• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2 ** 2001 September 22
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This is the implementation of generic hash-tables used in SQLite.
13 ** We've modified it slightly to serve as a standalone hash table
14 ** implementation for the full-text indexing module.
15 */
16 
17 /*
18 ** The code in this file is only compiled if:
19 **
20 **     * The FTS2 module is being built as an extension
21 **       (in which case SQLITE_CORE is not defined), or
22 **
23 **     * The FTS2 module is being built into the core of
24 **       SQLite (in which case SQLITE_ENABLE_FTS2 is defined).
25 */
26 #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS2)
27 
28 #include <assert.h>
29 #include <stdlib.h>
30 #include <string.h>
31 
32 #include "sqlite3.h"
33 #include "fts2_hash.h"
34 
35 /*
36 ** Malloc and Free functions
37 */
fts2HashMalloc(int n)38 static void *fts2HashMalloc(int n){
39   void *p = sqlite3_malloc(n);
40   if( p ){
41     memset(p, 0, n);
42   }
43   return p;
44 }
fts2HashFree(void * p)45 static void fts2HashFree(void *p){
46   sqlite3_free(p);
47 }
48 
49 /* Turn bulk memory into a hash table object by initializing the
50 ** fields of the Hash structure.
51 **
52 ** "pNew" is a pointer to the hash table that is to be initialized.
53 ** keyClass is one of the constants
54 ** FTS2_HASH_BINARY or FTS2_HASH_STRING.  The value of keyClass
55 ** determines what kind of key the hash table will use.  "copyKey" is
56 ** true if the hash table should make its own private copy of keys and
57 ** false if it should just use the supplied pointer.
58 */
sqlite3Fts2HashInit(fts2Hash * pNew,int keyClass,int copyKey)59 void sqlite3Fts2HashInit(fts2Hash *pNew, int keyClass, int copyKey){
60   assert( pNew!=0 );
61   assert( keyClass>=FTS2_HASH_STRING && keyClass<=FTS2_HASH_BINARY );
62   pNew->keyClass = keyClass;
63   pNew->copyKey = copyKey;
64   pNew->first = 0;
65   pNew->count = 0;
66   pNew->htsize = 0;
67   pNew->ht = 0;
68 }
69 
70 /* Remove all entries from a hash table.  Reclaim all memory.
71 ** Call this routine to delete a hash table or to reset a hash table
72 ** to the empty state.
73 */
sqlite3Fts2HashClear(fts2Hash * pH)74 void sqlite3Fts2HashClear(fts2Hash *pH){
75   fts2HashElem *elem;         /* For looping over all elements of the table */
76 
77   assert( pH!=0 );
78   elem = pH->first;
79   pH->first = 0;
80   fts2HashFree(pH->ht);
81   pH->ht = 0;
82   pH->htsize = 0;
83   while( elem ){
84     fts2HashElem *next_elem = elem->next;
85     if( pH->copyKey && elem->pKey ){
86       fts2HashFree(elem->pKey);
87     }
88     fts2HashFree(elem);
89     elem = next_elem;
90   }
91   pH->count = 0;
92 }
93 
94 /*
95 ** Hash and comparison functions when the mode is FTS2_HASH_STRING
96 */
strHash(const void * pKey,int nKey)97 static int strHash(const void *pKey, int nKey){
98   const char *z = (const char *)pKey;
99   int h = 0;
100   if( nKey<=0 ) nKey = (int) strlen(z);
101   while( nKey > 0  ){
102     h = (h<<3) ^ h ^ *z++;
103     nKey--;
104   }
105   return h & 0x7fffffff;
106 }
strCompare(const void * pKey1,int n1,const void * pKey2,int n2)107 static int strCompare(const void *pKey1, int n1, const void *pKey2, int n2){
108   if( n1!=n2 ) return 1;
109   return strncmp((const char*)pKey1,(const char*)pKey2,n1);
110 }
111 
112 /*
113 ** Hash and comparison functions when the mode is FTS2_HASH_BINARY
114 */
binHash(const void * pKey,int nKey)115 static int binHash(const void *pKey, int nKey){
116   int h = 0;
117   const char *z = (const char *)pKey;
118   while( nKey-- > 0 ){
119     h = (h<<3) ^ h ^ *(z++);
120   }
121   return h & 0x7fffffff;
122 }
binCompare(const void * pKey1,int n1,const void * pKey2,int n2)123 static int binCompare(const void *pKey1, int n1, const void *pKey2, int n2){
124   if( n1!=n2 ) return 1;
125   return memcmp(pKey1,pKey2,n1);
126 }
127 
128 /*
129 ** Return a pointer to the appropriate hash function given the key class.
130 **
131 ** The C syntax in this function definition may be unfamilar to some
132 ** programmers, so we provide the following additional explanation:
133 **
134 ** The name of the function is "hashFunction".  The function takes a
135 ** single parameter "keyClass".  The return value of hashFunction()
136 ** is a pointer to another function.  Specifically, the return value
137 ** of hashFunction() is a pointer to a function that takes two parameters
138 ** with types "const void*" and "int" and returns an "int".
