• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- lib/CodeGen/MachineInstr.cpp --------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Methods common to all machine instructions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/CodeGen/MachineInstr.h"
15 #include "llvm/ADT/FoldingSet.h"
16 #include "llvm/ADT/Hashing.h"
17 #include "llvm/Analysis/AliasAnalysis.h"
18 #include "llvm/CodeGen/MachineConstantPool.h"
19 #include "llvm/CodeGen/MachineFunction.h"
20 #include "llvm/CodeGen/MachineMemOperand.h"
21 #include "llvm/CodeGen/MachineModuleInfo.h"
22 #include "llvm/CodeGen/MachineRegisterInfo.h"
23 #include "llvm/CodeGen/PseudoSourceValue.h"
24 #include "llvm/IR/Constants.h"
25 #include "llvm/IR/DebugInfo.h"
26 #include "llvm/IR/Function.h"
27 #include "llvm/IR/InlineAsm.h"
28 #include "llvm/IR/LLVMContext.h"
29 #include "llvm/IR/Metadata.h"
30 #include "llvm/IR/Module.h"
31 #include "llvm/IR/Type.h"
32 #include "llvm/IR/Value.h"
33 #include "llvm/MC/MCInstrDesc.h"
34 #include "llvm/MC/MCSymbol.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/ErrorHandling.h"
37 #include "llvm/Support/MathExtras.h"
38 #include "llvm/Support/raw_ostream.h"
39 #include "llvm/Target/TargetInstrInfo.h"
40 #include "llvm/Target/TargetMachine.h"
41 #include "llvm/Target/TargetRegisterInfo.h"
42 using namespace llvm;
43 
44 //===----------------------------------------------------------------------===//
45 // MachineOperand Implementation
46 //===----------------------------------------------------------------------===//
47 
setReg(unsigned Reg)48 void MachineOperand::setReg(unsigned Reg) {
49   if (getReg() == Reg) return; // No change.
50 
51   // Otherwise, we have to change the register.  If this operand is embedded
52   // into a machine function, we need to update the old and new register's
53   // use/def lists.
54   if (MachineInstr *MI = getParent())
55     if (MachineBasicBlock *MBB = MI->getParent())
56       if (MachineFunction *MF = MBB->getParent()) {
57         MachineRegisterInfo &MRI = MF->getRegInfo();
58         MRI.removeRegOperandFromUseList(this);
59         SmallContents.RegNo = Reg;
60         MRI.addRegOperandToUseList(this);
61         return;
62       }
63 
64   // Otherwise, just change the register, no problem.  :)
65   SmallContents.RegNo = Reg;
66 }
67 
substVirtReg(unsigned Reg,unsigned SubIdx,const TargetRegisterInfo & TRI)68 void MachineOperand::substVirtReg(unsigned Reg, unsigned SubIdx,
69                                   const TargetRegisterInfo &TRI) {
70   assert(TargetRegisterInfo::isVirtualRegister(Reg));
71   if (SubIdx && getSubReg())
72     SubIdx = TRI.composeSubRegIndices(SubIdx, getSubReg());
73   setReg(Reg);
74   if (SubIdx)
75     setSubReg(SubIdx);
76 }
77 
substPhysReg(unsigned Reg,const TargetRegisterInfo & TRI)78 void MachineOperand::substPhysReg(unsigned Reg, const TargetRegisterInfo &TRI) {
79   assert(TargetRegisterInfo::isPhysicalRegister(Reg));
80   if (getSubReg()) {
81     Reg = TRI.getSubReg(Reg, getSubReg());
82     // Note that getSubReg() may return 0 if the sub-register doesn't exist.
83     // That won't happen in legal code.
84     setSubReg(0);
85   }
86   setReg(Reg);
87 }
88 
89 /// Change a def to a use, or a use to a def.
setIsDef(bool Val)90 void MachineOperand::setIsDef(bool Val) {
91   assert(isReg() && "Wrong MachineOperand accessor");
92   assert((!Val || !isDebug()) && "Marking a debug operation as def");
93   if (IsDef == Val)
94     return;
95   // MRI may keep uses and defs in different list positions.
96   if (MachineInstr *MI = getParent())
97     if (MachineBasicBlock *MBB = MI->getParent())
98       if (MachineFunction *MF = MBB->getParent()) {
99         MachineRegisterInfo &MRI = MF->getRegInfo();
100         MRI.removeRegOperandFromUseList(this);
101         IsDef = Val;
102         MRI.addRegOperandToUseList(this);
103         return;
104       }
105   IsDef = Val;
106 }
107 
108 /// ChangeToImmediate - Replace this operand with a new immediate operand of
109 /// the specified value.  If an operand is known to be an immediate already,
110 /// the setImm method should be used.
ChangeToImmediate(int64_t ImmVal)111 void MachineOperand::ChangeToImmediate(int64_t ImmVal) {
112   assert((!isReg() || !isTied()) && "Cannot change a tied operand into an imm");
113   // If this operand is currently a register operand, and if this is in a
114   // function, deregister the operand from the register's use/def list.
115   if (isReg() && isOnRegUseList())
116     if (MachineInstr *MI = getParent())
117       if (MachineBasicBlock *MBB = MI->getParent())
118         if (MachineFunction *MF = MBB->getParent())
119           MF->getRegInfo().removeRegOperandFromUseList(this);
120 
121   OpKind = MO_Immediate;
122   Contents.ImmVal = ImmVal;
123 }
124 
125 /// ChangeToRegister - Replace this operand with a new register operand of
126 /// the specified value.  If an operand is known to be an register already,
127 /// the setReg method should be used.
ChangeToRegister(unsigned Reg,bool isDef,bool isImp,bool isKill,bool isDead,bool isUndef,bool isDebug)128 void MachineOperand::ChangeToRegister(unsigned Reg, bool isDef, bool isImp,
129                                       bool isKill, bool isDead, bool isUndef,
130                                       bool isDebug) {
131   MachineRegisterInfo *RegInfo = nullptr;
132   if (MachineInstr *MI = getParent())
133     if (MachineBasicBlock *MBB = MI->getParent())
134       if (MachineFunction *MF = MBB->getParent())
135         RegInfo = &MF->getRegInfo();
136   // If this operand is already a register operand, remove it from the
137   // register's use/def lists.
138   bool WasReg = isReg();
139   if (RegInfo && WasReg)
140     RegInfo->removeRegOperandFromUseList(this);
141 
142   // Change this to a register and set the reg#.
143   OpKind = MO_Register;
144   SmallContents.RegNo = Reg;
145   SubReg_TargetFlags = 0;
146   IsDef = isDef;
147   IsImp = isImp;
148   IsKill = isKill;
149   IsDead = isDead;
150   IsUndef = isUndef;
151   IsInternalRead = false;
152   IsEarlyClobber = false;
153   IsDebug = isDebug;
154   // Ensure isOnRegUseList() returns false.
155   Contents.Reg.Prev = nullptr;
156   // Preserve the tie when the operand was already a register.
157   if (!WasReg)
158     TiedTo = 0;
159 
160   // If this operand is embedded in a function, add the operand to the
161   // register's use/def list.
162   if (RegInfo)
163     RegInfo->addRegOperandToUseList(this);
164 }
165 
166 /// isIdenticalTo - Return true if this operand is identical to the specified
167 /// operand. Note that this should stay in sync with the hash_value overload
168 /// below.
isIdenticalTo(const MachineOperand & Other) const169 bool MachineOperand::isIdenticalTo(const MachineOperand &Other) const {
170   if (getType() != Other.getType() ||
171       getTargetFlags() != Other.getTargetFlags())
172     return false;
173 
174   switch (getType()) {
175   case MachineOperand::MO_Register:
176     return getReg() == Other.getReg() && isDef() == Other.isDef() &&
177            getSubReg() == Other.getSubReg();
178   case MachineOperand::MO_Immediate:
179     return getImm() == Other.getImm();
180   case MachineOperand::MO_CImmediate:
181     return getCImm() == Other.getCImm();
182   case MachineOperand::MO_FPImmediate:
183     return getFPImm() == Other.getFPImm();
184   case MachineOperand::MO_MachineBasicBlock:
185     return getMBB() == Other.getMBB();
186   case MachineOperand::MO_FrameIndex:
187     return getIndex() == Other.getIndex();
188   case MachineOperand::MO_ConstantPoolIndex:
189   case MachineOperand::MO_TargetIndex:
190     return getIndex() == Other.getIndex() && getOffset() == Other.getOffset();
191   case MachineOperand::MO_JumpTableIndex:
192     return getIndex() == Other.getIndex();
193   case MachineOperand::MO_GlobalAddress:
194     return getGlobal() == Other.getGlobal() && getOffset() == Other.getOffset();
195   case MachineOperand::MO_ExternalSymbol:
196     return !strcmp(getSymbolName(), Other.getSymbolName()) &&
197            getOffset() == Other.getOffset();
198   case MachineOperand::MO_BlockAddress:
199     return getBlockAddress() == Other.getBlockAddress() &&
200            getOffset() == Other.getOffset();
201   case MachineOperand::MO_RegisterMask:
202   case MachineOperand::MO_RegisterLiveOut:
203     return getRegMask() == Other.getRegMask();
204   case MachineOperand::MO_MCSymbol:
205     return getMCSymbol() == Other.getMCSymbol();
206   case MachineOperand::MO_CFIIndex:
207     return getCFIIndex() == Other.getCFIIndex();
208   case MachineOperand::MO_Metadata:
209     return getMetadata() == Other.getMetadata();
210   }
211   llvm_unreachable("Invalid machine operand type");
212 }
213 
214 // Note: this must stay exactly in sync with isIdenticalTo above.
hash_value(const MachineOperand & MO)215 hash_code llvm::hash_value(const MachineOperand &MO) {
216   switch (MO.getType()) {
217   case MachineOperand::MO_Register:
218     // Register operands don't have target flags.
