1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-function state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "CodeGenFunction.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGDebugInfo.h"
18 #include "CGOpenMPRuntime.h"
19 #include "CodeGenModule.h"
20 #include "CodeGenPGO.h"
21 #include "TargetInfo.h"
22 #include "clang/AST/ASTContext.h"
23 #include "clang/AST/Decl.h"
24 #include "clang/AST/DeclCXX.h"
25 #include "clang/AST/StmtCXX.h"
26 #include "clang/Basic/TargetInfo.h"
27 #include "clang/CodeGen/CGFunctionInfo.h"
28 #include "clang/Frontend/CodeGenOptions.h"
29 #include "llvm/IR/DataLayout.h"
30 #include "llvm/IR/Intrinsics.h"
31 #include "llvm/IR/MDBuilder.h"
32 #include "llvm/IR/Operator.h"
33 using namespace clang;
34 using namespace CodeGen;
35
CodeGenFunction(CodeGenModule & cgm,bool suppressNewContext)36 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext)
37 : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()),
38 Builder(cgm.getModule().getContext(), llvm::ConstantFolder(),
39 CGBuilderInserterTy(this)), CapturedStmtInfo(nullptr),
40 SanOpts(&CGM.getLangOpts().Sanitize), AutoreleaseResult(false), BlockInfo(nullptr),
41 BlockPointer(nullptr), LambdaThisCaptureField(nullptr),
42 NormalCleanupDest(nullptr), NextCleanupDestIndex(1),
43 FirstBlockInfo(nullptr), EHResumeBlock(nullptr), ExceptionSlot(nullptr),
44 EHSelectorSlot(nullptr), DebugInfo(CGM.getModuleDebugInfo()),
45 DisableDebugInfo(false), DidCallStackSave(false), IndirectBranch(nullptr),
46 PGO(cgm), SwitchInsn(nullptr), SwitchWeights(nullptr),
47 CaseRangeBlock(nullptr), UnreachableBlock(nullptr), NumReturnExprs(0),
48 NumSimpleReturnExprs(0), CXXABIThisDecl(nullptr),
49 CXXABIThisValue(nullptr), CXXThisValue(nullptr),
50 CXXDefaultInitExprThis(nullptr), CXXStructorImplicitParamDecl(nullptr),
51 CXXStructorImplicitParamValue(nullptr), OutermostConditional(nullptr),
52 CurLexicalScope(nullptr), TerminateLandingPad(nullptr),
53 TerminateHandler(nullptr), TrapBB(nullptr) {
54 if (!suppressNewContext)
55 CGM.getCXXABI().getMangleContext().startNewFunction();
56
57 llvm::FastMathFlags FMF;
58 if (CGM.getLangOpts().FastMath)
59 FMF.setUnsafeAlgebra();
60 if (CGM.getLangOpts().FiniteMathOnly) {
61 FMF.setNoNaNs();
62 FMF.setNoInfs();
63 }
64 Builder.SetFastMathFlags(FMF);
65 }
66
~CodeGenFunction()67 CodeGenFunction::~CodeGenFunction() {
68 assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup");
69
70 // If there are any unclaimed block infos, go ahead and destroy them
71 // now. This can happen if IR-gen gets clever and skips evaluating
72 // something.
73 if (FirstBlockInfo)
74 destroyBlockInfos(FirstBlockInfo);
75
76 if (getLangOpts().OpenMP) {
77 CGM.getOpenMPRuntime().FunctionFinished(*this);
78 }
79 }
80
81
ConvertTypeForMem(QualType T)82 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
83 return CGM.getTypes().ConvertTypeForMem(T);
84 }
85
ConvertType(QualType T)86 llvm::Type *CodeGenFunction::ConvertType(QualType T) {
87 return CGM.getTypes().ConvertType(T);
88 }
89
getEvaluationKind(QualType type)90 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) {
91 type = type.getCanonicalType();
92 while (true) {
93 switch (type->getTypeClass()) {
94 #define TYPE(name, parent)
95 #define ABSTRACT_TYPE(name, parent)
96 #define NON_CANONICAL_TYPE(name, parent) case Type::name:
97 #define DEPENDENT_TYPE(name, parent) case Type::name:
98 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
99 #include "clang/AST/TypeNodes.def"
100 llvm_unreachable("non-canonical or dependent type in IR-generation");
101
102 case Type::Auto:
103 llvm_unreachable("undeduced auto type in IR-generation");
104
105 // Various scalar types.
106 case Type::Builtin:
107 case Type::Pointer:
108 case Type::BlockPointer:
109 case Type::LValueReference:
110 case Type::RValueReference:
111 case Type::MemberPointer:
112 case Type::Vector:
113 case Type::ExtVector:
114 case Type::FunctionProto:
115 case Type::FunctionNoProto:
116 case Type::Enum:
117 case Type::ObjCObjectPointer:
118 return TEK_Scalar;
119
120 // Complexes.
121 case Type::Complex:
122 return TEK_Complex;
123
124 // Arrays, records, and Objective-C objects.
125 case Type::ConstantArray:
126 case Type::IncompleteArray:
127 case Type::VariableArray:
128 case Type::Record:
129 case Type::ObjCObject:
130 case Type::ObjCInterface:
131 return TEK_Aggregate;
132
133 // We operate on atomic values according to their underlying type.
134 case Type::Atomic:
135 type = cast<AtomicType>(type)->getValueType();
136 continue;
137 }
138 llvm_unreachable("unknown type kind!");
139 }
140 }
141
EmitReturnBlock()142 void CodeGenFunction::EmitReturnBlock() {
143 // For cleanliness, we try to avoid emitting the return block for
144 // simple cases.
145 llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
146
147 if (CurBB) {
148 assert(!CurBB->getTerminator() && "Unexpected terminated block.");
149
150 // We have a valid insert point, reuse it if it is empty or there are no
151 // explicit jumps to the return block.
152 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
153 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
154 delete ReturnBlock.getBlock();
155 } else
156 EmitBlock(ReturnBlock.getBlock());
157 return;
158 }
159
160 // Otherwise, if the return block is the target of a single direct
161 // branch then we can just put the code in that block instead. This
162 // cleans up functions which started with a unified return block.
163 if (ReturnBlock.getBlock()->hasOneUse()) {
164 llvm::BranchInst *BI =
165 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin());
166 if (BI && BI->isUnconditional() &&
167 BI->getSuccessor(0) == ReturnBlock.getBlock()) {
168 // Reset insertion point, including debug location, and delete the
169 // branch. This is really subtle and only works because the next change
170 // in location will hit the caching in CGDebugInfo::EmitLocation and not
171 // override this.
172 Builder.SetCurrentDebugLocation(BI->getDebugLoc());
173 Builder.SetInsertPoint(BI->getParent());
174 BI->eraseFromParent();
175 delete ReturnBlock.getBlock();
176 return;
177 }
178 }
179
180 // FIXME: We are at an unreachable point, there is no reason to emit the block
181 // unless it has uses. However, we still need a place to put the debug
182 // region.end for now.
183
184 EmitBlock(ReturnBlock.getBlock());
185 }
186
EmitIfUsed(CodeGenFunction & CGF,llvm::BasicBlock * BB)187 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
188 if (!BB) return;
189 if (!BB->use_empty())
190 return CGF.CurFn->getBasicBlockList().push_back(BB);
191 delete BB;
192 }
193
FinishFunction(SourceLocation EndLoc)194 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
195 assert(BreakContinueStack.empty() &&
196 "mismatched push/pop in break/continue stack!");
197
198 bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0
199 && NumSimpleReturnExprs == NumReturnExprs
200 && ReturnBlock.getBlock()->use_empty();
201 // Usually the return expression is evaluated before the cleanup
202 // code. If the function contains only a simple return statement,
203 // such as a constant, the location before the cleanup code becomes
204 // the last useful breakpoint in the function, because the simple
205 // return expression will be evaluated after the cleanup code. To be
206 // safe, set the debug location for cleanup code to the location of
207 // the return statement. Otherwise the cleanup code should be at the
208 // end of the function's lexical scope.
209 //
210 // If there are multiple branches to the return block, the branch
211 // instructions will get the location of the return statements and
212 // all will be fine.
