1 /*
2 ** 2003 September 6
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains code used for creating, destroying, and populating
13 ** a VDBE (or an "sqlite3_stmt" as it is known to the outside world.) Prior
14 ** to version 2.8.7, all this code was combined into the vdbe.c source file.
15 ** But that file was getting too big so this subroutines were split out.
16 */
17 #include "sqliteInt.h"
18 #include "vdbeInt.h"
19
20
21
22 /*
23 ** When debugging the code generator in a symbolic debugger, one can
24 ** set the sqlite3VdbeAddopTrace to 1 and all opcodes will be printed
25 ** as they are added to the instruction stream.
26 */
27 #ifdef SQLITE_DEBUG
28 int sqlite3VdbeAddopTrace = 0;
29 #endif
30
31
32 /*
33 ** Create a new virtual database engine.
34 */
sqlite3VdbeCreate(sqlite3 * db)35 Vdbe *sqlite3VdbeCreate(sqlite3 *db){
36 Vdbe *p;
37 p = sqlite3DbMallocZero(db, sizeof(Vdbe) );
38 if( p==0 ) return 0;
39 p->db = db;
40 if( db->pVdbe ){
41 db->pVdbe->pPrev = p;
42 }
43 p->pNext = db->pVdbe;
44 p->pPrev = 0;
45 db->pVdbe = p;
46 p->magic = VDBE_MAGIC_INIT;
47 return p;
48 }
49
50 /*
51 ** Remember the SQL string for a prepared statement.
52 */
sqlite3VdbeSetSql(Vdbe * p,const char * z,int n,int isPrepareV2)53 void sqlite3VdbeSetSql(Vdbe *p, const char *z, int n, int isPrepareV2){
54 assert( isPrepareV2==1 || isPrepareV2==0 );
55 if( p==0 ) return;
56 #ifdef SQLITE_OMIT_TRACE
57 if( !isPrepareV2 ) return;
58 #endif
59 assert( p->zSql==0 );
60 p->zSql = sqlite3DbStrNDup(p->db, z, n);
61 p->isPrepareV2 = (u8)isPrepareV2;
62 }
63
64 /*
65 ** Return the SQL associated with a prepared statement
66 */
sqlite3_sql(sqlite3_stmt * pStmt)67 const char *sqlite3_sql(sqlite3_stmt *pStmt){
68 Vdbe *p = (Vdbe *)pStmt;
69 return (p && p->isPrepareV2) ? p->zSql : 0;
70 }
71
72 /*
73 ** Swap all content between two VDBE structures.
74 */
sqlite3VdbeSwap(Vdbe * pA,Vdbe * pB)75 void sqlite3VdbeSwap(Vdbe *pA, Vdbe *pB){
76 Vdbe tmp, *pTmp;
77 char *zTmp;
78 tmp = *pA;
79 *pA = *pB;
80 *pB = tmp;
81 pTmp = pA->pNext;
82 pA->pNext = pB->pNext;
83 pB->pNext = pTmp;
84 pTmp = pA->pPrev;
85 pA->pPrev = pB->pPrev;
86 pB->pPrev = pTmp;
87 zTmp = pA->zSql;
88 pA->zSql = pB->zSql;
89 pB->zSql = zTmp;
90 pB->isPrepareV2 = pA->isPrepareV2;
91 }
92
93 #ifdef SQLITE_DEBUG
94 /*
95 ** Turn tracing on or off
96 */
sqlite3VdbeTrace(Vdbe * p,FILE * trace)97 void sqlite3VdbeTrace(Vdbe *p, FILE *trace){
98 p->trace = trace;
99 }
100 #endif
101
102 /*
103 ** Resize the Vdbe.aOp array so that it is at least one op larger than
104 ** it was.
105 **
106 ** If an out-of-memory error occurs while resizing the array, return
107 ** SQLITE_NOMEM. In this case Vdbe.aOp and Vdbe.nOpAlloc remain
108 ** unchanged (this is so that any opcodes already allocated can be
109 ** correctly deallocated along with the rest of the Vdbe).
110 */
growOpArray(Vdbe * p)111 static int growOpArray(Vdbe *p){
112 VdbeOp *pNew;
113 int nNew = (p->nOpAlloc ? p->nOpAlloc*2 : (int)(1024/sizeof(Op)));
114 pNew = sqlite3DbRealloc(p->db, p->aOp, nNew*sizeof(Op));
115 if( pNew ){
116 p->nOpAlloc = sqlite3DbMallocSize(p->db, pNew)/sizeof(Op);
117 p->aOp = pNew;
118 }
119 return (pNew ? SQLITE_OK : SQLITE_NOMEM);
120 }
121
122 /*
123 ** Add a new instruction to the list of instructions current in the
124 ** VDBE. Return the address of the new instruction.
125 **
126 ** Parameters:
127 **
128 ** p Pointer to the VDBE
129 **
130 ** op The opcode for this instruction
131 **
132 ** p1, p2, p3 Operands
133 **
134 ** Use the sqlite3VdbeResolveLabel() function to fix an address and
135 ** the sqlite3VdbeChangeP4() function to change the value of the P4
136 ** operand.
137 */
sqlite3VdbeAddOp3(Vdbe * p,int op,int p1,int p2,int p3)138 int sqlite3VdbeAddOp3(Vdbe *p, int op, int p1, int p2, int p3){
139 int i;
140 VdbeOp *pOp;
141
142 i = p->nOp;
143 assert( p->magic==VDBE_MAGIC_INIT );
144 assert( op>0 && op<0xff );
145 if( p->nOpAlloc<=i ){
146 if( growOpArray(p) ){
147 return 1;
148 }
149 }
150 p->nOp++;
151 pOp = &p->aOp[i];
152 pOp->opcode = (u8)op;
153 pOp->p5 = 0;
154 pOp->p1 = p1;
155 pOp->p2 = p2;
156 pOp->p3 = p3;
157 pOp->p4.p = 0;
158 pOp->p4type = P4_NOTUSED;
159 p->expired = 0;
160 if( op==OP_ParseSchema ){
161 /* Any program that uses the OP_ParseSchema opcode needs to lock
162 ** all btrees. */
163 int j;
164 for(j=0; j<p->db->nDb; j++) sqlite3VdbeUsesBtree(p, j);
165 }
166 #ifdef SQLITE_DEBUG
167 pOp->zComment = 0;
168 if( sqlite3VdbeAddopTrace ) sqlite3VdbePrintOp(0, i, &p->aOp[i]);
169 #endif
170 #ifdef VDBE_PROFILE
171 pOp->cycles = 0;
172 pOp->cnt = 0;
173 #endif
174 return i;
175 }
sqlite3VdbeAddOp0(Vdbe * p,int op)176 int sqlite3VdbeAddOp0(Vdbe *p, int op){
177 return sqlite3VdbeAddOp3(p, op, 0, 0, 0);
178 }
sqlite3VdbeAddOp1(Vdbe * p,int op,int p1)179 int sqlite3VdbeAddOp1(Vdbe *p, int op, int p1){
180 return sqlite3VdbeAddOp3(p, op, p1, 0, 0);
181 }
sqlite3VdbeAddOp2(Vdbe * p,int op,int p1,int p2)182 int sqlite3VdbeAddOp2(Vdbe *p, int op, int p1, int p2){
183 return sqlite3VdbeAddOp3(p, op, p1, p2, 0);
184 }
185
186
187 /*
188 ** Add an opcode that includes the p4 value as a pointer.
189 */
sqlite3VdbeAddOp4(Vdbe * p,int op,int p1,int p2,int p3,const char * zP4,int p4type)190 int sqlite3VdbeAddOp4(
191 Vdbe *p, /* Add the opcode to this VM */
192 int op, /* The new opcode */
193 int p1, /* The P1 operand */
194 int p2, /* The P2 operand */
195 int p3, /* The P3 operand */
196 const char *zP4, /* The P4 operand */
197 int p4type /* P4 operand type */
198 ){
199 int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3);
200 sqlite3VdbeChangeP4(p, addr, zP4, p4type);
201 return addr;
202 }
203
204 /*
205 ** Add an opcode that includes the p4 value as an integer.
206 */
sqlite3VdbeAddOp4Int(Vdbe * p,int op,int p1,int p2,int p3,int p4)207 int sqlite3VdbeAddOp4Int(
208 Vdbe *p, /* Add the opcode to this VM */
209 int op, /* The new opcode */
210 int p1, /* The P1 operand */
211 int p2, /* The P2 operand */
212 int p3, /* The P3 operand */
213 int p4 /* The P4 operand as an integer */
214 ){
215 int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3);
216 sqlite3VdbeChangeP4(p, addr, SQLITE_INT_TO_PTR(p4), P4_INT32);
217 return addr;
218 }
219
220 /*
221 ** Create a new symbolic label for an instruction that has yet to be
222 ** coded. The symbolic label is really just a negative number. The
223 ** label can be used as the P2 value of an operation. Later, when
224 ** the label is resolved to a specific address, the VDBE will scan
225 ** through its operation list and change all values of P2 which match
226 ** the label into the resolved address.
227 **
228 ** The VDBE knows that a P2 value is a label because labels are
229 ** always negative and P2 values are suppose to be non-negative.
230 ** Hence, a negative P2 value is a label that has yet to be resolved.
231 **
232 ** Zero is returned if a malloc() fails.
233 */
sqlite3VdbeMakeLabel(Vdbe * p)234 int sqlite3VdbeMakeLabel(Vdbe *p){
235 int i;
236 i = p->nLabel++;
237 assert( p->magic==VDBE_MAGIC_INIT );
238 if( i>=p->nLabelAlloc ){
239 int n = p->nLabelAlloc*2 + 5;
240 p->aLabel = sqlite3DbReallocOrFree(p->db, p->aLabel,
241 n*sizeof(p->aLabel[0]));
242 p->nLabelAlloc = sqlite3DbMallocSize(p->db, p->aLabel)/sizeof(p->aLabel[0]);
243 }
244 if( p->aLabel ){
245 p->aLabel[i] = -1;
246 }
247 return -1-i;
248 }
249
250 /*
251 ** Resolve label "x" to be the address of the next instruction to
252 ** be inserted. The parameter "x" must have been obtained from
253 ** a prior call to sqlite3VdbeMakeLabel().
254 */
sqlite3VdbeResolveLabel(Vdbe * p,int x)255 void sqlite3VdbeResolveLabel(Vdbe *p, int x){
256 int j = -1-x;
257 assert( p->magic==VDBE_MAGIC_INIT );
258 assert( j>=0 && j<p->nLabel );
259 if( p->aLabel ){
260 p->aLabel[j] = p->nOp;
261 }
262 }
263
264 /*
265 ** Mark the VDBE as one that can only be run one time.
266 */
sqlite3VdbeRunOnlyOnce(Vdbe * p)267 void sqlite3VdbeRunOnlyOnce(Vdbe *p){
268 p->runOnlyOnce = 1;
269 }
270
271 #ifdef SQLITE_DEBUG /* sqlite3AssertMayAbort() logic */
272
273 /*
274 ** The following type and function are used to iterate through all opcodes
275 ** in a Vdbe main program and each of the sub-programs (triggers) it may
276 ** invoke directly or indirectly. It should be used as follows:
277 **
278 ** Op *pOp;
279 ** VdbeOpIter sIter;
280 **
281 ** memset(&sIter, 0, sizeof(sIter));
282 ** sIter.v = v; // v is of type Vdbe*
283 ** while( (pOp = opIterNext(&sIter)) ){
284 ** // Do something with pOp
285 ** }
286 ** sqlite3DbFree(v->db, sIter.apSub);
287 **
288 */
289 typedef struct VdbeOpIter VdbeOpIter;
290 struct VdbeOpIter {
291 Vdbe *v; /* Vdbe to iterate through the opcodes of */
292 SubProgram **apSub; /* Array of subprograms */
293 int nSub; /* Number of entries in apSub */
294 int iAddr; /* Address of next instruction to return */
295 int iSub; /* 0 = main program, 1 = first sub-program etc. */
296 };
opIterNext(VdbeOpIter * p)297 static Op *opIterNext(VdbeOpIter *p){
298 Vdbe *v = p->v;
299 Op *pRet = 0;
300 Op *aOp;
301 int nOp;
302
303 if( p->iSub<=p->nSub ){
304
305 if( p->iSub==0 ){
306 aOp = v->aOp;
307 nOp = v->nOp;
308 }else{
309 aOp = p->apSub[p->iSub-1]->aOp;
310 nOp = p->apSub[p->iSub-1]->nOp;
311 }
312 assert( p->iAddr<nOp );
313
314 pRet = &aOp[p->iAddr];
315 p->iAddr++;
316 if( p->iAddr==nOp ){
317 p->iSub++;
318 p->iAddr = 0;
319 }
320
321 if( pRet->p4type==P4_SUBPROGRAM ){
322 int nByte = (p->nSub+1)*sizeof(SubProgram*);
323 int j;
324 for(j=0; j<p->nSub; j++){
325 if( p->apSub[j]==pRet->p4.pProgram ) break;
326 }
327 if( j==p->nSub ){
328 p->apSub = sqlite3DbReallocOrFree(v->db, p->apSub, nByte);
329 if( !p->apSub ){
330 pRet = 0;
331 }else{
332 p->apSub[p->nSub++] = pRet->p4.pProgram;
333 }
334 }
335 }
336 }
337
338 return pRet;
339 }
340
341 /*
342 ** Check if the program stored in the VM associated with pParse may
343 ** throw an ABORT exception (causing the statement, but not entire transaction
344 ** to be rolled back). This condition is true if the main program or any
345 ** sub-programs contains any of the following:
346 **
347 ** * OP_Halt with P1=SQLITE_CONSTRAINT and P2=OE_Abort.
348 ** * OP_HaltIfNull with P1=SQLITE_CONSTRAINT and P2=OE_Abort.
349 ** * OP_Destroy
350 ** * OP_VUpdate
351 ** * OP_VRename
352 ** * OP_FkCounter with P2==0 (immediate foreign key constraint)
353 **
354 ** Then check that the value of Parse.mayAbort is true if an
355 ** ABORT may be thrown, or false otherwise. Return true if it does
356 ** match, or false otherwise. This function is intended to be used as
357 ** part of an assert statement in the compiler. Similar to:
358 **
359 ** assert( sqlite3VdbeAssertMayAbort(pParse->pVdbe, pParse->mayAbort) );
360 */
sqlite3VdbeAssertMayAbort(Vdbe * v,int mayAbort)361 int sqlite3VdbeAssertMayAbort(Vdbe *v, int mayAbort){
362 int hasAbort = 0;
363 Op *pOp;
364 VdbeOpIter sIter;
365 memset(&sIter, 0, sizeof(sIter));
366 sIter.v = v;
367
368 while( (pOp = opIterNext(&sIter))!=0 ){
369 int opcode = pOp->opcode;
370 if( opcode==OP_Destroy || opcode==OP_VUpdate || opcode==OP_VRename
371 #ifndef SQLITE_OMIT_FOREIGN_KEY
372 || (opcode==OP_FkCounter && pOp->p1==0 && pOp->p2==1)
373 #endif
374 || ((opcode==OP_Halt || opcode==OP_HaltIfNull)
375 && (pOp->p1==SQLITE_CONSTRAINT && pOp->p2==OE_Abort))
376 ){
377 hasAbort = 1;
378 break;
379 }
380 }
381 sqlite3DbFree(v->db, sIter.apSub);
382
383 /* Return true if hasAbort==mayAbort. Or if a malloc failure occured.
384 ** If malloc failed, then the while() loop above may not have iterated
385 ** through all opcodes and hasAbort may be set incorrectly. Return
386 ** true for this case to prevent the assert() in the callers frame
387 ** from failing. */
388 return ( v->db->mallocFailed || hasAbort==mayAbort );
389 }
390 #endif /* SQLITE_DEBUG - the sqlite3AssertMayAbort() function */
391
392 /*
393 ** Loop through the program looking for P2 values that are negative
394 ** on jump instructions. Each such value is a label. Resolve the
395 ** label by setting the P2 value to its correct non-zero value.
396 **
397 ** This routine is called once after all opcodes have been inserted.
398 **
399 ** Variable *pMaxFuncArgs is set to the maximum value of any P2 argument
400 ** to an OP_Function, OP_AggStep or OP_VFilter opcode. This is used by
401 ** sqlite3VdbeMakeReady() to size the Vdbe.apArg[] array.
402 **
403 ** The Op.opflags field is set on all opcodes.
404 */
resolveP2Values(Vdbe * p,int * pMaxFuncArgs)405 static void resolveP2Values(Vdbe *p, int *pMaxFuncArgs){
406 int i;
407 int nMaxArgs = *pMaxFuncArgs;
408 Op *pOp;
409 int *aLabel = p->aLabel;
410 p->readOnly = 1;
411 for(pOp=p->aOp, i=p->nOp-1; i>=0; i--, pOp++){
412 u8 opcode = pOp->opcode;
413
414 pOp->opflags = sqlite3OpcodeProperty[opcode];
415 if( opcode==OP_Function || opcode==OP_AggStep ){
416 if( pOp->p5>nMaxArgs ) nMaxArgs = pOp->p5;
417 }else if( (opcode==OP_Transaction && pOp->p2!=0) || opcode==OP_Vacuum ){
418 p->readOnly = 0;
419 #ifndef SQLITE_OMIT_VIRTUALTABLE
420 }else if( opcode==OP_VUpdate ){
421 if( pOp->p2>nMaxArgs ) nMaxArgs = pOp->p2;
422 }else if( opcode==OP_VFilter ){
423 int n;
424 assert( p->nOp - i >= 3 );
425 assert( pOp[-1].opcode==OP_Integer );
426 n = pOp[-1].p1;
427 if( n>nMaxArgs ) nMaxArgs = n;
428 #endif
429 }
430
431 if( (pOp->opflags & OPFLG_JUMP)!=0 && pOp->p2<0 ){
432 assert( -1-pOp->p2<p->nLabel );
433 pOp->p2 = aLabel[-1-pOp->p2];
434 }
435 }
436 sqlite3DbFree(p->db, p->aLabel);
437 p->aLabel = 0;
438
439 *pMaxFuncArgs = nMaxArgs;
440 }
441
442 /*
443 ** Return the address of the next instruction to be inserted.
