• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright (c) 1994-2006 Sun Microsystems Inc.
2 // All Rights Reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 // - Redistributions of source code must retain the above copyright notice,
9 // this list of conditions and the following disclaimer.
10 //
11 // - Redistribution in binary form must reproduce the above copyright
12 // notice, this list of conditions and the following disclaimer in the
13 // documentation and/or other materials provided with the distribution.
14 //
15 // - Neither the name of Sun Microsystems or the names of contributors may
16 // be used to endorse or promote products derived from this software without
17 // specific prior written permission.
18 //
19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
20 // IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
21 // THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
23 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
24 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
26 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
27 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
28 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
29 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 
31 // The original source code covered by the above license above has been
32 // modified significantly by Google Inc.
33 // Copyright 2012 the V8 project authors. All rights reserved.
34 
35 
36 #ifndef V8_MIPS_ASSEMBLER_MIPS_H_
37 #define V8_MIPS_ASSEMBLER_MIPS_H_
38 
39 #include <stdio.h>
40 
41 #include "src/assembler.h"
42 #include "src/mips/constants-mips.h"
43 #include "src/serialize.h"
44 
45 namespace v8 {
46 namespace internal {
47 
48 // CPU Registers.
49 //
50 // 1) We would prefer to use an enum, but enum values are assignment-
51 // compatible with int, which has caused code-generation bugs.
52 //
53 // 2) We would prefer to use a class instead of a struct but we don't like
54 // the register initialization to depend on the particular initialization
55 // order (which appears to be different on OS X, Linux, and Windows for the
56 // installed versions of C++ we tried). Using a struct permits C-style
57 // "initialization". Also, the Register objects cannot be const as this
58 // forces initialization stubs in MSVC, making us dependent on initialization
59 // order.
60 //
61 // 3) By not using an enum, we are possibly preventing the compiler from
62 // doing certain constant folds, which may significantly reduce the
63 // code generated for some assembly instructions (because they boil down
64 // to a few constants). If this is a problem, we could change the code
65 // such that we use an enum in optimized mode, and the struct in debug
66 // mode. This way we get the compile-time error checking in debug mode
67 // and best performance in optimized code.
68 
69 
70 // -----------------------------------------------------------------------------
71 // Implementation of Register and FPURegister.
72 
73 // Core register.
74 struct Register {
75   static const int kNumRegisters = v8::internal::kNumRegisters;
76   static const int kMaxNumAllocatableRegisters = 14;  // v0 through t6 and cp.
77   static const int kSizeInBytes = 4;
78   static const int kCpRegister = 23;  // cp (s7) is the 23rd register.
79 
80 #if defined(V8_TARGET_LITTLE_ENDIAN)
81   static const int kMantissaOffset = 0;
82   static const int kExponentOffset = 4;
83 #elif defined(V8_TARGET_BIG_ENDIAN)
84   static const int kMantissaOffset = 4;
85   static const int kExponentOffset = 0;
86 #else
87 #error Unknown endianness
88 #endif
89 
90   inline static int NumAllocatableRegisters();
91 
ToAllocationIndexRegister92   static int ToAllocationIndex(Register reg) {
93     ASSERT((reg.code() - 2) < (kMaxNumAllocatableRegisters - 1) ||
94            reg.is(from_code(kCpRegister)));
95     return reg.is(from_code(kCpRegister)) ?
96            kMaxNumAllocatableRegisters - 1 :  // Return last index for 'cp'.
97            reg.code() - 2;  // zero_reg and 'at' are skipped.
98   }
99 
FromAllocationIndexRegister100   static Register FromAllocationIndex(int index) {
101     ASSERT(index >= 0 && index < kMaxNumAllocatableRegisters);
102     return index == kMaxNumAllocatableRegisters - 1 ?
103            from_code(kCpRegister) :  // Last index is always the 'cp' register.
104            from_code(index + 2);  // zero_reg and 'at' are skipped.