213 if (CGDebugInfo *DI = getDebugInfo()) {
214 if (OnlySimpleReturnStmts)
215 DI->EmitLocation(Builder, LastStopPoint);
216 else
217 DI->EmitLocation(Builder, EndLoc);
218 }
219
220 // Pop any cleanups that might have been associated with the
221 // parameters. Do this in whatever block we're currently in; it's
222 // important to do this before we enter the return block or return
223 // edges will be *really* confused.
224 bool EmitRetDbgLoc = true;
225 if (EHStack.stable_begin() != PrologueCleanupDepth) {
226 PopCleanupBlocks(PrologueCleanupDepth);
227
228 // Make sure the line table doesn't jump back into the body for
229 // the ret after it's been at EndLoc.
230 EmitRetDbgLoc = false;
231
232 if (CGDebugInfo *DI = getDebugInfo())
233 if (OnlySimpleReturnStmts)
234 DI->EmitLocation(Builder, EndLoc);
235 }
236
237 // Emit function epilog (to return).
238 EmitReturnBlock();
239
240 if (ShouldInstrumentFunction())
241 EmitFunctionInstrumentation("__cyg_profile_func_exit");
242
243 // Emit debug descriptor for function end.
244 if (CGDebugInfo *DI = getDebugInfo()) {
245 DI->EmitFunctionEnd(Builder);
246 }
247
248 EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc);
249 EmitEndEHSpec(CurCodeDecl);
250
251 assert(EHStack.empty() &&
252 "did not remove all scopes from cleanup stack!");
253
254 // If someone did an indirect goto, emit the indirect goto block at the end of
255 // the function.
256 if (IndirectBranch) {
257 EmitBlock(IndirectBranch->getParent());
258 Builder.ClearInsertionPoint();
259 }
260
261 // Remove the AllocaInsertPt instruction, which is just a convenience for us.
262 llvm::Instruction *Ptr = AllocaInsertPt;
263 AllocaInsertPt = nullptr;
264 Ptr->eraseFromParent();
265
266 // If someone took the address of a label but never did an indirect goto, we
267 // made a zero entry PHI node, which is illegal, zap it now.
268 if (IndirectBranch) {
269 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
270 if (PN->getNumIncomingValues() == 0) {
271 PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
272 PN->eraseFromParent();
273 }
274 }
275
276 EmitIfUsed(*this, EHResumeBlock);
277 EmitIfUsed(*this, TerminateLandingPad);
278 EmitIfUsed(*this, TerminateHandler);
279 EmitIfUsed(*this, UnreachableBlock);
280
281 if (CGM.getCodeGenOpts().EmitDeclMetadata)
282 EmitDeclMetadata();
283
284 for (SmallVectorImpl<std::pair<llvm::Instruction *, llvm::Value *> >::iterator
285 I = DeferredReplacements.begin(),
286 E = DeferredReplacements.end();
287 I != E; ++I) {
288 I->first->replaceAllUsesWith(I->second);
289 I->first->eraseFromParent();
290 }
291 }
292
293 /// ShouldInstrumentFunction - Return true if the current function should be
294 /// instrumented with __cyg_profile_func_* calls
ShouldInstrumentFunction()295 bool CodeGenFunction::ShouldInstrumentFunction() {
296 if (!CGM.getCodeGenOpts().InstrumentFunctions)
297 return false;
298 if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
299 return false;
300 return true;
301 }
302
303 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified
304 /// instrumentation function with the current function and the call site, if
305 /// function instrumentation is enabled.
EmitFunctionInstrumentation(const char * Fn)306 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) {
307 // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site);
308 llvm::PointerType *PointerTy = Int8PtrTy;
309 llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy };
310 llvm::FunctionType *FunctionTy =
311 llvm::FunctionType::get(VoidTy, ProfileFuncArgs, false);
312
313 llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn);
314 llvm::CallInst *CallSite = Builder.CreateCall(
315 CGM.getIntrinsic(llvm::Intrinsic::returnaddress),
316 llvm::ConstantInt::get(Int32Ty, 0),
317 "callsite");
318
319 llvm::Value *args[] = {
320 llvm::ConstantExpr::getBitCast(CurFn, PointerTy),
321 CallSite
322 };
323
324 EmitNounwindRuntimeCall(F, args);
325 }
326
EmitMCountInstrumentation()327 void CodeGenFunction::EmitMCountInstrumentation() {
328 llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false);
329
330 llvm::Constant *MCountFn =
331 CGM.CreateRuntimeFunction(FTy, getTarget().getMCountName());
332 EmitNounwindRuntimeCall(MCountFn);
333 }
334
335 // OpenCL v1.2 s5.6.4.6 allows the compiler to store kernel argument
336 // information in the program executable. The argument information stored
337 // includes the argument name, its type, the address and access qualifiers used.
GenOpenCLArgMetadata(const FunctionDecl * FD,llvm::Function * Fn,CodeGenModule & CGM,llvm::LLVMContext & Context,SmallVector<llvm::Value *,5> & kernelMDArgs,CGBuilderTy & Builder,ASTContext & ASTCtx)338 static void GenOpenCLArgMetadata(const FunctionDecl *FD, llvm::Function *Fn,
339 CodeGenModule &CGM,llvm::LLVMContext &Context,
340 SmallVector <llvm::Value*, 5> &kernelMDArgs,
341 CGBuilderTy& Builder, ASTContext &ASTCtx) {
342 // Create MDNodes that represent the kernel arg metadata.
343 // Each MDNode is a list in the form of "key", N number of values which is
344 // the same number of values as their are kernel arguments.
345
346 const PrintingPolicy &Policy = ASTCtx.getPrintingPolicy();
347
348 // MDNode for the kernel argument address space qualifiers.
349 SmallVector<llvm::Value*, 8> addressQuals;
350 addressQuals.push_back(llvm::MDString::get(Context, "kernel_arg_addr_space"));
351
352 // MDNode for the kernel argument access qualifiers (images only).
353 SmallVector<llvm::Value*, 8> accessQuals;
354 accessQuals.push_back(llvm::MDString::get(Context, "kernel_arg_access_qual"));
355
356 // MDNode for the kernel argument type names.
357 SmallVector<llvm::Value*, 8> argTypeNames;
358 argTypeNames.push_back(llvm::MDString::get(Context, "kernel_arg_type"));
359
360 // MDNode for the kernel argument type qualifiers.
361 SmallVector<llvm::Value*, 8> argTypeQuals;
362 argTypeQuals.push_back(llvm::MDString::get(Context, "kernel_arg_type_qual"));
363
364 // MDNode for the kernel argument names.
365 SmallVector<llvm::Value*, 8> argNames;
366 argNames.push_back(llvm::MDString::get(Context, "kernel_arg_name"));
367
368 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
369 const ParmVarDecl *parm = FD->getParamDecl(i);
370 QualType ty = parm->getType();
371 std::string typeQuals;
372
373 if (ty->isPointerType()) {
374 QualType pointeeTy = ty->getPointeeType();
375
376 // Get address qualifier.
377 addressQuals.push_back(Builder.getInt32(ASTCtx.getTargetAddressSpace(
378 pointeeTy.getAddressSpace())));
379
380 // Get argument type name.
381 std::string typeName =
382 pointeeTy.getUnqualifiedType().getAsString(Policy) + "*";
383
384 // Turn "unsigned type" to "utype"
385 std::string::size_type pos = typeName.find("unsigned");
386 if (pos != std::string::npos)
387 typeName.erase(pos+1, 8);
388
389 argTypeNames.push_back(llvm::MDString::get(Context, typeName));
390
391 // Get argument type qualifiers:
392 if (ty.isRestrictQualified())
393 typeQuals = "restrict";
394 if (pointeeTy.isConstQualified() ||
395 (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
396 typeQuals += typeQuals.empty() ? "const" : " const";
397 if (pointeeTy.isVolatileQualified())
398 typeQuals += typeQuals.empty() ? "volatile" : " volatile";
399 } else {
400 uint32_t AddrSpc = 0;
401 if (ty->isImageType())
402 AddrSpc =
403 CGM.getContext().getTargetAddressSpace(LangAS::opencl_global);
404
405 addressQuals.push_back(Builder.getInt32(AddrSpc));
406
407 // Get argument type name.
