from t1);
32 */
sqlite3ExprAffinity(Expr * pExpr)33 char sqlite3ExprAffinity(Expr *pExpr){
34 int op = pExpr->op;
35 if( op==TK_SELECT ){
36 assert( pExpr->flags&EP_xIsSelect );
37 return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr);
38 }
39 #ifndef SQLITE_OMIT_CAST
40 if( op==TK_CAST ){
41 assert( !ExprHasProperty(pExpr, EP_IntValue) );
42 return sqlite3AffinityType(pExpr->u.zToken);
43 }
44 #endif
45 if( (op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_REGISTER)
46 && pExpr->pTab!=0
47 ){
48 /* op==TK_REGISTER && pExpr->pTab!=0 happens when pExpr was originally
49 ** a TK_COLUMN but was previously evaluated and cached in a register */
50 int j = pExpr->iColumn;
51 if( j<0 ) return SQLITE_AFF_INTEGER;
52 assert( pExpr->pTab && j<pExpr->pTab->nCol );
53 return pExpr->pTab->aCol[j].affinity;
54 }
55 return pExpr->affinity;
56 }
57
58 /*
59 ** Set the explicit collating sequence for an expression to the
60 ** collating sequence supplied in the second argument.
61 */
sqlite3ExprSetColl(Expr * pExpr,CollSeq * pColl)62 Expr *sqlite3ExprSetColl(Expr *pExpr, CollSeq *pColl){
63 if( pExpr && pColl ){
64 pExpr->pColl = pColl;
65 pExpr->flags |= EP_ExpCollate;
66 }
67 return pExpr;
68 }
69
70 /*
71 ** Set the collating sequence for expression pExpr to be the collating
72 ** sequence named by pToken. Return a pointer to the revised expression.
73 ** The collating sequence is marked as "explicit" using the EP_ExpCollate
74 ** flag. An explicit collating sequence will override implicit
75 ** collating sequences.
76 */
sqlite3ExprSetCollByToken(Parse * pParse,Expr * pExpr,Token * pCollName)77 Expr *sqlite3ExprSetCollByToken(Parse *pParse, Expr *pExpr, Token *pCollName){
78 char *zColl = 0; /* Dequoted name of collation sequence */
79 CollSeq *pColl;
80 sqlite3 *db = pParse->db;
81 zColl = sqlite3NameFromToken(db, pCollName);
82 pColl = sqlite3LocateCollSeq(pParse, zColl);
83 sqlite3ExprSetColl(pExpr, pColl);
84 sqlite3DbFree(db, zColl);
85 return pExpr;
86 }
87
88 /*
89 ** Return the default collation sequence for the expression pExpr. If
90 ** there is no default collation type, return 0.
91 */
sqlite3ExprCollSeq(Parse * pParse,Expr * pExpr)92 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){
93 CollSeq *pColl = 0;
94 Expr *p = pExpr;
95 while( p ){
96 int op;
97 pColl = p->pColl;
98 if( pColl ) break;
99 op = p->op;
100 if( p->pTab!=0 && (
101 op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_REGISTER || op==TK_TRIGGER
102 )){
103 /* op==TK_REGISTER && p->pTab!=0 happens when pExpr was originally
104 ** a TK_COLUMN but was previously evaluated and cached in a register */
105 const char *zColl;
106 int j = p->iColumn;
107 if( j>=0 ){
108 sqlite3 *db = pParse->db;
109 zColl = p->pTab->aCol[j].zColl;
110 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0);
111 pExpr->pColl = pColl;
112 }
113 break;
114 }
115 if( op!=TK_CAST && op!=TK_UPLUS ){
116 break;
117 }
118 p = p->pLeft;
119 }
120 if( sqlite3CheckCollSeq(pParse, pColl) ){
121 pColl = 0;
122 }
123 return pColl;
124 }
125
126 /*
127 ** pExpr is an operand of a comparison operator. aff2 is the
128 ** type affinity of the other operand. This routine returns the
129 ** type affinity that should be used for the comparison operator.
130 */
sqlite3CompareAffinity(Expr * pExpr,char aff2)131 char sqlite3CompareAffinity(Expr *pExpr, char aff2){
132 char aff1 = sqlite3ExprAffinity(pExpr);
133 if( aff1 && aff2 ){
134 /* Both sides of the comparison are columns. If one has numeric
135 ** affinity, use that. Otherwise use no affinity.
136 */
137 if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){
138 return SQLITE_AFF_NUMERIC;
139 }else{
140 return SQLITE_AFF_NONE;
141 }
142 }else if( !aff1 && !aff2 ){
143 /* Neither side of the comparison is a column. Compare the
144 ** results directly.
145 */
146 return SQLITE_AFF_NONE;
147 }else{
148 /* One side is a column, the other is not. Use the columns affinity. */
149 assert( aff1==0 || aff2==0 );
150 return (aff1 + aff2);
151 }
152 }
153
154 /*
155 ** pExpr is a comparison operator. Return the type affinity that should
156 ** be applied to both operands prior to doing the comparison.
157 */
comparisonAffinity(Expr * pExpr)158 static char comparisonAffinity(Expr *pExpr){
159 char aff;
160 assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT ||
161 pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE ||
162 pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT );
163 assert( pExpr->pLeft );
164 aff = sqlite3ExprAffinity(pExpr->pLeft);
165 if( pExpr->pRight ){
166 aff = sqlite3CompareAffinity(pExpr->pRight, aff);
167 }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){
168 aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff);
169 }else if( !aff ){
170 aff = SQLITE_AFF_NONE;
171 }
172 return aff;
173 }
174
175 /*
176 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc.
177 ** idx_affinity is the affinity of an indexed column. Return true
178 ** if the index with affinity idx_affinity may be used to implement
179 ** the comparison in pExpr.
180 */
sqlite3IndexAffinityOk(Expr * pExpr,char idx_affinity)181 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){
182 char aff = comparisonAffinity(pExpr);
183 switch( aff ){
184 case SQLITE_AFF_NONE:
185 return 1;
186 case SQLITE_AFF_TEXT:
187 return idx_affinity==SQLITE_AFF_TEXT;
188 default:
189 return sqlite3IsNumericAffinity(idx_affinity);
190 }
191 }
192
193 /*
194 ** Return the P5 value that should be used for a binary comparison
195 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2.
196 */
binaryCompareP5(Expr * pExpr1,Expr * pExpr2,int jumpIfNull)197 static u8 binaryCompareP5(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){
198 u8 aff = (char)sqlite3ExprAffinity(pExpr2);
199 aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull;
200 return aff;
201 }
202
203 /*
204 ** Return a pointer to the collation sequence that should be used by
205 ** a binary comparison operator comparing pLeft and pRight.
206 **
207 ** If the left hand expression has a collating sequence type, then it is
208 ** used. Otherwise the collation sequence for the right hand expression
209 ** is used, or the default (BINARY) if neither expression has a collating
210 ** type.
211 **
212 ** Argument pRight (but not pLeft) may be a null pointer. In this case,
213 ** it is not considered.
214 */
sqlite3BinaryCompareCollSeq(Parse * pParse,Expr * pLeft,Expr * pRight)215 CollSeq *sqlite3BinaryCompareCollSeq(
216 Parse *pParse,
217 Expr *pLeft,
218 Expr *pRight
219 ){
220 CollSeq *pColl;
221 assert( pLeft );
222 if( pLeft->flags & EP_ExpCollate ){
223 assert( pLeft->pColl );
224 pColl = pLeft->pColl;
225 }else if( pRight && pRight->flags & EP_ExpCollate ){
226 assert( pRight->pColl );
227 pColl = pRight->pColl;
228 }else{
229 pColl = sqlite3ExprCollSeq(pParse, pLeft);
230 if( !pColl ){
231 pColl = sqlite3ExprCollSeq(pParse, pRight);
232 }
233 }
234 return pColl;
235 }
236
237 /*
238 ** Generate code for a comparison operator.
239 */
codeCompare(Parse * pParse,Expr * pLeft,Expr * pRight,int opcode,int in1,int in2,int dest,int jumpIfNull)240 static int codeCompare(
241 Parse *pParse, /* The parsing (and code generating) context */
242 Expr *pLeft, /* The left operand */
243 Expr *pRight, /* The right operand */
244 int opcode, /* The comparison opcode */
245 int in1, int in2, /* Register holding operands */
246 int dest, /* Jump here if true. */
247 int jumpIfNull /* If true, jump if either operand is NULL */
248 ){
249 int p5;
250 int addr;
251 CollSeq *p4;
252
253 p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight);
254 p5 = binaryCompareP5(pLeft, pRight, jumpIfNull);
255 addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1,
256 (void*)p4, P4_COLLSEQ);
257 sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5);
258 return addr;
259 }
260
261 #if SQLITE_MAX_EXPR_DEPTH>0
262 /*
263 ** Check that argument nHeight is less than or equal to the maximum
264 ** expression depth allowed. If it is not, leave an error message in
265 ** pParse.
266 */
sqlite3ExprCheckHeight(Parse * pParse,int nHeight)267 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){
268 int rc = SQLITE_OK;
269 int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH];
270 if( nHeight>mxHeight ){
271 sqlite3ErrorMsg(pParse,
272 "Expression tree is too large (maximum depth %d)", mxHeight
273 );
274 rc = SQLITE_ERROR;
275 }
276 return rc;
277 }
278
279 /* The following three functions, heightOfExpr(), heightOfExprList()
280 ** and heightOfSelect(), are used to determine the maximum height
281 ** of any expression tree referenced by the structure passed as the
282 ** first argument.
283 **
284 ** If this maximum height is greater than the current value pointed
285 ** to by pnHeight, the second parameter, then set *pnHeight to that
286 ** value.
287 */
heightOfExpr(Expr * p,int * pnHeight)288 static void heightOfExpr(Expr *p, int *pnHeight){
289 if( p ){
290 if( p->nHeight>*pnHeight ){
291 *pnHeight = p->nHeight;
292 }
293 }
294 }
heightOfExprList(ExprList * p,int * pnHeight)295 static void heightOfExprList(ExprList *p, int *pnHeight){
296 if( p ){
297 int i;
298 for(i=0; i<p->nExpr; i++){
299 heightOfExpr(p->a[i].pExpr, pnHeight);
300 }
301 }
302 }
heightOfSelect(Select * p,int * pnHeight)303 static void heightOfSelect(Select *p, int *pnHeight){
304 if( p ){
305 heightOfExpr(p->pWhere, pnHeight);
306 heightOfExpr(p->pHaving, pnHeight);
307 heightOfExpr(p->pLimit, pnHeight);
308 heightOfExpr(p->pOffset, pnHeight);
309 heightOfExprList(p->pEList, pnHeight);
310 heightOfExprList(p->pGroupBy, pnHeight);
311 heightOfExprList(p->pOrderBy, pnHeight);
312 heightOfSelect(p->pPrior, pnHeight);
313 }
314 }
315
316 /*
317 ** Set the Expr.nHeight variable in the structure passed as an
318 ** argument. An expression with no children, Expr.pList or
319 ** Expr.pSelect member has a height of 1. Any other expression
320 ** has a height equal to the maximum height of any other
321 ** referenced Expr plus one.
322 */
exprSetHeight(Expr * p)323 static void exprSetHeight(Expr *p){
324 int nHeight = 0;
325 heightOfExpr(p->pLeft, &nHeight);
326 heightOfExpr(p->pRight, &nHeight);
327 if( ExprHasProperty(p, EP_xIsSelect) ){
328 heightOfSelect(p->x.pSelect, &nHeight);
329 }else{
330 heightOfExprList(p->x.pList, &nHeight);
331 }
332 p->nHeight = nHeight + 1;
333 }
334
335 /*
336 ** Set the Expr.nHeight variable using the exprSetHeight() function. If
337 ** the height is greater than the maximum allowed expression depth,
338 ** leave an error in pParse.
339 */
sqlite3ExprSetHeight(Parse * pParse,Expr * p)340 void sqlite3ExprSetHeight(Parse *pParse, Expr *p){
341 exprSetHeight(p);
342 sqlite3ExprCheckHeight(pParse, p->nHeight);
343 }
344
345 /*
346 ** Return the maximum height of any expression tree referenced
347 ** by the select statement passed as an argument.
348 */
sqlite3SelectExprHeight(Select * p)349 int sqlite3SelectExprHeight(Select *p){
350 int nHeight = 0;
351 heightOfSelect(p, &nHeight);
352 return nHeight;
353 }
354 #else
355 #define exprSetHeight(y)
356 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */
357
358 /*
359 ** This routine is the core allocator for Expr nodes.
360 **
361 ** Construct a new expression node and return a pointer to it. Memory
362 ** for this node and for the pToken argument is a single allocation
363 ** obtained from sqlite3DbMalloc(). The calling function
364 ** is responsible for making sure the node eventually gets freed.
365 **
366 ** If dequote is true, then the token (if it exists) is dequoted.
367 ** If dequote is false, no dequoting is performance. The deQuote
368 ** parameter is ignored if pToken is NULL or if the token does not
369 ** appear to be quoted. If the quotes were of the form "..." (double-quotes)
370 ** then the EP_DblQuoted flag is set on the expression node.
371 **
372 ** Special case: If op==TK_INTEGER and pToken points to a string that
373 ** can be translated into a 32-bit integer, then the token is not
374 ** stored in u.zToken. Instead, the integer values is written
375 ** into u.iValue and the EP_IntValue flag is set. No extra storage
376 ** is allocated to hold the integer text and the dequote flag is ignored.
377 */
sqlite3ExprAlloc(sqlite3 * db,int op,const Token * pToken,int dequote)378 Expr *sqlite3ExprAlloc(
379 sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */
380 int op, /* Expression opcode */
381 const Token *pToken, /* Token argument. Might be NULL */
382 int dequote /* True to dequote */
383 ){
384 Expr *pNew;
385 int nExtra = 0;
386 int iValue = 0;
387
388 if( pToken ){
389 if( op!=TK_INTEGER || pToken->z==0
390 || sqlite3GetInt32(pToken->z, &iValue)==0 ){
391 nExtra = pToken->n+1;
392 assert( iValue>=0 );
393 }
394 }
395 pNew = sqlite3DbMallocZero(db, sizeof(Expr)+nExtra);
396 if( pNew ){
397 pNew->op = (u8)op;
398 pNew->iAgg = -1;
399 if( pToken ){
400 if( nExtra==0 ){
401 pNew->flags |= EP_IntValue;
402 pNew->u.iValue = iValue;
403 }else{
404 int c;
405 pNew->u.zToken = (char*)&pNew[1];
406 memcpy(pNew->u.zToken, pToken->z, pToken->n);
407 pNew->u.zToken[pToken->n] = 0;
408 if( dequote && nExtra>=3
409 && ((c = pToken->z[0])=='\'' || c=='"' || c=='[' || c=='`') ){
410 sqlite3Dequote(pNew->u.zToken);
411 if( c=='"' ) pNew->flags |= EP_DblQuoted;
412 }
413 }
414 }
415 #if SQLITE_MAX_EXPR_DEPTH>0
416 pNew->nHeight = 1;
417 #endif
418 }
419 return pNew;
420 }
421
422 /*
423 ** Allocate a new expression node from a zero-terminated token that has
424 ** already been dequoted.
425 */
sqlite3Expr(sqlite3 * db,int op,const char * zToken)426 Expr *sqlite3Expr(
427 sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */
428 int op, /* Expression opcode */
429 const char *zToken /* Token argument. Might be NULL */
430 ){
431 Token x;
432 x.z = zToken;
433 x.n = zToken ? sqlite3Strlen30(zToken) : 0;
434 return sqlite3ExprAlloc(db, op, &x, 0);
435 }
436
437 /*
438 ** Attach subtrees pLeft and pRight to the Expr node pRoot.
439 **
440 ** If pRoot==NULL that means that a memory allocation error has occurred.
441 ** In that case, delete the subtrees pLeft and pRight.
442 */
sqlite3ExprAttachSubtrees(sqlite3 * db,Expr * pRoot,Expr * pLeft,Expr * pRight)443 void sqlite3ExprAttachSubtrees(
444 sqlite3 *db,
445 Expr *pRoot,
446 Expr *pLeft,
447 Expr *pRight
448 ){
449 if( pRoot==0 ){
450 assert( db->mallocFailed );
451 sqlite3ExprDelete(db, pLeft);
452 sqlite3ExprDelete(db, pRight);
453 }else{
454 if( pRight ){
455 pRoot->pRight = pRight;
456 if( pRight->flags & EP_ExpCollate ){
457 pRoot->flags |= EP_ExpCollate;
458 pRoot->pColl = pRight->pColl;
459 }
460 }
461 if( pLeft ){
462 pRoot->pLeft = pLeft;
463 if( pLeft->flags & EP_ExpCollate ){
464 pRoot->flags |= EP_ExpCollate;
465 pRoot->pColl = pLeft->pColl;
466 }
467 }
468 exprSetHeight(pRoot);
469 }
470 }
471
472 /*
473 ** Allocate a Expr node which joins as many as two subtrees.
474 **
475 ** One or both of the subtrees can be NULL. Return a pointer to the new
476 ** Expr node. Or, if an OOM error occurs, set pParse->db->mallocFailed,
477 ** free the subtrees and return NULL.
478 */
sqlite3PExpr(Parse * pParse,int op,Expr * pLeft,Expr * pRight,const Token * pToken)479 Expr *sqlite3PExpr(
480 Parse *pParse, /* Parsing context */
481 int op, /* Expression opcode */
482 Expr *pLeft, /* Left operand */
483 Expr *pRight, /* Right operand */
484 const Token *pToken /* Argument token */
485 ){
486 Expr *p = sqlite3ExprAlloc(pParse->db, op, pToken, 1);
487 sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight);
488 if( p ) {
489 sqlite3ExprCheckHeight(pParse, p->nHeight);
490 }
491 return p;
492 }
493
494 /*
495 ** Join two expressions using an AND operator. If either expression is
496 ** NULL, then just return the other expression.
497 */
sqlite3ExprAnd(sqlite3 * db,Expr * pLeft,Expr * pRight)498 Expr *sqlite3ExprAnd(sqlite3 *db, Expr *pLeft, Expr *pRight){
499 if( pLeft==0 ){
500 return pRight;
501 }else if( pRight==0 ){
502 return pLeft;
503 }else{
504 Expr *pNew = sqlite3ExprAlloc(db, TK_AND, 0, 0);
505 sqlite3ExprAttachSubtrees(db, pNew, pLeft, pRight);
506 return pNew;
507 }
508 }
509
510 /*
511 ** Construct a new expression node for a function with multiple
512 ** arguments.
513 */
sqlite3ExprFunction(Parse * pParse,ExprList * pList,Token * pToken)514 Expr *sqlite3ExprFunction(Parse *pParse, ExprList *pList, Token *pToken){
515 Expr *pNew;
516 sqlite3 *db = pParse->db;
517 assert( pToken );
518 pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1);
519 if( pNew==0 ){
520 sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */
521 return 0;
522 }
523 pNew->x.pList = pList;
524 assert( !ExprHasProperty(pNew, EP_xIsSelect) );
525 sqlite3ExprSetHeight(pParse, pNew);
526 return pNew;
527 }
528
529 /*
530 ** Assign a variable number to an expression that encodes a wildcard
531 ** in the original SQL statement.
532 **
533 ** Wildcards consisting of a single "?" are assigned the next sequential
534 ** variable number.