444 */
sqlite3VdbeCurrentAddr(Vdbe * p)445 int sqlite3VdbeCurrentAddr(Vdbe *p){
446 assert( p->magic==VDBE_MAGIC_INIT );
447 return p->nOp;
448 }
449
450 /*
451 ** This function returns a pointer to the array of opcodes associated with
452 ** the Vdbe passed as the first argument. It is the callers responsibility
453 ** to arrange for the returned array to be eventually freed using the
454 ** vdbeFreeOpArray() function.
455 **
456 ** Before returning, *pnOp is set to the number of entries in the returned
457 ** array. Also, *pnMaxArg is set to the larger of its current value and
458 ** the number of entries in the Vdbe.apArg[] array required to execute the
459 ** returned program.
460 */
sqlite3VdbeTakeOpArray(Vdbe * p,int * pnOp,int * pnMaxArg)461 VdbeOp *sqlite3VdbeTakeOpArray(Vdbe *p, int *pnOp, int *pnMaxArg){
462 VdbeOp *aOp = p->aOp;
463 assert( aOp && !p->db->mallocFailed );
464
465 /* Check that sqlite3VdbeUsesBtree() was not called on this VM */
466 assert( p->btreeMask==0 );
467
468 resolveP2Values(p, pnMaxArg);
469 *pnOp = p->nOp;
470 p->aOp = 0;
471 return aOp;
472 }
473
474 /*
475 ** Add a whole list of operations to the operation stack. Return the
476 ** address of the first operation added.
477 */
sqlite3VdbeAddOpList(Vdbe * p,int nOp,VdbeOpList const * aOp)478 int sqlite3VdbeAddOpList(Vdbe *p, int nOp, VdbeOpList const *aOp){
479 int addr;
480 assert( p->magic==VDBE_MAGIC_INIT );
481 if( p->nOp + nOp > p->nOpAlloc && growOpArray(p) ){
482 return 0;
483 }
484 addr = p->nOp;
485 if( ALWAYS(nOp>0) ){
486 int i;
487 VdbeOpList const *pIn = aOp;
488 for(i=0; i<nOp; i++, pIn++){
489 int p2 = pIn->p2;
490 VdbeOp *pOut = &p->aOp[i+addr];
491 pOut->opcode = pIn->opcode;
492 pOut->p1 = pIn->p1;
493 if( p2<0 && (sqlite3OpcodeProperty[pOut->opcode] & OPFLG_JUMP)!=0 ){
494 pOut->p2 = addr + ADDR(p2);
495 }else{
496 pOut->p2 = p2;
497 }
498 pOut->p3 = pIn->p3;
499 pOut->p4type = P4_NOTUSED;
500 pOut->p4.p = 0;
501 pOut->p5 = 0;
502 #ifdef SQLITE_DEBUG
503 pOut->zComment = 0;
504 if( sqlite3VdbeAddopTrace ){
505 sqlite3VdbePrintOp(0, i+addr, &p->aOp[i+addr]);
506 }
507 #endif
508 }
509 p->nOp += nOp;
510 }
511 return addr;
512 }
513
514 /*
515 ** Change the value of the P1 operand for a specific instruction.
516 ** This routine is useful when a large program is loaded from a
517 ** static array using sqlite3VdbeAddOpList but we want to make a
518 ** few minor changes to the program.
519 */
sqlite3VdbeChangeP1(Vdbe * p,int addr,int val)520 void sqlite3VdbeChangeP1(Vdbe *p, int addr, int val){
521 assert( p!=0 );
522 assert( addr>=0 );
523 if( p->nOp>addr ){
524 p->aOp[addr].p1 = val;
525 }
526 }
527
528 /*
529 ** Change the value of the P2 operand for a specific instruction.
530 ** This routine is useful for setting a jump destination.
531 */
sqlite3VdbeChangeP2(Vdbe * p,int addr,int val)532 void sqlite3VdbeChangeP2(Vdbe *p, int addr, int val){
533 assert( p!=0 );
534 assert( addr>=0 );
535 if( p->nOp>addr ){
536 p->aOp[addr].p2 = val;
537 }
538 }
539
540 /*
541 ** Change the value of the P3 operand for a specific instruction.
542 */
sqlite3VdbeChangeP3(Vdbe * p,int addr,int val)543 void sqlite3VdbeChangeP3(Vdbe *p, int addr, int val){
544 assert( p!=0 );
545 assert( addr>=0 );
546 if( p->nOp>addr ){
547 p->aOp[addr].p3 = val;
548 }
549 }
550
551 /*
552 ** Change the value of the P5 operand for the most recently
553 ** added operation.
554 */
sqlite3VdbeChangeP5(Vdbe * p,u8 val)555 void sqlite3VdbeChangeP5(Vdbe *p, u8 val){
556 assert( p!=0 );
557 if( p->aOp ){
558 assert( p->nOp>0 );
559 p->aOp[p->nOp-1].p5 = val;
560 }
561 }
562
563 /*
564 ** Change the P2 operand of instruction addr so that it points to
565 ** the address of the next instruction to be coded.
566 */
sqlite3VdbeJumpHere(Vdbe * p,int addr)567 void sqlite3VdbeJumpHere(Vdbe *p, int addr){
568 assert( addr>=0 );
569 sqlite3VdbeChangeP2(p, addr, p->nOp);
570 }
571
572
573 /*
574 ** If the input FuncDef structure is ephemeral, then free it. If
575 ** the FuncDef is not ephermal, then do nothing.
576 */
freeEphemeralFunction(sqlite3 * db,FuncDef * pDef)577 static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef){
578 if( ALWAYS(pDef) && (pDef->flags & SQLITE_FUNC_EPHEM)!=0 ){
579 sqlite3DbFree(db, pDef);
580 }
581 }
582
583 static void vdbeFreeOpArray(sqlite3 *, Op *, int);
584
585 /*
586 ** Delete a P4 value if necessary.
587 */
freeP4(sqlite3 * db,int p4type,void * p4)588 static void freeP4(sqlite3 *db, int p4type, void *p4){
589 if( p4 ){
590 assert( db );
591 switch( p4type ){
592 case P4_REAL:
593 case P4_INT64:
594 case P4_DYNAMIC:
595 case P4_KEYINFO:
596 case P4_INTARRAY:
597 case P4_KEYINFO_HANDOFF: {
598 sqlite3DbFree(db, p4);
599 break;
600 }
601 case P4_MPRINTF: {
602 if( db->pnBytesFreed==0 ) sqlite3_free(p4);
603 break;
604 }
605 case P4_VDBEFUNC: {
606 VdbeFunc *pVdbeFunc = (VdbeFunc *)p4;
607 freeEphemeralFunction(db, pVdbeFunc->pFunc);
608 if( db->pnBytesFreed==0 ) sqlite3VdbeDeleteAuxData(pVdbeFunc, 0);
609 sqlite3DbFree(db, pVdbeFunc);
610 break;
611 }
612 case P4_FUNCDEF: {
613 freeEphemeralFunction(db, (FuncDef*)p4);
614 break;
615 }
616 case P4_MEM: {
617 if( db->pnBytesFreed==0 ){
618 sqlite3ValueFree((sqlite3_value*)p4);
619 }else{
620 Mem *p = (Mem*)p4;
621 sqlite3DbFree(db, p->zMalloc);
622 sqlite3DbFree(db, p);
623 }
624 break;
625 }
626 case P4_VTAB : {
627 if( db->pnBytesFreed==0 ) sqlite3VtabUnlock((VTable *)p4);
628 break;
629 }
630 }
631 }
632 }
633
634 /*
635 ** Free the space allocated for aOp and any p4 values allocated for the
636 ** opcodes contained within. If aOp is not NULL it is assumed to contain
637 ** nOp entries.
638 */
vdbeFreeOpArray(sqlite3 * db,Op * aOp,int nOp)639 static void vdbeFreeOpArray(sqlite3 *db, Op *aOp, int nOp){
640 if( aOp ){
641 Op *pOp;
642 for(pOp=aOp; pOp<&aOp[nOp]; pOp++){
643 freeP4(db, pOp->p4type, pOp->p4.p);
644 #ifdef SQLITE_DEBUG
645 sqlite3DbFree(db, pOp->zComment);
646 #endif
647 }
648 }
649 sqlite3DbFree(db, aOp);
650 }
651
652 /*
653 ** Link the SubProgram object passed as the second argument into the linked
654 ** list at Vdbe.pSubProgram. This list is used to delete all sub-program
655 ** objects when the VM is no longer required.
656 */
sqlite3VdbeLinkSubProgram(Vdbe * pVdbe,SubProgram * p)657 void sqlite3VdbeLinkSubProgram(Vdbe *pVdbe, SubProgram *p){
658 p->pNext = pVdbe->pProgram;
659 pVdbe->pProgram = p;
660 }
661
662 /*
663 ** Change N opcodes starting at addr to No-ops.
664 */
sqlite3VdbeChangeToNoop(Vdbe * p,int addr,int N)665 void sqlite3VdbeChangeToNoop(Vdbe *p, int addr, int N){
666 if( p->aOp ){
667 VdbeOp *pOp = &p->aOp[addr];
668 sqlite3 *db = p->db;
669 while( N-- ){
670 freeP4(db, pOp->p4type, pOp->p4.p);
671 memset(pOp, 0, sizeof(pOp[0]));
672 pOp->opcode = OP_Noop;
673 pOp++;
674 }
675 }
676 }
677
678 /*
679 ** Change the value of the P4 operand for a specific instruction.
680 ** This routine is useful when a large program is loaded from a
681 ** static array using sqlite3VdbeAddOpList but we want to make a
682 ** few minor changes to the program.
683 **
684 ** If n>=0 then the P4 operand is dynamic, meaning that a copy of
685 ** the string is made into memory obtained from sqlite3_malloc().
686 ** A value of n==0 means copy bytes of zP4 up to and including the
687 ** first null byte. If n>0 then copy n+1 bytes of zP4.
688 **
689 ** If n==P4_KEYINFO it means that zP4 is a pointer to a KeyInfo structure.
690 ** A copy is made of the KeyInfo structure into memory obtained from
691 ** sqlite3_malloc, to be freed when the Vdbe is finalized.
692 ** n==P4_KEYINFO_HANDOFF indicates that zP4 points to a KeyInfo structure
693 ** stored in memory that the caller has obtained from sqlite3_malloc. The
694 ** caller should not free the allocation, it will be freed when the Vdbe is
695 ** finalized.
696 **
697 ** Other values of n (P4_STATIC, P4_COLLSEQ etc.) indicate that zP4 points
698 ** to a string or structure that is guaranteed to exist for the lifetime of
699 ** the Vdbe. In these cases we can just copy the pointer.
700 **
701 ** If addr<0 then change P4 on the most recently inserted instruction.
702 */
sqlite3VdbeChangeP4(Vdbe * p,int addr,const char * zP4,int n)703 void sqlite3VdbeChangeP4(Vdbe *p, int addr, const char *zP4, int n){
704 Op *pOp;
705 sqlite3 *db;
706 assert( p!=0 );
707 db = p->db;
708 assert( p->magic==VDBE_MAGIC_INIT );
709 if( p->aOp==0 || db->mallocFailed ){
710 if ( n!=P4_KEYINFO && n!=P4_VTAB ) {
711 freeP4(db, n, (void*)*(char**)&zP4);
712 }
713 return;
714 }
715 assert( p->nOp>0 );
716 assert( addr<p->nOp );
717 if( addr<0 ){
718 addr = p->nOp - 1;
719 }
720 pOp = &p->aOp[addr];
721 freeP4(db, pOp->p4type, pOp->p4.p);
722 pOp->p4.p = 0;
723 if( n==P4_INT32 ){
724 /* Note: this cast is safe, because the origin data point was an int
725 ** that was cast to a (const char *). */
726 pOp->p4.i = SQLITE_PTR_TO_INT(zP4);
727 pOp->p4type = P4_INT32;
728 }else if( zP4==0 ){
729 pOp->p4.p = 0;
730 pOp->p4type = P4_NOTUSED;
731 }else if( n==P4_KEYINFO ){
732 KeyInfo *pKeyInfo;
733 int nField, nByte;
734
735 nField = ((KeyInfo*)zP4)->nField;
736 nByte = sizeof(*pKeyInfo) + (nField-1)*sizeof(pKeyInfo->aColl[0]) + nField;
737 pKeyInfo = sqlite3DbMallocRaw(0, nByte);
738 pOp->p4.pKeyInfo = pKeyInfo;
739 if( pKeyInfo ){
740 u8 *aSortOrder;
741 memcpy((char*)pKeyInfo, zP4, nByte - nField);
742 aSortOrder = pKeyInfo->aSortOrder;
743 if( aSortOrder ){
744 pKeyInfo->aSortOrder = (unsigned char*)&pKeyInfo->aColl[nField];
745 memcpy(pKeyInfo->aSortOrder, aSortOrder, nField);
746 }
747 pOp->p4type = P4_KEYINFO;
748 }else{
749 p->db->mallocFailed = 1;
750 pOp->p4type = P4_NOTUSED;
751 }
752 }else if( n==P4_KEYINFO_HANDOFF ){
753 pOp->p4.p = (void*)zP4;
754 pOp->p4type = P4_KEYINFO;
755 }else if( n==P4_VTAB ){
756 pOp->p4.p = (void*)zP4;
757 pOp->p4type = P4_VTAB;
758 sqlite3VtabLock((VTable *)zP4);
759 assert( ((VTable *)zP4)->db==p->db );
760 }else if( n<0 ){
761 pOp->p4.p = (void*)zP4;
762 pOp->p4type = (signed char)n;
763 }else{
764 if( n==0 ) n = sqlite3Strlen30(zP4);
765 pOp->p4.z = sqlite3DbStrNDup(p->db, zP4, n);
766 pOp->p4type = P4_DYNAMIC;
767 }
768 }
769
770 #ifndef NDEBUG
771 /*
772 ** Change the comment on the the most recently coded instruction. Or
773 ** insert a No-op and add the comment to that new instruction. This
774 ** makes the code easier to read during debugging. None of this happens
775 ** in a production build.
776 */
sqlite3VdbeComment(Vdbe * p,const char * zFormat,...)777 void sqlite3VdbeComment(Vdbe *p, const char *zFormat, ...){
778 va_list ap;
779 if( !p ) return;
780 assert( p->nOp>0 || p->aOp==0 );
781 assert( p->aOp==0 || p->aOp[p->nOp-1].zComment==0 || p->db->mallocFailed );
782 if( p->nOp ){
783 char **pz = &p->aOp[p->nOp-1].zComment;
784 va_start(ap, zFormat);
785 sqlite3DbFree(p->db, *pz);
786 *pz = sqlite3VMPrintf(p->db, zFormat, ap);
787 va_end(ap);
788 }
789 }
sqlite3VdbeNoopComment(Vdbe * p,const char * zFormat,...)790 void sqlite3VdbeNoopComment(Vdbe *p, const char *zFormat, ...){
791 va_list ap;
792 if( !p ) return;
793 sqlite3VdbeAddOp0(p, OP_Noop);
794 assert( p->nOp>0 || p->aOp==0 );
795 assert( p->aOp==0 || p->aOp[p->nOp-1].zComment==0 || p->db->mallocFailed );
796 if( p->nOp ){
797 char **pz = &p->aOp[p->nOp-1].zComment;
798 va_start(ap, zFormat);
799 sqlite3DbFree(p->db, *pz);
800 *pz = sqlite3VMPrintf(p->db, zFormat, ap);
801 va_end(ap);
802 }
803 }
804 #endif /* NDEBUG */
805
806 /*
807 ** Return the opcode for a given address. If the address is -1, then
808 ** return the most recently inserted opcode.
809 **
810 ** If a memory allocation error has occurred prior to the calling of this
811 ** routine, then a pointer to a dummy VdbeOp will be returned. That opcode
812 ** is readable but not writable, though it is cast to a writable value.
813 ** The return of a dummy opcode allows the call to continue functioning
814 ** after a OOM fault without having to check to see if the return from
815 ** this routine is a valid pointer. But because the dummy.opcode is 0,
816 ** dummy will never be written to. This is verified by code inspection and
817 ** by running with Valgrind.
818 **
819 ** About the #ifdef SQLITE_OMIT_TRACE: Normally, this routine is never called
820 ** unless p->nOp>0. This is because in the absense of SQLITE_OMIT_TRACE,
821 ** an OP_Trace instruction is always inserted by sqlite3VdbeGet() as soon as
822 ** a new VDBE is created. So we are free to set addr to p->nOp-1 without
823 ** having to double-check to make sure that the result is non-negative. But
824 ** if SQLITE_OMIT_TRACE is defined, the OP_Trace is omitted and we do need to
825 ** check the value of p->nOp-1 before continuing.