408 std::string typeName = ty.getUnqualifiedType().getAsString(Policy);
409
410 // Turn "unsigned type" to "utype"
411 std::string::size_type pos = typeName.find("unsigned");
412 if (pos != std::string::npos)
413 typeName.erase(pos+1, 8);
414
415 argTypeNames.push_back(llvm::MDString::get(Context, typeName));
416
417 // Get argument type qualifiers:
418 if (ty.isConstQualified())
419 typeQuals = "const";
420 if (ty.isVolatileQualified())
421 typeQuals += typeQuals.empty() ? "volatile" : " volatile";
422 }
423
424 argTypeQuals.push_back(llvm::MDString::get(Context, typeQuals));
425
426 // Get image access qualifier:
427 if (ty->isImageType()) {
428 const OpenCLImageAccessAttr *A = parm->getAttr<OpenCLImageAccessAttr>();
429 if (A && A->isWriteOnly())
430 accessQuals.push_back(llvm::MDString::get(Context, "write_only"));
431 else
432 accessQuals.push_back(llvm::MDString::get(Context, "read_only"));
433 // FIXME: what about read_write?
434 } else
435 accessQuals.push_back(llvm::MDString::get(Context, "none"));
436
437 // Get argument name.
438 argNames.push_back(llvm::MDString::get(Context, parm->getName()));
439 }
440
441 kernelMDArgs.push_back(llvm::MDNode::get(Context, addressQuals));
442 kernelMDArgs.push_back(llvm::MDNode::get(Context, accessQuals));
443 kernelMDArgs.push_back(llvm::MDNode::get(Context, argTypeNames));
444 kernelMDArgs.push_back(llvm::MDNode::get(Context, argTypeQuals));
445 kernelMDArgs.push_back(llvm::MDNode::get(Context, argNames));
446 }
447
EmitOpenCLKernelMetadata(const FunctionDecl * FD,llvm::Function * Fn)448 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD,
449 llvm::Function *Fn)
450 {
451 if (!FD->hasAttr<OpenCLKernelAttr>())
452 return;
453
454 llvm::LLVMContext &Context = getLLVMContext();
455
456 SmallVector <llvm::Value*, 5> kernelMDArgs;
457 kernelMDArgs.push_back(Fn);
458
459 if (CGM.getCodeGenOpts().EmitOpenCLArgMetadata)
460 GenOpenCLArgMetadata(FD, Fn, CGM, Context, kernelMDArgs,
461 Builder, getContext());
462
463 if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) {
464 QualType hintQTy = A->getTypeHint();
465 const ExtVectorType *hintEltQTy = hintQTy->getAs<ExtVectorType>();
466 bool isSignedInteger =
467 hintQTy->isSignedIntegerType() ||
468 (hintEltQTy && hintEltQTy->getElementType()->isSignedIntegerType());
469 llvm::Value *attrMDArgs[] = {
470 llvm::MDString::get(Context, "vec_type_hint"),
471 llvm::UndefValue::get(CGM.getTypes().ConvertType(A->getTypeHint())),
472 llvm::ConstantInt::get(
473 llvm::IntegerType::get(Context, 32),
474 llvm::APInt(32, (uint64_t)(isSignedInteger ? 1 : 0)))
475 };
476 kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs));
477 }
478
479 if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) {
480 llvm::Value *attrMDArgs[] = {
481 llvm::MDString::get(Context, "work_group_size_hint"),
482 Builder.getInt32(A->getXDim()),
483 Builder.getInt32(A->getYDim()),
484 Builder.getInt32(A->getZDim())
485 };
486 kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs));
487 }
488
489 if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) {
490 llvm::Value *attrMDArgs[] = {
491 llvm::MDString::get(Context, "reqd_work_group_size"),
492 Builder.getInt32(A->getXDim()),
493 Builder.getInt32(A->getYDim()),
494 Builder.getInt32(A->getZDim())
495 };
496 kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs));
497 }
498
499 llvm::MDNode *kernelMDNode = llvm::MDNode::get(Context, kernelMDArgs);
500 llvm::NamedMDNode *OpenCLKernelMetadata =
501 CGM.getModule().getOrInsertNamedMetadata("opencl.kernels");
502 OpenCLKernelMetadata->addOperand(kernelMDNode);
503 }
504
505 /// Determine whether the function F ends with a return stmt.
endsWithReturn(const Decl * F)506 static bool endsWithReturn(const Decl* F) {
507 const Stmt *Body = nullptr;
508 if (auto *FD = dyn_cast_or_null<FunctionDecl>(F))
509 Body = FD->getBody();
510 else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F))
511 Body = OMD->getBody();
512
513 if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) {
514 auto LastStmt = CS->body_rbegin();
515 if (LastStmt != CS->body_rend())
516 return isa<ReturnStmt>(*LastStmt);
517 }
518 return false;
519 }
520
StartFunction(GlobalDecl GD,QualType RetTy,llvm::Function * Fn,const CGFunctionInfo & FnInfo,const FunctionArgList & Args,SourceLocation Loc,SourceLocation StartLoc)521 void CodeGenFunction::StartFunction(GlobalDecl GD,
522 QualType RetTy,
523 llvm::Function *Fn,
524 const CGFunctionInfo &FnInfo,
525 const FunctionArgList &Args,
526 SourceLocation Loc,
527 SourceLocation StartLoc) {
528 const Decl *D = GD.getDecl();
529
530 DidCallStackSave = false;
531 CurCodeDecl = D;
532 CurFuncDecl = (D ? D->getNonClosureContext() : nullptr);
533 FnRetTy = RetTy;
534 CurFn = Fn;
535 CurFnInfo = &FnInfo;
536 assert(CurFn->isDeclaration() && "Function already has body?");
537
538 if (CGM.getSanitizerBlacklist().isIn(*Fn))
539 SanOpts = &SanitizerOptions::Disabled;
540
541 // Pass inline keyword to optimizer if it appears explicitly on any
542 // declaration. Also, in the case of -fno-inline attach NoInline
543 // attribute to all function that are not marked AlwaysInline.
544 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
545 if (!CGM.getCodeGenOpts().NoInline) {
546 for (auto RI : FD->redecls())
547 if (RI->isInlineSpecified()) {
548 Fn->addFnAttr(llvm::Attribute::InlineHint);
549 break;
550 }
551 } else if (!FD->hasAttr<AlwaysInlineAttr>())
552 Fn->addFnAttr(llvm::Attribute::NoInline);
553 }
554
555 if (getLangOpts().OpenCL) {
556 // Add metadata for a kernel function.
557 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
558 EmitOpenCLKernelMetadata(FD, Fn);
559 }
560
561 // If we are checking function types, emit a function type signature as
562 // prefix data.
563 if (getLangOpts().CPlusPlus && SanOpts->Function) {
564 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
565 if (llvm::Constant *PrefixSig =
566 CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) {
567 llvm::Constant *FTRTTIConst =
568 CGM.GetAddrOfRTTIDescriptor(FD->getType(), /*ForEH=*/true);
569 llvm::Constant *PrefixStructElems[] = { PrefixSig, FTRTTIConst };
570 llvm::Constant *PrefixStructConst =
571 llvm::ConstantStruct::getAnon(PrefixStructElems, /*Packed=*/true);
572 Fn->setPrefixData(PrefixStructConst);
573 }
574 }
575 }
576
577 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
578
579 // Create a marker to make it easy to insert allocas into the entryblock
580 // later. Don't create this with the builder, because we don't want it
581 // folded.
582 llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
583 AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "", EntryBB);
584 if (Builder.isNamePreserving())
585 AllocaInsertPt->setName("allocapt");
586
587 ReturnBlock = getJumpDestInCurrentScope("return");
588
589 Builder.SetInsertPoint(EntryBB);
590
591 // Emit subprogram debug descriptor.
592 if (CGDebugInfo *DI = getDebugInfo()) {
593 SmallVector<QualType, 16> ArgTypes;
594 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
595 i != e; ++i) {
596 ArgTypes.push_back((*i)->getType());
597 }
598
599 QualType FnType =
600 getContext().getFunctionType(RetTy, ArgTypes,
601 FunctionProtoType::ExtProtoInfo());
602 DI->EmitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, Builder);
603 }
604
605 if (ShouldInstrumentFunction())
606 EmitFunctionInstrumentation("__cyg_profile_func_enter");
607
608 if (CGM.getCodeGenOpts().InstrumentForProfiling)
609 EmitMCountInstrumentation();
610
611 if (RetTy->isVoidType()) {
612 // Void type; nothing to return.