535 **
536 ** Wildcards of the form "?nnn" are assigned the number "nnn". We make
537 ** sure "nnn" is not too be to avoid a denial of service attack when
538 ** the SQL statement comes from an external source.
539 **
540 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number
541 ** as the previous instance of the same wildcard. Or if this is the first
542 ** instance of the wildcard, the next sequenial variable number is
543 ** assigned.
544 */
sqlite3ExprAssignVarNumber(Parse * pParse,Expr * pExpr)545 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr){
546 sqlite3 *db = pParse->db;
547 const char *z;
548
549 if( pExpr==0 ) return;
550 assert( !ExprHasAnyProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) );
551 z = pExpr->u.zToken;
552 assert( z!=0 );
553 assert( z[0]!=0 );
554 if( z[1]==0 ){
555 /* Wildcard of the form "?". Assign the next variable number */
556 assert( z[0]=='?' );
557 pExpr->iColumn = (ynVar)(++pParse->nVar);
558 }else if( z[0]=='?' ){
559 /* Wildcard of the form "?nnn". Convert "nnn" to an integer and
560 ** use it as the variable number */
561 i64 i;
562 int bOk = 0==sqlite3Atoi64(&z[1], &i, sqlite3Strlen30(&z[1]), SQLITE_UTF8);
563 pExpr->iColumn = (ynVar)i;
564 testcase( i==0 );
565 testcase( i==1 );
566 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 );
567 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] );
568 if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
569 sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d",
570 db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]);
571 }
572 if( i>pParse->nVar ){
573 pParse->nVar = (int)i;
574 }
575 }else{
576 /* Wildcards like ":aaa", "$aaa" or "@aaa". Reuse the same variable
577 ** number as the prior appearance of the same name, or if the name
578 ** has never appeared before, reuse the same variable number
579 */
580 int i;
581 for(i=0; i<pParse->nVarExpr; i++){
582 Expr *pE = pParse->apVarExpr[i];
583 assert( pE!=0 );
584 if( strcmp(pE->u.zToken, z)==0 ){
585 pExpr->iColumn = pE->iColumn;
586 break;
587 }
588 }
589 if( i>=pParse->nVarExpr ){
590 pExpr->iColumn = (ynVar)(++pParse->nVar);
591 if( pParse->nVarExpr>=pParse->nVarExprAlloc-1 ){
592 pParse->nVarExprAlloc += pParse->nVarExprAlloc + 10;
593 pParse->apVarExpr =
594 sqlite3DbReallocOrFree(
595 db,
596 pParse->apVarExpr,
597 pParse->nVarExprAlloc*sizeof(pParse->apVarExpr[0])
598 );
599 }
600 if( !db->mallocFailed ){
601 assert( pParse->apVarExpr!=0 );
602 pParse->apVarExpr[pParse->nVarExpr++] = pExpr;
603 }
604 }
605 }
606 if( !pParse->nErr && pParse->nVar>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
607 sqlite3ErrorMsg(pParse, "too many SQL variables");
608 }
609 }
610
611 /*
612 ** Recursively delete an expression tree.
613 */
sqlite3ExprDelete(sqlite3 * db,Expr * p)614 void sqlite3ExprDelete(sqlite3 *db, Expr *p){
615 if( p==0 ) return;
616 /* Sanity check: Assert that the IntValue is non-negative if it exists */
617 assert( !ExprHasProperty(p, EP_IntValue) || p->u.iValue>=0 );
618 if( !ExprHasAnyProperty(p, EP_TokenOnly) ){
619 sqlite3ExprDelete(db, p->pLeft);
620 sqlite3ExprDelete(db, p->pRight);
621 if( !ExprHasProperty(p, EP_Reduced) && (p->flags2 & EP2_MallocedToken)!=0 ){
622 sqlite3DbFree(db, p->u.zToken);
623 }
624 if( ExprHasProperty(p, EP_xIsSelect) ){
625 sqlite3SelectDelete(db, p->x.pSelect);
626 }else{
627 sqlite3ExprListDelete(db, p->x.pList);
628 }
629 }
630 if( !ExprHasProperty(p, EP_Static) ){
631 sqlite3DbFree(db, p);
632 }
633 }
634
635 /*
636 ** Return the number of bytes allocated for the expression structure
637 ** passed as the first argument. This is always one of EXPR_FULLSIZE,
638 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE.
639 */
exprStructSize(Expr * p)640 static int exprStructSize(Expr *p){
641 if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE;
642 if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE;
643 return EXPR_FULLSIZE;
644 }
645
646 /*
647 ** The dupedExpr*Size() routines each return the number of bytes required
648 ** to store a copy of an expression or expression tree. They differ in
649 ** how much of the tree is measured.
650 **
651 ** dupedExprStructSize() Size of only the Expr structure
652 ** dupedExprNodeSize() Size of Expr + space for token
653 ** dupedExprSize() Expr + token + subtree components
654 **
655 ***************************************************************************
656 **
657 ** The dupedExprStructSize() function returns two values OR-ed together:
658 ** (1) the space required for a copy of the Expr structure only and
659 ** (2) the EP_xxx flags that indicate what the structure size should be.
660 ** The return values is always one of:
661 **
662 ** EXPR_FULLSIZE
663 ** EXPR_REDUCEDSIZE | EP_Reduced
664 ** EXPR_TOKENONLYSIZE | EP_TokenOnly
665 **
666 ** The size of the structure can be found by masking the return value
667 ** of this routine with 0xfff. The flags can be found by masking the
668 ** return value with EP_Reduced|EP_TokenOnly.
669 **
670 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size
671 ** (unreduced) Expr objects as they or originally constructed by the parser.
672 ** During expression analysis, extra information is computed and moved into
673 ** later parts of teh Expr object and that extra information might get chopped
674 ** off if the expression is reduced. Note also that it does not work to
675 ** make a EXPRDUP_REDUCE copy of a reduced expression. It is only legal
676 ** to reduce a pristine expression tree from the parser. The implementation
677 ** of dupedExprStructSize() contain multiple assert() statements that attempt
678 ** to enforce this constraint.
679 */
dupedExprStructSize(Expr * p,int flags)680 static int dupedExprStructSize(Expr *p, int flags){
681 int nSize;
682 assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */
683 if( 0==(flags&EXPRDUP_REDUCE) ){
684 nSize = EXPR_FULLSIZE;
685 }else{
686 assert( !ExprHasAnyProperty(p, EP_TokenOnly|EP_Reduced) );
687 assert( !ExprHasProperty(p, EP_FromJoin) );
688 assert( (p->flags2 & EP2_MallocedToken)==0 );
689 assert( (p->flags2 & EP2_Irreducible)==0 );
690 if( p->pLeft || p->pRight || p->pColl || p->x.pList ){
691 nSize = EXPR_REDUCEDSIZE | EP_Reduced;
692 }else{
693 nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly;
694 }
695 }
696 return nSize;
697 }
698
699 /*
700 ** This function returns the space in bytes required to store the copy
701 ** of the Expr structure and a copy of the Expr.u.zToken string (if that
702 ** string is defined.)
703 */
dupedExprNodeSize(Expr * p,int flags)704 static int dupedExprNodeSize(Expr *p, int flags){
705 int nByte = dupedExprStructSize(p, flags) & 0xfff;
706 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
707 nByte += sqlite3Strlen30(p->u.zToken)+1;
708 }
709 return ROUND8(nByte);
710 }
711
712 /*
713 ** Return the number of bytes required to create a duplicate of the
714 ** expression passed as the first argument. The second argument is a
715 ** mask containing EXPRDUP_XXX flags.
716 **
717 ** The value returned includes space to create a copy of the Expr struct
718 ** itself and the buffer referred to by Expr.u.zToken, if any.
719 **
720 ** If the EXPRDUP_REDUCE flag is set, then the return value includes
721 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft
722 ** and Expr.pRight variables (but not for any structures pointed to or
723 ** descended from the Expr.x.pList or Expr.x.pSelect variables).
724 */
dupedExprSize(Expr * p,int flags)725 static int dupedExprSize(Expr *p, int flags){
726 int nByte = 0;
727 if( p ){
728 nByte = dupedExprNodeSize(p, flags);
729 if( flags&EXPRDUP_REDUCE ){
730 nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags);
731 }
732 }
733 return nByte;
734 }
735
736 /*
737 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer
738 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough
739 ** to store the copy of expression p, the copies of p->u.zToken
740 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions,
741 ** if any. Before returning, *pzBuffer is set to the first byte passed the
742 ** portion of the buffer copied into by this function.
743 */
exprDup(sqlite3 * db,Expr * p,int flags,u8 ** pzBuffer)744 static Expr *exprDup(sqlite3 *db, Expr *p, int flags, u8 **pzBuffer){
745 Expr *pNew = 0; /* Value to return */
746 if( p ){
747 const int isReduced = (flags&EXPRDUP_REDUCE);
748 u8 *zAlloc;
749 u32 staticFlag = 0;
750
751 assert( pzBuffer==0 || isReduced );
752
753 /* Figure out where to write the new Expr structure. */
754 if( pzBuffer ){
755 zAlloc = *pzBuffer;
756 staticFlag = EP_Static;
757 }else{
758 zAlloc = sqlite3DbMallocRaw(db, dupedExprSize(p, flags));
759 }
760 pNew = (Expr *)zAlloc;
761
762 if( pNew ){
763 /* Set nNewSize to the size allocated for the structure pointed to
764 ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or
765 ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed
766 ** by the copy of the p->u.zToken string (if any).
767 */
768 const unsigned nStructSize = dupedExprStructSize(p, flags);
769 const int nNewSize = nStructSize & 0xfff;
770 int nToken;
771 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
772 nToken = sqlite3Strlen30(p->u.zToken) + 1;
773 }else{
774 nToken = 0;
775 }
776 if( isReduced ){
777 assert( ExprHasProperty(p, EP_Reduced)==0 );
778 memcpy(zAlloc, p, nNewSize);
779 }else{
780 int nSize = exprStructSize(p);
781 memcpy(zAlloc, p, nSize);
782 if( EXPR_FULLSIZE>nSize ){
783 memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize);
784 }
785 }
786
787 /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */
788 pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static);
789 pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly);
790 pNew->flags |= staticFlag;
791
792 /* Copy the p->u.zToken string, if any. */
793 if( nToken ){
794 char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize];
795 memcpy(zToken, p->u.zToken, nToken);
796 }
797
798 if( 0==((p->flags|pNew->flags) & EP_TokenOnly) ){
799 /* Fill in the pNew->x.pSelect or pNew->x.pList member. */
800 if( ExprHasProperty(p, EP_xIsSelect) ){
801 pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, isReduced);
802 }else{
803 pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, isReduced);
804 }
805 }
806
807 /* Fill in pNew->pLeft and pNew->pRight. */
808 if( ExprHasAnyProperty(pNew, EP_Reduced|EP_TokenOnly) ){
809 zAlloc += dupedExprNodeSize(p, flags);
810 if( ExprHasProperty(pNew, EP_Reduced) ){
811 pNew->pLeft = exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc);
812 pNew->pRight = exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc);
813 }
814 if( pzBuffer ){
815 *pzBuffer = zAlloc;
816 }
817 }else{
818 pNew->flags2 = 0;
819 if( !ExprHasAnyProperty(p, EP_TokenOnly) ){
820 pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0);
821 pNew->pRight = sqlite3ExprDup(db, p->pRight, 0);
822 }
823 }
824
825 }
826 }
827 return pNew;
828 }
829
830 /*
831 ** The following group of routines make deep copies of expressions,
832 ** expression lists, ID lists, and select statements. The copies can
833 ** be deleted (by being passed to their respective ...Delete() routines)
834 ** without effecting the originals.
835 **
836 ** The expression list, ID, and source lists return by sqlite3ExprListDup(),
837 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded
838 ** by subsequent calls to sqlite*ListAppend() routines.
839 **
840 ** Any tables that the SrcList might point to are not duplicated.
841 **
842 ** The flags parameter contains a combination of the EXPRDUP_XXX flags.
843 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a
844 ** truncated version of the usual Expr structure that will be stored as
845 ** part of the in-memory representation of the database schema.
846 */
sqlite3ExprDup(sqlite3 * db,Expr * p,int flags)847 Expr *sqlite3ExprDup(sqlite3 *db, Expr *p, int flags){
848 return exprDup(db, p, flags, 0);
849 }
sqlite3ExprListDup(sqlite3 * db,ExprList * p,int flags)850 ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){
851 ExprList *pNew;
852 struct ExprList_item *pItem, *pOldItem;
853 int i;
854 if( p==0 ) return 0;
855 pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) );
856 if( pNew==0 ) return 0;
857 pNew->iECursor = 0;
858 pNew->nExpr = pNew->nAlloc = p->nExpr;
859 pNew->a = pItem = sqlite3DbMallocRaw(db, p->nExpr*sizeof(p->a[0]) );
860 if( pItem==0 ){
861 sqlite3DbFree(db, pNew);
862 return 0;
863 }
864 pOldItem = p->a;
865 for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){
866 Expr *pOldExpr = pOldItem->pExpr;
867 pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags);
868 pItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
869 pItem->zSpan = sqlite3DbStrDup(db, pOldItem->zSpan);
870 pItem->sortOrder = pOldItem->sortOrder;
871 pItem->done = 0;
872 pItem->iCol = pOldItem->iCol;
873 pItem->iAlias = pOldItem->iAlias;
874 }
875 return pNew;
876 }
877
878 /*
879 ** If cursors, triggers, views and subqueries are all omitted from
880 ** the build, then none of the following routines, except for
881 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes
882 ** called with a NULL argument.
883 */
884 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \
885 || !defined(SQLITE_OMIT_SUBQUERY)
sqlite3SrcListDup(sqlite3 * db,SrcList * p,int flags)886 SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p, int flags){
887 SrcList *pNew;
888 int i;
889 int nByte;
890 if( p==0 ) return 0;
891 nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0);
892 pNew = sqlite3DbMallocRaw(db, nByte );
893 if( pNew==0 ) return 0;
894 pNew->nSrc = pNew->nAlloc = p->nSrc;
895 for(i=0; i<p->nSrc; i++){
896 struct SrcList_item *pNewItem = &pNew->a[i];
897 struct SrcList_item *pOldItem = &p->a[i];
898 Table *pTab;
899 pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase);
900 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
901 pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias);
902 pNewItem->jointype = pOldItem->jointype;
903 pNewItem->iCursor = pOldItem->iCursor;
904 pNewItem->isPopulated = pOldItem->isPopulated;
905 pNewItem->zIndex = sqlite3DbStrDup(db, pOldItem->zIndex);
906 pNewItem->notIndexed = pOldItem->notIndexed;
907 pNewItem->pIndex = pOldItem->pIndex;
908 pTab = pNewItem->pTab = pOldItem->pTab;
909 if( pTab ){
910 pTab->nRef++;
911 }
912 pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags);
913 pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags);
914 pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing);
915 pNewItem->colUsed = pOldItem->colUsed;
916 }
917 return pNew;
918 }
sqlite3IdListDup(sqlite3 * db,IdList * p)919 IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){
920 IdList *pNew;
921 int i;
922 if( p==0 ) return 0;
923 pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) );
924 if( pNew==0 ) return 0;
925 pNew->nId = pNew->nAlloc = p->nId;
926 pNew->a = sqlite3DbMallocRaw(db, p->nId*sizeof(p->a[0]) );
927 if( pNew->a==0 ){
928 sqlite3DbFree(db, pNew);
929 return 0;
930 }
931 for(i=0; i<p->nId; i++){
932 struct IdList_item *pNewItem = &pNew->a[i];
933 struct IdList_item *pOldItem = &p->a[i];
934 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
935 pNewItem->idx = pOldItem->idx;
936 }
937 return pNew;
938 }
sqlite3SelectDup(sqlite3 * db,Select * p,int flags)939 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){
940 Select *pNew;
941 if( p==0 ) return 0;
942 pNew = sqlite3DbMallocRaw(db, sizeof(*p) );
943 if( pNew==0 ) return 0;
944 pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags);
945 pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags);
946 pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags);
947 pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags);
948 pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags);
949 pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags);
950 pNew->op = p->op;
951 pNew->pPrior = sqlite3SelectDup(db, p->pPrior, flags);
952 pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags);
953 pNew->pOffset = sqlite3ExprDup(db, p->pOffset, flags);
954 pNew->iLimit = 0;
955 pNew->iOffset = 0;
956 pNew->selFlags = p->selFlags & ~SF_UsesEphemeral;
957 pNew->pRightmost = 0;
958 pNew->addrOpenEphm[0] = -1;
959 pNew->addrOpenEphm[1] = -1;
960 pNew->addrOpenEphm[2] = -1;
961 return pNew;
962 }
963 #else
sqlite3SelectDup(sqlite3 * db,Select * p,int flags)964 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){
965 assert( p==0 );
966 return 0;
967 }
968 #endif
969
970
971 /*
972 ** Add a new element to the end of an expression list. If pList is
973 ** initially NULL, then create a new expression list.
974 **
975 ** If a memory allocation error occurs, the entire list is freed and
976 ** NULL is returned. If non-NULL is returned, then it is guaranteed
977 ** that the new entry was successfully appended.
978 */
sqlite3ExprListAppend(Parse * pParse,ExprList * pList,Expr * pExpr)979 ExprList *sqlite3ExprListAppend(
980 Parse *pParse, /* Parsing context */
981 ExprList *pList, /* List to which to append. Might be NULL */
982 Expr *pExpr /* Expression to be appended. Might be NULL */
983 ){
984 sqlite3 *db = pParse->db;
985 if( pList==0 ){
986 pList = sqlite3DbMallocZero(db, sizeof(ExprList) );
987 if( pList==0 ){
988 goto no_mem;
989 }
990 assert( pList->nAlloc==0 );
991 }
992 if( pList->nAlloc<=pList->nExpr ){
993 struct ExprList_item *a;
994 int n = pList->nAlloc*2 + 4;
995 a = sqlite3DbRealloc(db, pList->a, n*sizeof(pList->a[0]));
996 if( a==0 ){
997 goto no_mem;
998 }
999 pList->a = a;
1000 pList->nAlloc = sqlite3DbMallocSize(db, a)/sizeof(a[0]);
1001 }
1002 assert( pList->a!=0 );
1003 if( 1 ){
1004 struct ExprList_item *pItem = &pList->a[pList->nExpr++];
1005 memset(pItem, 0, sizeof(*pItem));
1006 pItem->pExpr = pExpr;
1007 }
1008 return pList;
1009
1010 no_mem:
1011 /* Avoid leaking memory if malloc has failed. */
1012 sqlite3ExprDelete(db, pExpr);
1013 sqlite3ExprListDelete(db, pList);
1014 return 0;
1015 }
1016
1017 /*
1018 ** Set the ExprList.a[].zName element of the most recently added item
1019 ** on the expression list.
1020 **
1021 ** pList might be NULL following an OOM error. But pName should never be
1022 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag
1023 ** is set.