219     return hash_combine(MO.getType(), MO.getReg(), MO.getSubReg(), MO.isDef());
220   case MachineOperand::MO_Immediate:
221     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getImm());
222   case MachineOperand::MO_CImmediate:
223     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getCImm());
224   case MachineOperand::MO_FPImmediate:
225     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getFPImm());
226   case MachineOperand::MO_MachineBasicBlock:
227     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMBB());
228   case MachineOperand::MO_FrameIndex:
229     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex());
230   case MachineOperand::MO_ConstantPoolIndex:
231   case MachineOperand::MO_TargetIndex:
232     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex(),
233                         MO.getOffset());
234   case MachineOperand::MO_JumpTableIndex:
235     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex());
236   case MachineOperand::MO_ExternalSymbol:
237     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getOffset(),
238                         MO.getSymbolName());
239   case MachineOperand::MO_GlobalAddress:
240     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getGlobal(),
241                         MO.getOffset());
242   case MachineOperand::MO_BlockAddress:
243     return hash_combine(MO.getType(), MO.getTargetFlags(),
244                         MO.getBlockAddress(), MO.getOffset());
245   case MachineOperand::MO_RegisterMask:
246   case MachineOperand::MO_RegisterLiveOut:
247     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getRegMask());
248   case MachineOperand::MO_Metadata:
249     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMetadata());
250   case MachineOperand::MO_MCSymbol:
251     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMCSymbol());
252   case MachineOperand::MO_CFIIndex:
253     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getCFIIndex());
254   }
255   llvm_unreachable("Invalid machine operand type");
256 }
257 
258 /// print - Print the specified machine operand.
259 ///
print(raw_ostream & OS,const TargetMachine * TM) const260 void MachineOperand::print(raw_ostream &OS, const TargetMachine *TM) const {
261   // If the instruction is embedded into a basic block, we can find the
262   // target info for the instruction.
263   if (!TM)
264     if (const MachineInstr *MI = getParent())
265       if (const MachineBasicBlock *MBB = MI->getParent())
266         if (const MachineFunction *MF = MBB->getParent())
267           TM = &MF->getTarget();
268   const TargetRegisterInfo *TRI = TM ? TM->getRegisterInfo() : nullptr;
269 
270   switch (getType()) {
271   case MachineOperand::MO_Register:
272     OS << PrintReg(getReg(), TRI, getSubReg());
273 
274     if (isDef() || isKill() || isDead() || isImplicit() || isUndef() ||
275         isInternalRead() || isEarlyClobber() || isTied()) {
276       OS << '<';
277       bool NeedComma = false;
278       if (isDef()) {
279         if (NeedComma) OS << ',';
280         if (isEarlyClobber())
281           OS << "earlyclobber,";
282         if (isImplicit())
283           OS << "imp-";
284         OS << "def";
285         NeedComma = true;
286         // <def,read-undef> only makes sense when getSubReg() is set.
287         // Don't clutter the output otherwise.
288         if (isUndef() && getSubReg())
289           OS << ",read-undef";
290       } else if (isImplicit()) {
291           OS << "imp-use";
292           NeedComma = true;
293       }
294 
295       if (isKill()) {
296         if (NeedComma) OS << ',';
297         OS << "kill";
298         NeedComma = true;
299       }
300       if (isDead()) {
301         if (NeedComma) OS << ',';
302         OS << "dead";
303         NeedComma = true;
304       }
305       if (isUndef() && isUse()) {
306         if (NeedComma) OS << ',';
307         OS << "undef";
308         NeedComma = true;
309       }
310       if (isInternalRead()) {
311         if (NeedComma) OS << ',';
312         OS << "internal";
313         NeedComma = true;
314       }
315       if (isTied()) {
316         if (NeedComma) OS << ',';
317         OS << "tied";
318         if (TiedTo != 15)
319           OS << unsigned(TiedTo - 1);
320       }
321       OS << '>';
322     }
323     break;
324   case MachineOperand::MO_Immediate:
325     OS << getImm();
326     break;
327   case MachineOperand::MO_CImmediate:
328     getCImm()->getValue().print(OS, false);
329     break;
330   case MachineOperand::MO_FPImmediate:
331     if (getFPImm()->getType()->isFloatTy())
332       OS << getFPImm()->getValueAPF().convertToFloat();
333     else
334       OS << getFPImm()->getValueAPF().convertToDouble();
335     break;
336   case MachineOperand::MO_MachineBasicBlock:
337     OS << "<BB#" << getMBB()->getNumber() << ">";
338     break;
339   case MachineOperand::MO_FrameIndex:
340     OS << "<fi#" << getIndex() << '>';
341     break;
342   case MachineOperand::MO_ConstantPoolIndex:
343     OS << "<cp#" << getIndex();
344     if (getOffset()) OS << "+" << getOffset();
345     OS << '>';
346     break;
347   case MachineOperand::MO_TargetIndex:
348     OS << "<ti#" << getIndex();
349     if (getOffset()) OS << "+" << getOffset();
350     OS << '>';
351     break;
352   case MachineOperand::MO_JumpTableIndex:
353     OS << "<jt#" << getIndex() << '>';
354     break;
355   case MachineOperand::MO_GlobalAddress:
356     OS << "<ga:";
357     getGlobal()->printAsOperand(OS, /*PrintType=*/false);
358     if (getOffset()) OS << "+" << getOffset();
359     OS << '>';
360     break;
361   case MachineOperand::MO_ExternalSymbol:
362     OS << "<es:" << getSymbolName();
363     if (getOffset()) OS << "+" << getOffset();
364     OS << '>';
365     break;
366   case MachineOperand::MO_BlockAddress:
367     OS << '<';
368     getBlockAddress()->printAsOperand(OS, /*PrintType=*/false);
369     if (getOffset()) OS << "+" << getOffset();
370     OS << '>';
371     break;
372   case MachineOperand::MO_RegisterMask:
373     OS << "<regmask>";
374     break;
375   case MachineOperand::MO_RegisterLiveOut:
376     OS << "<regliveout>";
377     break;
378   case MachineOperand::MO_Metadata:
379     OS << '<';
380     getMetadata()->printAsOperand(OS, /*PrintType=*/false);
381     OS << '>';
382     break;
383   case MachineOperand::MO_MCSymbol:
384     OS << "<MCSym=" << *getMCSymbol() << '>';
385     break;
386   case MachineOperand::MO_CFIIndex:
387     OS << "<call frame instruction>";
388     break;
389   }
390 
391   if (unsigned TF = getTargetFlags())
392     OS << "[TF=" << TF << ']';
393 }
394 
395 //===----------------------------------------------------------------------===//
396 // MachineMemOperand Implementation
397 //===----------------------------------------------------------------------===//
398 
399 /// getAddrSpace - Return the LLVM IR address space number that this pointer
400 /// points into.
getAddrSpace() const401 unsigned MachinePointerInfo::getAddrSpace() const {
402   if (V.isNull() || V.is<const PseudoSourceValue*>()) return 0;
403   return cast<PointerType>(V.get<const Value*>()->getType())->getAddressSpace();
404 }
405 
406 /// getConstantPool - Return a MachinePointerInfo record that refers to the
407 /// constant pool.
getConstantPool()408 MachinePointerInfo MachinePointerInfo::getConstantPool() {
409   return MachinePointerInfo(PseudoSourceValue::getConstantPool());
410 }
411 
412 /// getFixedStack - Return a MachinePointerInfo record that refers to the
413 /// the specified FrameIndex.
getFixedStack(int FI,int64_t offset)414 MachinePointerInfo MachinePointerInfo::getFixedStack(int FI, int64_t offset) {
415   return MachinePointerInfo(PseudoSourceValue::getFixedStack(FI), offset);
416 }
417 
getJumpTable()418 MachinePointerInfo MachinePointerInfo::getJumpTable() {
419   return MachinePointerInfo(PseudoSourceValue::getJumpTable());
420 }
421 
getGOT()422 MachinePointerInfo MachinePointerInfo::getGOT() {
423   return MachinePointerInfo(PseudoSourceValue::getGOT());
424 }
425 
getStack(int64_t Offset)426 MachinePointerInfo MachinePointerInfo::getStack(int64_t Offset) {
427   return MachinePointerInfo(PseudoSourceValue::getStack(), Offset);
428 }
429 
MachineMemOperand(MachinePointerInfo ptrinfo,unsigned f,uint64_t s,unsigned int a,const MDNode * TBAAInfo,const MDNode * Ranges)430 MachineMemOperand::MachineMemOperand(MachinePointerInfo ptrinfo, unsigned f,
431                                      uint64_t s, unsigned int a,
432                                      const MDNode *TBAAInfo,
433                                      const MDNode *Ranges)
434   : PtrInfo(ptrinfo), Size(s),
435     Flags((f & ((1 << MOMaxBits) - 1)) | ((Log2_32(a) + 1) << MOMaxBits)),
436     TBAAInfo(TBAAInfo), Ranges(Ranges) {
437   assert((PtrInfo.V.isNull() || PtrInfo.V.is<const PseudoSourceValue*>() ||
438           isa<PointerType>(PtrInfo.V.get<const Value*>()->getType())) &&
439          "invalid pointer value");
440   assert(getBaseAlignment() == a && "Alignment is not a power of 2!");
441   assert((isLoad() || isStore()) && "Not a load/store!");
442 }
443 
444 /// Profile - Gather unique data for the object.
445 ///
Profile(FoldingSetNodeID & ID) const446 void MachineMemOperand::Profile(FoldingSetNodeID &ID) const {
447   ID.AddInteger(getOffset());
448   ID.AddInteger(Size);
449   ID.AddPointer(getOpaqueValue());
450   ID.AddInteger(Flags);
451 }
452 
refineAlignment(const MachineMemOperand * MMO)453 void MachineMemOperand::refineAlignment(const MachineMemOperand *MMO) {
454   // The Value and Offset may differ due to CSE. But the flags and size
455   // should be the same.
456   assert(MMO->getFlags() == getFlags() && "Flags mismatch!");
457   assert(MMO->getSize() == getSize() && "Size mismatch!");
458 
459   if (MMO->getBaseAlignment() >= getBaseAlignment()) {
460     // Update the alignment value.
461     Flags = (Flags & ((1 << MOMaxBits) - 1)) |
462       ((Log2_32(MMO->getBaseAlignment()) + 1) << MOMaxBits);
463     // Also update the base and offset, because the new alignment may
464     // not be applicable with the old ones.
465     PtrInfo = MMO->PtrInfo;
466   }
467 }
468 
469 /// getAlignment - Return the minimum known alignment in bytes of the
470 /// actual memory reference.
getAlignment() const471 uint64_t MachineMemOperand::getAlignment() const {
472   return MinAlign(getBaseAlignment(), getOffset());
473 }
474 
operator <<(raw_ostream & OS,const MachineMemOperand & MMO)475 raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineMemOperand &MMO) {
476   assert((MMO.isLoad() || MMO.isStore()) &&
477          "SV has to be a load, store or both.");
478 
479   if (MMO.isVolatile())
480     OS << "Volatile ";
481 
482   if (MMO.isLoad())
483     OS << "LD";
484   if (MMO.isStore())
485     OS << "ST";
486   OS << MMO.getSize();
487 
488   // Print the address information.