613 ReturnValue = nullptr;
614
615 // Count the implicit return.
616 if (!endsWithReturn(D))
617 ++NumReturnExprs;
618 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect &&
619 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
620 // Indirect aggregate return; emit returned value directly into sret slot.
621 // This reduces code size, and affects correctness in C++.
622 auto AI = CurFn->arg_begin();
623 if (CurFnInfo->getReturnInfo().isSRetAfterThis())
624 ++AI;
625 ReturnValue = AI;
626 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca &&
627 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
628 // Load the sret pointer from the argument struct and return into that.
629 unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex();
630 llvm::Function::arg_iterator EI = CurFn->arg_end();
631 --EI;
632 llvm::Value *Addr = Builder.CreateStructGEP(EI, Idx);
633 ReturnValue = Builder.CreateLoad(Addr, "agg.result");
634 } else {
635 ReturnValue = CreateIRTemp(RetTy, "retval");
636
637 // Tell the epilog emitter to autorelease the result. We do this
638 // now so that various specialized functions can suppress it
639 // during their IR-generation.
640 if (getLangOpts().ObjCAutoRefCount &&
641 !CurFnInfo->isReturnsRetained() &&
642 RetTy->isObjCRetainableType())
643 AutoreleaseResult = true;
644 }
645
646 EmitStartEHSpec(CurCodeDecl);
647
648 PrologueCleanupDepth = EHStack.stable_begin();
649 EmitFunctionProlog(*CurFnInfo, CurFn, Args);
650
651 if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) {
652 CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
653 const CXXMethodDecl *MD = cast<CXXMethodDecl>(D);
654 if (MD->getParent()->isLambda() &&
655 MD->getOverloadedOperator() == OO_Call) {
656 // We're in a lambda; figure out the captures.
657 MD->getParent()->getCaptureFields(LambdaCaptureFields,
658 LambdaThisCaptureField);
659 if (LambdaThisCaptureField) {
660 // If this lambda captures this, load it.
661 LValue ThisLValue = EmitLValueForLambdaField(LambdaThisCaptureField);
662 CXXThisValue = EmitLoadOfLValue(ThisLValue,
663 SourceLocation()).getScalarVal();
664 }
665 } else {
666 // Not in a lambda; just use 'this' from the method.
667 // FIXME: Should we generate a new load for each use of 'this'? The
668 // fast register allocator would be happier...
669 CXXThisValue = CXXABIThisValue;
670 }
671 }
672
673 // If any of the arguments have a variably modified type, make sure to
674 // emit the type size.
675 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
676 i != e; ++i) {
677 const VarDecl *VD = *i;
678
679 // Dig out the type as written from ParmVarDecls; it's unclear whether
680 // the standard (C99 6.9.1p10) requires this, but we're following the
681 // precedent set by gcc.
682 QualType Ty;
683 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD))
684 Ty = PVD->getOriginalType();
685 else
686 Ty = VD->getType();
687
688 if (Ty->isVariablyModifiedType())
689 EmitVariablyModifiedType(Ty);
690 }
691 // Emit a location at the end of the prologue.
692 if (CGDebugInfo *DI = getDebugInfo())
693 DI->EmitLocation(Builder, StartLoc);
694 }
695
EmitFunctionBody(FunctionArgList & Args,const Stmt * Body)696 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args,
697 const Stmt *Body) {
698 RegionCounter Cnt = getPGORegionCounter(Body);
699 Cnt.beginRegion(Builder);
700 if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body))
701 EmitCompoundStmtWithoutScope(*S);
702 else
703 EmitStmt(Body);
704 }
705
706 /// When instrumenting to collect profile data, the counts for some blocks
707 /// such as switch cases need to not include the fall-through counts, so
708 /// emit a branch around the instrumentation code. When not instrumenting,
709 /// this just calls EmitBlock().
EmitBlockWithFallThrough(llvm::BasicBlock * BB,RegionCounter & Cnt)710 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB,
711 RegionCounter &Cnt) {
712 llvm::BasicBlock *SkipCountBB = nullptr;
713 if (HaveInsertPoint() && CGM.getCodeGenOpts().ProfileInstrGenerate) {
714 // When instrumenting for profiling, the fallthrough to certain
715 // statements needs to skip over the instrumentation code so that we
716 // get an accurate count.
717 SkipCountBB = createBasicBlock("skipcount");
718 EmitBranch(SkipCountBB);
719 }
720 EmitBlock(BB);
721 Cnt.beginRegion(Builder, /*AddIncomingFallThrough=*/true);
722 if (SkipCountBB)
723 EmitBlock(SkipCountBB);
724 }
725
726 /// Tries to mark the given function nounwind based on the
727 /// non-existence of any throwing calls within it. We believe this is
728 /// lightweight enough to do at -O0.
TryMarkNoThrow(llvm::Function * F)729 static void TryMarkNoThrow(llvm::Function *F) {
730 // LLVM treats 'nounwind' on a function as part of the type, so we
731 // can't do this on functions that can be overwritten.
732 if (F->mayBeOverridden()) return;
733
734 for (llvm::Function::iterator FI = F->begin(), FE = F->end(); FI != FE; ++FI)
735 for (llvm::BasicBlock::iterator
736 BI = FI->begin(), BE = FI->end(); BI != BE; ++BI)
737 if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(&*BI)) {
738 if (!Call->doesNotThrow())
739 return;
740 } else if (isa<llvm::ResumeInst>(&*BI)) {
741 return;
742 }
743 F->setDoesNotThrow();
744 }
745
EmitSizedDeallocationFunction(CodeGenFunction & CGF,const FunctionDecl * UnsizedDealloc)746 static void EmitSizedDeallocationFunction(CodeGenFunction &CGF,
747 const FunctionDecl *UnsizedDealloc) {
748 // This is a weak discardable definition of the sized deallocation function.
749 CGF.CurFn->setLinkage(llvm::Function::LinkOnceAnyLinkage);
750
751 // Call the unsized deallocation function and forward the first argument
752 // unchanged.
753 llvm::Constant *Unsized = CGF.CGM.GetAddrOfFunction(UnsizedDealloc);
754 CGF.Builder.CreateCall(Unsized, &*CGF.CurFn->arg_begin());
755 }
756
GenerateCode(GlobalDecl GD,llvm::Function * Fn,const CGFunctionInfo & FnInfo)757 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn,
758 const CGFunctionInfo &FnInfo) {
759 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
760
761 // Check if we should generate debug info for this function.
762 if (FD->hasAttr<NoDebugAttr>())
763 DebugInfo = nullptr; // disable debug info indefinitely for this function
764
765 FunctionArgList Args;
766 QualType ResTy = FD->getReturnType();
767
768 CurGD = GD;
769 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
770 if (MD && MD->isInstance()) {
771 if (CGM.getCXXABI().HasThisReturn(GD))
772 ResTy = MD->getThisType(getContext());
773 CGM.getCXXABI().buildThisParam(*this, Args);
774 }
775
776 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i)
777 Args.push_back(FD->getParamDecl(i));
778
779 if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)))
780 CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args);
781
782 SourceRange BodyRange;
783 if (Stmt *Body = FD->getBody()) BodyRange = Body->getSourceRange();
784 CurEHLocation = BodyRange.getEnd();
785
786 // Use the location of the start of the function to determine where
787 // the function definition is located. By default use the location
788 // of the declaration as the location for the subprogram. A function
789 // may lack a declaration in the source code if it is created by code
790 // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk).
791 SourceLocation Loc = FD->getLocation();
792
793 // If this is a function specialization then use the pattern body
794 // as the location for the function.
795 if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern())
796 if (SpecDecl->hasBody(SpecDecl))
797 Loc = SpecDecl->getLocation();
798
799 // Emit the standard function prologue.
800 StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin());
801
802 // Generate the body of the function.