105   }
106 
AllocationIndexToStringRegister107   static const char* AllocationIndexToString(int index) {
108     ASSERT(index >= 0 && index < kMaxNumAllocatableRegisters);
109     const char* const names[] = {
110       "v0",
111       "v1",
112       "a0",
113       "a1",
114       "a2",
115       "a3",
116       "t0",
117       "t1",
118       "t2",
119       "t3",
120       "t4",
121       "t5",
122       "t6",
123       "s7",
124     };
125     return names[index];
126   }
127 
from_codeRegister128   static Register from_code(int code) {
129     Register r = { code };
130     return r;
131   }
132 
is_validRegister133   bool is_valid() const { return 0 <= code_ && code_ < kNumRegisters; }
isRegister134   bool is(Register reg) const { return code_ == reg.code_; }
codeRegister135   int code() const {
136     ASSERT(is_valid());
137     return code_;
138   }
bitRegister139   int bit() const {
140     ASSERT(is_valid());
141     return 1 << code_;
142   }
143 
144   // Unfortunately we can't make this private in a struct.
145   int code_;
146 };
147 
148 #define REGISTER(N, C) \
149   const int kRegister_ ## N ## _Code = C; \
150   const Register N = { C }
151 
152 REGISTER(no_reg, -1);
153 // Always zero.
154 REGISTER(zero_reg, 0);
155 // at: Reserved for synthetic instructions.
156 REGISTER(at, 1);
157 // v0, v1: Used when returning multiple values from subroutines.
158 REGISTER(v0, 2);
159 REGISTER(v1, 3);
160 // a0 - a4: Used to pass non-FP parameters.
161 REGISTER(a0, 4);
162 REGISTER(a1, 5);
163 REGISTER(a2, 6);
164 REGISTER(a3, 7);
165 // t0 - t9: Can be used without reservation, act as temporary registers and are
166 // allowed to be destroyed by subroutines.
167 REGISTER(t0, 8);
168 REGISTER(t1, 9);
169 REGISTER(t2, 10);
170 REGISTER(t3, 11);
171 REGISTER(t4, 12);
172 REGISTER(t5, 13);
173 REGISTER(t6, 14);
174 REGISTER(t7, 15);
175 // s0 - s7: Subroutine register variables. Subroutines that write to these
176 // registers must restore their values before exiting so that the caller can
177 // expect the values to be preserved.
178 REGISTER(s0, 16);
179 REGISTER(s1, 17);
180 REGISTER(s2, 18);
181 REGISTER(s3, 19);
182 REGISTER(s4, 20);
183 REGISTER(s5, 21);
184 REGISTER(s6, 22);
185 REGISTER(s7, 23);
186 REGISTER(t8, 24);
187 REGISTER(t9, 25);
188 // k0, k1: Reserved for system calls and interrupt handlers.
189 REGISTER(k0, 26);
190 REGISTER(k1, 27);
191 // gp: Reserved.
192 REGISTER(gp, 28);
193 // sp: Stack pointer.
194 REGISTER(sp, 29);
195 // fp: Frame pointer.
196 REGISTER(fp, 30);
197 // ra: Return address pointer.
198 REGISTER(ra, 31);
199 
200 #undef REGISTER
201 
202 
203 int ToNumber(Register reg);
204 
205 Register ToRegister(int num);
206 
207 // Coprocessor register.
208 struct FPURegister {
209   static const int kMaxNumRegisters = v8::internal::kNumFPURegisters;
210 
211   // TODO(plind): Warning, inconsistent numbering here. kNumFPURegisters refers
212   // to number of 32-bit FPU regs, but kNumAllocatableRegisters refers to
213   // number of Double regs (64-bit regs, or FPU-reg-pairs).
214 
215   // A few double registers are reserved: one as a scratch register and one to
216   // hold 0.0.
217   //  f28: 0.0
218   //  f30: scratch register.
