1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This module contains C code that generates VDBE code used to process
13 ** the WHERE clause of SQL statements. This module is responsible for
14 ** generating the code that loops through a table looking for applicable
15 ** rows. Indices are selected and used to speed the search when doing
16 ** so is applicable. Because this module is responsible for selecting
17 ** indices, you might also think of this module as the "query optimizer".
18 */
19 #include "sqliteInt.h"
20
21
22 /*
23 ** Trace output macros
24 */
25 #if defined(SQLITE_TEST) || defined(SQLITE_DEBUG)
26 int sqlite3WhereTrace = 0;
27 #endif
28 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
29 # define WHERETRACE(X) if(sqlite3WhereTrace) sqlite3DebugPrintf X
30 #else
31 # define WHERETRACE(X)
32 #endif
33
34 /* Forward reference
35 */
36 typedef struct WhereClause WhereClause;
37 typedef struct WhereMaskSet WhereMaskSet;
38 typedef struct WhereOrInfo WhereOrInfo;
39 typedef struct WhereAndInfo WhereAndInfo;
40 typedef struct WhereCost WhereCost;
41
42 /*
43 ** The query generator uses an array of instances of this structure to
44 ** help it analyze the subexpressions of the WHERE clause. Each WHERE
45 ** clause subexpression is separated from the others by AND operators,
46 ** usually, or sometimes subexpressions separated by OR.
47 **
48 ** All WhereTerms are collected into a single WhereClause structure.
49 ** The following identity holds:
50 **
51 ** WhereTerm.pWC->a[WhereTerm.idx] == WhereTerm
52 **
53 ** When a term is of the form:
54 **
55 ** X <op> <expr>
56 **
57 ** where X is a column name and <op> is one of certain operators,
58 ** then WhereTerm.leftCursor and WhereTerm.u.leftColumn record the
59 ** cursor number and column number for X. WhereTerm.eOperator records
60 ** the <op> using a bitmask encoding defined by WO_xxx below. The
61 ** use of a bitmask encoding for the operator allows us to search
62 ** quickly for terms that match any of several different operators.
63 **
64 ** A WhereTerm might also be two or more subterms connected by OR:
65 **
66 ** (t1.X <op> <expr>) OR (t1.Y <op> <expr>) OR ....
67 **
68 ** In this second case, wtFlag as the TERM_ORINFO set and eOperator==WO_OR
69 ** and the WhereTerm.u.pOrInfo field points to auxiliary information that
70 ** is collected about the
71 **
72 ** If a term in the WHERE clause does not match either of the two previous
73 ** categories, then eOperator==0. The WhereTerm.pExpr field is still set
74 ** to the original subexpression content and wtFlags is set up appropriately
75 ** but no other fields in the WhereTerm object are meaningful.
76 **
77 ** When eOperator!=0, prereqRight and prereqAll record sets of cursor numbers,
78 ** but they do so indirectly. A single WhereMaskSet structure translates
79 ** cursor number into bits and the translated bit is stored in the prereq
80 ** fields. The translation is used in order to maximize the number of
81 ** bits that will fit in a Bitmask. The VDBE cursor numbers might be
82 ** spread out over the non-negative integers. For example, the cursor
83 ** numbers might be 3, 8, 9, 10, 20, 23, 41, and 45. The WhereMaskSet
84 ** translates these sparse cursor numbers into consecutive integers
85 ** beginning with 0 in order to make the best possible use of the available
86 ** bits in the Bitmask. So, in the example above, the cursor numbers
87 ** would be mapped into integers 0 through 7.
88 **
89 ** The number of terms in a join is limited by the number of bits
90 ** in prereqRight and prereqAll. The default is 64 bits, hence SQLite
91 ** is only able to process joins with 64 or fewer tables.
92 */
93 typedef struct WhereTerm WhereTerm;
94 struct WhereTerm {
95 Expr *pExpr; /* Pointer to the subexpression that is this term */
96 int iParent; /* Disable pWC->a[iParent] when this term disabled */
97 int leftCursor; /* Cursor number of X in "X <op> <expr>" */
98 union {
99 int leftColumn; /* Column number of X in "X <op> <expr>" */
100 WhereOrInfo *pOrInfo; /* Extra information if eOperator==WO_OR */
101 WhereAndInfo *pAndInfo; /* Extra information if eOperator==WO_AND */
102 } u;
103 u16 eOperator; /* A WO_xx value describing <op> */
104 u8 wtFlags; /* TERM_xxx bit flags. See below */
105 u8 nChild; /* Number of children that must disable us */
106 WhereClause *pWC; /* The clause this term is part of */
107 Bitmask prereqRight; /* Bitmask of tables used by pExpr->pRight */
108 Bitmask prereqAll; /* Bitmask of tables referenced by pExpr */
109 };
110
111 /*
112 ** Allowed values of WhereTerm.wtFlags
113 */
114 #define TERM_DYNAMIC 0x01 /* Need to call sqlite3ExprDelete(db, pExpr) */
115 #define TERM_VIRTUAL 0x02 /* Added by the optimizer. Do not code */
116 #define TERM_CODED 0x04 /* This term is already coded */
117 #define TERM_COPIED 0x08 /* Has a child */
118 #define TERM_ORINFO 0x10 /* Need to free the WhereTerm.u.pOrInfo object */
119 #define TERM_ANDINFO 0x20 /* Need to free the WhereTerm.u.pAndInfo obj */
120 #define TERM_OR_OK 0x40 /* Used during OR-clause processing */
121 #ifdef SQLITE_ENABLE_STAT2
122 # define TERM_VNULL 0x80 /* Manufactured x>NULL or x<=NULL term */
123 #else
124 # define TERM_VNULL 0x00 /* Disabled if not using stat2 */
125 #endif
126
127 /*
128 ** An instance of the following structure holds all information about a
129 ** WHERE clause. Mostly this is a container for one or more WhereTerms.
130 */
131 struct WhereClause {
132 Parse *pParse; /* The parser context */
133 WhereMaskSet *pMaskSet; /* Mapping of table cursor numbers to bitmasks */
134 Bitmask vmask; /* Bitmask identifying virtual table cursors */
135 u8 op; /* Split operator. TK_AND or TK_OR */
136 int nTerm; /* Number of terms */
137 int nSlot; /* Number of entries in a[] */
138 WhereTerm *a; /* Each a[] describes a term of the WHERE cluase */
139 #if defined(SQLITE_SMALL_STACK)
140 WhereTerm aStatic[1]; /* Initial static space for a[] */
141 #else
142 WhereTerm aStatic[8]; /* Initial static space for a[] */
143 #endif
144 };
145
146 /*
147 ** A WhereTerm with eOperator==WO_OR has its u.pOrInfo pointer set to
148 ** a dynamically allocated instance of the following structure.
149 */
150 struct WhereOrInfo {
151 WhereClause wc; /* Decomposition into subterms */
152 Bitmask indexable; /* Bitmask of all indexable tables in the clause */
153 };
154
155 /*
156 ** A WhereTerm with eOperator==WO_AND has its u.pAndInfo pointer set to
157 ** a dynamically allocated instance of the following structure.
158 */
159 struct WhereAndInfo {
160 WhereClause wc; /* The subexpression broken out */
161 };
162
163 /*
164 ** An instance of the following structure keeps track of a mapping
165 ** between VDBE cursor numbers and bits of the bitmasks in WhereTerm.
166 **
167 ** The VDBE cursor numbers are small integers contained in
168 ** SrcList_item.iCursor and Expr.iTable fields. For any given WHERE
169 ** clause, the cursor numbers might not begin with 0 and they might
170 ** contain gaps in the numbering sequence. But we want to make maximum
171 ** use of the bits in our bitmasks. This structure provides a mapping
172 ** from the sparse cursor numbers into consecutive integers beginning
173 ** with 0.
174 **
175 ** If WhereMaskSet.ix[A]==B it means that The A-th bit of a Bitmask
176 ** corresponds VDBE cursor number B. The A-th bit of a bitmask is 1<<A.
177 **
178 ** For example, if the WHERE clause expression used these VDBE
179 ** cursors: 4, 5, 8, 29, 57, 73. Then the WhereMaskSet structure
180 ** would map those cursor numbers into bits 0 through 5.
181 **
182 ** Note that the mapping is not necessarily ordered. In the example
183 ** above, the mapping might go like this: 4->3, 5->1, 8->2, 29->0,
184 ** 57->5, 73->4. Or one of 719 other combinations might be used. It
185 ** does not really matter. What is important is that sparse cursor
186 ** numbers all get mapped into bit numbers that begin with 0 and contain
187 ** no gaps.
188 */
189 struct WhereMaskSet {
190 int n; /* Number of assigned cursor values */
191 int ix[BMS]; /* Cursor assigned to each bit */
192 };
193
194 /*
195 ** A WhereCost object records a lookup strategy and the estimated
196 ** cost of pursuing that strategy.
197 */
198 struct WhereCost {
199 WherePlan plan; /* The lookup strategy */
200 double rCost; /* Overall cost of pursuing this search strategy */
201 Bitmask used; /* Bitmask of cursors used by this plan */
202 };
203
204 /*
205 ** Bitmasks for the operators that indices are able to exploit. An
206 ** OR-ed combination of these values can be used when searching for
207 ** terms in the where clause.
208 */
209 #define WO_IN 0x001
210 #define WO_EQ 0x002
211 #define WO_LT (WO_EQ<<(TK_LT-TK_EQ))
212 #define WO_LE (WO_EQ<<(TK_LE-TK_EQ))
213 #define WO_GT (WO_EQ<<(TK_GT-TK_EQ))
214 #define WO_GE (WO_EQ<<(TK_GE-TK_EQ))
215 #define WO_MATCH 0x040
216 #define WO_ISNULL 0x080
217 #define WO_OR 0x100 /* Two or more OR-connected terms */
218 #define WO_AND 0x200 /* Two or more AND-connected terms */
219 #define WO_NOOP 0x800 /* This term does not restrict search space */
220
221 #define WO_ALL 0xfff /* Mask of all possible WO_* values */
222 #define WO_SINGLE 0x0ff /* Mask of all non-compound WO_* values */
223
224 /*
225 ** Value for wsFlags returned by bestIndex() and stored in
226 ** WhereLevel.wsFlags. These flags determine which search
227 ** strategies are appropriate.
228 **
229 ** The least significant 12 bits is reserved as a mask for WO_ values above.
230 ** The WhereLevel.wsFlags field is usually set to WO_IN|WO_EQ|WO_ISNULL.
231 ** But if the table is the right table of a left join, WhereLevel.wsFlags
232 ** is set to WO_IN|WO_EQ. The WhereLevel.wsFlags field can then be used as
233 ** the "op" parameter to findTerm when we are resolving equality constraints.
234 ** ISNULL constraints will then not be used on the right table of a left
235 ** join. Tickets #2177 and #2189.
236 */
237 #define WHERE_ROWID_EQ 0x00001000 /* rowid=EXPR or rowid IN (...) */
238 #define WHERE_ROWID_RANGE 0x00002000 /* rowid<EXPR and/or rowid>EXPR */
239 #define WHERE_COLUMN_EQ 0x00010000 /* x=EXPR or x IN (...) or x IS NULL */
240 #define WHERE_COLUMN_RANGE 0x00020000 /* x<EXPR and/or x>EXPR */
241 #define WHERE_COLUMN_IN 0x00040000 /* x IN (...) */
242 #define WHERE_COLUMN_NULL 0x00080000 /* x IS NULL */
243 #define WHERE_INDEXED 0x000f0000 /* Anything that uses an index */
244 #define WHERE_NOT_FULLSCAN 0x100f3000 /* Does not do a full table scan */
245 #define WHERE_IN_ABLE 0x000f1000 /* Able to support an IN operator */
246 #define WHERE_TOP_LIMIT 0x00100000 /* x<EXPR or x<=EXPR constraint */
247 #define WHERE_BTM_LIMIT 0x00200000 /* x>EXPR or x>=EXPR constraint */
248 #define WHERE_BOTH_LIMIT 0x00300000 /* Both x>EXPR and x<EXPR */
249 #define WHERE_IDX_ONLY 0x00800000 /* Use index only - omit table */
250 #define WHERE_ORDERBY 0x01000000 /* Output will appear in correct order */
251 #define WHERE_REVERSE 0x02000000 /* Scan in reverse order */
252 #define WHERE_UNIQUE 0x04000000 /* Selects no more than one row */
253 #define WHERE_VIRTUALTABLE 0x08000000 /* Use virtual-table processing */
254 #define WHERE_MULTI_OR 0x10000000 /* OR using multiple indices */
255 #define WHERE_TEMP_INDEX 0x20000000 /* Uses an ephemeral index */
256
257 /*
258 ** Initialize a preallocated WhereClause structure.
259 */
whereClauseInit(WhereClause * pWC,Parse * pParse,WhereMaskSet * pMaskSet)260 static void whereClauseInit(
261 WhereClause *pWC, /* The WhereClause to be initialized */
262 Parse *pParse, /* The parsing context */
263 WhereMaskSet *pMaskSet /* Mapping from table cursor numbers to bitmasks */
264 ){
265 pWC->pParse = pParse;
266 pWC->pMaskSet = pMaskSet;
267 pWC->nTerm = 0;
268 pWC->nSlot = ArraySize(pWC->aStatic);
269 pWC->a = pWC->aStatic;
270 pWC->vmask = 0;
271 }
272
273 /* Forward reference */
274 static void whereClauseClear(WhereClause*);
275
276 /*
277 ** Deallocate all memory associated with a WhereOrInfo object.
278 */
whereOrInfoDelete(sqlite3 * db,WhereOrInfo * p)279 static void whereOrInfoDelete(sqlite3 *db, WhereOrInfo *p){
280 whereClauseClear(&p->wc);
281 sqlite3DbFree(db, p);
282 }
283
284 /*
285 ** Deallocate all memory associated with a WhereAndInfo object.
286 */
whereAndInfoDelete(sqlite3 * db,WhereAndInfo * p)287 static void whereAndInfoDelete(sqlite3 *db, WhereAndInfo *p){
288 whereClauseClear(&p->wc);
289 sqlite3DbFree(db, p);
290 }
291
292 /*
293 ** Deallocate a WhereClause structure. The WhereClause structure
294 ** itself is not freed. This routine is the inverse of whereClauseInit().
295 */
whereClauseClear(WhereClause * pWC)296 static void whereClauseClear(WhereClause *pWC){
297 int i;
298 WhereTerm *a;
299 sqlite3 *db = pWC->pParse->db;
300 for(i=pWC->nTerm-1, a=pWC->a; i>=0; i--, a++){
301 if( a->wtFlags & TERM_DYNAMIC ){
302 sqlite3ExprDelete(db, a->pExpr);
303 }
304 if( a->wtFlags & TERM_ORINFO ){
305 whereOrInfoDelete(db, a->u.pOrInfo);
306 }else if( a->wtFlags & TERM_ANDINFO ){
307 whereAndInfoDelete(db, a->u.pAndInfo);
308 }
309 }
310 if( pWC->a!=pWC->aStatic ){
311 sqlite3DbFree(db, pWC->a);
312 }
313 }
314
315 /*
316 ** Add a single new WhereTerm entry to the WhereClause object pWC.
317 ** The new WhereTerm object is constructed from Expr p and with wtFlags.
318 ** The index in pWC->a[] of the new WhereTerm is returned on success.
319 ** 0 is returned if the new WhereTerm could not be added due to a memory
320 ** allocation error. The memory allocation failure will be recorded in
321 ** the db->mallocFailed flag so that higher-level functions can detect it.
322 **
323 ** This routine will increase the size of the pWC->a[] array as necessary.
324 **
325 ** If the wtFlags argument includes TERM_DYNAMIC, then responsibility
326 ** for freeing the expression p is assumed by the WhereClause object pWC.
327 ** This is true even if this routine fails to allocate a new WhereTerm.
328 **
329 ** WARNING: This routine might reallocate the space used to store
330 ** WhereTerms. All pointers to WhereTerms should be invalidated after
331 ** calling this routine. Such pointers may be reinitialized by referencing
332 ** the pWC->a[] array.
333 */
whereClauseInsert(WhereClause * pWC,Expr * p,u8 wtFlags)334 static int whereClauseInsert(WhereClause *pWC, Expr *p, u8 wtFlags){
335 WhereTerm *pTerm;
336 int idx;
337 testcase( wtFlags & TERM_VIRTUAL ); /* EV: R-00211-15100 */
338 if( pWC->nTerm>=pWC->nSlot ){
339 WhereTerm *pOld = pWC->a;
340 sqlite3 *db = pWC->pParse->db;
341 pWC->a = sqlite3DbMallocRaw(db, sizeof(pWC->a[0])*pWC->nSlot*2 );
342 if( pWC->a==0 ){
343 if( wtFlags & TERM_DYNAMIC ){
344 sqlite3ExprDelete(db, p);
345 }
346 pWC->a = pOld;
347 return 0;
348 }
349 memcpy(pWC->a, pOld, sizeof(pWC->a[0])*pWC->nTerm);
350 if( pOld!=pWC->aStatic ){
351 sqlite3DbFree(db, pOld);
352 }
353 pWC->nSlot = sqlite3DbMallocSize(db, pWC->a)/sizeof(pWC->a[0]);
354 }
355 pTerm = &pWC->a[idx = pWC->nTerm++];
356 pTerm->pExpr = p;
357 pTerm->wtFlags = wtFlags;
358 pTerm->pWC = pWC;
359 pTerm->iParent = -1;
360 return idx;
361 }
362
363 /*
364 ** This routine identifies subexpressions in the WHERE clause where
365 ** each subexpression is separated by the AND operator or some other
366 ** operator specified in the op parameter. The WhereClause structure
367 ** is filled with pointers to subexpressions. For example:
368 **
369 ** WHERE a=='hello' AND coalesce(b,11)<10 AND (c+12!=d OR c==22)
370 ** \________/ \_______________/ \________________/
371 ** slot[0] slot[1] slot[2]
372 **
373 ** The original WHERE clause in pExpr is unaltered. All this routine
374 ** does is make slot[] entries point to substructure within pExpr.
375 **
376 ** In the previous sentence and in the diagram, "slot[]" refers to
377 ** the WhereClause.a[] array. The slot[] array grows as needed to contain
378 ** all terms of the WHERE clause.
379 */
whereSplit(WhereClause * pWC,Expr * pExpr,int op)380 static void whereSplit(WhereClause *pWC, Expr *pExpr, int op){
381 pWC->op = (u8)op;
382 if( pExpr==0 ) return;
383 if( pExpr->op!=op ){
384 whereClauseInsert(pWC, pExpr, 0);
385 }else{
386 whereSplit(pWC, pExpr->pLeft, op);
387 whereSplit(pWC, pExpr->pRight, op);
388 }
389 }
390
391 /*
392 ** Initialize an expression mask set (a WhereMaskSet object)
393 */
394 #define initMaskSet(P) memset(P, 0, sizeof(*P))
395
396 /*
397 ** Return the bitmask for the given cursor number. Return 0 if
398 ** iCursor is not in the set.
399 */
getMask(WhereMaskSet * pMaskSet,int iCursor)400 static Bitmask getMask(WhereMaskSet *pMaskSet, int iCursor){
401 int i;
402 assert( pMaskSet->n<=(int)sizeof(Bitmask)*8 );
403 for(i=0; i<pMaskSet->n; i++){
404 if( pMaskSet->ix[i]==iCursor ){
405 return ((Bitmask)1)<<i;
406 }
407 }
408 return 0;
409 }
410
411 /*
412 ** Create a new mask for cursor iCursor.
413 **
414 ** There is one cursor per table in the FROM clause. The number of
415 ** tables in the FROM clause is limited by a test early in the
416 ** sqlite3WhereBegin() routine. So we know that the pMaskSet->ix[]
417 ** array will never overflow.
418 */
createMask(WhereMaskSet * pMaskSet,int iCursor)419 static void createMask(WhereMaskSet *pMaskSet, int iCursor){
420 assert( pMaskSet->n < ArraySize(pMaskSet->ix) );
421 pMaskSet->ix[pMaskSet->n++] = iCursor;
422 }
423
424 /*
425 ** This routine walks (recursively) an expression tree and generates
426 ** a bitmask indicating which tables are used in that expression
427 ** tree.
428 **
429 ** In order for this routine to work, the calling function must have
430 ** previously invoked sqlite3ResolveExprNames() on the expression. See
431 ** the header comment on that routine for additional information.
432 ** The sqlite3ResolveExprNames() routines looks for column names and
433 ** sets their opcodes to TK_COLUMN and their Expr.iTable fields to
434 ** the VDBE cursor number of the table. This routine just has to
435 ** translate the cursor numbers into bitmask values and OR all
436 ** the bitmasks together.
437 */
438 static Bitmask exprListTableUsage(WhereMaskSet*, ExprList*);
439 static Bitmask exprSelectTableUsage(WhereMaskSet*, Select*);
exprTableUsage(WhereMaskSet * pMaskSet,Expr * p)440 static Bitmask exprTableUsage(WhereMaskSet *pMaskSet, Expr *p){
441 Bitmask mask = 0;
442 if( p==0 ) return 0;
443 if( p->op==TK_COLUMN ){
444 mask = getMask(pMaskSet, p->iTable);
445 return mask;
446 }
447 mask = exprTableUsage(pMaskSet, p->pRight);
448 mask |= exprTableUsage(pMaskSet, p->pLeft);
449 if( ExprHasProperty(p, EP_xIsSelect) ){
450 mask |= exprSelectTableUsage(pMaskSet, p->x.pSelect);
451 }else{
452 mask |= exprListTableUsage(pMaskSet, p->x.pList);
453 }
454 return mask;
455 }
exprListTableUsage(WhereMaskSet * pMaskSet,ExprList * pList)456 static Bitmask exprListTableUsage(WhereMaskSet *pMaskSet, ExprList *pList){
457 int i;
458 Bitmask mask = 0;
459 if( pList ){
460 for(i=0; i<pList->nExpr; i++){
461 mask |= exprTableUsage(pMaskSet, pList->a[i].pExpr);
462 }
463 }
464 return mask;
465 }
exprSelectTableUsage(WhereMaskSet * pMaskSet,Select * pS)466 static Bitmask exprSelectTableUsage(WhereMaskSet *pMaskSet, Select *pS){
467 Bitmask mask = 0;
468 while( pS ){
469 mask |= exprListTableUsage(pMaskSet, pS->pEList);
470 mask |= exprListTableUsage(pMaskSet, pS->pGroupBy);
471 mask |= exprListTableUsage(pMaskSet, pS->pOrderBy);
472 mask |= exprTableUsage(pMaskSet, pS->pWhere);
473 mask |= exprTableUsage(pMaskSet, pS->pHaving);
474 pS = pS->pPrior;
475 }
476 return mask;
477 }
478
479 /*
480 ** Return TRUE if the given operator is one of the operators that is
481 ** allowed for an indexable WHERE clause term. The allowed operators are
482 ** "=", "<", ">", "<=", ">=", and "IN".
483 **
484 ** IMPLEMENTATION-OF: R-59926-26393 To be usable by an index a term must be
485 ** of one of the following forms: column = expression column > expression
486 ** column >= expression column < expression column <= expression
487 ** expression = column expression > column expression >= column
488 ** expression < column expression <= column column IN
489 ** (expression-list) column IN (subquery) column IS NULL
490 */
allowedOp(int op)491 static int allowedOp(int op){
492 assert( TK_GT>TK_EQ && TK_GT<TK_GE );
493 assert( TK_LT>TK_EQ && TK_LT<TK_GE );
494 assert( TK_LE>TK_EQ && TK_LE<TK_GE );
495 assert( TK_GE==TK_EQ+4 );
496 return op==TK_IN || (op>=TK_EQ && op<=TK_GE) || op==TK_ISNULL;
497 }
498
499 /*
500 ** Swap two objects of type TYPE.
501 */
502 #define SWAP(TYPE,A,B) {TYPE t=A; A=B; B=t;}
503
504 /*
505 ** Commute a comparison operator. Expressions of the form "X op Y"
506 ** are converted into "Y op X".
507 **
508 ** If a collation sequence is associated with either the left or right
509 ** side of the comparison, it remains associated with the same side after
510 ** the commutation. So "Y collate NOCASE op X" becomes
511 ** "X collate NOCASE op Y". This is because any collation sequence on
512 ** the left hand side of a comparison overrides any collation sequence
513 ** attached to the right. For the same reason the EP_ExpCollate flag
514 ** is not commuted.
515 */
exprCommute(Parse * pParse,Expr * pExpr)516 static void exprCommute(Parse *pParse, Expr *pExpr){
517 u16 expRight = (pExpr->pRight->flags & EP_ExpCollate);
518 u16 expLeft = (pExpr->pLeft->flags & EP_ExpCollate);
519 assert( allowedOp(pExpr->op) && pExpr->op!=TK_IN );
520 pExpr->pRight->pColl = sqlite3ExprCollSeq(pParse, pExpr->pRight);
521 pExpr->pLeft->pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
522 SWAP(CollSeq*,pExpr->pRight->pColl,pExpr->pLeft->pColl);
523 pExpr->pRight->flags = (pExpr->pRight->flags & ~EP_ExpCollate) | expLeft;
524 pExpr->pLeft->flags = (pExpr->pLeft->flags & ~EP_ExpCollate) | expRight;
525 SWAP(Expr*,pExpr->pRight,pExpr->pLeft);
526 if( pExpr->op>=TK_GT ){
527 assert( TK_LT==TK_GT+2 );
528 assert( TK_GE==TK_LE+2 );
529 assert( TK_GT>TK_EQ );
530 assert( TK_GT<TK_LE );
531 assert( pExpr->op>=TK_GT && pExpr->op<=TK_GE );
532 pExpr->op = ((pExpr->op-TK_GT)^2)+TK_GT;
533 }
534 }
535
536 /*
537 ** Translate from TK_xx operator to WO_xx bitmask.
538 */
operatorMask(int op)539 static u16 operatorMask(int op){
540 u16 c;
541 assert( allowedOp(op) );
542 if( op==TK_IN ){
543 c = WO_IN;
544 }else if( op==TK_ISNULL ){
545 c = WO_ISNULL;
546 }else{
547 assert( (WO_EQ<<(op-TK_EQ)) < 0x7fff );
548 c = (u16)(WO_EQ<<(op-TK_EQ));
549 }
550 assert( op!=TK_ISNULL || c==WO_ISNULL );
551 assert( op!=TK_IN || c==WO_IN );
552 assert( op!=TK_EQ || c==WO_EQ );
553 assert( op!=TK_LT || c==WO_LT );
554 assert( op!=TK_LE || c==WO_LE );
555 assert( op!=TK_GT || c==WO_GT );
556 assert( op!=TK_GE || c==WO_GE );
557 return c;
558 }
559
560 /*
561 ** Search for a term in the WHERE clause that is of the form "X <op> <expr>"
562 ** where X is a reference to the iColumn of table iCur and <op> is one of
563 ** the WO_xx operator codes specified by the op parameter.
564 ** Return a pointer to the term. Return 0 if not found.
565 */
findTerm(WhereClause * pWC,int iCur,int iColumn,Bitmask notReady,u32 op,Index * pIdx)566 static WhereTerm *findTerm(
567 WhereClause *pWC, /* The WHERE clause to be searched */
568 int iCur, /* Cursor number of LHS */
569 int iColumn, /* Column number of LHS */
570 Bitmask notReady, /* RHS must not overlap with this mask */
571 u32 op, /* Mask of WO_xx values describing operator */
572 Index *pIdx /* Must be compatible with this index, if not NULL */
573 ){
574 WhereTerm *pTerm;
575 int k;
576 assert( iCur>=0 );
577 op &= WO_ALL;
578 for(pTerm=pWC->a, k=pWC->nTerm; k; k--, pTerm++){
579 if( pTerm->leftCursor==iCur
580 && (pTerm->prereqRight & notReady)==0
581 && pTerm->u.leftColumn==iColumn
582 && (pTerm->eOperator & op)!=0
583 ){
584 if( pIdx && pTerm->eOperator!=WO_ISNULL ){
585 Expr *pX = pTerm->pExpr;
586 CollSeq *pColl;
587 char idxaff;
588 int j;
589 Parse *pParse = pWC->pParse;
590
591 idxaff = pIdx->pTable->aCol[iColumn].affinity;
592 if( !sqlite3IndexAffinityOk(pX, idxaff) ) continue;
593
594 /* Figure out the collation sequence required from an index for
595 ** it to be useful for optimising expression pX. Store this
596 ** value in variable pColl.
597 */
598 assert(pX->pLeft);
599 pColl = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pX->pRight);
600 assert(pColl || pParse->nErr);
601
602 for(j=0; pIdx->aiColumn[j]!=iColumn; j++){
603 if( NEVER(j>=pIdx->nColumn) ) return 0;
604 }
605 if( pColl && sqlite3StrICmp(pColl->zName, pIdx->azColl[j]) ) continue;
606 }
607 return pTerm;
608 }
609 }
610 return 0;
611 }
612
613 /* Forward reference */
614 static void exprAnalyze(SrcList*, WhereClause*, int);
615
616 /*
617 ** Call exprAnalyze on all terms in a WHERE clause.
618 **
619 **
620 */
exprAnalyzeAll(SrcList * pTabList,WhereClause * pWC)621 static void exprAnalyzeAll(
622 SrcList *pTabList, /* the FROM clause */
623 WhereClause *pWC /* the WHERE clause to be analyzed */
624 ){
625 int i;
626 for(i=pWC->nTerm-1; i>=0; i--){
627 exprAnalyze(pTabList, pWC, i);
628 }
629 }
630
631 #ifndef SQLITE_OMIT_LIKE_OPTIMIZATION
632 /*
633 ** Check to see if the given expression is a LIKE or GLOB operator that
634 ** can be optimized using inequality constraints. Return TRUE if it is
635 ** so and false if not.
636 **
637 ** In order for the operator to be optimizible, the RHS must be a string
638 ** literal that does not begin with a wildcard.