489   OS << "[";
490   if (const Value *V = MMO.getValue())
491     V->printAsOperand(OS, /*PrintType=*/false);
492   else if (const PseudoSourceValue *PSV = MMO.getPseudoValue())
493     PSV->printCustom(OS);
494   else
495     OS << "<unknown>";
496 
497   unsigned AS = MMO.getAddrSpace();
498   if (AS != 0)
499     OS << "(addrspace=" << AS << ')';
500 
501   // If the alignment of the memory reference itself differs from the alignment
502   // of the base pointer, print the base alignment explicitly, next to the base
503   // pointer.
504   if (MMO.getBaseAlignment() != MMO.getAlignment())
505     OS << "(align=" << MMO.getBaseAlignment() << ")";
506 
507   if (MMO.getOffset() != 0)
508     OS << "+" << MMO.getOffset();
509   OS << "]";
510 
511   // Print the alignment of the reference.
512   if (MMO.getBaseAlignment() != MMO.getAlignment() ||
513       MMO.getBaseAlignment() != MMO.getSize())
514     OS << "(align=" << MMO.getAlignment() << ")";
515 
516   // Print TBAA info.
517   if (const MDNode *TBAAInfo = MMO.getTBAAInfo()) {
518     OS << "(tbaa=";
519     if (TBAAInfo->getNumOperands() > 0)
520       TBAAInfo->getOperand(0)->printAsOperand(OS, /*PrintType=*/false);
521     else
522       OS << "<unknown>";
523     OS << ")";
524   }
525 
526   // Print nontemporal info.
527   if (MMO.isNonTemporal())
528     OS << "(nontemporal)";
529 
530   return OS;
531 }
532 
533 //===----------------------------------------------------------------------===//
534 // MachineInstr Implementation
535 //===----------------------------------------------------------------------===//
536 
addImplicitDefUseOperands(MachineFunction & MF)537 void MachineInstr::addImplicitDefUseOperands(MachineFunction &MF) {
538   if (MCID->ImplicitDefs)
539     for (const uint16_t *ImpDefs = MCID->getImplicitDefs(); *ImpDefs; ++ImpDefs)
540       addOperand(MF, MachineOperand::CreateReg(*ImpDefs, true, true));
541   if (MCID->ImplicitUses)
542     for (const uint16_t *ImpUses = MCID->getImplicitUses(); *ImpUses; ++ImpUses)
543       addOperand(MF, MachineOperand::CreateReg(*ImpUses, false, true));
544 }
545 
546 /// MachineInstr ctor - This constructor creates a MachineInstr and adds the
547 /// implicit operands. It reserves space for the number of operands specified by
548 /// the MCInstrDesc.
MachineInstr(MachineFunction & MF,const MCInstrDesc & tid,const DebugLoc dl,bool NoImp)549 MachineInstr::MachineInstr(MachineFunction &MF, const MCInstrDesc &tid,
550                            const DebugLoc dl, bool NoImp)
551   : MCID(&tid), Parent(nullptr), Operands(nullptr), NumOperands(0),
552     Flags(0), AsmPrinterFlags(0),
553     NumMemRefs(0), MemRefs(nullptr), debugLoc(dl) {
554   // Reserve space for the expected number of operands.
555   if (unsigned NumOps = MCID->getNumOperands() +
556     MCID->getNumImplicitDefs() + MCID->getNumImplicitUses()) {
557     CapOperands = OperandCapacity::get(NumOps);
558     Operands = MF.allocateOperandArray(CapOperands);
559   }
560 
561   if (!NoImp)
562     addImplicitDefUseOperands(MF);
563 }
564 
565 /// MachineInstr ctor - Copies MachineInstr arg exactly
566 ///
MachineInstr(MachineFunction & MF,const MachineInstr & MI)567 MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI)
568   : MCID(&MI.getDesc()), Parent(nullptr), Operands(nullptr), NumOperands(0),
569     Flags(0), AsmPrinterFlags(0),
570     NumMemRefs(MI.NumMemRefs), MemRefs(MI.MemRefs),
571     debugLoc(MI.getDebugLoc()) {
572   CapOperands = OperandCapacity::get(MI.getNumOperands());
573   Operands = MF.allocateOperandArray(CapOperands);
574 
575   // Copy operands.
576   for (unsigned i = 0; i != MI.getNumOperands(); ++i)
577     addOperand(MF, MI.getOperand(i));
578 
579   // Copy all the sensible flags.
580   setFlags(MI.Flags);
581 }
582 
583 /// getRegInfo - If this instruction is embedded into a MachineFunction,
584 /// return the MachineRegisterInfo object for the current function, otherwise
585 /// return null.
getRegInfo()586 MachineRegisterInfo *MachineInstr::getRegInfo() {
587   if (MachineBasicBlock *MBB = getParent())
588     return &MBB->getParent()->getRegInfo();
589   return nullptr;
590 }
591 
592 /// RemoveRegOperandsFromUseLists - Unlink all of the register operands in
593 /// this instruction from their respective use lists.  This requires that the
594 /// operands already be on their use lists.
RemoveRegOperandsFromUseLists(MachineRegisterInfo & MRI)595 void MachineInstr::RemoveRegOperandsFromUseLists(MachineRegisterInfo &MRI) {
596   for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
597     if (Operands[i].isReg())
598       MRI.removeRegOperandFromUseList(&Operands[i]);
599 }
600 
601 /// AddRegOperandsToUseLists - Add all of the register operands in
602 /// this instruction from their respective use lists.  This requires that the
603 /// operands not be on their use lists yet.
AddRegOperandsToUseLists(MachineRegisterInfo & MRI)604 void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &MRI) {
605   for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
606     if (Operands[i].isReg())
607       MRI.addRegOperandToUseList(&Operands[i]);
608 }
609 
addOperand(const MachineOperand & Op)610 void MachineInstr::addOperand(const MachineOperand &Op) {
611   MachineBasicBlock *MBB = getParent();
612   assert(MBB && "Use MachineInstrBuilder to add operands to dangling instrs");
613   MachineFunction *MF = MBB->getParent();
614   assert(MF && "Use MachineInstrBuilder to add operands to dangling instrs");
615   addOperand(*MF, Op);
616 }
617 
618 /// Move NumOps MachineOperands from Src to Dst, with support for overlapping
619 /// ranges. If MRI is non-null also update use-def chains.
moveOperands(MachineOperand * Dst,MachineOperand * Src,unsigned NumOps,MachineRegisterInfo * MRI)620 static void moveOperands(MachineOperand *Dst, MachineOperand *Src,
621                          unsigned NumOps, MachineRegisterInfo *MRI) {
622   if (MRI)
623     return MRI->moveOperands(Dst, Src, NumOps);
624 
625   // Here it would be convenient to call memmove, so that isn't allowed because
626   // MachineOperand has a constructor and so isn't a POD type.
627   if (Dst < Src)
628     for (unsigned i = 0; i != NumOps; ++i)
629       new (Dst + i) MachineOperand(Src[i]);
630   else
631     for (unsigned i = NumOps; i ; --i)
632       new (Dst + i - 1) MachineOperand(Src[i - 1]);
633 }
634 
635 /// addOperand - Add the specified operand to the instruction.  If it is an
636 /// implicit operand, it is added to the end of the operand list.  If it is
637 /// an explicit operand it is added at the end of the explicit operand list
638 /// (before the first implicit operand).
addOperand(MachineFunction & MF,const MachineOperand & Op)639 void MachineInstr::addOperand(MachineFunction &MF, const MachineOperand &Op) {
640   assert(MCID && "Cannot add operands before providing an instr descriptor");
641 
642   // Check if we're adding one of our existing operands.
643   if (&Op >= Operands && &Op < Operands + NumOperands) {
644     // This is unusual: MI->addOperand(MI->getOperand(i)).
645     // If adding Op requires reallocating or moving existing operands around,
646     // the Op reference could go stale. Support it by copying Op.
647     MachineOperand CopyOp(Op);
648     return addOperand(MF, CopyOp);
649   }
650 
651   // Find the insert location for the new operand.  Implicit registers go at
652   // the end, everything else goes before the implicit regs.
653   //
654   // FIXME: Allow mixed explicit and implicit operands on inline asm.
655   // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as
656   // implicit-defs, but they must not be moved around.  See the FIXME in
657   // InstrEmitter.cpp.
658   unsigned OpNo = getNumOperands();
659   bool isImpReg = Op.isReg() && Op.isImplicit();
660   if (!isImpReg && !isInlineAsm()) {
661     while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) {
662       --OpNo;
663       assert(!Operands[OpNo].isTied() && "Cannot move tied operands");
664     }
665   }
666 
667 #ifndef NDEBUG
668   bool isMetaDataOp = Op.getType() == MachineOperand::MO_Metadata;
669   // OpNo now points as the desired insertion point.  Unless this is a variadic
670   // instruction, only implicit regs are allowed beyond MCID->getNumOperands().
671   // RegMask operands go between the explicit and implicit operands.
672   assert((isImpReg || Op.isRegMask() || MCID->isVariadic() ||
673           OpNo < MCID->getNumOperands() || isMetaDataOp) &&
674          "Trying to add an operand to a machine instr that is already done!");
675 #endif
676 
677   MachineRegisterInfo *MRI = getRegInfo();
678 
679   // Determine if the Operands array needs to be reallocated.
680   // Save the old capacity and operand array.
681   OperandCapacity OldCap = CapOperands;
682   MachineOperand *OldOperands = Operands;
683   if (!OldOperands || OldCap.getSize() == getNumOperands()) {
684     CapOperands = OldOperands ? OldCap.getNext() : OldCap.get(1);
685     Operands = MF.allocateOperandArray(CapOperands);
686     // Move the operands before the insertion point.
687     if (OpNo)
688       moveOperands(Operands, OldOperands, OpNo, MRI);
689   }
690 
691   // Move the operands following the insertion point.
692   if (OpNo != NumOperands)
693     moveOperands(Operands + OpNo + 1, OldOperands + OpNo, NumOperands - OpNo,
694                  MRI);
695   ++NumOperands;
696 
697   // Deallocate the old operand array.
698   if (OldOperands != Operands && OldOperands)
699     MF.deallocateOperandArray(OldCap, OldOperands);
700 
701   // Copy Op into place. It still needs to be inserted into the MRI use lists.
702   MachineOperand *NewMO = new (Operands + OpNo) MachineOperand(Op);
703   NewMO->ParentMI = this;
704 
705   // When adding a register operand, tell MRI about it.