1024 */
sqlite3ExprListSetName(Parse * pParse,ExprList * pList,Token * pName,int dequote)1025 void sqlite3ExprListSetName(
1026 Parse *pParse, /* Parsing context */
1027 ExprList *pList, /* List to which to add the span. */
1028 Token *pName, /* Name to be added */
1029 int dequote /* True to cause the name to be dequoted */
1030 ){
1031 assert( pList!=0 || pParse->db->mallocFailed!=0 );
1032 if( pList ){
1033 struct ExprList_item *pItem;
1034 assert( pList->nExpr>0 );
1035 pItem = &pList->a[pList->nExpr-1];
1036 assert( pItem->zName==0 );
1037 pItem->zName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n);
1038 if( dequote && pItem->zName ) sqlite3Dequote(pItem->zName);
1039 }
1040 }
1041
1042 /*
1043 ** Set the ExprList.a[].zSpan element of the most recently added item
1044 ** on the expression list.
1045 **
1046 ** pList might be NULL following an OOM error. But pSpan should never be
1047 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag
1048 ** is set.
1049 */
sqlite3ExprListSetSpan(Parse * pParse,ExprList * pList,ExprSpan * pSpan)1050 void sqlite3ExprListSetSpan(
1051 Parse *pParse, /* Parsing context */
1052 ExprList *pList, /* List to which to add the span. */
1053 ExprSpan *pSpan /* The span to be added */
1054 ){
1055 sqlite3 *db = pParse->db;
1056 assert( pList!=0 || db->mallocFailed!=0 );
1057 if( pList ){
1058 struct ExprList_item *pItem = &pList->a[pList->nExpr-1];
1059 assert( pList->nExpr>0 );
1060 assert( db->mallocFailed || pItem->pExpr==pSpan->pExpr );
1061 sqlite3DbFree(db, pItem->zSpan);
1062 pItem->zSpan = sqlite3DbStrNDup(db, (char*)pSpan->zStart,
1063 (int)(pSpan->zEnd - pSpan->zStart));
1064 }
1065 }
1066
1067 /*
1068 ** If the expression list pEList contains more than iLimit elements,
1069 ** leave an error message in pParse.
1070 */
sqlite3ExprListCheckLength(Parse * pParse,ExprList * pEList,const char * zObject)1071 void sqlite3ExprListCheckLength(
1072 Parse *pParse,
1073 ExprList *pEList,
1074 const char *zObject
1075 ){
1076 int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN];
1077 testcase( pEList && pEList->nExpr==mx );
1078 testcase( pEList && pEList->nExpr==mx+1 );
1079 if( pEList && pEList->nExpr>mx ){
1080 sqlite3ErrorMsg(pParse, "too many columns in %s", zObject);
1081 }
1082 }
1083
1084 /*
1085 ** Delete an entire expression list.
1086 */
sqlite3ExprListDelete(sqlite3 * db,ExprList * pList)1087 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){
1088 int i;
1089 struct ExprList_item *pItem;
1090 if( pList==0 ) return;
1091 assert( pList->a!=0 || (pList->nExpr==0 && pList->nAlloc==0) );
1092 assert( pList->nExpr<=pList->nAlloc );
1093 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
1094 sqlite3ExprDelete(db, pItem->pExpr);
1095 sqlite3DbFree(db, pItem->zName);
1096 sqlite3DbFree(db, pItem->zSpan);
1097 }
1098 sqlite3DbFree(db, pList->a);
1099 sqlite3DbFree(db, pList);
1100 }
1101
1102 /*
1103 ** These routines are Walker callbacks. Walker.u.pi is a pointer
1104 ** to an integer. These routines are checking an expression to see
1105 ** if it is a constant. Set *Walker.u.pi to 0 if the expression is
1106 ** not constant.
1107 **
1108 ** These callback routines are used to implement the following:
1109 **
1110 ** sqlite3ExprIsConstant()
1111 ** sqlite3ExprIsConstantNotJoin()
1112 ** sqlite3ExprIsConstantOrFunction()
1113 **
1114 */
exprNodeIsConstant(Walker * pWalker,Expr * pExpr)1115 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){
1116
1117 /* If pWalker->u.i is 3 then any term of the expression that comes from
1118 ** the ON or USING clauses of a join disqualifies the expression
1119 ** from being considered constant. */
1120 if( pWalker->u.i==3 && ExprHasAnyProperty(pExpr, EP_FromJoin) ){
1121 pWalker->u.i = 0;
1122 return WRC_Abort;
1123 }
1124
1125 switch( pExpr->op ){
1126 /* Consider functions to be constant if all their arguments are constant
1127 ** and pWalker->u.i==2 */
1128 case TK_FUNCTION:
1129 if( pWalker->u.i==2 ) return 0;
1130 /* Fall through */
1131 case TK_ID:
1132 case TK_COLUMN:
1133 case TK_AGG_FUNCTION:
1134 case TK_AGG_COLUMN:
1135 testcase( pExpr->op==TK_ID );
1136 testcase( pExpr->op==TK_COLUMN );
1137 testcase( pExpr->op==TK_AGG_FUNCTION );
1138 testcase( pExpr->op==TK_AGG_COLUMN );
1139 pWalker->u.i = 0;
1140 return WRC_Abort;
1141 default:
1142 testcase( pExpr->op==TK_SELECT ); /* selectNodeIsConstant will disallow */
1143 testcase( pExpr->op==TK_EXISTS ); /* selectNodeIsConstant will disallow */
1144 return WRC_Continue;
1145 }
1146 }
selectNodeIsConstant(Walker * pWalker,Select * NotUsed)1147 static int selectNodeIsConstant(Walker *pWalker, Select *NotUsed){
1148 UNUSED_PARAMETER(NotUsed);
1149 pWalker->u.i = 0;
1150 return WRC_Abort;
1151 }
exprIsConst(Expr * p,int initFlag)1152 static int exprIsConst(Expr *p, int initFlag){
1153 Walker w;
1154 w.u.i = initFlag;
1155 w.xExprCallback = exprNodeIsConstant;
1156 w.xSelectCallback = selectNodeIsConstant;
1157 sqlite3WalkExpr(&w, p);
1158 return w.u.i;
1159 }
1160
1161 /*
1162 ** Walk an expression tree. Return 1 if the expression is constant
1163 ** and 0 if it involves variables or function calls.
1164 **
1165 ** For the purposes of this function, a double-quoted string (ex: "abc")
1166 ** is considered a variable but a single-quoted string (ex: 'abc') is
1167 ** a constant.
1168 */
sqlite3ExprIsConstant(Expr * p)1169 int sqlite3ExprIsConstant(Expr *p){
1170 return exprIsConst(p, 1);
1171 }
1172
1173 /*
1174 ** Walk an expression tree. Return 1 if the expression is constant
1175 ** that does no originate from the ON or USING clauses of a join.
1176 ** Return 0 if it involves variables or function calls or terms from
1177 ** an ON or USING clause.
1178 */
sqlite3ExprIsConstantNotJoin(Expr * p)1179 int sqlite3ExprIsConstantNotJoin(Expr *p){
1180 return exprIsConst(p, 3);
1181 }
1182
1183 /*
1184 ** Walk an expression tree. Return 1 if the expression is constant
1185 ** or a function call with constant arguments. Return and 0 if there
1186 ** are any variables.
1187 **
1188 ** For the purposes of this function, a double-quoted string (ex: "abc")
1189 ** is considered a variable but a single-quoted string (ex: 'abc') is
1190 ** a constant.
1191 */
sqlite3ExprIsConstantOrFunction(Expr * p)1192 int sqlite3ExprIsConstantOrFunction(Expr *p){
1193 return exprIsConst(p, 2);
1194 }
1195
1196 /*
1197 ** If the expression p codes a constant integer that is small enough
1198 ** to fit in a 32-bit integer, return 1 and put the value of the integer
1199 ** in *pValue. If the expression is not an integer or if it is too big
1200 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged.
1201 */
sqlite3ExprIsInteger(Expr * p,int * pValue)1202 int sqlite3ExprIsInteger(Expr *p, int *pValue){
1203 int rc = 0;
1204
1205 /* If an expression is an integer literal that fits in a signed 32-bit
1206 ** integer, then the EP_IntValue flag will have already been set */
1207 assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0
1208 || sqlite3GetInt32(p->u.zToken, &rc)==0 );
1209
1210 if( p->flags & EP_IntValue ){
1211 *pValue = p->u.iValue;
1212 return 1;
1213 }
1214 switch( p->op ){
1215 case TK_UPLUS: {
1216 rc = sqlite3ExprIsInteger(p->pLeft, pValue);
1217 break;
1218 }
1219 case TK_UMINUS: {
1220 int v;
1221 if( sqlite3ExprIsInteger(p->pLeft, &v) ){
1222 *pValue = -v;
1223 rc = 1;
1224 }
1225 break;
1226 }
1227 default: break;
1228 }
1229 return rc;
1230 }
1231
1232 /*
1233 ** Return FALSE if there is no chance that the expression can be NULL.
1234 **
1235 ** If the expression might be NULL or if the expression is too complex
1236 ** to tell return TRUE.
1237 **
1238 ** This routine is used as an optimization, to skip OP_IsNull opcodes
1239 ** when we know that a value cannot be NULL. Hence, a false positive
1240 ** (returning TRUE when in fact the expression can never be NULL) might
1241 ** be a small performance hit but is otherwise harmless. On the other
1242 ** hand, a false negative (returning FALSE when the result could be NULL)
1243 ** will likely result in an incorrect answer. So when in doubt, return
1244 ** TRUE.
1245 */
sqlite3ExprCanBeNull(const Expr * p)1246 int sqlite3ExprCanBeNull(const Expr *p){
1247 u8 op;
1248 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; }
1249 op = p->op;
1250 if( op==TK_REGISTER ) op = p->op2;
1251 switch( op ){
1252 case TK_INTEGER:
1253 case TK_STRING:
1254 case TK_FLOAT:
1255 case TK_BLOB:
1256 return 0;
1257 default:
1258 return 1;
1259 }
1260 }
1261
1262 /*
1263 ** Generate an OP_IsNull instruction that tests register iReg and jumps
1264 ** to location iDest if the value in iReg is NULL. The value in iReg
1265 ** was computed by pExpr. If we can look at pExpr at compile-time and
1266 ** determine that it can never generate a NULL, then the OP_IsNull operation
1267 ** can be omitted.
1268 */
sqlite3ExprCodeIsNullJump(Vdbe * v,const Expr * pExpr,int iReg,int iDest)1269 void sqlite3ExprCodeIsNullJump(
1270 Vdbe *v, /* The VDBE under construction */
1271 const Expr *pExpr, /* Only generate OP_IsNull if this expr can be NULL */
1272 int iReg, /* Test the value in this register for NULL */
1273 int iDest /* Jump here if the value is null */
1274 ){
1275 if( sqlite3ExprCanBeNull(pExpr) ){
1276 sqlite3VdbeAddOp2(v, OP_IsNull, iReg, iDest);
1277 }
1278 }
1279
1280 /*
1281 ** Return TRUE if the given expression is a constant which would be
1282 ** unchanged by OP_Affinity with the affinity given in the second
1283 ** argument.
1284 **
1285 ** This routine is used to determine if the OP_Affinity operation
1286 ** can be omitted. When in doubt return FALSE. A false negative
1287 ** is harmless. A false positive, however, can result in the wrong
1288 ** answer.
1289 */
sqlite3ExprNeedsNoAffinityChange(const Expr * p,char aff)1290 int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){
1291 u8 op;
1292 if( aff==SQLITE_AFF_NONE ) return 1;
1293 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; }
1294 op = p->op;
1295 if( op==TK_REGISTER ) op = p->op2;
1296 switch( op ){
1297 case TK_INTEGER: {
1298 return aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC;
1299 }
1300 case TK_FLOAT: {
1301 return aff==SQLITE_AFF_REAL || aff==SQLITE_AFF_NUMERIC;
1302 }
1303 case TK_STRING: {
1304 return aff==SQLITE_AFF_TEXT;
1305 }
1306 case TK_BLOB: {
1307 return 1;
1308 }
1309 case TK_COLUMN: {
1310 assert( p->iTable>=0 ); /* p cannot be part of a CHECK constraint */
1311 return p->iColumn<0
1312 && (aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC);
1313 }
1314 default: {
1315 return 0;
1316 }
1317 }
1318 }
1319
1320 /*
1321 ** Return TRUE if the given string is a row-id column name.
1322 */
sqlite3IsRowid(const char * z)1323 int sqlite3IsRowid(const char *z){
1324 if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1;
1325 if( sqlite3StrICmp(z, "ROWID")==0 ) return 1;
1326 if( sqlite3StrICmp(z, "OID")==0 ) return 1;
1327 return 0;
1328 }
1329
1330 /*
1331 ** Return true if we are able to the IN operator optimization on a
1332 ** query of the form
1333 **
1334 ** x IN (SELECT ...)
1335 **
1336 ** Where the SELECT... clause is as specified by the parameter to this
1337 ** routine.
1338 **
1339 ** The Select object passed in has already been preprocessed and no
1340 ** errors have been found.
1341 */
1342 #ifndef SQLITE_OMIT_SUBQUERY
isCandidateForInOpt(Select * p)1343 static int isCandidateForInOpt(Select *p){
1344 SrcList *pSrc;
1345 ExprList *pEList;
1346 Table *pTab;
1347 if( p==0 ) return 0; /* right-hand side of IN is SELECT */
1348 if( p->pPrior ) return 0; /* Not a compound SELECT */
1349 if( p->selFlags & (SF_Distinct|SF_Aggregate) ){
1350 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
1351 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
1352 return 0; /* No DISTINCT keyword and no aggregate functions */
1353 }
1354 assert( p->pGroupBy==0 ); /* Has no GROUP BY clause */
1355 if( p->pLimit ) return 0; /* Has no LIMIT clause */
1356 assert( p->pOffset==0 ); /* No LIMIT means no OFFSET */
1357 if( p->pWhere ) return 0; /* Has no WHERE clause */
1358 pSrc = p->pSrc;
1359 assert( pSrc!=0 );
1360 if( pSrc->nSrc!=1 ) return 0; /* Single term in FROM clause */
1361 if( pSrc->a[0].pSelect ) return 0; /* FROM is not a subquery or view */
1362 pTab = pSrc->a[0].pTab;
1363 if( NEVER(pTab==0) ) return 0;
1364 assert( pTab->pSelect==0 ); /* FROM clause is not a view */
1365 if( IsVirtual(pTab) ) return 0; /* FROM clause not a virtual table */
1366 pEList = p->pEList;
1367 if( pEList->nExpr!=1 ) return 0; /* One column in the result set */
1368 if( pEList->a[0].pExpr->op!=TK_COLUMN ) return 0; /* Result is a column */
1369 return 1;
1370 }
1371 #endif /* SQLITE_OMIT_SUBQUERY */
1372
1373 /*
1374 ** This function is used by the implementation of the IN (...) operator.
1375 ** It's job is to find or create a b-tree structure that may be used
1376 ** either to test for membership of the (...) set or to iterate through
1377 ** its members, skipping duplicates.
1378 **
1379 ** The index of the cursor opened on the b-tree (database table, database index
1380 ** or ephermal table) is stored in pX->iTable before this function returns.
1381 ** The returned value of this function indicates the b-tree type, as follows:
1382 **
1383 ** IN_INDEX_ROWID - The cursor was opened on a database table.
1384 ** IN_INDEX_INDEX - The cursor was opened on a database index.
1385 ** IN_INDEX_EPH - The cursor was opened on a specially created and
1386 ** populated epheremal table.
1387 **
1388 ** An existing b-tree may only be used if the SELECT is of the simple
1389 ** form:
1390 **
1391 ** SELECT <column> FROM <table>
1392 **
1393 ** If the prNotFound parameter is 0, then the b-tree will be used to iterate
1394 ** through the set members, skipping any duplicates. In this case an
1395 ** epheremal table must be used unless the selected <column> is guaranteed
1396 ** to be unique - either because it is an INTEGER PRIMARY KEY or it
1397 ** has a UNIQUE constraint or UNIQUE index.
1398 **
1399 ** If the prNotFound parameter is not 0, then the b-tree will be used
1400 ** for fast set membership tests. In this case an epheremal table must
1401 ** be used unless <column> is an INTEGER PRIMARY KEY or an index can
1402 ** be found with <column> as its left-most column.
1403 **
1404 ** When the b-tree is being used for membership tests, the calling function
1405 ** needs to know whether or not the structure contains an SQL NULL
1406 ** value in order to correctly evaluate expressions like "X IN (Y, Z)".
1407 ** If there is any chance that the (...) might contain a NULL value at
1408 ** runtime, then a register is allocated and the register number written
1409 ** to *prNotFound. If there is no chance that the (...) contains a
1410 ** NULL value, then *prNotFound is left unchanged.
1411 **
1412 ** If a register is allocated and its location stored in *prNotFound, then
1413 ** its initial value is NULL. If the (...) does not remain constant
1414 ** for the duration of the query (i.e. the SELECT within the (...)
1415 ** is a correlated subquery) then the value of the allocated register is
1416 ** reset to NULL each time the subquery is rerun. This allows the
1417 ** caller to use vdbe code equivalent to the following:
1418 **
1419 ** if( register==NULL ){
1420 ** has_null = <test if data structure contains null>
1421 ** register = 1
1422 ** }
1423 **
1424 ** in order to avoid running the <test if data structure contains null>
1425 ** test more often than is necessary.
1426 */
1427 #ifndef SQLITE_OMIT_SUBQUERY
sqlite3FindInIndex(Parse * pParse,Expr * pX,int * prNotFound)1428 int sqlite3FindInIndex(Parse *pParse, Expr *pX, int *prNotFound){
1429 Select *p; /* SELECT to the right of IN operator */
1430 int eType = 0; /* Type of RHS table. IN_INDEX_* */
1431 int iTab = pParse->nTab++; /* Cursor of the RHS table */
1432 int mustBeUnique = (prNotFound==0); /* True if RHS must be unique */
1433
1434 assert( pX->op==TK_IN );
1435
1436 /* Check to see if an existing table or index can be used to
1437 ** satisfy the query. This is preferable to generating a new
1438 ** ephemeral table.
1439 */
1440 p = (ExprHasProperty(pX, EP_xIsSelect) ? pX->x.pSelect : 0);
1441 if( ALWAYS(pParse->nErr==0) && isCandidateForInOpt(p) ){
1442 sqlite3 *db = pParse->db; /* Database connection */
1443 Expr *pExpr = p->pEList->a[0].pExpr; /* Expression <column> */
1444 int iCol = pExpr->iColumn; /* Index of column <column> */
1445 Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */
1446 Table *pTab = p->pSrc->a[0].pTab; /* Table <table>. */
1447 int iDb; /* Database idx for pTab */
1448
1449 /* Code an OP_VerifyCookie and OP_TableLock for <table>. */
1450 iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
1451 sqlite3CodeVerifySchema(pParse, iDb);
1452 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
1453
1454 /* This function is only called from two places. In both cases the vdbe
1455 ** has already been allocated. So assume sqlite3GetVdbe() is always
1456 ** successful here.
1457 */
1458 assert(v);
1459 if( iCol<0 ){
1460 int iMem = ++pParse->nMem;
1461 int iAddr;
1462
1463 iAddr = sqlite3VdbeAddOp1(v, OP_If, iMem);
1464 sqlite3VdbeAddOp2(v, OP_Integer, 1, iMem);
1465
1466 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
1467 eType = IN_INDEX_ROWID;
1468
1469 sqlite3VdbeJumpHere(v, iAddr);
1470 }else{
1471 Index *pIdx; /* Iterator variable */
1472
1473 /* The collation sequence used by the comparison. If an index is to
1474 ** be used in place of a temp-table, it must be ordered according
1475 ** to this collation sequence. */
1476 CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pExpr);
1477
1478 /* Check that the affinity that will be used to perform the
1479 ** comparison is the same as the affinity of the column. If
1480 ** it is not, it is not possible to use any index.