803 PGO.assignRegionCounters(GD.getDecl(), CurFn);
804 if (isa<CXXDestructorDecl>(FD))
805 EmitDestructorBody(Args);
806 else if (isa<CXXConstructorDecl>(FD))
807 EmitConstructorBody(Args);
808 else if (getLangOpts().CUDA &&
809 !CGM.getCodeGenOpts().CUDAIsDevice &&
810 FD->hasAttr<CUDAGlobalAttr>())
811 CGM.getCUDARuntime().EmitDeviceStubBody(*this, Args);
812 else if (isa<CXXConversionDecl>(FD) &&
813 cast<CXXConversionDecl>(FD)->isLambdaToBlockPointerConversion()) {
814 // The lambda conversion to block pointer is special; the semantics can't be
815 // expressed in the AST, so IRGen needs to special-case it.
816 EmitLambdaToBlockPointerBody(Args);
817 } else if (isa<CXXMethodDecl>(FD) &&
818 cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) {
819 // The lambda static invoker function is special, because it forwards or
820 // clones the body of the function call operator (but is actually static).
821 EmitLambdaStaticInvokeFunction(cast<CXXMethodDecl>(FD));
822 } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) &&
823 (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() ||
824 cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) {
825 // Implicit copy-assignment gets the same special treatment as implicit
826 // copy-constructors.
827 emitImplicitAssignmentOperatorBody(Args);
828 } else if (Stmt *Body = FD->getBody()) {
829 EmitFunctionBody(Args, Body);
830 } else if (FunctionDecl *UnsizedDealloc =
831 FD->getCorrespondingUnsizedGlobalDeallocationFunction()) {
832 // Global sized deallocation functions get an implicit weak definition if
833 // they don't have an explicit definition.
834 EmitSizedDeallocationFunction(*this, UnsizedDealloc);
835 } else
836 llvm_unreachable("no definition for emitted function");
837
838 // C++11 [stmt.return]p2:
839 // Flowing off the end of a function [...] results in undefined behavior in
840 // a value-returning function.
841 // C11 6.9.1p12:
842 // If the '}' that terminates a function is reached, and the value of the
843 // function call is used by the caller, the behavior is undefined.
844 if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() &&
845 !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) {
846 if (SanOpts->Return)
847 EmitCheck(Builder.getFalse(), "missing_return",
848 EmitCheckSourceLocation(FD->getLocation()),
849 ArrayRef<llvm::Value *>(), CRK_Unrecoverable);
850 else if (CGM.getCodeGenOpts().OptimizationLevel == 0)
851 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::trap));
852 Builder.CreateUnreachable();
853 Builder.ClearInsertionPoint();
854 }
855
856 // Emit the standard function epilogue.
857 FinishFunction(BodyRange.getEnd());
858
859 // If we haven't marked the function nothrow through other means, do
860 // a quick pass now to see if we can.
861 if (!CurFn->doesNotThrow())
862 TryMarkNoThrow(CurFn);
863
864 PGO.emitInstrumentationData();
865 PGO.destroyRegionCounters();
866 }
867
868 /// ContainsLabel - Return true if the statement contains a label in it. If
869 /// this statement is not executed normally, it not containing a label means
870 /// that we can just remove the code.
ContainsLabel(const Stmt * S,bool IgnoreCaseStmts)871 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
872 // Null statement, not a label!
873 if (!S) return false;
874
875 // If this is a label, we have to emit the code, consider something like:
876 // if (0) { ... foo: bar(); } goto foo;
877 //
878 // TODO: If anyone cared, we could track __label__'s, since we know that you
879 // can't jump to one from outside their declared region.
880 if (isa<LabelStmt>(S))
881 return true;
882
883 // If this is a case/default statement, and we haven't seen a switch, we have
884 // to emit the code.
885 if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
886 return true;
887
888 // If this is a switch statement, we want to ignore cases below it.
889 if (isa<SwitchStmt>(S))
890 IgnoreCaseStmts = true;
891
892 // Scan subexpressions for verboten labels.
893 for (Stmt::const_child_range I = S->children(); I; ++I)
894 if (ContainsLabel(*I, IgnoreCaseStmts))
895 return true;
896
897 return false;
898 }
899
900 /// containsBreak - Return true if the statement contains a break out of it.
901 /// If the statement (recursively) contains a switch or loop with a break
902 /// inside of it, this is fine.
containsBreak(const Stmt * S)903 bool CodeGenFunction::containsBreak(const Stmt *S) {
904 // Null statement, not a label!
905 if (!S) return false;
906
907 // If this is a switch or loop that defines its own break scope, then we can
908 // include it and anything inside of it.
909 if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) ||
910 isa<ForStmt>(S))
911 return false;
912
913 if (isa<BreakStmt>(S))
914 return true;
915
916 // Scan subexpressions for verboten breaks.
917 for (Stmt::const_child_range I = S->children(); I; ++I)
918 if (containsBreak(*I))
919 return true;
920
921 return false;
922 }
923
924
925 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
926 /// to a constant, or if it does but contains a label, return false. If it
927 /// constant folds return true and set the boolean result in Result.
ConstantFoldsToSimpleInteger(const Expr * Cond,bool & ResultBool)928 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
929 bool &ResultBool) {
930 llvm::APSInt ResultInt;
931 if (!ConstantFoldsToSimpleInteger(Cond, ResultInt))
932 return false;
933
934 ResultBool = ResultInt.getBoolValue();
935 return true;
936 }
937
938 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
939 /// to a constant, or if it does but contains a label, return false. If it
940 /// constant folds return true and set the folded value.
941 bool CodeGenFunction::
ConstantFoldsToSimpleInteger(const Expr * Cond,llvm::APSInt & ResultInt)942 ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &ResultInt) {
943 // FIXME: Rename and handle conversion of other evaluatable things
944 // to bool.
945 llvm::APSInt Int;
946 if (!Cond->EvaluateAsInt(Int, getContext()))
947 return false; // Not foldable, not integer or not fully evaluatable.
948
949 if (CodeGenFunction::ContainsLabel(Cond))
950 return false; // Contains a label.
951
952 ResultInt = Int;
953 return true;
954 }
955
956
957
958 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
959 /// statement) to the specified blocks. Based on the condition, this might try
960 /// to simplify the codegen of the conditional based on the branch.
961 ///
EmitBranchOnBoolExpr(const Expr * Cond,llvm::BasicBlock * TrueBlock,llvm::BasicBlock * FalseBlock,uint64_t TrueCount)962 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond,
963 llvm::BasicBlock *TrueBlock,
964 llvm::BasicBlock *FalseBlock,
965 uint64_t TrueCount) {
966 Cond = Cond->IgnoreParens();
967
968 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
969
970 // Handle X && Y in a condition.
971 if (CondBOp->getOpcode() == BO_LAnd) {
972 RegionCounter Cnt = getPGORegionCounter(CondBOp);
973
974 // If we have "1 && X", simplify the code. "0 && X" would have constant
975 // folded if the case was simple enough.
976 bool ConstantBool = false;
977 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
978 ConstantBool) {
979 // br(1 && X) -> br(X).
980 Cnt.beginRegion(Builder);
981 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock,
982 TrueCount);
983 }
984
985 // If we have "X && 1", simplify the code to use an uncond branch.
986 // "X && 0" would have been constant folded to 0.
987 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
988 ConstantBool) {
989 // br(X && 1) -> br(X).
990 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock,
991 TrueCount);
992 }
993
994 // Emit the LHS as a conditional. If the LHS conditional is false, we
995 // want to jump to the FalseBlock.
996 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
997 // The counter tells us how often we evaluate RHS, and all of TrueCount
998 // can be propagated to that branch.
999 uint64_t RHSCount = Cnt.getCount();
1000
1001 ConditionalEvaluation eval(*this);
1002 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount);
1003 EmitBlock(LHSTrue);
1004
1005 // Any temporaries created here are conditional.
1006 Cnt.beginRegion(Builder);
1007 eval.begin(*this);
1008 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, TrueCount);
1009 eval.end(*this);
1010
1011 return;
1012 }
1013
1014 if (CondBOp->getOpcode() == BO_LOr) {
1015 RegionCounter Cnt = getPGORegionCounter(CondBOp);
1016
1017 // If we have "0 || X", simplify the code. "1 || X" would have constant
1018 // folded if the case was simple enough.
1019 bool ConstantBool = false;
1020 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1021 !ConstantBool) {
1022 // br(0 || X) -> br(X).
1023 Cnt.beginRegion(Builder);
1024 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock,
1025 TrueCount);
1026 }
1027
1028 // If we have "X || 0", simplify the code to use an uncond branch.