826 */
sqlite3VdbeGetOp(Vdbe * p,int addr)827 VdbeOp *sqlite3VdbeGetOp(Vdbe *p, int addr){
828 /* C89 specifies that the constant "dummy" will be initialized to all
829 ** zeros, which is correct. MSVC generates a warning, nevertheless. */
830 static const VdbeOp dummy; /* Ignore the MSVC warning about no initializer */
831 assert( p->magic==VDBE_MAGIC_INIT );
832 if( addr<0 ){
833 #ifdef SQLITE_OMIT_TRACE
834 if( p->nOp==0 ) return (VdbeOp*)&dummy;
835 #endif
836 addr = p->nOp - 1;
837 }
838 assert( (addr>=0 && addr<p->nOp) || p->db->mallocFailed );
839 if( p->db->mallocFailed ){
840 return (VdbeOp*)&dummy;
841 }else{
842 return &p->aOp[addr];
843 }
844 }
845
846 #if !defined(SQLITE_OMIT_EXPLAIN) || !defined(NDEBUG) \
847 || defined(VDBE_PROFILE) || defined(SQLITE_DEBUG)
848 /*
849 ** Compute a string that describes the P4 parameter for an opcode.
850 ** Use zTemp for any required temporary buffer space.
851 */
displayP4(Op * pOp,char * zTemp,int nTemp)852 static char *displayP4(Op *pOp, char *zTemp, int nTemp){
853 char *zP4 = zTemp;
854 assert( nTemp>=20 );
855 switch( pOp->p4type ){
856 case P4_KEYINFO_STATIC:
857 case P4_KEYINFO: {
858 int i, j;
859 KeyInfo *pKeyInfo = pOp->p4.pKeyInfo;
860 sqlite3_snprintf(nTemp, zTemp, "keyinfo(%d", pKeyInfo->nField);
861 i = sqlite3Strlen30(zTemp);
862 for(j=0; j<pKeyInfo->nField; j++){
863 CollSeq *pColl = pKeyInfo->aColl[j];
864 if( pColl ){
865 int n = sqlite3Strlen30(pColl->zName);
866 if( i+n>nTemp-6 ){
867 memcpy(&zTemp[i],",...",4);
868 break;
869 }
870 zTemp[i++] = ',';
871 if( pKeyInfo->aSortOrder && pKeyInfo->aSortOrder[j] ){
872 zTemp[i++] = '-';
873 }
874 memcpy(&zTemp[i], pColl->zName,n+1);
875 i += n;
876 }else if( i+4<nTemp-6 ){
877 memcpy(&zTemp[i],",nil",4);
878 i += 4;
879 }
880 }
881 zTemp[i++] = ')';
882 zTemp[i] = 0;
883 assert( i<nTemp );
884 break;
885 }
886 case P4_COLLSEQ: {
887 CollSeq *pColl = pOp->p4.pColl;
888 sqlite3_snprintf(nTemp, zTemp, "collseq(%.20s)", pColl->zName);
889 break;
890 }
891 case P4_FUNCDEF: {
892 FuncDef *pDef = pOp->p4.pFunc;
893 sqlite3_snprintf(nTemp, zTemp, "%s(%d)", pDef->zName, pDef->nArg);
894 break;
895 }
896 case P4_INT64: {
897 sqlite3_snprintf(nTemp, zTemp, "%lld", *pOp->p4.pI64);
898 break;
899 }
900 case P4_INT32: {
901 sqlite3_snprintf(nTemp, zTemp, "%d", pOp->p4.i);
902 break;
903 }
904 case P4_REAL: {
905 sqlite3_snprintf(nTemp, zTemp, "%.16g", *pOp->p4.pReal);
906 break;
907 }
908 case P4_MEM: {
909 Mem *pMem = pOp->p4.pMem;
910 assert( (pMem->flags & MEM_Null)==0 );
911 if( pMem->flags & MEM_Str ){
912 zP4 = pMem->z;
913 }else if( pMem->flags & MEM_Int ){
914 sqlite3_snprintf(nTemp, zTemp, "%lld", pMem->u.i);
915 }else if( pMem->flags & MEM_Real ){
916 sqlite3_snprintf(nTemp, zTemp, "%.16g", pMem->r);
917 }else{
918 assert( pMem->flags & MEM_Blob );
919 zP4 = "(blob)";
920 }
921 break;
922 }
923 #ifndef SQLITE_OMIT_VIRTUALTABLE
924 case P4_VTAB: {
925 sqlite3_vtab *pVtab = pOp->p4.pVtab->pVtab;
926 sqlite3_snprintf(nTemp, zTemp, "vtab:%p:%p", pVtab, pVtab->pModule);
927 break;
928 }
929 #endif
930 case P4_INTARRAY: {
931 sqlite3_snprintf(nTemp, zTemp, "intarray");
932 break;
933 }
934 case P4_SUBPROGRAM: {
935 sqlite3_snprintf(nTemp, zTemp, "program");
936 break;
937 }
938 default: {
939 zP4 = pOp->p4.z;
940 if( zP4==0 ){
941 zP4 = zTemp;
942 zTemp[0] = 0;
943 }
944 }
945 }
946 assert( zP4!=0 );
947 return zP4;
948 }
949 #endif
950
951 /*
952 ** Declare to the Vdbe that the BTree object at db->aDb[i] is used.
953 **
954 ** The prepared statements need to know in advance the complete set of
955 ** attached databases that they will be using. A mask of these databases
956 ** is maintained in p->btreeMask and is used for locking and other purposes.
957 */
sqlite3VdbeUsesBtree(Vdbe * p,int i)958 void sqlite3VdbeUsesBtree(Vdbe *p, int i){
959 assert( i>=0 && i<p->db->nDb && i<(int)sizeof(yDbMask)*8 );
960 assert( i<(int)sizeof(p->btreeMask)*8 );
961 p->btreeMask |= ((yDbMask)1)<<i;
962 if( i!=1 && sqlite3BtreeSharable(p->db->aDb[i].pBt) ){
963 p->lockMask |= ((yDbMask)1)<<i;
964 }
965 }
966
967 #if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0
968 /*
969 ** If SQLite is compiled to support shared-cache mode and to be threadsafe,
970 ** this routine obtains the mutex associated with each BtShared structure
971 ** that may be accessed by the VM passed as an argument. In doing so it also
972 ** sets the BtShared.db member of each of the BtShared structures, ensuring
973 ** that the correct busy-handler callback is invoked if required.
974 **
975 ** If SQLite is not threadsafe but does support shared-cache mode, then
976 ** sqlite3BtreeEnter() is invoked to set the BtShared.db variables
977 ** of all of BtShared structures accessible via the database handle
978 ** associated with the VM.
979 **
980 ** If SQLite is not threadsafe and does not support shared-cache mode, this
981 ** function is a no-op.
982 **
983 ** The p->btreeMask field is a bitmask of all btrees that the prepared
984 ** statement p will ever use. Let N be the number of bits in p->btreeMask
985 ** corresponding to btrees that use shared cache. Then the runtime of
986 ** this routine is N*N. But as N is rarely more than 1, this should not
987 ** be a problem.
988 */
sqlite3VdbeEnter(Vdbe * p)989 void sqlite3VdbeEnter(Vdbe *p){
990 int i;
991 yDbMask mask;
992 sqlite3 *db;
993 Db *aDb;
994 int nDb;
995 if( p->lockMask==0 ) return; /* The common case */
996 db = p->db;
997 aDb = db->aDb;
998 nDb = db->nDb;
999 for(i=0, mask=1; i<nDb; i++, mask += mask){
1000 if( i!=1 && (mask & p->lockMask)!=0 && ALWAYS(aDb[i].pBt!=0) ){
1001 sqlite3BtreeEnter(aDb[i].pBt);
1002 }
1003 }
1004 }
1005 #endif
1006
1007 #if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0
1008 /*
1009 ** Unlock all of the btrees previously locked by a call to sqlite3VdbeEnter().
1010 */
sqlite3VdbeLeave(Vdbe * p)1011 void sqlite3VdbeLeave(Vdbe *p){
1012 int i;
1013 yDbMask mask;
1014 sqlite3 *db;
1015 Db *aDb;
1016 int nDb;
1017 if( p->lockMask==0 ) return; /* The common case */
1018 db = p->db;
1019 aDb = db->aDb;
1020 nDb = db->nDb;
1021 for(i=0, mask=1; i<nDb; i++, mask += mask){
1022 if( i!=1 && (mask & p->lockMask)!=0 && ALWAYS(aDb[i].pBt!=0) ){
1023 sqlite3BtreeLeave(aDb[i].pBt);
1024 }
1025 }
1026 }
1027 #endif
1028
1029 #if defined(VDBE_PROFILE) || defined(SQLITE_DEBUG)
1030 /*
1031 ** Print a single opcode. This routine is used for debugging only.
1032 */
sqlite3VdbePrintOp(FILE * pOut,int pc,Op * pOp)1033 void sqlite3VdbePrintOp(FILE *pOut, int pc, Op *pOp){
1034 char *zP4;
1035 char zPtr[50];
1036 static const char *zFormat1 = "%4d %-13s %4d %4d %4d %-4s %.2X %s\n";
1037 if( pOut==0 ) pOut = stdout;
1038 zP4 = displayP4(pOp, zPtr, sizeof(zPtr));
1039 fprintf(pOut, zFormat1, pc,
1040 sqlite3OpcodeName(pOp->opcode), pOp->p1, pOp->p2, pOp->p3, zP4, pOp->p5,
1041 #ifdef SQLITE_DEBUG
1042 pOp->zComment ? pOp->zComment : ""
1043 #else
1044 ""
1045 #endif
1046 );
1047 fflush(pOut);
1048 }
1049 #endif
1050
1051 /*
1052 ** Release an array of N Mem elements
1053 */
releaseMemArray(Mem * p,int N)1054 static void releaseMemArray(Mem *p, int N){
1055 if( p && N ){
1056 Mem *pEnd;
1057 sqlite3 *db = p->db;
1058 u8 malloc_failed = db->mallocFailed;
1059 if( db->pnBytesFreed ){
1060 for(pEnd=&p[N]; p<pEnd; p++){
1061 sqlite3DbFree(db, p->zMalloc);
1062 }
1063 return;
1064 }
1065 for(pEnd=&p[N]; p<pEnd; p++){
1066 assert( (&p[1])==pEnd || p[0].db==p[1].db );
1067
1068 /* This block is really an inlined version of sqlite3VdbeMemRelease()
1069 ** that takes advantage of the fact that the memory cell value is
1070 ** being set to NULL after releasing any dynamic resources.
1071 **
1072 ** The justification for duplicating code is that according to
1073 ** callgrind, this causes a certain test case to hit the CPU 4.7
1074 ** percent less (x86 linux, gcc version 4.1.2, -O6) than if
1075 ** sqlite3MemRelease() were called from here. With -O2, this jumps
1076 ** to 6.6 percent. The test case is inserting 1000 rows into a table
1077 ** with no indexes using a single prepared INSERT statement, bind()
1078 ** and reset(). Inserts are grouped into a transaction.
1079 */
1080 if( p->flags&(MEM_Agg|MEM_Dyn|MEM_Frame|MEM_RowSet) ){
1081 sqlite3VdbeMemRelease(p);
1082 }else if( p->zMalloc ){
1083 sqlite3DbFree(db, p->zMalloc);
1084 p->zMalloc = 0;
1085 }
1086
1087 p->flags = MEM_Null;
1088 }
1089 db->mallocFailed = malloc_failed;
1090 }
1091 }
1092
1093 /*
1094 ** Delete a VdbeFrame object and its contents. VdbeFrame objects are
1095 ** allocated by the OP_Program opcode in sqlite3VdbeExec().
1096 */
sqlite3VdbeFrameDelete(VdbeFrame * p)1097 void sqlite3VdbeFrameDelete(VdbeFrame *p){
1098 int i;
1099 Mem *aMem = VdbeFrameMem(p);
1100 VdbeCursor **apCsr = (VdbeCursor **)&aMem[p->nChildMem];
1101 for(i=0; i<p->nChildCsr; i++){
1102 sqlite3VdbeFreeCursor(p->v, apCsr[i]);
1103 }
1104 releaseMemArray(aMem, p->nChildMem);
1105 sqlite3DbFree(p->v->db, p);
1106 }
1107
1108 #ifndef SQLITE_OMIT_EXPLAIN
1109 /*
1110 ** Give a listing of the program in the virtual machine.
1111 **
1112 ** The interface is the same as sqlite3VdbeExec(). But instead of
1113 ** running the code, it invokes the callback once for each instruction.
1114 ** This feature is used to implement "EXPLAIN".
1115 **
1116 ** When p->explain==1, each instruction is listed. When
1117 ** p->explain==2, only OP_Explain instructions are listed and these
1118 ** are shown in a different format. p->explain==2 is used to implement
1119 ** EXPLAIN QUERY PLAN.
1120 **
1121 ** When p->explain==1, first the main program is listed, then each of
1122 ** the trigger subprograms are listed one by one.
1123 */
sqlite3VdbeList(Vdbe * p)1124 int sqlite3VdbeList(
1125 Vdbe *p /* The VDBE */
1126 ){
1127 int nRow; /* Stop when row count reaches this */
1128 int nSub = 0; /* Number of sub-vdbes seen so far */
1129 SubProgram **apSub = 0; /* Array of sub-vdbes */
1130 Mem *pSub = 0; /* Memory cell hold array of subprogs */
1131 sqlite3 *db = p->db; /* The database connection */
1132 int i; /* Loop counter */
1133 int rc = SQLITE_OK; /* Return code */
1134 Mem *pMem = p->pResultSet = &p->aMem[1]; /* First Mem of result set */
1135
1136 assert( p->explain );
1137 assert( p->magic==VDBE_MAGIC_RUN );
1138 assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY || p->rc==SQLITE_NOMEM );
1139
1140 /* Even though this opcode does not use dynamic strings for
1141 ** the result, result columns may become dynamic if the user calls
1142 ** sqlite3_column_text16(), causing a translation to UTF-16 encoding.
1143 */
1144 releaseMemArray(pMem, 8);
1145
1146 if( p->rc==SQLITE_NOMEM ){
1147 /* This happens if a malloc() inside a call to sqlite3_column_text() or
1148 ** sqlite3_column_text16() failed. */
1149 db->mallocFailed = 1;
1150 return SQLITE_ERROR;
1151 }
1152
1153 /* When the number of output rows reaches nRow, that means the
1154 ** listing has finished and sqlite3_step() should return SQLITE_DONE.
1155 ** nRow is the sum of the number of rows in the main program, plus
1156 ** the sum of the number of rows in all trigger subprograms encountered
1157 ** so far. The nRow value will increase as new trigger subprograms are
1158 ** encountered, but p->pc will eventually catch up to nRow.
1159 */
1160 nRow = p->nOp;
1161 if( p->explain==1 ){
1162 /* The first 8 memory cells are used for the result set. So we will
1163 ** commandeer the 9th cell to use as storage for an array of pointers
1164 ** to trigger subprograms. The VDBE is guaranteed to have at least 9
1165 ** cells. */
1166 assert( p->nMem>9 );
1167 pSub = &p->aMem[9];
1168 if( pSub->flags&MEM_Blob ){
1169 /* On the first call to sqlite3_step(), pSub will hold a NULL. It is
1170 ** initialized to a BLOB by the P4_SUBPROGRAM processing logic below */
1171 nSub = pSub->n/sizeof(Vdbe*);
1172 apSub = (SubProgram **)pSub->z;
1173 }
1174 for(i=0; i<nSub; i++){
1175 nRow += apSub[i]->nOp;
1176 }
1177 }
1178
1179 do{
1180 i = p->pc++;
1181 }while( i<nRow && p->explain==2 && p->aOp[i].opcode!=OP_Explain );
1182 if( i>=nRow ){
1183 p->rc = SQLITE_OK;
1184 rc = SQLITE_DONE;
1185 }else if( db->u1.isInterrupted ){
1186 p->rc = SQLITE_INTERRUPT;
1187 rc = SQLITE_ERROR;
1188 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3ErrStr(p->rc));
1189 }else{
1190 char *z;
1191 Op *pOp;
1192 if( i<p->nOp ){
1193 /* The output line number is small enough that we are still in the
1194 ** main program. */
1195 pOp = &p->aOp[i];
1196 }else{
1197 /* We are currently listing subprograms. Figure out which one and
1198 ** pick up the appropriate opcode. */
1199 int j;
1200 i -= p->nOp;
1201 for(j=0; i>=apSub[j]->nOp; j++){
1202 i -= apSub[j]->nOp;
1203 }
1204 pOp = &apSub[j]->aOp[i];
1205 }
1206 if( p->explain==1 ){
1207 pMem->flags = MEM_Int;
1208 pMem->type = SQLITE_INTEGER;
1209 pMem->u.i = i; /* Program counter */
1210 pMem++;
1211
1212 pMem->flags = MEM_Static|MEM_Str|MEM_Term;
1213 pMem->z = (char*)sqlite3OpcodeName(pOp->opcode); /* Opcode */
1214 assert( pMem->z!=0 );
1215 pMem->n = sqlite3Strlen30(pMem->z);
1216 pMem->type = SQLITE_TEXT;
1217 pMem->enc = SQLITE_UTF8;
1218 pMem++;
1219
1220 /* When an OP_Program opcode is encounter (the only opcode that has
1221 ** a P4_SUBPROGRAM argument), expand the size of the array of subprograms
1222 ** kept in p->aMem[9].z to hold the new program - assuming this subprogram
1223 ** has not already been seen.