1481 */
1482 char aff = comparisonAffinity(pX);
1483 int affinity_ok = (pTab->aCol[iCol].affinity==aff||aff==SQLITE_AFF_NONE);
1484
1485 for(pIdx=pTab->pIndex; pIdx && eType==0 && affinity_ok; pIdx=pIdx->pNext){
1486 if( (pIdx->aiColumn[0]==iCol)
1487 && sqlite3FindCollSeq(db, ENC(db), pIdx->azColl[0], 0)==pReq
1488 && (!mustBeUnique || (pIdx->nColumn==1 && pIdx->onError!=OE_None))
1489 ){
1490 int iMem = ++pParse->nMem;
1491 int iAddr;
1492 char *pKey;
1493
1494 pKey = (char *)sqlite3IndexKeyinfo(pParse, pIdx);
1495 iAddr = sqlite3VdbeAddOp1(v, OP_If, iMem);
1496 sqlite3VdbeAddOp2(v, OP_Integer, 1, iMem);
1497
1498 sqlite3VdbeAddOp4(v, OP_OpenRead, iTab, pIdx->tnum, iDb,
1499 pKey,P4_KEYINFO_HANDOFF);
1500 VdbeComment((v, "%s", pIdx->zName));
1501 eType = IN_INDEX_INDEX;
1502
1503 sqlite3VdbeJumpHere(v, iAddr);
1504 if( prNotFound && !pTab->aCol[iCol].notNull ){
1505 *prNotFound = ++pParse->nMem;
1506 }
1507 }
1508 }
1509 }
1510 }
1511
1512 if( eType==0 ){
1513 /* Could not found an existing table or index to use as the RHS b-tree.
1514 ** We will have to generate an ephemeral table to do the job.
1515 */
1516 double savedNQueryLoop = pParse->nQueryLoop;
1517 int rMayHaveNull = 0;
1518 eType = IN_INDEX_EPH;
1519 if( prNotFound ){
1520 *prNotFound = rMayHaveNull = ++pParse->nMem;
1521 }else{
1522 testcase( pParse->nQueryLoop>(double)1 );
1523 pParse->nQueryLoop = (double)1;
1524 if( pX->pLeft->iColumn<0 && !ExprHasAnyProperty(pX, EP_xIsSelect) ){
1525 eType = IN_INDEX_ROWID;
1526 }
1527 }
1528 sqlite3CodeSubselect(pParse, pX, rMayHaveNull, eType==IN_INDEX_ROWID);
1529 pParse->nQueryLoop = savedNQueryLoop;
1530 }else{
1531 pX->iTable = iTab;
1532 }
1533 return eType;
1534 }
1535 #endif
1536
1537 /*
1538 ** Generate code for scalar subqueries used as a subquery expression, EXISTS,
1539 ** or IN operators. Examples:
1540 **
1541 ** (SELECT a FROM b) -- subquery
1542 ** EXISTS (SELECT a FROM b) -- EXISTS subquery
1543 ** x IN (4,5,11) -- IN operator with list on right-hand side
1544 ** x IN (SELECT a FROM b) -- IN operator with subquery on the right
1545 **
1546 ** The pExpr parameter describes the expression that contains the IN
1547 ** operator or subquery.
1548 **
1549 ** If parameter isRowid is non-zero, then expression pExpr is guaranteed
1550 ** to be of the form "<rowid> IN (?, ?, ?)", where <rowid> is a reference
1551 ** to some integer key column of a table B-Tree. In this case, use an
1552 ** intkey B-Tree to store the set of IN(...) values instead of the usual
1553 ** (slower) variable length keys B-Tree.
1554 **
1555 ** If rMayHaveNull is non-zero, that means that the operation is an IN
1556 ** (not a SELECT or EXISTS) and that the RHS might contains NULLs.
1557 ** Furthermore, the IN is in a WHERE clause and that we really want
1558 ** to iterate over the RHS of the IN operator in order to quickly locate
1559 ** all corresponding LHS elements. All this routine does is initialize
1560 ** the register given by rMayHaveNull to NULL. Calling routines will take
1561 ** care of changing this register value to non-NULL if the RHS is NULL-free.
1562 **
1563 ** If rMayHaveNull is zero, that means that the subquery is being used
1564 ** for membership testing only. There is no need to initialize any
1565 ** registers to indicate the presense or absence of NULLs on the RHS.
1566 **
1567 ** For a SELECT or EXISTS operator, return the register that holds the
1568 ** result. For IN operators or if an error occurs, the return value is 0.
1569 */
1570 #ifndef SQLITE_OMIT_SUBQUERY
sqlite3CodeSubselect(Parse * pParse,Expr * pExpr,int rMayHaveNull,int isRowid)1571 int sqlite3CodeSubselect(
1572 Parse *pParse, /* Parsing context */
1573 Expr *pExpr, /* The IN, SELECT, or EXISTS operator */
1574 int rMayHaveNull, /* Register that records whether NULLs exist in RHS */
1575 int isRowid /* If true, LHS of IN operator is a rowid */
1576 ){
1577 int testAddr = 0; /* One-time test address */
1578 int rReg = 0; /* Register storing resulting */
1579 Vdbe *v = sqlite3GetVdbe(pParse);
1580 if( NEVER(v==0) ) return 0;
1581 sqlite3ExprCachePush(pParse);
1582
1583 /* This code must be run in its entirety every time it is encountered
1584 ** if any of the following is true:
1585 **
1586 ** * The right-hand side is a correlated subquery
1587 ** * The right-hand side is an expression list containing variables
1588 ** * We are inside a trigger
1589 **
1590 ** If all of the above are false, then we can run this code just once
1591 ** save the results, and reuse the same result on subsequent invocations.
1592 */
1593 if( !ExprHasAnyProperty(pExpr, EP_VarSelect) && !pParse->pTriggerTab ){
1594 int mem = ++pParse->nMem;
1595 sqlite3VdbeAddOp1(v, OP_If, mem);
1596 testAddr = sqlite3VdbeAddOp2(v, OP_Integer, 1, mem);
1597 assert( testAddr>0 || pParse->db->mallocFailed );
1598 }
1599
1600 #ifndef SQLITE_OMIT_EXPLAIN
1601 if( pParse->explain==2 ){
1602 char *zMsg = sqlite3MPrintf(
1603 pParse->db, "EXECUTE %s%s SUBQUERY %d", testAddr?"":"CORRELATED ",
1604 pExpr->op==TK_IN?"LIST":"SCALAR", pParse->iNextSelectId
1605 );
1606 sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC);
1607 }
1608 #endif
1609
1610 switch( pExpr->op ){
1611 case TK_IN: {
1612 char affinity; /* Affinity of the LHS of the IN */
1613 KeyInfo keyInfo; /* Keyinfo for the generated table */
1614 int addr; /* Address of OP_OpenEphemeral instruction */
1615 Expr *pLeft = pExpr->pLeft; /* the LHS of the IN operator */
1616
1617 if( rMayHaveNull ){
1618 sqlite3VdbeAddOp2(v, OP_Null, 0, rMayHaveNull);
1619 }
1620
1621 affinity = sqlite3ExprAffinity(pLeft);
1622
1623 /* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)'
1624 ** expression it is handled the same way. An ephemeral table is
1625 ** filled with single-field index keys representing the results
1626 ** from the SELECT or the <exprlist>.
1627 **
1628 ** If the 'x' expression is a column value, or the SELECT...
1629 ** statement returns a column value, then the affinity of that
1630 ** column is used to build the index keys. If both 'x' and the
1631 ** SELECT... statement are columns, then numeric affinity is used
1632 ** if either column has NUMERIC or INTEGER affinity. If neither
1633 ** 'x' nor the SELECT... statement are columns, then numeric affinity
1634 ** is used.
1635 */
1636 pExpr->iTable = pParse->nTab++;
1637 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, !isRowid);
1638 if( rMayHaveNull==0 ) sqlite3VdbeChangeP5(v, BTREE_UNORDERED);
1639 memset(&keyInfo, 0, sizeof(keyInfo));
1640 keyInfo.nField = 1;
1641
1642 if( ExprHasProperty(pExpr, EP_xIsSelect) ){
1643 /* Case 1: expr IN (SELECT ...)
1644 **
1645 ** Generate code to write the results of the select into the temporary
1646 ** table allocated and opened above.
1647 */
1648 SelectDest dest;
1649 ExprList *pEList;
1650
1651 assert( !isRowid );
1652 sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable);
1653 dest.affinity = (u8)affinity;
1654 assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable );
1655 pExpr->x.pSelect->iLimit = 0;
1656 if( sqlite3Select(pParse, pExpr->x.pSelect, &dest) ){
1657 return 0;
1658 }
1659 pEList = pExpr->x.pSelect->pEList;
1660 if( ALWAYS(pEList!=0 && pEList->nExpr>0) ){
1661 keyInfo.aColl[0] = sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft,
1662 pEList->a[0].pExpr);
1663 }
1664 }else if( ALWAYS(pExpr->x.pList!=0) ){
1665 /* Case 2: expr IN (exprlist)
1666 **
1667 ** For each expression, build an index key from the evaluation and
1668 ** store it in the temporary table. If <expr> is a column, then use
1669 ** that columns affinity when building index keys. If <expr> is not
1670 ** a column, use numeric affinity.
1671 */
1672 int i;
1673 ExprList *pList = pExpr->x.pList;
1674 struct ExprList_item *pItem;
1675 int r1, r2, r3;
1676
1677 if( !affinity ){
1678 affinity = SQLITE_AFF_NONE;
1679 }
1680 keyInfo.aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
1681
1682 /* Loop through each expression in <exprlist>. */
1683 r1 = sqlite3GetTempReg(pParse);
1684 r2 = sqlite3GetTempReg(pParse);
1685 sqlite3VdbeAddOp2(v, OP_Null, 0, r2);
1686 for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){
1687 Expr *pE2 = pItem->pExpr;
1688 int iValToIns;
1689
1690 /* If the expression is not constant then we will need to
1691 ** disable the test that was generated above that makes sure
1692 ** this code only executes once. Because for a non-constant
1693 ** expression we need to rerun this code each time.
1694 */
1695 if( testAddr && !sqlite3ExprIsConstant(pE2) ){
1696 sqlite3VdbeChangeToNoop(v, testAddr-1, 2);
1697 testAddr = 0;
1698 }
1699
1700 /* Evaluate the expression and insert it into the temp table */
1701 if( isRowid && sqlite3ExprIsInteger(pE2, &iValToIns) ){
1702 sqlite3VdbeAddOp3(v, OP_InsertInt, pExpr->iTable, r2, iValToIns);
1703 }else{
1704 r3 = sqlite3ExprCodeTarget(pParse, pE2, r1);
1705 if( isRowid ){
1706 sqlite3VdbeAddOp2(v, OP_MustBeInt, r3,
1707 sqlite3VdbeCurrentAddr(v)+2);
1708 sqlite3VdbeAddOp3(v, OP_Insert, pExpr->iTable, r2, r3);
1709 }else{
1710 sqlite3VdbeAddOp4(v, OP_MakeRecord, r3, 1, r2, &affinity, 1);
1711 sqlite3ExprCacheAffinityChange(pParse, r3, 1);
1712 sqlite3VdbeAddOp2(v, OP_IdxInsert, pExpr->iTable, r2);
1713 }
1714 }
1715 }
1716 sqlite3ReleaseTempReg(pParse, r1);
1717 sqlite3ReleaseTempReg(pParse, r2);
1718 }
1719 if( !isRowid ){
1720 sqlite3VdbeChangeP4(v, addr, (void *)&keyInfo, P4_KEYINFO);
1721 }
1722 break;
1723 }
1724
1725 case TK_EXISTS:
1726 case TK_SELECT:
1727 default: {
1728 /* If this has to be a scalar SELECT. Generate code to put the
1729 ** value of this select in a memory cell and record the number
1730 ** of the memory cell in iColumn. If this is an EXISTS, write
1731 ** an integer 0 (not exists) or 1 (exists) into a memory cell
1732 ** and record that memory cell in iColumn.
1733 */
1734 Select *pSel; /* SELECT statement to encode */
1735 SelectDest dest; /* How to deal with SELECt result */
1736
1737 testcase( pExpr->op==TK_EXISTS );
1738 testcase( pExpr->op==TK_SELECT );
1739 assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT );
1740
1741 assert( ExprHasProperty(pExpr, EP_xIsSelect) );
1742 pSel = pExpr->x.pSelect;
1743 sqlite3SelectDestInit(&dest, 0, ++pParse->nMem);
1744 if( pExpr->op==TK_SELECT ){
1745 dest.eDest = SRT_Mem;
1746 sqlite3VdbeAddOp2(v, OP_Null, 0, dest.iParm);
1747 VdbeComment((v, "Init subquery result"));
1748 }else{
1749 dest.eDest = SRT_Exists;
1750 sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iParm);
1751 VdbeComment((v, "Init EXISTS result"));
1752 }
1753 sqlite3ExprDelete(pParse->db, pSel->pLimit);
1754 pSel->pLimit = sqlite3PExpr(pParse, TK_INTEGER, 0, 0,
1755 &sqlite3IntTokens[1]);
1756 pSel->iLimit = 0;
1757 if( sqlite3Select(pParse, pSel, &dest) ){
1758 return 0;
1759 }
1760 rReg = dest.iParm;
1761 ExprSetIrreducible(pExpr);
1762 break;
1763 }
1764 }
1765
1766 if( testAddr ){
1767 sqlite3VdbeJumpHere(v, testAddr-1);
1768 }
1769 sqlite3ExprCachePop(pParse, 1);
1770
1771 return rReg;
1772 }
1773 #endif /* SQLITE_OMIT_SUBQUERY */
1774
1775 #ifndef SQLITE_OMIT_SUBQUERY
1776 /*
1777 ** Generate code for an IN expression.
1778 **
1779 ** x IN (SELECT ...)
1780 ** x IN (value, value, ...)
1781 **
1782 ** The left-hand side (LHS) is a scalar expression. The right-hand side (RHS)
1783 ** is an array of zero or more values. The expression is true if the LHS is
1784 ** contained within the RHS. The value of the expression is unknown (NULL)
1785 ** if the LHS is NULL or if the LHS is not contained within the RHS and the
1786 ** RHS contains one or more NULL values.
1787 **
1788 ** This routine generates code will jump to destIfFalse if the LHS is not
1789 ** contained within the RHS. If due to NULLs we cannot determine if the LHS
1790 ** is contained in the RHS then jump to destIfNull. If the LHS is contained
1791 ** within the RHS then fall through.
1792 */
sqlite3ExprCodeIN(Parse * pParse,Expr * pExpr,int destIfFalse,int destIfNull)1793 static void sqlite3ExprCodeIN(
1794 Parse *pParse, /* Parsing and code generating context */
1795 Expr *pExpr, /* The IN expression */
1796 int destIfFalse, /* Jump here if LHS is not contained in the RHS */
1797 int destIfNull /* Jump here if the results are unknown due to NULLs */
1798 ){
1799 int rRhsHasNull = 0; /* Register that is true if RHS contains NULL values */
1800 char affinity; /* Comparison affinity to use */
1801 int eType; /* Type of the RHS */
1802 int r1; /* Temporary use register */
1803 Vdbe *v; /* Statement under construction */
1804
1805 /* Compute the RHS. After this step, the table with cursor
1806 ** pExpr->iTable will contains the values that make up the RHS.
1807 */
1808 v = pParse->pVdbe;
1809 assert( v!=0 ); /* OOM detected prior to this routine */
1810 VdbeNoopComment((v, "begin IN expr"));
1811 eType = sqlite3FindInIndex(pParse, pExpr, &rRhsHasNull);
1812
1813 /* Figure out the affinity to use to create a key from the results
1814 ** of the expression. affinityStr stores a static string suitable for
1815 ** P4 of OP_MakeRecord.
1816 */
1817 affinity = comparisonAffinity(pExpr);
1818
1819 /* Code the LHS, the <expr> from "<expr> IN (...)".
1820 */
1821 sqlite3ExprCachePush(pParse);
1822 r1 = sqlite3GetTempReg(pParse);
1823 sqlite3ExprCode(pParse, pExpr->pLeft, r1);
1824
1825 /* If the LHS is NULL, then the result is either false or NULL depending
1826 ** on whether the RHS is empty or not, respectively.
1827 */
1828 if( destIfNull==destIfFalse ){
1829 /* Shortcut for the common case where the false and NULL outcomes are
1830 ** the same. */
1831 sqlite3VdbeAddOp2(v, OP_IsNull, r1, destIfNull);
1832 }else{
1833 int addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, r1);
1834 sqlite3VdbeAddOp2(v, OP_Rewind, pExpr->iTable, destIfFalse);
1835 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull);
1836 sqlite3VdbeJumpHere(v, addr1);
1837 }
1838
1839 if( eType==IN_INDEX_ROWID ){
1840 /* In this case, the RHS is the ROWID of table b-tree
1841 */
1842 sqlite3VdbeAddOp2(v, OP_MustBeInt, r1, destIfFalse);
1843 sqlite3VdbeAddOp3(v, OP_NotExists, pExpr->iTable, destIfFalse, r1);
1844 }else{
1845 /* In this case, the RHS is an index b-tree.
1846 */
1847 sqlite3VdbeAddOp4(v, OP_Affinity, r1, 1, 0, &affinity, 1);
1848
1849 /* If the set membership test fails, then the result of the
1850 ** "x IN (...)" expression must be either 0 or NULL. If the set
1851 ** contains no NULL values, then the result is 0. If the set
1852 ** contains one or more NULL values, then the result of the
1853 ** expression is also NULL.
1854 */
1855 if( rRhsHasNull==0 || destIfFalse==destIfNull ){
1856 /* This branch runs if it is known at compile time that the RHS
1857 ** cannot contain NULL values. This happens as the result
1858 ** of a "NOT NULL" constraint in the database schema.
1859 **
1860 ** Also run this branch if NULL is equivalent to FALSE
1861 ** for this particular IN operator.
1862 */
1863 sqlite3VdbeAddOp4Int(v, OP_NotFound, pExpr->iTable, destIfFalse, r1, 1);
1864
1865 }else{
1866 /* In this branch, the RHS of the IN might contain a NULL and
1867 ** the presence of a NULL on the RHS makes a difference in the
1868 ** outcome.
1869 */
1870 int j1, j2, j3;
1871
1872 /* First check to see if the LHS is contained in the RHS. If so,
1873 ** then the presence of NULLs in the RHS does not matter, so jump
1874 ** over all of the code that follows.
1875 */
1876 j1 = sqlite3VdbeAddOp4Int(v, OP_Found, pExpr->iTable, 0, r1, 1);
1877
1878 /* Here we begin generating code that runs if the LHS is not
1879 ** contained within the RHS. Generate additional code that
1880 ** tests the RHS for NULLs. If the RHS contains a NULL then
1881 ** jump to destIfNull. If there are no NULLs in the RHS then
1882 ** jump to destIfFalse.