706   if (NewMO->isReg()) {
707     // Ensure isOnRegUseList() returns false, regardless of Op's status.
708     NewMO->Contents.Reg.Prev = nullptr;
709     // Ignore existing ties. This is not a property that can be copied.
710     NewMO->TiedTo = 0;
711     // Add the new operand to MRI, but only for instructions in an MBB.
712     if (MRI)
713       MRI->addRegOperandToUseList(NewMO);
714     // The MCID operand information isn't accurate until we start adding
715     // explicit operands. The implicit operands are added first, then the
716     // explicits are inserted before them.
717     if (!isImpReg) {
718       // Tie uses to defs as indicated in MCInstrDesc.
719       if (NewMO->isUse()) {
720         int DefIdx = MCID->getOperandConstraint(OpNo, MCOI::TIED_TO);
721         if (DefIdx != -1)
722           tieOperands(DefIdx, OpNo);
723       }
724       // If the register operand is flagged as early, mark the operand as such.
725       if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1)
726         NewMO->setIsEarlyClobber(true);
727     }
728   }
729 }
730 
731 /// RemoveOperand - Erase an operand  from an instruction, leaving it with one
732 /// fewer operand than it started with.
733 ///
RemoveOperand(unsigned OpNo)734 void MachineInstr::RemoveOperand(unsigned OpNo) {
735   assert(OpNo < getNumOperands() && "Invalid operand number");
736   untieRegOperand(OpNo);
737 
738 #ifndef NDEBUG
739   // Moving tied operands would break the ties.
740   for (unsigned i = OpNo + 1, e = getNumOperands(); i != e; ++i)
741     if (Operands[i].isReg())
742       assert(!Operands[i].isTied() && "Cannot move tied operands");
743 #endif
744 
745   MachineRegisterInfo *MRI = getRegInfo();
746   if (MRI && Operands[OpNo].isReg())
747     MRI->removeRegOperandFromUseList(Operands + OpNo);
748 
749   // Don't call the MachineOperand destructor. A lot of this code depends on
750   // MachineOperand having a trivial destructor anyway, and adding a call here
751   // wouldn't make it 'destructor-correct'.
752 
753   if (unsigned N = NumOperands - 1 - OpNo)
754     moveOperands(Operands + OpNo, Operands + OpNo + 1, N, MRI);
755   --NumOperands;
756 }
757 
758 /// addMemOperand - Add a MachineMemOperand to the machine instruction.
759 /// This function should be used only occasionally. The setMemRefs function
760 /// is the primary method for setting up a MachineInstr's MemRefs list.
addMemOperand(MachineFunction & MF,MachineMemOperand * MO)761 void MachineInstr::addMemOperand(MachineFunction &MF,
762                                  MachineMemOperand *MO) {
763   mmo_iterator OldMemRefs = MemRefs;
764   unsigned OldNumMemRefs = NumMemRefs;
765 
766   unsigned NewNum = NumMemRefs + 1;
767   mmo_iterator NewMemRefs = MF.allocateMemRefsArray(NewNum);
768 
769   std::copy(OldMemRefs, OldMemRefs + OldNumMemRefs, NewMemRefs);
770   NewMemRefs[NewNum - 1] = MO;
771   setMemRefs(NewMemRefs, NewMemRefs + NewNum);
772 }
773 
hasPropertyInBundle(unsigned Mask,QueryType Type) const774 bool MachineInstr::hasPropertyInBundle(unsigned Mask, QueryType Type) const {
775   assert(!isBundledWithPred() && "Must be called on bundle header");
776   for (MachineBasicBlock::const_instr_iterator MII = this;; ++MII) {
777     if (MII->getDesc().getFlags() & Mask) {
778       if (Type == AnyInBundle)
779         return true;
780     } else {
781       if (Type == AllInBundle && !MII->isBundle())
782         return false;
783     }
784     // This was the last instruction in the bundle.
785     if (!MII->isBundledWithSucc())
786       return Type == AllInBundle;
787   }
788 }
789 
isIdenticalTo(const MachineInstr * Other,MICheckType Check) const790 bool MachineInstr::isIdenticalTo(const MachineInstr *Other,
791                                  MICheckType Check) const {
792   // If opcodes or number of operands are not the same then the two
793   // instructions are obviously not identical.
794   if (Other->getOpcode() != getOpcode() ||
795       Other->getNumOperands() != getNumOperands())
796     return false;
797 
798   if (isBundle()) {
799     // Both instructions are bundles, compare MIs inside the bundle.
800     MachineBasicBlock::const_instr_iterator I1 = *this;
801     MachineBasicBlock::const_instr_iterator E1 = getParent()->instr_end();
802     MachineBasicBlock::const_instr_iterator I2 = *Other;
803     MachineBasicBlock::const_instr_iterator E2= Other->getParent()->instr_end();
804     while (++I1 != E1 && I1->isInsideBundle()) {
805       ++I2;
806       if (I2 == E2 || !I2->isInsideBundle() || !I1->isIdenticalTo(I2, Check))
807         return false;
808     }
809   }
810 
811   // Check operands to make sure they match.
812   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
813     const MachineOperand &MO = getOperand(i);
814     const MachineOperand &OMO = Other->getOperand(i);
815     if (!MO.isReg()) {
816       if (!MO.isIdenticalTo(OMO))
817         return false;
818       continue;
819     }
820 
821     // Clients may or may not want to ignore defs when testing for equality.
822     // For example, machine CSE pass only cares about finding common
823     // subexpressions, so it's safe to ignore virtual register defs.
824     if (MO.isDef()) {
825       if (Check == IgnoreDefs)
826         continue;
827       else if (Check == IgnoreVRegDefs) {
828         if (TargetRegisterInfo::isPhysicalRegister(MO.getReg()) ||
829             TargetRegisterInfo::isPhysicalRegister(OMO.getReg()))
830           if (MO.getReg() != OMO.getReg())
831             return false;
832       } else {
833         if (!MO.isIdenticalTo(OMO))
834           return false;
835         if (Check == CheckKillDead && MO.isDead() != OMO.isDead())
836           return false;
837       }
838     } else {
839       if (!MO.isIdenticalTo(OMO))
840         return false;
841       if (Check == CheckKillDead && MO.isKill() != OMO.isKill())
842         return false;
843     }
844   }
845   // If DebugLoc does not match then two dbg.values are not identical.
846   if (isDebugValue())
847     if (!getDebugLoc().isUnknown() && !Other->getDebugLoc().isUnknown()
848         && getDebugLoc() != Other->getDebugLoc())
849       return false;
850   return true;
851 }
852 
removeFromParent()853 MachineInstr *MachineInstr::removeFromParent() {
854   assert(getParent() && "Not embedded in a basic block!");
855   return getParent()->remove(this);
856 }
857 
removeFromBundle()858 MachineInstr *MachineInstr::removeFromBundle() {
859   assert(getParent() && "Not embedded in a basic block!");
860   return getParent()->remove_instr(this);
861 }
862 
eraseFromParent()863 void MachineInstr::eraseFromParent() {
864   assert(getParent() && "Not embedded in a basic block!");
865   getParent()->erase(this);
866 }
867 
eraseFromBundle()868 void MachineInstr::eraseFromBundle() {
869   assert(getParent() && "Not embedded in a basic block!");
870   getParent()->erase_instr(this);
871 }
872 
873 /// getNumExplicitOperands - Returns the number of non-implicit operands.
874 ///
getNumExplicitOperands() const875 unsigned MachineInstr::getNumExplicitOperands() const {
876   unsigned NumOperands = MCID->getNumOperands();
877   if (!MCID->isVariadic())
878     return NumOperands;
879 
880   for (unsigned i = NumOperands, e = getNumOperands(); i != e; ++i) {
881     const MachineOperand &MO = getOperand(i);
882     if (!MO.isReg() || !MO.isImplicit())
883       NumOperands++;
884   }
885   return NumOperands;
886 }
887 
bundleWithPred()888 void MachineInstr::bundleWithPred() {
889   assert(!isBundledWithPred() && "MI is already bundled with its predecessor");
890   setFlag(BundledPred);
891   MachineBasicBlock::instr_iterator Pred = this;
892   --Pred;
893   assert(!Pred->isBundledWithSucc() && "Inconsistent bundle flags");
894   Pred->setFlag(BundledSucc);
895 }
896 
bundleWithSucc()897 void MachineInstr::bundleWithSucc() {
898   assert(!isBundledWithSucc() && "MI is already bundled with its successor");
899   setFlag(BundledSucc);
900   MachineBasicBlock::instr_iterator Succ = this;
901   ++Succ;
902   assert(!Succ->isBundledWithPred() && "Inconsistent bundle flags");
903   Succ->setFlag(BundledPred);
904 }
905 
unbundleFromPred()906 void MachineInstr::unbundleFromPred() {
907   assert(isBundledWithPred() && "MI isn't bundled with its predecessor");
908   clearFlag(BundledPred);
909   MachineBasicBlock::instr_iterator Pred = this;
910   --Pred;
911   assert(Pred->isBundledWithSucc() && "Inconsistent bundle flags");
912   Pred->clearFlag(BundledSucc);
913 }
914 
unbundleFromSucc()915 void MachineInstr::unbundleFromSucc() {
916   assert(isBundledWithSucc() && "MI isn't bundled with its successor");
917   clearFlag(BundledSucc);
918   MachineBasicBlock::instr_iterator Succ = this;
919   ++Succ;
920   assert(Succ->isBundledWithPred() && "Inconsistent bundle flags");
921   Succ->clearFlag(BundledPred);
922 }
923 
isStackAligningInlineAsm() const924 bool MachineInstr::isStackAligningInlineAsm() const {
925   if (isInlineAsm()) {
926     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
927     if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
928       return true;
929   }
930   return false;
931 }
932 
getInlineAsmDialect() const933 InlineAsm::AsmDialect MachineInstr::getInlineAsmDialect() const {
934   assert(isInlineAsm() && "getInlineAsmDialect() only works for inline asms!");
935   unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
936   return InlineAsm::AsmDialect((ExtraInfo & InlineAsm::Extra_AsmDialect) != 0);
937 }
938 
findInlineAsmFlagIdx(unsigned OpIdx,unsigned * GroupNo) const939 int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx,
940                                        unsigned *GroupNo) const {
941   assert(isInlineAsm() && "Expected an inline asm instruction");
942   assert(OpIdx < getNumOperands() && "OpIdx out of range");
943 
944   // Ignore queries about the initial operands.