1029 // "X || 1" would have been constant folded to 1.
1030 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1031 !ConstantBool) {
1032 // br(X || 0) -> br(X).
1033 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock,
1034 TrueCount);
1035 }
1036
1037 // Emit the LHS as a conditional. If the LHS conditional is true, we
1038 // want to jump to the TrueBlock.
1039 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
1040 // We have the count for entry to the RHS and for the whole expression
1041 // being true, so we can divy up True count between the short circuit and
1042 // the RHS.
1043 uint64_t LHSCount = Cnt.getParentCount() - Cnt.getCount();
1044 uint64_t RHSCount = TrueCount - LHSCount;
1045
1046 ConditionalEvaluation eval(*this);
1047 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount);
1048 EmitBlock(LHSFalse);
1049
1050 // Any temporaries created here are conditional.
1051 Cnt.beginRegion(Builder);
1052 eval.begin(*this);
1053 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, RHSCount);
1054
1055 eval.end(*this);
1056
1057 return;
1058 }
1059 }
1060
1061 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
1062 // br(!x, t, f) -> br(x, f, t)
1063 if (CondUOp->getOpcode() == UO_LNot) {
1064 // Negate the count.
1065 uint64_t FalseCount = PGO.getCurrentRegionCount() - TrueCount;
1066 // Negate the condition and swap the destination blocks.
1067 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock,
1068 FalseCount);
1069 }
1070 }
1071
1072 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
1073 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
1074 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
1075 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
1076
1077 RegionCounter Cnt = getPGORegionCounter(CondOp);
1078 ConditionalEvaluation cond(*this);
1079 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock, Cnt.getCount());
1080
1081 // When computing PGO branch weights, we only know the overall count for
1082 // the true block. This code is essentially doing tail duplication of the
1083 // naive code-gen, introducing new edges for which counts are not
1084 // available. Divide the counts proportionally between the LHS and RHS of
1085 // the conditional operator.
1086 uint64_t LHSScaledTrueCount = 0;
1087 if (TrueCount) {
1088 double LHSRatio = Cnt.getCount() / (double) Cnt.getParentCount();
1089 LHSScaledTrueCount = TrueCount * LHSRatio;
1090 }
1091
1092 cond.begin(*this);
1093 EmitBlock(LHSBlock);
1094 Cnt.beginRegion(Builder);
1095 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock,
1096 LHSScaledTrueCount);
1097 cond.end(*this);
1098
1099 cond.begin(*this);
1100 EmitBlock(RHSBlock);
1101 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock,
1102 TrueCount - LHSScaledTrueCount);
1103 cond.end(*this);
1104
1105 return;
1106 }
1107
1108 if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) {
1109 // Conditional operator handling can give us a throw expression as a
1110 // condition for a case like:
1111 // br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f)
1112 // Fold this to:
1113 // br(c, throw x, br(y, t, f))
1114 EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false);
1115 return;
1116 }
1117
1118 // Create branch weights based on the number of times we get here and the
1119 // number of times the condition should be true.
1120 uint64_t CurrentCount = std::max(PGO.getCurrentRegionCount(), TrueCount);
1121 llvm::MDNode *Weights = PGO.createBranchWeights(TrueCount,
1122 CurrentCount - TrueCount);
1123
1124 // Emit the code with the fully general case.
1125 llvm::Value *CondV = EvaluateExprAsBool(Cond);
1126 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights);
1127 }
1128
1129 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1130 /// specified stmt yet.
ErrorUnsupported(const Stmt * S,const char * Type)1131 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) {
1132 CGM.ErrorUnsupported(S, Type);
1133 }
1134
1135 /// emitNonZeroVLAInit - Emit the "zero" initialization of a
1136 /// variable-length array whose elements have a non-zero bit-pattern.
1137 ///
1138 /// \param baseType the inner-most element type of the array
1139 /// \param src - a char* pointing to the bit-pattern for a single
1140 /// base element of the array
1141 /// \param sizeInChars - the total size of the VLA, in chars
emitNonZeroVLAInit(CodeGenFunction & CGF,QualType baseType,llvm::Value * dest,llvm::Value * src,llvm::Value * sizeInChars)1142 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType,
1143 llvm::Value *dest, llvm::Value *src,
1144 llvm::Value *sizeInChars) {
1145 std::pair<CharUnits,CharUnits> baseSizeAndAlign
1146 = CGF.getContext().getTypeInfoInChars(baseType);
1147
1148 CGBuilderTy &Builder = CGF.Builder;
1149
1150 llvm::Value *baseSizeInChars
1151 = llvm::ConstantInt::get(CGF.IntPtrTy, baseSizeAndAlign.first.getQuantity());
1152
1153 llvm::Type *i8p = Builder.getInt8PtrTy();
1154
1155 llvm::Value *begin = Builder.CreateBitCast(dest, i8p, "vla.begin");
1156 llvm::Value *end = Builder.CreateInBoundsGEP(dest, sizeInChars, "vla.end");
1157
1158 llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock();
1159 llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop");
1160 llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont");
1161
1162 // Make a loop over the VLA. C99 guarantees that the VLA element
1163 // count must be nonzero.
1164 CGF.EmitBlock(loopBB);
1165
1166 llvm::PHINode *cur = Builder.CreatePHI(i8p, 2, "vla.cur");
1167 cur->addIncoming(begin, originBB);
1168
1169 // memcpy the individual element bit-pattern.
1170 Builder.CreateMemCpy(cur, src, baseSizeInChars,
1171 baseSizeAndAlign.second.getQuantity(),
1172 /*volatile*/ false);
1173
1174 // Go to the next element.
1175 llvm::Value *next = Builder.CreateConstInBoundsGEP1_32(cur, 1, "vla.next");
1176
1177 // Leave if that's the end of the VLA.
1178 llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone");
1179 Builder.CreateCondBr(done, contBB, loopBB);
1180 cur->addIncoming(next, loopBB);
1181
1182 CGF.EmitBlock(contBB);
1183 }
1184
1185 void
EmitNullInitialization(llvm::Value * DestPtr,QualType Ty)1186 CodeGenFunction::EmitNullInitialization(llvm::Value *DestPtr, QualType Ty) {
1187 // Ignore empty classes in C++.
1188 if (getLangOpts().CPlusPlus) {
1189 if (const RecordType *RT = Ty->getAs<RecordType>()) {
1190 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
1191 return;
1192 }
1193 }
1194
1195 // Cast the dest ptr to the appropriate i8 pointer type.
1196 unsigned DestAS =
1197 cast<llvm::PointerType>(DestPtr->getType())->getAddressSpace();
1198 llvm::Type *BP = Builder.getInt8PtrTy(DestAS);
1199 if (DestPtr->getType() != BP)
1200 DestPtr = Builder.CreateBitCast(DestPtr, BP);
1201
1202 // Get size and alignment info for this aggregate.
1203 std::pair<CharUnits, CharUnits> TypeInfo =
1204 getContext().getTypeInfoInChars(Ty);
1205 CharUnits Size = TypeInfo.first;
1206 CharUnits Align = TypeInfo.second;
1207
1208 llvm::Value *SizeVal;
1209 const VariableArrayType *vla;
1210
1211 // Don't bother emitting a zero-byte memset.
1212 if (Size.isZero()) {
1213 // But note that getTypeInfo returns 0 for a VLA.
1214 if (const VariableArrayType *vlaType =
1215 dyn_cast_or_null<VariableArrayType>(
1216 getContext().getAsArrayType(Ty))) {
1217 QualType eltType;
1218 llvm::Value *numElts;
1219 std::tie(numElts, eltType) = getVLASize(vlaType);
1220
1221 SizeVal = numElts;
1222 CharUnits eltSize = getContext().getTypeSizeInChars(eltType);
1223 if (!eltSize.isOne())
1224 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize));
1225 vla = vlaType;
1226 } else {
1227 return;
1228 }
1229 } else {
1230 SizeVal = CGM.getSize(Size);
1231 vla = nullptr;
1232 }
1233
1234 // If the type contains a pointer to data member we can't memset it to zero.
1235 // Instead, create a null constant and copy it to the destination.
1236 // TODO: there are other patterns besides zero that we can usefully memset,
1237 // like -1, which happens to be the pattern used by member-pointers.