1883 */
1884 j2 = sqlite3VdbeAddOp1(v, OP_NotNull, rRhsHasNull);
1885 j3 = sqlite3VdbeAddOp4Int(v, OP_Found, pExpr->iTable, 0, rRhsHasNull, 1);
1886 sqlite3VdbeAddOp2(v, OP_Integer, -1, rRhsHasNull);
1887 sqlite3VdbeJumpHere(v, j3);
1888 sqlite3VdbeAddOp2(v, OP_AddImm, rRhsHasNull, 1);
1889 sqlite3VdbeJumpHere(v, j2);
1890
1891 /* Jump to the appropriate target depending on whether or not
1892 ** the RHS contains a NULL
1893 */
1894 sqlite3VdbeAddOp2(v, OP_If, rRhsHasNull, destIfNull);
1895 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse);
1896
1897 /* The OP_Found at the top of this branch jumps here when true,
1898 ** causing the overall IN expression evaluation to fall through.
1899 */
1900 sqlite3VdbeJumpHere(v, j1);
1901 }
1902 }
1903 sqlite3ReleaseTempReg(pParse, r1);
1904 sqlite3ExprCachePop(pParse, 1);
1905 VdbeComment((v, "end IN expr"));
1906 }
1907 #endif /* SQLITE_OMIT_SUBQUERY */
1908
1909 /*
1910 ** Duplicate an 8-byte value
1911 */
dup8bytes(Vdbe * v,const char * in)1912 static char *dup8bytes(Vdbe *v, const char *in){
1913 char *out = sqlite3DbMallocRaw(sqlite3VdbeDb(v), 8);
1914 if( out ){
1915 memcpy(out, in, 8);
1916 }
1917 return out;
1918 }
1919
1920 #ifndef SQLITE_OMIT_FLOATING_POINT
1921 /*
1922 ** Generate an instruction that will put the floating point
1923 ** value described by z[0..n-1] into register iMem.
1924 **
1925 ** The z[] string will probably not be zero-terminated. But the
1926 ** z[n] character is guaranteed to be something that does not look
1927 ** like the continuation of the number.
1928 */
codeReal(Vdbe * v,const char * z,int negateFlag,int iMem)1929 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){
1930 if( ALWAYS(z!=0) ){
1931 double value;
1932 char *zV;
1933 sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8);
1934 assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */
1935 if( negateFlag ) value = -value;
1936 zV = dup8bytes(v, (char*)&value);
1937 sqlite3VdbeAddOp4(v, OP_Real, 0, iMem, 0, zV, P4_REAL);
1938 }
1939 }
1940 #endif
1941
1942
1943 /*
1944 ** Generate an instruction that will put the integer describe by
1945 ** text z[0..n-1] into register iMem.
1946 **
1947 ** Expr.u.zToken is always UTF8 and zero-terminated.
1948 */
codeInteger(Parse * pParse,Expr * pExpr,int negFlag,int iMem)1949 static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){
1950 Vdbe *v = pParse->pVdbe;
1951 if( pExpr->flags & EP_IntValue ){
1952 int i = pExpr->u.iValue;
1953 assert( i>=0 );
1954 if( negFlag ) i = -i;
1955 sqlite3VdbeAddOp2(v, OP_Integer, i, iMem);
1956 }else{
1957 int c;
1958 i64 value;
1959 const char *z = pExpr->u.zToken;
1960 assert( z!=0 );
1961 c = sqlite3Atoi64(z, &value, sqlite3Strlen30(z), SQLITE_UTF8);
1962 if( c==0 || (c==2 && negFlag) ){
1963 char *zV;
1964 if( negFlag ){ value = c==2 ? SMALLEST_INT64 : -value; }
1965 zV = dup8bytes(v, (char*)&value);
1966 sqlite3VdbeAddOp4(v, OP_Int64, 0, iMem, 0, zV, P4_INT64);
1967 }else{
1968 #ifdef SQLITE_OMIT_FLOATING_POINT
1969 sqlite3ErrorMsg(pParse, "oversized integer: %s%s", negFlag ? "-" : "", z);
1970 #else
1971 codeReal(v, z, negFlag, iMem);
1972 #endif
1973 }
1974 }
1975 }
1976
1977 /*
1978 ** Clear a cache entry.
1979 */
cacheEntryClear(Parse * pParse,struct yColCache * p)1980 static void cacheEntryClear(Parse *pParse, struct yColCache *p){
1981 if( p->tempReg ){
1982 if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){
1983 pParse->aTempReg[pParse->nTempReg++] = p->iReg;
1984 }
1985 p->tempReg = 0;
1986 }
1987 }
1988
1989
1990 /*
1991 ** Record in the column cache that a particular column from a
1992 ** particular table is stored in a particular register.
1993 */
sqlite3ExprCacheStore(Parse * pParse,int iTab,int iCol,int iReg)1994 void sqlite3ExprCacheStore(Parse *pParse, int iTab, int iCol, int iReg){
1995 int i;
1996 int minLru;
1997 int idxLru;
1998 struct yColCache *p;
1999
2000 assert( iReg>0 ); /* Register numbers are always positive */
2001 assert( iCol>=-1 && iCol<32768 ); /* Finite column numbers */
2002
2003 /* The SQLITE_ColumnCache flag disables the column cache. This is used
2004 ** for testing only - to verify that SQLite always gets the same answer
2005 ** with and without the column cache.
2006 */
2007 if( pParse->db->flags & SQLITE_ColumnCache ) return;
2008
2009 /* First replace any existing entry.
2010 **
2011 ** Actually, the way the column cache is currently used, we are guaranteed
2012 ** that the object will never already be in cache. Verify this guarantee.
2013 */
2014 #ifndef NDEBUG
2015 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2016 #if 0 /* This code wold remove the entry from the cache if it existed */
2017 if( p->iReg && p->iTable==iTab && p->iColumn==iCol ){
2018 cacheEntryClear(pParse, p);
2019 p->iLevel = pParse->iCacheLevel;
2020 p->iReg = iReg;
2021 p->lru = pParse->iCacheCnt++;
2022 return;
2023 }
2024 #endif
2025 assert( p->iReg==0 || p->iTable!=iTab || p->iColumn!=iCol );
2026 }
2027 #endif
2028
2029 /* Find an empty slot and replace it */
2030 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2031 if( p->iReg==0 ){
2032 p->iLevel = pParse->iCacheLevel;
2033 p->iTable = iTab;
2034 p->iColumn = iCol;
2035 p->iReg = iReg;
2036 p->tempReg = 0;
2037 p->lru = pParse->iCacheCnt++;
2038 return;
2039 }
2040 }
2041
2042 /* Replace the last recently used */
2043 minLru = 0x7fffffff;
2044 idxLru = -1;
2045 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2046 if( p->lru<minLru ){
2047 idxLru = i;
2048 minLru = p->lru;
2049 }
2050 }
2051 if( ALWAYS(idxLru>=0) ){
2052 p = &pParse->aColCache[idxLru];
2053 p->iLevel = pParse->iCacheLevel;
2054 p->iTable = iTab;
2055 p->iColumn = iCol;
2056 p->iReg = iReg;
2057 p->tempReg = 0;
2058 p->lru = pParse->iCacheCnt++;
2059 return;
2060 }
2061 }
2062
2063 /*
2064 ** Indicate that registers between iReg..iReg+nReg-1 are being overwritten.
2065 ** Purge the range of registers from the column cache.
2066 */
sqlite3ExprCacheRemove(Parse * pParse,int iReg,int nReg)2067 void sqlite3ExprCacheRemove(Parse *pParse, int iReg, int nReg){
2068 int i;
2069 int iLast = iReg + nReg - 1;
2070 struct yColCache *p;
2071 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2072 int r = p->iReg;
2073 if( r>=iReg && r<=iLast ){
2074 cacheEntryClear(pParse, p);
2075 p->iReg = 0;
2076 }
2077 }
2078 }
2079
2080 /*
2081 ** Remember the current column cache context. Any new entries added
2082 ** added to the column cache after this call are removed when the
2083 ** corresponding pop occurs.
2084 */
sqlite3ExprCachePush(Parse * pParse)2085 void sqlite3ExprCachePush(Parse *pParse){
2086 pParse->iCacheLevel++;
2087 }
2088
2089 /*
2090 ** Remove from the column cache any entries that were added since the
2091 ** the previous N Push operations. In other words, restore the cache
2092 ** to the state it was in N Pushes ago.
2093 */
sqlite3ExprCachePop(Parse * pParse,int N)2094 void sqlite3ExprCachePop(Parse *pParse, int N){
2095 int i;
2096 struct yColCache *p;
2097 assert( N>0 );
2098 assert( pParse->iCacheLevel>=N );
2099 pParse->iCacheLevel -= N;
2100 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2101 if( p->iReg && p->iLevel>pParse->iCacheLevel ){
2102 cacheEntryClear(pParse, p);
2103 p->iReg = 0;
2104 }
2105 }
2106 }
2107
2108 /*
2109 ** When a cached column is reused, make sure that its register is
2110 ** no longer available as a temp register. ticket #3879: that same
2111 ** register might be in the cache in multiple places, so be sure to
2112 ** get them all.
2113 */
sqlite3ExprCachePinRegister(Parse * pParse,int iReg)2114 static void sqlite3ExprCachePinRegister(Parse *pParse, int iReg){
2115 int i;
2116 struct yColCache *p;
2117 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2118 if( p->iReg==iReg ){
2119 p->tempReg = 0;
2120 }
2121 }
2122 }
2123
2124 /*
2125 ** Generate code to extract the value of the iCol-th column of a table.
2126 */
sqlite3ExprCodeGetColumnOfTable(Vdbe * v,Table * pTab,int iTabCur,int iCol,int regOut)2127 void sqlite3ExprCodeGetColumnOfTable(
2128 Vdbe *v, /* The VDBE under construction */
2129 Table *pTab, /* The table containing the value */
2130 int iTabCur, /* The cursor for this table */
2131 int iCol, /* Index of the column to extract */
2132 int regOut /* Extract the valud into this register */
2133 ){
2134 if( iCol<0 || iCol==pTab->iPKey ){
2135 sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut);
2136 }else{
2137 int op = IsVirtual(pTab) ? OP_VColumn : OP_Column;
2138 sqlite3VdbeAddOp3(v, op, iTabCur, iCol, regOut);
2139 }
2140 if( iCol>=0 ){
2141 sqlite3ColumnDefault(v, pTab, iCol, regOut);
2142 }
2143 }
2144
2145 /*
2146 ** Generate code that will extract the iColumn-th column from
2147 ** table pTab and store the column value in a register. An effort
2148 ** is made to store the column value in register iReg, but this is
2149 ** not guaranteed. The location of the column value is returned.
2150 **
2151 ** There must be an open cursor to pTab in iTable when this routine
2152 ** is called. If iColumn<0 then code is generated that extracts the rowid.
2153 */
sqlite3ExprCodeGetColumn(Parse * pParse,Table * pTab,int iColumn,int iTable,int iReg)2154 int sqlite3ExprCodeGetColumn(
2155 Parse *pParse, /* Parsing and code generating context */
2156 Table *pTab, /* Description of the table we are reading from */
2157 int iColumn, /* Index of the table column */
2158 int iTable, /* The cursor pointing to the table */
2159 int iReg /* Store results here */
2160 ){
2161 Vdbe *v = pParse->pVdbe;
2162 int i;
2163 struct yColCache *p;
2164
2165 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2166 if( p->iReg>0 && p->iTable==iTable && p->iColumn==iColumn ){
2167 p->lru = pParse->iCacheCnt++;
2168 sqlite3ExprCachePinRegister(pParse, p->iReg);
2169 return p->iReg;
2170 }
2171 }
2172 assert( v!=0 );
2173 sqlite3ExprCodeGetColumnOfTable(v, pTab, iTable, iColumn, iReg);
2174 sqlite3ExprCacheStore(pParse, iTable, iColumn, iReg);
2175 return iReg;
2176 }
2177
2178 /*
2179 ** Clear all column cache entries.
2180 */
sqlite3ExprCacheClear(Parse * pParse)2181 void sqlite3ExprCacheClear(Parse *pParse){
2182 int i;
2183 struct yColCache *p;
2184
2185 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2186 if( p->iReg ){
2187 cacheEntryClear(pParse, p);
2188 p->iReg = 0;
2189 }
2190 }
2191 }
2192
2193 /*
2194 ** Record the fact that an affinity change has occurred on iCount
2195 ** registers starting with iStart.
2196 */
sqlite3ExprCacheAffinityChange(Parse * pParse,int iStart,int iCount)2197 void sqlite3ExprCacheAffinityChange(Parse *pParse, int iStart, int iCount){
2198 sqlite3ExprCacheRemove(pParse, iStart, iCount);
2199 }
2200
2201 /*
2202 ** Generate code to move content from registers iFrom...iFrom+nReg-1
2203 ** over to iTo..iTo+nReg-1. Keep the column cache up-to-date.
2204 */
sqlite3ExprCodeMove(Parse * pParse,int iFrom,int iTo,int nReg)2205 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){
2206 int i;
2207 struct yColCache *p;
2208 if( NEVER(iFrom==iTo) ) return;
2209 sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg);
2210 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2211 int x = p->iReg;
2212 if( x>=iFrom && x<iFrom+nReg ){
2213 p->iReg += iTo-iFrom;
2214 }
2215 }
2216 }
2217
2218 /*
2219 ** Generate code to copy content from registers iFrom...iFrom+nReg-1
2220 ** over to iTo..iTo+nReg-1.
2221 */
sqlite3ExprCodeCopy(Parse * pParse,int iFrom,int iTo,int nReg)2222 void sqlite3ExprCodeCopy(Parse *pParse, int iFrom, int iTo, int nReg){
2223 int i;
2224 if( NEVER(iFrom==iTo) ) return;
2225 for(i=0; i<nReg; i++){
2226 sqlite3VdbeAddOp2(pParse->pVdbe, OP_Copy, iFrom+i, iTo+i);
2227 }
2228 }
2229
2230 #if defined(SQLITE_DEBUG) || defined(SQLITE_COVERAGE_TEST)
2231 /*
2232 ** Return true if any register in the range iFrom..iTo (inclusive)
2233 ** is used as part of the column cache.
2234 **
2235 ** This routine is used within assert() and testcase() macros only
2236 ** and does not appear in a normal build.
2237 */
usedAsColumnCache(Parse * pParse,int iFrom,int iTo)2238 static int usedAsColumnCache(Parse *pParse, int iFrom, int iTo){
2239 int i;
2240 struct yColCache *p;
2241 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2242 int r = p->iReg;
2243 if( r>=iFrom && r<=iTo ) return 1; /*NO_TEST*/
2244 }
2245 return 0;
2246 }
2247 #endif /* SQLITE_DEBUG || SQLITE_COVERAGE_TEST */
2248
2249 /*
2250 ** Generate code into the current Vdbe to evaluate the given
2251 ** expression. Attempt to store the results in register "target".
2252 ** Return the register where results are stored.
2253 **
2254 ** With this routine, there is no guarantee that results will
2255 ** be stored in target. The result might be stored in some other
2256 ** register if it is convenient to do so. The calling function
2257 ** must check the return code and move the results to the desired
2258 ** register.