139 */
hashFunction(int keyClass)140 static int (*hashFunction(int keyClass))(const void*,int){
141   if( keyClass==FTS2_HASH_STRING ){
142     return &strHash;
143   }else{
144     assert( keyClass==FTS2_HASH_BINARY );
145     return &binHash;
146   }
147 }
148 
149 /*
150 ** Return a pointer to the appropriate hash function given the key class.
151 **
152 ** For help in interpreted the obscure C code in the function definition,
153 ** see the header comment on the previous function.
154 */
compareFunction(int keyClass)155 static int (*compareFunction(int keyClass))(const void*,int,const void*,int){
156   if( keyClass==FTS2_HASH_STRING ){
157     return &strCompare;
158   }else{
159     assert( keyClass==FTS2_HASH_BINARY );
160     return &binCompare;
161   }
162 }
163 
164 /* Link an element into the hash table
165 */
insertElement(fts2Hash * pH,struct _fts2ht * pEntry,fts2HashElem * pNew)166 static void insertElement(
167   fts2Hash *pH,            /* The complete hash table */
168   struct _fts2ht *pEntry,  /* The entry into which pNew is inserted */
169   fts2HashElem *pNew       /* The element to be inserted */
170 ){
171   fts2HashElem *pHead;     /* First element already in pEntry */
172   pHead = pEntry->chain;
173   if( pHead ){
174     pNew->next = pHead;
175     pNew->prev = pHead->prev;
176     if( pHead->prev ){ pHead->prev->next = pNew; }
177     else             { pH->first = pNew; }
178     pHead->prev = pNew;
179   }else{
180     pNew->next = pH->first;
181     if( pH->first ){ pH->first->prev = pNew; }
182     pNew->prev = 0;
183     pH->first = pNew;
184   }
185   pEntry->count++;
186   pEntry->chain = pNew;
187 }
188 
189 
190 /* Resize the hash table so that it cantains "new_size" buckets.
191 ** "new_size" must be a power of 2.  The hash table might fail
192 ** to resize if sqliteMalloc() fails.
193 */
rehash(fts2Hash * pH,int new_size)194 static void rehash(fts2Hash *pH, int new_size){
195   struct _fts2ht *new_ht;          /* The new hash table */
196   fts2HashElem *elem, *next_elem;  /* For looping over existing elements */
197   int (*xHash)(const void*,int);   /* The hash function */
198 
199   assert( (new_size & (new_size-1))==0 );
200   new_ht = (struct _fts2ht *)fts2HashMalloc( new_size*sizeof(struct _fts2ht) );
201   if( new_ht==0 ) return;
202   fts2HashFree(pH->ht);
203   pH->ht = new_ht;
204   pH->htsize = new_size;
205   xHash = hashFunction(pH->keyClass);
206   for(elem=pH->first, pH->first=0; elem; elem = next_elem){
207     int h = (*xHash)(elem->pKey, elem->nKey) & (new_size-1);
208     next_elem = elem->next;
209     insertElement(pH, &new_ht[h], elem);
210   }
211 }
212 
213 /* This function (for internal use only) locates an element in an
214 ** hash table that matches the given key.  The hash for this key has
215 ** already been computed and is passed as the 4th parameter.
216 */
findElementGivenHash(const fts2Hash * pH,const void * pKey,int nKey,int h)217 static fts2HashElem *findElementGivenHash(
218   const fts2Hash *pH, /* The pH to be searched */
219   const void *pKey,   /* The key we are searching for */
220   int nKey,
221   int h               /* The hash for this key. */
222 ){
223   fts2HashElem *elem;            /* Used to loop thru the element list */
224   int count;                     /* Number of elements left to test */
225   int (*xCompare)(const void*,int,const void*,int);  /* comparison function */
226 
227   if( pH->ht ){
228     struct _fts2ht *pEntry = &pH->ht[h];
229     elem = pEntry->chain;
230     count = pEntry->count;
231     xCompare = compareFunction(pH->keyClass);
232     while( count-- && elem ){
233       if( (*xCompare)(elem->pKey,elem->nKey,pKey,nKey)==0 ){
234         return elem;
235       }
236       elem = elem->next;
237     }
238   }
239   return 0;
240 }
241 
242 /* Remove a single entry from the hash table given a pointer to that
243 ** element and a hash on the element's key.