1238 if (!CGM.getTypes().isZeroInitializable(Ty)) {
1239 // For a VLA, emit a single element, then splat that over the VLA.
1240 if (vla) Ty = getContext().getBaseElementType(vla);
1241
1242 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
1243
1244 llvm::GlobalVariable *NullVariable =
1245 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
1246 /*isConstant=*/true,
1247 llvm::GlobalVariable::PrivateLinkage,
1248 NullConstant, Twine());
1249 llvm::Value *SrcPtr =
1250 Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy());
1251
1252 if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal);
1253
1254 // Get and call the appropriate llvm.memcpy overload.
1255 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, Align.getQuantity(), false);
1256 return;
1257 }
1258
1259 // Otherwise, just memset the whole thing to zero. This is legal
1260 // because in LLVM, all default initializers (other than the ones we just
1261 // handled above) are guaranteed to have a bit pattern of all zeros.
1262 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal,
1263 Align.getQuantity(), false);
1264 }
1265
GetAddrOfLabel(const LabelDecl * L)1266 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) {
1267 // Make sure that there is a block for the indirect goto.
1268 if (!IndirectBranch)
1269 GetIndirectGotoBlock();
1270
1271 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
1272
1273 // Make sure the indirect branch includes all of the address-taken blocks.
1274 IndirectBranch->addDestination(BB);
1275 return llvm::BlockAddress::get(CurFn, BB);
1276 }
1277
GetIndirectGotoBlock()1278 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
1279 // If we already made the indirect branch for indirect goto, return its block.
1280 if (IndirectBranch) return IndirectBranch->getParent();
1281
1282 CGBuilderTy TmpBuilder(createBasicBlock("indirectgoto"));
1283
1284 // Create the PHI node that indirect gotos will add entries to.
1285 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0,
1286 "indirect.goto.dest");
1287
1288 // Create the indirect branch instruction.
1289 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
1290 return IndirectBranch->getParent();
1291 }
1292
1293 /// Computes the length of an array in elements, as well as the base
1294 /// element type and a properly-typed first element pointer.
emitArrayLength(const ArrayType * origArrayType,QualType & baseType,llvm::Value * & addr)1295 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType,
1296 QualType &baseType,
1297 llvm::Value *&addr) {
1298 const ArrayType *arrayType = origArrayType;
1299
1300 // If it's a VLA, we have to load the stored size. Note that
1301 // this is the size of the VLA in bytes, not its size in elements.
1302 llvm::Value *numVLAElements = nullptr;
1303 if (isa<VariableArrayType>(arrayType)) {
1304 numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first;
1305
1306 // Walk into all VLAs. This doesn't require changes to addr,
1307 // which has type T* where T is the first non-VLA element type.
1308 do {
1309 QualType elementType = arrayType->getElementType();
1310 arrayType = getContext().getAsArrayType(elementType);
1311
1312 // If we only have VLA components, 'addr' requires no adjustment.
1313 if (!arrayType) {
1314 baseType = elementType;
1315 return numVLAElements;
1316 }
1317 } while (isa<VariableArrayType>(arrayType));
1318
1319 // We get out here only if we find a constant array type
1320 // inside the VLA.
1321 }
1322
1323 // We have some number of constant-length arrays, so addr should
1324 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks
1325 // down to the first element of addr.
1326 SmallVector<llvm::Value*, 8> gepIndices;
1327
1328 // GEP down to the array type.
1329 llvm::ConstantInt *zero = Builder.getInt32(0);
1330 gepIndices.push_back(zero);
1331
1332 uint64_t countFromCLAs = 1;
1333 QualType eltType;
1334
1335 llvm::ArrayType *llvmArrayType =
1336 dyn_cast<llvm::ArrayType>(
1337 cast<llvm::PointerType>(addr->getType())->getElementType());
1338 while (llvmArrayType) {
1339 assert(isa<ConstantArrayType>(arrayType));
1340 assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue()
1341 == llvmArrayType->getNumElements());
1342
1343 gepIndices.push_back(zero);
1344 countFromCLAs *= llvmArrayType->getNumElements();
1345 eltType = arrayType->getElementType();
1346
1347 llvmArrayType =
1348 dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType());
1349 arrayType = getContext().getAsArrayType(arrayType->getElementType());
1350 assert((!llvmArrayType || arrayType) &&
1351 "LLVM and Clang types are out-of-synch");
1352 }
1353
1354 if (arrayType) {
1355 // From this point onwards, the Clang array type has been emitted
1356 // as some other type (probably a packed struct). Compute the array
1357 // size, and just emit the 'begin' expression as a bitcast.
1358 while (arrayType) {
1359 countFromCLAs *=
1360 cast<ConstantArrayType>(arrayType)->getSize().getZExtValue();
1361 eltType = arrayType->getElementType();
1362 arrayType = getContext().getAsArrayType(eltType);
1363 }
1364
1365 unsigned AddressSpace = addr->getType()->getPointerAddressSpace();
1366 llvm::Type *BaseType = ConvertType(eltType)->getPointerTo(AddressSpace);
1367 addr = Builder.CreateBitCast(addr, BaseType, "array.begin");
1368 } else {
1369 // Create the actual GEP.
1370 addr = Builder.CreateInBoundsGEP(addr, gepIndices, "array.begin");
1371 }
1372
1373 baseType = eltType;
1374
1375 llvm::Value *numElements
1376 = llvm::ConstantInt::get(SizeTy, countFromCLAs);
1377
1378 // If we had any VLA dimensions, factor them in.
1379 if (numVLAElements)
1380 numElements = Builder.CreateNUWMul(numVLAElements, numElements);
1381
1382 return numElements;
1383 }
1384
1385 std::pair<llvm::Value*, QualType>
getVLASize(QualType type)1386 CodeGenFunction::getVLASize(QualType type) {
1387 const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
1388 assert(vla && "type was not a variable array type!");
1389 return getVLASize(vla);
1390 }
1391
1392 std::pair<llvm::Value*, QualType>
getVLASize(const VariableArrayType * type)1393 CodeGenFunction::getVLASize(const VariableArrayType *type) {
1394 // The number of elements so far; always size_t.
1395 llvm::Value *numElements = nullptr;
1396
1397 QualType elementType;
1398 do {
1399 elementType = type->getElementType();
1400 llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()];
1401 assert(vlaSize && "no size for VLA!");
1402 assert(vlaSize->getType() == SizeTy);
1403
1404 if (!numElements) {
1405 numElements = vlaSize;
1406 } else {
1407 // It's undefined behavior if this wraps around, so mark it that way.
1408 // FIXME: Teach -fsanitize=undefined to trap this.
1409 numElements = Builder.CreateNUWMul(numElements, vlaSize);
1410 }
1411 } while ((type = getContext().getAsVariableArrayType(elementType)));
1412
1413 return std::pair<llvm::Value*,QualType>(numElements, elementType);
1414 }
1415
EmitVariablyModifiedType(QualType type)1416 void CodeGenFunction::EmitVariablyModifiedType(QualType type) {
1417 assert(type->isVariablyModifiedType() &&
1418 "Must pass variably modified type to EmitVLASizes!");
1419
1420 EnsureInsertPoint();
1421
1422 // We're going to walk down into the type and look for VLA
1423 // expressions.
1424 do {
1425 assert(type->isVariablyModifiedType());
1426
1427 const Type *ty = type.getTypePtr();
1428 switch (ty->getTypeClass()) {
1429
1430 #define TYPE(Class, Base)
1431 #define ABSTRACT_TYPE(Class, Base)
1432 #define NON_CANONICAL_TYPE(Class, Base)
1433 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
1434 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
1435 #include "clang/AST/TypeNodes.def"
1436 llvm_unreachable("unexpected dependent type!");
1437
1438 // These types are never variably-modified.