639 */
isLikeOrGlob(Parse * pParse,Expr * pExpr,Expr ** ppPrefix,int * pisComplete,int * pnoCase)640 static int isLikeOrGlob(
641 Parse *pParse, /* Parsing and code generating context */
642 Expr *pExpr, /* Test this expression */
643 Expr **ppPrefix, /* Pointer to TK_STRING expression with pattern prefix */
644 int *pisComplete, /* True if the only wildcard is % in the last character */
645 int *pnoCase /* True if uppercase is equivalent to lowercase */
646 ){
647 const char *z = 0; /* String on RHS of LIKE operator */
648 Expr *pRight, *pLeft; /* Right and left size of LIKE operator */
649 ExprList *pList; /* List of operands to the LIKE operator */
650 int c; /* One character in z[] */
651 int cnt; /* Number of non-wildcard prefix characters */
652 char wc[3]; /* Wildcard characters */
653 sqlite3 *db = pParse->db; /* Database connection */
654 sqlite3_value *pVal = 0;
655 int op; /* Opcode of pRight */
656
657 if( !sqlite3IsLikeFunction(db, pExpr, pnoCase, wc) ){
658 return 0;
659 }
660 #ifdef SQLITE_EBCDIC
661 if( *pnoCase ) return 0;
662 #endif
663 pList = pExpr->x.pList;
664 pLeft = pList->a[1].pExpr;
665 if( pLeft->op!=TK_COLUMN || sqlite3ExprAffinity(pLeft)!=SQLITE_AFF_TEXT ){
666 /* IMP: R-02065-49465 The left-hand side of the LIKE or GLOB operator must
667 ** be the name of an indexed column with TEXT affinity. */
668 return 0;
669 }
670 assert( pLeft->iColumn!=(-1) ); /* Because IPK never has AFF_TEXT */
671
672 pRight = pList->a[0].pExpr;
673 op = pRight->op;
674 if( op==TK_REGISTER ){
675 op = pRight->op2;
676 }
677 if( op==TK_VARIABLE ){
678 Vdbe *pReprepare = pParse->pReprepare;
679 int iCol = pRight->iColumn;
680 pVal = sqlite3VdbeGetValue(pReprepare, iCol, SQLITE_AFF_NONE);
681 if( pVal && sqlite3_value_type(pVal)==SQLITE_TEXT ){
682 z = (char *)sqlite3_value_text(pVal);
683 }
684 sqlite3VdbeSetVarmask(pParse->pVdbe, iCol); /* IMP: R-23257-02778 */
685 assert( pRight->op==TK_VARIABLE || pRight->op==TK_REGISTER );
686 }else if( op==TK_STRING ){
687 z = pRight->u.zToken;
688 }
689 if( z ){
690 cnt = 0;
691 while( (c=z[cnt])!=0 && c!=wc[0] && c!=wc[1] && c!=wc[2] ){
692 cnt++;
693 }
694 if( cnt!=0 && 255!=(u8)z[cnt-1] ){
695 Expr *pPrefix;
696 *pisComplete = c==wc[0] && z[cnt+1]==0;
697 pPrefix = sqlite3Expr(db, TK_STRING, z);
698 if( pPrefix ) pPrefix->u.zToken[cnt] = 0;
699 *ppPrefix = pPrefix;
700 if( op==TK_VARIABLE ){
701 Vdbe *v = pParse->pVdbe;
702 sqlite3VdbeSetVarmask(v, pRight->iColumn); /* IMP: R-23257-02778 */
703 if( *pisComplete && pRight->u.zToken[1] ){
704 /* If the rhs of the LIKE expression is a variable, and the current
705 ** value of the variable means there is no need to invoke the LIKE
706 ** function, then no OP_Variable will be added to the program.
707 ** This causes problems for the sqlite3_bind_parameter_name()
708 ** API. To workaround them, add a dummy OP_Variable here.
709 */
710 int r1 = sqlite3GetTempReg(pParse);
711 sqlite3ExprCodeTarget(pParse, pRight, r1);
712 sqlite3VdbeChangeP3(v, sqlite3VdbeCurrentAddr(v)-1, 0);
713 sqlite3ReleaseTempReg(pParse, r1);
714 }
715 }
716 }else{
717 z = 0;
718 }
719 }
720
721 sqlite3ValueFree(pVal);
722 return (z!=0);
723 }
724 #endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */
725
726
727 #ifndef SQLITE_OMIT_VIRTUALTABLE
728 /*
729 ** Check to see if the given expression is of the form
730 **
731 ** column MATCH expr
732 **
733 ** If it is then return TRUE. If not, return FALSE.
734 */
isMatchOfColumn(Expr * pExpr)735 static int isMatchOfColumn(
736 Expr *pExpr /* Test this expression */
737 ){
738 ExprList *pList;
739
740 if( pExpr->op!=TK_FUNCTION ){
741 return 0;
742 }
743 if( sqlite3StrICmp(pExpr->u.zToken,"match")!=0 ){
744 return 0;
745 }
746 pList = pExpr->x.pList;
747 if( pList->nExpr!=2 ){
748 return 0;
749 }
750 if( pList->a[1].pExpr->op != TK_COLUMN ){
751 return 0;
752 }
753 return 1;
754 }
755 #endif /* SQLITE_OMIT_VIRTUALTABLE */
756
757 /*
758 ** If the pBase expression originated in the ON or USING clause of
759 ** a join, then transfer the appropriate markings over to derived.
760 */
transferJoinMarkings(Expr * pDerived,Expr * pBase)761 static void transferJoinMarkings(Expr *pDerived, Expr *pBase){
762 pDerived->flags |= pBase->flags & EP_FromJoin;
763 pDerived->iRightJoinTable = pBase->iRightJoinTable;
764 }
765
766 #if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY)
767 /*
768 ** Analyze a term that consists of two or more OR-connected
769 ** subterms. So in:
770 **
771 ** ... WHERE (a=5) AND (b=7 OR c=9 OR d=13) AND (d=13)
772 ** ^^^^^^^^^^^^^^^^^^^^
773 **
774 ** This routine analyzes terms such as the middle term in the above example.
775 ** A WhereOrTerm object is computed and attached to the term under
776 ** analysis, regardless of the outcome of the analysis. Hence:
777 **
778 ** WhereTerm.wtFlags |= TERM_ORINFO
779 ** WhereTerm.u.pOrInfo = a dynamically allocated WhereOrTerm object
780 **
781 ** The term being analyzed must have two or more of OR-connected subterms.
782 ** A single subterm might be a set of AND-connected sub-subterms.
783 ** Examples of terms under analysis:
784 **
785 ** (A) t1.x=t2.y OR t1.x=t2.z OR t1.y=15 OR t1.z=t3.a+5
786 ** (B) x=expr1 OR expr2=x OR x=expr3
787 ** (C) t1.x=t2.y OR (t1.x=t2.z AND t1.y=15)
788 ** (D) x=expr1 OR (y>11 AND y<22 AND z LIKE '*hello*')
789 ** (E) (p.a=1 AND q.b=2 AND r.c=3) OR (p.x=4 AND q.y=5 AND r.z=6)
790 **
791 ** CASE 1:
792 **
793 ** If all subterms are of the form T.C=expr for some single column of C
794 ** a single table T (as shown in example B above) then create a new virtual
795 ** term that is an equivalent IN expression. In other words, if the term
796 ** being analyzed is:
797 **
798 ** x = expr1 OR expr2 = x OR x = expr3
799 **
800 ** then create a new virtual term like this:
801 **
802 ** x IN (expr1,expr2,expr3)
803 **
804 ** CASE 2:
805 **
806 ** If all subterms are indexable by a single table T, then set
807 **
808 ** WhereTerm.eOperator = WO_OR
809 ** WhereTerm.u.pOrInfo->indexable |= the cursor number for table T
810 **
811 ** A subterm is "indexable" if it is of the form
812 ** "T.C <op> <expr>" where C is any column of table T and
813 ** <op> is one of "=", "<", "<=", ">", ">=", "IS NULL", or "IN".
814 ** A subterm is also indexable if it is an AND of two or more
815 ** subsubterms at least one of which is indexable. Indexable AND
816 ** subterms have their eOperator set to WO_AND and they have
817 ** u.pAndInfo set to a dynamically allocated WhereAndTerm object.
818 **
819 ** From another point of view, "indexable" means that the subterm could
820 ** potentially be used with an index if an appropriate index exists.
821 ** This analysis does not consider whether or not the index exists; that
822 ** is something the bestIndex() routine will determine. This analysis
823 ** only looks at whether subterms appropriate for indexing exist.
824 **
825 ** All examples A through E above all satisfy case 2. But if a term
826 ** also statisfies case 1 (such as B) we know that the optimizer will
827 ** always prefer case 1, so in that case we pretend that case 2 is not
828 ** satisfied.
829 **
830 ** It might be the case that multiple tables are indexable. For example,
831 ** (E) above is indexable on tables P, Q, and R.
832 **
833 ** Terms that satisfy case 2 are candidates for lookup by using
834 ** separate indices to find rowids for each subterm and composing
835 ** the union of all rowids using a RowSet object. This is similar
836 ** to "bitmap indices" in other database engines.
837 **
838 ** OTHERWISE:
839 **
840 ** If neither case 1 nor case 2 apply, then leave the eOperator set to
841 ** zero. This term is not useful for search.
842 */
exprAnalyzeOrTerm(SrcList * pSrc,WhereClause * pWC,int idxTerm)843 static void exprAnalyzeOrTerm(
844 SrcList *pSrc, /* the FROM clause */
845 WhereClause *pWC, /* the complete WHERE clause */
846 int idxTerm /* Index of the OR-term to be analyzed */
847 ){
848 Parse *pParse = pWC->pParse; /* Parser context */
849 sqlite3 *db = pParse->db; /* Database connection */
850 WhereTerm *pTerm = &pWC->a[idxTerm]; /* The term to be analyzed */
851 Expr *pExpr = pTerm->pExpr; /* The expression of the term */
852 WhereMaskSet *pMaskSet = pWC->pMaskSet; /* Table use masks */
853 int i; /* Loop counters */
854 WhereClause *pOrWc; /* Breakup of pTerm into subterms */
855 WhereTerm *pOrTerm; /* A Sub-term within the pOrWc */
856 WhereOrInfo *pOrInfo; /* Additional information associated with pTerm */
857 Bitmask chngToIN; /* Tables that might satisfy case 1 */
858 Bitmask indexable; /* Tables that are indexable, satisfying case 2 */
859
860 /*
861 ** Break the OR clause into its separate subterms. The subterms are
862 ** stored in a WhereClause structure containing within the WhereOrInfo
863 ** object that is attached to the original OR clause term.
864 */
865 assert( (pTerm->wtFlags & (TERM_DYNAMIC|TERM_ORINFO|TERM_ANDINFO))==0 );
866 assert( pExpr->op==TK_OR );
867 pTerm->u.pOrInfo = pOrInfo = sqlite3DbMallocZero(db, sizeof(*pOrInfo));
868 if( pOrInfo==0 ) return;
869 pTerm->wtFlags |= TERM_ORINFO;
870 pOrWc = &pOrInfo->wc;
871 whereClauseInit(pOrWc, pWC->pParse, pMaskSet);
872 whereSplit(pOrWc, pExpr, TK_OR);
873 exprAnalyzeAll(pSrc, pOrWc);
874 if( db->mallocFailed ) return;
875 assert( pOrWc->nTerm>=2 );
876
877 /*
878 ** Compute the set of tables that might satisfy cases 1 or 2.
879 */
880 indexable = ~(Bitmask)0;
881 chngToIN = ~(pWC->vmask);
882 for(i=pOrWc->nTerm-1, pOrTerm=pOrWc->a; i>=0 && indexable; i--, pOrTerm++){
883 if( (pOrTerm->eOperator & WO_SINGLE)==0 ){
884 WhereAndInfo *pAndInfo;
885 assert( pOrTerm->eOperator==0 );
886 assert( (pOrTerm->wtFlags & (TERM_ANDINFO|TERM_ORINFO))==0 );
887 chngToIN = 0;
888 pAndInfo = sqlite3DbMallocRaw(db, sizeof(*pAndInfo));
889 if( pAndInfo ){
890 WhereClause *pAndWC;
891 WhereTerm *pAndTerm;
892 int j;
893 Bitmask b = 0;
894 pOrTerm->u.pAndInfo = pAndInfo;
895 pOrTerm->wtFlags |= TERM_ANDINFO;
896 pOrTerm->eOperator = WO_AND;
897 pAndWC = &pAndInfo->wc;
898 whereClauseInit(pAndWC, pWC->pParse, pMaskSet);
899 whereSplit(pAndWC, pOrTerm->pExpr, TK_AND);
900 exprAnalyzeAll(pSrc, pAndWC);
901 testcase( db->mallocFailed );
902 if( !db->mallocFailed ){
903 for(j=0, pAndTerm=pAndWC->a; j<pAndWC->nTerm; j++, pAndTerm++){
904 assert( pAndTerm->pExpr );
905 if( allowedOp(pAndTerm->pExpr->op) ){
906 b |= getMask(pMaskSet, pAndTerm->leftCursor);
907 }
908 }
909 }
910 indexable &= b;
911 }
912 }else if( pOrTerm->wtFlags & TERM_COPIED ){
913 /* Skip this term for now. We revisit it when we process the
914 ** corresponding TERM_VIRTUAL term */
915 }else{
916 Bitmask b;
917 b = getMask(pMaskSet, pOrTerm->leftCursor);
918 if( pOrTerm->wtFlags & TERM_VIRTUAL ){
919 WhereTerm *pOther = &pOrWc->a[pOrTerm->iParent];
920 b |= getMask(pMaskSet, pOther->leftCursor);
921 }
922 indexable &= b;
923 if( pOrTerm->eOperator!=WO_EQ ){
924 chngToIN = 0;
925 }else{
926 chngToIN &= b;
927 }
928 }
929 }
930
931 /*
932 ** Record the set of tables that satisfy case 2. The set might be
933 ** empty.
934 */
935 pOrInfo->indexable = indexable;
936 pTerm->eOperator = indexable==0 ? 0 : WO_OR;
937
938 /*
939 ** chngToIN holds a set of tables that *might* satisfy case 1. But
940 ** we have to do some additional checking to see if case 1 really
941 ** is satisfied.
942 **
943 ** chngToIN will hold either 0, 1, or 2 bits. The 0-bit case means
944 ** that there is no possibility of transforming the OR clause into an
945 ** IN operator because one or more terms in the OR clause contain
946 ** something other than == on a column in the single table. The 1-bit
947 ** case means that every term of the OR clause is of the form
948 ** "table.column=expr" for some single table. The one bit that is set
949 ** will correspond to the common table. We still need to check to make
950 ** sure the same column is used on all terms. The 2-bit case is when
951 ** the all terms are of the form "table1.column=table2.column". It
952 ** might be possible to form an IN operator with either table1.column
953 ** or table2.column as the LHS if either is common to every term of
954 ** the OR clause.
955 **
956 ** Note that terms of the form "table.column1=table.column2" (the
957 ** same table on both sizes of the ==) cannot be optimized.
958 */
959 if( chngToIN ){
960 int okToChngToIN = 0; /* True if the conversion to IN is valid */
961 int iColumn = -1; /* Column index on lhs of IN operator */
962 int iCursor = -1; /* Table cursor common to all terms */
963 int j = 0; /* Loop counter */
964
965 /* Search for a table and column that appears on one side or the
966 ** other of the == operator in every subterm. That table and column
967 ** will be recorded in iCursor and iColumn. There might not be any
968 ** such table and column. Set okToChngToIN if an appropriate table
969 ** and column is found but leave okToChngToIN false if not found.
970 */
971 for(j=0; j<2 && !okToChngToIN; j++){
972 pOrTerm = pOrWc->a;
973 for(i=pOrWc->nTerm-1; i>=0; i--, pOrTerm++){
974 assert( pOrTerm->eOperator==WO_EQ );
975 pOrTerm->wtFlags &= ~TERM_OR_OK;
976 if( pOrTerm->leftCursor==iCursor ){
977 /* This is the 2-bit case and we are on the second iteration and
978 ** current term is from the first iteration. So skip this term. */
979 assert( j==1 );
980 continue;
981 }
982 if( (chngToIN & getMask(pMaskSet, pOrTerm->leftCursor))==0 ){
983 /* This term must be of the form t1.a==t2.b where t2 is in the
984 ** chngToIN set but t1 is not. This term will be either preceeded
985 ** or follwed by an inverted copy (t2.b==t1.a). Skip this term
986 ** and use its inversion. */
987 testcase( pOrTerm->wtFlags & TERM_COPIED );
988 testcase( pOrTerm->wtFlags & TERM_VIRTUAL );
989 assert( pOrTerm->wtFlags & (TERM_COPIED|TERM_VIRTUAL) );
990 continue;
991 }
992 iColumn = pOrTerm->u.leftColumn;
993 iCursor = pOrTerm->leftCursor;
994 break;
995 }
996 if( i<0 ){
997 /* No candidate table+column was found. This can only occur
998 ** on the second iteration */
999 assert( j==1 );
1000 assert( (chngToIN&(chngToIN-1))==0 );
1001 assert( chngToIN==getMask(pMaskSet, iCursor) );
1002 break;
1003 }
1004 testcase( j==1 );
1005
1006 /* We have found a candidate table and column. Check to see if that
1007 ** table and column is common to every term in the OR clause */
1008 okToChngToIN = 1;
1009 for(; i>=0 && okToChngToIN; i--, pOrTerm++){
1010 assert( pOrTerm->eOperator==WO_EQ );
1011 if( pOrTerm->leftCursor!=iCursor ){
1012 pOrTerm->wtFlags &= ~TERM_OR_OK;
1013 }else if( pOrTerm->u.leftColumn!=iColumn ){
1014 okToChngToIN = 0;
1015 }else{
1016 int affLeft, affRight;
1017 /* If the right-hand side is also a column, then the affinities
1018 ** of both right and left sides must be such that no type
1019 ** conversions are required on the right. (Ticket #2249)
1020 */
1021 affRight = sqlite3ExprAffinity(pOrTerm->pExpr->pRight);
1022 affLeft = sqlite3ExprAffinity(pOrTerm->pExpr->pLeft);
1023 if( affRight!=0 && affRight!=affLeft ){
1024 okToChngToIN = 0;
1025 }else{
1026 pOrTerm->wtFlags |= TERM_OR_OK;
1027 }
1028 }
1029 }
1030 }
1031
1032 /* At this point, okToChngToIN is true if original pTerm satisfies
1033 ** case 1. In that case, construct a new virtual term that is
1034 ** pTerm converted into an IN operator.
1035 **
1036 ** EV: R-00211-15100
1037 */
1038 if( okToChngToIN ){
1039 Expr *pDup; /* A transient duplicate expression */
1040 ExprList *pList = 0; /* The RHS of the IN operator */
1041 Expr *pLeft = 0; /* The LHS of the IN operator */
1042 Expr *pNew; /* The complete IN operator */
1043
1044 for(i=pOrWc->nTerm-1, pOrTerm=pOrWc->a; i>=0; i--, pOrTerm++){
1045 if( (pOrTerm->wtFlags & TERM_OR_OK)==0 ) continue;
1046 assert( pOrTerm->eOperator==WO_EQ );
1047 assert( pOrTerm->leftCursor==iCursor );
1048 assert( pOrTerm->u.leftColumn==iColumn );
1049 pDup = sqlite3ExprDup(db, pOrTerm->pExpr->pRight, 0);
1050 pList = sqlite3ExprListAppend(pWC->pParse, pList, pDup);
1051 pLeft = pOrTerm->pExpr->pLeft;
1052 }
1053 assert( pLeft!=0 );
1054 pDup = sqlite3ExprDup(db, pLeft, 0);
1055 pNew = sqlite3PExpr(pParse, TK_IN, pDup, 0, 0);
1056 if( pNew ){
1057 int idxNew;
1058 transferJoinMarkings(pNew, pExpr);
1059 assert( !ExprHasProperty(pNew, EP_xIsSelect) );
1060 pNew->x.pList = pList;
1061 idxNew = whereClauseInsert(pWC, pNew, TERM_VIRTUAL|TERM_DYNAMIC);
1062 testcase( idxNew==0 );
1063 exprAnalyze(pSrc, pWC, idxNew);
1064 pTerm = &pWC->a[idxTerm];
1065 pWC->a[idxNew].iParent = idxTerm;
1066 pTerm->nChild = 1;
1067 }else{
1068 sqlite3ExprListDelete(db, pList);
1069 }
1070 pTerm->eOperator = WO_NOOP; /* case 1 trumps case 2 */
1071 }
1072 }
1073 }
1074 #endif /* !SQLITE_OMIT_OR_OPTIMIZATION && !SQLITE_OMIT_SUBQUERY */
1075
1076
1077 /*
1078 ** The input to this routine is an WhereTerm structure with only the
1079 ** "pExpr" field filled in. The job of this routine is to analyze the
1080 ** subexpression and populate all the other fields of the WhereTerm
1081 ** structure.
1082 **
1083 ** If the expression is of the form "<expr> <op> X" it gets commuted
1084 ** to the standard form of "X <op> <expr>".
1085 **
1086 ** If the expression is of the form "X <op> Y" where both X and Y are
1087 ** columns, then the original expression is unchanged and a new virtual
1088 ** term of the form "Y <op> X" is added to the WHERE clause and
1089 ** analyzed separately. The original term is marked with TERM_COPIED
1090 ** and the new term is marked with TERM_DYNAMIC (because it's pExpr
1091 ** needs to be freed with the WhereClause) and TERM_VIRTUAL (because it
1092 ** is a commuted copy of a prior term.) The original term has nChild=1
1093 ** and the copy has idxParent set to the index of the original term.
1094 */
exprAnalyze(SrcList * pSrc,WhereClause * pWC,int idxTerm)1095 static void exprAnalyze(
1096 SrcList *pSrc, /* the FROM clause */
1097 WhereClause *pWC, /* the WHERE clause */
1098 int idxTerm /* Index of the term to be analyzed */
1099 ){
1100 WhereTerm *pTerm; /* The term to be analyzed */
1101 WhereMaskSet *pMaskSet; /* Set of table index masks */
1102 Expr *pExpr; /* The expression to be analyzed */
1103 Bitmask prereqLeft; /* Prerequesites of the pExpr->pLeft */
1104 Bitmask prereqAll; /* Prerequesites of pExpr */
1105 Bitmask extraRight = 0; /* Extra dependencies on LEFT JOIN */
1106 Expr *pStr1 = 0; /* RHS of LIKE/GLOB operator */
1107 int isComplete = 0; /* RHS of LIKE/GLOB ends with wildcard */
1108 int noCase = 0; /* LIKE/GLOB distinguishes case */
1109 int op; /* Top-level operator. pExpr->op */
1110 Parse *pParse = pWC->pParse; /* Parsing context */
1111 sqlite3 *db = pParse->db; /* Database connection */
1112
1113 if( db->mallocFailed ){
1114 return;
1115 }
1116 pTerm = &pWC->a[idxTerm];
1117 pMaskSet = pWC->pMaskSet;
1118 pExpr = pTerm->pExpr;
1119 prereqLeft = exprTableUsage(pMaskSet, pExpr->pLeft);
1120 op = pExpr->op;
1121 if( op==TK_IN ){
1122 assert( pExpr->pRight==0 );
1123 if( ExprHasProperty(pExpr, EP_xIsSelect) ){
1124 pTerm->prereqRight = exprSelectTableUsage(pMaskSet, pExpr->x.pSelect);
1125 }else{
1126 pTerm->prereqRight = exprListTableUsage(pMaskSet, pExpr->x.pList);
1127 }
1128 }else if( op==TK_ISNULL ){
1129 pTerm->prereqRight = 0;
1130 }else{
1131 pTerm->prereqRight = exprTableUsage(pMaskSet, pExpr->pRight);
1132 }
1133 prereqAll = exprTableUsage(pMaskSet, pExpr);
1134 if( ExprHasProperty(pExpr, EP_FromJoin) ){
1135 Bitmask x = getMask(pMaskSet, pExpr->iRightJoinTable);
1136 prereqAll |= x;
1137 extraRight = x-1; /* ON clause terms may not be used with an index
1138 ** on left table of a LEFT JOIN. Ticket #3015 */
1139 }
1140 pTerm->prereqAll = prereqAll;
1141 pTerm->leftCursor = -1;
1142 pTerm->iParent = -1;
1143 pTerm->eOperator = 0;
1144 if( allowedOp(op) && (pTerm->prereqRight & prereqLeft)==0 ){
1145 Expr *pLeft = pExpr->pLeft;
1146 Expr *pRight = pExpr->pRight;
1147 if( pLeft->op==TK_COLUMN ){
1148 pTerm->leftCursor = pLeft->iTable;
1149 pTerm->u.leftColumn = pLeft->iColumn;
1150 pTerm->eOperator = operatorMask(op);
1151 }
1152 if( pRight && pRight->op==TK_COLUMN ){
1153 WhereTerm *pNew;
1154 Expr *pDup;
1155 if( pTerm->leftCursor>=0 ){
1156 int idxNew;
1157 pDup = sqlite3ExprDup(db, pExpr, 0);
1158 if( db->mallocFailed ){
1159 sqlite3ExprDelete(db, pDup);
1160 return;
1161 }
1162 idxNew = whereClauseInsert(pWC, pDup, TERM_VIRTUAL|TERM_DYNAMIC);
1163 if( idxNew==0 ) return;
1164 pNew = &pWC->a[idxNew];
1165 pNew->iParent = idxTerm;
1166 pTerm = &pWC->a[idxTerm];
1167 pTerm->nChild = 1;
1168 pTerm->wtFlags |= TERM_COPIED;
1169 }else{
1170 pDup = pExpr;
1171 pNew = pTerm;
1172 }
1173 exprCommute(pParse, pDup);
1174 pLeft = pDup->pLeft;
1175 pNew->leftCursor = pLeft->iTable;
1176 pNew->u.leftColumn = pLeft->iColumn;
1177 testcase( (prereqLeft | extraRight) != prereqLeft );
1178 pNew->prereqRight = prereqLeft | extraRight;
1179 pNew->prereqAll = prereqAll;
1180 pNew->eOperator = operatorMask(pDup->op);
1181 }
1182 }
1183
1184 #ifndef SQLITE_OMIT_BETWEEN_OPTIMIZATION
1185 /* If a term is the BETWEEN operator, create two new virtual terms
1186 ** that define the range that the BETWEEN implements. For example:
1187 **
1188 ** a BETWEEN b AND c
1189 **
1190 ** is converted into:
1191 **
1192 ** (a BETWEEN b AND c) AND (a>=b) AND (a<=c)
1193 **
1194 ** The two new terms are added onto the end of the WhereClause object.
1195 ** The new terms are "dynamic" and are children of the original BETWEEN
1196 ** term. That means that if the BETWEEN term is coded, the children are
1197 ** skipped. Or, if the children are satisfied by an index, the original
1198 ** BETWEEN term is skipped.
1199 */
1200 else if( pExpr->op==TK_BETWEEN && pWC->op==TK_AND ){
1201 ExprList *pList = pExpr->x.pList;
1202 int i;
1203 static const u8 ops[] = {TK_GE, TK_LE};
1204 assert( pList!=0 );
1205 assert( pList->nExpr==2 );
1206 for(i=0; i<2; i++){
1207 Expr *pNewExpr;
1208 int idxNew;
1209 pNewExpr = sqlite3PExpr(pParse, ops[i],
1210 sqlite3ExprDup(db, pExpr->pLeft, 0),
1211 sqlite3ExprDup(db, pList->a[i].pExpr, 0), 0);
1212 idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC);
1213 testcase( idxNew==0 );
1214 exprAnalyze(pSrc, pWC, idxNew);
1215 pTerm = &pWC->a[idxTerm];
1216 pWC->a[idxNew].iParent = idxTerm;
1217 }
1218 pTerm->nChild = 2;
1219 }
1220 #endif /* SQLITE_OMIT_BETWEEN_OPTIMIZATION */
1221
1222 #if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY)
1223 /* Analyze a term that is composed of two or more subterms connected by
1224 ** an OR operator.
1225 */
1226 else if( pExpr->op==TK_OR ){
1227 assert( pWC->op==TK_AND );
1228 exprAnalyzeOrTerm(pSrc, pWC, idxTerm);
1229 pTerm = &pWC->a[idxTerm];
1230 }
1231 #endif /* SQLITE_OMIT_OR_OPTIMIZATION */
1232
1233 #ifndef SQLITE_OMIT_LIKE_OPTIMIZATION
1234 /* Add constraints to reduce the search space on a LIKE or GLOB
1235 ** operator.
1236 **
1237 ** A like pattern of the form "x LIKE 'abc%'" is changed into constraints
1238 **
1239 ** x>='abc' AND x<'abd' AND x LIKE 'abc%'
1240 **
1241 ** The last character of the prefix "abc" is incremented to form the
1242 ** termination condition "abd".
1243 */
1244 if( pWC->op==TK_AND
1245 && isLikeOrGlob(pParse, pExpr, &pStr1, &isComplete, &noCase)
1246 ){
1247 Expr *pLeft; /* LHS of LIKE/GLOB operator */
1248 Expr *pStr2; /* Copy of pStr1 - RHS of LIKE/GLOB operator */
1249 Expr *pNewExpr1;
1250 Expr *pNewExpr2;
1251 int idxNew1;
1252 int idxNew2;
1253 CollSeq *pColl; /* Collating sequence to use */
1254
1255 pLeft = pExpr->x.pList->a[1].pExpr;
1256 pStr2 = sqlite3ExprDup(db, pStr1, 0);
1257 if( !db->mallocFailed ){
1258 u8 c, *pC; /* Last character before the first wildcard */
1259 pC = (u8*)&pStr2->u.zToken[sqlite3Strlen30(pStr2->u.zToken)-1];
1260 c = *pC;
1261 if( noCase ){
1262 /* The point is to increment the last character before the first
1263 ** wildcard. But if we increment '@', that will push it into the
1264 ** alphabetic range where case conversions will mess up the
1265 ** inequality. To avoid this, make sure to also run the full
1266 ** LIKE on all candidate expressions by clearing the isComplete flag
1267 */
1268 if( c=='A'-1 ) isComplete = 0; /* EV: R-64339-08207 */
1269
1270
1271 c = sqlite3UpperToLower[c];
1272 }
1273 *pC = c + 1;
1274 }
1275 pColl = sqlite3FindCollSeq(db, SQLITE_UTF8, noCase ? "NOCASE" : "BINARY",0);
1276 pNewExpr1 = sqlite3PExpr(pParse, TK_GE,
1277 sqlite3ExprSetColl(sqlite3ExprDup(db,pLeft,0), pColl),
1278 pStr1, 0);
1279 idxNew1 = whereClauseInsert(pWC, pNewExpr1, TERM_VIRTUAL|TERM_DYNAMIC);
1280 testcase( idxNew1==0 );
1281 exprAnalyze(pSrc, pWC, idxNew1);
1282 pNewExpr2 = sqlite3PExpr(pParse, TK_LT,
1283 sqlite3ExprSetColl(sqlite3ExprDup(db,pLeft,0), pColl),
1284 pStr2, 0);
1285 idxNew2 = whereClauseInsert(pWC, pNewExpr2, TERM_VIRTUAL|TERM_DYNAMIC);
1286 testcase( idxNew2==0 );
1287 exprAnalyze(pSrc, pWC, idxNew2);
1288 pTerm = &pWC->a[idxTerm];
1289 if( isComplete ){
1290 pWC->a[idxNew1].iParent = idxTerm;
1291 pWC->a[idxNew2].iParent = idxTerm;
1292 pTerm->nChild = 2;
1293 }
1294 }
1295 #endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */
1296
1297 #ifndef SQLITE_OMIT_VIRTUALTABLE
1298 /* Add a WO_MATCH auxiliary term to the constraint set if the
1299 ** current expression is of the form: column MATCH expr.