1224 */
1225 if( pOp->p4type==P4_SUBPROGRAM ){
1226 int nByte = (nSub+1)*sizeof(SubProgram*);
1227 int j;
1228 for(j=0; j<nSub; j++){
1229 if( apSub[j]==pOp->p4.pProgram ) break;
1230 }
1231 if( j==nSub && SQLITE_OK==sqlite3VdbeMemGrow(pSub, nByte, 1) ){
1232 apSub = (SubProgram **)pSub->z;
1233 apSub[nSub++] = pOp->p4.pProgram;
1234 pSub->flags |= MEM_Blob;
1235 pSub->n = nSub*sizeof(SubProgram*);
1236 }
1237 }
1238 }
1239
1240 pMem->flags = MEM_Int;
1241 pMem->u.i = pOp->p1; /* P1 */
1242 pMem->type = SQLITE_INTEGER;
1243 pMem++;
1244
1245 pMem->flags = MEM_Int;
1246 pMem->u.i = pOp->p2; /* P2 */
1247 pMem->type = SQLITE_INTEGER;
1248 pMem++;
1249
1250 pMem->flags = MEM_Int;
1251 pMem->u.i = pOp->p3; /* P3 */
1252 pMem->type = SQLITE_INTEGER;
1253 pMem++;
1254
1255 if( sqlite3VdbeMemGrow(pMem, 32, 0) ){ /* P4 */
1256 assert( p->db->mallocFailed );
1257 return SQLITE_ERROR;
1258 }
1259 pMem->flags = MEM_Dyn|MEM_Str|MEM_Term;
1260 z = displayP4(pOp, pMem->z, 32);
1261 if( z!=pMem->z ){
1262 sqlite3VdbeMemSetStr(pMem, z, -1, SQLITE_UTF8, 0);
1263 }else{
1264 assert( pMem->z!=0 );
1265 pMem->n = sqlite3Strlen30(pMem->z);
1266 pMem->enc = SQLITE_UTF8;
1267 }
1268 pMem->type = SQLITE_TEXT;
1269 pMem++;
1270
1271 if( p->explain==1 ){
1272 if( sqlite3VdbeMemGrow(pMem, 4, 0) ){
1273 assert( p->db->mallocFailed );
1274 return SQLITE_ERROR;
1275 }
1276 pMem->flags = MEM_Dyn|MEM_Str|MEM_Term;
1277 pMem->n = 2;
1278 sqlite3_snprintf(3, pMem->z, "%.2x", pOp->p5); /* P5 */
1279 pMem->type = SQLITE_TEXT;
1280 pMem->enc = SQLITE_UTF8;
1281 pMem++;
1282
1283 #ifdef SQLITE_DEBUG
1284 if( pOp->zComment ){
1285 pMem->flags = MEM_Str|MEM_Term;
1286 pMem->z = pOp->zComment;
1287 pMem->n = sqlite3Strlen30(pMem->z);
1288 pMem->enc = SQLITE_UTF8;
1289 pMem->type = SQLITE_TEXT;
1290 }else
1291 #endif
1292 {
1293 pMem->flags = MEM_Null; /* Comment */
1294 pMem->type = SQLITE_NULL;
1295 }
1296 }
1297
1298 p->nResColumn = 8 - 4*(p->explain-1);
1299 p->rc = SQLITE_OK;
1300 rc = SQLITE_ROW;
1301 }
1302 return rc;
1303 }
1304 #endif /* SQLITE_OMIT_EXPLAIN */
1305
1306 #ifdef SQLITE_DEBUG
1307 /*
1308 ** Print the SQL that was used to generate a VDBE program.
1309 */
sqlite3VdbePrintSql(Vdbe * p)1310 void sqlite3VdbePrintSql(Vdbe *p){
1311 int nOp = p->nOp;
1312 VdbeOp *pOp;
1313 if( nOp<1 ) return;
1314 pOp = &p->aOp[0];
1315 if( pOp->opcode==OP_Trace && pOp->p4.z!=0 ){
1316 const char *z = pOp->p4.z;
1317 while( sqlite3Isspace(*z) ) z++;
1318 printf("SQL: [%s]\n", z);
1319 }
1320 }
1321 #endif
1322
1323 #if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE)
1324 /*
1325 ** Print an IOTRACE message showing SQL content.
1326 */
sqlite3VdbeIOTraceSql(Vdbe * p)1327 void sqlite3VdbeIOTraceSql(Vdbe *p){
1328 int nOp = p->nOp;
1329 VdbeOp *pOp;
1330 if( sqlite3IoTrace==0 ) return;
1331 if( nOp<1 ) return;
1332 pOp = &p->aOp[0];
1333 if( pOp->opcode==OP_Trace && pOp->p4.z!=0 ){
1334 int i, j;
1335 char z[1000];
1336 sqlite3_snprintf(sizeof(z), z, "%s", pOp->p4.z);
1337 for(i=0; sqlite3Isspace(z[i]); i++){}
1338 for(j=0; z[i]; i++){
1339 if( sqlite3Isspace(z[i]) ){
1340 if( z[i-1]!=' ' ){
1341 z[j++] = ' ';
1342 }
1343 }else{
1344 z[j++] = z[i];
1345 }
1346 }
1347 z[j] = 0;
1348 sqlite3IoTrace("SQL %s\n", z);
1349 }
1350 }
1351 #endif /* !SQLITE_OMIT_TRACE && SQLITE_ENABLE_IOTRACE */
1352
1353 /*
1354 ** Allocate space from a fixed size buffer and return a pointer to
1355 ** that space. If insufficient space is available, return NULL.
1356 **
1357 ** The pBuf parameter is the initial value of a pointer which will
1358 ** receive the new memory. pBuf is normally NULL. If pBuf is not
1359 ** NULL, it means that memory space has already been allocated and that
1360 ** this routine should not allocate any new memory. When pBuf is not
1361 ** NULL simply return pBuf. Only allocate new memory space when pBuf
1362 ** is NULL.
1363 **
1364 ** nByte is the number of bytes of space needed.
1365 **
1366 ** *ppFrom points to available space and pEnd points to the end of the
1367 ** available space. When space is allocated, *ppFrom is advanced past
1368 ** the end of the allocated space.
1369 **
1370 ** *pnByte is a counter of the number of bytes of space that have failed
1371 ** to allocate. If there is insufficient space in *ppFrom to satisfy the
1372 ** request, then increment *pnByte by the amount of the request.
1373 */
allocSpace(void * pBuf,int nByte,u8 ** ppFrom,u8 * pEnd,int * pnByte)1374 static void *allocSpace(
1375 void *pBuf, /* Where return pointer will be stored */
1376 int nByte, /* Number of bytes to allocate */
1377 u8 **ppFrom, /* IN/OUT: Allocate from *ppFrom */
1378 u8 *pEnd, /* Pointer to 1 byte past the end of *ppFrom buffer */
1379 int *pnByte /* If allocation cannot be made, increment *pnByte */
1380 ){
1381 assert( EIGHT_BYTE_ALIGNMENT(*ppFrom) );
1382 if( pBuf ) return pBuf;
1383 nByte = ROUND8(nByte);
1384 if( &(*ppFrom)[nByte] <= pEnd ){
1385 pBuf = (void*)*ppFrom;
1386 *ppFrom += nByte;
1387 }else{
1388 *pnByte += nByte;
1389 }
1390 return pBuf;
1391 }
1392
1393 /*
1394 ** Prepare a virtual machine for execution. This involves things such
1395 ** as allocating stack space and initializing the program counter.
1396 ** After the VDBE has be prepped, it can be executed by one or more
1397 ** calls to sqlite3VdbeExec().
1398 **
1399 ** This is the only way to move a VDBE from VDBE_MAGIC_INIT to
1400 ** VDBE_MAGIC_RUN.
1401 **
1402 ** This function may be called more than once on a single virtual machine.
1403 ** The first call is made while compiling the SQL statement. Subsequent
1404 ** calls are made as part of the process of resetting a statement to be
1405 ** re-executed (from a call to sqlite3_reset()). The nVar, nMem, nCursor
1406 ** and isExplain parameters are only passed correct values the first time
1407 ** the function is called. On subsequent calls, from sqlite3_reset(), nVar
1408 ** is passed -1 and nMem, nCursor and isExplain are all passed zero.
1409 */
sqlite3VdbeMakeReady(Vdbe * p,int nVar,int nMem,int nCursor,int nArg,int isExplain,int usesStmtJournal)1410 void sqlite3VdbeMakeReady(
1411 Vdbe *p, /* The VDBE */
1412 int nVar, /* Number of '?' see in the SQL statement */
1413 int nMem, /* Number of memory cells to allocate */
1414 int nCursor, /* Number of cursors to allocate */
1415 int nArg, /* Maximum number of args in SubPrograms */
1416 int isExplain, /* True if the EXPLAIN keywords is present */
1417 int usesStmtJournal /* True to set Vdbe.usesStmtJournal */
1418 ){
1419 int n;
1420 sqlite3 *db = p->db;
1421
1422 assert( p!=0 );
1423 assert( p->magic==VDBE_MAGIC_INIT );
1424
1425 /* There should be at least one opcode.
1426 */
1427 assert( p->nOp>0 );
1428
1429 /* Set the magic to VDBE_MAGIC_RUN sooner rather than later. */
1430 p->magic = VDBE_MAGIC_RUN;
1431
1432 /* For each cursor required, also allocate a memory cell. Memory
1433 ** cells (nMem+1-nCursor)..nMem, inclusive, will never be used by
1434 ** the vdbe program. Instead they are used to allocate space for
1435 ** VdbeCursor/BtCursor structures. The blob of memory associated with
1436 ** cursor 0 is stored in memory cell nMem. Memory cell (nMem-1)
1437 ** stores the blob of memory associated with cursor 1, etc.
1438 **
1439 ** See also: allocateCursor().
1440 */
1441 nMem += nCursor;
1442
1443 /* Allocate space for memory registers, SQL variables, VDBE cursors and
1444 ** an array to marshal SQL function arguments in. This is only done the
1445 ** first time this function is called for a given VDBE, not when it is
1446 ** being called from sqlite3_reset() to reset the virtual machine.
1447 */
1448 if( nVar>=0 && ALWAYS(db->mallocFailed==0) ){
1449 u8 *zCsr = (u8 *)&p->aOp[p->nOp]; /* Memory avaliable for alloation */
1450 u8 *zEnd = (u8 *)&p->aOp[p->nOpAlloc]; /* First byte past available mem */
1451 int nByte; /* How much extra memory needed */
1452
1453 resolveP2Values(p, &nArg);
1454 p->usesStmtJournal = (u8)usesStmtJournal;
1455 if( isExplain && nMem<10 ){
1456 nMem = 10;
1457 }
1458 memset(zCsr, 0, zEnd-zCsr);
1459 zCsr += (zCsr - (u8*)0)&7;
1460 assert( EIGHT_BYTE_ALIGNMENT(zCsr) );
1461
1462 /* Memory for registers, parameters, cursor, etc, is allocated in two
1463 ** passes. On the first pass, we try to reuse unused space at the
1464 ** end of the opcode array. If we are unable to satisfy all memory
1465 ** requirements by reusing the opcode array tail, then the second
1466 ** pass will fill in the rest using a fresh allocation.
1467 **
1468 ** This two-pass approach that reuses as much memory as possible from
1469 ** the leftover space at the end of the opcode array can significantly
1470 ** reduce the amount of memory held by a prepared statement.
1471 */
1472 do {
1473 nByte = 0;
1474 p->aMem = allocSpace(p->aMem, nMem*sizeof(Mem), &zCsr, zEnd, &nByte);
1475 p->aVar = allocSpace(p->aVar, nVar*sizeof(Mem), &zCsr, zEnd, &nByte);
1476 p->apArg = allocSpace(p->apArg, nArg*sizeof(Mem*), &zCsr, zEnd, &nByte);
1477 p->azVar = allocSpace(p->azVar, nVar*sizeof(char*), &zCsr, zEnd, &nByte);
1478 p->apCsr = allocSpace(p->apCsr, nCursor*sizeof(VdbeCursor*),
1479 &zCsr, zEnd, &nByte);
1480 if( nByte ){
1481 p->pFree = sqlite3DbMallocZero(db, nByte);
1482 }
1483 zCsr = p->pFree;
1484 zEnd = &zCsr[nByte];
1485 }while( nByte && !db->mallocFailed );
1486
1487 p->nCursor = (u16)nCursor;
1488 if( p->aVar ){
1489 p->nVar = (ynVar)nVar;
1490 for(n=0; n<nVar; n++){
1491 p->aVar[n].flags = MEM_Null;
1492 p->aVar[n].db = db;
1493 }
1494 }
1495 if( p->aMem ){
1496 p->aMem--; /* aMem[] goes from 1..nMem */
1497 p->nMem = nMem; /* not from 0..nMem-1 */
1498 for(n=1; n<=nMem; n++){
1499 p->aMem[n].flags = MEM_Null;
1500 p->aMem[n].db = db;
1501 }
1502 }
1503 }
1504 #ifdef SQLITE_DEBUG
1505 for(n=1; n<p->nMem; n++){
1506 assert( p->aMem[n].db==db );
1507 }
1508 #endif
1509
1510 p->pc = -1;
1511 p->rc = SQLITE_OK;
1512 p->errorAction = OE_Abort;
1513 p->explain |= isExplain;
1514 p->magic = VDBE_MAGIC_RUN;
1515 p->nChange = 0;
1516 p->cacheCtr = 1;
1517 p->minWriteFileFormat = 255;
1518 p->iStatement = 0;
1519 p->nFkConstraint = 0;
1520 #ifdef VDBE_PROFILE
1521 {
1522 int i;
1523 for(i=0; i<p->nOp; i++){
1524 p->aOp[i].cnt = 0;
1525 p->aOp[i].cycles = 0;
1526 }
1527 }
1528 #endif
1529 }
1530
1531 /*
1532 ** Close a VDBE cursor and release all the resources that cursor
1533 ** happens to hold.
1534 */
sqlite3VdbeFreeCursor(Vdbe * p,VdbeCursor * pCx)1535 void sqlite3VdbeFreeCursor(Vdbe *p, VdbeCursor *pCx){
1536 if( pCx==0 ){
1537 return;
1538 }
1539 if( pCx->pBt ){
1540 sqlite3BtreeClose(pCx->pBt);
1541 /* The pCx->pCursor will be close automatically, if it exists, by
1542 ** the call above. */
1543 }else if( pCx->pCursor ){
1544 sqlite3BtreeCloseCursor(pCx->pCursor);
1545 }
1546 #ifndef SQLITE_OMIT_VIRTUALTABLE
1547 if( pCx->pVtabCursor ){
1548 sqlite3_vtab_cursor *pVtabCursor = pCx->pVtabCursor;
1549 const sqlite3_module *pModule = pCx->pModule;
1550 p->inVtabMethod = 1;
1551 pModule->xClose(pVtabCursor);
1552 p->inVtabMethod = 0;
1553 }
1554 #endif
1555 }
1556
1557 /*
1558 ** Copy the values stored in the VdbeFrame structure to its Vdbe. This
1559 ** is used, for example, when a trigger sub-program is halted to restore
1560 ** control to the main program.
1561 */
sqlite3VdbeFrameRestore(VdbeFrame * pFrame)1562 int sqlite3VdbeFrameRestore(VdbeFrame *pFrame){
1563 Vdbe *v = pFrame->v;
1564 v->aOp = pFrame->aOp;
1565 v->nOp = pFrame->nOp;
1566 v->aMem = pFrame->aMem;
1567 v->nMem = pFrame->nMem;
1568 v->apCsr = pFrame->apCsr;
1569 v->nCursor = pFrame->nCursor;
1570 v->db->lastRowid = pFrame->lastRowid;
1571 v->nChange = pFrame->nChange;
1572 return pFrame->pc;
1573 }
1574
1575 /*
1576 ** Close all cursors.
1577 **
1578 ** Also release any dynamic memory held by the VM in the Vdbe.aMem memory
1579 ** cell array. This is necessary as the memory cell array may contain
1580 ** pointers to VdbeFrame objects, which may in turn contain pointers to
1581 ** open cursors.
1582 */
closeAllCursors(Vdbe * p)1583 static void closeAllCursors(Vdbe *p){
1584 if( p->pFrame ){
1585 VdbeFrame *pFrame;
1586 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
1587 sqlite3VdbeFrameRestore(pFrame);
1588 }
1589 p->pFrame = 0;
1590 p->nFrame = 0;
1591
1592 if( p->apCsr ){
1593 int i;
1594 for(i=0; i<p->nCursor; i++){
1595 VdbeCursor *pC = p->apCsr[i];
1596 if( pC ){
1597 sqlite3VdbeFreeCursor(p, pC);
1598 p->apCsr[i] = 0;
1599 }
1600 }
1601 }
1602 if( p->aMem ){
1603 releaseMemArray(&p->aMem[1], p->nMem);
1604 }
1605 while( p->pDelFrame ){
1606 VdbeFrame *pDel = p->pDelFrame;
1607 p->pDelFrame = pDel->pParent;
1608 sqlite3VdbeFrameDelete(pDel);
1609 }
1610 }
1611
1612 /*
1613 ** Clean up the VM after execution.
1614 **
1615 ** This routine will automatically close any cursors, lists, and/or
1616 ** sorters that were left open. It also deletes the values of
1617 ** variables in the aVar[] array.