1439 case Type::Builtin:
1440 case Type::Complex:
1441 case Type::Vector:
1442 case Type::ExtVector:
1443 case Type::Record:
1444 case Type::Enum:
1445 case Type::Elaborated:
1446 case Type::TemplateSpecialization:
1447 case Type::ObjCObject:
1448 case Type::ObjCInterface:
1449 case Type::ObjCObjectPointer:
1450 llvm_unreachable("type class is never variably-modified!");
1451
1452 case Type::Adjusted:
1453 type = cast<AdjustedType>(ty)->getAdjustedType();
1454 break;
1455
1456 case Type::Decayed:
1457 type = cast<DecayedType>(ty)->getPointeeType();
1458 break;
1459
1460 case Type::Pointer:
1461 type = cast<PointerType>(ty)->getPointeeType();
1462 break;
1463
1464 case Type::BlockPointer:
1465 type = cast<BlockPointerType>(ty)->getPointeeType();
1466 break;
1467
1468 case Type::LValueReference:
1469 case Type::RValueReference:
1470 type = cast<ReferenceType>(ty)->getPointeeType();
1471 break;
1472
1473 case Type::MemberPointer:
1474 type = cast<MemberPointerType>(ty)->getPointeeType();
1475 break;
1476
1477 case Type::ConstantArray:
1478 case Type::IncompleteArray:
1479 // Losing element qualification here is fine.
1480 type = cast<ArrayType>(ty)->getElementType();
1481 break;
1482
1483 case Type::VariableArray: {
1484 // Losing element qualification here is fine.
1485 const VariableArrayType *vat = cast<VariableArrayType>(ty);
1486
1487 // Unknown size indication requires no size computation.
1488 // Otherwise, evaluate and record it.
1489 if (const Expr *size = vat->getSizeExpr()) {
1490 // It's possible that we might have emitted this already,
1491 // e.g. with a typedef and a pointer to it.
1492 llvm::Value *&entry = VLASizeMap[size];
1493 if (!entry) {
1494 llvm::Value *Size = EmitScalarExpr(size);
1495
1496 // C11 6.7.6.2p5:
1497 // If the size is an expression that is not an integer constant
1498 // expression [...] each time it is evaluated it shall have a value
1499 // greater than zero.
1500 if (SanOpts->VLABound &&
1501 size->getType()->isSignedIntegerType()) {
1502 llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType());
1503 llvm::Constant *StaticArgs[] = {
1504 EmitCheckSourceLocation(size->getLocStart()),
1505 EmitCheckTypeDescriptor(size->getType())
1506 };
1507 EmitCheck(Builder.CreateICmpSGT(Size, Zero),
1508 "vla_bound_not_positive", StaticArgs, Size,
1509 CRK_Recoverable);
1510 }
1511
1512 // Always zexting here would be wrong if it weren't
1513 // undefined behavior to have a negative bound.
1514 entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false);
1515 }
1516 }
1517 type = vat->getElementType();
1518 break;
1519 }
1520
1521 case Type::FunctionProto:
1522 case Type::FunctionNoProto:
1523 type = cast<FunctionType>(ty)->getReturnType();
1524 break;
1525
1526 case Type::Paren:
1527 case Type::TypeOf:
1528 case Type::UnaryTransform:
1529 case Type::Attributed:
1530 case Type::SubstTemplateTypeParm:
1531 case Type::PackExpansion:
1532 // Keep walking after single level desugaring.
1533 type = type.getSingleStepDesugaredType(getContext());
1534 break;
1535
1536 case Type::Typedef:
1537 case Type::Decltype:
1538 case Type::Auto:
1539 // Stop walking: nothing to do.
1540 return;
1541
1542 case Type::TypeOfExpr:
1543 // Stop walking: emit typeof expression.
1544 EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr());
1545 return;
1546
1547 case Type::Atomic:
1548 type = cast<AtomicType>(ty)->getValueType();
1549 break;
1550 }
1551 } while (type->isVariablyModifiedType());
1552 }
1553
EmitVAListRef(const Expr * E)1554 llvm::Value* CodeGenFunction::EmitVAListRef(const Expr* E) {
1555 if (getContext().getBuiltinVaListType()->isArrayType())
1556 return EmitScalarExpr(E);
1557 return EmitLValue(E).getAddress();
1558 }
1559
EmitDeclRefExprDbgValue(const DeclRefExpr * E,llvm::Constant * Init)1560 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
1561 llvm::Constant *Init) {
1562 assert (Init && "Invalid DeclRefExpr initializer!");
1563 if (CGDebugInfo *Dbg = getDebugInfo())
1564 if (CGM.getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
1565 Dbg->EmitGlobalVariable(E->getDecl(), Init);
1566 }
1567
1568 CodeGenFunction::PeepholeProtection
protectFromPeepholes(RValue rvalue)1569 CodeGenFunction::protectFromPeepholes(RValue rvalue) {
1570 // At the moment, the only aggressive peephole we do in IR gen
1571 // is trunc(zext) folding, but if we add more, we can easily
1572 // extend this protection.
1573
1574 if (!rvalue.isScalar()) return PeepholeProtection();
1575 llvm::Value *value = rvalue.getScalarVal();
1576 if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection();
1577
1578 // Just make an extra bitcast.
1579 assert(HaveInsertPoint());
1580 llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "",
1581 Builder.GetInsertBlock());
1582
1583 PeepholeProtection protection;
1584 protection.Inst = inst;
1585 return protection;
1586 }
1587
unprotectFromPeepholes(PeepholeProtection protection)1588 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) {
1589 if (!protection.Inst) return;
1590
1591 // In theory, we could try to duplicate the peepholes now, but whatever.
1592 protection.Inst->eraseFromParent();
1593 }
1594
EmitAnnotationCall(llvm::Value * AnnotationFn,llvm::Value * AnnotatedVal,StringRef AnnotationStr,SourceLocation Location)1595 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn,
1596 llvm::Value *AnnotatedVal,
1597 StringRef AnnotationStr,
1598 SourceLocation Location) {
1599 llvm::Value *Args[4] = {
1600 AnnotatedVal,
1601 Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy),
1602 Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy),
1603 CGM.EmitAnnotationLineNo(Location)
1604 };
1605 return Builder.CreateCall(AnnotationFn, Args);
1606 }
1607
EmitVarAnnotations(const VarDecl * D,llvm::Value * V)1608 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) {
1609 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1610 // FIXME We create a new bitcast for every annotation because that's what
1611 // llvm-gcc was doing.
1612 for (const auto *I : D->specific_attrs<AnnotateAttr>())
1613 EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation),
1614 Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()),
1615 I->getAnnotation(), D->getLocation());
1616 }
1617
EmitFieldAnnotations(const FieldDecl * D,llvm::Value * V)1618 llvm::Value *CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D,
1619 llvm::Value *V) {
1620 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1621 llvm::Type *VTy = V->getType();
1622 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation,
1623 CGM.Int8PtrTy);
1624
1625 for (const auto *I : D->specific_attrs<AnnotateAttr>()) {
1626 // FIXME Always emit the cast inst so we can differentiate between
1627 // annotation on the first field of a struct and annotation on the struct
1628 // itself.
1629 if (VTy != CGM.Int8PtrTy)
1630 V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy));
1631 V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation());
1632 V = Builder.CreateBitCast(V, VTy);
1633 }
1634
1635 return V;
1636 }
1637
~CGCapturedStmtInfo()1638 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { }
1639
InsertHelper(llvm::Instruction * I,const llvm::Twine & Name,llvm::BasicBlock * BB,llvm::BasicBlock::iterator InsertPt) const1640 void CodeGenFunction::InsertHelper(llvm::Instruction *I,
1641 const llvm::Twine &Name,
1642 llvm::BasicBlock *BB,
1643 llvm::BasicBlock::iterator InsertPt) const {
1644 LoopStack.InsertHelper(I);
1645 }
1646
1647 template <bool PreserveNames>
InsertHelper(llvm::Instruction * I,const llvm::Twine & Name,llvm::BasicBlock * BB,llvm::BasicBlock::iterator InsertPt) const1648 void CGBuilderInserter<PreserveNames>::InsertHelper(
1649 llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB,
1650 llvm::BasicBlock::iterator InsertPt) const {
1651 llvm::IRBuilderDefaultInserter<PreserveNames>::InsertHelper(I, Name, BB,
1652 InsertPt);
1653 if (CGF)
1654 CGF->InsertHelper(I, Name, BB, InsertPt);
1655 }
1656
1657 #ifdef NDEBUG
1658 #define PreserveNames false
1659 #else
1660 #define PreserveNames true
1661 #endif
1662 template void CGBuilderInserter<PreserveNames>::InsertHelper(
1663 llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB,
1664 llvm::BasicBlock::iterator InsertPt) const;
1665 #undef PreserveNames
1666