219   static const int kNumReservedRegisters = 2;
220   static const int kMaxNumAllocatableRegisters = kMaxNumRegisters / 2 -
221       kNumReservedRegisters;
222 
223   inline static int NumRegisters();
224   inline static int NumAllocatableRegisters();
225   inline static int ToAllocationIndex(FPURegister reg);
226   static const char* AllocationIndexToString(int index);
227 
FromAllocationIndexFPURegister228   static FPURegister FromAllocationIndex(int index) {
229     ASSERT(index >= 0 && index < kMaxNumAllocatableRegisters);
230     return from_code(index * 2);
231   }
232 
from_codeFPURegister233   static FPURegister from_code(int code) {
234     FPURegister r = { code };
235     return r;
236   }
237 
is_validFPURegister238   bool is_valid() const { return 0 <= code_ && code_ < kMaxNumRegisters ; }
isFPURegister239   bool is(FPURegister creg) const { return code_ == creg.code_; }
lowFPURegister240   FPURegister low() const {
241     // Find low reg of a Double-reg pair, which is the reg itself.
242     ASSERT(code_ % 2 == 0);  // Specified Double reg must be even.
243     FPURegister reg;
244     reg.code_ = code_;
245     ASSERT(reg.is_valid());
246     return reg;
247   }
highFPURegister248   FPURegister high() const {
249     // Find high reg of a Doubel-reg pair, which is reg + 1.
250     ASSERT(code_ % 2 == 0);  // Specified Double reg must be even.
251     FPURegister reg;
252     reg.code_ = code_ + 1;
253     ASSERT(reg.is_valid());
254     return reg;
255   }
256 
codeFPURegister257   int code() const {
258     ASSERT(is_valid());
259     return code_;
260   }
bitFPURegister261   int bit() const {
262     ASSERT(is_valid());
263     return 1 << code_;
264   }
setcodeFPURegister265   void setcode(int f) {
266     code_ = f;
267     ASSERT(is_valid());
268   }
269   // Unfortunately we can't make this private in a struct.
270   int code_;
271 };
272 
273 // V8 now supports the O32 ABI, and the FPU Registers are organized as 32
274 // 32-bit registers, f0 through f31. When used as 'double' they are used
275 // in pairs, starting with the even numbered register. So a double operation
276 // on f0 really uses f0 and f1.
277 // (Modern mips hardware also supports 32 64-bit registers, via setting
278 // (priviledged) Status Register FR bit to 1. This is used by the N32 ABI,
279 // but it is not in common use. Someday we will want to support this in v8.)
280 
281 // For O32 ABI, Floats and Doubles refer to same set of 32 32-bit registers.
282 typedef FPURegister DoubleRegister;
283 typedef FPURegister FloatRegister;
284 
285 const FPURegister no_freg = { -1 };
286 
287 const FPURegister f0 = { 0 };  // Return value in hard float mode.
288 const FPURegister f1 = { 1 };
289 const FPURegister f2 = { 2 };
290 const FPURegister f3 = { 3 };
291 const FPURegister f4 = { 4 };
292 const FPURegister f5 = { 5 };
293 const FPURegister f6 = { 6 };
294 const FPURegister f7 = { 7 };
295 const FPURegister f8 = { 8 };
296 const FPURegister f9 = { 9 };
297 const FPURegister f10 = { 10 };
298 const FPURegister f11 = { 11 };
299 const FPURegister f12 = { 12 };  // Arg 0 in hard float mode.
300 const FPURegister f13 = { 13 };
301 const FPURegister f14 = { 14 };  // Arg 1 in hard float mode.
302 const FPURegister f15 = { 15 };
303 const FPURegister f16 = { 16 };
304 const FPURegister f17 = { 17 };
305 const FPURegister f18 = { 18 };
306 const FPURegister f19 = { 19 };
307 const FPURegister f20 = { 20 };
308 const FPURegister f21 = { 21 };
309 const FPURegister f22 = { 22 };
310 const FPURegister f23 = { 23 };
311 const FPURegister f24 = { 24 };
312 const FPURegister f25 = { 25 };
313 const FPURegister f26 = { 26 };
314 const FPURegister f27 = { 27 };
315 const FPURegister f28 = { 28 };
316 const FPURegister f29 = { 29 };
317 const FPURegister f30 = { 30 };
318 const FPURegister f31 = { 31 };
319 
320 // Register aliases.
321 // cp is assumed to be a callee saved register.
322 // Defined using #define instead of "static const Register&" because Clang
323 // complains otherwise when a compilation unit that includes this header
324 // doesn't use the variables.