1618 */
Cleanup(Vdbe * p)1619 static void Cleanup(Vdbe *p){
1620 sqlite3 *db = p->db;
1621
1622 #ifdef SQLITE_DEBUG
1623 /* Execute assert() statements to ensure that the Vdbe.apCsr[] and
1624 ** Vdbe.aMem[] arrays have already been cleaned up. */
1625 int i;
1626 for(i=0; i<p->nCursor; i++) assert( p->apCsr==0 || p->apCsr[i]==0 );
1627 for(i=1; i<=p->nMem; i++) assert( p->aMem==0 || p->aMem[i].flags==MEM_Null );
1628 #endif
1629
1630 sqlite3DbFree(db, p->zErrMsg);
1631 p->zErrMsg = 0;
1632 p->pResultSet = 0;
1633 }
1634
1635 /*
1636 ** Set the number of result columns that will be returned by this SQL
1637 ** statement. This is now set at compile time, rather than during
1638 ** execution of the vdbe program so that sqlite3_column_count() can
1639 ** be called on an SQL statement before sqlite3_step().
1640 */
sqlite3VdbeSetNumCols(Vdbe * p,int nResColumn)1641 void sqlite3VdbeSetNumCols(Vdbe *p, int nResColumn){
1642 Mem *pColName;
1643 int n;
1644 sqlite3 *db = p->db;
1645
1646 releaseMemArray(p->aColName, p->nResColumn*COLNAME_N);
1647 sqlite3DbFree(db, p->aColName);
1648 n = nResColumn*COLNAME_N;
1649 p->nResColumn = (u16)nResColumn;
1650 p->aColName = pColName = (Mem*)sqlite3DbMallocZero(db, sizeof(Mem)*n );
1651 if( p->aColName==0 ) return;
1652 while( n-- > 0 ){
1653 pColName->flags = MEM_Null;
1654 pColName->db = p->db;
1655 pColName++;
1656 }
1657 }
1658
1659 /*
1660 ** Set the name of the idx'th column to be returned by the SQL statement.
1661 ** zName must be a pointer to a nul terminated string.
1662 **
1663 ** This call must be made after a call to sqlite3VdbeSetNumCols().
1664 **
1665 ** The final parameter, xDel, must be one of SQLITE_DYNAMIC, SQLITE_STATIC
1666 ** or SQLITE_TRANSIENT. If it is SQLITE_DYNAMIC, then the buffer pointed
1667 ** to by zName will be freed by sqlite3DbFree() when the vdbe is destroyed.
1668 */
sqlite3VdbeSetColName(Vdbe * p,int idx,int var,const char * zName,void (* xDel)(void *))1669 int sqlite3VdbeSetColName(
1670 Vdbe *p, /* Vdbe being configured */
1671 int idx, /* Index of column zName applies to */
1672 int var, /* One of the COLNAME_* constants */
1673 const char *zName, /* Pointer to buffer containing name */
1674 void (*xDel)(void*) /* Memory management strategy for zName */
1675 ){
1676 int rc;
1677 Mem *pColName;
1678 assert( idx<p->nResColumn );
1679 assert( var<COLNAME_N );
1680 if( p->db->mallocFailed ){
1681 assert( !zName || xDel!=SQLITE_DYNAMIC );
1682 return SQLITE_NOMEM;
1683 }
1684 assert( p->aColName!=0 );
1685 pColName = &(p->aColName[idx+var*p->nResColumn]);
1686 rc = sqlite3VdbeMemSetStr(pColName, zName, -1, SQLITE_UTF8, xDel);
1687 assert( rc!=0 || !zName || (pColName->flags&MEM_Term)!=0 );
1688 return rc;
1689 }
1690
1691 /*
1692 ** A read or write transaction may or may not be active on database handle
1693 ** db. If a transaction is active, commit it. If there is a
1694 ** write-transaction spanning more than one database file, this routine
1695 ** takes care of the master journal trickery.
1696 */
vdbeCommit(sqlite3 * db,Vdbe * p)1697 static int vdbeCommit(sqlite3 *db, Vdbe *p){
1698 int i;
1699 int nTrans = 0; /* Number of databases with an active write-transaction */
1700 int rc = SQLITE_OK;
1701 int needXcommit = 0;
1702
1703 #ifdef SQLITE_OMIT_VIRTUALTABLE
1704 /* With this option, sqlite3VtabSync() is defined to be simply
1705 ** SQLITE_OK so p is not used.
1706 */
1707 UNUSED_PARAMETER(p);
1708 #endif
1709
1710 /* Before doing anything else, call the xSync() callback for any
1711 ** virtual module tables written in this transaction. This has to
1712 ** be done before determining whether a master journal file is
1713 ** required, as an xSync() callback may add an attached database
1714 ** to the transaction.
1715 */
1716 rc = sqlite3VtabSync(db, &p->zErrMsg);
1717
1718 /* This loop determines (a) if the commit hook should be invoked and
1719 ** (b) how many database files have open write transactions, not
1720 ** including the temp database. (b) is important because if more than
1721 ** one database file has an open write transaction, a master journal
1722 ** file is required for an atomic commit.
1723 */
1724 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
1725 Btree *pBt = db->aDb[i].pBt;
1726 if( sqlite3BtreeIsInTrans(pBt) ){
1727 needXcommit = 1;
1728 if( i!=1 ) nTrans++;
1729 rc = sqlite3PagerExclusiveLock(sqlite3BtreePager(pBt));
1730 }
1731 }
1732 if( rc!=SQLITE_OK ){
1733 return rc;
1734 }
1735
1736 /* If there are any write-transactions at all, invoke the commit hook */
1737 if( needXcommit && db->xCommitCallback ){
1738 rc = db->xCommitCallback(db->pCommitArg);
1739 if( rc ){
1740 return SQLITE_CONSTRAINT;
1741 }
1742 }
1743
1744 /* The simple case - no more than one database file (not counting the
1745 ** TEMP database) has a transaction active. There is no need for the
1746 ** master-journal.
1747 **
1748 ** If the return value of sqlite3BtreeGetFilename() is a zero length
1749 ** string, it means the main database is :memory: or a temp file. In
1750 ** that case we do not support atomic multi-file commits, so use the
1751 ** simple case then too.
1752 */
1753 if( 0==sqlite3Strlen30(sqlite3BtreeGetFilename(db->aDb[0].pBt))
1754 || nTrans<=1
1755 ){
1756 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
1757 Btree *pBt = db->aDb[i].pBt;
1758 if( pBt ){
1759 rc = sqlite3BtreeCommitPhaseOne(pBt, 0);
1760 }
1761 }
1762
1763 /* Do the commit only if all databases successfully complete phase 1.
1764 ** If one of the BtreeCommitPhaseOne() calls fails, this indicates an
1765 ** IO error while deleting or truncating a journal file. It is unlikely,
1766 ** but could happen. In this case abandon processing and return the error.
1767 */
1768 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
1769 Btree *pBt = db->aDb[i].pBt;
1770 if( pBt ){
1771 rc = sqlite3BtreeCommitPhaseTwo(pBt, 0);
1772 }
1773 }
1774 if( rc==SQLITE_OK ){
1775 sqlite3VtabCommit(db);
1776 }
1777 }
1778
1779 /* The complex case - There is a multi-file write-transaction active.
1780 ** This requires a master journal file to ensure the transaction is
1781 ** committed atomicly.
1782 */
1783 #ifndef SQLITE_OMIT_DISKIO
1784 else{
1785 sqlite3_vfs *pVfs = db->pVfs;
1786 int needSync = 0;
1787 char *zMaster = 0; /* File-name for the master journal */
1788 char const *zMainFile = sqlite3BtreeGetFilename(db->aDb[0].pBt);
1789 sqlite3_file *pMaster = 0;
1790 i64 offset = 0;
1791 int res;
1792
1793 /* Select a master journal file name */
1794 do {
1795 u32 iRandom;
1796 sqlite3DbFree(db, zMaster);
1797 sqlite3_randomness(sizeof(iRandom), &iRandom);
1798 zMaster = sqlite3MPrintf(db, "%s-mj%08X", zMainFile, iRandom&0x7fffffff);
1799 if( !zMaster ){
1800 return SQLITE_NOMEM;
1801 }
1802 rc = sqlite3OsAccess(pVfs, zMaster, SQLITE_ACCESS_EXISTS, &res);
1803 }while( rc==SQLITE_OK && res );
1804 if( rc==SQLITE_OK ){
1805 /* Open the master journal. */
1806 rc = sqlite3OsOpenMalloc(pVfs, zMaster, &pMaster,
1807 SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|
1808 SQLITE_OPEN_EXCLUSIVE|SQLITE_OPEN_MASTER_JOURNAL, 0
1809 );
1810 }
1811 if( rc!=SQLITE_OK ){
1812 sqlite3DbFree(db, zMaster);
1813 return rc;
1814 }
1815
1816 /* Write the name of each database file in the transaction into the new
1817 ** master journal file. If an error occurs at this point close
1818 ** and delete the master journal file. All the individual journal files
1819 ** still have 'null' as the master journal pointer, so they will roll
1820 ** back independently if a failure occurs.
1821 */
1822 for(i=0; i<db->nDb; i++){
1823 Btree *pBt = db->aDb[i].pBt;
1824 if( sqlite3BtreeIsInTrans(pBt) ){
1825 char const *zFile = sqlite3BtreeGetJournalname(pBt);
1826 if( zFile==0 ){
1827 continue; /* Ignore TEMP and :memory: databases */
1828 }
1829 assert( zFile[0]!=0 );
1830 if( !needSync && !sqlite3BtreeSyncDisabled(pBt) ){
1831 needSync = 1;
1832 }
1833 rc = sqlite3OsWrite(pMaster, zFile, sqlite3Strlen30(zFile)+1, offset);
1834 offset += sqlite3Strlen30(zFile)+1;
1835 if( rc!=SQLITE_OK ){
1836 sqlite3OsCloseFree(pMaster);
1837 sqlite3OsDelete(pVfs, zMaster, 0);
1838 sqlite3DbFree(db, zMaster);
1839 return rc;
1840 }
1841 }
1842 }
1843
1844 /* Sync the master journal file. If the IOCAP_SEQUENTIAL device
1845 ** flag is set this is not required.
1846 */
1847 if( needSync
1848 && 0==(sqlite3OsDeviceCharacteristics(pMaster)&SQLITE_IOCAP_SEQUENTIAL)
1849 && SQLITE_OK!=(rc = sqlite3OsSync(pMaster, SQLITE_SYNC_NORMAL))
1850 ){
1851 sqlite3OsCloseFree(pMaster);
1852 sqlite3OsDelete(pVfs, zMaster, 0);
1853 sqlite3DbFree(db, zMaster);
1854 return rc;
1855 }
1856
1857 /* Sync all the db files involved in the transaction. The same call
1858 ** sets the master journal pointer in each individual journal. If
1859 ** an error occurs here, do not delete the master journal file.
1860 **
1861 ** If the error occurs during the first call to
1862 ** sqlite3BtreeCommitPhaseOne(), then there is a chance that the
1863 ** master journal file will be orphaned. But we cannot delete it,
1864 ** in case the master journal file name was written into the journal
1865 ** file before the failure occurred.
1866 */
1867 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
1868 Btree *pBt = db->aDb[i].pBt;
1869 if( pBt ){
1870 rc = sqlite3BtreeCommitPhaseOne(pBt, zMaster);
1871 }
1872 }
1873 sqlite3OsCloseFree(pMaster);
1874 assert( rc!=SQLITE_BUSY );
1875 if( rc!=SQLITE_OK ){
1876 sqlite3DbFree(db, zMaster);
1877 return rc;
1878 }
1879
1880 /* Delete the master journal file. This commits the transaction. After
1881 ** doing this the directory is synced again before any individual
1882 ** transaction files are deleted.
1883 */
1884 rc = sqlite3OsDelete(pVfs, zMaster, 1);
1885 sqlite3DbFree(db, zMaster);
1886 zMaster = 0;
1887 if( rc ){
1888 return rc;
1889 }
1890
1891 /* All files and directories have already been synced, so the following
1892 ** calls to sqlite3BtreeCommitPhaseTwo() are only closing files and
1893 ** deleting or truncating journals. If something goes wrong while
1894 ** this is happening we don't really care. The integrity of the
1895 ** transaction is already guaranteed, but some stray 'cold' journals
1896 ** may be lying around. Returning an error code won't help matters.
1897 */
1898 disable_simulated_io_errors();
1899 sqlite3BeginBenignMalloc();
1900 for(i=0; i<db->nDb; i++){
1901 Btree *pBt = db->aDb[i].pBt;
1902 if( pBt ){
1903 sqlite3BtreeCommitPhaseTwo(pBt, 1);
1904 }
1905 }
1906 sqlite3EndBenignMalloc();
1907 enable_simulated_io_errors();
1908
1909 sqlite3VtabCommit(db);
1910 }
1911 #endif
1912
1913 return rc;
1914 }
1915
1916 /*
1917 ** This routine checks that the sqlite3.activeVdbeCnt count variable
1918 ** matches the number of vdbe's in the list sqlite3.pVdbe that are
1919 ** currently active. An assertion fails if the two counts do not match.
1920 ** This is an internal self-check only - it is not an essential processing
1921 ** step.
1922 **
1923 ** This is a no-op if NDEBUG is defined.
1924 */
1925 #ifndef NDEBUG
checkActiveVdbeCnt(sqlite3 * db)1926 static void checkActiveVdbeCnt(sqlite3 *db){
1927 Vdbe *p;
1928 int cnt = 0;
1929 int nWrite = 0;
1930 p = db->pVdbe;
1931 while( p ){
1932 if( p->magic==VDBE_MAGIC_RUN && p->pc>=0 ){
1933 cnt++;
1934 if( p->readOnly==0 ) nWrite++;
1935 }
1936 p = p->pNext;
1937 }
1938 assert( cnt==db->activeVdbeCnt );
1939 assert( nWrite==db->writeVdbeCnt );
1940 }
1941 #else
1942 #define checkActiveVdbeCnt(x)
1943 #endif
1944
1945 /*
1946 ** For every Btree that in database connection db which
1947 ** has been modified, "trip" or invalidate each cursor in
1948 ** that Btree might have been modified so that the cursor
1949 ** can never be used again. This happens when a rollback
1950 *** occurs. We have to trip all the other cursors, even
1951 ** cursor from other VMs in different database connections,
1952 ** so that none of them try to use the data at which they
1953 ** were pointing and which now may have been changed due
1954 ** to the rollback.
1955 **
1956 ** Remember that a rollback can delete tables complete and
1957 ** reorder rootpages. So it is not sufficient just to save
1958 ** the state of the cursor. We have to invalidate the cursor
1959 ** so that it is never used again.
1960 */
invalidateCursorsOnModifiedBtrees(sqlite3 * db)1961 static void invalidateCursorsOnModifiedBtrees(sqlite3 *db){
1962 int i;
1963 for(i=0; i<db->nDb; i++){
1964 Btree *p = db->aDb[i].pBt;
1965 if( p && sqlite3BtreeIsInTrans(p) ){
1966 sqlite3BtreeTripAllCursors(p, SQLITE_ABORT);
1967 }
1968 }
1969 }
1970
1971 /*
1972 ** If the Vdbe passed as the first argument opened a statement-transaction,
1973 ** close it now. Argument eOp must be either SAVEPOINT_ROLLBACK or
1974 ** SAVEPOINT_RELEASE. If it is SAVEPOINT_ROLLBACK, then the statement
1975 ** transaction is rolled back. If eOp is SAVEPOINT_RELEASE, then the
1976 ** statement transaction is commtted.
1977 **
1978 ** If an IO error occurs, an SQLITE_IOERR_XXX error code is returned.
1979 ** Otherwise SQLITE_OK.
1980 */
sqlite3VdbeCloseStatement(Vdbe * p,int eOp)1981 int sqlite3VdbeCloseStatement(Vdbe *p, int eOp){
1982 sqlite3 *const db = p->db;
1983 int rc = SQLITE_OK;
1984
1985 /* If p->iStatement is greater than zero, then this Vdbe opened a
1986 ** statement transaction that should be closed here. The only exception
1987 ** is that an IO error may have occured, causing an emergency rollback.
1988 ** In this case (db->nStatement==0), and there is nothing to do.
1989 */
1990 if( db->nStatement && p->iStatement ){
1991 int i;
1992 const int iSavepoint = p->iStatement-1;
1993
1994 assert( eOp==SAVEPOINT_ROLLBACK || eOp==SAVEPOINT_RELEASE);
1995 assert( db->nStatement>0 );
1996 assert( p->iStatement==(db->nStatement+db->nSavepoint) );
1997
1998 for(i=0; i<db->nDb; i++){
1999 int rc2 = SQLITE_OK;
2000 Btree *pBt = db->aDb[i].pBt;
2001 if( pBt ){
2002 if( eOp==SAVEPOINT_ROLLBACK ){
2003 rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_ROLLBACK, iSavepoint);
2004 }
2005 if( rc2==SQLITE_OK ){
2006 rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_RELEASE, iSavepoint);
2007 }
2008 if( rc==SQLITE_OK ){
2009 rc = rc2;
2010 }
2011 }
2012 }
2013 db->nStatement--;
2014 p->iStatement = 0;
2015
2016 /* If the statement transaction is being rolled back, also restore the
2017 ** database handles deferred constraint counter to the value it had when
2018 ** the statement transaction was opened. */
2019 if( eOp==SAVEPOINT_ROLLBACK ){
2020 db->nDeferredCons = p->nStmtDefCons;
2021 }
2022 }
2023 return rc;
2024 }
2025
2026 /*
2027 ** This function is called when a transaction opened by the database
2028 ** handle associated with the VM passed as an argument is about to be
2029 ** committed. If there are outstanding deferred foreign key constraint
2030 ** violations, return SQLITE_ERROR. Otherwise, SQLITE_OK.
2031 **
2032 ** If there are outstanding FK violations and this function returns
2033 ** SQLITE_ERROR, set the result of the VM to SQLITE_CONSTRAINT and write
2034 ** an error message to it. Then return SQLITE_ERROR.