2259 */
sqlite3ExprCodeTarget(Parse * pParse,Expr * pExpr,int target)2260 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){
2261 Vdbe *v = pParse->pVdbe; /* The VM under construction */
2262 int op; /* The opcode being coded */
2263 int inReg = target; /* Results stored in register inReg */
2264 int regFree1 = 0; /* If non-zero free this temporary register */
2265 int regFree2 = 0; /* If non-zero free this temporary register */
2266 int r1, r2, r3, r4; /* Various register numbers */
2267 sqlite3 *db = pParse->db; /* The database connection */
2268
2269 assert( target>0 && target<=pParse->nMem );
2270 if( v==0 ){
2271 assert( pParse->db->mallocFailed );
2272 return 0;
2273 }
2274
2275 if( pExpr==0 ){
2276 op = TK_NULL;
2277 }else{
2278 op = pExpr->op;
2279 }
2280 switch( op ){
2281 case TK_AGG_COLUMN: {
2282 AggInfo *pAggInfo = pExpr->pAggInfo;
2283 struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg];
2284 if( !pAggInfo->directMode ){
2285 assert( pCol->iMem>0 );
2286 inReg = pCol->iMem;
2287 break;
2288 }else if( pAggInfo->useSortingIdx ){
2289 sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdx,
2290 pCol->iSorterColumn, target);
2291 break;
2292 }
2293 /* Otherwise, fall thru into the TK_COLUMN case */
2294 }
2295 case TK_COLUMN: {
2296 if( pExpr->iTable<0 ){
2297 /* This only happens when coding check constraints */
2298 assert( pParse->ckBase>0 );
2299 inReg = pExpr->iColumn + pParse->ckBase;
2300 }else{
2301 inReg = sqlite3ExprCodeGetColumn(pParse, pExpr->pTab,
2302 pExpr->iColumn, pExpr->iTable, target);
2303 }
2304 break;
2305 }
2306 case TK_INTEGER: {
2307 codeInteger(pParse, pExpr, 0, target);
2308 break;
2309 }
2310 #ifndef SQLITE_OMIT_FLOATING_POINT
2311 case TK_FLOAT: {
2312 assert( !ExprHasProperty(pExpr, EP_IntValue) );
2313 codeReal(v, pExpr->u.zToken, 0, target);
2314 break;
2315 }
2316 #endif
2317 case TK_STRING: {
2318 assert( !ExprHasProperty(pExpr, EP_IntValue) );
2319 sqlite3VdbeAddOp4(v, OP_String8, 0, target, 0, pExpr->u.zToken, 0);
2320 break;
2321 }
2322 case TK_NULL: {
2323 sqlite3VdbeAddOp2(v, OP_Null, 0, target);
2324 break;
2325 }
2326 #ifndef SQLITE_OMIT_BLOB_LITERAL
2327 case TK_BLOB: {
2328 int n;
2329 const char *z;
2330 char *zBlob;
2331 assert( !ExprHasProperty(pExpr, EP_IntValue) );
2332 assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' );
2333 assert( pExpr->u.zToken[1]=='\'' );
2334 z = &pExpr->u.zToken[2];
2335 n = sqlite3Strlen30(z) - 1;
2336 assert( z[n]=='\'' );
2337 zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n);
2338 sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC);
2339 break;
2340 }
2341 #endif
2342 case TK_VARIABLE: {
2343 assert( !ExprHasProperty(pExpr, EP_IntValue) );
2344 assert( pExpr->u.zToken!=0 );
2345 assert( pExpr->u.zToken[0]!=0 );
2346 sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target);
2347 if( pExpr->u.zToken[1]!=0 ){
2348 sqlite3VdbeChangeP4(v, -1, pExpr->u.zToken, P4_TRANSIENT);
2349 }
2350 break;
2351 }
2352 case TK_REGISTER: {
2353 inReg = pExpr->iTable;
2354 break;
2355 }
2356 case TK_AS: {
2357 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
2358 break;
2359 }
2360 #ifndef SQLITE_OMIT_CAST
2361 case TK_CAST: {
2362 /* Expressions of the form: CAST(pLeft AS token) */
2363 int aff, to_op;
2364 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
2365 assert( !ExprHasProperty(pExpr, EP_IntValue) );
2366 aff = sqlite3AffinityType(pExpr->u.zToken);
2367 to_op = aff - SQLITE_AFF_TEXT + OP_ToText;
2368 assert( to_op==OP_ToText || aff!=SQLITE_AFF_TEXT );
2369 assert( to_op==OP_ToBlob || aff!=SQLITE_AFF_NONE );
2370 assert( to_op==OP_ToNumeric || aff!=SQLITE_AFF_NUMERIC );
2371 assert( to_op==OP_ToInt || aff!=SQLITE_AFF_INTEGER );
2372 assert( to_op==OP_ToReal || aff!=SQLITE_AFF_REAL );
2373 testcase( to_op==OP_ToText );
2374 testcase( to_op==OP_ToBlob );
2375 testcase( to_op==OP_ToNumeric );
2376 testcase( to_op==OP_ToInt );
2377 testcase( to_op==OP_ToReal );
2378 if( inReg!=target ){
2379 sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target);
2380 inReg = target;
2381 }
2382 sqlite3VdbeAddOp1(v, to_op, inReg);
2383 testcase( usedAsColumnCache(pParse, inReg, inReg) );
2384 sqlite3ExprCacheAffinityChange(pParse, inReg, 1);
2385 break;
2386 }
2387 #endif /* SQLITE_OMIT_CAST */
2388 case TK_LT:
2389 case TK_LE:
2390 case TK_GT:
2391 case TK_GE:
2392 case TK_NE:
2393 case TK_EQ: {
2394 assert( TK_LT==OP_Lt );
2395 assert( TK_LE==OP_Le );
2396 assert( TK_GT==OP_Gt );
2397 assert( TK_GE==OP_Ge );
2398 assert( TK_EQ==OP_Eq );
2399 assert( TK_NE==OP_Ne );
2400 testcase( op==TK_LT );
2401 testcase( op==TK_LE );
2402 testcase( op==TK_GT );
2403 testcase( op==TK_GE );
2404 testcase( op==TK_EQ );
2405 testcase( op==TK_NE );
2406 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1);
2407 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2);
2408 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
2409 r1, r2, inReg, SQLITE_STOREP2);
2410 testcase( regFree1==0 );
2411 testcase( regFree2==0 );
2412 break;
2413 }
2414 case TK_IS:
2415 case TK_ISNOT: {
2416 testcase( op==TK_IS );
2417 testcase( op==TK_ISNOT );
2418 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1);
2419 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2);
2420 op = (op==TK_IS) ? TK_EQ : TK_NE;
2421 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
2422 r1, r2, inReg, SQLITE_STOREP2 | SQLITE_NULLEQ);
2423 testcase( regFree1==0 );
2424 testcase( regFree2==0 );
2425 break;
2426 }
2427 case TK_AND:
2428 case TK_OR:
2429 case TK_PLUS:
2430 case TK_STAR:
2431 case TK_MINUS:
2432 case TK_REM:
2433 case TK_BITAND:
2434 case TK_BITOR:
2435 case TK_SLASH:
2436 case TK_LSHIFT:
2437 case TK_RSHIFT:
2438 case TK_CONCAT: {
2439 assert( TK_AND==OP_And );
2440 assert( TK_OR==OP_Or );
2441 assert( TK_PLUS==OP_Add );
2442 assert( TK_MINUS==OP_Subtract );
2443 assert( TK_REM==OP_Remainder );
2444 assert( TK_BITAND==OP_BitAnd );
2445 assert( TK_BITOR==OP_BitOr );
2446 assert( TK_SLASH==OP_Divide );
2447 assert( TK_LSHIFT==OP_ShiftLeft );
2448 assert( TK_RSHIFT==OP_ShiftRight );
2449 assert( TK_CONCAT==OP_Concat );
2450 testcase( op==TK_AND );
2451 testcase( op==TK_OR );
2452 testcase( op==TK_PLUS );
2453 testcase( op==TK_MINUS );
2454 testcase( op==TK_REM );
2455 testcase( op==TK_BITAND );
2456 testcase( op==TK_BITOR );
2457 testcase( op==TK_SLASH );
2458 testcase( op==TK_LSHIFT );
2459 testcase( op==TK_RSHIFT );
2460 testcase( op==TK_CONCAT );
2461 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1);
2462 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2);
2463 sqlite3VdbeAddOp3(v, op, r2, r1, target);
2464 testcase( regFree1==0 );
2465 testcase( regFree2==0 );
2466 break;
2467 }
2468 case TK_UMINUS: {
2469 Expr *pLeft = pExpr->pLeft;
2470 assert( pLeft );
2471 if( pLeft->op==TK_INTEGER ){
2472 codeInteger(pParse, pLeft, 1, target);
2473 #ifndef SQLITE_OMIT_FLOATING_POINT
2474 }else if( pLeft->op==TK_FLOAT ){
2475 assert( !ExprHasProperty(pExpr, EP_IntValue) );
2476 codeReal(v, pLeft->u.zToken, 1, target);
2477 #endif
2478 }else{
2479 regFree1 = r1 = sqlite3GetTempReg(pParse);
2480 sqlite3VdbeAddOp2(v, OP_Integer, 0, r1);
2481 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free2);
2482 sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target);
2483 testcase( regFree2==0 );
2484 }
2485 inReg = target;
2486 break;
2487 }
2488 case TK_BITNOT:
2489 case TK_NOT: {
2490 assert( TK_BITNOT==OP_BitNot );
2491 assert( TK_NOT==OP_Not );
2492 testcase( op==TK_BITNOT );
2493 testcase( op==TK_NOT );
2494 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1);
2495 testcase( regFree1==0 );
2496 inReg = target;
2497 sqlite3VdbeAddOp2(v, op, r1, inReg);
2498 break;
2499 }
2500 case TK_ISNULL:
2501 case TK_NOTNULL: {
2502 int addr;
2503 assert( TK_ISNULL==OP_IsNull );
2504 assert( TK_NOTNULL==OP_NotNull );
2505 testcase( op==TK_ISNULL );
2506 testcase( op==TK_NOTNULL );
2507 sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
2508 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1);
2509 testcase( regFree1==0 );
2510 addr = sqlite3VdbeAddOp1(v, op, r1);
2511 sqlite3VdbeAddOp2(v, OP_AddImm, target, -1);
2512 sqlite3VdbeJumpHere(v, addr);
2513 break;
2514 }
2515 case TK_AGG_FUNCTION: {
2516 AggInfo *pInfo = pExpr->pAggInfo;
2517 if( pInfo==0 ){
2518 assert( !ExprHasProperty(pExpr, EP_IntValue) );
2519 sqlite3ErrorMsg(pParse, "misuse of aggregate: %s()", pExpr->u.zToken);
2520 }else{
2521 inReg = pInfo->aFunc[pExpr->iAgg].iMem;
2522 }
2523 break;
2524 }
2525 case TK_CONST_FUNC:
2526 case TK_FUNCTION: {
2527 ExprList *pFarg; /* List of function arguments */
2528 int nFarg; /* Number of function arguments */
2529 FuncDef *pDef; /* The function definition object */
2530 int nId; /* Length of the function name in bytes */
2531 const char *zId; /* The function name */
2532 int constMask = 0; /* Mask of function arguments that are constant */
2533 int i; /* Loop counter */
2534 u8 enc = ENC(db); /* The text encoding used by this database */
2535 CollSeq *pColl = 0; /* A collating sequence */
2536
2537 assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
2538 testcase( op==TK_CONST_FUNC );
2539 testcase( op==TK_FUNCTION );
2540 if( ExprHasAnyProperty(pExpr, EP_TokenOnly) ){
2541 pFarg = 0;
2542 }else{
2543 pFarg = pExpr->x.pList;
2544 }
2545 nFarg = pFarg ? pFarg->nExpr : 0;
2546 assert( !ExprHasProperty(pExpr, EP_IntValue) );
2547 zId = pExpr->u.zToken;
2548 nId = sqlite3Strlen30(zId);
2549 pDef = sqlite3FindFunction(db, zId, nId, nFarg, enc, 0);
2550 if( pDef==0 ){
2551 sqlite3ErrorMsg(pParse, "unknown function: %.*s()", nId, zId);
2552 break;
2553 }
2554
2555 /* Attempt a direct implementation of the built-in COALESCE() and
2556 ** IFNULL() functions. This avoids unnecessary evalation of
2557 ** arguments past the first non-NULL argument.
2558 */
2559 if( pDef->flags & SQLITE_FUNC_COALESCE ){
2560 int endCoalesce = sqlite3VdbeMakeLabel(v);
2561 assert( nFarg>=2 );
2562 sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target);
2563 for(i=1; i<nFarg; i++){
2564 sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce);
2565 sqlite3ExprCacheRemove(pParse, target, 1);
2566 sqlite3ExprCachePush(pParse);
2567 sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target);
2568 sqlite3ExprCachePop(pParse, 1);
2569 }
2570 sqlite3VdbeResolveLabel(v, endCoalesce);
2571 break;
2572 }
2573
2574
2575 if( pFarg ){
2576 r1 = sqlite3GetTempRange(pParse, nFarg);
2577 sqlite3ExprCachePush(pParse); /* Ticket 2ea2425d34be */
2578 sqlite3ExprCodeExprList(pParse, pFarg, r1, 1);
2579 sqlite3ExprCachePop(pParse, 1); /* Ticket 2ea2425d34be */
2580 }else{
2581 r1 = 0;
2582 }
2583 #ifndef SQLITE_OMIT_VIRTUALTABLE
2584 /* Possibly overload the function if the first argument is
2585 ** a virtual table column.
2586 **
2587 ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the
2588 ** second argument, not the first, as the argument to test to
2589 ** see if it is a column in a virtual table. This is done because
2590 ** the left operand of infix functions (the operand we want to
2591 ** control overloading) ends up as the second argument to the
2592 ** function. The expression "A glob B" is equivalent to
2593 ** "glob(B,A). We want to use the A in "A glob B" to test
2594 ** for function overloading. But we use the B term in "glob(B,A)".
2595 */
2596 if( nFarg>=2 && (pExpr->flags & EP_InfixFunc) ){
2597 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr);
2598 }else if( nFarg>0 ){
2599 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr);
2600 }
2601 #endif
2602 for(i=0; i<nFarg; i++){
2603 if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){
2604 constMask |= (1<<i);
2605 }
2606 if( (pDef->flags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){
2607 pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr);
2608 }
2609 }
2610 if( pDef->flags & SQLITE_FUNC_NEEDCOLL ){
2611 if( !pColl ) pColl = db->pDfltColl;
2612 sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ);
2613 }
2614 sqlite3VdbeAddOp4(v, OP_Function, constMask, r1, target,
2615 (char*)pDef, P4_FUNCDEF);
2616 sqlite3VdbeChangeP5(v, (u8)nFarg);
2617 if( nFarg ){
2618 sqlite3ReleaseTempRange(pParse, r1, nFarg);
2619 }
2620 break;
2621 }
2622 #ifndef SQLITE_OMIT_SUBQUERY
2623 case TK_EXISTS:
2624 case TK_SELECT: {
2625 testcase( op==TK_EXISTS );
2626 testcase( op==TK_SELECT );
2627 inReg = sqlite3CodeSubselect(pParse, pExpr, 0, 0);
2628 break;
2629 }
2630 case TK_IN: {
2631 int destIfFalse = sqlite3VdbeMakeLabel(v);
2632 int destIfNull = sqlite3VdbeMakeLabel(v);
2633 sqlite3VdbeAddOp2(v, OP_Null, 0, target);
2634 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
2635 sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
2636 sqlite3VdbeResolveLabel(v, destIfFalse);
2637 sqlite3VdbeAddOp2(v, OP_AddImm, target, 0);
2638 sqlite3VdbeResolveLabel(v, destIfNull);
2639 break;
2640 }
2641 #endif /* SQLITE_OMIT_SUBQUERY */
2642
2643
2644 /*
2645 ** x BETWEEN y AND z
2646 **
2647 ** This is equivalent to
2648 **
2649 ** x>=y AND x<=z
2650 **
2651 ** X is stored in pExpr->pLeft.
2652 ** Y is stored in pExpr->pList->a[0].pExpr.
2653 ** Z is stored in pExpr->pList->a[1].pExpr.
2654 */
2655 case TK_BETWEEN: {
2656 Expr *pLeft = pExpr->pLeft;
2657 struct ExprList_item *pLItem = pExpr->x.pList->a;
2658 Expr *pRight = pLItem->pExpr;
2659
2660 r1 = sqlite3ExprCodeTemp(pParse, pLeft, ®Free1);
2661 r2 = sqlite3ExprCodeTemp(pParse, pRight, ®Free2);
2662 testcase( regFree1==0 );
2663 testcase( regFree2==0 );
2664 r3 = sqlite3GetTempReg(pParse);
2665 r4 = sqlite3GetTempReg(pParse);
2666 codeCompare(pParse, pLeft, pRight, OP_Ge,
2667 r1, r2, r3, SQLITE_STOREP2);
2668 pLItem++;
2669 pRight = pLItem->pExpr;
2670 sqlite3ReleaseTempReg(pParse, regFree2);
2671 r2 = sqlite3ExprCodeTemp(pParse, pRight, ®Free2);
2672 testcase( regFree2==0 );
2673 codeCompare(pParse, pLeft, pRight, OP_Le, r1, r2, r4, SQLITE_STOREP2);
2674 sqlite3VdbeAddOp3(v, OP_And, r3, r4, target);
2675 sqlite3ReleaseTempReg(pParse, r3);
2676 sqlite3ReleaseTempReg(pParse, r4);
2677 break;
2678 }
2679 case TK_UPLUS: {
2680 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
2681 break;
2682 }
2683
2684 case TK_TRIGGER: {
2685 /* If the opcode is TK_TRIGGER, then the expression is a reference
2686 ** to a column in the new.* or old.* pseudo-tables available to
2687 ** trigger programs. In this case Expr.iTable is set to 1 for the
2688 ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn
2689 ** is set to the column of the pseudo-table to read, or to -1 to
2690 ** read the rowid field.
2691 **
2692 ** The expression is implemented using an OP_Param opcode. The p1
2693 ** parameter is set to 0 for an old.rowid reference, or to (i+1)
2694 ** to reference another column of the old.* pseudo-table, where
2695 ** i is the index of the column. For a new.rowid reference, p1 is
2696 ** set to (n+1), where n is the number of columns in each pseudo-table.
2697 ** For a reference to any other column in the new.* pseudo-table, p1
2698 ** is set to (n+2+i), where n and i are as defined previously. For
2699 ** example, if the table on which triggers are being fired is
2700 ** declared as:
2701 **
2702 ** CREATE TABLE t1(a, b);
2703 **
2704 ** Then p1 is interpreted as follows:
2705 **
2706 ** p1==0 -> old.rowid p1==3 -> new.rowid
2707 ** p1==1 -> old.a p1==4 -> new.a
2708 ** p1==2 -> old.b p1==5 -> new.b
2709 */
2710 Table *pTab = pExpr->pTab;
2711 int p1 = pExpr->iTable * (pTab->nCol+1) + 1 + pExpr->iColumn;
2712
2713 assert( pExpr->iTable==0 || pExpr->iTable==1 );
2714 assert( pExpr->iColumn>=-1 && pExpr->iColumn<pTab->nCol );
2715 assert( pTab->iPKey<0 || pExpr->iColumn!=pTab->iPKey );
2716 assert( p1>=0 && p1<(pTab->nCol*2+2) );
2717
2718 sqlite3VdbeAddOp2(v, OP_Param, p1, target);
2719 VdbeComment((v, "%s.%s -> $%d",
2720 (pExpr->iTable ? "new" : "old"),
2721 (pExpr->iColumn<0 ? "rowid" : pExpr->pTab->aCol[pExpr->iColumn].zName),
2722 target
2723 ));
2724
2725 #ifndef SQLITE_OMIT_FLOATING_POINT
2726 /* If the column has REAL affinity, it may currently be stored as an
2727 ** integer. Use OP_RealAffinity to make sure it is really real. */
2728 if( pExpr->iColumn>=0
2729 && pTab->aCol[pExpr->iColumn].affinity==SQLITE_AFF_REAL
2730 ){
2731 sqlite3VdbeAddOp1(v, OP_RealAffinity, target);
2732 }
2733 #endif
2734 break;
2735 }
2736
2737
2738 /*
2739 ** Form A:
2740 ** CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
2741 **
2742 ** Form B:
2743 ** CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
2744 **
2745 ** Form A is can be transformed into the equivalent form B as follows:
2746 ** CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ...
2747 ** WHEN x=eN THEN rN ELSE y END
2748 **
2749 ** X (if it exists) is in pExpr->pLeft.
2750 ** Y is in pExpr->pRight. The Y is also optional. If there is no
2751 ** ELSE clause and no other term matches, then the result of the
2752 ** exprssion is NULL.
2753 ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1].
2754 **
2755 ** The result of the expression is the Ri for the first matching Ei,
2756 ** or if there is no matching Ei, the ELSE term Y, or if there is
2757 ** no ELSE term, NULL.
2758 */
2759 default: assert( op==TK_CASE ); {
2760 int endLabel; /* GOTO label for end of CASE stmt */
2761 int nextCase; /* GOTO label for next WHEN clause */
2762 int nExpr; /* 2x number of WHEN terms */
2763 int i; /* Loop counter */
2764 ExprList *pEList; /* List of WHEN terms */
2765 struct ExprList_item *aListelem; /* Array of WHEN terms */
2766 Expr opCompare; /* The X==Ei expression */
2767 Expr cacheX; /* Cached expression X */
2768 Expr *pX; /* The X expression */
2769 Expr *pTest = 0; /* X==Ei (form A) or just Ei (form B) */
2770 VVA_ONLY( int iCacheLevel = pParse->iCacheLevel; )
2771
2772 assert( !ExprHasProperty(pExpr, EP_xIsSelect) && pExpr->x.pList );
2773 assert((pExpr->x.pList->nExpr % 2) == 0);
2774 assert(pExpr->x.pList->nExpr > 0);
2775 pEList = pExpr->x.pList;
2776 aListelem = pEList->a;
2777 nExpr = pEList->nExpr;
2778 endLabel = sqlite3VdbeMakeLabel(v);
2779 if( (pX = pExpr->pLeft)!=0 ){
2780 cacheX = *pX;
2781 testcase( pX->op==TK_COLUMN );
2782 testcase( pX->op==TK_REGISTER );
2783 cacheX.iTable = sqlite3ExprCodeTemp(pParse, pX, ®Free1);
2784 testcase( regFree1==0 );
2785 cacheX.op = TK_REGISTER;
2786 opCompare.op = TK_EQ;
2787 opCompare.pLeft = &cacheX;
2788 pTest = &opCompare;
2789 /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001:
2790 ** The value in regFree1 might get SCopy-ed into the file result.