325 #define kRootRegister s6
326 #define cp s7
327 #define kLithiumScratchReg s3
328 #define kLithiumScratchReg2 s4
329 #define kLithiumScratchDouble f30
330 #define kDoubleRegZero f28
331 
332 // FPU (coprocessor 1) control registers.
333 // Currently only FCSR (#31) is implemented.
334 struct FPUControlRegister {
is_validFPUControlRegister335   bool is_valid() const { return code_ == kFCSRRegister; }
isFPUControlRegister336   bool is(FPUControlRegister creg) const { return code_ == creg.code_; }
codeFPUControlRegister337   int code() const {
338     ASSERT(is_valid());
339     return code_;
340   }
bitFPUControlRegister341   int bit() const {
342     ASSERT(is_valid());
343     return 1 << code_;
344   }
setcodeFPUControlRegister345   void setcode(int f) {
346     code_ = f;
347     ASSERT(is_valid());
348   }
349   // Unfortunately we can't make this private in a struct.
350   int code_;
351 };
352 
353 const FPUControlRegister no_fpucreg = { kInvalidFPUControlRegister };
354 const FPUControlRegister FCSR = { kFCSRRegister };
355 
356 
357 // -----------------------------------------------------------------------------
358 // Machine instruction Operands.
359 
360 // Class Operand represents a shifter operand in data processing instructions.
361 class Operand BASE_EMBEDDED {
362  public:
363   // Immediate.
364   INLINE(explicit Operand(int32_t immediate,
365          RelocInfo::Mode rmode = RelocInfo::NONE32));
366   INLINE(explicit Operand(const ExternalReference& f));
367   INLINE(explicit Operand(const char* s));
368   INLINE(explicit Operand(Object** opp));
369   INLINE(explicit Operand(Context** cpp));
370   explicit Operand(Handle<Object> handle);
371   INLINE(explicit Operand(Smi* value));
372 
373   // Register.
374   INLINE(explicit Operand(Register rm));
375 
376   // Return true if this is a register operand.
377   INLINE(bool is_reg() const);
378 
immediate()379   inline int32_t immediate() const {
380     ASSERT(!is_reg());
381     return imm32_;
382   }
383 
rm()384   Register rm() const { return rm_; }
385 
386  private:
387   Register rm_;
388   int32_t imm32_;  // Valid if rm_ == no_reg.
389   RelocInfo::Mode rmode_;
390 
391   friend class Assembler;
392   friend class MacroAssembler;
393 };
394 
395 
396 // On MIPS we have only one adressing mode with base_reg + offset.
397 // Class MemOperand represents a memory operand in load and store instructions.
398 class MemOperand : public Operand {
399  public:
400   // Immediate value attached to offset.
401   enum OffsetAddend {
402     offset_minus_one = -1,
403     offset_zero = 0
404   };
405 
406   explicit MemOperand(Register rn, int32_t offset = 0);
407   explicit MemOperand(Register rn, int32_t unit, int32_t multiplier,
408                       OffsetAddend offset_addend = offset_zero);
offset()409   int32_t offset() const { return offset_; }
410 
OffsetIsInt16Encodable()411   bool OffsetIsInt16Encodable() const {
412     return is_int16(offset_);
413   }
414 
415  private:
416   int32_t offset_;
417 
418   friend class Assembler;
419 };
420 
421 
422 class Assembler : public AssemblerBase {
423  public:
424   // Create an assembler. Instructions and relocation information are emitted
425   // into a buffer, with the instructions starting from the beginning and the
426   // relocation information starting from the end of the buffer. See CodeDesc
427   // for a detailed comment on the layout (globals.h).
428   //
429   // If the provided buffer is NULL, the assembler allocates and grows its own
430   // buffer, and buffer_size determines the initial buffer size. The buffer is
431   // owned by the assembler and deallocated upon destruction of the assembler.
432   //
433   // If the provided buffer is not NULL, the assembler uses the provided buffer
434   // for code generation and assumes its size to be buffer_size. If the buffer
435   // is too small, a fatal error occurs. No deallocation of the buffer is done
436   // upon destruction of the assembler.