945   if (OpIdx < InlineAsm::MIOp_FirstOperand)
946     return -1;
947 
948   unsigned Group = 0;
949   unsigned NumOps;
950   for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e;
951        i += NumOps) {
952     const MachineOperand &FlagMO = getOperand(i);
953     // If we reach the implicit register operands, stop looking.
954     if (!FlagMO.isImm())
955       return -1;
956     NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm());
957     if (i + NumOps > OpIdx) {
958       if (GroupNo)
959         *GroupNo = Group;
960       return i;
961     }
962     ++Group;
963   }
964   return -1;
965 }
966 
967 const TargetRegisterClass*
getRegClassConstraint(unsigned OpIdx,const TargetInstrInfo * TII,const TargetRegisterInfo * TRI) const968 MachineInstr::getRegClassConstraint(unsigned OpIdx,
969                                     const TargetInstrInfo *TII,
970                                     const TargetRegisterInfo *TRI) const {
971   assert(getParent() && "Can't have an MBB reference here!");
972   assert(getParent()->getParent() && "Can't have an MF reference here!");
973   const MachineFunction &MF = *getParent()->getParent();
974 
975   // Most opcodes have fixed constraints in their MCInstrDesc.
976   if (!isInlineAsm())
977     return TII->getRegClass(getDesc(), OpIdx, TRI, MF);
978 
979   if (!getOperand(OpIdx).isReg())
980     return nullptr;
981 
982   // For tied uses on inline asm, get the constraint from the def.
983   unsigned DefIdx;
984   if (getOperand(OpIdx).isUse() && isRegTiedToDefOperand(OpIdx, &DefIdx))
985     OpIdx = DefIdx;
986 
987   // Inline asm stores register class constraints in the flag word.
988   int FlagIdx = findInlineAsmFlagIdx(OpIdx);
989   if (FlagIdx < 0)
990     return nullptr;
991 
992   unsigned Flag = getOperand(FlagIdx).getImm();
993   unsigned RCID;
994   if (InlineAsm::hasRegClassConstraint(Flag, RCID))
995     return TRI->getRegClass(RCID);
996 
997   // Assume that all registers in a memory operand are pointers.
998   if (InlineAsm::getKind(Flag) == InlineAsm::Kind_Mem)
999     return TRI->getPointerRegClass(MF);
1000 
1001   return nullptr;
1002 }
1003 
getRegClassConstraintEffectForVReg(unsigned Reg,const TargetRegisterClass * CurRC,const TargetInstrInfo * TII,const TargetRegisterInfo * TRI,bool ExploreBundle) const1004 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVReg(
1005     unsigned Reg, const TargetRegisterClass *CurRC, const TargetInstrInfo *TII,
1006     const TargetRegisterInfo *TRI, bool ExploreBundle) const {
1007   // Check every operands inside the bundle if we have
1008   // been asked to.
1009   if (ExploreBundle)
1010     for (ConstMIBundleOperands OpndIt(this); OpndIt.isValid() && CurRC;
1011          ++OpndIt)
1012       CurRC = OpndIt->getParent()->getRegClassConstraintEffectForVRegImpl(
1013           OpndIt.getOperandNo(), Reg, CurRC, TII, TRI);
1014   else
1015     // Otherwise, just check the current operands.
1016     for (ConstMIOperands OpndIt(this); OpndIt.isValid() && CurRC; ++OpndIt)
1017       CurRC = getRegClassConstraintEffectForVRegImpl(OpndIt.getOperandNo(), Reg,
1018                                                      CurRC, TII, TRI);
1019   return CurRC;
1020 }
1021 
getRegClassConstraintEffectForVRegImpl(unsigned OpIdx,unsigned Reg,const TargetRegisterClass * CurRC,const TargetInstrInfo * TII,const TargetRegisterInfo * TRI) const1022 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVRegImpl(
1023     unsigned OpIdx, unsigned Reg, const TargetRegisterClass *CurRC,
1024     const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const {
1025   assert(CurRC && "Invalid initial register class");
1026   // Check if Reg is constrained by some of its use/def from MI.
1027   const MachineOperand &MO = getOperand(OpIdx);
1028   if (!MO.isReg() || MO.getReg() != Reg)
1029     return CurRC;
1030   // If yes, accumulate the constraints through the operand.
1031   return getRegClassConstraintEffect(OpIdx, CurRC, TII, TRI);
1032 }
1033 
getRegClassConstraintEffect(unsigned OpIdx,const TargetRegisterClass * CurRC,const TargetInstrInfo * TII,const TargetRegisterInfo * TRI) const1034 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffect(
1035     unsigned OpIdx, const TargetRegisterClass *CurRC,
1036     const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const {
1037   const TargetRegisterClass *OpRC = getRegClassConstraint(OpIdx, TII, TRI);
1038   const MachineOperand &MO = getOperand(OpIdx);
1039   assert(MO.isReg() &&
1040          "Cannot get register constraints for non-register operand");
1041   assert(CurRC && "Invalid initial register class");
1042   if (unsigned SubIdx = MO.getSubReg()) {
1043     if (OpRC)
1044       CurRC = TRI->getMatchingSuperRegClass(CurRC, OpRC, SubIdx);
1045     else
1046       CurRC = TRI->getSubClassWithSubReg(CurRC, SubIdx);
1047   } else if (OpRC)
1048     CurRC = TRI->getCommonSubClass(CurRC, OpRC);
1049   return CurRC;
1050 }
1051 
1052 /// Return the number of instructions inside the MI bundle, not counting the
1053 /// header instruction.
getBundleSize() const1054 unsigned MachineInstr::getBundleSize() const {
1055   MachineBasicBlock::const_instr_iterator I = this;
1056   unsigned Size = 0;
1057   while (I->isBundledWithSucc())
1058     ++Size, ++I;
1059   return Size;
1060 }
1061 
1062 /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of
1063 /// the specific register or -1 if it is not found. It further tightens
1064 /// the search criteria to a use that kills the register if isKill is true.
findRegisterUseOperandIdx(unsigned Reg,bool isKill,const TargetRegisterInfo * TRI) const1065 int MachineInstr::findRegisterUseOperandIdx(unsigned Reg, bool isKill,
1066                                           const TargetRegisterInfo *TRI) const {
1067   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1068     const MachineOperand &MO = getOperand(i);
1069     if (!MO.isReg() || !MO.isUse())
1070       continue;
1071     unsigned MOReg = MO.getReg();
1072     if (!MOReg)
1073       continue;
1074     if (MOReg == Reg ||
1075         (TRI &&
1076          TargetRegisterInfo::isPhysicalRegister(MOReg) &&
1077          TargetRegisterInfo::isPhysicalRegister(Reg) &&
1078          TRI->isSubRegister(MOReg, Reg)))
1079       if (!isKill || MO.isKill())
1080         return i;
1081   }
1082   return -1;
1083 }
1084 
1085 /// readsWritesVirtualRegister - Return a pair of bools (reads, writes)
1086 /// indicating if this instruction reads or writes Reg. This also considers
1087 /// partial defines.
1088 std::pair<bool,bool>
readsWritesVirtualRegister(unsigned Reg,SmallVectorImpl<unsigned> * Ops) const1089 MachineInstr::readsWritesVirtualRegister(unsigned Reg,
1090                                          SmallVectorImpl<unsigned> *Ops) const {
1091   bool PartDef = false; // Partial redefine.
1092   bool FullDef = false; // Full define.
1093   bool Use = false;
1094 
1095   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1096     const MachineOperand &MO = getOperand(i);
1097     if (!MO.isReg() || MO.getReg() != Reg)
1098       continue;
1099     if (Ops)
1100       Ops->push_back(i);
1101     if (MO.isUse())
1102       Use |= !MO.isUndef();
1103     else if (MO.getSubReg() && !MO.isUndef())
1104       // A partial <def,undef> doesn't count as reading the register.
1105       PartDef = true;
1106     else
1107       FullDef = true;
1108   }
1109   // A partial redefine uses Reg unless there is also a full define.
1110   return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef);
1111 }
1112 
1113 /// findRegisterDefOperandIdx() - Returns the operand index that is a def of
1114 /// the specified register or -1 if it is not found. If isDead is true, defs
1115 /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it
1116 /// also checks if there is a def of a super-register.
1117 int
findRegisterDefOperandIdx(unsigned Reg,bool isDead,bool Overlap,const TargetRegisterInfo * TRI) const1118 MachineInstr::findRegisterDefOperandIdx(unsigned Reg, bool isDead, bool Overlap,
1119                                         const TargetRegisterInfo *TRI) const {
1120   bool isPhys = TargetRegisterInfo::isPhysicalRegister(Reg);
1121   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1122     const MachineOperand &MO = getOperand(i);
1123     // Accept regmask operands when Overlap is set.
1124     // Ignore them when looking for a specific def operand (Overlap == false).
1125     if (isPhys && Overlap && MO.isRegMask() && MO.clobbersPhysReg(Reg))
1126       return i;
1127     if (!MO.isReg() || !MO.isDef())
1128       continue;
1129     unsigned MOReg = MO.getReg();
1130     bool Found = (MOReg == Reg);
1131     if (!Found && TRI && isPhys &&
1132         TargetRegisterInfo::isPhysicalRegister(MOReg)) {
1133       if (Overlap)
1134         Found = TRI->regsOverlap(MOReg, Reg);
1135       else
1136         Found = TRI->isSubRegister(MOReg, Reg);
1137     }
1138     if (Found && (!isDead || MO.isDead()))
1139       return i;
1140   }
1141   return -1;
1142 }
1143 
1144 /// findFirstPredOperandIdx() - Find the index of the first operand in the
1145 /// operand list that is used to represent the predicate. It returns -1 if
1146 /// none is found.
findFirstPredOperandIdx() const1147 int MachineInstr::findFirstPredOperandIdx() const {
1148   // Don't call MCID.findFirstPredOperandIdx() because this variant
1149   // is sometimes called on an instruction that's not yet complete, and
1150   // so the number of operands is less than the MCID indicates. In
1151   // particular, the PTX target does this.
1152   const MCInstrDesc &MCID = getDesc();
1153   if (MCID.isPredicable()) {
1154     for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
1155       if (MCID.OpInfo[i].isPredicate())
1156         return i;
1157   }
1158 
1159   return -1;
1160 }
1161 
1162 // MachineOperand::TiedTo is 4 bits wide.
1163 const unsigned TiedMax = 15;
1164 
1165 /// tieOperands - Mark operands at DefIdx and UseIdx as tied to each other.