2035 */
2036 #ifndef SQLITE_OMIT_FOREIGN_KEY
sqlite3VdbeCheckFk(Vdbe * p,int deferred)2037 int sqlite3VdbeCheckFk(Vdbe *p, int deferred){
2038 sqlite3 *db = p->db;
2039 if( (deferred && db->nDeferredCons>0) || (!deferred && p->nFkConstraint>0) ){
2040 p->rc = SQLITE_CONSTRAINT;
2041 p->errorAction = OE_Abort;
2042 sqlite3SetString(&p->zErrMsg, db, "foreign key constraint failed");
2043 return SQLITE_ERROR;
2044 }
2045 return SQLITE_OK;
2046 }
2047 #endif
2048
2049 /*
2050 ** This routine is called the when a VDBE tries to halt. If the VDBE
2051 ** has made changes and is in autocommit mode, then commit those
2052 ** changes. If a rollback is needed, then do the rollback.
2053 **
2054 ** This routine is the only way to move the state of a VM from
2055 ** SQLITE_MAGIC_RUN to SQLITE_MAGIC_HALT. It is harmless to
2056 ** call this on a VM that is in the SQLITE_MAGIC_HALT state.
2057 **
2058 ** Return an error code. If the commit could not complete because of
2059 ** lock contention, return SQLITE_BUSY. If SQLITE_BUSY is returned, it
2060 ** means the close did not happen and needs to be repeated.
2061 */
sqlite3VdbeHalt(Vdbe * p)2062 int sqlite3VdbeHalt(Vdbe *p){
2063 int rc; /* Used to store transient return codes */
2064 sqlite3 *db = p->db;
2065
2066 /* This function contains the logic that determines if a statement or
2067 ** transaction will be committed or rolled back as a result of the
2068 ** execution of this virtual machine.
2069 **
2070 ** If any of the following errors occur:
2071 **
2072 ** SQLITE_NOMEM
2073 ** SQLITE_IOERR
2074 ** SQLITE_FULL
2075 ** SQLITE_INTERRUPT
2076 **
2077 ** Then the internal cache might have been left in an inconsistent
2078 ** state. We need to rollback the statement transaction, if there is
2079 ** one, or the complete transaction if there is no statement transaction.
2080 */
2081
2082 if( p->db->mallocFailed ){
2083 p->rc = SQLITE_NOMEM;
2084 }
2085 closeAllCursors(p);
2086 if( p->magic!=VDBE_MAGIC_RUN ){
2087 return SQLITE_OK;
2088 }
2089 checkActiveVdbeCnt(db);
2090
2091 /* No commit or rollback needed if the program never started */
2092 if( p->pc>=0 ){
2093 int mrc; /* Primary error code from p->rc */
2094 int eStatementOp = 0;
2095 int isSpecialError; /* Set to true if a 'special' error */
2096
2097 /* Lock all btrees used by the statement */
2098 sqlite3VdbeEnter(p);
2099
2100 /* Check for one of the special errors */
2101 mrc = p->rc & 0xff;
2102 assert( p->rc!=SQLITE_IOERR_BLOCKED ); /* This error no longer exists */
2103 isSpecialError = mrc==SQLITE_NOMEM || mrc==SQLITE_IOERR
2104 || mrc==SQLITE_INTERRUPT || mrc==SQLITE_FULL;
2105 if( isSpecialError ){
2106 /* If the query was read-only and the error code is SQLITE_INTERRUPT,
2107 ** no rollback is necessary. Otherwise, at least a savepoint
2108 ** transaction must be rolled back to restore the database to a
2109 ** consistent state.
2110 **
2111 ** Even if the statement is read-only, it is important to perform
2112 ** a statement or transaction rollback operation. If the error
2113 ** occured while writing to the journal, sub-journal or database
2114 ** file as part of an effort to free up cache space (see function
2115 ** pagerStress() in pager.c), the rollback is required to restore
2116 ** the pager to a consistent state.
2117 */
2118 if( !p->readOnly || mrc!=SQLITE_INTERRUPT ){
2119 if( (mrc==SQLITE_NOMEM || mrc==SQLITE_FULL) && p->usesStmtJournal ){
2120 eStatementOp = SAVEPOINT_ROLLBACK;
2121 }else{
2122 /* We are forced to roll back the active transaction. Before doing
2123 ** so, abort any other statements this handle currently has active.
2124 */
2125 invalidateCursorsOnModifiedBtrees(db);
2126 sqlite3RollbackAll(db);
2127 sqlite3CloseSavepoints(db);
2128 db->autoCommit = 1;
2129 }
2130 }
2131 }
2132
2133 /* Check for immediate foreign key violations. */
2134 if( p->rc==SQLITE_OK ){
2135 sqlite3VdbeCheckFk(p, 0);
2136 }
2137
2138 /* If the auto-commit flag is set and this is the only active writer
2139 ** VM, then we do either a commit or rollback of the current transaction.
2140 **
2141 ** Note: This block also runs if one of the special errors handled
2142 ** above has occurred.
2143 */
2144 if( !sqlite3VtabInSync(db)
2145 && db->autoCommit
2146 && db->writeVdbeCnt==(p->readOnly==0)
2147 ){
2148 if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){
2149 rc = sqlite3VdbeCheckFk(p, 1);
2150 if( rc!=SQLITE_OK ){
2151 if( NEVER(p->readOnly) ){
2152 sqlite3VdbeLeave(p);
2153 return SQLITE_ERROR;
2154 }
2155 rc = SQLITE_CONSTRAINT;
2156 }else{
2157 /* The auto-commit flag is true, the vdbe program was successful
2158 ** or hit an 'OR FAIL' constraint and there are no deferred foreign
2159 ** key constraints to hold up the transaction. This means a commit
2160 ** is required. */
2161 rc = vdbeCommit(db, p);
2162 }
2163 if( rc==SQLITE_BUSY && p->readOnly ){
2164 sqlite3VdbeLeave(p);
2165 return SQLITE_BUSY;
2166 }else if( rc!=SQLITE_OK ){
2167 p->rc = rc;
2168 sqlite3RollbackAll(db);
2169 }else{
2170 db->nDeferredCons = 0;
2171 sqlite3CommitInternalChanges(db);
2172 }
2173 }else{
2174 sqlite3RollbackAll(db);
2175 }
2176 db->nStatement = 0;
2177 }else if( eStatementOp==0 ){
2178 if( p->rc==SQLITE_OK || p->errorAction==OE_Fail ){
2179 eStatementOp = SAVEPOINT_RELEASE;
2180 }else if( p->errorAction==OE_Abort ){
2181 eStatementOp = SAVEPOINT_ROLLBACK;
2182 }else{
2183 invalidateCursorsOnModifiedBtrees(db);
2184 sqlite3RollbackAll(db);
2185 sqlite3CloseSavepoints(db);
2186 db->autoCommit = 1;
2187 }
2188 }
2189
2190 /* If eStatementOp is non-zero, then a statement transaction needs to
2191 ** be committed or rolled back. Call sqlite3VdbeCloseStatement() to
2192 ** do so. If this operation returns an error, and the current statement
2193 ** error code is SQLITE_OK or SQLITE_CONSTRAINT, then promote the
2194 ** current statement error code.
2195 **
2196 ** Note that sqlite3VdbeCloseStatement() can only fail if eStatementOp
2197 ** is SAVEPOINT_ROLLBACK. But if p->rc==SQLITE_OK then eStatementOp
2198 ** must be SAVEPOINT_RELEASE. Hence the NEVER(p->rc==SQLITE_OK) in
2199 ** the following code.
2200 */
2201 if( eStatementOp ){
2202 rc = sqlite3VdbeCloseStatement(p, eStatementOp);
2203 if( rc ){
2204 assert( eStatementOp==SAVEPOINT_ROLLBACK );
2205 if( NEVER(p->rc==SQLITE_OK) || p->rc==SQLITE_CONSTRAINT ){
2206 p->rc = rc;
2207 sqlite3DbFree(db, p->zErrMsg);
2208 p->zErrMsg = 0;
2209 }
2210 invalidateCursorsOnModifiedBtrees(db);
2211 sqlite3RollbackAll(db);
2212 sqlite3CloseSavepoints(db);
2213 db->autoCommit = 1;
2214 }
2215 }
2216
2217 /* If this was an INSERT, UPDATE or DELETE and no statement transaction
2218 ** has been rolled back, update the database connection change-counter.
2219 */
2220 if( p->changeCntOn ){
2221 if( eStatementOp!=SAVEPOINT_ROLLBACK ){
2222 sqlite3VdbeSetChanges(db, p->nChange);
2223 }else{
2224 sqlite3VdbeSetChanges(db, 0);
2225 }
2226 p->nChange = 0;
2227 }
2228
2229 /* Rollback or commit any schema changes that occurred. */
2230 if( p->rc!=SQLITE_OK && db->flags&SQLITE_InternChanges ){
2231 sqlite3ResetInternalSchema(db, -1);
2232 db->flags = (db->flags | SQLITE_InternChanges);
2233 }
2234
2235 /* Release the locks */
2236 sqlite3VdbeLeave(p);
2237 }
2238
2239 /* We have successfully halted and closed the VM. Record this fact. */
2240 if( p->pc>=0 ){
2241 db->activeVdbeCnt--;
2242 if( !p->readOnly ){
2243 db->writeVdbeCnt--;
2244 }
2245 assert( db->activeVdbeCnt>=db->writeVdbeCnt );
2246 }
2247 p->magic = VDBE_MAGIC_HALT;
2248 checkActiveVdbeCnt(db);
2249 if( p->db->mallocFailed ){
2250 p->rc = SQLITE_NOMEM;
2251 }
2252
2253 /* If the auto-commit flag is set to true, then any locks that were held
2254 ** by connection db have now been released. Call sqlite3ConnectionUnlocked()
2255 ** to invoke any required unlock-notify callbacks.
2256 */
2257 if( db->autoCommit ){
2258 sqlite3ConnectionUnlocked(db);
2259 }
2260
2261 assert( db->activeVdbeCnt>0 || db->autoCommit==0 || db->nStatement==0 );
2262 return (p->rc==SQLITE_BUSY ? SQLITE_BUSY : SQLITE_OK);
2263 }
2264
2265
2266 /*
2267 ** Each VDBE holds the result of the most recent sqlite3_step() call
2268 ** in p->rc. This routine sets that result back to SQLITE_OK.
2269 */
sqlite3VdbeResetStepResult(Vdbe * p)2270 void sqlite3VdbeResetStepResult(Vdbe *p){
2271 p->rc = SQLITE_OK;
2272 }
2273
2274 /*
2275 ** Clean up a VDBE after execution but do not delete the VDBE just yet.
2276 ** Write any error messages into *pzErrMsg. Return the result code.
2277 **
2278 ** After this routine is run, the VDBE should be ready to be executed
2279 ** again.
2280 **
2281 ** To look at it another way, this routine resets the state of the
2282 ** virtual machine from VDBE_MAGIC_RUN or VDBE_MAGIC_HALT back to
2283 ** VDBE_MAGIC_INIT.
2284 */
sqlite3VdbeReset(Vdbe * p)2285 int sqlite3VdbeReset(Vdbe *p){
2286 sqlite3 *db;
2287 db = p->db;
2288
2289 /* If the VM did not run to completion or if it encountered an
2290 ** error, then it might not have been halted properly. So halt
2291 ** it now.
2292 */
2293 sqlite3VdbeHalt(p);
2294
2295 /* If the VDBE has be run even partially, then transfer the error code
2296 ** and error message from the VDBE into the main database structure. But
2297 ** if the VDBE has just been set to run but has not actually executed any
2298 ** instructions yet, leave the main database error information unchanged.
2299 */
2300 if( p->pc>=0 ){
2301 if( p->zErrMsg ){
2302 sqlite3BeginBenignMalloc();
2303 sqlite3ValueSetStr(db->pErr,-1,p->zErrMsg,SQLITE_UTF8,SQLITE_TRANSIENT);
2304 sqlite3EndBenignMalloc();
2305 db->errCode = p->rc;
2306 sqlite3DbFree(db, p->zErrMsg);
2307 p->zErrMsg = 0;
2308 }else if( p->rc ){
2309 sqlite3Error(db, p->rc, 0);
2310 }else{
2311 sqlite3Error(db, SQLITE_OK, 0);
2312 }
2313 if( p->runOnlyOnce ) p->expired = 1;
2314 }else if( p->rc && p->expired ){
2315 /* The expired flag was set on the VDBE before the first call
2316 ** to sqlite3_step(). For consistency (since sqlite3_step() was
2317 ** called), set the database error in this case as well.
2318 */
2319 sqlite3Error(db, p->rc, 0);
2320 sqlite3ValueSetStr(db->pErr, -1, p->zErrMsg, SQLITE_UTF8, SQLITE_TRANSIENT);
2321 sqlite3DbFree(db, p->zErrMsg);
2322 p->zErrMsg = 0;
2323 }
2324
2325 /* Reclaim all memory used by the VDBE
2326 */
2327 Cleanup(p);
2328
2329 /* Save profiling information from this VDBE run.
2330 */
2331 #ifdef VDBE_PROFILE
2332 {
2333 FILE *out = fopen("vdbe_profile.out", "a");
2334 if( out ){
2335 int i;
2336 fprintf(out, "---- ");
2337 for(i=0; i<p->nOp; i++){
2338 fprintf(out, "%02x", p->aOp[i].opcode);
2339 }
2340 fprintf(out, "\n");
2341 for(i=0; i<p->nOp; i++){
2342 fprintf(out, "%6d %10lld %8lld ",
2343 p->aOp[i].cnt,
2344 p->aOp[i].cycles,
2345 p->aOp[i].cnt>0 ? p->aOp[i].cycles/p->aOp[i].cnt : 0
2346 );
2347 sqlite3VdbePrintOp(out, i, &p->aOp[i]);
2348 }
2349 fclose(out);
2350 }
2351 }
2352 #endif
2353 p->magic = VDBE_MAGIC_INIT;
2354 return p->rc & db->errMask;
2355 }
2356
2357 /*
2358 ** Clean up and delete a VDBE after execution. Return an integer which is
2359 ** the result code. Write any error message text into *pzErrMsg.
2360 */
sqlite3VdbeFinalize(Vdbe * p)2361 int sqlite3VdbeFinalize(Vdbe *p){
2362 int rc = SQLITE_OK;
2363 if( p->magic==VDBE_MAGIC_RUN || p->magic==VDBE_MAGIC_HALT ){
2364 rc = sqlite3VdbeReset(p);
2365 assert( (rc & p->db->errMask)==rc );
2366 }
2367 sqlite3VdbeDelete(p);
2368 return rc;
2369 }
2370
2371 /*
2372 ** Call the destructor for each auxdata entry in pVdbeFunc for which
2373 ** the corresponding bit in mask is clear. Auxdata entries beyond 31
2374 ** are always destroyed. To destroy all auxdata entries, call this
2375 ** routine with mask==0.
2376 */
sqlite3VdbeDeleteAuxData(VdbeFunc * pVdbeFunc,int mask)2377 void sqlite3VdbeDeleteAuxData(VdbeFunc *pVdbeFunc, int mask){
2378 int i;
2379 for(i=0; i<pVdbeFunc->nAux; i++){
2380 struct AuxData *pAux = &pVdbeFunc->apAux[i];
2381 if( (i>31 || !(mask&(((u32)1)<<i))) && pAux->pAux ){
2382 if( pAux->xDelete ){
2383 pAux->xDelete(pAux->pAux);
2384 }
2385 pAux->pAux = 0;
2386 }
2387 }
2388 }
2389
2390 /*
2391 ** Free all memory associated with the Vdbe passed as the second argument.
2392 ** The difference between this function and sqlite3VdbeDelete() is that
2393 ** VdbeDelete() also unlinks the Vdbe from the list of VMs associated with
2394 ** the database connection.
2395 */
sqlite3VdbeDeleteObject(sqlite3 * db,Vdbe * p)2396 void sqlite3VdbeDeleteObject(sqlite3 *db, Vdbe *p){
2397 SubProgram *pSub, *pNext;
2398 assert( p->db==0 || p->db==db );
2399 releaseMemArray(p->aVar, p->nVar);
2400 releaseMemArray(p->aColName, p->nResColumn*COLNAME_N);
2401 for(pSub=p->pProgram; pSub; pSub=pNext){
2402 pNext = pSub->pNext;
2403 vdbeFreeOpArray(db, pSub->aOp, pSub->nOp);
2404 sqlite3DbFree(db, pSub);
2405 }
2406 vdbeFreeOpArray(db, p->aOp, p->nOp);
2407 sqlite3DbFree(db, p->aLabel);
2408 sqlite3DbFree(db, p->aColName);
2409 sqlite3DbFree(db, p->zSql);
2410 sqlite3DbFree(db, p->pFree);
2411 sqlite3DbFree(db, p);
2412 }
2413
2414 /*
2415 ** Delete an entire VDBE.
2416 */
sqlite3VdbeDelete(Vdbe * p)2417 void sqlite3VdbeDelete(Vdbe *p){
2418 sqlite3 *db;
2419
2420 if( NEVER(p==0) ) return;
2421 db = p->db;
2422 if( p->pPrev ){
2423 p->pPrev->pNext = p->pNext;
2424 }else{
2425 assert( db->pVdbe==p );
2426 db->pVdbe = p->pNext;
2427 }
2428 if( p->pNext ){
2429 p->pNext->pPrev = p->pPrev;
2430 }
2431 p->magic = VDBE_MAGIC_DEAD;
2432 p->db = 0;
2433 sqlite3VdbeDeleteObject(db, p);
2434 }
2435
2436 /*
2437 ** Make sure the cursor p is ready to read or write the row to which it
2438 ** was last positioned. Return an error code if an OOM fault or I/O error
2439 ** prevents us from positioning the cursor to its correct position.