2791 ** So make sure that the regFree1 register is not reused for other
2792 ** purposes and possibly overwritten. */
2793 regFree1 = 0;
2794 }
2795 for(i=0; i<nExpr; i=i+2){
2796 sqlite3ExprCachePush(pParse);
2797 if( pX ){
2798 assert( pTest!=0 );
2799 opCompare.pRight = aListelem[i].pExpr;
2800 }else{
2801 pTest = aListelem[i].pExpr;
2802 }
2803 nextCase = sqlite3VdbeMakeLabel(v);
2804 testcase( pTest->op==TK_COLUMN );
2805 sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL);
2806 testcase( aListelem[i+1].pExpr->op==TK_COLUMN );
2807 testcase( aListelem[i+1].pExpr->op==TK_REGISTER );
2808 sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target);
2809 sqlite3VdbeAddOp2(v, OP_Goto, 0, endLabel);
2810 sqlite3ExprCachePop(pParse, 1);
2811 sqlite3VdbeResolveLabel(v, nextCase);
2812 }
2813 if( pExpr->pRight ){
2814 sqlite3ExprCachePush(pParse);
2815 sqlite3ExprCode(pParse, pExpr->pRight, target);
2816 sqlite3ExprCachePop(pParse, 1);
2817 }else{
2818 sqlite3VdbeAddOp2(v, OP_Null, 0, target);
2819 }
2820 assert( db->mallocFailed || pParse->nErr>0
2821 || pParse->iCacheLevel==iCacheLevel );
2822 sqlite3VdbeResolveLabel(v, endLabel);
2823 break;
2824 }
2825 #ifndef SQLITE_OMIT_TRIGGER
2826 case TK_RAISE: {
2827 assert( pExpr->affinity==OE_Rollback
2828 || pExpr->affinity==OE_Abort
2829 || pExpr->affinity==OE_Fail
2830 || pExpr->affinity==OE_Ignore
2831 );
2832 if( !pParse->pTriggerTab ){
2833 sqlite3ErrorMsg(pParse,
2834 "RAISE() may only be used within a trigger-program");
2835 return 0;
2836 }
2837 if( pExpr->affinity==OE_Abort ){
2838 sqlite3MayAbort(pParse);
2839 }
2840 assert( !ExprHasProperty(pExpr, EP_IntValue) );
2841 if( pExpr->affinity==OE_Ignore ){
2842 sqlite3VdbeAddOp4(
2843 v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0);
2844 }else{
2845 sqlite3HaltConstraint(pParse, pExpr->affinity, pExpr->u.zToken, 0);
2846 }
2847
2848 break;
2849 }
2850 #endif
2851 }
2852 sqlite3ReleaseTempReg(pParse, regFree1);
2853 sqlite3ReleaseTempReg(pParse, regFree2);
2854 return inReg;
2855 }
2856
2857 /*
2858 ** Generate code to evaluate an expression and store the results
2859 ** into a register. Return the register number where the results
2860 ** are stored.
2861 **
2862 ** If the register is a temporary register that can be deallocated,
2863 ** then write its number into *pReg. If the result register is not
2864 ** a temporary, then set *pReg to zero.
2865 */
sqlite3ExprCodeTemp(Parse * pParse,Expr * pExpr,int * pReg)2866 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){
2867 int r1 = sqlite3GetTempReg(pParse);
2868 int r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1);
2869 if( r2==r1 ){
2870 *pReg = r1;
2871 }else{
2872 sqlite3ReleaseTempReg(pParse, r1);
2873 *pReg = 0;
2874 }
2875 return r2;
2876 }
2877
2878 /*
2879 ** Generate code that will evaluate expression pExpr and store the
2880 ** results in register target. The results are guaranteed to appear
2881 ** in register target.
2882 */
sqlite3ExprCode(Parse * pParse,Expr * pExpr,int target)2883 int sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){
2884 int inReg;
2885
2886 assert( target>0 && target<=pParse->nMem );
2887 if( pExpr && pExpr->op==TK_REGISTER ){
2888 sqlite3VdbeAddOp2(pParse->pVdbe, OP_Copy, pExpr->iTable, target);
2889 }else{
2890 inReg = sqlite3ExprCodeTarget(pParse, pExpr, target);
2891 assert( pParse->pVdbe || pParse->db->mallocFailed );
2892 if( inReg!=target && pParse->pVdbe ){
2893 sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, inReg, target);
2894 }
2895 }
2896 return target;
2897 }
2898
2899 /*
2900 ** Generate code that evalutes the given expression and puts the result
2901 ** in register target.
2902 **
2903 ** Also make a copy of the expression results into another "cache" register
2904 ** and modify the expression so that the next time it is evaluated,
2905 ** the result is a copy of the cache register.
2906 **
2907 ** This routine is used for expressions that are used multiple
2908 ** times. They are evaluated once and the results of the expression
2909 ** are reused.
2910 */
sqlite3ExprCodeAndCache(Parse * pParse,Expr * pExpr,int target)2911 int sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr, int target){
2912 Vdbe *v = pParse->pVdbe;
2913 int inReg;
2914 inReg = sqlite3ExprCode(pParse, pExpr, target);
2915 assert( target>0 );
2916 /* This routine is called for terms to INSERT or UPDATE. And the only
2917 ** other place where expressions can be converted into TK_REGISTER is
2918 ** in WHERE clause processing. So as currently implemented, there is
2919 ** no way for a TK_REGISTER to exist here. But it seems prudent to
2920 ** keep the ALWAYS() in case the conditions above change with future
2921 ** modifications or enhancements. */
2922 if( ALWAYS(pExpr->op!=TK_REGISTER) ){
2923 int iMem;
2924 iMem = ++pParse->nMem;
2925 sqlite3VdbeAddOp2(v, OP_Copy, inReg, iMem);
2926 pExpr->iTable = iMem;
2927 pExpr->op2 = pExpr->op;
2928 pExpr->op = TK_REGISTER;
2929 }
2930 return inReg;
2931 }
2932
2933 /*
2934 ** Return TRUE if pExpr is an constant expression that is appropriate
2935 ** for factoring out of a loop. Appropriate expressions are:
2936 **
2937 ** * Any expression that evaluates to two or more opcodes.
2938 **
2939 ** * Any OP_Integer, OP_Real, OP_String, OP_Blob, OP_Null,
2940 ** or OP_Variable that does not need to be placed in a
2941 ** specific register.
2942 **
2943 ** There is no point in factoring out single-instruction constant
2944 ** expressions that need to be placed in a particular register.
2945 ** We could factor them out, but then we would end up adding an
2946 ** OP_SCopy instruction to move the value into the correct register
2947 ** later. We might as well just use the original instruction and
2948 ** avoid the OP_SCopy.
2949 */
isAppropriateForFactoring(Expr * p)2950 static int isAppropriateForFactoring(Expr *p){
2951 if( !sqlite3ExprIsConstantNotJoin(p) ){
2952 return 0; /* Only constant expressions are appropriate for factoring */
2953 }
2954 if( (p->flags & EP_FixedDest)==0 ){
2955 return 1; /* Any constant without a fixed destination is appropriate */
2956 }
2957 while( p->op==TK_UPLUS ) p = p->pLeft;
2958 switch( p->op ){
2959 #ifndef SQLITE_OMIT_BLOB_LITERAL
2960 case TK_BLOB:
2961 #endif
2962 case TK_VARIABLE:
2963 case TK_INTEGER:
2964 case TK_FLOAT:
2965 case TK_NULL:
2966 case TK_STRING: {
2967 testcase( p->op==TK_BLOB );
2968 testcase( p->op==TK_VARIABLE );
2969 testcase( p->op==TK_INTEGER );
2970 testcase( p->op==TK_FLOAT );
2971 testcase( p->op==TK_NULL );
2972 testcase( p->op==TK_STRING );
2973 /* Single-instruction constants with a fixed destination are
2974 ** better done in-line. If we factor them, they will just end
2975 ** up generating an OP_SCopy to move the value to the destination
2976 ** register. */
2977 return 0;
2978 }
2979 case TK_UMINUS: {
2980 if( p->pLeft->op==TK_FLOAT || p->pLeft->op==TK_INTEGER ){
2981 return 0;
2982 }
2983 break;
2984 }
2985 default: {
2986 break;
2987 }
2988 }
2989 return 1;
2990 }
2991
2992 /*
2993 ** If pExpr is a constant expression that is appropriate for
2994 ** factoring out of a loop, then evaluate the expression
2995 ** into a register and convert the expression into a TK_REGISTER
2996 ** expression.
2997 */
evalConstExpr(Walker * pWalker,Expr * pExpr)2998 static int evalConstExpr(Walker *pWalker, Expr *pExpr){
2999 Parse *pParse = pWalker->pParse;
3000 switch( pExpr->op ){
3001 case TK_IN:
3002 case TK_REGISTER: {
3003 return WRC_Prune;
3004 }
3005 case TK_FUNCTION:
3006 case TK_AGG_FUNCTION:
3007 case TK_CONST_FUNC: {
3008 /* The arguments to a function have a fixed destination.
3009 ** Mark them this way to avoid generated unneeded OP_SCopy
3010 ** instructions.
3011 */
3012 ExprList *pList = pExpr->x.pList;
3013 assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
3014 if( pList ){
3015 int i = pList->nExpr;
3016 struct ExprList_item *pItem = pList->a;
3017 for(; i>0; i--, pItem++){
3018 if( ALWAYS(pItem->pExpr) ) pItem->pExpr->flags |= EP_FixedDest;
3019 }
3020 }
3021 break;
3022 }
3023 }
3024 if( isAppropriateForFactoring(pExpr) ){
3025 int r1 = ++pParse->nMem;
3026 int r2;
3027 r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1);
3028 if( NEVER(r1!=r2) ) sqlite3ReleaseTempReg(pParse, r1);
3029 pExpr->op2 = pExpr->op;
3030 pExpr->op = TK_REGISTER;
3031 pExpr->iTable = r2;
3032 return WRC_Prune;
3033 }
3034 return WRC_Continue;
3035 }
3036
3037 /*
3038 ** Preevaluate constant subexpressions within pExpr and store the
3039 ** results in registers. Modify pExpr so that the constant subexpresions
3040 ** are TK_REGISTER opcodes that refer to the precomputed values.
3041 **
3042 ** This routine is a no-op if the jump to the cookie-check code has
3043 ** already occur. Since the cookie-check jump is generated prior to
3044 ** any other serious processing, this check ensures that there is no
3045 ** way to accidently bypass the constant initializations.
3046 **
3047 ** This routine is also a no-op if the SQLITE_FactorOutConst optimization
3048 ** is disabled via the sqlite3_test_control(SQLITE_TESTCTRL_OPTIMIZATIONS)
3049 ** interface. This allows test logic to verify that the same answer is
3050 ** obtained for queries regardless of whether or not constants are
3051 ** precomputed into registers or if they are inserted in-line.
3052 */
sqlite3ExprCodeConstants(Parse * pParse,Expr * pExpr)3053 void sqlite3ExprCodeConstants(Parse *pParse, Expr *pExpr){
3054 Walker w;
3055 if( pParse->cookieGoto ) return;
3056 if( (pParse->db->flags & SQLITE_FactorOutConst)!=0 ) return;
3057 w.xExprCallback = evalConstExpr;
3058 w.xSelectCallback = 0;
3059 w.pParse = pParse;
3060 sqlite3WalkExpr(&w, pExpr);
3061 }
3062
3063
3064 /*
3065 ** Generate code that pushes the value of every element of the given
3066 ** expression list into a sequence of registers beginning at target.
3067 **
3068 ** Return the number of elements evaluated.
3069 */
sqlite3ExprCodeExprList(Parse * pParse,ExprList * pList,int target,int doHardCopy)3070 int sqlite3ExprCodeExprList(
3071 Parse *pParse, /* Parsing context */
3072 ExprList *pList, /* The expression list to be coded */
3073 int target, /* Where to write results */
3074 int doHardCopy /* Make a hard copy of every element */
3075 ){
3076 struct ExprList_item *pItem;
3077 int i, n;
3078 assert( pList!=0 );
3079 assert( target>0 );
3080 assert( pParse->pVdbe!=0 ); /* Never gets this far otherwise */
3081 n = pList->nExpr;
3082 for(pItem=pList->a, i=0; i<n; i++, pItem++){
3083 Expr *pExpr = pItem->pExpr;
3084 int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i);
3085 if( inReg!=target+i ){
3086 sqlite3VdbeAddOp2(pParse->pVdbe, doHardCopy ? OP_Copy : OP_SCopy,
3087 inReg, target+i);
3088 }
3089 }
3090 return n;
3091 }
3092
3093 /*
3094 ** Generate code for a BETWEEN operator.
3095 **
3096 ** x BETWEEN y AND z
3097 **
3098 ** The above is equivalent to
3099 **
3100 ** x>=y AND x<=z
3101 **
3102 ** Code it as such, taking care to do the common subexpression
3103 ** elementation of x.
3104 */
exprCodeBetween(Parse * pParse,Expr * pExpr,int dest,int jumpIfTrue,int jumpIfNull)3105 static void exprCodeBetween(
3106 Parse *pParse, /* Parsing and code generating context */
3107 Expr *pExpr, /* The BETWEEN expression */
3108 int dest, /* Jump here if the jump is taken */
3109 int jumpIfTrue, /* Take the jump if the BETWEEN is true */
3110 int jumpIfNull /* Take the jump if the BETWEEN is NULL */
3111 ){
3112 Expr exprAnd; /* The AND operator in x>=y AND x<=z */
3113 Expr compLeft; /* The x>=y term */
3114 Expr compRight; /* The x<=z term */
3115 Expr exprX; /* The x subexpression */
3116 int regFree1 = 0; /* Temporary use register */
3117
3118 assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
3119 exprX = *pExpr->pLeft;
3120 exprAnd.op = TK_AND;
3121 exprAnd.pLeft = &compLeft;
3122 exprAnd.pRight = &compRight;
3123 compLeft.op = TK_GE;
3124 compLeft.pLeft = &exprX;
3125 compLeft.pRight = pExpr->x.pList->a[0].pExpr;
3126 compRight.op = TK_LE;
3127 compRight.pLeft = &exprX;
3128 compRight.pRight = pExpr->x.pList->a[1].pExpr;
3129 exprX.iTable = sqlite3ExprCodeTemp(pParse, &exprX, ®Free1);
3130 exprX.op = TK_REGISTER;
3131 if( jumpIfTrue ){
3132 sqlite3ExprIfTrue(pParse, &exprAnd, dest, jumpIfNull);
3133 }else{
3134 sqlite3ExprIfFalse(pParse, &exprAnd, dest, jumpIfNull);
3135 }
3136 sqlite3ReleaseTempReg(pParse, regFree1);
3137
3138 /* Ensure adequate test coverage */
3139 testcase( jumpIfTrue==0 && jumpIfNull==0 && regFree1==0 );
3140 testcase( jumpIfTrue==0 && jumpIfNull==0 && regFree1!=0 );
3141 testcase( jumpIfTrue==0 && jumpIfNull!=0 && regFree1==0 );
3142 testcase( jumpIfTrue==0 && jumpIfNull!=0 && regFree1!=0 );
3143 testcase( jumpIfTrue!=0 && jumpIfNull==0 && regFree1==0 );
3144 testcase( jumpIfTrue!=0 && jumpIfNull==0 && regFree1!=0 );
3145 testcase( jumpIfTrue!=0 && jumpIfNull!=0 && regFree1==0 );
3146 testcase( jumpIfTrue!=0 && jumpIfNull!=0 && regFree1!=0 );
3147 }
3148
3149 /*
3150 ** Generate code for a boolean expression such that a jump is made
3151 ** to the label "dest" if the expression is true but execution
3152 ** continues straight thru if the expression is false.
3153 **
3154 ** If the expression evaluates to NULL (neither true nor false), then
3155 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL.
3156 **
3157 ** This code depends on the fact that certain token values (ex: TK_EQ)
3158 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding
3159 ** operation. Special comments in vdbe.c and the mkopcodeh.awk script in
3160 ** the make process cause these values to align. Assert()s in the code
3161 ** below verify that the numbers are aligned correctly.
3162 */
sqlite3ExprIfTrue(Parse * pParse,Expr * pExpr,int dest,int jumpIfNull)3163 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
3164 Vdbe *v = pParse->pVdbe;
3165 int op = 0;
3166 int regFree1 = 0;
3167 int regFree2 = 0;
3168 int r1, r2;
3169
3170 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
3171 if( NEVER(v==0) ) return; /* Existance of VDBE checked by caller */
3172 if( NEVER(pExpr==0) ) return; /* No way this can happen */
3173 op = pExpr->op;
3174 switch( op ){
3175 case TK_AND: {
3176 int d2 = sqlite3VdbeMakeLabel(v);
3177 testcase( jumpIfNull==0 );
3178 sqlite3ExprCachePush(pParse);
3179 sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,jumpIfNull^SQLITE_JUMPIFNULL);
3180 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
3181 sqlite3VdbeResolveLabel(v, d2);
3182 sqlite3ExprCachePop(pParse, 1);
3183 break;
3184 }
3185 case TK_OR: {
3186 testcase( jumpIfNull==0 );
3187 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
3188 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
3189 break;
3190 }
3191 case TK_NOT: {
3192 testcase( jumpIfNull==0 );
3193 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
3194 break;
3195 }
3196 case TK_LT:
3197 case TK_LE:
3198 case TK_GT:
3199 case TK_GE:
3200 case TK_NE:
3201 case TK_EQ: {
3202 assert( TK_LT==OP_Lt );
3203 assert( TK_LE==OP_Le );
3204 assert( TK_GT==OP_Gt );
3205 assert( TK_GE==OP_Ge );
3206 assert( TK_EQ==OP_Eq );
3207 assert( TK_NE==OP_Ne );
3208 testcase( op==TK_LT );
3209 testcase( op==TK_LE );
3210 testcase( op==TK_GT );
3211 testcase( op==TK_GE );
3212 testcase( op==TK_EQ );
3213 testcase( op==TK_NE );
3214 testcase( jumpIfNull==0 );
3215 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1);
3216 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2);
3217 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
3218 r1, r2, dest, jumpIfNull);
3219 testcase( regFree1==0 );
3220 testcase( regFree2==0 );
3221 break;
3222 }
3223 case TK_IS:
3224 case TK_ISNOT: {
3225 testcase( op==TK_IS );
3226 testcase( op==TK_ISNOT );
3227 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1);
3228 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2);
3229 op = (op==TK_IS) ? TK_EQ : TK_NE;
3230 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
3231 r1, r2, dest, SQLITE_NULLEQ);
3232 testcase( regFree1==0 );
3233 testcase( regFree2==0 );
3234 break;
3235 }
3236 case TK_ISNULL:
3237 case TK_NOTNULL: {
3238 assert( TK_ISNULL==OP_IsNull );
3239 assert( TK_NOTNULL==OP_NotNull );
3240 testcase( op==TK_ISNULL );
3241 testcase( op==TK_NOTNULL );
3242 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1);
3243 sqlite3VdbeAddOp2(v, op, r1, dest);
3244 testcase( regFree1==0 );
3245 break;
3246 }
3247 case TK_BETWEEN: {
3248 testcase( jumpIfNull==0 );
3249 exprCodeBetween(pParse, pExpr, dest, 1, jumpIfNull);
3250 break;
3251 }
3252 #ifndef SQLITE_OMIT_SUBQUERY
3253 case TK_IN: {
3254 int destIfFalse = sqlite3VdbeMakeLabel(v);
3255 int destIfNull = jumpIfNull ? dest : destIfFalse;
3256 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
3257 sqlite3VdbeAddOp2(v, OP_Goto, 0, dest);
3258 sqlite3VdbeResolveLabel(v, destIfFalse);
3259 break;
3260 }
3261 #endif
3262 default: {
3263 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1);
3264 sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0);
3265 testcase( regFree1==0 );
3266 testcase( jumpIfNull==0 );
3267 break;
3268 }
3269 }
3270 sqlite3ReleaseTempReg(pParse, regFree1);
3271 sqlite3ReleaseTempReg(pParse, regFree2);
3272 }
3273
3274 /*
3275 ** Generate code for a boolean expression such that a jump is made
3276 ** to the label "dest" if the expression is false but execution
3277 ** continues straight thru if the expression is true.
3278 **
3279 ** If the expression evaluates to NULL (neither true nor false) then
3280 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull
3281 ** is 0.