1166 ///
1167 /// Use and def operands can be tied together, indicated by a non-zero TiedTo
1168 /// field. TiedTo can have these values:
1169 ///
1170 /// 0:              Operand is not tied to anything.
1171 /// 1 to TiedMax-1: Tied to getOperand(TiedTo-1).
1172 /// TiedMax:        Tied to an operand >= TiedMax-1.
1173 ///
1174 /// The tied def must be one of the first TiedMax operands on a normal
1175 /// instruction. INLINEASM instructions allow more tied defs.
1176 ///
tieOperands(unsigned DefIdx,unsigned UseIdx)1177 void MachineInstr::tieOperands(unsigned DefIdx, unsigned UseIdx) {
1178   MachineOperand &DefMO = getOperand(DefIdx);
1179   MachineOperand &UseMO = getOperand(UseIdx);
1180   assert(DefMO.isDef() && "DefIdx must be a def operand");
1181   assert(UseMO.isUse() && "UseIdx must be a use operand");
1182   assert(!DefMO.isTied() && "Def is already tied to another use");
1183   assert(!UseMO.isTied() && "Use is already tied to another def");
1184 
1185   if (DefIdx < TiedMax)
1186     UseMO.TiedTo = DefIdx + 1;
1187   else {
1188     // Inline asm can use the group descriptors to find tied operands, but on
1189     // normal instruction, the tied def must be within the first TiedMax
1190     // operands.
1191     assert(isInlineAsm() && "DefIdx out of range");
1192     UseMO.TiedTo = TiedMax;
1193   }
1194 
1195   // UseIdx can be out of range, we'll search for it in findTiedOperandIdx().
1196   DefMO.TiedTo = std::min(UseIdx + 1, TiedMax);
1197 }
1198 
1199 /// Given the index of a tied register operand, find the operand it is tied to.
1200 /// Defs are tied to uses and vice versa. Returns the index of the tied operand
1201 /// which must exist.
findTiedOperandIdx(unsigned OpIdx) const1202 unsigned MachineInstr::findTiedOperandIdx(unsigned OpIdx) const {
1203   const MachineOperand &MO = getOperand(OpIdx);
1204   assert(MO.isTied() && "Operand isn't tied");
1205 
1206   // Normally TiedTo is in range.
1207   if (MO.TiedTo < TiedMax)
1208     return MO.TiedTo - 1;
1209 
1210   // Uses on normal instructions can be out of range.
1211   if (!isInlineAsm()) {
1212     // Normal tied defs must be in the 0..TiedMax-1 range.
1213     if (MO.isUse())
1214       return TiedMax - 1;
1215     // MO is a def. Search for the tied use.
1216     for (unsigned i = TiedMax - 1, e = getNumOperands(); i != e; ++i) {
1217       const MachineOperand &UseMO = getOperand(i);
1218       if (UseMO.isReg() && UseMO.isUse() && UseMO.TiedTo == OpIdx + 1)
1219         return i;
1220     }
1221     llvm_unreachable("Can't find tied use");
1222   }
1223 
1224   // Now deal with inline asm by parsing the operand group descriptor flags.
1225   // Find the beginning of each operand group.
1226   SmallVector<unsigned, 8> GroupIdx;
1227   unsigned OpIdxGroup = ~0u;
1228   unsigned NumOps;
1229   for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e;
1230        i += NumOps) {
1231     const MachineOperand &FlagMO = getOperand(i);
1232     assert(FlagMO.isImm() && "Invalid tied operand on inline asm");
1233     unsigned CurGroup = GroupIdx.size();
1234     GroupIdx.push_back(i);
1235     NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm());
1236     // OpIdx belongs to this operand group.
1237     if (OpIdx > i && OpIdx < i + NumOps)
1238       OpIdxGroup = CurGroup;
1239     unsigned TiedGroup;
1240     if (!InlineAsm::isUseOperandTiedToDef(FlagMO.getImm(), TiedGroup))
1241       continue;
1242     // Operands in this group are tied to operands in TiedGroup which must be
1243     // earlier. Find the number of operands between the two groups.
1244     unsigned Delta = i - GroupIdx[TiedGroup];
1245 
1246     // OpIdx is a use tied to TiedGroup.
1247     if (OpIdxGroup == CurGroup)
1248       return OpIdx - Delta;
1249 
1250     // OpIdx is a def tied to this use group.
1251     if (OpIdxGroup == TiedGroup)
1252       return OpIdx + Delta;
1253   }
1254   llvm_unreachable("Invalid tied operand on inline asm");
1255 }
1256 
1257 /// clearKillInfo - Clears kill flags on all operands.
1258 ///
clearKillInfo()1259 void MachineInstr::clearKillInfo() {
1260   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1261     MachineOperand &MO = getOperand(i);
1262     if (MO.isReg() && MO.isUse())
1263       MO.setIsKill(false);
1264   }
1265 }
1266 
substituteRegister(unsigned FromReg,unsigned ToReg,unsigned SubIdx,const TargetRegisterInfo & RegInfo)1267 void MachineInstr::substituteRegister(unsigned FromReg,
1268                                       unsigned ToReg,
1269                                       unsigned SubIdx,
1270                                       const TargetRegisterInfo &RegInfo) {
1271   if (TargetRegisterInfo::isPhysicalRegister(ToReg)) {
1272     if (SubIdx)
1273       ToReg = RegInfo.getSubReg(ToReg, SubIdx);
1274     for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1275       MachineOperand &MO = getOperand(i);
1276       if (!MO.isReg() || MO.getReg() != FromReg)
1277         continue;
1278       MO.substPhysReg(ToReg, RegInfo);
1279     }
1280   } else {
1281     for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1282       MachineOperand &MO = getOperand(i);
1283       if (!MO.isReg() || MO.getReg() != FromReg)
1284         continue;
1285       MO.substVirtReg(ToReg, SubIdx, RegInfo);
1286     }
1287   }
1288 }
1289 
1290 /// isSafeToMove - Return true if it is safe to move this instruction. If
1291 /// SawStore is set to true, it means that there is a store (or call) between
1292 /// the instruction's location and its intended destination.
isSafeToMove(const TargetInstrInfo * TII,AliasAnalysis * AA,bool & SawStore) const1293 bool MachineInstr::isSafeToMove(const TargetInstrInfo *TII,
1294                                 AliasAnalysis *AA,
1295                                 bool &SawStore) const {
1296   // Ignore stuff that we obviously can't move.
1297   //
1298   // Treat volatile loads as stores. This is not strictly necessary for
1299   // volatiles, but it is required for atomic loads. It is not allowed to move
1300   // a load across an atomic load with Ordering > Monotonic.
1301   if (mayStore() || isCall() ||
1302       (mayLoad() && hasOrderedMemoryRef())) {
1303     SawStore = true;
1304     return false;
1305   }
1306 
1307   if (isPosition() || isDebugValue() || isTerminator() ||
1308       hasUnmodeledSideEffects())
1309     return false;
1310 
1311   // See if this instruction does a load.  If so, we have to guarantee that the
1312   // loaded value doesn't change between the load and the its intended
1313   // destination. The check for isInvariantLoad gives the targe the chance to
1314   // classify the load as always returning a constant, e.g. a constant pool
1315   // load.
1316   if (mayLoad() && !isInvariantLoad(AA))
1317     // Otherwise, this is a real load.  If there is a store between the load and
1318     // end of block, we can't move it.
1319     return !SawStore;
1320 
1321   return true;
1322 }
1323 
1324 /// hasOrderedMemoryRef - Return true if this instruction may have an ordered
1325 /// or volatile memory reference, or if the information describing the memory
1326 /// reference is not available. Return false if it is known to have no ordered
1327 /// memory references.
hasOrderedMemoryRef() const1328 bool MachineInstr::hasOrderedMemoryRef() const {
1329   // An instruction known never to access memory won't have a volatile access.
1330   if (!mayStore() &&
1331       !mayLoad() &&
1332       !isCall() &&
1333       !hasUnmodeledSideEffects())
1334     return false;
1335 
1336   // Otherwise, if the instruction has no memory reference information,
1337   // conservatively assume it wasn't preserved.
1338   if (memoperands_empty())
1339     return true;
1340 
1341   // Check the memory reference information for ordered references.
1342   for (mmo_iterator I = memoperands_begin(), E = memoperands_end(); I != E; ++I)
1343     if (!(*I)->isUnordered())
1344       return true;
1345 
1346   return false;
1347 }
1348 
1349 /// isInvariantLoad - Return true if this instruction is loading from a
1350 /// location whose value is invariant across the function.  For example,
1351 /// loading a value from the constant pool or from the argument area
1352 /// of a function if it does not change.  This should only return true of
1353 /// *all* loads the instruction does are invariant (if it does multiple loads).
isInvariantLoad(AliasAnalysis * AA) const1354 bool MachineInstr::isInvariantLoad(AliasAnalysis *AA) const {
1355   // If the instruction doesn't load at all, it isn't an invariant load.
1356   if (!mayLoad())
1357     return false;
1358 
1359   // If the instruction has lost its memoperands, conservatively assume that
1360   // it may not be an invariant load.
1361   if (memoperands_empty())
1362     return false;
1363 
1364   const MachineFrameInfo *MFI = getParent()->getParent()->getFrameInfo();
1365 
1366   for (mmo_iterator I = memoperands_begin(),
1367        E = memoperands_end(); I != E; ++I) {
1368     if ((*I)->isVolatile()) return false;
1369     if ((*I)->isStore()) return false;
1370     if ((*I)->isInvariant()) return true;
1371 
1372 
1373     // A load from a constant PseudoSourceValue is invariant.
1374     if (const PseudoSourceValue *PSV = (*I)->getPseudoValue())
1375       if (PSV->isConstant(MFI))
1376         continue;
1377 
1378     if (const Value *V = (*I)->getValue()) {
1379       // If we have an AliasAnalysis, ask it whether the memory is constant.
1380       if (AA && AA->pointsToConstantMemory(
1381                       AliasAnalysis::Location(V, (*I)->getSize(),
1382                                               (*I)->getTBAAInfo())))
1383         continue;
1384     }
1385 
1386     // Otherwise assume conservatively.
1387     return false;
1388   }
1389 
1390   // Everything checks out.