1300 ** This information is used by the xBestIndex methods of
1301 ** virtual tables. The native query optimizer does not attempt
1302 ** to do anything with MATCH functions.
1303 */
1304 if( isMatchOfColumn(pExpr) ){
1305 int idxNew;
1306 Expr *pRight, *pLeft;
1307 WhereTerm *pNewTerm;
1308 Bitmask prereqColumn, prereqExpr;
1309
1310 pRight = pExpr->x.pList->a[0].pExpr;
1311 pLeft = pExpr->x.pList->a[1].pExpr;
1312 prereqExpr = exprTableUsage(pMaskSet, pRight);
1313 prereqColumn = exprTableUsage(pMaskSet, pLeft);
1314 if( (prereqExpr & prereqColumn)==0 ){
1315 Expr *pNewExpr;
1316 pNewExpr = sqlite3PExpr(pParse, TK_MATCH,
1317 0, sqlite3ExprDup(db, pRight, 0), 0);
1318 idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC);
1319 testcase( idxNew==0 );
1320 pNewTerm = &pWC->a[idxNew];
1321 pNewTerm->prereqRight = prereqExpr;
1322 pNewTerm->leftCursor = pLeft->iTable;
1323 pNewTerm->u.leftColumn = pLeft->iColumn;
1324 pNewTerm->eOperator = WO_MATCH;
1325 pNewTerm->iParent = idxTerm;
1326 pTerm = &pWC->a[idxTerm];
1327 pTerm->nChild = 1;
1328 pTerm->wtFlags |= TERM_COPIED;
1329 pNewTerm->prereqAll = pTerm->prereqAll;
1330 }
1331 }
1332 #endif /* SQLITE_OMIT_VIRTUALTABLE */
1333
1334 #ifdef SQLITE_ENABLE_STAT2
1335 /* When sqlite_stat2 histogram data is available an operator of the
1336 ** form "x IS NOT NULL" can sometimes be evaluated more efficiently
1337 ** as "x>NULL" if x is not an INTEGER PRIMARY KEY. So construct a
1338 ** virtual term of that form.
1339 **
1340 ** Note that the virtual term must be tagged with TERM_VNULL. This
1341 ** TERM_VNULL tag will suppress the not-null check at the beginning
1342 ** of the loop. Without the TERM_VNULL flag, the not-null check at
1343 ** the start of the loop will prevent any results from being returned.
1344 */
1345 if( pExpr->op==TK_NOTNULL
1346 && pExpr->pLeft->op==TK_COLUMN
1347 && pExpr->pLeft->iColumn>=0
1348 ){
1349 Expr *pNewExpr;
1350 Expr *pLeft = pExpr->pLeft;
1351 int idxNew;
1352 WhereTerm *pNewTerm;
1353
1354 pNewExpr = sqlite3PExpr(pParse, TK_GT,
1355 sqlite3ExprDup(db, pLeft, 0),
1356 sqlite3PExpr(pParse, TK_NULL, 0, 0, 0), 0);
1357
1358 idxNew = whereClauseInsert(pWC, pNewExpr,
1359 TERM_VIRTUAL|TERM_DYNAMIC|TERM_VNULL);
1360 if( idxNew ){
1361 pNewTerm = &pWC->a[idxNew];
1362 pNewTerm->prereqRight = 0;
1363 pNewTerm->leftCursor = pLeft->iTable;
1364 pNewTerm->u.leftColumn = pLeft->iColumn;
1365 pNewTerm->eOperator = WO_GT;
1366 pNewTerm->iParent = idxTerm;
1367 pTerm = &pWC->a[idxTerm];
1368 pTerm->nChild = 1;
1369 pTerm->wtFlags |= TERM_COPIED;
1370 pNewTerm->prereqAll = pTerm->prereqAll;
1371 }
1372 }
1373 #endif /* SQLITE_ENABLE_STAT2 */
1374
1375 /* Prevent ON clause terms of a LEFT JOIN from being used to drive
1376 ** an index for tables to the left of the join.
1377 */
1378 pTerm->prereqRight |= extraRight;
1379 }
1380
1381 /*
1382 ** Return TRUE if any of the expressions in pList->a[iFirst...] contain
1383 ** a reference to any table other than the iBase table.
1384 */
referencesOtherTables(ExprList * pList,WhereMaskSet * pMaskSet,int iFirst,int iBase)1385 static int referencesOtherTables(
1386 ExprList *pList, /* Search expressions in ths list */
1387 WhereMaskSet *pMaskSet, /* Mapping from tables to bitmaps */
1388 int iFirst, /* Be searching with the iFirst-th expression */
1389 int iBase /* Ignore references to this table */
1390 ){
1391 Bitmask allowed = ~getMask(pMaskSet, iBase);
1392 while( iFirst<pList->nExpr ){
1393 if( (exprTableUsage(pMaskSet, pList->a[iFirst++].pExpr)&allowed)!=0 ){
1394 return 1;
1395 }
1396 }
1397 return 0;
1398 }
1399
1400
1401 /*
1402 ** This routine decides if pIdx can be used to satisfy the ORDER BY
1403 ** clause. If it can, it returns 1. If pIdx cannot satisfy the
1404 ** ORDER BY clause, this routine returns 0.
1405 **
1406 ** pOrderBy is an ORDER BY clause from a SELECT statement. pTab is the
1407 ** left-most table in the FROM clause of that same SELECT statement and
1408 ** the table has a cursor number of "base". pIdx is an index on pTab.
1409 **
1410 ** nEqCol is the number of columns of pIdx that are used as equality
1411 ** constraints. Any of these columns may be missing from the ORDER BY
1412 ** clause and the match can still be a success.
1413 **
1414 ** All terms of the ORDER BY that match against the index must be either
1415 ** ASC or DESC. (Terms of the ORDER BY clause past the end of a UNIQUE
1416 ** index do not need to satisfy this constraint.) The *pbRev value is
1417 ** set to 1 if the ORDER BY clause is all DESC and it is set to 0 if
1418 ** the ORDER BY clause is all ASC.
1419 */
isSortingIndex(Parse * pParse,WhereMaskSet * pMaskSet,Index * pIdx,int base,ExprList * pOrderBy,int nEqCol,int wsFlags,int * pbRev)1420 static int isSortingIndex(
1421 Parse *pParse, /* Parsing context */
1422 WhereMaskSet *pMaskSet, /* Mapping from table cursor numbers to bitmaps */
1423 Index *pIdx, /* The index we are testing */
1424 int base, /* Cursor number for the table to be sorted */
1425 ExprList *pOrderBy, /* The ORDER BY clause */
1426 int nEqCol, /* Number of index columns with == constraints */
1427 int wsFlags, /* Index usages flags */
1428 int *pbRev /* Set to 1 if ORDER BY is DESC */
1429 ){
1430 int i, j; /* Loop counters */
1431 int sortOrder = 0; /* XOR of index and ORDER BY sort direction */
1432 int nTerm; /* Number of ORDER BY terms */
1433 struct ExprList_item *pTerm; /* A term of the ORDER BY clause */
1434 sqlite3 *db = pParse->db;
1435
1436 assert( pOrderBy!=0 );
1437 nTerm = pOrderBy->nExpr;
1438 assert( nTerm>0 );
1439
1440 /* Argument pIdx must either point to a 'real' named index structure,
1441 ** or an index structure allocated on the stack by bestBtreeIndex() to
1442 ** represent the rowid index that is part of every table. */
1443 assert( pIdx->zName || (pIdx->nColumn==1 && pIdx->aiColumn[0]==-1) );
1444
1445 /* Match terms of the ORDER BY clause against columns of
1446 ** the index.
1447 **
1448 ** Note that indices have pIdx->nColumn regular columns plus
1449 ** one additional column containing the rowid. The rowid column
1450 ** of the index is also allowed to match against the ORDER BY
1451 ** clause.
1452 */
1453 for(i=j=0, pTerm=pOrderBy->a; j<nTerm && i<=pIdx->nColumn; i++){
1454 Expr *pExpr; /* The expression of the ORDER BY pTerm */
1455 CollSeq *pColl; /* The collating sequence of pExpr */
1456 int termSortOrder; /* Sort order for this term */
1457 int iColumn; /* The i-th column of the index. -1 for rowid */
1458 int iSortOrder; /* 1 for DESC, 0 for ASC on the i-th index term */
1459 const char *zColl; /* Name of the collating sequence for i-th index term */
1460
1461 pExpr = pTerm->pExpr;
1462 if( pExpr->op!=TK_COLUMN || pExpr->iTable!=base ){
1463 /* Can not use an index sort on anything that is not a column in the
1464 ** left-most table of the FROM clause */
1465 break;
1466 }
1467 pColl = sqlite3ExprCollSeq(pParse, pExpr);
1468 if( !pColl ){
1469 pColl = db->pDfltColl;
1470 }
1471 if( pIdx->zName && i<pIdx->nColumn ){
1472 iColumn = pIdx->aiColumn[i];
1473 if( iColumn==pIdx->pTable->iPKey ){
1474 iColumn = -1;
1475 }
1476 iSortOrder = pIdx->aSortOrder[i];
1477 zColl = pIdx->azColl[i];
1478 }else{
1479 iColumn = -1;
1480 iSortOrder = 0;
1481 zColl = pColl->zName;
1482 }
1483 if( pExpr->iColumn!=iColumn || sqlite3StrICmp(pColl->zName, zColl) ){
1484 /* Term j of the ORDER BY clause does not match column i of the index */
1485 if( i<nEqCol ){
1486 /* If an index column that is constrained by == fails to match an
1487 ** ORDER BY term, that is OK. Just ignore that column of the index
1488 */
1489 continue;
1490 }else if( i==pIdx->nColumn ){
1491 /* Index column i is the rowid. All other terms match. */
1492 break;
1493 }else{
1494 /* If an index column fails to match and is not constrained by ==
1495 ** then the index cannot satisfy the ORDER BY constraint.
1496 */
1497 return 0;
1498 }
1499 }
1500 assert( pIdx->aSortOrder!=0 || iColumn==-1 );
1501 assert( pTerm->sortOrder==0 || pTerm->sortOrder==1 );
1502 assert( iSortOrder==0 || iSortOrder==1 );
1503 termSortOrder = iSortOrder ^ pTerm->sortOrder;
1504 if( i>nEqCol ){
1505 if( termSortOrder!=sortOrder ){
1506 /* Indices can only be used if all ORDER BY terms past the
1507 ** equality constraints are all either DESC or ASC. */
1508 return 0;
1509 }
1510 }else{
1511 sortOrder = termSortOrder;
1512 }
1513 j++;
1514 pTerm++;
1515 if( iColumn<0 && !referencesOtherTables(pOrderBy, pMaskSet, j, base) ){
1516 /* If the indexed column is the primary key and everything matches
1517 ** so far and none of the ORDER BY terms to the right reference other
1518 ** tables in the join, then we are assured that the index can be used
1519 ** to sort because the primary key is unique and so none of the other
1520 ** columns will make any difference
1521 */
1522 j = nTerm;
1523 }
1524 }
1525
1526 *pbRev = sortOrder!=0;
1527 if( j>=nTerm ){
1528 /* All terms of the ORDER BY clause are covered by this index so
1529 ** this index can be used for sorting. */
1530 return 1;
1531 }
1532 if( pIdx->onError!=OE_None && i==pIdx->nColumn
1533 && (wsFlags & WHERE_COLUMN_NULL)==0
1534 && !referencesOtherTables(pOrderBy, pMaskSet, j, base) ){
1535 /* All terms of this index match some prefix of the ORDER BY clause
1536 ** and the index is UNIQUE and no terms on the tail of the ORDER BY
1537 ** clause reference other tables in a join. If this is all true then
1538 ** the order by clause is superfluous. Not that if the matching
1539 ** condition is IS NULL then the result is not necessarily unique
1540 ** even on a UNIQUE index, so disallow those cases. */
1541 return 1;
1542 }
1543 return 0;
1544 }
1545
1546 /*
1547 ** Prepare a crude estimate of the logarithm of the input value.
1548 ** The results need not be exact. This is only used for estimating
1549 ** the total cost of performing operations with O(logN) or O(NlogN)
1550 ** complexity. Because N is just a guess, it is no great tragedy if
1551 ** logN is a little off.
1552 */
estLog(double N)1553 static double estLog(double N){
1554 double logN = 1;
1555 double x = 10;
1556 while( N>x ){
1557 logN += 1;
1558 x *= 10;
1559 }
1560 return logN;
1561 }
1562
1563 /*
1564 ** Two routines for printing the content of an sqlite3_index_info
1565 ** structure. Used for testing and debugging only. If neither
1566 ** SQLITE_TEST or SQLITE_DEBUG are defined, then these routines
1567 ** are no-ops.
1568 */
1569 #if !defined(SQLITE_OMIT_VIRTUALTABLE) && defined(SQLITE_DEBUG)
TRACE_IDX_INPUTS(sqlite3_index_info * p)1570 static void TRACE_IDX_INPUTS(sqlite3_index_info *p){
1571 int i;
1572 if( !sqlite3WhereTrace ) return;
1573 for(i=0; i<p->nConstraint; i++){
1574 sqlite3DebugPrintf(" constraint[%d]: col=%d termid=%d op=%d usabled=%d\n",
1575 i,
1576 p->aConstraint[i].iColumn,
1577 p->aConstraint[i].iTermOffset,
1578 p->aConstraint[i].op,
1579 p->aConstraint[i].usable);
1580 }
1581 for(i=0; i<p->nOrderBy; i++){
1582 sqlite3DebugPrintf(" orderby[%d]: col=%d desc=%d\n",
1583 i,
1584 p->aOrderBy[i].iColumn,
1585 p->aOrderBy[i].desc);
1586 }
1587 }
TRACE_IDX_OUTPUTS(sqlite3_index_info * p)1588 static void TRACE_IDX_OUTPUTS(sqlite3_index_info *p){
1589 int i;
1590 if( !sqlite3WhereTrace ) return;
1591 for(i=0; i<p->nConstraint; i++){
1592 sqlite3DebugPrintf(" usage[%d]: argvIdx=%d omit=%d\n",
1593 i,
1594 p->aConstraintUsage[i].argvIndex,
1595 p->aConstraintUsage[i].omit);
1596 }
1597 sqlite3DebugPrintf(" idxNum=%d\n", p->idxNum);
1598 sqlite3DebugPrintf(" idxStr=%s\n", p->idxStr);
1599 sqlite3DebugPrintf(" orderByConsumed=%d\n", p->orderByConsumed);
1600 sqlite3DebugPrintf(" estimatedCost=%g\n", p->estimatedCost);
1601 }
1602 #else
1603 #define TRACE_IDX_INPUTS(A)
1604 #define TRACE_IDX_OUTPUTS(A)
1605 #endif
1606
1607 /*
1608 ** Required because bestIndex() is called by bestOrClauseIndex()
1609 */
1610 static void bestIndex(
1611 Parse*, WhereClause*, struct SrcList_item*,
1612 Bitmask, Bitmask, ExprList*, WhereCost*);
1613
1614 /*
1615 ** This routine attempts to find an scanning strategy that can be used
1616 ** to optimize an 'OR' expression that is part of a WHERE clause.
1617 **
1618 ** The table associated with FROM clause term pSrc may be either a
1619 ** regular B-Tree table or a virtual table.
1620 */
bestOrClauseIndex(Parse * pParse,WhereClause * pWC,struct SrcList_item * pSrc,Bitmask notReady,Bitmask notValid,ExprList * pOrderBy,WhereCost * pCost)1621 static void bestOrClauseIndex(
1622 Parse *pParse, /* The parsing context */
1623 WhereClause *pWC, /* The WHERE clause */
1624 struct SrcList_item *pSrc, /* The FROM clause term to search */
1625 Bitmask notReady, /* Mask of cursors not available for indexing */
1626 Bitmask notValid, /* Cursors not available for any purpose */
1627 ExprList *pOrderBy, /* The ORDER BY clause */
1628 WhereCost *pCost /* Lowest cost query plan */
1629 ){
1630 #ifndef SQLITE_OMIT_OR_OPTIMIZATION
1631 const int iCur = pSrc->iCursor; /* The cursor of the table to be accessed */
1632 const Bitmask maskSrc = getMask(pWC->pMaskSet, iCur); /* Bitmask for pSrc */
1633 WhereTerm * const pWCEnd = &pWC->a[pWC->nTerm]; /* End of pWC->a[] */
1634 WhereTerm *pTerm; /* A single term of the WHERE clause */
1635
1636 /* No OR-clause optimization allowed if the INDEXED BY or NOT INDEXED clauses
1637 ** are used */
1638 if( pSrc->notIndexed || pSrc->pIndex!=0 ){
1639 return;
1640 }
1641
1642 /* Search the WHERE clause terms for a usable WO_OR term. */
1643 for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){
1644 if( pTerm->eOperator==WO_OR
1645 && ((pTerm->prereqAll & ~maskSrc) & notReady)==0
1646 && (pTerm->u.pOrInfo->indexable & maskSrc)!=0
1647 ){
1648 WhereClause * const pOrWC = &pTerm->u.pOrInfo->wc;
1649 WhereTerm * const pOrWCEnd = &pOrWC->a[pOrWC->nTerm];
1650 WhereTerm *pOrTerm;
1651 int flags = WHERE_MULTI_OR;
1652 double rTotal = 0;
1653 double nRow = 0;
1654 Bitmask used = 0;
1655
1656 for(pOrTerm=pOrWC->a; pOrTerm<pOrWCEnd; pOrTerm++){
1657 WhereCost sTermCost;
1658 WHERETRACE(("... Multi-index OR testing for term %d of %d....\n",
1659 (pOrTerm - pOrWC->a), (pTerm - pWC->a)
1660 ));
1661 if( pOrTerm->eOperator==WO_AND ){
1662 WhereClause *pAndWC = &pOrTerm->u.pAndInfo->wc;
1663 bestIndex(pParse, pAndWC, pSrc, notReady, notValid, 0, &sTermCost);
1664 }else if( pOrTerm->leftCursor==iCur ){
1665 WhereClause tempWC;
1666 tempWC.pParse = pWC->pParse;
1667 tempWC.pMaskSet = pWC->pMaskSet;
1668 tempWC.op = TK_AND;
1669 tempWC.a = pOrTerm;
1670 tempWC.nTerm = 1;
1671 bestIndex(pParse, &tempWC, pSrc, notReady, notValid, 0, &sTermCost);
1672 }else{
1673 continue;
1674 }
1675 rTotal += sTermCost.rCost;
1676 nRow += sTermCost.plan.nRow;
1677 used |= sTermCost.used;
1678 if( rTotal>=pCost->rCost ) break;
1679 }
1680
1681 /* If there is an ORDER BY clause, increase the scan cost to account
1682 ** for the cost of the sort. */
1683 if( pOrderBy!=0 ){
1684 WHERETRACE(("... sorting increases OR cost %.9g to %.9g\n",
1685 rTotal, rTotal+nRow*estLog(nRow)));
1686 rTotal += nRow*estLog(nRow);
1687 }
1688
1689 /* If the cost of scanning using this OR term for optimization is
1690 ** less than the current cost stored in pCost, replace the contents
1691 ** of pCost. */
1692 WHERETRACE(("... multi-index OR cost=%.9g nrow=%.9g\n", rTotal, nRow));
1693 if( rTotal<pCost->rCost ){
1694 pCost->rCost = rTotal;
1695 pCost->used = used;
1696 pCost->plan.nRow = nRow;
1697 pCost->plan.wsFlags = flags;
1698 pCost->plan.u.pTerm = pTerm;
1699 }
1700 }
1701 }
1702 #endif /* SQLITE_OMIT_OR_OPTIMIZATION */
1703 }
1704
1705 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
1706 /*
1707 ** Return TRUE if the WHERE clause term pTerm is of a form where it
1708 ** could be used with an index to access pSrc, assuming an appropriate
1709 ** index existed.
1710 */
termCanDriveIndex(WhereTerm * pTerm,struct SrcList_item * pSrc,Bitmask notReady)1711 static int termCanDriveIndex(
1712 WhereTerm *pTerm, /* WHERE clause term to check */
1713 struct SrcList_item *pSrc, /* Table we are trying to access */
1714 Bitmask notReady /* Tables in outer loops of the join */
1715 ){
1716 char aff;
1717 if( pTerm->leftCursor!=pSrc->iCursor ) return 0;
1718 if( pTerm->eOperator!=WO_EQ ) return 0;
1719 if( (pTerm->prereqRight & notReady)!=0 ) return 0;
1720 aff = pSrc->pTab->aCol[pTerm->u.leftColumn].affinity;
1721 if( !sqlite3IndexAffinityOk(pTerm->pExpr, aff) ) return 0;
1722 return 1;
1723 }
1724 #endif
1725
1726 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
1727 /*
1728 ** If the query plan for pSrc specified in pCost is a full table scan
1729 ** and indexing is allows (if there is no NOT INDEXED clause) and it
1730 ** possible to construct a transient index that would perform better
1731 ** than a full table scan even when the cost of constructing the index
1732 ** is taken into account, then alter the query plan to use the
1733 ** transient index.
1734 */
bestAutomaticIndex(Parse * pParse,WhereClause * pWC,struct SrcList_item * pSrc,Bitmask notReady,WhereCost * pCost)1735 static void bestAutomaticIndex(
1736 Parse *pParse, /* The parsing context */
1737 WhereClause *pWC, /* The WHERE clause */
1738 struct SrcList_item *pSrc, /* The FROM clause term to search */
1739 Bitmask notReady, /* Mask of cursors that are not available */
1740 WhereCost *pCost /* Lowest cost query plan */
1741 ){
1742 double nTableRow; /* Rows in the input table */
1743 double logN; /* log(nTableRow) */
1744 double costTempIdx; /* per-query cost of the transient index */
1745 WhereTerm *pTerm; /* A single term of the WHERE clause */
1746 WhereTerm *pWCEnd; /* End of pWC->a[] */
1747 Table *pTable; /* Table tht might be indexed */
1748
1749 if( (pParse->db->flags & SQLITE_AutoIndex)==0 ){
1750 /* Automatic indices are disabled at run-time */
1751 return;
1752 }
1753 if( (pCost->plan.wsFlags & WHERE_NOT_FULLSCAN)!=0 ){
1754 /* We already have some kind of index in use for this query. */
1755 return;
1756 }
1757 if( pSrc->notIndexed ){
1758 /* The NOT INDEXED clause appears in the SQL. */
1759 return;
1760 }
1761
1762 assert( pParse->nQueryLoop >= (double)1 );
1763 pTable = pSrc->pTab;
1764 nTableRow = pTable->nRowEst;
1765 logN = estLog(nTableRow);
1766 costTempIdx = 2*logN*(nTableRow/pParse->nQueryLoop + 1);
1767 if( costTempIdx>=pCost->rCost ){
1768 /* The cost of creating the transient table would be greater than
1769 ** doing the full table scan */
1770 return;
1771 }
1772
1773 /* Search for any equality comparison term */
1774 pWCEnd = &pWC->a[pWC->nTerm];
1775 for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){
1776 if( termCanDriveIndex(pTerm, pSrc, notReady) ){
1777 WHERETRACE(("auto-index reduces cost from %.1f to %.1f\n",
1778 pCost->rCost, costTempIdx));
1779 pCost->rCost = costTempIdx;
1780 pCost->plan.nRow = logN + 1;
1781 pCost->plan.wsFlags = WHERE_TEMP_INDEX;
1782 pCost->used = pTerm->prereqRight;
1783 break;
1784 }
1785 }
1786 }
1787 #else
1788 # define bestAutomaticIndex(A,B,C,D,E) /* no-op */
1789 #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */
1790
1791
1792 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
1793 /*
1794 ** Generate code to construct the Index object for an automatic index
1795 ** and to set up the WhereLevel object pLevel so that the code generator
1796 ** makes use of the automatic index.
1797 */
constructAutomaticIndex(Parse * pParse,WhereClause * pWC,struct SrcList_item * pSrc,Bitmask notReady,WhereLevel * pLevel)1798 static void constructAutomaticIndex(
1799 Parse *pParse, /* The parsing context */
1800 WhereClause *pWC, /* The WHERE clause */
1801 struct SrcList_item *pSrc, /* The FROM clause term to get the next index */
1802 Bitmask notReady, /* Mask of cursors that are not available */
1803 WhereLevel *pLevel /* Write new index here */
1804 ){
1805 int nColumn; /* Number of columns in the constructed index */
1806 WhereTerm *pTerm; /* A single term of the WHERE clause */
1807 WhereTerm *pWCEnd; /* End of pWC->a[] */
1808 int nByte; /* Byte of memory needed for pIdx */
1809 Index *pIdx; /* Object describing the transient index */
1810 Vdbe *v; /* Prepared statement under construction */
1811 int regIsInit; /* Register set by initialization */
1812 int addrInit; /* Address of the initialization bypass jump */
1813 Table *pTable; /* The table being indexed */
1814 KeyInfo *pKeyinfo; /* Key information for the index */
1815 int addrTop; /* Top of the index fill loop */
1816 int regRecord; /* Register holding an index record */
1817 int n; /* Column counter */
1818 int i; /* Loop counter */
1819 int mxBitCol; /* Maximum column in pSrc->colUsed */
1820 CollSeq *pColl; /* Collating sequence to on a column */
1821 Bitmask idxCols; /* Bitmap of columns used for indexing */
1822 Bitmask extraCols; /* Bitmap of additional columns */
1823
1824 /* Generate code to skip over the creation and initialization of the
1825 ** transient index on 2nd and subsequent iterations of the loop. */
1826 v = pParse->pVdbe;
1827 assert( v!=0 );
1828 regIsInit = ++pParse->nMem;
1829 addrInit = sqlite3VdbeAddOp1(v, OP_If, regIsInit);
1830 sqlite3VdbeAddOp2(v, OP_Integer, 1, regIsInit);
1831
1832 /* Count the number of columns that will be added to the index
1833 ** and used to match WHERE clause constraints */
1834 nColumn = 0;
1835 pTable = pSrc->pTab;
1836 pWCEnd = &pWC->a[pWC->nTerm];
1837 idxCols = 0;
1838 for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){
1839 if( termCanDriveIndex(pTerm, pSrc, notReady) ){
1840 int iCol = pTerm->u.leftColumn;
1841 Bitmask cMask = iCol>=BMS ? ((Bitmask)1)<<(BMS-1) : ((Bitmask)1)<<iCol;
1842 testcase( iCol==BMS );
1843 testcase( iCol==BMS-1 );
1844 if( (idxCols & cMask)==0 ){
1845 nColumn++;
1846 idxCols |= cMask;
1847 }
1848 }
1849 }
1850 assert( nColumn>0 );
1851 pLevel->plan.nEq = nColumn;
1852
1853 /* Count the number of additional columns needed to create a
1854 ** covering index. A "covering index" is an index that contains all
1855 ** columns that are needed by the query. With a covering index, the
1856 ** original table never needs to be accessed. Automatic indices must
1857 ** be a covering index because the index will not be updated if the
1858 ** original table changes and the index and table cannot both be used
1859 ** if they go out of sync.
1860 */
1861 extraCols = pSrc->colUsed & (~idxCols | (((Bitmask)1)<<(BMS-1)));
1862 mxBitCol = (pTable->nCol >= BMS-1) ? BMS-1 : pTable->nCol;
1863 testcase( pTable->nCol==BMS-1 );
1864 testcase( pTable->nCol==BMS-2 );
1865 for(i=0; i<mxBitCol; i++){
1866 if( extraCols & (((Bitmask)1)<<i) ) nColumn++;
1867 }
1868 if( pSrc->colUsed & (((Bitmask)1)<<(BMS-1)) ){
1869 nColumn += pTable->nCol - BMS + 1;
1870 }
1871 pLevel->plan.wsFlags |= WHERE_COLUMN_EQ | WHERE_IDX_ONLY | WO_EQ;
1872
1873 /* Construct the Index object to describe this index */
1874 nByte = sizeof(Index);
1875 nByte += nColumn*sizeof(int); /* Index.aiColumn */
1876 nByte += nColumn*sizeof(char*); /* Index.azColl */
1877 nByte += nColumn; /* Index.aSortOrder */
1878 pIdx = sqlite3DbMallocZero(pParse->db, nByte);
1879 if( pIdx==0 ) return;
1880 pLevel->plan.u.pIdx = pIdx;
1881 pIdx->azColl = (char**)&pIdx[1];
1882 pIdx->aiColumn = (int*)&pIdx->azColl[nColumn];
1883 pIdx->aSortOrder = (u8*)&pIdx->aiColumn[nColumn];
1884 pIdx->zName = "auto-index";
1885 pIdx->nColumn = nColumn;
1886 pIdx->pTable = pTable;
1887 n = 0;
1888 idxCols = 0;
1889 for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){
1890 if( termCanDriveIndex(pTerm, pSrc, notReady) ){
1891 int iCol = pTerm->u.leftColumn;
1892 Bitmask cMask = iCol>=BMS ? ((Bitmask)1)<<(BMS-1) : ((Bitmask)1)<<iCol;
1893 if( (idxCols & cMask)==0 ){
1894 Expr *pX = pTerm->pExpr;
1895 idxCols |= cMask;
1896 pIdx->aiColumn[n] = pTerm->u.leftColumn;
1897 pColl = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pX->pRight);
1898 pIdx->azColl[n] = ALWAYS(pColl) ? pColl->zName : "BINARY";
1899 n++;
1900 }
1901 }
1902 }
1903 assert( (u32)n==pLevel->plan.nEq );
1904
1905 /* Add additional columns needed to make the automatic index into
1906 ** a covering index */
1907 for(i=0; i<mxBitCol; i++){
1908 if( extraCols & (((Bitmask)1)<<i) ){
1909 pIdx->aiColumn[n] = i;
1910 pIdx->azColl[n] = "BINARY";
1911 n++;
1912 }
1913 }
1914 if( pSrc->colUsed & (((Bitmask)1)<<(BMS-1)) ){
1915 for(i=BMS-1; i<pTable->nCol; i++){
1916 pIdx->aiColumn[n] = i;
1917 pIdx->azColl[n] = "BINARY";
1918 n++;
1919 }
1920 }
1921 assert( n==nColumn );
1922
1923 /* Create the automatic index */
1924 pKeyinfo = sqlite3IndexKeyinfo(pParse, pIdx);
1925 assert( pLevel->iIdxCur>=0 );
1926 sqlite3VdbeAddOp4(v, OP_OpenAutoindex, pLevel->iIdxCur, nColumn+1, 0,
1927 (char*)pKeyinfo, P4_KEYINFO_HANDOFF);
1928 VdbeComment((v, "for %s", pTable->zName));
1929
1930 /* Fill the automatic index with content */
1931 addrTop = sqlite3VdbeAddOp1(v, OP_Rewind, pLevel->iTabCur);
1932 regRecord = sqlite3GetTempReg(pParse);
1933 sqlite3GenerateIndexKey(pParse, pIdx, pLevel->iTabCur, regRecord, 1);
1934 sqlite3VdbeAddOp2(v, OP_IdxInsert, pLevel->iIdxCur, regRecord);
1935 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
1936 sqlite3VdbeAddOp2(v, OP_Next, pLevel->iTabCur, addrTop+1);
1937 sqlite3VdbeChangeP5(v, SQLITE_STMTSTATUS_AUTOINDEX);
1938 sqlite3VdbeJumpHere(v, addrTop);
1939 sqlite3ReleaseTempReg(pParse, regRecord);
1940
1941 /* Jump here when skipping the initialization */
1942 sqlite3VdbeJumpHere(v, addrInit);
1943 }
1944 #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */
1945
1946 #ifndef SQLITE_OMIT_VIRTUALTABLE
1947 /*
1948 ** Allocate and populate an sqlite3_index_info structure. It is the
1949 ** responsibility of the caller to eventually release the structure
1950 ** by passing the pointer returned by this function to sqlite3_free().