3282 */
sqlite3ExprIfFalse(Parse * pParse,Expr * pExpr,int dest,int jumpIfNull)3283 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
3284 Vdbe *v = pParse->pVdbe;
3285 int op = 0;
3286 int regFree1 = 0;
3287 int regFree2 = 0;
3288 int r1, r2;
3289
3290 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
3291 if( NEVER(v==0) ) return; /* Existance of VDBE checked by caller */
3292 if( pExpr==0 ) return;
3293
3294 /* The value of pExpr->op and op are related as follows:
3295 **
3296 ** pExpr->op op
3297 ** --------- ----------
3298 ** TK_ISNULL OP_NotNull
3299 ** TK_NOTNULL OP_IsNull
3300 ** TK_NE OP_Eq
3301 ** TK_EQ OP_Ne
3302 ** TK_GT OP_Le
3303 ** TK_LE OP_Gt
3304 ** TK_GE OP_Lt
3305 ** TK_LT OP_Ge
3306 **
3307 ** For other values of pExpr->op, op is undefined and unused.
3308 ** The value of TK_ and OP_ constants are arranged such that we
3309 ** can compute the mapping above using the following expression.
3310 ** Assert()s verify that the computation is correct.
3311 */
3312 op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1);
3313
3314 /* Verify correct alignment of TK_ and OP_ constants
3315 */
3316 assert( pExpr->op!=TK_ISNULL || op==OP_NotNull );
3317 assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull );
3318 assert( pExpr->op!=TK_NE || op==OP_Eq );
3319 assert( pExpr->op!=TK_EQ || op==OP_Ne );
3320 assert( pExpr->op!=TK_LT || op==OP_Ge );
3321 assert( pExpr->op!=TK_LE || op==OP_Gt );
3322 assert( pExpr->op!=TK_GT || op==OP_Le );
3323 assert( pExpr->op!=TK_GE || op==OP_Lt );
3324
3325 switch( pExpr->op ){
3326 case TK_AND: {
3327 testcase( jumpIfNull==0 );
3328 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
3329 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
3330 break;
3331 }
3332 case TK_OR: {
3333 int d2 = sqlite3VdbeMakeLabel(v);
3334 testcase( jumpIfNull==0 );
3335 sqlite3ExprCachePush(pParse);
3336 sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, jumpIfNull^SQLITE_JUMPIFNULL);
3337 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
3338 sqlite3VdbeResolveLabel(v, d2);
3339 sqlite3ExprCachePop(pParse, 1);
3340 break;
3341 }
3342 case TK_NOT: {
3343 testcase( jumpIfNull==0 );
3344 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
3345 break;
3346 }
3347 case TK_LT:
3348 case TK_LE:
3349 case TK_GT:
3350 case TK_GE:
3351 case TK_NE:
3352 case TK_EQ: {
3353 testcase( op==TK_LT );
3354 testcase( op==TK_LE );
3355 testcase( op==TK_GT );
3356 testcase( op==TK_GE );
3357 testcase( op==TK_EQ );
3358 testcase( op==TK_NE );
3359 testcase( jumpIfNull==0 );
3360 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1);
3361 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2);
3362 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
3363 r1, r2, dest, jumpIfNull);
3364 testcase( regFree1==0 );
3365 testcase( regFree2==0 );
3366 break;
3367 }
3368 case TK_IS:
3369 case TK_ISNOT: {
3370 testcase( pExpr->op==TK_IS );
3371 testcase( pExpr->op==TK_ISNOT );
3372 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1);
3373 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2);
3374 op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ;
3375 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
3376 r1, r2, dest, SQLITE_NULLEQ);
3377 testcase( regFree1==0 );
3378 testcase( regFree2==0 );
3379 break;
3380 }
3381 case TK_ISNULL:
3382 case TK_NOTNULL: {
3383 testcase( op==TK_ISNULL );
3384 testcase( op==TK_NOTNULL );
3385 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1);
3386 sqlite3VdbeAddOp2(v, op, r1, dest);
3387 testcase( regFree1==0 );
3388 break;
3389 }
3390 case TK_BETWEEN: {
3391 testcase( jumpIfNull==0 );
3392 exprCodeBetween(pParse, pExpr, dest, 0, jumpIfNull);
3393 break;
3394 }
3395 #ifndef SQLITE_OMIT_SUBQUERY
3396 case TK_IN: {
3397 if( jumpIfNull ){
3398 sqlite3ExprCodeIN(pParse, pExpr, dest, dest);
3399 }else{
3400 int destIfNull = sqlite3VdbeMakeLabel(v);
3401 sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull);
3402 sqlite3VdbeResolveLabel(v, destIfNull);
3403 }
3404 break;
3405 }
3406 #endif
3407 default: {
3408 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1);
3409 sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0);
3410 testcase( regFree1==0 );
3411 testcase( jumpIfNull==0 );
3412 break;
3413 }
3414 }
3415 sqlite3ReleaseTempReg(pParse, regFree1);
3416 sqlite3ReleaseTempReg(pParse, regFree2);
3417 }
3418
3419 /*
3420 ** Do a deep comparison of two expression trees. Return 0 if the two
3421 ** expressions are completely identical. Return 1 if they differ only
3422 ** by a COLLATE operator at the top level. Return 2 if there are differences
3423 ** other than the top-level COLLATE operator.
3424 **
3425 ** Sometimes this routine will return 2 even if the two expressions
3426 ** really are equivalent. If we cannot prove that the expressions are
3427 ** identical, we return 2 just to be safe. So if this routine
3428 ** returns 2, then you do not really know for certain if the two
3429 ** expressions are the same. But if you get a 0 or 1 return, then you
3430 ** can be sure the expressions are the same. In the places where
3431 ** this routine is used, it does not hurt to get an extra 2 - that
3432 ** just might result in some slightly slower code. But returning
3433 ** an incorrect 0 or 1 could lead to a malfunction.
3434 */
sqlite3ExprCompare(Expr * pA,Expr * pB)3435 int sqlite3ExprCompare(Expr *pA, Expr *pB){
3436 if( pA==0||pB==0 ){
3437 return pB==pA ? 0 : 2;
3438 }
3439 assert( !ExprHasAnyProperty(pA, EP_TokenOnly|EP_Reduced) );
3440 assert( !ExprHasAnyProperty(pB, EP_TokenOnly|EP_Reduced) );
3441 if( ExprHasProperty(pA, EP_xIsSelect) || ExprHasProperty(pB, EP_xIsSelect) ){
3442 return 2;
3443 }
3444 if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 2;
3445 if( pA->op!=pB->op ) return 2;
3446 if( sqlite3ExprCompare(pA->pLeft, pB->pLeft) ) return 2;
3447 if( sqlite3ExprCompare(pA->pRight, pB->pRight) ) return 2;
3448 if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList) ) return 2;
3449 if( pA->iTable!=pB->iTable || pA->iColumn!=pB->iColumn ) return 2;
3450 if( ExprHasProperty(pA, EP_IntValue) ){
3451 if( !ExprHasProperty(pB, EP_IntValue) || pA->u.iValue!=pB->u.iValue ){
3452 return 2;
3453 }
3454 }else if( pA->op!=TK_COLUMN && pA->u.zToken ){
3455 if( ExprHasProperty(pB, EP_IntValue) || NEVER(pB->u.zToken==0) ) return 2;
3456 if( sqlite3StrICmp(pA->u.zToken,pB->u.zToken)!=0 ){
3457 return 2;
3458 }
3459 }
3460 if( (pA->flags & EP_ExpCollate)!=(pB->flags & EP_ExpCollate) ) return 1;
3461 if( (pA->flags & EP_ExpCollate)!=0 && pA->pColl!=pB->pColl ) return 2;
3462 return 0;
3463 }
3464
3465 /*
3466 ** Compare two ExprList objects. Return 0 if they are identical and
3467 ** non-zero if they differ in any way.
3468 **
3469 ** This routine might return non-zero for equivalent ExprLists. The
3470 ** only consequence will be disabled optimizations. But this routine
3471 ** must never return 0 if the two ExprList objects are different, or
3472 ** a malfunction will result.
3473 **
3474 ** Two NULL pointers are considered to be the same. But a NULL pointer
3475 ** always differs from a non-NULL pointer.
3476 */
sqlite3ExprListCompare(ExprList * pA,ExprList * pB)3477 int sqlite3ExprListCompare(ExprList *pA, ExprList *pB){
3478 int i;
3479 if( pA==0 && pB==0 ) return 0;
3480 if( pA==0 || pB==0 ) return 1;
3481 if( pA->nExpr!=pB->nExpr ) return 1;
3482 for(i=0; i<pA->nExpr; i++){
3483 Expr *pExprA = pA->a[i].pExpr;
3484 Expr *pExprB = pB->a[i].pExpr;
3485 if( pA->a[i].sortOrder!=pB->a[i].sortOrder ) return 1;
3486 if( sqlite3ExprCompare(pExprA, pExprB) ) return 1;
3487 }
3488 return 0;
3489 }
3490
3491 /*
3492 ** Add a new element to the pAggInfo->aCol[] array. Return the index of
3493 ** the new element. Return a negative number if malloc fails.
3494 */
addAggInfoColumn(sqlite3 * db,AggInfo * pInfo)3495 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){
3496 int i;
3497 pInfo->aCol = sqlite3ArrayAllocate(
3498 db,
3499 pInfo->aCol,
3500 sizeof(pInfo->aCol[0]),
3501 3,
3502 &pInfo->nColumn,
3503 &pInfo->nColumnAlloc,
3504 &i
3505 );
3506 return i;
3507 }
3508
3509 /*
3510 ** Add a new element to the pAggInfo->aFunc[] array. Return the index of
3511 ** the new element. Return a negative number if malloc fails.
3512 */
addAggInfoFunc(sqlite3 * db,AggInfo * pInfo)3513 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){
3514 int i;
3515 pInfo->aFunc = sqlite3ArrayAllocate(
3516 db,
3517 pInfo->aFunc,
3518 sizeof(pInfo->aFunc[0]),
3519 3,
3520 &pInfo->nFunc,
3521 &pInfo->nFuncAlloc,
3522 &i
3523 );
3524 return i;
3525 }
3526
3527 /*
3528 ** This is the xExprCallback for a tree walker. It is used to
3529 ** implement sqlite3ExprAnalyzeAggregates(). See sqlite3ExprAnalyzeAggregates
3530 ** for additional information.
3531 */
analyzeAggregate(Walker * pWalker,Expr * pExpr)3532 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){
3533 int i;
3534 NameContext *pNC = pWalker->u.pNC;
3535 Parse *pParse = pNC->pParse;
3536 SrcList *pSrcList = pNC->pSrcList;
3537 AggInfo *pAggInfo = pNC->pAggInfo;
3538
3539 switch( pExpr->op ){
3540 case TK_AGG_COLUMN:
3541 case TK_COLUMN: {
3542 testcase( pExpr->op==TK_AGG_COLUMN );
3543 testcase( pExpr->op==TK_COLUMN );
3544 /* Check to see if the column is in one of the tables in the FROM
3545 ** clause of the aggregate query */
3546 if( ALWAYS(pSrcList!=0) ){
3547 struct SrcList_item *pItem = pSrcList->a;
3548 for(i=0; i<pSrcList->nSrc; i++, pItem++){
3549 struct AggInfo_col *pCol;
3550 assert( !ExprHasAnyProperty(pExpr, EP_TokenOnly|EP_Reduced) );
3551 if( pExpr->iTable==pItem->iCursor ){
3552 /* If we reach this point, it means that pExpr refers to a table
3553 ** that is in the FROM clause of the aggregate query.
3554 **
3555 ** Make an entry for the column in pAggInfo->aCol[] if there
3556 ** is not an entry there already.
3557 */
3558 int k;
3559 pCol = pAggInfo->aCol;
3560 for(k=0; k<pAggInfo->nColumn; k++, pCol++){
3561 if( pCol->iTable==pExpr->iTable &&
3562 pCol->iColumn==pExpr->iColumn ){
3563 break;
3564 }
3565 }
3566 if( (k>=pAggInfo->nColumn)
3567 && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0
3568 ){
3569 pCol = &pAggInfo->aCol[k];
3570 pCol->pTab = pExpr->pTab;
3571 pCol->iTable = pExpr->iTable;
3572 pCol->iColumn = pExpr->iColumn;
3573 pCol->iMem = ++pParse->nMem;
3574 pCol->iSorterColumn = -1;
3575 pCol->pExpr = pExpr;
3576 if( pAggInfo->pGroupBy ){
3577 int j, n;
3578 ExprList *pGB = pAggInfo->pGroupBy;
3579 struct ExprList_item *pTerm = pGB->a;
3580 n = pGB->nExpr;
3581 for(j=0; j<n; j++, pTerm++){
3582 Expr *pE = pTerm->pExpr;
3583 if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable &&
3584 pE->iColumn==pExpr->iColumn ){
3585 pCol->iSorterColumn = j;
3586 break;
3587 }
3588 }
3589 }
3590 if( pCol->iSorterColumn<0 ){
3591 pCol->iSorterColumn = pAggInfo->nSortingColumn++;
3592 }
3593 }
3594 /* There is now an entry for pExpr in pAggInfo->aCol[] (either
3595 ** because it was there before or because we just created it).
3596 ** Convert the pExpr to be a TK_AGG_COLUMN referring to that
3597 ** pAggInfo->aCol[] entry.
3598 */
3599 ExprSetIrreducible(pExpr);
3600 pExpr->pAggInfo = pAggInfo;
3601 pExpr->op = TK_AGG_COLUMN;
3602 pExpr->iAgg = (i16)k;
3603 break;
3604 } /* endif pExpr->iTable==pItem->iCursor */
3605 } /* end loop over pSrcList */
3606 }
3607 return WRC_Prune;
3608 }
3609 case TK_AGG_FUNCTION: {
3610 /* The pNC->nDepth==0 test causes aggregate functions in subqueries
3611 ** to be ignored */
3612 if( pNC->nDepth==0 ){
3613 /* Check to see if pExpr is a duplicate of another aggregate
3614 ** function that is already in the pAggInfo structure
3615 */
3616 struct AggInfo_func *pItem = pAggInfo->aFunc;
3617 for(i=0; i<pAggInfo->nFunc; i++, pItem++){
3618 if( sqlite3ExprCompare(pItem->pExpr, pExpr)==0 ){
3619 break;
3620 }
3621 }
3622 if( i>=pAggInfo->nFunc ){
3623 /* pExpr is original. Make a new entry in pAggInfo->aFunc[]
3624 */
3625 u8 enc = ENC(pParse->db);
3626 i = addAggInfoFunc(pParse->db, pAggInfo);
3627 if( i>=0 ){
3628 assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
3629 pItem = &pAggInfo->aFunc[i];
3630 pItem->pExpr = pExpr;
3631 pItem->iMem = ++pParse->nMem;
3632 assert( !ExprHasProperty(pExpr, EP_IntValue) );
3633 pItem->pFunc = sqlite3FindFunction(pParse->db,
3634 pExpr->u.zToken, sqlite3Strlen30(pExpr->u.zToken),
3635 pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0);
3636 if( pExpr->flags & EP_Distinct ){
3637 pItem->iDistinct = pParse->nTab++;
3638 }else{
3639 pItem->iDistinct = -1;
3640 }
3641 }
3642 }
3643 /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry
3644 */
3645 assert( !ExprHasAnyProperty(pExpr, EP_TokenOnly|EP_Reduced) );
3646 ExprSetIrreducible(pExpr);
3647 pExpr->iAgg = (i16)i;
3648 pExpr->pAggInfo = pAggInfo;
3649 return WRC_Prune;
3650 }
3651 }
3652 }
3653 return WRC_Continue;
3654 }
analyzeAggregatesInSelect(Walker * pWalker,Select * pSelect)3655 static int analyzeAggregatesInSelect(Walker *pWalker, Select *pSelect){
3656 NameContext *pNC = pWalker->u.pNC;
3657 if( pNC->nDepth==0 ){
3658 pNC->nDepth++;
3659 sqlite3WalkSelect(pWalker, pSelect);
3660 pNC->nDepth--;
3661 return WRC_Prune;
3662 }else{
3663 return WRC_Continue;
3664 }
3665 }
3666
3667 /*
3668 ** Analyze the given expression looking for aggregate functions and
3669 ** for variables that need to be added to the pParse->aAgg[] array.
3670 ** Make additional entries to the pParse->aAgg[] array as necessary.
3671 **
3672 ** This routine should only be called after the expression has been
3673 ** analyzed by sqlite3ResolveExprNames().
3674 */
sqlite3ExprAnalyzeAggregates(NameContext * pNC,Expr * pExpr)3675 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){
3676 Walker w;
3677 w.xExprCallback = analyzeAggregate;
3678 w.xSelectCallback = analyzeAggregatesInSelect;
3679 w.u.pNC = pNC;
3680 assert( pNC->pSrcList!=0 );
3681 sqlite3WalkExpr(&w, pExpr);
3682 }
3683
3684 /*
3685 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an
3686 ** expression list. Return the number of errors.
3687 **
3688 ** If an error is found, the analysis is cut short.
3689 */
sqlite3ExprAnalyzeAggList(NameContext * pNC,ExprList * pList)3690 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){
3691 struct ExprList_item *pItem;
3692 int i;
3693 if( pList ){
3694 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
3695 sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr);
3696 }
3697 }
3698 }
3699
3700 /*
3701 ** Allocate a single new register for use to hold some intermediate result.
3702 */
sqlite3GetTempReg(Parse * pParse)3703 int sqlite3GetTempReg(Parse *pParse){
3704 if( pParse->nTempReg==0 ){
3705 return ++pParse->nMem;
3706 }
3707 return pParse->aTempReg[--pParse->nTempReg];
3708 }
3709
3710 /*
3711 ** Deallocate a register, making available for reuse for some other
3712 ** purpose.
3713 **
3714 ** If a register is currently being used by the column cache, then
3715 ** the dallocation is deferred until the column cache line that uses
3716 ** the register becomes stale.
3717 */
sqlite3ReleaseTempReg(Parse * pParse,int iReg)3718 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){
3719 if( iReg && pParse->nTempReg<ArraySize(pParse->aTempReg) ){
3720 int i;
3721 struct yColCache *p;
3722 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
3723 if( p->iReg==iReg ){
3724 p->tempReg = 1;
3725 return;
3726 }
3727 }
3728 pParse->aTempReg[pParse->nTempReg++] = iReg;
3729 }
3730 }
3731
3732 /*
3733 ** Allocate or deallocate a block of nReg consecutive registers
3734 */
sqlite3GetTempRange(Parse * pParse,int nReg)3735 int sqlite3GetTempRange(Parse *pParse, int nReg){
3736 int i, n;
3737 i = pParse->iRangeReg;
3738 n = pParse->nRangeReg;
3739 if( nReg<=n ){
3740 assert( !usedAsColumnCache(pParse, i, i+n-1) );
3741 pParse->iRangeReg += nReg;
3742 pParse->nRangeReg -= nReg;
3743 }else{
3744 i = pParse->nMem+1;
3745 pParse->nMem += nReg;
3746 }
3747 return i;
3748 }
sqlite3ReleaseTempRange(Parse * pParse,int iReg,int nReg)3749 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){
3750 sqlite3ExprCacheRemove(pParse, iReg, nReg);
3751 if( nReg>pParse->nRangeReg ){
3752 pParse->nRangeReg = nReg;
3753 pParse->iRangeReg = iReg;
3754 }
3755 }
3756