1391   return true;
1392 }
1393 
1394 /// isConstantValuePHI - If the specified instruction is a PHI that always
1395 /// merges together the same virtual register, return the register, otherwise
1396 /// return 0.
isConstantValuePHI() const1397 unsigned MachineInstr::isConstantValuePHI() const {
1398   if (!isPHI())
1399     return 0;
1400   assert(getNumOperands() >= 3 &&
1401          "It's illegal to have a PHI without source operands");
1402 
1403   unsigned Reg = getOperand(1).getReg();
1404   for (unsigned i = 3, e = getNumOperands(); i < e; i += 2)
1405     if (getOperand(i).getReg() != Reg)
1406       return 0;
1407   return Reg;
1408 }
1409 
hasUnmodeledSideEffects() const1410 bool MachineInstr::hasUnmodeledSideEffects() const {
1411   if (hasProperty(MCID::UnmodeledSideEffects))
1412     return true;
1413   if (isInlineAsm()) {
1414     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1415     if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
1416       return true;
1417   }
1418 
1419   return false;
1420 }
1421 
1422 /// allDefsAreDead - Return true if all the defs of this instruction are dead.
1423 ///
allDefsAreDead() const1424 bool MachineInstr::allDefsAreDead() const {
1425   for (unsigned i = 0, e = getNumOperands(); i < e; ++i) {
1426     const MachineOperand &MO = getOperand(i);
1427     if (!MO.isReg() || MO.isUse())
1428       continue;
1429     if (!MO.isDead())
1430       return false;
1431   }
1432   return true;
1433 }
1434 
1435 /// copyImplicitOps - Copy implicit register operands from specified
1436 /// instruction to this instruction.
copyImplicitOps(MachineFunction & MF,const MachineInstr * MI)1437 void MachineInstr::copyImplicitOps(MachineFunction &MF,
1438                                    const MachineInstr *MI) {
1439   for (unsigned i = MI->getDesc().getNumOperands(), e = MI->getNumOperands();
1440        i != e; ++i) {
1441     const MachineOperand &MO = MI->getOperand(i);
1442     if ((MO.isReg() && MO.isImplicit()) || MO.isRegMask())
1443       addOperand(MF, MO);
1444   }
1445 }
1446 
dump() const1447 void MachineInstr::dump() const {
1448 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1449   dbgs() << "  " << *this;
1450 #endif
1451 }
1452 
printDebugLoc(DebugLoc DL,const MachineFunction * MF,raw_ostream & CommentOS)1453 static void printDebugLoc(DebugLoc DL, const MachineFunction *MF,
1454                          raw_ostream &CommentOS) {
1455   const LLVMContext &Ctx = MF->getFunction()->getContext();
1456   DL.print(Ctx, CommentOS);
1457 }
1458 
print(raw_ostream & OS,const TargetMachine * TM,bool SkipOpers) const1459 void MachineInstr::print(raw_ostream &OS, const TargetMachine *TM,
1460                          bool SkipOpers) const {
1461   // We can be a bit tidier if we know the TargetMachine and/or MachineFunction.
1462   const MachineFunction *MF = nullptr;
1463   const MachineRegisterInfo *MRI = nullptr;
1464   if (const MachineBasicBlock *MBB = getParent()) {
1465     MF = MBB->getParent();
1466     if (!TM && MF)
1467       TM = &MF->getTarget();
1468     if (MF)
1469       MRI = &MF->getRegInfo();
1470   }
1471 
1472   // Save a list of virtual registers.
1473   SmallVector<unsigned, 8> VirtRegs;
1474 
1475   // Print explicitly defined operands on the left of an assignment syntax.
1476   unsigned StartOp = 0, e = getNumOperands();
1477   for (; StartOp < e && getOperand(StartOp).isReg() &&
1478          getOperand(StartOp).isDef() &&
1479          !getOperand(StartOp).isImplicit();
1480        ++StartOp) {
1481     if (StartOp != 0) OS << ", ";
1482     getOperand(StartOp).print(OS, TM);
1483     unsigned Reg = getOperand(StartOp).getReg();
1484     if (TargetRegisterInfo::isVirtualRegister(Reg))
1485       VirtRegs.push_back(Reg);
1486   }
1487 
1488   if (StartOp != 0)
1489     OS << " = ";
1490 
1491   // Print the opcode name.
1492   if (TM && TM->getInstrInfo())
1493     OS << TM->getInstrInfo()->getName(getOpcode());
1494   else
1495     OS << "UNKNOWN";
1496 
1497   if (SkipOpers)
1498     return;
1499 
1500   // Print the rest of the operands.
1501   bool OmittedAnyCallClobbers = false;
1502   bool FirstOp = true;
1503   unsigned AsmDescOp = ~0u;
1504   unsigned AsmOpCount = 0;
1505 
1506   if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) {
1507     // Print asm string.
1508     OS << " ";
1509     getOperand(InlineAsm::MIOp_AsmString).print(OS, TM);
1510 
1511     // Print HasSideEffects, MayLoad, MayStore, IsAlignStack
1512     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1513     if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
1514       OS << " [sideeffect]";
1515     if (ExtraInfo & InlineAsm::Extra_MayLoad)
1516       OS << " [mayload]";
1517     if (ExtraInfo & InlineAsm::Extra_MayStore)
1518       OS << " [maystore]";
1519     if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
1520       OS << " [alignstack]";
1521     if (getInlineAsmDialect() == InlineAsm::AD_ATT)
1522       OS << " [attdialect]";
1523     if (getInlineAsmDialect() == InlineAsm::AD_Intel)
1524       OS << " [inteldialect]";
1525 
1526     StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand;
1527     FirstOp = false;
1528   }
1529 
1530 
1531   for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) {
1532     const MachineOperand &MO = getOperand(i);
1533 
1534     if (MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg()))
1535       VirtRegs.push_back(MO.getReg());
1536 
1537     // Omit call-clobbered registers which aren't used anywhere. This makes
1538     // call instructions much less noisy on targets where calls clobber lots
1539     // of registers. Don't rely on MO.isDead() because we may be called before
1540     // LiveVariables is run, or we may be looking at a non-allocatable reg.
1541     if (MF && isCall() &&
1542         MO.isReg() && MO.isImplicit() && MO.isDef()) {
1543       unsigned Reg = MO.getReg();
1544       if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
1545         const MachineRegisterInfo &MRI = MF->getRegInfo();
1546         if (MRI.use_empty(Reg)) {
1547           bool HasAliasLive = false;
1548           for (MCRegAliasIterator AI(Reg, TM->getRegisterInfo(), true);
1549                AI.isValid(); ++AI) {
1550             unsigned AliasReg = *AI;
1551             if (!MRI.use_empty(AliasReg)) {
1552               HasAliasLive = true;
1553               break;
1554             }
1555           }
1556           if (!HasAliasLive) {
1557             OmittedAnyCallClobbers = true;
1558             continue;
1559           }
1560         }
1561       }
1562     }
1563 
1564     if (FirstOp) FirstOp = false; else OS << ",";
1565     OS << " ";
1566     if (i < getDesc().NumOperands) {
1567       const MCOperandInfo &MCOI = getDesc().OpInfo[i];
1568       if (MCOI.isPredicate())
1569         OS << "pred:";
1570       if (MCOI.isOptionalDef())
1571         OS << "opt:";
1572     }
1573     if (isDebugValue() && MO.isMetadata()) {
1574       // Pretty print DBG_VALUE instructions.
1575       const MDNode *MD = MO.getMetadata();
1576       if (const MDString *MDS = dyn_cast<MDString>(MD->getOperand(2)))
1577         OS << "!\"" << MDS->getString() << '\"';
1578       else
1579         MO.print(OS, TM);
1580     } else if (TM && (isInsertSubreg() || isRegSequence()) && MO.isImm()) {
1581       OS << TM->getRegisterInfo()->getSubRegIndexName(MO.getImm());
1582     } else if (i == AsmDescOp && MO.isImm()) {
1583       // Pretty print the inline asm operand descriptor.
1584       OS << '$' << AsmOpCount++;
1585       unsigned Flag = MO.getImm();
1586       switch (InlineAsm::getKind(Flag)) {
1587       case InlineAsm::Kind_RegUse:             OS << ":[reguse"; break;
1588       case InlineAsm::Kind_RegDef:             OS << ":[regdef"; break;
1589       case InlineAsm::Kind_RegDefEarlyClobber: OS << ":[regdef-ec"; break;
1590       case InlineAsm::Kind_Clobber:            OS << ":[clobber"; break;
1591       case InlineAsm::Kind_Imm:                OS << ":[imm"; break;
1592       case InlineAsm::Kind_Mem:                OS << ":[mem"; break;
1593       default: OS << ":[??" << InlineAsm::getKind(Flag); break;
1594       }
1595 
1596       unsigned RCID = 0;
1597       if (InlineAsm::hasRegClassConstraint(Flag, RCID)) {
1598         if (TM)
1599           OS << ':' << TM->getRegisterInfo()->getRegClass(RCID)->getName();
1600         else
1601           OS << ":RC" << RCID;
1602       }
1603 
1604       unsigned TiedTo = 0;
1605       if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo))
1606         OS << " tiedto:$" << TiedTo;
1607 
1608       OS << ']';
1609 
1610       // Compute the index of the next operand descriptor.
1611       AsmDescOp += 1 + InlineAsm::getNumOperandRegisters(Flag);
1612     } else
1613       MO.print(OS, TM);
1614   }
1615 
1616   // Briefly indicate whether any call clobbers were omitted.
1617   if (OmittedAnyCallClobbers) {
1618     if (!FirstOp) OS << ",";
1619     OS << " ...";
1620   }
1621 
1622   bool HaveSemi = false;
1623   const unsigned PrintableFlags = FrameSetup;
1624   if (Flags & PrintableFlags) {
1625     if (!HaveSemi) OS << ";"; HaveSemi = true;
1626     OS << " flags: ";
1627 
1628     if (Flags & FrameSetup)
1629       OS << "FrameSetup";
1630   }
1631 
1632   if (!memoperands_empty()) {
1633     if (!HaveSemi) OS << ";"; HaveSemi = true;
1634 
1635     OS << " mem:";
1636     for (mmo_iterator i = memoperands_begin(), e = memoperands_end();
1637          i != e; ++i) {
1638       OS << **i;
1639       if (std::next(i) != e)
1640         OS << " ";
1641     }
1642   }
1643 
1644   // Print the regclass of any virtual registers encountered.