1951 */
allocateIndexInfo(Parse * pParse,WhereClause * pWC,struct SrcList_item * pSrc,ExprList * pOrderBy)1952 static sqlite3_index_info *allocateIndexInfo(
1953 Parse *pParse,
1954 WhereClause *pWC,
1955 struct SrcList_item *pSrc,
1956 ExprList *pOrderBy
1957 ){
1958 int i, j;
1959 int nTerm;
1960 struct sqlite3_index_constraint *pIdxCons;
1961 struct sqlite3_index_orderby *pIdxOrderBy;
1962 struct sqlite3_index_constraint_usage *pUsage;
1963 WhereTerm *pTerm;
1964 int nOrderBy;
1965 sqlite3_index_info *pIdxInfo;
1966
1967 WHERETRACE(("Recomputing index info for %s...\n", pSrc->pTab->zName));
1968
1969 /* Count the number of possible WHERE clause constraints referring
1970 ** to this virtual table */
1971 for(i=nTerm=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
1972 if( pTerm->leftCursor != pSrc->iCursor ) continue;
1973 assert( (pTerm->eOperator&(pTerm->eOperator-1))==0 );
1974 testcase( pTerm->eOperator==WO_IN );
1975 testcase( pTerm->eOperator==WO_ISNULL );
1976 if( pTerm->eOperator & (WO_IN|WO_ISNULL) ) continue;
1977 nTerm++;
1978 }
1979
1980 /* If the ORDER BY clause contains only columns in the current
1981 ** virtual table then allocate space for the aOrderBy part of
1982 ** the sqlite3_index_info structure.
1983 */
1984 nOrderBy = 0;
1985 if( pOrderBy ){
1986 for(i=0; i<pOrderBy->nExpr; i++){
1987 Expr *pExpr = pOrderBy->a[i].pExpr;
1988 if( pExpr->op!=TK_COLUMN || pExpr->iTable!=pSrc->iCursor ) break;
1989 }
1990 if( i==pOrderBy->nExpr ){
1991 nOrderBy = pOrderBy->nExpr;
1992 }
1993 }
1994
1995 /* Allocate the sqlite3_index_info structure
1996 */
1997 pIdxInfo = sqlite3DbMallocZero(pParse->db, sizeof(*pIdxInfo)
1998 + (sizeof(*pIdxCons) + sizeof(*pUsage))*nTerm
1999 + sizeof(*pIdxOrderBy)*nOrderBy );
2000 if( pIdxInfo==0 ){
2001 sqlite3ErrorMsg(pParse, "out of memory");
2002 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
2003 return 0;
2004 }
2005
2006 /* Initialize the structure. The sqlite3_index_info structure contains
2007 ** many fields that are declared "const" to prevent xBestIndex from
2008 ** changing them. We have to do some funky casting in order to
2009 ** initialize those fields.
2010 */
2011 pIdxCons = (struct sqlite3_index_constraint*)&pIdxInfo[1];
2012 pIdxOrderBy = (struct sqlite3_index_orderby*)&pIdxCons[nTerm];
2013 pUsage = (struct sqlite3_index_constraint_usage*)&pIdxOrderBy[nOrderBy];
2014 *(int*)&pIdxInfo->nConstraint = nTerm;
2015 *(int*)&pIdxInfo->nOrderBy = nOrderBy;
2016 *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint = pIdxCons;
2017 *(struct sqlite3_index_orderby**)&pIdxInfo->aOrderBy = pIdxOrderBy;
2018 *(struct sqlite3_index_constraint_usage**)&pIdxInfo->aConstraintUsage =
2019 pUsage;
2020
2021 for(i=j=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
2022 if( pTerm->leftCursor != pSrc->iCursor ) continue;
2023 assert( (pTerm->eOperator&(pTerm->eOperator-1))==0 );
2024 testcase( pTerm->eOperator==WO_IN );
2025 testcase( pTerm->eOperator==WO_ISNULL );
2026 if( pTerm->eOperator & (WO_IN|WO_ISNULL) ) continue;
2027 pIdxCons[j].iColumn = pTerm->u.leftColumn;
2028 pIdxCons[j].iTermOffset = i;
2029 pIdxCons[j].op = (u8)pTerm->eOperator;
2030 /* The direct assignment in the previous line is possible only because
2031 ** the WO_ and SQLITE_INDEX_CONSTRAINT_ codes are identical. The
2032 ** following asserts verify this fact. */
2033 assert( WO_EQ==SQLITE_INDEX_CONSTRAINT_EQ );
2034 assert( WO_LT==SQLITE_INDEX_CONSTRAINT_LT );
2035 assert( WO_LE==SQLITE_INDEX_CONSTRAINT_LE );
2036 assert( WO_GT==SQLITE_INDEX_CONSTRAINT_GT );
2037 assert( WO_GE==SQLITE_INDEX_CONSTRAINT_GE );
2038 assert( WO_MATCH==SQLITE_INDEX_CONSTRAINT_MATCH );
2039 assert( pTerm->eOperator & (WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE|WO_MATCH) );
2040 j++;
2041 }
2042 for(i=0; i<nOrderBy; i++){
2043 Expr *pExpr = pOrderBy->a[i].pExpr;
2044 pIdxOrderBy[i].iColumn = pExpr->iColumn;
2045 pIdxOrderBy[i].desc = pOrderBy->a[i].sortOrder;
2046 }
2047
2048 return pIdxInfo;
2049 }
2050
2051 /*
2052 ** The table object reference passed as the second argument to this function
2053 ** must represent a virtual table. This function invokes the xBestIndex()
2054 ** method of the virtual table with the sqlite3_index_info pointer passed
2055 ** as the argument.
2056 **
2057 ** If an error occurs, pParse is populated with an error message and a
2058 ** non-zero value is returned. Otherwise, 0 is returned and the output
2059 ** part of the sqlite3_index_info structure is left populated.
2060 **
2061 ** Whether or not an error is returned, it is the responsibility of the
2062 ** caller to eventually free p->idxStr if p->needToFreeIdxStr indicates
2063 ** that this is required.
2064 */
vtabBestIndex(Parse * pParse,Table * pTab,sqlite3_index_info * p)2065 static int vtabBestIndex(Parse *pParse, Table *pTab, sqlite3_index_info *p){
2066 sqlite3_vtab *pVtab = sqlite3GetVTable(pParse->db, pTab)->pVtab;
2067 int i;
2068 int rc;
2069
2070 WHERETRACE(("xBestIndex for %s\n", pTab->zName));
2071 TRACE_IDX_INPUTS(p);
2072 rc = pVtab->pModule->xBestIndex(pVtab, p);
2073 TRACE_IDX_OUTPUTS(p);
2074
2075 if( rc!=SQLITE_OK ){
2076 if( rc==SQLITE_NOMEM ){
2077 pParse->db->mallocFailed = 1;
2078 }else if( !pVtab->zErrMsg ){
2079 sqlite3ErrorMsg(pParse, "%s", sqlite3ErrStr(rc));
2080 }else{
2081 sqlite3ErrorMsg(pParse, "%s", pVtab->zErrMsg);
2082 }
2083 }
2084 sqlite3_free(pVtab->zErrMsg);
2085 pVtab->zErrMsg = 0;
2086
2087 for(i=0; i<p->nConstraint; i++){
2088 if( !p->aConstraint[i].usable && p->aConstraintUsage[i].argvIndex>0 ){
2089 sqlite3ErrorMsg(pParse,
2090 "table %s: xBestIndex returned an invalid plan", pTab->zName);
2091 }
2092 }
2093
2094 return pParse->nErr;
2095 }
2096
2097
2098 /*
2099 ** Compute the best index for a virtual table.
2100 **
2101 ** The best index is computed by the xBestIndex method of the virtual
2102 ** table module. This routine is really just a wrapper that sets up
2103 ** the sqlite3_index_info structure that is used to communicate with
2104 ** xBestIndex.
2105 **
2106 ** In a join, this routine might be called multiple times for the
2107 ** same virtual table. The sqlite3_index_info structure is created
2108 ** and initialized on the first invocation and reused on all subsequent
2109 ** invocations. The sqlite3_index_info structure is also used when
2110 ** code is generated to access the virtual table. The whereInfoDelete()
2111 ** routine takes care of freeing the sqlite3_index_info structure after
2112 ** everybody has finished with it.
2113 */
bestVirtualIndex(Parse * pParse,WhereClause * pWC,struct SrcList_item * pSrc,Bitmask notReady,Bitmask notValid,ExprList * pOrderBy,WhereCost * pCost,sqlite3_index_info ** ppIdxInfo)2114 static void bestVirtualIndex(
2115 Parse *pParse, /* The parsing context */
2116 WhereClause *pWC, /* The WHERE clause */
2117 struct SrcList_item *pSrc, /* The FROM clause term to search */
2118 Bitmask notReady, /* Mask of cursors not available for index */
2119 Bitmask notValid, /* Cursors not valid for any purpose */
2120 ExprList *pOrderBy, /* The order by clause */
2121 WhereCost *pCost, /* Lowest cost query plan */
2122 sqlite3_index_info **ppIdxInfo /* Index information passed to xBestIndex */
2123 ){
2124 Table *pTab = pSrc->pTab;
2125 sqlite3_index_info *pIdxInfo;
2126 struct sqlite3_index_constraint *pIdxCons;
2127 struct sqlite3_index_constraint_usage *pUsage;
2128 WhereTerm *pTerm;
2129 int i, j;
2130 int nOrderBy;
2131 double rCost;
2132
2133 /* Make sure wsFlags is initialized to some sane value. Otherwise, if the
2134 ** malloc in allocateIndexInfo() fails and this function returns leaving
2135 ** wsFlags in an uninitialized state, the caller may behave unpredictably.
2136 */
2137 memset(pCost, 0, sizeof(*pCost));
2138 pCost->plan.wsFlags = WHERE_VIRTUALTABLE;
2139
2140 /* If the sqlite3_index_info structure has not been previously
2141 ** allocated and initialized, then allocate and initialize it now.
2142 */
2143 pIdxInfo = *ppIdxInfo;
2144 if( pIdxInfo==0 ){
2145 *ppIdxInfo = pIdxInfo = allocateIndexInfo(pParse, pWC, pSrc, pOrderBy);
2146 }
2147 if( pIdxInfo==0 ){
2148 return;
2149 }
2150
2151 /* At this point, the sqlite3_index_info structure that pIdxInfo points
2152 ** to will have been initialized, either during the current invocation or
2153 ** during some prior invocation. Now we just have to customize the
2154 ** details of pIdxInfo for the current invocation and pass it to
2155 ** xBestIndex.
2156 */
2157
2158 /* The module name must be defined. Also, by this point there must
2159 ** be a pointer to an sqlite3_vtab structure. Otherwise
2160 ** sqlite3ViewGetColumnNames() would have picked up the error.
2161 */
2162 assert( pTab->azModuleArg && pTab->azModuleArg[0] );
2163 assert( sqlite3GetVTable(pParse->db, pTab) );
2164
2165 /* Set the aConstraint[].usable fields and initialize all
2166 ** output variables to zero.
2167 **
2168 ** aConstraint[].usable is true for constraints where the right-hand
2169 ** side contains only references to tables to the left of the current
2170 ** table. In other words, if the constraint is of the form:
2171 **
2172 ** column = expr
2173 **
2174 ** and we are evaluating a join, then the constraint on column is
2175 ** only valid if all tables referenced in expr occur to the left
2176 ** of the table containing column.
2177 **
2178 ** The aConstraints[] array contains entries for all constraints
2179 ** on the current table. That way we only have to compute it once
2180 ** even though we might try to pick the best index multiple times.
2181 ** For each attempt at picking an index, the order of tables in the
2182 ** join might be different so we have to recompute the usable flag
2183 ** each time.
2184 */
2185 pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint;
2186 pUsage = pIdxInfo->aConstraintUsage;
2187 for(i=0; i<pIdxInfo->nConstraint; i++, pIdxCons++){
2188 j = pIdxCons->iTermOffset;
2189 pTerm = &pWC->a[j];
2190 pIdxCons->usable = (pTerm->prereqRight¬Ready) ? 0 : 1;
2191 }
2192 memset(pUsage, 0, sizeof(pUsage[0])*pIdxInfo->nConstraint);
2193 if( pIdxInfo->needToFreeIdxStr ){
2194 sqlite3_free(pIdxInfo->idxStr);
2195 }
2196 pIdxInfo->idxStr = 0;
2197 pIdxInfo->idxNum = 0;
2198 pIdxInfo->needToFreeIdxStr = 0;
2199 pIdxInfo->orderByConsumed = 0;
2200 /* ((double)2) In case of SQLITE_OMIT_FLOATING_POINT... */
2201 pIdxInfo->estimatedCost = SQLITE_BIG_DBL / ((double)2);
2202 nOrderBy = pIdxInfo->nOrderBy;
2203 if( !pOrderBy ){
2204 pIdxInfo->nOrderBy = 0;
2205 }
2206
2207 if( vtabBestIndex(pParse, pTab, pIdxInfo) ){
2208 return;
2209 }
2210
2211 pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint;
2212 for(i=0; i<pIdxInfo->nConstraint; i++){
2213 if( pUsage[i].argvIndex>0 ){
2214 pCost->used |= pWC->a[pIdxCons[i].iTermOffset].prereqRight;
2215 }
2216 }
2217
2218 /* If there is an ORDER BY clause, and the selected virtual table index
2219 ** does not satisfy it, increase the cost of the scan accordingly. This
2220 ** matches the processing for non-virtual tables in bestBtreeIndex().
2221 */
2222 rCost = pIdxInfo->estimatedCost;
2223 if( pOrderBy && pIdxInfo->orderByConsumed==0 ){
2224 rCost += estLog(rCost)*rCost;
2225 }
2226
2227 /* The cost is not allowed to be larger than SQLITE_BIG_DBL (the
2228 ** inital value of lowestCost in this loop. If it is, then the
2229 ** (cost<lowestCost) test below will never be true.
2230 **
2231 ** Use "(double)2" instead of "2.0" in case OMIT_FLOATING_POINT
2232 ** is defined.
2233 */
2234 if( (SQLITE_BIG_DBL/((double)2))<rCost ){
2235 pCost->rCost = (SQLITE_BIG_DBL/((double)2));
2236 }else{
2237 pCost->rCost = rCost;
2238 }
2239 pCost->plan.u.pVtabIdx = pIdxInfo;
2240 if( pIdxInfo->orderByConsumed ){
2241 pCost->plan.wsFlags |= WHERE_ORDERBY;
2242 }
2243 pCost->plan.nEq = 0;
2244 pIdxInfo->nOrderBy = nOrderBy;
2245
2246 /* Try to find a more efficient access pattern by using multiple indexes
2247 ** to optimize an OR expression within the WHERE clause.
2248 */
2249 bestOrClauseIndex(pParse, pWC, pSrc, notReady, notValid, pOrderBy, pCost);
2250 }
2251 #endif /* SQLITE_OMIT_VIRTUALTABLE */
2252
2253 /*
2254 ** Argument pIdx is a pointer to an index structure that has an array of
2255 ** SQLITE_INDEX_SAMPLES evenly spaced samples of the first indexed column
2256 ** stored in Index.aSample. These samples divide the domain of values stored
2257 ** the index into (SQLITE_INDEX_SAMPLES+1) regions.
2258 ** Region 0 contains all values less than the first sample value. Region
2259 ** 1 contains values between the first and second samples. Region 2 contains
2260 ** values between samples 2 and 3. And so on. Region SQLITE_INDEX_SAMPLES
2261 ** contains values larger than the last sample.
2262 **
2263 ** If the index contains many duplicates of a single value, then it is
2264 ** possible that two or more adjacent samples can hold the same value.
2265 ** When that is the case, the smallest possible region code is returned
2266 ** when roundUp is false and the largest possible region code is returned
2267 ** when roundUp is true.
2268 **
2269 ** If successful, this function determines which of the regions value
2270 ** pVal lies in, sets *piRegion to the region index (a value between 0
2271 ** and SQLITE_INDEX_SAMPLES+1, inclusive) and returns SQLITE_OK.
2272 ** Or, if an OOM occurs while converting text values between encodings,
2273 ** SQLITE_NOMEM is returned and *piRegion is undefined.
2274 */
2275 #ifdef SQLITE_ENABLE_STAT2
whereRangeRegion(Parse * pParse,Index * pIdx,sqlite3_value * pVal,int roundUp,int * piRegion)2276 static int whereRangeRegion(
2277 Parse *pParse, /* Database connection */
2278 Index *pIdx, /* Index to consider domain of */
2279 sqlite3_value *pVal, /* Value to consider */
2280 int roundUp, /* Return largest valid region if true */
2281 int *piRegion /* OUT: Region of domain in which value lies */
2282 ){
2283 assert( roundUp==0 || roundUp==1 );
2284 if( ALWAYS(pVal) ){
2285 IndexSample *aSample = pIdx->aSample;
2286 int i = 0;
2287 int eType = sqlite3_value_type(pVal);
2288
2289 if( eType==SQLITE_INTEGER || eType==SQLITE_FLOAT ){
2290 double r = sqlite3_value_double(pVal);
2291 for(i=0; i<SQLITE_INDEX_SAMPLES; i++){
2292 if( aSample[i].eType==SQLITE_NULL ) continue;
2293 if( aSample[i].eType>=SQLITE_TEXT ) break;
2294 if( roundUp ){
2295 if( aSample[i].u.r>r ) break;
2296 }else{
2297 if( aSample[i].u.r>=r ) break;
2298 }
2299 }
2300 }else if( eType==SQLITE_NULL ){
2301 i = 0;
2302 if( roundUp ){
2303 while( i<SQLITE_INDEX_SAMPLES && aSample[i].eType==SQLITE_NULL ) i++;
2304 }
2305 }else{
2306 sqlite3 *db = pParse->db;
2307 CollSeq *pColl;
2308 const u8 *z;
2309 int n;
2310
2311 /* pVal comes from sqlite3ValueFromExpr() so the type cannot be NULL */
2312 assert( eType==SQLITE_TEXT || eType==SQLITE_BLOB );
2313
2314 if( eType==SQLITE_BLOB ){
2315 z = (const u8 *)sqlite3_value_blob(pVal);
2316 pColl = db->pDfltColl;
2317 assert( pColl->enc==SQLITE_UTF8 );
2318 }else{
2319 pColl = sqlite3GetCollSeq(db, SQLITE_UTF8, 0, *pIdx->azColl);
2320 if( pColl==0 ){
2321 sqlite3ErrorMsg(pParse, "no such collation sequence: %s",
2322 *pIdx->azColl);
2323 return SQLITE_ERROR;
2324 }
2325 z = (const u8 *)sqlite3ValueText(pVal, pColl->enc);
2326 if( !z ){
2327 return SQLITE_NOMEM;
2328 }
2329 assert( z && pColl && pColl->xCmp );
2330 }
2331 n = sqlite3ValueBytes(pVal, pColl->enc);
2332
2333 for(i=0; i<SQLITE_INDEX_SAMPLES; i++){
2334 int c;
2335 int eSampletype = aSample[i].eType;
2336 if( eSampletype==SQLITE_NULL || eSampletype<eType ) continue;
2337 if( (eSampletype!=eType) ) break;
2338 #ifndef SQLITE_OMIT_UTF16
2339 if( pColl->enc!=SQLITE_UTF8 ){
2340 int nSample;
2341 char *zSample = sqlite3Utf8to16(
2342 db, pColl->enc, aSample[i].u.z, aSample[i].nByte, &nSample
2343 );
2344 if( !zSample ){
2345 assert( db->mallocFailed );
2346 return SQLITE_NOMEM;
2347 }
2348 c = pColl->xCmp(pColl->pUser, nSample, zSample, n, z);
2349 sqlite3DbFree(db, zSample);
2350 }else
2351 #endif
2352 {
2353 c = pColl->xCmp(pColl->pUser, aSample[i].nByte, aSample[i].u.z, n, z);
2354 }
2355 if( c-roundUp>=0 ) break;
2356 }
2357 }
2358
2359 assert( i>=0 && i<=SQLITE_INDEX_SAMPLES );
2360 *piRegion = i;
2361 }
2362 return SQLITE_OK;
2363 }
2364 #endif /* #ifdef SQLITE_ENABLE_STAT2 */
2365
2366 /*
2367 ** If expression pExpr represents a literal value, set *pp to point to
2368 ** an sqlite3_value structure containing the same value, with affinity
2369 ** aff applied to it, before returning. It is the responsibility of the
2370 ** caller to eventually release this structure by passing it to
2371 ** sqlite3ValueFree().
2372 **
2373 ** If the current parse is a recompile (sqlite3Reprepare()) and pExpr
2374 ** is an SQL variable that currently has a non-NULL value bound to it,
2375 ** create an sqlite3_value structure containing this value, again with
2376 ** affinity aff applied to it, instead.
2377 **
2378 ** If neither of the above apply, set *pp to NULL.
2379 **
2380 ** If an error occurs, return an error code. Otherwise, SQLITE_OK.
2381 */
2382 #ifdef SQLITE_ENABLE_STAT2
valueFromExpr(Parse * pParse,Expr * pExpr,u8 aff,sqlite3_value ** pp)2383 static int valueFromExpr(
2384 Parse *pParse,
2385 Expr *pExpr,
2386 u8 aff,
2387 sqlite3_value **pp
2388 ){
2389 if( pExpr->op==TK_VARIABLE
2390 || (pExpr->op==TK_REGISTER && pExpr->op2==TK_VARIABLE)
2391 ){
2392 int iVar = pExpr->iColumn;
2393 sqlite3VdbeSetVarmask(pParse->pVdbe, iVar); /* IMP: R-23257-02778 */
2394 *pp = sqlite3VdbeGetValue(pParse->pReprepare, iVar, aff);
2395 return SQLITE_OK;
2396 }
2397 return sqlite3ValueFromExpr(pParse->db, pExpr, SQLITE_UTF8, aff, pp);
2398 }
2399 #endif
2400
2401 /*
2402 ** This function is used to estimate the number of rows that will be visited
2403 ** by scanning an index for a range of values. The range may have an upper
2404 ** bound, a lower bound, or both. The WHERE clause terms that set the upper
2405 ** and lower bounds are represented by pLower and pUpper respectively. For
2406 ** example, assuming that index p is on t1(a):
2407 **
2408 ** ... FROM t1 WHERE a > ? AND a < ? ...
2409 ** |_____| |_____|
2410 ** | |
2411 ** pLower pUpper
2412 **
2413 ** If either of the upper or lower bound is not present, then NULL is passed in
2414 ** place of the corresponding WhereTerm.
2415 **
2416 ** The nEq parameter is passed the index of the index column subject to the
2417 ** range constraint. Or, equivalently, the number of equality constraints
2418 ** optimized by the proposed index scan. For example, assuming index p is
2419 ** on t1(a, b), and the SQL query is:
2420 **
2421 ** ... FROM t1 WHERE a = ? AND b > ? AND b < ? ...
2422 **
2423 ** then nEq should be passed the value 1 (as the range restricted column,
2424 ** b, is the second left-most column of the index). Or, if the query is:
2425 **
2426 ** ... FROM t1 WHERE a > ? AND a < ? ...
2427 **
2428 ** then nEq should be passed 0.
2429 **
2430 ** The returned value is an integer between 1 and 100, inclusive. A return
2431 ** value of 1 indicates that the proposed range scan is expected to visit
2432 ** approximately 1/100th (1%) of the rows selected by the nEq equality
2433 ** constraints (if any). A return value of 100 indicates that it is expected
2434 ** that the range scan will visit every row (100%) selected by the equality
2435 ** constraints.
2436 **
2437 ** In the absence of sqlite_stat2 ANALYZE data, each range inequality
2438 ** reduces the search space by 3/4ths. Hence a single constraint (x>?)
2439 ** results in a return of 25 and a range constraint (x>? AND x<?) results
2440 ** in a return of 6.
2441 */
whereRangeScanEst(Parse * pParse,Index * p,int nEq,WhereTerm * pLower,WhereTerm * pUpper,int * piEst)2442 static int whereRangeScanEst(
2443 Parse *pParse, /* Parsing & code generating context */
2444 Index *p, /* The index containing the range-compared column; "x" */
2445 int nEq, /* index into p->aCol[] of the range-compared column */
2446 WhereTerm *pLower, /* Lower bound on the range. ex: "x>123" Might be NULL */
2447 WhereTerm *pUpper, /* Upper bound on the range. ex: "x<455" Might be NULL */
2448 int *piEst /* OUT: Return value */
2449 ){
2450 int rc = SQLITE_OK;
2451
2452 #ifdef SQLITE_ENABLE_STAT2
2453
2454 if( nEq==0 && p->aSample ){
2455 sqlite3_value *pLowerVal = 0;
2456 sqlite3_value *pUpperVal = 0;
2457 int iEst;
2458 int iLower = 0;
2459 int iUpper = SQLITE_INDEX_SAMPLES;
2460 int roundUpUpper = 0;
2461 int roundUpLower = 0;
2462 u8 aff = p->pTable->aCol[p->aiColumn[0]].affinity;
2463
2464 if( pLower ){
2465 Expr *pExpr = pLower->pExpr->pRight;
2466 rc = valueFromExpr(pParse, pExpr, aff, &pLowerVal);
2467 assert( pLower->eOperator==WO_GT || pLower->eOperator==WO_GE );
2468 roundUpLower = (pLower->eOperator==WO_GT) ?1:0;
2469 }
2470 if( rc==SQLITE_OK && pUpper ){
2471 Expr *pExpr = pUpper->pExpr->pRight;
2472 rc = valueFromExpr(pParse, pExpr, aff, &pUpperVal);
2473 assert( pUpper->eOperator==WO_LT || pUpper->eOperator==WO_LE );
2474 roundUpUpper = (pUpper->eOperator==WO_LE) ?1:0;
2475 }
2476
2477 if( rc!=SQLITE_OK || (pLowerVal==0 && pUpperVal==0) ){
2478 sqlite3ValueFree(pLowerVal);
2479 sqlite3ValueFree(pUpperVal);
2480 goto range_est_fallback;
2481 }else if( pLowerVal==0 ){
2482 rc = whereRangeRegion(pParse, p, pUpperVal, roundUpUpper, &iUpper);
2483 if( pLower ) iLower = iUpper/2;
2484 }else if( pUpperVal==0 ){
2485 rc = whereRangeRegion(pParse, p, pLowerVal, roundUpLower, &iLower);
2486 if( pUpper ) iUpper = (iLower + SQLITE_INDEX_SAMPLES + 1)/2;
2487 }else{
2488 rc = whereRangeRegion(pParse, p, pUpperVal, roundUpUpper, &iUpper);
2489 if( rc==SQLITE_OK ){
2490 rc = whereRangeRegion(pParse, p, pLowerVal, roundUpLower, &iLower);
2491 }
2492 }
2493 WHERETRACE(("range scan regions: %d..%d\n", iLower, iUpper));
2494
2495 iEst = iUpper - iLower;
2496 testcase( iEst==SQLITE_INDEX_SAMPLES );
2497 assert( iEst<=SQLITE_INDEX_SAMPLES );
2498 if( iEst<1 ){
2499 *piEst = 50/SQLITE_INDEX_SAMPLES;
2500 }else{
2501 *piEst = (iEst*100)/SQLITE_INDEX_SAMPLES;
2502 }
2503 sqlite3ValueFree(pLowerVal);
2504 sqlite3ValueFree(pUpperVal);
2505 return rc;
2506 }
2507 range_est_fallback:
2508 #else
2509 UNUSED_PARAMETER(pParse);
2510 UNUSED_PARAMETER(p);
2511 UNUSED_PARAMETER(nEq);
2512 #endif
2513 assert( pLower || pUpper );
2514 *piEst = 100;
2515 if( pLower && (pLower->wtFlags & TERM_VNULL)==0 ) *piEst /= 4;
2516 if( pUpper ) *piEst /= 4;
2517 return rc;
2518 }
2519
2520 #ifdef SQLITE_ENABLE_STAT2
2521 /*
2522 ** Estimate the number of rows that will be returned based on
2523 ** an equality constraint x=VALUE and where that VALUE occurs in
2524 ** the histogram data. This only works when x is the left-most
2525 ** column of an index and sqlite_stat2 histogram data is available
2526 ** for that index. When pExpr==NULL that means the constraint is
2527 ** "x IS NULL" instead of "x=VALUE".
2528 **
2529 ** Write the estimated row count into *pnRow and return SQLITE_OK.
2530 ** If unable to make an estimate, leave *pnRow unchanged and return
2531 ** non-zero.
2532 **
2533 ** This routine can fail if it is unable to load a collating sequence
2534 ** required for string comparison, or if unable to allocate memory
2535 ** for a UTF conversion required for comparison. The error is stored
2536 ** in the pParse structure.