2440 **
2441 ** If a MoveTo operation is pending on the given cursor, then do that
2442 ** MoveTo now. If no move is pending, check to see if the row has been
2443 ** deleted out from under the cursor and if it has, mark the row as
2444 ** a NULL row.
2445 **
2446 ** If the cursor is already pointing to the correct row and that row has
2447 ** not been deleted out from under the cursor, then this routine is a no-op.
2448 */
sqlite3VdbeCursorMoveto(VdbeCursor * p)2449 int sqlite3VdbeCursorMoveto(VdbeCursor *p){
2450 if( p->deferredMoveto ){
2451 int res, rc;
2452 #ifdef SQLITE_TEST
2453 extern int sqlite3_search_count;
2454 #endif
2455 assert( p->isTable );
2456 rc = sqlite3BtreeMovetoUnpacked(p->pCursor, 0, p->movetoTarget, 0, &res);
2457 if( rc ) return rc;
2458 p->lastRowid = p->movetoTarget;
2459 if( res!=0 ) return SQLITE_CORRUPT_BKPT;
2460 p->rowidIsValid = 1;
2461 #ifdef SQLITE_TEST
2462 sqlite3_search_count++;
2463 #endif
2464 p->deferredMoveto = 0;
2465 p->cacheStatus = CACHE_STALE;
2466 }else if( ALWAYS(p->pCursor) ){
2467 int hasMoved;
2468 int rc = sqlite3BtreeCursorHasMoved(p->pCursor, &hasMoved);
2469 if( rc ) return rc;
2470 if( hasMoved ){
2471 p->cacheStatus = CACHE_STALE;
2472 p->nullRow = 1;
2473 }
2474 }
2475 return SQLITE_OK;
2476 }
2477
2478 /*
2479 ** The following functions:
2480 **
2481 ** sqlite3VdbeSerialType()
2482 ** sqlite3VdbeSerialTypeLen()
2483 ** sqlite3VdbeSerialLen()
2484 ** sqlite3VdbeSerialPut()
2485 ** sqlite3VdbeSerialGet()
2486 **
2487 ** encapsulate the code that serializes values for storage in SQLite
2488 ** data and index records. Each serialized value consists of a
2489 ** 'serial-type' and a blob of data. The serial type is an 8-byte unsigned
2490 ** integer, stored as a varint.
2491 **
2492 ** In an SQLite index record, the serial type is stored directly before
2493 ** the blob of data that it corresponds to. In a table record, all serial
2494 ** types are stored at the start of the record, and the blobs of data at
2495 ** the end. Hence these functions allow the caller to handle the
2496 ** serial-type and data blob seperately.
2497 **
2498 ** The following table describes the various storage classes for data:
2499 **
2500 ** serial type bytes of data type
2501 ** -------------- --------------- ---------------
2502 ** 0 0 NULL
2503 ** 1 1 signed integer
2504 ** 2 2 signed integer
2505 ** 3 3 signed integer
2506 ** 4 4 signed integer
2507 ** 5 6 signed integer
2508 ** 6 8 signed integer
2509 ** 7 8 IEEE float
2510 ** 8 0 Integer constant 0
2511 ** 9 0 Integer constant 1
2512 ** 10,11 reserved for expansion
2513 ** N>=12 and even (N-12)/2 BLOB
2514 ** N>=13 and odd (N-13)/2 text
2515 **
2516 ** The 8 and 9 types were added in 3.3.0, file format 4. Prior versions
2517 ** of SQLite will not understand those serial types.
2518 */
2519
2520 /*
2521 ** Return the serial-type for the value stored in pMem.
2522 */
sqlite3VdbeSerialType(Mem * pMem,int file_format)2523 u32 sqlite3VdbeSerialType(Mem *pMem, int file_format){
2524 int flags = pMem->flags;
2525 int n;
2526
2527 if( flags&MEM_Null ){
2528 return 0;
2529 }
2530 if( flags&MEM_Int ){
2531 /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */
2532 # define MAX_6BYTE ((((i64)0x00008000)<<32)-1)
2533 i64 i = pMem->u.i;
2534 u64 u;
2535 if( file_format>=4 && (i&1)==i ){
2536 return 8+(u32)i;
2537 }
2538 if( i<0 ){
2539 if( i<(-MAX_6BYTE) ) return 6;
2540 /* Previous test prevents: u = -(-9223372036854775808) */
2541 u = -i;
2542 }else{
2543 u = i;
2544 }
2545 if( u<=127 ) return 1;
2546 if( u<=32767 ) return 2;
2547 if( u<=8388607 ) return 3;
2548 if( u<=2147483647 ) return 4;
2549 if( u<=MAX_6BYTE ) return 5;
2550 return 6;
2551 }
2552 if( flags&MEM_Real ){
2553 return 7;
2554 }
2555 assert( pMem->db->mallocFailed || flags&(MEM_Str|MEM_Blob) );
2556 n = pMem->n;
2557 if( flags & MEM_Zero ){
2558 n += pMem->u.nZero;
2559 }
2560 assert( n>=0 );
2561 return ((n*2) + 12 + ((flags&MEM_Str)!=0));
2562 }
2563
2564 /*
2565 ** Return the length of the data corresponding to the supplied serial-type.
2566 */
sqlite3VdbeSerialTypeLen(u32 serial_type)2567 u32 sqlite3VdbeSerialTypeLen(u32 serial_type){
2568 if( serial_type>=12 ){
2569 return (serial_type-12)/2;
2570 }else{
2571 static const u8 aSize[] = { 0, 1, 2, 3, 4, 6, 8, 8, 0, 0, 0, 0 };
2572 return aSize[serial_type];
2573 }
2574 }
2575
2576 /*
2577 ** If we are on an architecture with mixed-endian floating
2578 ** points (ex: ARM7) then swap the lower 4 bytes with the
2579 ** upper 4 bytes. Return the result.
2580 **
2581 ** For most architectures, this is a no-op.
2582 **
2583 ** (later): It is reported to me that the mixed-endian problem
2584 ** on ARM7 is an issue with GCC, not with the ARM7 chip. It seems
2585 ** that early versions of GCC stored the two words of a 64-bit
2586 ** float in the wrong order. And that error has been propagated
2587 ** ever since. The blame is not necessarily with GCC, though.
2588 ** GCC might have just copying the problem from a prior compiler.
2589 ** I am also told that newer versions of GCC that follow a different
2590 ** ABI get the byte order right.
2591 **
2592 ** Developers using SQLite on an ARM7 should compile and run their
2593 ** application using -DSQLITE_DEBUG=1 at least once. With DEBUG
2594 ** enabled, some asserts below will ensure that the byte order of
2595 ** floating point values is correct.
2596 **
2597 ** (2007-08-30) Frank van Vugt has studied this problem closely
2598 ** and has send his findings to the SQLite developers. Frank
2599 ** writes that some Linux kernels offer floating point hardware
2600 ** emulation that uses only 32-bit mantissas instead of a full
2601 ** 48-bits as required by the IEEE standard. (This is the
2602 ** CONFIG_FPE_FASTFPE option.) On such systems, floating point
2603 ** byte swapping becomes very complicated. To avoid problems,
2604 ** the necessary byte swapping is carried out using a 64-bit integer
2605 ** rather than a 64-bit float. Frank assures us that the code here
2606 ** works for him. We, the developers, have no way to independently
2607 ** verify this, but Frank seems to know what he is talking about
2608 ** so we trust him.
2609 */
2610 #ifdef SQLITE_MIXED_ENDIAN_64BIT_FLOAT
floatSwap(u64 in)2611 static u64 floatSwap(u64 in){
2612 union {
2613 u64 r;
2614 u32 i[2];
2615 } u;
2616 u32 t;
2617
2618 u.r = in;
2619 t = u.i[0];
2620 u.i[0] = u.i[1];
2621 u.i[1] = t;
2622 return u.r;
2623 }
2624 # define swapMixedEndianFloat(X) X = floatSwap(X)
2625 #else
2626 # define swapMixedEndianFloat(X)
2627 #endif
2628
2629 /*
2630 ** Write the serialized data blob for the value stored in pMem into
2631 ** buf. It is assumed that the caller has allocated sufficient space.
2632 ** Return the number of bytes written.
2633 **
2634 ** nBuf is the amount of space left in buf[]. nBuf must always be
2635 ** large enough to hold the entire field. Except, if the field is
2636 ** a blob with a zero-filled tail, then buf[] might be just the right
2637 ** size to hold everything except for the zero-filled tail. If buf[]
2638 ** is only big enough to hold the non-zero prefix, then only write that
2639 ** prefix into buf[]. But if buf[] is large enough to hold both the
2640 ** prefix and the tail then write the prefix and set the tail to all
2641 ** zeros.
2642 **
2643 ** Return the number of bytes actually written into buf[]. The number
2644 ** of bytes in the zero-filled tail is included in the return value only
2645 ** if those bytes were zeroed in buf[].
2646 */
sqlite3VdbeSerialPut(u8 * buf,int nBuf,Mem * pMem,int file_format)2647 u32 sqlite3VdbeSerialPut(u8 *buf, int nBuf, Mem *pMem, int file_format){
2648 u32 serial_type = sqlite3VdbeSerialType(pMem, file_format);
2649 u32 len;
2650
2651 /* Integer and Real */
2652 if( serial_type<=7 && serial_type>0 ){
2653 u64 v;
2654 u32 i;
2655 if( serial_type==7 ){
2656 assert( sizeof(v)==sizeof(pMem->r) );
2657 memcpy(&v, &pMem->r, sizeof(v));
2658 swapMixedEndianFloat(v);
2659 }else{
2660 v = pMem->u.i;
2661 }
2662 len = i = sqlite3VdbeSerialTypeLen(serial_type);
2663 assert( len<=(u32)nBuf );
2664 while( i-- ){
2665 buf[i] = (u8)(v&0xFF);
2666 v >>= 8;
2667 }
2668 return len;
2669 }
2670
2671 /* String or blob */
2672 if( serial_type>=12 ){
2673 assert( pMem->n + ((pMem->flags & MEM_Zero)?pMem->u.nZero:0)
2674 == (int)sqlite3VdbeSerialTypeLen(serial_type) );
2675 assert( pMem->n<=nBuf );
2676 len = pMem->n;
2677 memcpy(buf, pMem->z, len);
2678 if( pMem->flags & MEM_Zero ){
2679 len += pMem->u.nZero;
2680 assert( nBuf>=0 );
2681 if( len > (u32)nBuf ){
2682 len = (u32)nBuf;
2683 }
2684 memset(&buf[pMem->n], 0, len-pMem->n);
2685 }
2686 return len;
2687 }
2688
2689 /* NULL or constants 0 or 1 */
2690 return 0;
2691 }
2692
2693 /*
2694 ** Deserialize the data blob pointed to by buf as serial type serial_type
2695 ** and store the result in pMem. Return the number of bytes read.
2696 */
sqlite3VdbeSerialGet(const unsigned char * buf,u32 serial_type,Mem * pMem)2697 u32 sqlite3VdbeSerialGet(
2698 const unsigned char *buf, /* Buffer to deserialize from */
2699 u32 serial_type, /* Serial type to deserialize */
2700 Mem *pMem /* Memory cell to write value into */
2701 ){
2702 switch( serial_type ){
2703 case 10: /* Reserved for future use */
2704 case 11: /* Reserved for future use */
2705 case 0: { /* NULL */
2706 pMem->flags = MEM_Null;
2707 break;
2708 }
2709 case 1: { /* 1-byte signed integer */
2710 pMem->u.i = (signed char)buf[0];
2711 pMem->flags = MEM_Int;
2712 return 1;
2713 }
2714 case 2: { /* 2-byte signed integer */
2715 pMem->u.i = (((signed char)buf[0])<<8) | buf[1];
2716 pMem->flags = MEM_Int;
2717 return 2;
2718 }
2719 case 3: { /* 3-byte signed integer */
2720 pMem->u.i = (((signed char)buf[0])<<16) | (buf[1]<<8) | buf[2];
2721 pMem->flags = MEM_Int;
2722 return 3;
2723 }
2724 case 4: { /* 4-byte signed integer */
2725 pMem->u.i = (buf[0]<<24) | (buf[1]<<16) | (buf[2]<<8) | buf[3];
2726 pMem->flags = MEM_Int;
2727 return 4;
2728 }
2729 case 5: { /* 6-byte signed integer */
2730 u64 x = (((signed char)buf[0])<<8) | buf[1];
2731 u32 y = (buf[2]<<24) | (buf[3]<<16) | (buf[4]<<8) | buf[5];
2732 x = (x<<32) | y;
2733 pMem->u.i = *(i64*)&x;
2734 pMem->flags = MEM_Int;
2735 return 6;
2736 }
2737 case 6: /* 8-byte signed integer */
2738 case 7: { /* IEEE floating point */
2739 u64 x;
2740 u32 y;
2741 #if !defined(NDEBUG) && !defined(SQLITE_OMIT_FLOATING_POINT)
2742 /* Verify that integers and floating point values use the same
2743 ** byte order. Or, that if SQLITE_MIXED_ENDIAN_64BIT_FLOAT is
2744 ** defined that 64-bit floating point values really are mixed
2745 ** endian.
2746 */
2747 static const u64 t1 = ((u64)0x3ff00000)<<32;
2748 static const double r1 = 1.0;
2749 u64 t2 = t1;
2750 swapMixedEndianFloat(t2);
2751 assert( sizeof(r1)==sizeof(t2) && memcmp(&r1, &t2, sizeof(r1))==0 );
2752 #endif
2753
2754 x = (buf[0]<<24) | (buf[1]<<16) | (buf[2]<<8) | buf[3];
2755 y = (buf[4]<<24) | (buf[5]<<16) | (buf[6]<<8) | buf[7];
2756 x = (x<<32) | y;
2757 if( serial_type==6 ){
2758 pMem->u.i = *(i64*)&x;
2759 pMem->flags = MEM_Int;
2760 }else{
2761 assert( sizeof(x)==8 && sizeof(pMem->r)==8 );
2762 swapMixedEndianFloat(x);
2763 memcpy(&pMem->r, &x, sizeof(x));
2764 pMem->flags = sqlite3IsNaN(pMem->r) ? MEM_Null : MEM_Real;
2765 }
2766 return 8;
2767 }
2768 case 8: /* Integer 0 */
2769 case 9: { /* Integer 1 */
2770 pMem->u.i = serial_type-8;
2771 pMem->flags = MEM_Int;
2772 return 0;
2773 }
2774 default: {
2775 u32 len = (serial_type-12)/2;
2776 pMem->z = (char *)buf;
2777 pMem->n = len;
2778 pMem->xDel = 0;
2779 if( serial_type&0x01 ){
2780 pMem->flags = MEM_Str | MEM_Ephem;
2781 }else{
2782 pMem->flags = MEM_Blob | MEM_Ephem;
2783 }
2784 return len;
2785 }
2786 }
2787 return 0;
2788 }
2789
2790
2791 /*
2792 ** Given the nKey-byte encoding of a record in pKey[], parse the
2793 ** record into a UnpackedRecord structure. Return a pointer to
2794 ** that structure.
2795 **
2796 ** The calling function might provide szSpace bytes of memory
2797 ** space at pSpace. This space can be used to hold the returned
2798 ** VDbeParsedRecord structure if it is large enough. If it is
2799 ** not big enough, space is obtained from sqlite3_malloc().
2800 **
2801 ** The returned structure should be closed by a call to
2802 ** sqlite3VdbeDeleteUnpackedRecord().
2803 */
sqlite3VdbeRecordUnpack(KeyInfo * pKeyInfo,int nKey,const void * pKey,char * pSpace,int szSpace)2804 UnpackedRecord *sqlite3VdbeRecordUnpack(
2805 KeyInfo *pKeyInfo, /* Information about the record format */
2806 int nKey, /* Size of the binary record */
2807 const void *pKey, /* The binary record */
2808 char *pSpace, /* Unaligned space available to hold the object */
2809 int szSpace /* Size of pSpace[] in bytes */
2810 ){
2811 const unsigned char *aKey = (const unsigned char *)pKey;
2812 UnpackedRecord *p; /* The unpacked record that we will return */
2813 int nByte; /* Memory space needed to hold p, in bytes */
2814 int d;
2815 u32 idx;
2816 u16 u; /* Unsigned loop counter */
2817 u32 szHdr;
2818 Mem *pMem;
2819 int nOff; /* Increase pSpace by this much to 8-byte align it */
2820
2821 /*
2822 ** We want to shift the pointer pSpace up such that it is 8-byte aligned.
2823 ** Thus, we need to calculate a value, nOff, between 0 and 7, to shift
2824 ** it by. If pSpace is already 8-byte aligned, nOff should be zero.