1645   if (MRI && !VirtRegs.empty()) {
1646     if (!HaveSemi) OS << ";"; HaveSemi = true;
1647     for (unsigned i = 0; i != VirtRegs.size(); ++i) {
1648       const TargetRegisterClass *RC = MRI->getRegClass(VirtRegs[i]);
1649       OS << " " << RC->getName() << ':' << PrintReg(VirtRegs[i]);
1650       for (unsigned j = i+1; j != VirtRegs.size();) {
1651         if (MRI->getRegClass(VirtRegs[j]) != RC) {
1652           ++j;
1653           continue;
1654         }
1655         if (VirtRegs[i] != VirtRegs[j])
1656           OS << "," << PrintReg(VirtRegs[j]);
1657         VirtRegs.erase(VirtRegs.begin()+j);
1658       }
1659     }
1660   }
1661 
1662   // Print debug location information.
1663   if (isDebugValue() && getOperand(e - 1).isMetadata()) {
1664     if (!HaveSemi) OS << ";";
1665     DIVariable DV(getOperand(e - 1).getMetadata());
1666     OS << " line no:" <<  DV.getLineNumber();
1667     if (MDNode *InlinedAt = DV.getInlinedAt()) {
1668       DebugLoc InlinedAtDL = DebugLoc::getFromDILocation(InlinedAt);
1669       if (!InlinedAtDL.isUnknown() && MF) {
1670         OS << " inlined @[ ";
1671         printDebugLoc(InlinedAtDL, MF, OS);
1672         OS << " ]";
1673       }
1674     }
1675   } else if (!debugLoc.isUnknown() && MF) {
1676     if (!HaveSemi) OS << ";";
1677     OS << " dbg:";
1678     printDebugLoc(debugLoc, MF, OS);
1679   }
1680 
1681   OS << '\n';
1682 }
1683 
addRegisterKilled(unsigned IncomingReg,const TargetRegisterInfo * RegInfo,bool AddIfNotFound)1684 bool MachineInstr::addRegisterKilled(unsigned IncomingReg,
1685                                      const TargetRegisterInfo *RegInfo,
1686                                      bool AddIfNotFound) {
1687   bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg);
1688   bool hasAliases = isPhysReg &&
1689     MCRegAliasIterator(IncomingReg, RegInfo, false).isValid();
1690   bool Found = false;
1691   SmallVector<unsigned,4> DeadOps;
1692   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1693     MachineOperand &MO = getOperand(i);
1694     if (!MO.isReg() || !MO.isUse() || MO.isUndef())
1695       continue;
1696     unsigned Reg = MO.getReg();
1697     if (!Reg)
1698       continue;
1699 
1700     if (Reg == IncomingReg) {
1701       if (!Found) {
1702         if (MO.isKill())
1703           // The register is already marked kill.
1704           return true;
1705         if (isPhysReg && isRegTiedToDefOperand(i))
1706           // Two-address uses of physregs must not be marked kill.
1707           return true;
1708         MO.setIsKill();
1709         Found = true;
1710       }
1711     } else if (hasAliases && MO.isKill() &&
1712                TargetRegisterInfo::isPhysicalRegister(Reg)) {
1713       // A super-register kill already exists.
1714       if (RegInfo->isSuperRegister(IncomingReg, Reg))
1715         return true;
1716       if (RegInfo->isSubRegister(IncomingReg, Reg))
1717         DeadOps.push_back(i);
1718     }
1719   }
1720 
1721   // Trim unneeded kill operands.
1722   while (!DeadOps.empty()) {
1723     unsigned OpIdx = DeadOps.back();
1724     if (getOperand(OpIdx).isImplicit())
1725       RemoveOperand(OpIdx);
1726     else
1727       getOperand(OpIdx).setIsKill(false);
1728     DeadOps.pop_back();
1729   }
1730 
1731   // If not found, this means an alias of one of the operands is killed. Add a
1732   // new implicit operand if required.
1733   if (!Found && AddIfNotFound) {
1734     addOperand(MachineOperand::CreateReg(IncomingReg,
1735                                          false /*IsDef*/,
1736                                          true  /*IsImp*/,
1737                                          true  /*IsKill*/));
1738     return true;
1739   }
1740   return Found;
1741 }
1742 
clearRegisterKills(unsigned Reg,const TargetRegisterInfo * RegInfo)1743 void MachineInstr::clearRegisterKills(unsigned Reg,
1744                                       const TargetRegisterInfo *RegInfo) {
1745   if (!TargetRegisterInfo::isPhysicalRegister(Reg))
1746     RegInfo = nullptr;
1747   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1748     MachineOperand &MO = getOperand(i);
1749     if (!MO.isReg() || !MO.isUse() || !MO.isKill())
1750       continue;
1751     unsigned OpReg = MO.getReg();
1752     if (OpReg == Reg || (RegInfo && RegInfo->isSuperRegister(Reg, OpReg)))
1753       MO.setIsKill(false);
1754   }
1755 }
1756 
addRegisterDead(unsigned Reg,const TargetRegisterInfo * RegInfo,bool AddIfNotFound)1757 bool MachineInstr::addRegisterDead(unsigned Reg,
1758                                    const TargetRegisterInfo *RegInfo,
1759                                    bool AddIfNotFound) {
1760   bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(Reg);
1761   bool hasAliases = isPhysReg &&
1762     MCRegAliasIterator(Reg, RegInfo, false).isValid();
1763   bool Found = false;
1764   SmallVector<unsigned,4> DeadOps;
1765   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1766     MachineOperand &MO = getOperand(i);
1767     if (!MO.isReg() || !MO.isDef())
1768       continue;
1769     unsigned MOReg = MO.getReg();
1770     if (!MOReg)
1771       continue;
1772 
1773     if (MOReg == Reg) {
1774       MO.setIsDead();
1775       Found = true;
1776     } else if (hasAliases && MO.isDead() &&
1777                TargetRegisterInfo::isPhysicalRegister(MOReg)) {
1778       // There exists a super-register that's marked dead.
1779       if (RegInfo->isSuperRegister(Reg, MOReg))
1780         return true;
1781       if (RegInfo->isSubRegister(Reg, MOReg))
1782         DeadOps.push_back(i);
1783     }
1784   }
1785 
1786   // Trim unneeded dead operands.
1787   while (!DeadOps.empty()) {
1788     unsigned OpIdx = DeadOps.back();
1789     if (getOperand(OpIdx).isImplicit())
1790       RemoveOperand(OpIdx);
1791     else
1792       getOperand(OpIdx).setIsDead(false);
1793     DeadOps.pop_back();
1794   }
1795 
1796   // If not found, this means an alias of one of the operands is dead. Add a
1797   // new implicit operand if required.
1798   if (Found || !AddIfNotFound)
1799     return Found;
1800 
1801   addOperand(MachineOperand::CreateReg(Reg,
1802                                        true  /*IsDef*/,
1803                                        true  /*IsImp*/,
1804                                        false /*IsKill*/,
1805                                        true  /*IsDead*/));
1806   return true;
1807 }
1808 
addRegisterDefined(unsigned Reg,const TargetRegisterInfo * RegInfo)1809 void MachineInstr::addRegisterDefined(unsigned Reg,
1810                                       const TargetRegisterInfo *RegInfo) {
1811   if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
1812     MachineOperand *MO = findRegisterDefOperand(Reg, false, RegInfo);
1813     if (MO)
1814       return;
1815   } else {
1816     for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1817       const MachineOperand &MO = getOperand(i);
1818       if (MO.isReg() && MO.getReg() == Reg && MO.isDef() &&
1819           MO.getSubReg() == 0)
1820         return;
1821     }
1822   }
1823   addOperand(MachineOperand::CreateReg(Reg,
1824                                        true  /*IsDef*/,
1825                                        true  /*IsImp*/));
1826 }
1827 
setPhysRegsDeadExcept(ArrayRef<unsigned> UsedRegs,const TargetRegisterInfo & TRI)1828 void MachineInstr::setPhysRegsDeadExcept(ArrayRef<unsigned> UsedRegs,
1829                                          const TargetRegisterInfo &TRI) {
1830   bool HasRegMask = false;
1831   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1832     MachineOperand &MO = getOperand(i);
1833     if (MO.isRegMask()) {
1834       HasRegMask = true;
1835       continue;
1836     }
1837     if (!MO.isReg() || !MO.isDef()) continue;
1838     unsigned Reg = MO.getReg();
1839     if (!TargetRegisterInfo::isPhysicalRegister(Reg)) continue;
1840     bool Dead = true;
1841     for (ArrayRef<unsigned>::iterator I = UsedRegs.begin(), E = UsedRegs.end();
1842          I != E; ++I)
1843       if (TRI.regsOverlap(*I, Reg)) {
1844         Dead = false;
1845         break;
1846       }
1847     // If there are no uses, including partial uses, the def is dead.
1848     if (Dead) MO.setIsDead();
1849   }
1850 
1851   // This is a call with a register mask operand.
1852   // Mask clobbers are always dead, so add defs for the non-dead defines.
1853   if (HasRegMask)
1854     for (ArrayRef<unsigned>::iterator I = UsedRegs.begin(), E = UsedRegs.end();
1855          I != E; ++I)
1856       addRegisterDefined(*I, &TRI);
1857 }
1858 
1859 unsigned
getHashValue(const MachineInstr * const & MI)1860 MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) {
1861   // Build up a buffer of hash code components.
1862   SmallVector<size_t, 8> HashComponents;
1863   HashComponents.reserve(MI->getNumOperands() + 1);
1864   HashComponents.push_back(MI->getOpcode());
1865   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1866     const MachineOperand &MO = MI->getOperand(i);
1867     if (MO.isReg() && MO.isDef() &&
1868         TargetRegisterInfo::isVirtualRegister(MO.getReg()))
1869       continue;  // Skip virtual register defs.
1870 
1871     HashComponents.push_back(hash_value(MO));
1872   }
1873   return hash_combine_range(HashComponents.begin(), HashComponents.end());
1874 }
1875 
emitError(StringRef Msg) const1876 void MachineInstr::emitError(StringRef Msg) const {
1877   // Find the source location cookie.
1878   unsigned LocCookie = 0;
1879   const MDNode *LocMD = nullptr;
1880   for (unsigned i = getNumOperands(); i != 0; --i) {
1881     if (getOperand(i-1).isMetadata() &&
1882         (LocMD = getOperand(i-1).getMetadata()) &&
1883         LocMD->getNumOperands() != 0) {
1884       if (const ConstantInt *CI = dyn_cast<ConstantInt>(LocMD->getOperand(0))) {
1885         LocCookie = CI->getZExtValue();
1886         break;
1887       }
1888     }
1889   }
1890 
1891   if (const MachineBasicBlock *MBB = getParent())
1892     if (const MachineFunction *MF = MBB->getParent())
1893       return MF->getMMI().getModule()->getContext().emitError(LocCookie, Msg);
1894   report_fatal_error(Msg);
1895 }
1896