2537 */
whereEqualScanEst(Parse * pParse,Index * p,Expr * pExpr,double * pnRow)2538 static int whereEqualScanEst(
2539 Parse *pParse, /* Parsing & code generating context */
2540 Index *p, /* The index whose left-most column is pTerm */
2541 Expr *pExpr, /* Expression for VALUE in the x=VALUE constraint */
2542 double *pnRow /* Write the revised row estimate here */
2543 ){
2544 sqlite3_value *pRhs = 0; /* VALUE on right-hand side of pTerm */
2545 int iLower, iUpper; /* Range of histogram regions containing pRhs */
2546 u8 aff; /* Column affinity */
2547 int rc; /* Subfunction return code */
2548 double nRowEst; /* New estimate of the number of rows */
2549
2550 assert( p->aSample!=0 );
2551 aff = p->pTable->aCol[p->aiColumn[0]].affinity;
2552 if( pExpr ){
2553 rc = valueFromExpr(pParse, pExpr, aff, &pRhs);
2554 if( rc ) goto whereEqualScanEst_cancel;
2555 }else{
2556 pRhs = sqlite3ValueNew(pParse->db);
2557 }
2558 if( pRhs==0 ) return SQLITE_NOTFOUND;
2559 rc = whereRangeRegion(pParse, p, pRhs, 0, &iLower);
2560 if( rc ) goto whereEqualScanEst_cancel;
2561 rc = whereRangeRegion(pParse, p, pRhs, 1, &iUpper);
2562 if( rc ) goto whereEqualScanEst_cancel;
2563 WHERETRACE(("equality scan regions: %d..%d\n", iLower, iUpper));
2564 if( iLower>=iUpper ){
2565 nRowEst = p->aiRowEst[0]/(SQLITE_INDEX_SAMPLES*2);
2566 if( nRowEst<*pnRow ) *pnRow = nRowEst;
2567 }else{
2568 nRowEst = (iUpper-iLower)*p->aiRowEst[0]/SQLITE_INDEX_SAMPLES;
2569 *pnRow = nRowEst;
2570 }
2571
2572 whereEqualScanEst_cancel:
2573 sqlite3ValueFree(pRhs);
2574 return rc;
2575 }
2576 #endif /* defined(SQLITE_ENABLE_STAT2) */
2577
2578 #ifdef SQLITE_ENABLE_STAT2
2579 /*
2580 ** Estimate the number of rows that will be returned based on
2581 ** an IN constraint where the right-hand side of the IN operator
2582 ** is a list of values. Example:
2583 **
2584 ** WHERE x IN (1,2,3,4)
2585 **
2586 ** Write the estimated row count into *pnRow and return SQLITE_OK.
2587 ** If unable to make an estimate, leave *pnRow unchanged and return
2588 ** non-zero.
2589 **
2590 ** This routine can fail if it is unable to load a collating sequence
2591 ** required for string comparison, or if unable to allocate memory
2592 ** for a UTF conversion required for comparison. The error is stored
2593 ** in the pParse structure.
2594 */
whereInScanEst(Parse * pParse,Index * p,ExprList * pList,double * pnRow)2595 static int whereInScanEst(
2596 Parse *pParse, /* Parsing & code generating context */
2597 Index *p, /* The index whose left-most column is pTerm */
2598 ExprList *pList, /* The value list on the RHS of "x IN (v1,v2,v3,...)" */
2599 double *pnRow /* Write the revised row estimate here */
2600 ){
2601 sqlite3_value *pVal = 0; /* One value from list */
2602 int iLower, iUpper; /* Range of histogram regions containing pRhs */
2603 u8 aff; /* Column affinity */
2604 int rc = SQLITE_OK; /* Subfunction return code */
2605 double nRowEst; /* New estimate of the number of rows */
2606 int nSpan = 0; /* Number of histogram regions spanned */
2607 int nSingle = 0; /* Histogram regions hit by a single value */
2608 int nNotFound = 0; /* Count of values that are not constants */
2609 int i; /* Loop counter */
2610 u8 aSpan[SQLITE_INDEX_SAMPLES+1]; /* Histogram regions that are spanned */
2611 u8 aSingle[SQLITE_INDEX_SAMPLES+1]; /* Histogram regions hit once */
2612
2613 assert( p->aSample!=0 );
2614 aff = p->pTable->aCol[p->aiColumn[0]].affinity;
2615 memset(aSpan, 0, sizeof(aSpan));
2616 memset(aSingle, 0, sizeof(aSingle));
2617 for(i=0; i<pList->nExpr; i++){
2618 sqlite3ValueFree(pVal);
2619 rc = valueFromExpr(pParse, pList->a[i].pExpr, aff, &pVal);
2620 if( rc ) break;
2621 if( pVal==0 || sqlite3_value_type(pVal)==SQLITE_NULL ){
2622 nNotFound++;
2623 continue;
2624 }
2625 rc = whereRangeRegion(pParse, p, pVal, 0, &iLower);
2626 if( rc ) break;
2627 rc = whereRangeRegion(pParse, p, pVal, 1, &iUpper);
2628 if( rc ) break;
2629 if( iLower>=iUpper ){
2630 aSingle[iLower] = 1;
2631 }else{
2632 assert( iLower>=0 && iUpper<=SQLITE_INDEX_SAMPLES );
2633 while( iLower<iUpper ) aSpan[iLower++] = 1;
2634 }
2635 }
2636 if( rc==SQLITE_OK ){
2637 for(i=nSpan=0; i<=SQLITE_INDEX_SAMPLES; i++){
2638 if( aSpan[i] ){
2639 nSpan++;
2640 }else if( aSingle[i] ){
2641 nSingle++;
2642 }
2643 }
2644 nRowEst = (nSpan*2+nSingle)*p->aiRowEst[0]/(2*SQLITE_INDEX_SAMPLES)
2645 + nNotFound*p->aiRowEst[1];
2646 if( nRowEst > p->aiRowEst[0] ) nRowEst = p->aiRowEst[0];
2647 *pnRow = nRowEst;
2648 WHERETRACE(("IN row estimate: nSpan=%d, nSingle=%d, nNotFound=%d, est=%g\n",
2649 nSpan, nSingle, nNotFound, nRowEst));
2650 }
2651 sqlite3ValueFree(pVal);
2652 return rc;
2653 }
2654 #endif /* defined(SQLITE_ENABLE_STAT2) */
2655
2656
2657 /*
2658 ** Find the best query plan for accessing a particular table. Write the
2659 ** best query plan and its cost into the WhereCost object supplied as the
2660 ** last parameter.
2661 **
2662 ** The lowest cost plan wins. The cost is an estimate of the amount of
2663 ** CPU and disk I/O needed to process the requested result.
2664 ** Factors that influence cost include:
2665 **
2666 ** * The estimated number of rows that will be retrieved. (The
2667 ** fewer the better.)
2668 **
2669 ** * Whether or not sorting must occur.
2670 **
2671 ** * Whether or not there must be separate lookups in the
2672 ** index and in the main table.
2673 **
2674 ** If there was an INDEXED BY clause (pSrc->pIndex) attached to the table in
2675 ** the SQL statement, then this function only considers plans using the
2676 ** named index. If no such plan is found, then the returned cost is
2677 ** SQLITE_BIG_DBL. If a plan is found that uses the named index,
2678 ** then the cost is calculated in the usual way.
2679 **
2680 ** If a NOT INDEXED clause (pSrc->notIndexed!=0) was attached to the table
2681 ** in the SELECT statement, then no indexes are considered. However, the
2682 ** selected plan may still take advantage of the built-in rowid primary key
2683 ** index.
2684 */
bestBtreeIndex(Parse * pParse,WhereClause * pWC,struct SrcList_item * pSrc,Bitmask notReady,Bitmask notValid,ExprList * pOrderBy,WhereCost * pCost)2685 static void bestBtreeIndex(
2686 Parse *pParse, /* The parsing context */
2687 WhereClause *pWC, /* The WHERE clause */
2688 struct SrcList_item *pSrc, /* The FROM clause term to search */
2689 Bitmask notReady, /* Mask of cursors not available for indexing */
2690 Bitmask notValid, /* Cursors not available for any purpose */
2691 ExprList *pOrderBy, /* The ORDER BY clause */
2692 WhereCost *pCost /* Lowest cost query plan */
2693 ){
2694 int iCur = pSrc->iCursor; /* The cursor of the table to be accessed */
2695 Index *pProbe; /* An index we are evaluating */
2696 Index *pIdx; /* Copy of pProbe, or zero for IPK index */
2697 int eqTermMask; /* Current mask of valid equality operators */
2698 int idxEqTermMask; /* Index mask of valid equality operators */
2699 Index sPk; /* A fake index object for the primary key */
2700 unsigned int aiRowEstPk[2]; /* The aiRowEst[] value for the sPk index */
2701 int aiColumnPk = -1; /* The aColumn[] value for the sPk index */
2702 int wsFlagMask; /* Allowed flags in pCost->plan.wsFlag */
2703
2704 /* Initialize the cost to a worst-case value */
2705 memset(pCost, 0, sizeof(*pCost));
2706 pCost->rCost = SQLITE_BIG_DBL;
2707
2708 /* If the pSrc table is the right table of a LEFT JOIN then we may not
2709 ** use an index to satisfy IS NULL constraints on that table. This is
2710 ** because columns might end up being NULL if the table does not match -
2711 ** a circumstance which the index cannot help us discover. Ticket #2177.
2712 */
2713 if( pSrc->jointype & JT_LEFT ){
2714 idxEqTermMask = WO_EQ|WO_IN;
2715 }else{
2716 idxEqTermMask = WO_EQ|WO_IN|WO_ISNULL;
2717 }
2718
2719 if( pSrc->pIndex ){
2720 /* An INDEXED BY clause specifies a particular index to use */
2721 pIdx = pProbe = pSrc->pIndex;
2722 wsFlagMask = ~(WHERE_ROWID_EQ|WHERE_ROWID_RANGE);
2723 eqTermMask = idxEqTermMask;
2724 }else{
2725 /* There is no INDEXED BY clause. Create a fake Index object in local
2726 ** variable sPk to represent the rowid primary key index. Make this
2727 ** fake index the first in a chain of Index objects with all of the real
2728 ** indices to follow */
2729 Index *pFirst; /* First of real indices on the table */
2730 memset(&sPk, 0, sizeof(Index));
2731 sPk.nColumn = 1;
2732 sPk.aiColumn = &aiColumnPk;
2733 sPk.aiRowEst = aiRowEstPk;
2734 sPk.onError = OE_Replace;
2735 sPk.pTable = pSrc->pTab;
2736 aiRowEstPk[0] = pSrc->pTab->nRowEst;
2737 aiRowEstPk[1] = 1;
2738 pFirst = pSrc->pTab->pIndex;
2739 if( pSrc->notIndexed==0 ){
2740 /* The real indices of the table are only considered if the
2741 ** NOT INDEXED qualifier is omitted from the FROM clause */
2742 sPk.pNext = pFirst;
2743 }
2744 pProbe = &sPk;
2745 wsFlagMask = ~(
2746 WHERE_COLUMN_IN|WHERE_COLUMN_EQ|WHERE_COLUMN_NULL|WHERE_COLUMN_RANGE
2747 );
2748 eqTermMask = WO_EQ|WO_IN;
2749 pIdx = 0;
2750 }
2751
2752 /* Loop over all indices looking for the best one to use
2753 */
2754 for(; pProbe; pIdx=pProbe=pProbe->pNext){
2755 const unsigned int * const aiRowEst = pProbe->aiRowEst;
2756 double cost; /* Cost of using pProbe */
2757 double nRow; /* Estimated number of rows in result set */
2758 double log10N; /* base-10 logarithm of nRow (inexact) */
2759 int rev; /* True to scan in reverse order */
2760 int wsFlags = 0;
2761 Bitmask used = 0;
2762
2763 /* The following variables are populated based on the properties of
2764 ** index being evaluated. They are then used to determine the expected
2765 ** cost and number of rows returned.
2766 **
2767 ** nEq:
2768 ** Number of equality terms that can be implemented using the index.
2769 ** In other words, the number of initial fields in the index that
2770 ** are used in == or IN or NOT NULL constraints of the WHERE clause.
2771 **
2772 ** nInMul:
2773 ** The "in-multiplier". This is an estimate of how many seek operations
2774 ** SQLite must perform on the index in question. For example, if the
2775 ** WHERE clause is:
2776 **
2777 ** WHERE a IN (1, 2, 3) AND b IN (4, 5, 6)
2778 **
2779 ** SQLite must perform 9 lookups on an index on (a, b), so nInMul is
2780 ** set to 9. Given the same schema and either of the following WHERE
2781 ** clauses:
2782 **
2783 ** WHERE a = 1
2784 ** WHERE a >= 2
2785 **
2786 ** nInMul is set to 1.
2787 **
2788 ** If there exists a WHERE term of the form "x IN (SELECT ...)", then
2789 ** the sub-select is assumed to return 25 rows for the purposes of
2790 ** determining nInMul.
2791 **
2792 ** bInEst:
2793 ** Set to true if there was at least one "x IN (SELECT ...)" term used
2794 ** in determining the value of nInMul. Note that the RHS of the
2795 ** IN operator must be a SELECT, not a value list, for this variable
2796 ** to be true.
2797 **
2798 ** estBound:
2799 ** An estimate on the amount of the table that must be searched. A
2800 ** value of 100 means the entire table is searched. Range constraints
2801 ** might reduce this to a value less than 100 to indicate that only
2802 ** a fraction of the table needs searching. In the absence of
2803 ** sqlite_stat2 ANALYZE data, a single inequality reduces the search
2804 ** space to 1/4rd its original size. So an x>? constraint reduces
2805 ** estBound to 25. Two constraints (x>? AND x<?) reduce estBound to 6.
2806 **
2807 ** bSort:
2808 ** Boolean. True if there is an ORDER BY clause that will require an
2809 ** external sort (i.e. scanning the index being evaluated will not
2810 ** correctly order records).
2811 **
2812 ** bLookup:
2813 ** Boolean. True if a table lookup is required for each index entry
2814 ** visited. In other words, true if this is not a covering index.
2815 ** This is always false for the rowid primary key index of a table.
2816 ** For other indexes, it is true unless all the columns of the table
2817 ** used by the SELECT statement are present in the index (such an
2818 ** index is sometimes described as a covering index).
2819 ** For example, given the index on (a, b), the second of the following
2820 ** two queries requires table b-tree lookups in order to find the value
2821 ** of column c, but the first does not because columns a and b are
2822 ** both available in the index.
2823 **
2824 ** SELECT a, b FROM tbl WHERE a = 1;
2825 ** SELECT a, b, c FROM tbl WHERE a = 1;
2826 */
2827 int nEq; /* Number of == or IN terms matching index */
2828 int bInEst = 0; /* True if "x IN (SELECT...)" seen */
2829 int nInMul = 1; /* Number of distinct equalities to lookup */
2830 int estBound = 100; /* Estimated reduction in search space */
2831 int nBound = 0; /* Number of range constraints seen */
2832 int bSort = 0; /* True if external sort required */
2833 int bLookup = 0; /* True if not a covering index */
2834 WhereTerm *pTerm; /* A single term of the WHERE clause */
2835 #ifdef SQLITE_ENABLE_STAT2
2836 WhereTerm *pFirstTerm = 0; /* First term matching the index */
2837 #endif
2838
2839 /* Determine the values of nEq and nInMul */
2840 for(nEq=0; nEq<pProbe->nColumn; nEq++){
2841 int j = pProbe->aiColumn[nEq];
2842 pTerm = findTerm(pWC, iCur, j, notReady, eqTermMask, pIdx);
2843 if( pTerm==0 ) break;
2844 wsFlags |= (WHERE_COLUMN_EQ|WHERE_ROWID_EQ);
2845 if( pTerm->eOperator & WO_IN ){
2846 Expr *pExpr = pTerm->pExpr;
2847 wsFlags |= WHERE_COLUMN_IN;
2848 if( ExprHasProperty(pExpr, EP_xIsSelect) ){
2849 /* "x IN (SELECT ...)": Assume the SELECT returns 25 rows */
2850 nInMul *= 25;
2851 bInEst = 1;
2852 }else if( ALWAYS(pExpr->x.pList && pExpr->x.pList->nExpr) ){
2853 /* "x IN (value, value, ...)" */
2854 nInMul *= pExpr->x.pList->nExpr;
2855 }
2856 }else if( pTerm->eOperator & WO_ISNULL ){
2857 wsFlags |= WHERE_COLUMN_NULL;
2858 }
2859 #ifdef SQLITE_ENABLE_STAT2
2860 if( nEq==0 && pProbe->aSample ) pFirstTerm = pTerm;
2861 #endif
2862 used |= pTerm->prereqRight;
2863 }
2864
2865 /* Determine the value of estBound. */
2866 if( nEq<pProbe->nColumn && pProbe->bUnordered==0 ){
2867 int j = pProbe->aiColumn[nEq];
2868 if( findTerm(pWC, iCur, j, notReady, WO_LT|WO_LE|WO_GT|WO_GE, pIdx) ){
2869 WhereTerm *pTop = findTerm(pWC, iCur, j, notReady, WO_LT|WO_LE, pIdx);
2870 WhereTerm *pBtm = findTerm(pWC, iCur, j, notReady, WO_GT|WO_GE, pIdx);
2871 whereRangeScanEst(pParse, pProbe, nEq, pBtm, pTop, &estBound);
2872 if( pTop ){
2873 nBound = 1;
2874 wsFlags |= WHERE_TOP_LIMIT;
2875 used |= pTop->prereqRight;
2876 }
2877 if( pBtm ){
2878 nBound++;
2879 wsFlags |= WHERE_BTM_LIMIT;
2880 used |= pBtm->prereqRight;
2881 }
2882 wsFlags |= (WHERE_COLUMN_RANGE|WHERE_ROWID_RANGE);
2883 }
2884 }else if( pProbe->onError!=OE_None ){
2885 testcase( wsFlags & WHERE_COLUMN_IN );
2886 testcase( wsFlags & WHERE_COLUMN_NULL );
2887 if( (wsFlags & (WHERE_COLUMN_IN|WHERE_COLUMN_NULL))==0 ){
2888 wsFlags |= WHERE_UNIQUE;
2889 }
2890 }
2891
2892 /* If there is an ORDER BY clause and the index being considered will
2893 ** naturally scan rows in the required order, set the appropriate flags
2894 ** in wsFlags. Otherwise, if there is an ORDER BY clause but the index
2895 ** will scan rows in a different order, set the bSort variable. */
2896 if( pOrderBy ){
2897 if( (wsFlags & WHERE_COLUMN_IN)==0
2898 && pProbe->bUnordered==0
2899 && isSortingIndex(pParse, pWC->pMaskSet, pProbe, iCur, pOrderBy,
2900 nEq, wsFlags, &rev)
2901 ){
2902 wsFlags |= WHERE_ROWID_RANGE|WHERE_COLUMN_RANGE|WHERE_ORDERBY;
2903 wsFlags |= (rev ? WHERE_REVERSE : 0);
2904 }else{
2905 bSort = 1;
2906 }
2907 }
2908
2909 /* If currently calculating the cost of using an index (not the IPK
2910 ** index), determine if all required column data may be obtained without
2911 ** using the main table (i.e. if the index is a covering
2912 ** index for this query). If it is, set the WHERE_IDX_ONLY flag in
2913 ** wsFlags. Otherwise, set the bLookup variable to true. */
2914 if( pIdx && wsFlags ){
2915 Bitmask m = pSrc->colUsed;
2916 int j;
2917 for(j=0; j<pIdx->nColumn; j++){
2918 int x = pIdx->aiColumn[j];
2919 if( x<BMS-1 ){
2920 m &= ~(((Bitmask)1)<<x);
2921 }
2922 }
2923 if( m==0 ){
2924 wsFlags |= WHERE_IDX_ONLY;
2925 }else{
2926 bLookup = 1;
2927 }
2928 }
2929
2930 /*
2931 ** Estimate the number of rows of output. For an "x IN (SELECT...)"
2932 ** constraint, do not let the estimate exceed half the rows in the table.
2933 */
2934 nRow = (double)(aiRowEst[nEq] * nInMul);
2935 if( bInEst && nRow*2>aiRowEst[0] ){
2936 nRow = aiRowEst[0]/2;
2937 nInMul = (int)(nRow / aiRowEst[nEq]);
2938 }
2939
2940 #ifdef SQLITE_ENABLE_STAT2
2941 /* If the constraint is of the form x=VALUE and histogram
2942 ** data is available for column x, then it might be possible
2943 ** to get a better estimate on the number of rows based on
2944 ** VALUE and how common that value is according to the histogram.
2945 */
2946 if( nRow>(double)1 && nEq==1 && pFirstTerm!=0 ){
2947 if( pFirstTerm->eOperator & (WO_EQ|WO_ISNULL) ){
2948 testcase( pFirstTerm->eOperator==WO_EQ );
2949 testcase( pFirstTerm->eOperator==WO_ISNULL );
2950 whereEqualScanEst(pParse, pProbe, pFirstTerm->pExpr->pRight, &nRow);
2951 }else if( pFirstTerm->eOperator==WO_IN && bInEst==0 ){
2952 whereInScanEst(pParse, pProbe, pFirstTerm->pExpr->x.pList, &nRow);
2953 }
2954 }
2955 #endif /* SQLITE_ENABLE_STAT2 */
2956
2957 /* Adjust the number of output rows and downward to reflect rows
2958 ** that are excluded by range constraints.
2959 */
2960 nRow = (nRow * (double)estBound) / (double)100;
2961 if( nRow<1 ) nRow = 1;
2962
2963 /* Experiments run on real SQLite databases show that the time needed
2964 ** to do a binary search to locate a row in a table or index is roughly
2965 ** log10(N) times the time to move from one row to the next row within
2966 ** a table or index. The actual times can vary, with the size of
2967 ** records being an important factor. Both moves and searches are
2968 ** slower with larger records, presumably because fewer records fit
2969 ** on one page and hence more pages have to be fetched.
2970 **
2971 ** The ANALYZE command and the sqlite_stat1 and sqlite_stat2 tables do
2972 ** not give us data on the relative sizes of table and index records.
2973 ** So this computation assumes table records are about twice as big
2974 ** as index records
2975 */
2976 if( (wsFlags & WHERE_NOT_FULLSCAN)==0 ){
2977 /* The cost of a full table scan is a number of move operations equal
2978 ** to the number of rows in the table.
2979 **
2980 ** We add an additional 4x penalty to full table scans. This causes
2981 ** the cost function to err on the side of choosing an index over
2982 ** choosing a full scan. This 4x full-scan penalty is an arguable
2983 ** decision and one which we expect to revisit in the future. But
2984 ** it seems to be working well enough at the moment.
2985 */
2986 cost = aiRowEst[0]*4;
2987 }else{
2988 log10N = estLog(aiRowEst[0]);
2989 cost = nRow;
2990 if( pIdx ){
2991 if( bLookup ){
2992 /* For an index lookup followed by a table lookup:
2993 ** nInMul index searches to find the start of each index range
2994 ** + nRow steps through the index
2995 ** + nRow table searches to lookup the table entry using the rowid
2996 */
2997 cost += (nInMul + nRow)*log10N;
2998 }else{
2999 /* For a covering index:
3000 ** nInMul index searches to find the initial entry
3001 ** + nRow steps through the index
3002 */
3003 cost += nInMul*log10N;
3004 }
3005 }else{
3006 /* For a rowid primary key lookup:
3007 ** nInMult table searches to find the initial entry for each range
3008 ** + nRow steps through the table
3009 */
3010 cost += nInMul*log10N;
3011 }
3012 }
3013
3014 /* Add in the estimated cost of sorting the result. Actual experimental
3015 ** measurements of sorting performance in SQLite show that sorting time
3016 ** adds C*N*log10(N) to the cost, where N is the number of rows to be
3017 ** sorted and C is a factor between 1.95 and 4.3. We will split the
3018 ** difference and select C of 3.0.
3019 */
3020 if( bSort ){
3021 cost += nRow*estLog(nRow)*3;
3022 }
3023
3024 /**** Cost of using this index has now been computed ****/
3025
3026 /* If there are additional constraints on this table that cannot
3027 ** be used with the current index, but which might lower the number
3028 ** of output rows, adjust the nRow value accordingly. This only
3029 ** matters if the current index is the least costly, so do not bother
3030 ** with this step if we already know this index will not be chosen.
3031 ** Also, never reduce the output row count below 2 using this step.
3032 **
3033 ** It is critical that the notValid mask be used here instead of
3034 ** the notReady mask. When computing an "optimal" index, the notReady
3035 ** mask will only have one bit set - the bit for the current table.
3036 ** The notValid mask, on the other hand, always has all bits set for
3037 ** tables that are not in outer loops. If notReady is used here instead
3038 ** of notValid, then a optimal index that depends on inner joins loops
3039 ** might be selected even when there exists an optimal index that has
3040 ** no such dependency.
3041 */
3042 if( nRow>2 && cost<=pCost->rCost ){
3043 int k; /* Loop counter */
3044 int nSkipEq = nEq; /* Number of == constraints to skip */
3045 int nSkipRange = nBound; /* Number of < constraints to skip */
3046 Bitmask thisTab; /* Bitmap for pSrc */
3047
3048 thisTab = getMask(pWC->pMaskSet, iCur);
3049 for(pTerm=pWC->a, k=pWC->nTerm; nRow>2 && k; k--, pTerm++){
3050 if( pTerm->wtFlags & TERM_VIRTUAL ) continue;
3051 if( (pTerm->prereqAll & notValid)!=thisTab ) continue;
3052 if( pTerm->eOperator & (WO_EQ|WO_IN|WO_ISNULL) ){
3053 if( nSkipEq ){
3054 /* Ignore the first nEq equality matches since the index
3055 ** has already accounted for these */
3056 nSkipEq--;
3057 }else{
3058 /* Assume each additional equality match reduces the result
3059 ** set size by a factor of 10 */
3060 nRow /= 10;
3061 }
3062 }else if( pTerm->eOperator & (WO_LT|WO_LE|WO_GT|WO_GE) ){
3063 if( nSkipRange ){
3064 /* Ignore the first nSkipRange range constraints since the index
3065 ** has already accounted for these */
3066 nSkipRange--;
3067 }else{
3068 /* Assume each additional range constraint reduces the result
3069 ** set size by a factor of 3. Indexed range constraints reduce
3070 ** the search space by a larger factor: 4. We make indexed range
3071 ** more selective intentionally because of the subjective
3072 ** observation that indexed range constraints really are more
3073 ** selective in practice, on average. */
3074 nRow /= 3;
3075 }
3076 }else if( pTerm->eOperator!=WO_NOOP ){
3077 /* Any other expression lowers the output row count by half */
3078 nRow /= 2;
3079 }
3080 }
3081 if( nRow<2 ) nRow = 2;
3082 }
3083
3084
3085 WHERETRACE((
3086 "%s(%s): nEq=%d nInMul=%d estBound=%d bSort=%d bLookup=%d wsFlags=0x%x\n"
3087 " notReady=0x%llx log10N=%.1f nRow=%.1f cost=%.1f used=0x%llx\n",
3088 pSrc->pTab->zName, (pIdx ? pIdx->zName : "ipk"),
3089 nEq, nInMul, estBound, bSort, bLookup, wsFlags,
3090 notReady, log10N, nRow, cost, used
3091 ));
3092
3093 /* If this index is the best we have seen so far, then record this
3094 ** index and its cost in the pCost structure.
3095 */
3096 if( (!pIdx || wsFlags)
3097 && (cost<pCost->rCost || (cost<=pCost->rCost && nRow<pCost->plan.nRow))
3098 ){
3099 pCost->rCost = cost;
3100 pCost->used = used;
3101 pCost->plan.nRow = nRow;
3102 pCost->plan.wsFlags = (wsFlags&wsFlagMask);
3103 pCost->plan.nEq = nEq;
3104 pCost->plan.u.pIdx = pIdx;
3105 }
3106
3107 /* If there was an INDEXED BY clause, then only that one index is
3108 ** considered. */
3109 if( pSrc->pIndex ) break;
3110
3111 /* Reset masks for the next index in the loop */
3112 wsFlagMask = ~(WHERE_ROWID_EQ|WHERE_ROWID_RANGE);
3113 eqTermMask = idxEqTermMask;
3114 }
3115
3116 /* If there is no ORDER BY clause and the SQLITE_ReverseOrder flag
3117 ** is set, then reverse the order that the index will be scanned
3118 ** in. This is used for application testing, to help find cases
3119 ** where application behaviour depends on the (undefined) order that
3120 ** SQLite outputs rows in in the absence of an ORDER BY clause. */
3121 if( !pOrderBy && pParse->db->flags & SQLITE_ReverseOrder ){
3122 pCost->plan.wsFlags |= WHERE_REVERSE;
3123 }
3124
3125 assert( pOrderBy || (pCost->plan.wsFlags&WHERE_ORDERBY)==0 );
3126 assert( pCost->plan.u.pIdx==0 || (pCost->plan.wsFlags&WHERE_ROWID_EQ)==0 );
3127 assert( pSrc->pIndex==0
3128 || pCost->plan.u.pIdx==0
3129 || pCost->plan.u.pIdx==pSrc->pIndex
3130 );
3131
3132 WHERETRACE(("best index is: %s\n",
3133 ((pCost->plan.wsFlags & WHERE_NOT_FULLSCAN)==0 ? "none" :
3134 pCost->plan.u.pIdx ? pCost->plan.u.pIdx->zName : "ipk")
3135 ));
3136
3137 bestOrClauseIndex(pParse, pWC, pSrc, notReady, notValid, pOrderBy, pCost);
3138 bestAutomaticIndex(pParse, pWC, pSrc, notReady, pCost);
3139 pCost->plan.wsFlags |= eqTermMask;
3140 }
3141
3142 /*
3143 ** Find the query plan for accessing table pSrc->pTab. Write the
3144 ** best query plan and its cost into the WhereCost object supplied
3145 ** as the last parameter. This function may calculate the cost of
3146 ** both real and virtual table scans.
3147 */
bestIndex(Parse * pParse,WhereClause * pWC,struct SrcList_item * pSrc,Bitmask notReady,Bitmask notValid,ExprList * pOrderBy,WhereCost * pCost)3148 static void bestIndex(
3149 Parse *pParse, /* The parsing context */
3150 WhereClause *pWC, /* The WHERE clause */
3151 struct SrcList_item *pSrc, /* The FROM clause term to search */
3152 Bitmask notReady, /* Mask of cursors not available for indexing */
3153 Bitmask notValid, /* Cursors not available for any purpose */
3154 ExprList *pOrderBy, /* The ORDER BY clause */
3155 WhereCost *pCost /* Lowest cost query plan */
3156 ){
3157 #ifndef SQLITE_OMIT_VIRTUALTABLE
3158 if( IsVirtual(pSrc->pTab) ){
3159 sqlite3_index_info *p = 0;
3160 bestVirtualIndex(pParse, pWC, pSrc, notReady, notValid, pOrderBy, pCost,&p);
3161 if( p->needToFreeIdxStr ){
3162 sqlite3_free(p->idxStr);
3163 }
3164 sqlite3DbFree(pParse->db, p);
3165 }else
3166 #endif
3167 {
3168 bestBtreeIndex(pParse, pWC, pSrc, notReady, notValid, pOrderBy, pCost);
3169 }
3170 }
3171
3172 /*
3173 ** Disable a term in the WHERE clause. Except, do not disable the term
3174 ** if it controls a LEFT OUTER JOIN and it did not originate in the ON
3175 ** or USING clause of that join.