2825 */
2826 nOff = (8 - (SQLITE_PTR_TO_INT(pSpace) & 7)) & 7;
2827 pSpace += nOff;
2828 szSpace -= nOff;
2829 nByte = ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*(pKeyInfo->nField+1);
2830 if( nByte>szSpace ){
2831 p = sqlite3DbMallocRaw(pKeyInfo->db, nByte);
2832 if( p==0 ) return 0;
2833 p->flags = UNPACKED_NEED_FREE | UNPACKED_NEED_DESTROY;
2834 }else{
2835 p = (UnpackedRecord*)pSpace;
2836 p->flags = UNPACKED_NEED_DESTROY;
2837 }
2838 p->pKeyInfo = pKeyInfo;
2839 p->nField = pKeyInfo->nField + 1;
2840 p->aMem = pMem = (Mem*)&((char*)p)[ROUND8(sizeof(UnpackedRecord))];
2841 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
2842 idx = getVarint32(aKey, szHdr);
2843 d = szHdr;
2844 u = 0;
2845 while( idx<szHdr && u<p->nField && d<=nKey ){
2846 u32 serial_type;
2847
2848 idx += getVarint32(&aKey[idx], serial_type);
2849 pMem->enc = pKeyInfo->enc;
2850 pMem->db = pKeyInfo->db;
2851 pMem->flags = 0;
2852 pMem->zMalloc = 0;
2853 d += sqlite3VdbeSerialGet(&aKey[d], serial_type, pMem);
2854 pMem++;
2855 u++;
2856 }
2857 assert( u<=pKeyInfo->nField + 1 );
2858 p->nField = u;
2859 return (void*)p;
2860 }
2861
2862 /*
2863 ** This routine destroys a UnpackedRecord object.
2864 */
sqlite3VdbeDeleteUnpackedRecord(UnpackedRecord * p)2865 void sqlite3VdbeDeleteUnpackedRecord(UnpackedRecord *p){
2866 int i;
2867 Mem *pMem;
2868
2869 assert( p!=0 );
2870 assert( p->flags & UNPACKED_NEED_DESTROY );
2871 for(i=0, pMem=p->aMem; i<p->nField; i++, pMem++){
2872 /* The unpacked record is always constructed by the
2873 ** sqlite3VdbeUnpackRecord() function above, which makes all
2874 ** strings and blobs static. And none of the elements are
2875 ** ever transformed, so there is never anything to delete.
2876 */
2877 if( NEVER(pMem->zMalloc) ) sqlite3VdbeMemRelease(pMem);
2878 }
2879 if( p->flags & UNPACKED_NEED_FREE ){
2880 sqlite3DbFree(p->pKeyInfo->db, p);
2881 }
2882 }
2883
2884 /*
2885 ** This function compares the two table rows or index records
2886 ** specified by {nKey1, pKey1} and pPKey2. It returns a negative, zero
2887 ** or positive integer if key1 is less than, equal to or
2888 ** greater than key2. The {nKey1, pKey1} key must be a blob
2889 ** created by th OP_MakeRecord opcode of the VDBE. The pPKey2
2890 ** key must be a parsed key such as obtained from
2891 ** sqlite3VdbeParseRecord.
2892 **
2893 ** Key1 and Key2 do not have to contain the same number of fields.
2894 ** The key with fewer fields is usually compares less than the
2895 ** longer key. However if the UNPACKED_INCRKEY flags in pPKey2 is set
2896 ** and the common prefixes are equal, then key1 is less than key2.
2897 ** Or if the UNPACKED_MATCH_PREFIX flag is set and the prefixes are
2898 ** equal, then the keys are considered to be equal and
2899 ** the parts beyond the common prefix are ignored.
2900 **
2901 ** If the UNPACKED_IGNORE_ROWID flag is set, then the last byte of
2902 ** the header of pKey1 is ignored. It is assumed that pKey1 is
2903 ** an index key, and thus ends with a rowid value. The last byte
2904 ** of the header will therefore be the serial type of the rowid:
2905 ** one of 1, 2, 3, 4, 5, 6, 8, or 9 - the integer serial types.
2906 ** The serial type of the final rowid will always be a single byte.
2907 ** By ignoring this last byte of the header, we force the comparison
2908 ** to ignore the rowid at the end of key1.
2909 */
sqlite3VdbeRecordCompare(int nKey1,const void * pKey1,UnpackedRecord * pPKey2)2910 int sqlite3VdbeRecordCompare(
2911 int nKey1, const void *pKey1, /* Left key */
2912 UnpackedRecord *pPKey2 /* Right key */
2913 ){
2914 int d1; /* Offset into aKey[] of next data element */
2915 u32 idx1; /* Offset into aKey[] of next header element */
2916 u32 szHdr1; /* Number of bytes in header */
2917 int i = 0;
2918 int nField;
2919 int rc = 0;
2920 const unsigned char *aKey1 = (const unsigned char *)pKey1;
2921 KeyInfo *pKeyInfo;
2922 Mem mem1;
2923
2924 pKeyInfo = pPKey2->pKeyInfo;
2925 mem1.enc = pKeyInfo->enc;
2926 mem1.db = pKeyInfo->db;
2927 /* mem1.flags = 0; // Will be initialized by sqlite3VdbeSerialGet() */
2928 VVA_ONLY( mem1.zMalloc = 0; ) /* Only needed by assert() statements */
2929
2930 /* Compilers may complain that mem1.u.i is potentially uninitialized.
2931 ** We could initialize it, as shown here, to silence those complaints.
2932 ** But in fact, mem1.u.i will never actually be used initialized, and doing
2933 ** the unnecessary initialization has a measurable negative performance
2934 ** impact, since this routine is a very high runner. And so, we choose
2935 ** to ignore the compiler warnings and leave this variable uninitialized.
2936 */
2937 /* mem1.u.i = 0; // not needed, here to silence compiler warning */
2938
2939 idx1 = getVarint32(aKey1, szHdr1);
2940 d1 = szHdr1;
2941 if( pPKey2->flags & UNPACKED_IGNORE_ROWID ){
2942 szHdr1--;
2943 }
2944 nField = pKeyInfo->nField;
2945 while( idx1<szHdr1 && i<pPKey2->nField ){
2946 u32 serial_type1;
2947
2948 /* Read the serial types for the next element in each key. */
2949 idx1 += getVarint32( aKey1+idx1, serial_type1 );
2950 if( d1>=nKey1 && sqlite3VdbeSerialTypeLen(serial_type1)>0 ) break;
2951
2952 /* Extract the values to be compared.
2953 */
2954 d1 += sqlite3VdbeSerialGet(&aKey1[d1], serial_type1, &mem1);
2955
2956 /* Do the comparison
2957 */
2958 rc = sqlite3MemCompare(&mem1, &pPKey2->aMem[i],
2959 i<nField ? pKeyInfo->aColl[i] : 0);
2960 if( rc!=0 ){
2961 assert( mem1.zMalloc==0 ); /* See comment below */
2962
2963 /* Invert the result if we are using DESC sort order. */
2964 if( pKeyInfo->aSortOrder && i<nField && pKeyInfo->aSortOrder[i] ){
2965 rc = -rc;
2966 }
2967
2968 /* If the PREFIX_SEARCH flag is set and all fields except the final
2969 ** rowid field were equal, then clear the PREFIX_SEARCH flag and set
2970 ** pPKey2->rowid to the value of the rowid field in (pKey1, nKey1).
2971 ** This is used by the OP_IsUnique opcode.
2972 */
2973 if( (pPKey2->flags & UNPACKED_PREFIX_SEARCH) && i==(pPKey2->nField-1) ){
2974 assert( idx1==szHdr1 && rc );
2975 assert( mem1.flags & MEM_Int );
2976 pPKey2->flags &= ~UNPACKED_PREFIX_SEARCH;
2977 pPKey2->rowid = mem1.u.i;
2978 }
2979
2980 return rc;
2981 }
2982 i++;
2983 }
2984
2985 /* No memory allocation is ever used on mem1. Prove this using
2986 ** the following assert(). If the assert() fails, it indicates a
2987 ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1).
2988 */
2989 assert( mem1.zMalloc==0 );
2990
2991 /* rc==0 here means that one of the keys ran out of fields and
2992 ** all the fields up to that point were equal. If the UNPACKED_INCRKEY
2993 ** flag is set, then break the tie by treating key2 as larger.
2994 ** If the UPACKED_PREFIX_MATCH flag is set, then keys with common prefixes
2995 ** are considered to be equal. Otherwise, the longer key is the
2996 ** larger. As it happens, the pPKey2 will always be the longer
2997 ** if there is a difference.
2998 */
2999 assert( rc==0 );
3000 if( pPKey2->flags & UNPACKED_INCRKEY ){
3001 rc = -1;
3002 }else if( pPKey2->flags & UNPACKED_PREFIX_MATCH ){
3003 /* Leave rc==0 */
3004 }else if( idx1<szHdr1 ){
3005 rc = 1;
3006 }
3007 return rc;
3008 }
3009
3010
3011 /*
3012 ** pCur points at an index entry created using the OP_MakeRecord opcode.
3013 ** Read the rowid (the last field in the record) and store it in *rowid.
3014 ** Return SQLITE_OK if everything works, or an error code otherwise.
3015 **
3016 ** pCur might be pointing to text obtained from a corrupt database file.
3017 ** So the content cannot be trusted. Do appropriate checks on the content.
3018 */
sqlite3VdbeIdxRowid(sqlite3 * db,BtCursor * pCur,i64 * rowid)3019 int sqlite3VdbeIdxRowid(sqlite3 *db, BtCursor *pCur, i64 *rowid){
3020 i64 nCellKey = 0;
3021 int rc;
3022 u32 szHdr; /* Size of the header */
3023 u32 typeRowid; /* Serial type of the rowid */
3024 u32 lenRowid; /* Size of the rowid */
3025 Mem m, v;
3026
3027 UNUSED_PARAMETER(db);
3028
3029 /* Get the size of the index entry. Only indices entries of less
3030 ** than 2GiB are support - anything large must be database corruption.
3031 ** Any corruption is detected in sqlite3BtreeParseCellPtr(), though, so
3032 ** this code can safely assume that nCellKey is 32-bits
3033 */
3034 assert( sqlite3BtreeCursorIsValid(pCur) );
3035 rc = sqlite3BtreeKeySize(pCur, &nCellKey);
3036 assert( rc==SQLITE_OK ); /* pCur is always valid so KeySize cannot fail */
3037 assert( (nCellKey & SQLITE_MAX_U32)==(u64)nCellKey );
3038
3039 /* Read in the complete content of the index entry */
3040 memset(&m, 0, sizeof(m));
3041 rc = sqlite3VdbeMemFromBtree(pCur, 0, (int)nCellKey, 1, &m);
3042 if( rc ){
3043 return rc;
3044 }
3045
3046 /* The index entry must begin with a header size */
3047 (void)getVarint32((u8*)m.z, szHdr);
3048 testcase( szHdr==3 );
3049 testcase( szHdr==m.n );
3050 if( unlikely(szHdr<3 || (int)szHdr>m.n) ){
3051 goto idx_rowid_corruption;
3052 }
3053
3054 /* The last field of the index should be an integer - the ROWID.
3055 ** Verify that the last entry really is an integer. */
3056 (void)getVarint32((u8*)&m.z[szHdr-1], typeRowid);
3057 testcase( typeRowid==1 );
3058 testcase( typeRowid==2 );
3059 testcase( typeRowid==3 );
3060 testcase( typeRowid==4 );
3061 testcase( typeRowid==5 );
3062 testcase( typeRowid==6 );
3063 testcase( typeRowid==8 );
3064 testcase( typeRowid==9 );
3065 if( unlikely(typeRowid<1 || typeRowid>9 || typeRowid==7) ){
3066 goto idx_rowid_corruption;
3067 }
3068 lenRowid = sqlite3VdbeSerialTypeLen(typeRowid);
3069 testcase( (u32)m.n==szHdr+lenRowid );
3070 if( unlikely((u32)m.n<szHdr+lenRowid) ){
3071 goto idx_rowid_corruption;
3072 }
3073
3074 /* Fetch the integer off the end of the index record */
3075 sqlite3VdbeSerialGet((u8*)&m.z[m.n-lenRowid], typeRowid, &v);
3076 *rowid = v.u.i;
3077 sqlite3VdbeMemRelease(&m);
3078 return SQLITE_OK;
3079
3080 /* Jump here if database corruption is detected after m has been
3081 ** allocated. Free the m object and return SQLITE_CORRUPT. */
3082 idx_rowid_corruption:
3083 testcase( m.zMalloc!=0 );
3084 sqlite3VdbeMemRelease(&m);
3085 return SQLITE_CORRUPT_BKPT;
3086 }
3087
3088 /*
3089 ** Compare the key of the index entry that cursor pC is pointing to against
3090 ** the key string in pUnpacked. Write into *pRes a number
3091 ** that is negative, zero, or positive if pC is less than, equal to,
3092 ** or greater than pUnpacked. Return SQLITE_OK on success.
3093 **
3094 ** pUnpacked is either created without a rowid or is truncated so that it
3095 ** omits the rowid at the end. The rowid at the end of the index entry
3096 ** is ignored as well. Hence, this routine only compares the prefixes
3097 ** of the keys prior to the final rowid, not the entire key.
3098 */
sqlite3VdbeIdxKeyCompare(VdbeCursor * pC,UnpackedRecord * pUnpacked,int * res)3099 int sqlite3VdbeIdxKeyCompare(
3100 VdbeCursor *pC, /* The cursor to compare against */
3101 UnpackedRecord *pUnpacked, /* Unpacked version of key to compare against */
3102 int *res /* Write the comparison result here */
3103 ){
3104 i64 nCellKey = 0;
3105 int rc;
3106 BtCursor *pCur = pC->pCursor;
3107 Mem m;
3108
3109 assert( sqlite3BtreeCursorIsValid(pCur) );
3110 rc = sqlite3BtreeKeySize(pCur, &nCellKey);
3111 assert( rc==SQLITE_OK ); /* pCur is always valid so KeySize cannot fail */
3112 /* nCellKey will always be between 0 and 0xffffffff because of the say
3113 ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */
3114 if( nCellKey<=0 || nCellKey>0x7fffffff ){
3115 *res = 0;
3116 return SQLITE_CORRUPT_BKPT;
3117 }
3118 memset(&m, 0, sizeof(m));
3119 rc = sqlite3VdbeMemFromBtree(pC->pCursor, 0, (int)nCellKey, 1, &m);
3120 if( rc ){
3121 return rc;
3122 }
3123 assert( pUnpacked->flags & UNPACKED_IGNORE_ROWID );
3124 *res = sqlite3VdbeRecordCompare(m.n, m.z, pUnpacked);
3125 sqlite3VdbeMemRelease(&m);
3126 return SQLITE_OK;
3127 }
3128
3129 /*
3130 ** This routine sets the value to be returned by subsequent calls to
3131 ** sqlite3_changes() on the database handle 'db'.
3132 */
sqlite3VdbeSetChanges(sqlite3 * db,int nChange)3133 void sqlite3VdbeSetChanges(sqlite3 *db, int nChange){
3134 assert( sqlite3_mutex_held(db->mutex) );
3135 db->nChange = nChange;
3136 db->nTotalChange += nChange;
3137 }
3138
3139 /*
3140 ** Set a flag in the vdbe to update the change counter when it is finalised
3141 ** or reset.
3142 */
sqlite3VdbeCountChanges(Vdbe * v)3143 void sqlite3VdbeCountChanges(Vdbe *v){
3144 v->changeCntOn = 1;
3145 }
3146
3147 /*
3148 ** Mark every prepared statement associated with a database connection
3149 ** as expired.
3150 **
3151 ** An expired statement means that recompilation of the statement is
3152 ** recommend. Statements expire when things happen that make their
3153 ** programs obsolete. Removing user-defined functions or collating
3154 ** sequences, or changing an authorization function are the types of
3155 ** things that make prepared statements obsolete.
3156 */
sqlite3ExpirePreparedStatements(sqlite3 * db)3157 void sqlite3ExpirePreparedStatements(sqlite3 *db){
3158 Vdbe *p;
3159 for(p = db->pVdbe; p; p=p->pNext){
3160 p->expired = 1;
3161 }
3162 }
3163
3164 /*
3165 ** Return the database associated with the Vdbe.
3166 */
sqlite3VdbeDb(Vdbe * v)3167 sqlite3 *sqlite3VdbeDb(Vdbe *v){
3168 return v->db;
3169 }
3170
3171 /*
3172 ** Return a pointer to an sqlite3_value structure containing the value bound
3173 ** parameter iVar of VM v. Except, if the value is an SQL NULL, return
3174 ** 0 instead. Unless it is NULL, apply affinity aff (one of the SQLITE_AFF_*
3175 ** constants) to the value before returning it.
3176 **
3177 ** The returned value must be freed by the caller using sqlite3ValueFree().
3178 */
sqlite3VdbeGetValue(Vdbe * v,int iVar,u8 aff)3179 sqlite3_value *sqlite3VdbeGetValue(Vdbe *v, int iVar, u8 aff){
3180 assert( iVar>0 );
3181 if( v ){
3182 Mem *pMem = &v->aVar[iVar-1];
3183 if( 0==(pMem->flags & MEM_Null) ){
3184 sqlite3_value *pRet = sqlite3ValueNew(v->db);
3185 if( pRet ){
3186 sqlite3VdbeMemCopy((Mem *)pRet, pMem);
3187 sqlite3ValueApplyAffinity(pRet, aff, SQLITE_UTF8);
3188 sqlite3VdbeMemStoreType((Mem *)pRet);
3189 }
3190 return pRet;
3191 }
3192 }
3193 return 0;
3194 }
3195
3196 /*
3197 ** Configure SQL variable iVar so that binding a new value to it signals
3198 ** to sqlite3_reoptimize() that re-preparing the statement may result
3199 ** in a better query plan.
3200 */
sqlite3VdbeSetVarmask(Vdbe * v,int iVar)3201 void sqlite3VdbeSetVarmask(Vdbe *v, int iVar){
3202 assert( iVar>0 );
3203 if( iVar>32 ){
3204 v->expmask = 0xffffffff;
3205 }else{
3206 v->expmask |= ((u32)1 << (iVar-1));
3207 }
3208 }
3209