244 */
removeElementGivenHash(fts2Hash * pH,fts2HashElem * elem,int h)245 static void removeElementGivenHash(
246   fts2Hash *pH,         /* The pH containing "elem" */
247   fts2HashElem* elem,   /* The element to be removed from the pH */
248   int h                 /* Hash value for the element */
249 ){
250   struct _fts2ht *pEntry;
251   if( elem->prev ){
252     elem->prev->next = elem->next;
253   }else{
254     pH->first = elem->next;
255   }
256   if( elem->next ){
257     elem->next->prev = elem->prev;
258   }
259   pEntry = &pH->ht[h];
260   if( pEntry->chain==elem ){
261     pEntry->chain = elem->next;
262   }
263   pEntry->count--;
264   if( pEntry->count<=0 ){
265     pEntry->chain = 0;
266   }
267   if( pH->copyKey && elem->pKey ){
268     fts2HashFree(elem->pKey);
269   }
270   fts2HashFree( elem );
271   pH->count--;
272   if( pH->count<=0 ){
273     assert( pH->first==0 );
274     assert( pH->count==0 );
275     fts2HashClear(pH);
276   }
277 }
278 
279 /* Attempt to locate an element of the hash table pH with a key
280 ** that matches pKey,nKey.  Return the data for this element if it is
281 ** found, or NULL if there is no match.
282 */
sqlite3Fts2HashFind(const fts2Hash * pH,const void * pKey,int nKey)283 void *sqlite3Fts2HashFind(const fts2Hash *pH, const void *pKey, int nKey){
284   int h;                 /* A hash on key */
285   fts2HashElem *elem;    /* The element that matches key */
286   int (*xHash)(const void*,int);  /* The hash function */
287 
288   if( pH==0 || pH->ht==0 ) return 0;
289   xHash = hashFunction(pH->keyClass);
290   assert( xHash!=0 );
291   h = (*xHash)(pKey,nKey);
292   assert( (pH->htsize & (pH->htsize-1))==0 );
293   elem = findElementGivenHash(pH,pKey,nKey, h & (pH->htsize-1));
294   return elem ? elem->data : 0;
295 }
296 
297 /* Insert an element into the hash table pH.  The key is pKey,nKey
298 ** and the data is "data".
299 **
300 ** If no element exists with a matching key, then a new
301 ** element is created.  A copy of the key is made if the copyKey
302 ** flag is set.  NULL is returned.
303 **
304 ** If another element already exists with the same key, then the
305 ** new data replaces the old data and the old data is returned.
306 ** The key is not copied in this instance.  If a malloc fails, then
307 ** the new data is returned and the hash table is unchanged.
308 **
309 ** If the "data" parameter to this function is NULL, then the
310 ** element corresponding to "key" is removed from the hash table.
311 */
sqlite3Fts2HashInsert(fts2Hash * pH,const void * pKey,int nKey,void * data)312 void *sqlite3Fts2HashInsert(
313   fts2Hash *pH,        /* The hash table to insert into */
314   const void *pKey,    /* The key */
315   int nKey,            /* Number of bytes in the key */
316   void *data           /* The data */
317 ){
318   int hraw;                 /* Raw hash value of the key */
319   int h;                    /* the hash of the key modulo hash table size */
320   fts2HashElem *elem;       /* Used to loop thru the element list */
321   fts2HashElem *new_elem;   /* New element added to the pH */
322   int (*xHash)(const void*,int);  /* The hash function */
323 
324   assert( pH!=0 );
325   xHash = hashFunction(pH->keyClass);
326   assert( xHash!=0 );
327   hraw = (*xHash)(pKey, nKey);
328   assert( (pH->htsize & (pH->htsize-1))==0 );
329   h = hraw & (pH->htsize-1);
330   elem = findElementGivenHash(pH,pKey,nKey,h);
331   if( elem ){
332     void *old_data = elem->data;
333     if( data==0 ){
334       removeElementGivenHash(pH,elem,h);
335     }else{
336       elem->data = data;
337     }
338     return old_data;
339   }
340   if( data==0 ) return 0;
341   new_elem = (fts2HashElem*)fts2HashMalloc( sizeof(fts2HashElem) );
342   if( new_elem==0 ) return data;
343   if( pH->copyKey && pKey!=0 ){
344     new_elem->pKey = fts2HashMalloc( nKey );
345     if( new_elem->pKey==0 ){
346       fts2HashFree(new_elem);
347       return data;
348     }
349     memcpy((void*)new_elem->pKey, pKey, nKey);
350   }else{
351     new_elem->pKey = (void*)pKey;
352   }
353   new_elem->nKey = nKey;
354   pH->count++;
355   if( pH->htsize==0 ){
356     rehash(pH,8);
357     if( pH->htsize==0 ){
358       pH->count = 0;
359       fts2HashFree(new_elem);
360       return data;
361     }
362   }
363   if( pH->count > pH->htsize ){
364     rehash(pH,pH->htsize*2);
365   }
366   assert( pH->htsize>0 );
367   assert( (pH->htsize & (pH->htsize-1))==0 );
368   h = hraw & (pH->htsize-1);
369   insertElement(pH, &pH->ht[h], new_elem);
370   new_elem->data = data;
371   return 0;
372 }
373 
374 #endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS2) */
375