3176 **
3177 ** Consider the term t2.z='ok' in the following queries:
3178 **
3179 ** (1) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok'
3180 ** (2) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok'
3181 ** (3) SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok'
3182 **
3183 ** The t2.z='ok' is disabled in the in (2) because it originates
3184 ** in the ON clause. The term is disabled in (3) because it is not part
3185 ** of a LEFT OUTER JOIN. In (1), the term is not disabled.
3186 **
3187 ** IMPLEMENTATION-OF: R-24597-58655 No tests are done for terms that are
3188 ** completely satisfied by indices.
3189 **
3190 ** Disabling a term causes that term to not be tested in the inner loop
3191 ** of the join. Disabling is an optimization. When terms are satisfied
3192 ** by indices, we disable them to prevent redundant tests in the inner
3193 ** loop. We would get the correct results if nothing were ever disabled,
3194 ** but joins might run a little slower. The trick is to disable as much
3195 ** as we can without disabling too much. If we disabled in (1), we'd get
3196 ** the wrong answer. See ticket #813.
3197 */
disableTerm(WhereLevel * pLevel,WhereTerm * pTerm)3198 static void disableTerm(WhereLevel *pLevel, WhereTerm *pTerm){
3199 if( pTerm
3200 && (pTerm->wtFlags & TERM_CODED)==0
3201 && (pLevel->iLeftJoin==0 || ExprHasProperty(pTerm->pExpr, EP_FromJoin))
3202 ){
3203 pTerm->wtFlags |= TERM_CODED;
3204 if( pTerm->iParent>=0 ){
3205 WhereTerm *pOther = &pTerm->pWC->a[pTerm->iParent];
3206 if( (--pOther->nChild)==0 ){
3207 disableTerm(pLevel, pOther);
3208 }
3209 }
3210 }
3211 }
3212
3213 /*
3214 ** Code an OP_Affinity opcode to apply the column affinity string zAff
3215 ** to the n registers starting at base.
3216 **
3217 ** As an optimization, SQLITE_AFF_NONE entries (which are no-ops) at the
3218 ** beginning and end of zAff are ignored. If all entries in zAff are
3219 ** SQLITE_AFF_NONE, then no code gets generated.
3220 **
3221 ** This routine makes its own copy of zAff so that the caller is free
3222 ** to modify zAff after this routine returns.
3223 */
codeApplyAffinity(Parse * pParse,int base,int n,char * zAff)3224 static void codeApplyAffinity(Parse *pParse, int base, int n, char *zAff){
3225 Vdbe *v = pParse->pVdbe;
3226 if( zAff==0 ){
3227 assert( pParse->db->mallocFailed );
3228 return;
3229 }
3230 assert( v!=0 );
3231
3232 /* Adjust base and n to skip over SQLITE_AFF_NONE entries at the beginning
3233 ** and end of the affinity string.
3234 */
3235 while( n>0 && zAff[0]==SQLITE_AFF_NONE ){
3236 n--;
3237 base++;
3238 zAff++;
3239 }
3240 while( n>1 && zAff[n-1]==SQLITE_AFF_NONE ){
3241 n--;
3242 }
3243
3244 /* Code the OP_Affinity opcode if there is anything left to do. */
3245 if( n>0 ){
3246 sqlite3VdbeAddOp2(v, OP_Affinity, base, n);
3247 sqlite3VdbeChangeP4(v, -1, zAff, n);
3248 sqlite3ExprCacheAffinityChange(pParse, base, n);
3249 }
3250 }
3251
3252
3253 /*
3254 ** Generate code for a single equality term of the WHERE clause. An equality
3255 ** term can be either X=expr or X IN (...). pTerm is the term to be
3256 ** coded.
3257 **
3258 ** The current value for the constraint is left in register iReg.
3259 **
3260 ** For a constraint of the form X=expr, the expression is evaluated and its
3261 ** result is left on the stack. For constraints of the form X IN (...)
3262 ** this routine sets up a loop that will iterate over all values of X.
3263 */
codeEqualityTerm(Parse * pParse,WhereTerm * pTerm,WhereLevel * pLevel,int iTarget)3264 static int codeEqualityTerm(
3265 Parse *pParse, /* The parsing context */
3266 WhereTerm *pTerm, /* The term of the WHERE clause to be coded */
3267 WhereLevel *pLevel, /* When level of the FROM clause we are working on */
3268 int iTarget /* Attempt to leave results in this register */
3269 ){
3270 Expr *pX = pTerm->pExpr;
3271 Vdbe *v = pParse->pVdbe;
3272 int iReg; /* Register holding results */
3273
3274 assert( iTarget>0 );
3275 if( pX->op==TK_EQ ){
3276 iReg = sqlite3ExprCodeTarget(pParse, pX->pRight, iTarget);
3277 }else if( pX->op==TK_ISNULL ){
3278 iReg = iTarget;
3279 sqlite3VdbeAddOp2(v, OP_Null, 0, iReg);
3280 #ifndef SQLITE_OMIT_SUBQUERY
3281 }else{
3282 int eType;
3283 int iTab;
3284 struct InLoop *pIn;
3285
3286 assert( pX->op==TK_IN );
3287 iReg = iTarget;
3288 eType = sqlite3FindInIndex(pParse, pX, 0);
3289 iTab = pX->iTable;
3290 sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0);
3291 assert( pLevel->plan.wsFlags & WHERE_IN_ABLE );
3292 if( pLevel->u.in.nIn==0 ){
3293 pLevel->addrNxt = sqlite3VdbeMakeLabel(v);
3294 }
3295 pLevel->u.in.nIn++;
3296 pLevel->u.in.aInLoop =
3297 sqlite3DbReallocOrFree(pParse->db, pLevel->u.in.aInLoop,
3298 sizeof(pLevel->u.in.aInLoop[0])*pLevel->u.in.nIn);
3299 pIn = pLevel->u.in.aInLoop;
3300 if( pIn ){
3301 pIn += pLevel->u.in.nIn - 1;
3302 pIn->iCur = iTab;
3303 if( eType==IN_INDEX_ROWID ){
3304 pIn->addrInTop = sqlite3VdbeAddOp2(v, OP_Rowid, iTab, iReg);
3305 }else{
3306 pIn->addrInTop = sqlite3VdbeAddOp3(v, OP_Column, iTab, 0, iReg);
3307 }
3308 sqlite3VdbeAddOp1(v, OP_IsNull, iReg);
3309 }else{
3310 pLevel->u.in.nIn = 0;
3311 }
3312 #endif
3313 }
3314 disableTerm(pLevel, pTerm);
3315 return iReg;
3316 }
3317
3318 /*
3319 ** Generate code that will evaluate all == and IN constraints for an
3320 ** index.
3321 **
3322 ** For example, consider table t1(a,b,c,d,e,f) with index i1(a,b,c).
3323 ** Suppose the WHERE clause is this: a==5 AND b IN (1,2,3) AND c>5 AND c<10
3324 ** The index has as many as three equality constraints, but in this
3325 ** example, the third "c" value is an inequality. So only two
3326 ** constraints are coded. This routine will generate code to evaluate
3327 ** a==5 and b IN (1,2,3). The current values for a and b will be stored
3328 ** in consecutive registers and the index of the first register is returned.
3329 **
3330 ** In the example above nEq==2. But this subroutine works for any value
3331 ** of nEq including 0. If nEq==0, this routine is nearly a no-op.
3332 ** The only thing it does is allocate the pLevel->iMem memory cell and
3333 ** compute the affinity string.
3334 **
3335 ** This routine always allocates at least one memory cell and returns
3336 ** the index of that memory cell. The code that
3337 ** calls this routine will use that memory cell to store the termination
3338 ** key value of the loop. If one or more IN operators appear, then
3339 ** this routine allocates an additional nEq memory cells for internal
3340 ** use.
3341 **
3342 ** Before returning, *pzAff is set to point to a buffer containing a
3343 ** copy of the column affinity string of the index allocated using
3344 ** sqlite3DbMalloc(). Except, entries in the copy of the string associated
3345 ** with equality constraints that use NONE affinity are set to
3346 ** SQLITE_AFF_NONE. This is to deal with SQL such as the following:
3347 **
3348 ** CREATE TABLE t1(a TEXT PRIMARY KEY, b);
3349 ** SELECT ... FROM t1 AS t2, t1 WHERE t1.a = t2.b;
3350 **
3351 ** In the example above, the index on t1(a) has TEXT affinity. But since
3352 ** the right hand side of the equality constraint (t2.b) has NONE affinity,
3353 ** no conversion should be attempted before using a t2.b value as part of
3354 ** a key to search the index. Hence the first byte in the returned affinity
3355 ** string in this example would be set to SQLITE_AFF_NONE.
3356 */
codeAllEqualityTerms(Parse * pParse,WhereLevel * pLevel,WhereClause * pWC,Bitmask notReady,int nExtraReg,char ** pzAff)3357 static int codeAllEqualityTerms(
3358 Parse *pParse, /* Parsing context */
3359 WhereLevel *pLevel, /* Which nested loop of the FROM we are coding */
3360 WhereClause *pWC, /* The WHERE clause */
3361 Bitmask notReady, /* Which parts of FROM have not yet been coded */
3362 int nExtraReg, /* Number of extra registers to allocate */
3363 char **pzAff /* OUT: Set to point to affinity string */
3364 ){
3365 int nEq = pLevel->plan.nEq; /* The number of == or IN constraints to code */
3366 Vdbe *v = pParse->pVdbe; /* The vm under construction */
3367 Index *pIdx; /* The index being used for this loop */
3368 int iCur = pLevel->iTabCur; /* The cursor of the table */
3369 WhereTerm *pTerm; /* A single constraint term */
3370 int j; /* Loop counter */
3371 int regBase; /* Base register */
3372 int nReg; /* Number of registers to allocate */
3373 char *zAff; /* Affinity string to return */
3374
3375 /* This module is only called on query plans that use an index. */
3376 assert( pLevel->plan.wsFlags & WHERE_INDEXED );
3377 pIdx = pLevel->plan.u.pIdx;
3378
3379 /* Figure out how many memory cells we will need then allocate them.
3380 */
3381 regBase = pParse->nMem + 1;
3382 nReg = pLevel->plan.nEq + nExtraReg;
3383 pParse->nMem += nReg;
3384
3385 zAff = sqlite3DbStrDup(pParse->db, sqlite3IndexAffinityStr(v, pIdx));
3386 if( !zAff ){
3387 pParse->db->mallocFailed = 1;
3388 }
3389
3390 /* Evaluate the equality constraints
3391 */
3392 assert( pIdx->nColumn>=nEq );
3393 for(j=0; j<nEq; j++){
3394 int r1;
3395 int k = pIdx->aiColumn[j];
3396 pTerm = findTerm(pWC, iCur, k, notReady, pLevel->plan.wsFlags, pIdx);
3397 if( NEVER(pTerm==0) ) break;
3398 /* The following true for indices with redundant columns.
3399 ** Ex: CREATE INDEX i1 ON t1(a,b,a); SELECT * FROM t1 WHERE a=0 AND b=0; */
3400 testcase( (pTerm->wtFlags & TERM_CODED)!=0 );
3401 testcase( pTerm->wtFlags & TERM_VIRTUAL ); /* EV: R-30575-11662 */
3402 r1 = codeEqualityTerm(pParse, pTerm, pLevel, regBase+j);
3403 if( r1!=regBase+j ){
3404 if( nReg==1 ){
3405 sqlite3ReleaseTempReg(pParse, regBase);
3406 regBase = r1;
3407 }else{
3408 sqlite3VdbeAddOp2(v, OP_SCopy, r1, regBase+j);
3409 }
3410 }
3411 testcase( pTerm->eOperator & WO_ISNULL );
3412 testcase( pTerm->eOperator & WO_IN );
3413 if( (pTerm->eOperator & (WO_ISNULL|WO_IN))==0 ){
3414 Expr *pRight = pTerm->pExpr->pRight;
3415 sqlite3ExprCodeIsNullJump(v, pRight, regBase+j, pLevel->addrBrk);
3416 if( zAff ){
3417 if( sqlite3CompareAffinity(pRight, zAff[j])==SQLITE_AFF_NONE ){
3418 zAff[j] = SQLITE_AFF_NONE;
3419 }
3420 if( sqlite3ExprNeedsNoAffinityChange(pRight, zAff[j]) ){
3421 zAff[j] = SQLITE_AFF_NONE;
3422 }
3423 }
3424 }
3425 }
3426 *pzAff = zAff;
3427 return regBase;
3428 }
3429
3430 #ifndef SQLITE_OMIT_EXPLAIN
3431 /*
3432 ** This routine is a helper for explainIndexRange() below
3433 **
3434 ** pStr holds the text of an expression that we are building up one term
3435 ** at a time. This routine adds a new term to the end of the expression.
3436 ** Terms are separated by AND so add the "AND" text for second and subsequent
3437 ** terms only.
3438 */
explainAppendTerm(StrAccum * pStr,int iTerm,const char * zColumn,const char * zOp)3439 static void explainAppendTerm(
3440 StrAccum *pStr, /* The text expression being built */
3441 int iTerm, /* Index of this term. First is zero */
3442 const char *zColumn, /* Name of the column */
3443 const char *zOp /* Name of the operator */
3444 ){
3445 if( iTerm ) sqlite3StrAccumAppend(pStr, " AND ", 5);
3446 sqlite3StrAccumAppend(pStr, zColumn, -1);
3447 sqlite3StrAccumAppend(pStr, zOp, 1);
3448 sqlite3StrAccumAppend(pStr, "?", 1);
3449 }
3450
3451 /*
3452 ** Argument pLevel describes a strategy for scanning table pTab. This
3453 ** function returns a pointer to a string buffer containing a description
3454 ** of the subset of table rows scanned by the strategy in the form of an
3455 ** SQL expression. Or, if all rows are scanned, NULL is returned.
3456 **
3457 ** For example, if the query:
3458 **
3459 ** SELECT * FROM t1 WHERE a=1 AND b>2;
3460 **
3461 ** is run and there is an index on (a, b), then this function returns a
3462 ** string similar to:
3463 **
3464 ** "a=? AND b>?"
3465 **
3466 ** The returned pointer points to memory obtained from sqlite3DbMalloc().
3467 ** It is the responsibility of the caller to free the buffer when it is
3468 ** no longer required.
3469 */
explainIndexRange(sqlite3 * db,WhereLevel * pLevel,Table * pTab)3470 static char *explainIndexRange(sqlite3 *db, WhereLevel *pLevel, Table *pTab){
3471 WherePlan *pPlan = &pLevel->plan;
3472 Index *pIndex = pPlan->u.pIdx;
3473 int nEq = pPlan->nEq;
3474 int i, j;
3475 Column *aCol = pTab->aCol;
3476 int *aiColumn = pIndex->aiColumn;
3477 StrAccum txt;
3478
3479 if( nEq==0 && (pPlan->wsFlags & (WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))==0 ){
3480 return 0;
3481 }
3482 sqlite3StrAccumInit(&txt, 0, 0, SQLITE_MAX_LENGTH);
3483 txt.db = db;
3484 sqlite3StrAccumAppend(&txt, " (", 2);
3485 for(i=0; i<nEq; i++){
3486 explainAppendTerm(&txt, i, aCol[aiColumn[i]].zName, "=");
3487 }
3488
3489 j = i;
3490 if( pPlan->wsFlags&WHERE_BTM_LIMIT ){
3491 explainAppendTerm(&txt, i++, aCol[aiColumn[j]].zName, ">");
3492 }
3493 if( pPlan->wsFlags&WHERE_TOP_LIMIT ){
3494 explainAppendTerm(&txt, i, aCol[aiColumn[j]].zName, "<");
3495 }
3496 sqlite3StrAccumAppend(&txt, ")", 1);
3497 return sqlite3StrAccumFinish(&txt);
3498 }
3499
3500 /*
3501 ** This function is a no-op unless currently processing an EXPLAIN QUERY PLAN
3502 ** command. If the query being compiled is an EXPLAIN QUERY PLAN, a single
3503 ** record is added to the output to describe the table scan strategy in
3504 ** pLevel.
3505 */
explainOneScan(Parse * pParse,SrcList * pTabList,WhereLevel * pLevel,int iLevel,int iFrom,u16 wctrlFlags)3506 static void explainOneScan(
3507 Parse *pParse, /* Parse context */
3508 SrcList *pTabList, /* Table list this loop refers to */
3509 WhereLevel *pLevel, /* Scan to write OP_Explain opcode for */
3510 int iLevel, /* Value for "level" column of output */
3511 int iFrom, /* Value for "from" column of output */
3512 u16 wctrlFlags /* Flags passed to sqlite3WhereBegin() */
3513 ){
3514 if( pParse->explain==2 ){
3515 u32 flags = pLevel->plan.wsFlags;
3516 struct SrcList_item *pItem = &pTabList->a[pLevel->iFrom];
3517 Vdbe *v = pParse->pVdbe; /* VM being constructed */
3518 sqlite3 *db = pParse->db; /* Database handle */
3519 char *zMsg; /* Text to add to EQP output */
3520 sqlite3_int64 nRow; /* Expected number of rows visited by scan */
3521 int iId = pParse->iSelectId; /* Select id (left-most output column) */
3522 int isSearch; /* True for a SEARCH. False for SCAN. */
3523
3524 if( (flags&WHERE_MULTI_OR) || (wctrlFlags&WHERE_ONETABLE_ONLY) ) return;
3525
3526 isSearch = (pLevel->plan.nEq>0)
3527 || (flags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))!=0
3528 || (wctrlFlags&(WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX));
3529
3530 zMsg = sqlite3MPrintf(db, "%s", isSearch?"SEARCH":"SCAN");
3531 if( pItem->pSelect ){
3532 zMsg = sqlite3MAppendf(db, zMsg, "%s SUBQUERY %d", zMsg,pItem->iSelectId);
3533 }else{
3534 zMsg = sqlite3MAppendf(db, zMsg, "%s TABLE %s", zMsg, pItem->zName);
3535 }
3536
3537 if( pItem->zAlias ){
3538 zMsg = sqlite3MAppendf(db, zMsg, "%s AS %s", zMsg, pItem->zAlias);
3539 }
3540 if( (flags & WHERE_INDEXED)!=0 ){
3541 char *zWhere = explainIndexRange(db, pLevel, pItem->pTab);
3542 zMsg = sqlite3MAppendf(db, zMsg, "%s USING %s%sINDEX%s%s%s", zMsg,
3543 ((flags & WHERE_TEMP_INDEX)?"AUTOMATIC ":""),
3544 ((flags & WHERE_IDX_ONLY)?"COVERING ":""),
3545 ((flags & WHERE_TEMP_INDEX)?"":" "),
3546 ((flags & WHERE_TEMP_INDEX)?"": pLevel->plan.u.pIdx->zName),
3547 zWhere
3548 );
3549 sqlite3DbFree(db, zWhere);
3550 }else if( flags & (WHERE_ROWID_EQ|WHERE_ROWID_RANGE) ){
3551 zMsg = sqlite3MAppendf(db, zMsg, "%s USING INTEGER PRIMARY KEY", zMsg);
3552
3553 if( flags&WHERE_ROWID_EQ ){
3554 zMsg = sqlite3MAppendf(db, zMsg, "%s (rowid=?)", zMsg);
3555 }else if( (flags&WHERE_BOTH_LIMIT)==WHERE_BOTH_LIMIT ){
3556 zMsg = sqlite3MAppendf(db, zMsg, "%s (rowid>? AND rowid<?)", zMsg);
3557 }else if( flags&WHERE_BTM_LIMIT ){
3558 zMsg = sqlite3MAppendf(db, zMsg, "%s (rowid>?)", zMsg);
3559 }else if( flags&WHERE_TOP_LIMIT ){
3560 zMsg = sqlite3MAppendf(db, zMsg, "%s (rowid<?)", zMsg);
3561 }
3562 }
3563 #ifndef SQLITE_OMIT_VIRTUALTABLE
3564 else if( (flags & WHERE_VIRTUALTABLE)!=0 ){
3565 sqlite3_index_info *pVtabIdx = pLevel->plan.u.pVtabIdx;
3566 zMsg = sqlite3MAppendf(db, zMsg, "%s VIRTUAL TABLE INDEX %d:%s", zMsg,
3567 pVtabIdx->idxNum, pVtabIdx->idxStr);
3568 }
3569 #endif
3570 if( wctrlFlags&(WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX) ){
3571 testcase( wctrlFlags & WHERE_ORDERBY_MIN );
3572 nRow = 1;
3573 }else{
3574 nRow = (sqlite3_int64)pLevel->plan.nRow;
3575 }
3576 zMsg = sqlite3MAppendf(db, zMsg, "%s (~%lld rows)", zMsg, nRow);
3577 sqlite3VdbeAddOp4(v, OP_Explain, iId, iLevel, iFrom, zMsg, P4_DYNAMIC);
3578 }
3579 }
3580 #else
3581 # define explainOneScan(u,v,w,x,y,z)
3582 #endif /* SQLITE_OMIT_EXPLAIN */
3583
3584
3585 /*
3586 ** Generate code for the start of the iLevel-th loop in the WHERE clause
3587 ** implementation described by pWInfo.
3588 */
codeOneLoopStart(WhereInfo * pWInfo,int iLevel,u16 wctrlFlags,Bitmask notReady)3589 static Bitmask codeOneLoopStart(
3590 WhereInfo *pWInfo, /* Complete information about the WHERE clause */
3591 int iLevel, /* Which level of pWInfo->a[] should be coded */
3592 u16 wctrlFlags, /* One of the WHERE_* flags defined in sqliteInt.h */
3593 Bitmask notReady /* Which tables are currently available */
3594 ){
3595 int j, k; /* Loop counters */
3596 int iCur; /* The VDBE cursor for the table */
3597 int addrNxt; /* Where to jump to continue with the next IN case */
3598 int omitTable; /* True if we use the index only */
3599 int bRev; /* True if we need to scan in reverse order */
3600 WhereLevel *pLevel; /* The where level to be coded */
3601 WhereClause *pWC; /* Decomposition of the entire WHERE clause */
3602 WhereTerm *pTerm; /* A WHERE clause term */
3603 Parse *pParse; /* Parsing context */
3604 Vdbe *v; /* The prepared stmt under constructions */
3605 struct SrcList_item *pTabItem; /* FROM clause term being coded */
3606 int addrBrk; /* Jump here to break out of the loop */
3607 int addrCont; /* Jump here to continue with next cycle */
3608 int iRowidReg = 0; /* Rowid is stored in this register, if not zero */
3609 int iReleaseReg = 0; /* Temp register to free before returning */
3610
3611 pParse = pWInfo->pParse;
3612 v = pParse->pVdbe;
3613 pWC = pWInfo->pWC;
3614 pLevel = &pWInfo->a[iLevel];
3615 pTabItem = &pWInfo->pTabList->a[pLevel->iFrom];
3616 iCur = pTabItem->iCursor;
3617 bRev = (pLevel->plan.wsFlags & WHERE_REVERSE)!=0;
3618 omitTable = (pLevel->plan.wsFlags & WHERE_IDX_ONLY)!=0
3619 && (wctrlFlags & WHERE_FORCE_TABLE)==0;
3620
3621 /* Create labels for the "break" and "continue" instructions
3622 ** for the current loop. Jump to addrBrk to break out of a loop.
3623 ** Jump to cont to go immediately to the next iteration of the
3624 ** loop.
3625 **
3626 ** When there is an IN operator, we also have a "addrNxt" label that
3627 ** means to continue with the next IN value combination. When
3628 ** there are no IN operators in the constraints, the "addrNxt" label
3629 ** is the same as "addrBrk".
3630 */
3631 addrBrk = pLevel->addrBrk = pLevel->addrNxt = sqlite3VdbeMakeLabel(v);
3632 addrCont = pLevel->addrCont = sqlite3VdbeMakeLabel(v);
3633
3634 /* If this is the right table of a LEFT OUTER JOIN, allocate and
3635 ** initialize a memory cell that records if this table matches any
3636 ** row of the left table of the join.
3637 */
3638 if( pLevel->iFrom>0 && (pTabItem[0].jointype & JT_LEFT)!=0 ){
3639 pLevel->iLeftJoin = ++pParse->nMem;
3640 sqlite3VdbeAddOp2(v, OP_Integer, 0, pLevel->iLeftJoin);
3641 VdbeComment((v, "init LEFT JOIN no-match flag"));
3642 }
3643
3644 #ifndef SQLITE_OMIT_VIRTUALTABLE
3645 if( (pLevel->plan.wsFlags & WHERE_VIRTUALTABLE)!=0 ){
3646 /* Case 0: The table is a virtual-table. Use the VFilter and VNext
3647 ** to access the data.
3648 */
3649 int iReg; /* P3 Value for OP_VFilter */
3650 sqlite3_index_info *pVtabIdx = pLevel->plan.u.pVtabIdx;
3651 int nConstraint = pVtabIdx->nConstraint;
3652 struct sqlite3_index_constraint_usage *aUsage =
3653 pVtabIdx->aConstraintUsage;
3654 const struct sqlite3_index_constraint *aConstraint =
3655 pVtabIdx->aConstraint;
3656
3657 sqlite3ExprCachePush(pParse);
3658 iReg = sqlite3GetTempRange(pParse, nConstraint+2);
3659 for(j=1; j<=nConstraint; j++){
3660 for(k=0; k<nConstraint; k++){
3661 if( aUsage[k].argvIndex==j ){
3662 int iTerm = aConstraint[k].iTermOffset;
3663 sqlite3ExprCode(pParse, pWC->a[iTerm].pExpr->pRight, iReg+j+1);
3664 break;
3665 }
3666 }
3667 if( k==nConstraint ) break;
3668 }
3669 sqlite3VdbeAddOp2(v, OP_Integer, pVtabIdx->idxNum, iReg);
3670 sqlite3VdbeAddOp2(v, OP_Integer, j-1, iReg+1);
3671 sqlite3VdbeAddOp4(v, OP_VFilter, iCur, addrBrk, iReg, pVtabIdx->idxStr,
3672 pVtabIdx->needToFreeIdxStr ? P4_MPRINTF : P4_STATIC);
3673 pVtabIdx->needToFreeIdxStr = 0;
3674 for(j=0; j<nConstraint; j++){
3675 if( aUsage[j].omit ){
3676 int iTerm = aConstraint[j].iTermOffset;
3677 disableTerm(pLevel, &pWC->a[iTerm]);
3678 }
3679 }
3680 pLevel->op = OP_VNext;
3681 pLevel->p1 = iCur;
3682 pLevel->p2 = sqlite3VdbeCurrentAddr(v);
3683 sqlite3ReleaseTempRange(pParse, iReg, nConstraint+2);
3684 sqlite3ExprCachePop(pParse, 1);
3685 }else
3686 #endif /* SQLITE_OMIT_VIRTUALTABLE */
3687
3688 if( pLevel->plan.wsFlags & WHERE_ROWID_EQ ){
3689 /* Case 1: We can directly reference a single row using an
3690 ** equality comparison against the ROWID field. Or
3691 ** we reference multiple rows using a "rowid IN (...)"
3692 ** construct.
3693 */
3694 iReleaseReg = sqlite3GetTempReg(pParse);
3695 pTerm = findTerm(pWC, iCur, -1, notReady, WO_EQ|WO_IN, 0);
3696 assert( pTerm!=0 );
3697 assert( pTerm->pExpr!=0 );
3698 assert( pTerm->leftCursor==iCur );
3699 assert( omitTable==0 );
3700 testcase( pTerm->wtFlags & TERM_VIRTUAL ); /* EV: R-30575-11662 */
3701 iRowidReg = codeEqualityTerm(pParse, pTerm, pLevel, iReleaseReg);
3702 addrNxt = pLevel->addrNxt;
3703 sqlite3VdbeAddOp2(v, OP_MustBeInt, iRowidReg, addrNxt);
3704 sqlite3VdbeAddOp3(v, OP_NotExists, iCur, addrNxt, iRowidReg);
3705 sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg);
3706 VdbeComment((v, "pk"));
3707 pLevel->op = OP_Noop;
3708 }else if( pLevel->plan.wsFlags & WHERE_ROWID_RANGE ){
3709 /* Case 2: We have an inequality comparison against the ROWID field.
3710 */
3711 int testOp = OP_Noop;
3712 int start;
3713 int memEndValue = 0;
3714 WhereTerm *pStart, *pEnd;
3715
3716 assert( omitTable==0 );
3717 pStart = findTerm(pWC, iCur, -1, notReady, WO_GT|WO_GE, 0);
3718 pEnd = findTerm(pWC, iCur, -1, notReady, WO_LT|WO_LE, 0);
3719 if( bRev ){
3720 pTerm = pStart;
3721 pStart = pEnd;
3722 pEnd = pTerm;
3723 }
3724 if( pStart ){
3725 Expr *pX; /* The expression that defines the start bound */
3726 int r1, rTemp; /* Registers for holding the start boundary */
3727
3728 /* The following constant maps TK_xx codes into corresponding
3729 ** seek opcodes. It depends on a particular ordering of TK_xx
3730 */
3731 const u8 aMoveOp[] = {
3732 /* TK_GT */ OP_SeekGt,
3733 /* TK_LE */ OP_SeekLe,
3734 /* TK_LT */ OP_SeekLt,
3735 /* TK_GE */ OP_SeekGe
3736 };
3737 assert( TK_LE==TK_GT+1 ); /* Make sure the ordering.. */
3738 assert( TK_LT==TK_GT+2 ); /* ... of the TK_xx values... */
3739 assert( TK_GE==TK_GT+3 ); /* ... is correcct. */
3740
3741 testcase( pStart->wtFlags & TERM_VIRTUAL ); /* EV: R-30575-11662 */
3742 pX = pStart->pExpr;
3743 assert( pX!=0 );
3744 assert( pStart->leftCursor==iCur );
3745 r1 = sqlite3ExprCodeTemp(pParse, pX->pRight, &rTemp);
3746 sqlite3VdbeAddOp3(v, aMoveOp[pX->op-TK_GT], iCur, addrBrk, r1);
3747 VdbeComment((v, "pk"));
3748 sqlite3ExprCacheAffinityChange(pParse, r1, 1);
3749 sqlite3ReleaseTempReg(pParse, rTemp);
3750 disableTerm(pLevel, pStart);
3751 }else{
3752 sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iCur, addrBrk);
3753 }
3754 if( pEnd ){
3755 Expr *pX;
3756 pX = pEnd->pExpr;
3757 assert( pX!=0 );
3758 assert( pEnd->leftCursor==iCur );
3759 testcase( pEnd->wtFlags & TERM_VIRTUAL ); /* EV: R-30575-11662 */
3760 memEndValue = ++pParse->nMem;
3761 sqlite3ExprCode(pParse, pX->pRight, memEndValue);
3762 if( pX->op==TK_LT || pX->op==TK_GT ){
3763 testOp = bRev ? OP_Le : OP_Ge;
3764 }else{
3765 testOp = bRev ? OP_Lt : OP_Gt;
3766 }
3767 disableTerm(pLevel, pEnd);
3768 }
3769 start = sqlite3VdbeCurrentAddr(v);
3770 pLevel->op = bRev ? OP_Prev : OP_Next;
3771 pLevel->p1 = iCur;
3772 pLevel->p2 = start;
3773 if( pStart==0 && pEnd==0 ){
3774 pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP;
3775 }else{
3776 assert( pLevel->p5==0 );
3777 }
3778 if( testOp!=OP_Noop ){
3779 iRowidReg = iReleaseReg = sqlite3GetTempReg(pParse);
3780 sqlite3VdbeAddOp2(v, OP_Rowid, iCur, iRowidReg);
3781 sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg);
3782 sqlite3VdbeAddOp3(v, testOp, memEndValue, addrBrk, iRowidReg);
3783 sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC | SQLITE_JUMPIFNULL);
3784 }
3785 }else if( pLevel->plan.wsFlags & (WHERE_COLUMN_RANGE|WHERE_COLUMN_EQ) ){
3786 /* Case 3: A scan using an index.
3787 **
3788 ** The WHERE clause may contain zero or more equality
3789 ** terms ("==" or "IN" operators) that refer to the N
3790 ** left-most columns of the index. It may also contain
3791 ** inequality constraints (>, <, >= or <=) on the indexed
3792 ** column that immediately follows the N equalities. Only
3793 ** the right-most column can be an inequality - the rest must
3794 ** use the "==" and "IN" operators. For example, if the
3795 ** index is on (x,y,z), then the following clauses are all
3796 ** optimized:
3797 **
3798 ** x=5
3799 ** x=5 AND y=10
3800 ** x=5 AND y<10
3801 ** x=5 AND y>5 AND y<10
3802 ** x=5 AND y=5 AND z<=10
3803 **
3804 ** The z<10 term of the following cannot be used, only
3805 ** the x=5 term:
3806 **
3807 ** x=5 AND z<10
3808 **
3809 ** N may be zero if there are inequality constraints.
3810 ** If there are no inequality constraints, then N is at
3811 ** least one.
3812 **
3813 ** This case is also used when there are no WHERE clause
3814 ** constraints but an index is selected anyway, in order
3815 ** to force the output order to conform to an ORDER BY.
3816 */
3817 static const u8 aStartOp[] = {
3818 0,
3819 0,
3820 OP_Rewind, /* 2: (!start_constraints && startEq && !bRev) */
3821 OP_Last, /* 3: (!start_constraints && startEq && bRev) */
3822 OP_SeekGt, /* 4: (start_constraints && !startEq && !bRev) */
3823 OP_SeekLt, /* 5: (start_constraints && !startEq && bRev) */
3824 OP_SeekGe, /* 6: (start_constraints && startEq && !bRev) */
3825 OP_SeekLe /* 7: (start_constraints && startEq && bRev) */
3826 };
3827 static const u8 aEndOp[] = {
3828 OP_Noop, /* 0: (!end_constraints) */
3829 OP_IdxGE, /* 1: (end_constraints && !bRev) */
3830 OP_IdxLT /* 2: (end_constraints && bRev) */
3831 };
3832 int nEq = pLevel->plan.nEq; /* Number of == or IN terms */
3833 int isMinQuery = 0; /* If this is an optimized SELECT min(x).. */
3834 int regBase; /* Base register holding constraint values */
3835 int r1; /* Temp register */
3836 WhereTerm *pRangeStart = 0; /* Inequality constraint at range start */
3837 WhereTerm *pRangeEnd = 0; /* Inequality constraint at range end */
3838 int startEq; /* True if range start uses ==, >= or <= */
3839 int endEq; /* True if range end uses ==, >= or <= */
3840 int start_constraints; /* Start of range is constrained */
3841 int nConstraint; /* Number of constraint terms */
3842 Index *pIdx; /* The index we will be using */
3843 int iIdxCur; /* The VDBE cursor for the index */
3844 int nExtraReg = 0; /* Number of extra registers needed */
3845 int op; /* Instruction opcode */
3846 char *zStartAff; /* Affinity for start of range constraint */
3847 char *zEndAff; /* Affinity for end of range constraint */
3848
3849 pIdx = pLevel->plan.u.pIdx;
3850 iIdxCur = pLevel->iIdxCur;
3851 k = pIdx->aiColumn[nEq]; /* Column for inequality constraints */
3852
3853 /* If this loop satisfies a sort order (pOrderBy) request that
3854 ** was passed to this function to implement a "SELECT min(x) ..."
3855 ** query, then the caller will only allow the loop to run for
3856 ** a single iteration. This means that the first row returned
3857 ** should not have a NULL value stored in 'x'. If column 'x' is
3858 ** the first one after the nEq equality constraints in the index,
3859 ** this requires some special handling.
3860 */
3861 if( (wctrlFlags&WHERE_ORDERBY_MIN)!=0
3862 && (pLevel->plan.wsFlags&WHERE_ORDERBY)
3863 && (pIdx->nColumn>nEq)
3864 ){
3865 /* assert( pOrderBy->nExpr==1 ); */
3866 /* assert( pOrderBy->a[0].pExpr->iColumn==pIdx->aiColumn[nEq] ); */
3867 isMinQuery = 1;
3868 nExtraReg = 1;
3869 }
3870
3871 /* Find any inequality constraint terms for the start and end
3872 ** of the range.
3873 */
3874 if( pLevel->plan.wsFlags & WHERE_TOP_LIMIT ){
3875 pRangeEnd = findTerm(pWC, iCur, k, notReady, (WO_LT|WO_LE), pIdx);
3876 nExtraReg = 1;
3877 }
3878 if( pLevel->plan.wsFlags & WHERE_BTM_LIMIT ){
3879 pRangeStart = findTerm(pWC, iCur, k, notReady, (WO_GT|WO_GE), pIdx);
3880 nExtraReg = 1;
3881 }
3882
3883 /* Generate code to evaluate all constraint terms using == or IN
3884 ** and store the values of those terms in an array of registers
3885 ** starting at regBase.
3886 */
3887 regBase = codeAllEqualityTerms(
3888 pParse, pLevel, pWC, notReady, nExtraReg, &zStartAff
3889 );
3890 zEndAff = sqlite3DbStrDup(pParse->db, zStartAff);
3891 addrNxt = pLevel->addrNxt;
3892
3893 /* If we are doing a reverse order scan on an ascending index, or
3894 ** a forward order scan on a descending index, interchange the
3895 ** start and end terms (pRangeStart and pRangeEnd).
3896 */
3897 if( nEq<pIdx->nColumn && bRev==(pIdx->aSortOrder[nEq]==SQLITE_SO_ASC) ){
3898 SWAP(WhereTerm *, pRangeEnd, pRangeStart);
3899 }
3900
3901 testcase( pRangeStart && pRangeStart->eOperator & WO_LE );
3902 testcase( pRangeStart && pRangeStart->eOperator & WO_GE );
3903 testcase( pRangeEnd && pRangeEnd->eOperator & WO_LE );
3904 testcase( pRangeEnd && pRangeEnd->eOperator & WO_GE );
3905 startEq = !pRangeStart || pRangeStart->eOperator & (WO_LE|WO_GE);
3906 endEq = !pRangeEnd || pRangeEnd->eOperator & (WO_LE|WO_GE);
3907 start_constraints = pRangeStart || nEq>0;
3908
3909 /* Seek the index cursor to the start of the range. */
3910 nConstraint = nEq;
3911 if( pRangeStart ){
3912 Expr *pRight = pRangeStart->pExpr->pRight;
3913 sqlite3ExprCode(pParse, pRight, regBase+nEq);
3914 if( (pRangeStart->wtFlags & TERM_VNULL)==0 ){
3915 sqlite3ExprCodeIsNullJump(v, pRight, regBase+nEq, addrNxt);
3916 }
3917 if( zStartAff ){
3918 if( sqlite3CompareAffinity(pRight, zStartAff[nEq])==SQLITE_AFF_NONE){
3919 /* Since the comparison is to be performed with no conversions
3920 ** applied to the operands, set the affinity to apply to pRight to
3921 ** SQLITE_AFF_NONE. */
3922 zStartAff[nEq] = SQLITE_AFF_NONE;
3923 }
3924 if( sqlite3ExprNeedsNoAffinityChange(pRight, zStartAff[nEq]) ){
3925 zStartAff[nEq] = SQLITE_AFF_NONE;
3926 }
3927 }
3928 nConstraint++;
3929 testcase( pRangeStart->wtFlags & TERM_VIRTUAL ); /* EV: R-30575-11662 */
3930 }else if( isMinQuery ){
3931 sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq);
3932 nConstraint++;
3933 startEq = 0;
3934 start_constraints = 1;
3935 }
3936 codeApplyAffinity(pParse, regBase, nConstraint, zStartAff);
3937 op = aStartOp[(start_constraints<<2) + (startEq<<1) + bRev];
3938 assert( op!=0 );
3939 testcase( op==OP_Rewind );
3940 testcase( op==OP_Last );
3941 testcase( op==OP_SeekGt );
3942 testcase( op==OP_SeekGe );
3943 testcase( op==OP_SeekLe );
3944 testcase( op==OP_SeekLt );
3945 sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint);
3946
3947 /* Load the value for the inequality constraint at the end of the
3948 ** range (if any).
3949 */
3950 nConstraint = nEq;
3951 if( pRangeEnd ){
3952 Expr *pRight = pRangeEnd->pExpr->pRight;
3953 sqlite3ExprCacheRemove(pParse, regBase+nEq, 1);
3954 sqlite3ExprCode(pParse, pRight, regBase+nEq);
3955 if( (pRangeEnd->wtFlags & TERM_VNULL)==0 ){
3956 sqlite3ExprCodeIsNullJump(v, pRight, regBase+nEq, addrNxt);
3957 }
3958 if( zEndAff ){
3959 if( sqlite3CompareAffinity(pRight, zEndAff[nEq])==SQLITE_AFF_NONE){
3960 /* Since the comparison is to be performed with no conversions
3961 ** applied to the operands, set the affinity to apply to pRight to
3962 ** SQLITE_AFF_NONE. */
3963 zEndAff[nEq] = SQLITE_AFF_NONE;
3964 }
3965 if( sqlite3ExprNeedsNoAffinityChange(pRight, zEndAff[nEq]) ){
3966 zEndAff[nEq] = SQLITE_AFF_NONE;
3967 }
3968 }
3969 codeApplyAffinity(pParse, regBase, nEq+1, zEndAff);
3970 nConstraint++;
3971 testcase( pRangeEnd->wtFlags & TERM_VIRTUAL ); /* EV: R-30575-11662 */
3972 }
3973 sqlite3DbFree(pParse->db, zStartAff);
3974 sqlite3DbFree(pParse->db, zEndAff);
3975
3976 /* Top of the loop body */
3977 pLevel->p2 = sqlite3VdbeCurrentAddr(v);
3978
3979 /* Check if the index cursor is past the end of the range. */
3980 op = aEndOp[(pRangeEnd || nEq) * (1 + bRev)];
3981 testcase( op==OP_Noop );
3982 testcase( op==OP_IdxGE );
3983 testcase( op==OP_IdxLT );
3984 if( op!=OP_Noop ){
3985 sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint);
3986 sqlite3VdbeChangeP5(v, endEq!=bRev ?1:0);
3987 }
3988
3989 /* If there are inequality constraints, check that the value
3990 ** of the table column that the inequality contrains is not NULL.
3991 ** If it is, jump to the next iteration of the loop.
3992 */
3993 r1 = sqlite3GetTempReg(pParse);
3994 testcase( pLevel->plan.wsFlags & WHERE_BTM_LIMIT );
3995 testcase( pLevel->plan.wsFlags & WHERE_TOP_LIMIT );
3996 if( (pLevel->plan.wsFlags & (WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))!=0 ){
3997 sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, nEq, r1);
3998 sqlite3VdbeAddOp2(v, OP_IsNull, r1, addrCont);
3999 }
4000 sqlite3ReleaseTempReg(pParse, r1);
4001
4002 /* Seek the table cursor, if required */
4003 disableTerm(pLevel, pRangeStart);
4004 disableTerm(pLevel, pRangeEnd);
4005 if( !omitTable ){
4006 iRowidReg = iReleaseReg = sqlite3GetTempReg(pParse);
4007 sqlite3VdbeAddOp2(v, OP_IdxRowid, iIdxCur, iRowidReg);
4008 sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg);
4009 sqlite3VdbeAddOp2(v, OP_Seek, iCur, iRowidReg); /* Deferred seek */
4010 }
4011
4012 /* Record the instruction used to terminate the loop. Disable
4013 ** WHERE clause terms made redundant by the index range scan.
4014 */
4015 if( pLevel->plan.wsFlags & WHERE_UNIQUE ){
4016 pLevel->op = OP_Noop;
4017 }else if( bRev ){
4018 pLevel->op = OP_Prev;
4019 }else{
4020 pLevel->op = OP_Next;
4021 }
4022 pLevel->p1 = iIdxCur;
4023 }else
4024
4025 #ifndef SQLITE_OMIT_OR_OPTIMIZATION
4026 if( pLevel->plan.wsFlags & WHERE_MULTI_OR ){
4027 /* Case 4: Two or more separately indexed terms connected by OR
4028 **
4029 ** Example:
4030 **
4031 ** CREATE TABLE t1(a,b,c,d);
4032 ** CREATE INDEX i1 ON t1(a);
4033 ** CREATE INDEX i2 ON t1(b);
4034 ** CREATE INDEX i3 ON t1(c);
4035 **
4036 ** SELECT * FROM t1 WHERE a=5 OR b=7 OR (c=11 AND d=13)
4037 **
4038 ** In the example, there are three indexed terms connected by OR.
4039 ** The top of the loop looks like this:
4040 **
4041 ** Null 1 # Zero the rowset in reg 1
4042 **
4043 ** Then, for each indexed term, the following. The arguments to
4044 ** RowSetTest are such that the rowid of the current row is inserted
4045 ** into the RowSet. If it is already present, control skips the
4046 ** Gosub opcode and jumps straight to the code generated by WhereEnd().
4047 **
4048 ** sqlite3WhereBegin(<term>)
4049 ** RowSetTest # Insert rowid into rowset
4050 ** Gosub 2 A
4051 ** sqlite3WhereEnd()
4052 **
4053 ** Following the above, code to terminate the loop. Label A, the target
4054 ** of the Gosub above, jumps to the instruction right after the Goto.
4055 **
4056 ** Null 1 # Zero the rowset in reg 1
4057 ** Goto B # The loop is finished.
4058 **
4059 ** A: <loop body> # Return data, whatever.
4060 **
4061 ** Return 2 # Jump back to the Gosub
4062 **
4063 ** B: <after the loop>
4064 **
4065 */
4066 WhereClause *pOrWc; /* The OR-clause broken out into subterms */
4067 SrcList *pOrTab; /* Shortened table list or OR-clause generation */
4068
4069 int regReturn = ++pParse->nMem; /* Register used with OP_Gosub */
4070 int regRowset = 0; /* Register for RowSet object */
4071 int regRowid = 0; /* Register holding rowid */
4072 int iLoopBody = sqlite3VdbeMakeLabel(v); /* Start of loop body */
4073 int iRetInit; /* Address of regReturn init */
4074 int untestedTerms = 0; /* Some terms not completely tested */
4075 int ii;
4076
4077 pTerm = pLevel->plan.u.pTerm;
4078 assert( pTerm!=0 );
4079 assert( pTerm->eOperator==WO_OR );
4080 assert( (pTerm->wtFlags & TERM_ORINFO)!=0 );
4081 pOrWc = &pTerm->u.pOrInfo->wc;
4082 pLevel->op = OP_Return;
4083 pLevel->p1 = regReturn;
4084
4085 /* Set up a new SrcList ni pOrTab containing the table being scanned
4086 ** by this loop in the a[0] slot and all notReady tables in a[1..] slots.
4087 ** This becomes the SrcList in the recursive call to sqlite3WhereBegin().
4088 */
4089 if( pWInfo->nLevel>1 ){
4090 int nNotReady; /* The number of notReady tables */
4091 struct SrcList_item *origSrc; /* Original list of tables */
4092 nNotReady = pWInfo->nLevel - iLevel - 1;
4093 pOrTab = sqlite3StackAllocRaw(pParse->db,
4094 sizeof(*pOrTab)+ nNotReady*sizeof(pOrTab->a[0]));
4095 if( pOrTab==0 ) return notReady;
4096 pOrTab->nAlloc = (i16)(nNotReady + 1);
4097 pOrTab->nSrc = pOrTab->nAlloc;
4098 memcpy(pOrTab->a, pTabItem, sizeof(*pTabItem));
4099 origSrc = pWInfo->pTabList->a;
4100 for(k=1; k<=nNotReady; k++){
4101 memcpy(&pOrTab->a[k], &origSrc[pLevel[k].iFrom], sizeof(pOrTab->a[k]));
4102 }
4103 }else{
4104 pOrTab = pWInfo->pTabList;
4105 }
4106
4107 /* Initialize the rowset register to contain NULL. An SQL NULL is
4108 ** equivalent to an empty rowset.
4109 **
4110 ** Also initialize regReturn to contain the address of the instruction
4111 ** immediately following the OP_Return at the bottom of the loop. This
4112 ** is required in a few obscure LEFT JOIN cases where control jumps
4113 ** over the top of the loop into the body of it. In this case the
4114 ** correct response for the end-of-loop code (the OP_Return) is to
4115 ** fall through to the next instruction, just as an OP_Next does if
4116 ** called on an uninitialized cursor.
4117 */
4118 if( (wctrlFlags & WHERE_DUPLICATES_OK)==0 ){
4119 regRowset = ++pParse->nMem;
4120 regRowid = ++pParse->nMem;
4121 sqlite3VdbeAddOp2(v, OP_Null, 0, regRowset);
4122 }
4123 iRetInit = sqlite3VdbeAddOp2(v, OP_Integer, 0, regReturn);
4124
4125 for(ii=0; ii<pOrWc->nTerm; ii++){
4126 WhereTerm *pOrTerm = &pOrWc->a[ii];
4127 if( pOrTerm->leftCursor==iCur || pOrTerm->eOperator==WO_AND ){
4128 WhereInfo *pSubWInfo; /* Info for single OR-term scan */
4129 /* Loop through table entries that match term pOrTerm. */
4130 pSubWInfo = sqlite3WhereBegin(pParse, pOrTab, pOrTerm->pExpr, 0,
4131 WHERE_OMIT_OPEN | WHERE_OMIT_CLOSE |
4132 WHERE_FORCE_TABLE | WHERE_ONETABLE_ONLY);
4133 if( pSubWInfo ){
4134 explainOneScan(
4135 pParse, pOrTab, &pSubWInfo->a[0], iLevel, pLevel->iFrom, 0
4136 );
4137 if( (wctrlFlags & WHERE_DUPLICATES_OK)==0 ){
4138 int iSet = ((ii==pOrWc->nTerm-1)?-1:ii);
4139 int r;
4140 r = sqlite3ExprCodeGetColumn(pParse, pTabItem->pTab, -1, iCur,
4141 regRowid);
4142 sqlite3VdbeAddOp4Int(v, OP_RowSetTest, regRowset,
4143 sqlite3VdbeCurrentAddr(v)+2, r, iSet);
4144 }
4145 sqlite3VdbeAddOp2(v, OP_Gosub, regReturn, iLoopBody);
4146
4147 /* The pSubWInfo->untestedTerms flag means that this OR term
4148 ** contained one or more AND term from a notReady table. The
4149 ** terms from the notReady table could not be tested and will
4150 ** need to be tested later.
4151 */
4152 if( pSubWInfo->untestedTerms ) untestedTerms = 1;
4153
4154 /* Finish the loop through table entries that match term pOrTerm. */
4155 sqlite3WhereEnd(pSubWInfo);
4156 }
4157 }
4158 }
4159 sqlite3VdbeChangeP1(v, iRetInit, sqlite3VdbeCurrentAddr(v));
4160 sqlite3VdbeAddOp2(v, OP_Goto, 0, pLevel->addrBrk);
4161 sqlite3VdbeResolveLabel(v, iLoopBody);
4162
4163 if( pWInfo->nLevel>1 ) sqlite3StackFree(pParse->db, pOrTab);
4164 if( !untestedTerms ) disableTerm(pLevel, pTerm);
4165 }else
4166 #endif /* SQLITE_OMIT_OR_OPTIMIZATION */
4167
4168 {
4169 /* Case 5: There is no usable index. We must do a complete
4170 ** scan of the entire table.
4171 */
4172 static const u8 aStep[] = { OP_Next, OP_Prev };
4173 static const u8 aStart[] = { OP_Rewind, OP_Last };
4174 assert( bRev==0 || bRev==1 );
4175 assert( omitTable==0 );
4176 pLevel->op = aStep[bRev];
4177 pLevel->p1 = iCur;
4178 pLevel->p2 = 1 + sqlite3VdbeAddOp2(v, aStart[bRev], iCur, addrBrk);
4179 pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP;
4180 }
4181 notReady &= ~getMask(pWC->pMaskSet, iCur);
4182
4183 /* Insert code to test every subexpression that can be completely
4184 ** computed using the current set of tables.
4185 **
4186 ** IMPLEMENTATION-OF: R-49525-50935 Terms that cannot be satisfied through
4187 ** the use of indices become tests that are evaluated against each row of
4188 ** the relevant input tables.
4189 */
4190 for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){
4191 Expr *pE;
4192 testcase( pTerm->wtFlags & TERM_VIRTUAL ); /* IMP: R-30575-11662 */
4193 testcase( pTerm->wtFlags & TERM_CODED );
4194 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
4195 if( (pTerm->prereqAll & notReady)!=0 ){
4196 testcase( pWInfo->untestedTerms==0
4197 && (pWInfo->wctrlFlags & WHERE_ONETABLE_ONLY)!=0 );
4198 pWInfo->untestedTerms = 1;
4199 continue;
4200 }
4201 pE = pTerm->pExpr;
4202 assert( pE!=0 );
4203 if( pLevel->iLeftJoin && !ExprHasProperty(pE, EP_FromJoin) ){
4204 continue;
4205 }
4206 sqlite3ExprIfFalse(pParse, pE, addrCont, SQLITE_JUMPIFNULL);
4207 pTerm->wtFlags |= TERM_CODED;
4208 }
4209
4210 /* For a LEFT OUTER JOIN, generate code that will record the fact that
4211 ** at least one row of the right table has matched the left table.
4212 */
4213 if( pLevel->iLeftJoin ){
4214 pLevel->addrFirst = sqlite3VdbeCurrentAddr(v);
4215 sqlite3VdbeAddOp2(v, OP_Integer, 1, pLevel->iLeftJoin);
4216 VdbeComment((v, "record LEFT JOIN hit"));
4217 sqlite3ExprCacheClear(pParse);
4218 for(pTerm=pWC->a, j=0; j<pWC->nTerm; j++, pTerm++){
4219 testcase( pTerm->wtFlags & TERM_VIRTUAL ); /* IMP: R-30575-11662 */
4220 testcase( pTerm->wtFlags & TERM_CODED );
4221 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
4222 if( (pTerm->prereqAll & notReady)!=0 ){
4223 assert( pWInfo->untestedTerms );
4224 continue;
4225 }
4226 assert( pTerm->pExpr );
4227 sqlite3ExprIfFalse(pParse, pTerm->pExpr, addrCont, SQLITE_JUMPIFNULL);
4228 pTerm->wtFlags |= TERM_CODED;
4229 }
4230 }
4231 sqlite3ReleaseTempReg(pParse, iReleaseReg);
4232
4233 return notReady;
4234 }
4235
4236 #if defined(SQLITE_TEST)
4237 /*
4238 ** The following variable holds a text description of query plan generated
4239 ** by the most recent call to sqlite3WhereBegin(). Each call to WhereBegin
4240 ** overwrites the previous. This information is used for testing and
4241 ** analysis only.
4242 */
4243 char sqlite3_query_plan[BMS*2*40]; /* Text of the join */
4244 static int nQPlan = 0; /* Next free slow in _query_plan[] */
4245
4246 #endif /* SQLITE_TEST */
4247
4248
4249 /*
4250 ** Free a WhereInfo structure
4251 */
whereInfoFree(sqlite3 * db,WhereInfo * pWInfo)4252 static void whereInfoFree(sqlite3 *db, WhereInfo *pWInfo){
4253 if( ALWAYS(pWInfo) ){
4254 int i;
4255 for(i=0; i<pWInfo->nLevel; i++){
4256 sqlite3_index_info *pInfo = pWInfo->a[i].pIdxInfo;
4257 if( pInfo ){
4258 /* assert( pInfo->needToFreeIdxStr==0 || db->mallocFailed ); */
4259 if( pInfo->needToFreeIdxStr ){
4260 sqlite3_free(pInfo->idxStr);
4261 }
4262 sqlite3DbFree(db, pInfo);
4263 }
4264 if( pWInfo->a[i].plan.wsFlags & WHERE_TEMP_INDEX ){
4265 Index *pIdx = pWInfo->a[i].plan.u.pIdx;
4266 if( pIdx ){
4267 sqlite3DbFree(db, pIdx->zColAff);
4268 sqlite3DbFree(db, pIdx);
4269 }
4270 }
4271 }
4272 whereClauseClear(pWInfo->pWC);
4273 sqlite3DbFree(db, pWInfo);
4274 }
4275 }
4276
4277
4278 /*
4279 ** Generate the beginning of the loop used for WHERE clause processing.
4280 ** The return value is a pointer to an opaque structure that contains
4281 ** information needed to terminate the loop. Later, the calling routine
4282 ** should invoke sqlite3WhereEnd() with the return value of this function
4283 ** in order to complete the WHERE clause processing.
4284 **
4285 ** If an error occurs, this routine returns NULL.
4286 **
4287 ** The basic idea is to do a nested loop, one loop for each table in
4288 ** the FROM clause of a select. (INSERT and UPDATE statements are the
4289 ** same as a SELECT with only a single table in the FROM clause.) For
4290 ** example, if the SQL is this:
4291 **
4292 ** SELECT * FROM t1, t2, t3 WHERE ...;
4293 **
4294 ** Then the code generated is conceptually like the following:
4295 **
4296 ** foreach row1 in t1 do \ Code generated
4297 ** foreach row2 in t2 do |-- by sqlite3WhereBegin()
4298 ** foreach row3 in t3 do /
4299 ** ...
4300 ** end \ Code generated
4301 ** end |-- by sqlite3WhereEnd()
4302 ** end /
4303 **
4304 ** Note that the loops might not be nested in the order in which they
4305 ** appear in the FROM clause if a different order is better able to make
4306 ** use of indices. Note also that when the IN operator appears in
4307 ** the WHERE clause, it might result in additional nested loops for
4308 ** scanning through all values on the right-hand side of the IN.
4309 **
4310 ** There are Btree cursors associated with each table. t1 uses cursor
4311 ** number pTabList->a[0].iCursor. t2 uses the cursor pTabList->a[1].iCursor.
4312 ** And so forth. This routine generates code to open those VDBE cursors
4313 ** and sqlite3WhereEnd() generates the code to close them.
4314 **
4315 ** The code that sqlite3WhereBegin() generates leaves the cursors named
4316 ** in pTabList pointing at their appropriate entries. The [...] code
4317 ** can use OP_Column and OP_Rowid opcodes on these cursors to extract
4318 ** data from the various tables of the loop.
4319 **
4320 ** If the WHERE clause is empty, the foreach loops must each scan their
4321 ** entire tables. Thus a three-way join is an O(N^3) operation. But if
4322 ** the tables have indices and there are terms in the WHERE clause that
4323 ** refer to those indices, a complete table scan can be avoided and the
4324 ** code will run much faster. Most of the work of this routine is checking
4325 ** to see if there are indices that can be used to speed up the loop.
4326 **
4327 ** Terms of the WHERE clause are also used to limit which rows actually
4328 ** make it to the "..." in the middle of the loop. After each "foreach",
4329 ** terms of the WHERE clause that use only terms in that loop and outer
4330 ** loops are evaluated and if false a jump is made around all subsequent
4331 ** inner loops (or around the "..." if the test occurs within the inner-
4332 ** most loop)
4333 **
4334 ** OUTER JOINS
4335 **
4336 ** An outer join of tables t1 and t2 is conceptally coded as follows:
4337 **
4338 ** foreach row1 in t1 do
4339 ** flag = 0
4340 ** foreach row2 in t2 do
4341 ** start:
4342 ** ...
4343 ** flag = 1
4344 ** end
4345 ** if flag==0 then
4346 ** move the row2 cursor to a null row
4347 ** goto start
4348 ** fi
4349 ** end
4350 **
4351 ** ORDER BY CLAUSE PROCESSING
4352 **
4353 ** *ppOrderBy is a pointer to the ORDER BY clause of a SELECT statement,
4354 ** if there is one. If there is no ORDER BY clause or if this routine
4355 ** is called from an UPDATE or DELETE statement, then ppOrderBy is NULL.
4356 **
4357 ** If an index can be used so that the natural output order of the table
4358 ** scan is correct for the ORDER BY clause, then that index is used and
4359 ** *ppOrderBy is set to NULL. This is an optimization that prevents an
4360 ** unnecessary sort of the result set if an index appropriate for the
4361 ** ORDER BY clause already exists.
4362 **
4363 ** If the where clause loops cannot be arranged to provide the correct
4364 ** output order, then the *ppOrderBy is unchanged.
4365 */
sqlite3WhereBegin(Parse * pParse,SrcList * pTabList,Expr * pWhere,ExprList ** ppOrderBy,u16 wctrlFlags)4366 WhereInfo *sqlite3WhereBegin(
4367 Parse *pParse, /* The parser context */
4368 SrcList *pTabList, /* A list of all tables to be scanned */
4369 Expr *pWhere, /* The WHERE clause */
4370 ExprList **ppOrderBy, /* An ORDER BY clause, or NULL */
4371 u16 wctrlFlags /* One of the WHERE_* flags defined in sqliteInt.h */
4372 ){
4373 int i; /* Loop counter */
4374 int nByteWInfo; /* Num. bytes allocated for WhereInfo struct */
4375 int nTabList; /* Number of elements in pTabList */
4376 WhereInfo *pWInfo; /* Will become the return value of this function */
4377 Vdbe *v = pParse->pVdbe; /* The virtual database engine */
4378 Bitmask notReady; /* Cursors that are not yet positioned */
4379 WhereMaskSet *pMaskSet; /* The expression mask set */
4380 WhereClause *pWC; /* Decomposition of the WHERE clause */
4381 struct SrcList_item *pTabItem; /* A single entry from pTabList */
4382 WhereLevel *pLevel; /* A single level in the pWInfo list */
4383 int iFrom; /* First unused FROM clause element */
4384 int andFlags; /* AND-ed combination of all pWC->a[].wtFlags */
4385 sqlite3 *db; /* Database connection */
4386
4387 /* The number of tables in the FROM clause is limited by the number of
4388 ** bits in a Bitmask
4389 */
4390 testcase( pTabList->nSrc==BMS );
4391 if( pTabList->nSrc>BMS ){
4392 sqlite3ErrorMsg(pParse, "at most %d tables in a join", BMS);
4393 return 0;
4394 }
4395
4396 /* This function normally generates a nested loop for all tables in
4397 ** pTabList. But if the WHERE_ONETABLE_ONLY flag is set, then we should
4398 ** only generate code for the first table in pTabList and assume that
4399 ** any cursors associated with subsequent tables are uninitialized.
4400 */
4401 nTabList = (wctrlFlags & WHERE_ONETABLE_ONLY) ? 1 : pTabList->nSrc;
4402
4403 /* Allocate and initialize the WhereInfo structure that will become the
4404 ** return value. A single allocation is used to store the WhereInfo
4405 ** struct, the contents of WhereInfo.a[], the WhereClause structure
4406 ** and the WhereMaskSet structure. Since WhereClause contains an 8-byte
4407 ** field (type Bitmask) it must be aligned on an 8-byte boundary on
4408 ** some architectures. Hence the ROUND8() below.
4409 */
4410 db = pParse->db;
4411 nByteWInfo = ROUND8(sizeof(WhereInfo)+(nTabList-1)*sizeof(WhereLevel));
4412 pWInfo = sqlite3DbMallocZero(db,
4413 nByteWInfo +
4414 sizeof(WhereClause) +
4415 sizeof(WhereMaskSet)
4416 );
4417 if( db->mallocFailed ){
4418 sqlite3DbFree(db, pWInfo);
4419 pWInfo = 0;
4420 goto whereBeginError;
4421 }
4422 pWInfo->nLevel = nTabList;
4423 pWInfo->pParse = pParse;
4424 pWInfo->pTabList = pTabList;
4425 pWInfo->iBreak = sqlite3VdbeMakeLabel(v);
4426 pWInfo->pWC = pWC = (WhereClause *)&((u8 *)pWInfo)[nByteWInfo];
4427 pWInfo->wctrlFlags = wctrlFlags;
4428 pWInfo->savedNQueryLoop = pParse->nQueryLoop;
4429 pMaskSet = (WhereMaskSet*)&pWC[1];
4430
4431 /* Split the WHERE clause into separate subexpressions where each
4432 ** subexpression is separated by an AND operator.
4433 */
4434 initMaskSet(pMaskSet);
4435 whereClauseInit(pWC, pParse, pMaskSet);
4436 sqlite3ExprCodeConstants(pParse, pWhere);
4437 whereSplit(pWC, pWhere, TK_AND); /* IMP: R-15842-53296 */
4438
4439 /* Special case: a WHERE clause that is constant. Evaluate the
4440 ** expression and either jump over all of the code or fall thru.
4441 */
4442 if( pWhere && (nTabList==0 || sqlite3ExprIsConstantNotJoin(pWhere)) ){
4443 sqlite3ExprIfFalse(pParse, pWhere, pWInfo->iBreak, SQLITE_JUMPIFNULL);
4444 pWhere = 0;
4445 }
4446
4447 /* Assign a bit from the bitmask to every term in the FROM clause.
4448 **
4449 ** When assigning bitmask values to FROM clause cursors, it must be
4450 ** the case that if X is the bitmask for the N-th FROM clause term then
4451 ** the bitmask for all FROM clause terms to the left of the N-th term
4452 ** is (X-1). An expression from the ON clause of a LEFT JOIN can use
4453 ** its Expr.iRightJoinTable value to find the bitmask of the right table
4454 ** of the join. Subtracting one from the right table bitmask gives a
4455 ** bitmask for all tables to the left of the join. Knowing the bitmask
4456 ** for all tables to the left of a left join is important. Ticket #3015.
4457 **
4458 ** Configure the WhereClause.vmask variable so that bits that correspond
4459 ** to virtual table cursors are set. This is used to selectively disable
4460 ** the OR-to-IN transformation in exprAnalyzeOrTerm(). It is not helpful
4461 ** with virtual tables.
4462 **
4463 ** Note that bitmasks are created for all pTabList->nSrc tables in
4464 ** pTabList, not just the first nTabList tables. nTabList is normally
4465 ** equal to pTabList->nSrc but might be shortened to 1 if the
4466 ** WHERE_ONETABLE_ONLY flag is set.
4467 */
4468 assert( pWC->vmask==0 && pMaskSet->n==0 );
4469 for(i=0; i<pTabList->nSrc; i++){
4470 createMask(pMaskSet, pTabList->a[i].iCursor);
4471 #ifndef SQLITE_OMIT_VIRTUALTABLE
4472 if( ALWAYS(pTabList->a[i].pTab) && IsVirtual(pTabList->a[i].pTab) ){
4473 pWC->vmask |= ((Bitmask)1 << i);
4474 }
4475 #endif
4476 }
4477 #ifndef NDEBUG
4478 {
4479 Bitmask toTheLeft = 0;
4480 for(i=0; i<pTabList->nSrc; i++){
4481 Bitmask m = getMask(pMaskSet, pTabList->a[i].iCursor);
4482 assert( (m-1)==toTheLeft );
4483 toTheLeft |= m;
4484 }
4485 }
4486 #endif
4487
4488 /* Analyze all of the subexpressions. Note that exprAnalyze() might
4489 ** add new virtual terms onto the end of the WHERE clause. We do not
4490 ** want to analyze these virtual terms, so start analyzing at the end
4491 ** and work forward so that the added virtual terms are never processed.
4492 */
4493 exprAnalyzeAll(pTabList, pWC);
4494 if( db->mallocFailed ){
4495 goto whereBeginError;
4496 }
4497
4498 /* Chose the best index to use for each table in the FROM clause.
4499 **
4500 ** This loop fills in the following fields:
4501 **
4502 ** pWInfo->a[].pIdx The index to use for this level of the loop.
4503 ** pWInfo->a[].wsFlags WHERE_xxx flags associated with pIdx
4504 ** pWInfo->a[].nEq The number of == and IN constraints
4505 ** pWInfo->a[].iFrom Which term of the FROM clause is being coded
4506 ** pWInfo->a[].iTabCur The VDBE cursor for the database table
4507 ** pWInfo->a[].iIdxCur The VDBE cursor for the index
4508 ** pWInfo->a[].pTerm When wsFlags==WO_OR, the OR-clause term
4509 **
4510 ** This loop also figures out the nesting order of tables in the FROM
4511 ** clause.
4512 */
4513 notReady = ~(Bitmask)0;
4514 andFlags = ~0;
4515 WHERETRACE(("*** Optimizer Start ***\n"));
4516 for(i=iFrom=0, pLevel=pWInfo->a; i<nTabList; i++, pLevel++){
4517 WhereCost bestPlan; /* Most efficient plan seen so far */
4518 Index *pIdx; /* Index for FROM table at pTabItem */
4519 int j; /* For looping over FROM tables */
4520 int bestJ = -1; /* The value of j */
4521 Bitmask m; /* Bitmask value for j or bestJ */
4522 int isOptimal; /* Iterator for optimal/non-optimal search */
4523 int nUnconstrained; /* Number tables without INDEXED BY */
4524 Bitmask notIndexed; /* Mask of tables that cannot use an index */
4525
4526 memset(&bestPlan, 0, sizeof(bestPlan));
4527 bestPlan.rCost = SQLITE_BIG_DBL;
4528 WHERETRACE(("*** Begin search for loop %d ***\n", i));
4529
4530 /* Loop through the remaining entries in the FROM clause to find the
4531 ** next nested loop. The loop tests all FROM clause entries
4532 ** either once or twice.
4533 **
4534 ** The first test is always performed if there are two or more entries
4535 ** remaining and never performed if there is only one FROM clause entry
4536 ** to choose from. The first test looks for an "optimal" scan. In
4537 ** this context an optimal scan is one that uses the same strategy
4538 ** for the given FROM clause entry as would be selected if the entry
4539 ** were used as the innermost nested loop. In other words, a table
4540 ** is chosen such that the cost of running that table cannot be reduced
4541 ** by waiting for other tables to run first. This "optimal" test works
4542 ** by first assuming that the FROM clause is on the inner loop and finding
4543 ** its query plan, then checking to see if that query plan uses any
4544 ** other FROM clause terms that are notReady. If no notReady terms are
4545 ** used then the "optimal" query plan works.
4546 **
4547 ** Note that the WhereCost.nRow parameter for an optimal scan might
4548 ** not be as small as it would be if the table really were the innermost
4549 ** join. The nRow value can be reduced by WHERE clause constraints
4550 ** that do not use indices. But this nRow reduction only happens if the
4551 ** table really is the innermost join.
4552 **
4553 ** The second loop iteration is only performed if no optimal scan
4554 ** strategies were found by the first iteration. This second iteration
4555 ** is used to search for the lowest cost scan overall.
4556 **
4557 ** Previous versions of SQLite performed only the second iteration -
4558 ** the next outermost loop was always that with the lowest overall
4559 ** cost. However, this meant that SQLite could select the wrong plan
4560 ** for scripts such as the following:
4561 **
4562 ** CREATE TABLE t1(a, b);
4563 ** CREATE TABLE t2(c, d);
4564 ** SELECT * FROM t2, t1 WHERE t2.rowid = t1.a;
4565 **
4566 ** The best strategy is to iterate through table t1 first. However it
4567 ** is not possible to determine this with a simple greedy algorithm.
4568 ** Since the cost of a linear scan through table t2 is the same
4569 ** as the cost of a linear scan through table t1, a simple greedy
4570 ** algorithm may choose to use t2 for the outer loop, which is a much
4571 ** costlier approach.
4572 */
4573 nUnconstrained = 0;
4574 notIndexed = 0;
4575 for(isOptimal=(iFrom<nTabList-1); isOptimal>=0 && bestJ<0; isOptimal--){
4576 Bitmask mask; /* Mask of tables not yet ready */
4577 for(j=iFrom, pTabItem=&pTabList->a[j]; j<nTabList; j++, pTabItem++){
4578 int doNotReorder; /* True if this table should not be reordered */
4579 WhereCost sCost; /* Cost information from best[Virtual]Index() */
4580 ExprList *pOrderBy; /* ORDER BY clause for index to optimize */
4581
4582 doNotReorder = (pTabItem->jointype & (JT_LEFT|JT_CROSS))!=0;
4583 if( j!=iFrom && doNotReorder ) break;
4584 m = getMask(pMaskSet, pTabItem->iCursor);
4585 if( (m & notReady)==0 ){
4586 if( j==iFrom ) iFrom++;
4587 continue;
4588 }
4589 mask = (isOptimal ? m : notReady);
4590 pOrderBy = ((i==0 && ppOrderBy )?*ppOrderBy:0);
4591 if( pTabItem->pIndex==0 ) nUnconstrained++;
4592
4593 WHERETRACE(("=== trying table %d with isOptimal=%d ===\n",
4594 j, isOptimal));
4595 assert( pTabItem->pTab );
4596 #ifndef SQLITE_OMIT_VIRTUALTABLE
4597 if( IsVirtual(pTabItem->pTab) ){
4598 sqlite3_index_info **pp = &pWInfo->a[j].pIdxInfo;
4599 bestVirtualIndex(pParse, pWC, pTabItem, mask, notReady, pOrderBy,
4600 &sCost, pp);
4601 }else
4602 #endif
4603 {
4604 bestBtreeIndex(pParse, pWC, pTabItem, mask, notReady, pOrderBy,
4605 &sCost);
4606 }
4607 assert( isOptimal || (sCost.used¬Ready)==0 );
4608
4609 /* If an INDEXED BY clause is present, then the plan must use that
4610 ** index if it uses any index at all */
4611 assert( pTabItem->pIndex==0
4612 || (sCost.plan.wsFlags & WHERE_NOT_FULLSCAN)==0
4613 || sCost.plan.u.pIdx==pTabItem->pIndex );
4614
4615 if( isOptimal && (sCost.plan.wsFlags & WHERE_NOT_FULLSCAN)==0 ){
4616 notIndexed |= m;
4617 }
4618
4619 /* Conditions under which this table becomes the best so far:
4620 **
4621 ** (1) The table must not depend on other tables that have not
4622 ** yet run.
4623 **
4624 ** (2) A full-table-scan plan cannot supercede indexed plan unless
4625 ** the full-table-scan is an "optimal" plan as defined above.
4626 **
4627 ** (3) All tables have an INDEXED BY clause or this table lacks an
4628 ** INDEXED BY clause or this table uses the specific
4629 ** index specified by its INDEXED BY clause. This rule ensures
4630 ** that a best-so-far is always selected even if an impossible
4631 ** combination of INDEXED BY clauses are given. The error
4632 ** will be detected and relayed back to the application later.
4633 ** The NEVER() comes about because rule (2) above prevents
4634 ** An indexable full-table-scan from reaching rule (3).
4635 **
4636 ** (4) The plan cost must be lower than prior plans or else the
4637 ** cost must be the same and the number of rows must be lower.
4638 */
4639 if( (sCost.used¬Ready)==0 /* (1) */
4640 && (bestJ<0 || (notIndexed&m)!=0 /* (2) */
4641 || (bestPlan.plan.wsFlags & WHERE_NOT_FULLSCAN)==0
4642 || (sCost.plan.wsFlags & WHERE_NOT_FULLSCAN)!=0)
4643 && (nUnconstrained==0 || pTabItem->pIndex==0 /* (3) */
4644 || NEVER((sCost.plan.wsFlags & WHERE_NOT_FULLSCAN)!=0))
4645 && (bestJ<0 || sCost.rCost<bestPlan.rCost /* (4) */
4646 || (sCost.rCost<=bestPlan.rCost
4647 && sCost.plan.nRow<bestPlan.plan.nRow))
4648 ){
4649 WHERETRACE(("=== table %d is best so far"
4650 " with cost=%g and nRow=%g\n",
4651 j, sCost.rCost, sCost.plan.nRow));
4652 bestPlan = sCost;
4653 bestJ = j;
4654 }
4655 if( doNotReorder ) break;
4656 }
4657 }
4658 assert( bestJ>=0 );
4659 assert( notReady & getMask(pMaskSet, pTabList->a[bestJ].iCursor) );
4660 WHERETRACE(("*** Optimizer selects table %d for loop %d"
4661 " with cost=%g and nRow=%g\n",
4662 bestJ, pLevel-pWInfo->a, bestPlan.rCost, bestPlan.plan.nRow));
4663 if( (bestPlan.plan.wsFlags & WHERE_ORDERBY)!=0 ){
4664 *ppOrderBy = 0;
4665 }
4666 andFlags &= bestPlan.plan.wsFlags;
4667 pLevel->plan = bestPlan.plan;
4668 testcase( bestPlan.plan.wsFlags & WHERE_INDEXED );
4669 testcase( bestPlan.plan.wsFlags & WHERE_TEMP_INDEX );
4670 if( bestPlan.plan.wsFlags & (WHERE_INDEXED|WHERE_TEMP_INDEX) ){
4671 pLevel->iIdxCur = pParse->nTab++;
4672 }else{
4673 pLevel->iIdxCur = -1;
4674 }
4675 notReady &= ~getMask(pMaskSet, pTabList->a[bestJ].iCursor);
4676 pLevel->iFrom = (u8)bestJ;
4677 if( bestPlan.plan.nRow>=(double)1 ){
4678 pParse->nQueryLoop *= bestPlan.plan.nRow;
4679 }
4680
4681 /* Check that if the table scanned by this loop iteration had an
4682 ** INDEXED BY clause attached to it, that the named index is being
4683 ** used for the scan. If not, then query compilation has failed.
4684 ** Return an error.
4685 */
4686 pIdx = pTabList->a[bestJ].pIndex;
4687 if( pIdx ){
4688 if( (bestPlan.plan.wsFlags & WHERE_INDEXED)==0 ){
4689 sqlite3ErrorMsg(pParse, "cannot use index: %s", pIdx->zName);
4690 goto whereBeginError;
4691 }else{
4692 /* If an INDEXED BY clause is used, the bestIndex() function is
4693 ** guaranteed to find the index specified in the INDEXED BY clause
4694 ** if it find an index at all. */
4695 assert( bestPlan.plan.u.pIdx==pIdx );
4696 }
4697 }
4698 }
4699 WHERETRACE(("*** Optimizer Finished ***\n"));
4700 if( pParse->nErr || db->mallocFailed ){
4701 goto whereBeginError;
4702 }
4703
4704 /* If the total query only selects a single row, then the ORDER BY
4705 ** clause is irrelevant.
4706 */
4707 if( (andFlags & WHERE_UNIQUE)!=0 && ppOrderBy ){
4708 *ppOrderBy = 0;
4709 }
4710
4711 /* If the caller is an UPDATE or DELETE statement that is requesting
4712 ** to use a one-pass algorithm, determine if this is appropriate.
4713 ** The one-pass algorithm only works if the WHERE clause constraints
4714 ** the statement to update a single row.
4715 */
4716 assert( (wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || pWInfo->nLevel==1 );
4717 if( (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0 && (andFlags & WHERE_UNIQUE)!=0 ){
4718 pWInfo->okOnePass = 1;
4719 pWInfo->a[0].plan.wsFlags &= ~WHERE_IDX_ONLY;
4720 }
4721
4722 /* Open all tables in the pTabList and any indices selected for
4723 ** searching those tables.
4724 */
4725 sqlite3CodeVerifySchema(pParse, -1); /* Insert the cookie verifier Goto */
4726 notReady = ~(Bitmask)0;
4727 pWInfo->nRowOut = (double)1;
4728 for(i=0, pLevel=pWInfo->a; i<nTabList; i++, pLevel++){
4729 Table *pTab; /* Table to open */
4730 int iDb; /* Index of database containing table/index */
4731
4732 pTabItem = &pTabList->a[pLevel->iFrom];
4733 pTab = pTabItem->pTab;
4734 pLevel->iTabCur = pTabItem->iCursor;
4735 pWInfo->nRowOut *= pLevel->plan.nRow;
4736 iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
4737 if( (pTab->tabFlags & TF_Ephemeral)!=0 || pTab->pSelect ){
4738 /* Do nothing */
4739 }else
4740 #ifndef SQLITE_OMIT_VIRTUALTABLE
4741 if( (pLevel->plan.wsFlags & WHERE_VIRTUALTABLE)!=0 ){
4742 const char *pVTab = (const char *)sqlite3GetVTable(db, pTab);
4743 int iCur = pTabItem->iCursor;
4744 sqlite3VdbeAddOp4(v, OP_VOpen, iCur, 0, 0, pVTab, P4_VTAB);
4745 }else
4746 #endif
4747 if( (pLevel->plan.wsFlags & WHERE_IDX_ONLY)==0
4748 && (wctrlFlags & WHERE_OMIT_OPEN)==0 ){
4749 int op = pWInfo->okOnePass ? OP_OpenWrite : OP_OpenRead;
4750 sqlite3OpenTable(pParse, pTabItem->iCursor, iDb, pTab, op);
4751 testcase( pTab->nCol==BMS-1 );
4752 testcase( pTab->nCol==BMS );
4753 if( !pWInfo->okOnePass && pTab->nCol<BMS ){
4754 Bitmask b = pTabItem->colUsed;
4755 int n = 0;
4756 for(; b; b=b>>1, n++){}
4757 sqlite3VdbeChangeP4(v, sqlite3VdbeCurrentAddr(v)-1,
4758 SQLITE_INT_TO_PTR(n), P4_INT32);
4759 assert( n<=pTab->nCol );
4760 }
4761 }else{
4762 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
4763 }
4764 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
4765 if( (pLevel->plan.wsFlags & WHERE_TEMP_INDEX)!=0 ){
4766 constructAutomaticIndex(pParse, pWC, pTabItem, notReady, pLevel);
4767 }else
4768 #endif
4769 if( (pLevel->plan.wsFlags & WHERE_INDEXED)!=0 ){
4770 Index *pIx = pLevel->plan.u.pIdx;
4771 KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIx);
4772 int iIdxCur = pLevel->iIdxCur;
4773 assert( pIx->pSchema==pTab->pSchema );
4774 assert( iIdxCur>=0 );
4775 sqlite3VdbeAddOp4(v, OP_OpenRead, iIdxCur, pIx->tnum, iDb,
4776 (char*)pKey, P4_KEYINFO_HANDOFF);
4777 VdbeComment((v, "%s", pIx->zName));
4778 }
4779 sqlite3CodeVerifySchema(pParse, iDb);
4780 notReady &= ~getMask(pWC->pMaskSet, pTabItem->iCursor);
4781 }
4782 pWInfo->iTop = sqlite3VdbeCurrentAddr(v);
4783 if( db->mallocFailed ) goto whereBeginError;
4784
4785 /* Generate the code to do the search. Each iteration of the for
4786 ** loop below generates code for a single nested loop of the VM
4787 ** program.
4788 */
4789 notReady = ~(Bitmask)0;
4790 for(i=0; i<nTabList; i++){
4791 pLevel = &pWInfo->a[i];
4792 explainOneScan(pParse, pTabList, pLevel, i, pLevel->iFrom, wctrlFlags);
4793 notReady = codeOneLoopStart(pWInfo, i, wctrlFlags, notReady);
4794 pWInfo->iContinue = pLevel->addrCont;
4795 }
4796
4797 #ifdef SQLITE_TEST /* For testing and debugging use only */
4798 /* Record in the query plan information about the current table
4799 ** and the index used to access it (if any). If the table itself
4800 ** is not used, its name is just '{}'. If no index is used
4801 ** the index is listed as "{}". If the primary key is used the
4802 ** index name is '*'.
4803 */
4804 for(i=0; i<nTabList; i++){
4805 char *z;
4806 int n;
4807 pLevel = &pWInfo->a[i];
4808 pTabItem = &pTabList->a[pLevel->iFrom];
4809 z = pTabItem->zAlias;
4810 if( z==0 ) z = pTabItem->pTab->zName;
4811 n = sqlite3Strlen30(z);
4812 if( n+nQPlan < sizeof(sqlite3_query_plan)-10 ){
4813 if( pLevel->plan.wsFlags & WHERE_IDX_ONLY ){
4814 memcpy(&sqlite3_query_plan[nQPlan], "{}", 2);
4815 nQPlan += 2;
4816 }else{
4817 memcpy(&sqlite3_query_plan[nQPlan], z, n);
4818 nQPlan += n;
4819 }
4820 sqlite3_query_plan[nQPlan++] = ' ';
4821 }
4822 testcase( pLevel->plan.wsFlags & WHERE_ROWID_EQ );
4823 testcase( pLevel->plan.wsFlags & WHERE_ROWID_RANGE );
4824 if( pLevel->plan.wsFlags & (WHERE_ROWID_EQ|WHERE_ROWID_RANGE) ){
4825 memcpy(&sqlite3_query_plan[nQPlan], "* ", 2);
4826 nQPlan += 2;
4827 }else if( (pLevel->plan.wsFlags & WHERE_INDEXED)!=0 ){
4828 n = sqlite3Strlen30(pLevel->plan.u.pIdx->zName);
4829 if( n+nQPlan < sizeof(sqlite3_query_plan)-2 ){
4830 memcpy(&sqlite3_query_plan[nQPlan], pLevel->plan.u.pIdx->zName, n);
4831 nQPlan += n;
4832 sqlite3_query_plan[nQPlan++] = ' ';
4833 }
4834 }else{
4835 memcpy(&sqlite3_query_plan[nQPlan], "{} ", 3);
4836 nQPlan += 3;
4837 }
4838 }
4839 while( nQPlan>0 && sqlite3_query_plan[nQPlan-1]==' ' ){
4840 sqlite3_query_plan[--nQPlan] = 0;
4841 }
4842 sqlite3_query_plan[nQPlan] = 0;
4843 nQPlan = 0;
4844 #endif /* SQLITE_TEST // Testing and debugging use only */
4845
4846 /* Record the continuation address in the WhereInfo structure. Then
4847 ** clean up and return.
4848 */
4849 return pWInfo;
4850
4851 /* Jump here if malloc fails */
4852 whereBeginError:
4853 if( pWInfo ){
4854 pParse->nQueryLoop = pWInfo->savedNQueryLoop;
4855 whereInfoFree(db, pWInfo);
4856 }
4857 return 0;
4858 }
4859
4860 /*
4861 ** Generate the end of the WHERE loop. See comments on
4862 ** sqlite3WhereBegin() for additional information.
4863 */
sqlite3WhereEnd(WhereInfo * pWInfo)4864 void sqlite3WhereEnd(WhereInfo *pWInfo){
4865 Parse *pParse = pWInfo->pParse;
4866 Vdbe *v = pParse->pVdbe;
4867 int i;
4868 WhereLevel *pLevel;
4869 SrcList *pTabList = pWInfo->pTabList;
4870 sqlite3 *db = pParse->db;
4871
4872 /* Generate loop termination code.
4873 */
4874 sqlite3ExprCacheClear(pParse);
4875 for(i=pWInfo->nLevel-1; i>=0; i--){
4876 pLevel = &pWInfo->a[i];
4877 sqlite3VdbeResolveLabel(v, pLevel->addrCont);
4878 if( pLevel->op!=OP_Noop ){
4879 sqlite3VdbeAddOp2(v, pLevel->op, pLevel->p1, pLevel->p2);
4880 sqlite3VdbeChangeP5(v, pLevel->p5);
4881 }
4882 if( pLevel->plan.wsFlags & WHERE_IN_ABLE && pLevel->u.in.nIn>0 ){
4883 struct InLoop *pIn;
4884 int j;
4885 sqlite3VdbeResolveLabel(v, pLevel->addrNxt);
4886 for(j=pLevel->u.in.nIn, pIn=&pLevel->u.in.aInLoop[j-1]; j>0; j--, pIn--){
4887 sqlite3VdbeJumpHere(v, pIn->addrInTop+1);
4888 sqlite3VdbeAddOp2(v, OP_Next, pIn->iCur, pIn->addrInTop);
4889 sqlite3VdbeJumpHere(v, pIn->addrInTop-1);
4890 }
4891 sqlite3DbFree(db, pLevel->u.in.aInLoop);
4892 }
4893 sqlite3VdbeResolveLabel(v, pLevel->addrBrk);
4894 if( pLevel->iLeftJoin ){
4895 int addr;
4896 addr = sqlite3VdbeAddOp1(v, OP_IfPos, pLevel->iLeftJoin);
4897 assert( (pLevel->plan.wsFlags & WHERE_IDX_ONLY)==0
4898 || (pLevel->plan.wsFlags & WHERE_INDEXED)!=0 );
4899 if( (pLevel->plan.wsFlags & WHERE_IDX_ONLY)==0 ){
4900 sqlite3VdbeAddOp1(v, OP_NullRow, pTabList->a[i].iCursor);
4901 }
4902 if( pLevel->iIdxCur>=0 ){
4903 sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iIdxCur);
4904 }
4905 if( pLevel->op==OP_Return ){
4906 sqlite3VdbeAddOp2(v, OP_Gosub, pLevel->p1, pLevel->addrFirst);
4907 }else{
4908 sqlite3VdbeAddOp2(v, OP_Goto, 0, pLevel->addrFirst);
4909 }
4910 sqlite3VdbeJumpHere(v, addr);
4911 }
4912 }
4913
4914 /* The "break" point is here, just past the end of the outer loop.
4915 ** Set it.
4916 */
4917 sqlite3VdbeResolveLabel(v, pWInfo->iBreak);
4918
4919 /* Close all of the cursors that were opened by sqlite3WhereBegin.
4920 */
4921 assert( pWInfo->nLevel==1 || pWInfo->nLevel==pTabList->nSrc );
4922 for(i=0, pLevel=pWInfo->a; i<pWInfo->nLevel; i++, pLevel++){
4923 struct SrcList_item *pTabItem = &pTabList->a[pLevel->iFrom];
4924 Table *pTab = pTabItem->pTab;
4925 assert( pTab!=0 );
4926 if( (pTab->tabFlags & TF_Ephemeral)==0
4927 && pTab->pSelect==0
4928 && (pWInfo->wctrlFlags & WHERE_OMIT_CLOSE)==0
4929 ){
4930 int ws = pLevel->plan.wsFlags;
4931 if( !pWInfo->okOnePass && (ws & WHERE_IDX_ONLY)==0 ){
4932 sqlite3VdbeAddOp1(v, OP_Close, pTabItem->iCursor);
4933 }
4934 if( (ws & WHERE_INDEXED)!=0 && (ws & WHERE_TEMP_INDEX)==0 ){
4935 sqlite3VdbeAddOp1(v, OP_Close, pLevel->iIdxCur);
4936 }
4937 }
4938
4939 /* If this scan uses an index, make code substitutions to read data
4940 ** from the index in preference to the table. Sometimes, this means
4941 ** the table need never be read from. This is a performance boost,
4942 ** as the vdbe level waits until the table is read before actually
4943 ** seeking the table cursor to the record corresponding to the current
4944 ** position in the index.
4945 **
4946 ** Calls to the code generator in between sqlite3WhereBegin and
4947 ** sqlite3WhereEnd will have created code that references the table
4948 ** directly. This loop scans all that code looking for opcodes
4949 ** that reference the table and converts them into opcodes that
4950 ** reference the index.
4951 */
4952 if( (pLevel->plan.wsFlags & WHERE_INDEXED)!=0 && !db->mallocFailed){
4953 int k, j, last;
4954 VdbeOp *pOp;
4955 Index *pIdx = pLevel->plan.u.pIdx;
4956
4957 assert( pIdx!=0 );
4958 pOp = sqlite3VdbeGetOp(v, pWInfo->iTop);
4959 last = sqlite3VdbeCurrentAddr(v);
4960 for(k=pWInfo->iTop; k<last; k++, pOp++){
4961 if( pOp->p1!=pLevel->iTabCur ) continue;
4962 if( pOp->opcode==OP_Column ){
4963 for(j=0; j<pIdx->nColumn; j++){
4964 if( pOp->p2==pIdx->aiColumn[j] ){
4965 pOp->p2 = j;
4966 pOp->p1 = pLevel->iIdxCur;
4967 break;
4968 }
4969 }
4970 assert( (pLevel->plan.wsFlags & WHERE_IDX_ONLY)==0
4971 || j<pIdx->nColumn );
4972 }else if( pOp->opcode==OP_Rowid ){
4973 pOp->p1 = pLevel->iIdxCur;
4974 pOp->opcode = OP_IdxRowid;
4975 }
4976 }
4977 }
4978 }
4979
4980 /* Final cleanup
4981 */
4982 pParse->nQueryLoop = pWInfo->savedNQueryLoop;
4983 whereInfoFree(db, pWInfo);
4984 return;
4985 }
4986