437   Assembler(Isolate* isolate, void* buffer, int buffer_size);
~Assembler()438   virtual ~Assembler() { }
439 
440   // GetCode emits any pending (non-emitted) code and fills the descriptor
441   // desc. GetCode() is idempotent; it returns the same result if no other
442   // Assembler functions are invoked in between GetCode() calls.
443   void GetCode(CodeDesc* desc);
444 
445   // Label operations & relative jumps (PPUM Appendix D).
446   //
447   // Takes a branch opcode (cc) and a label (L) and generates
448   // either a backward branch or a forward branch and links it
449   // to the label fixup chain. Usage:
450   //
451   // Label L;    // unbound label
452   // j(cc, &L);  // forward branch to unbound label
453   // bind(&L);   // bind label to the current pc
454   // j(cc, &L);  // backward branch to bound label
455   // bind(&L);   // illegal: a label may be bound only once
456   //
457   // Note: The same Label can be used for forward and backward branches
458   // but it may be bound only once.
459   void bind(Label* L);  // Binds an unbound label L to current code position.
460   // Determines if Label is bound and near enough so that branch instruction
461   // can be used to reach it, instead of jump instruction.
462   bool is_near(Label* L);
463 
464   // Returns the branch offset to the given label from the current code
465   // position. Links the label to the current position if it is still unbound.
466   // Manages the jump elimination optimization if the second parameter is true.
467   int32_t branch_offset(Label* L, bool jump_elimination_allowed);
shifted_branch_offset(Label * L,bool jump_elimination_allowed)468   int32_t shifted_branch_offset(Label* L, bool jump_elimination_allowed) {
469     int32_t o = branch_offset(L, jump_elimination_allowed);
470     ASSERT((o & 3) == 0);   // Assert the offset is aligned.
471     return o >> 2;
472   }
473   uint32_t jump_address(Label* L);
474 
475   // Puts a labels target address at the given position.
476   // The high 8 bits are set to zero.
477   void label_at_put(Label* L, int at_offset);
478 
479   // Read/Modify the code target address in the branch/call instruction at pc.
480   static Address target_address_at(Address pc);
481   static void set_target_address_at(Address pc,
482                                     Address target,
483                                     ICacheFlushMode icache_flush_mode =
484                                         FLUSH_ICACHE_IF_NEEDED);
485   // On MIPS there is no Constant Pool so we skip that parameter.
INLINE(static Address target_address_at (Address pc,ConstantPoolArray * constant_pool))486   INLINE(static Address target_address_at(Address pc,
487                                           ConstantPoolArray* constant_pool)) {
488     return target_address_at(pc);
489   }
INLINE(static void set_target_address_at (Address pc,ConstantPoolArray * constant_pool,Address target,ICacheFlushMode icache_flush_mode=FLUSH_ICACHE_IF_NEEDED))490   INLINE(static void set_target_address_at(Address pc,
491                                            ConstantPoolArray* constant_pool,
492                                            Address target,
493                                            ICacheFlushMode icache_flush_mode =
494                                                FLUSH_ICACHE_IF_NEEDED)) {
495     set_target_address_at(pc, target, icache_flush_mode);
496   }
INLINE(static Address target_address_at (Address pc,Code * code))497   INLINE(static Address target_address_at(Address pc, Code* code)) {
498     ConstantPoolArray* constant_pool = code ? code->constant_pool() : NULL;
499     return target_address_at(pc, constant_pool);
500   }
INLINE(static void set_target_address_at (Address pc,Code * code,Address target,ICacheFlushMode icache_flush_mode=FLUSH_ICACHE_IF_NEEDED))501   INLINE(static void set_target_address_at(Address pc,
502                                            Code* code,
503                                            Address target,
504                                            ICacheFlushMode icache_flush_mode =
505                                                FLUSH_ICACHE_IF_NEEDED)) {
506     ConstantPoolArray* constant_pool = code ? code->constant_pool() : NULL;
507     set_target_address_at(pc, constant_pool, target, icache_flush_mode);
508   }
509 
510   // Return the code target address at a call site from the return address
511   // of that call in the instruction stream.
512   inline static Address target_address_from_return_address(Address pc);
513 
514   static void JumpLabelToJumpRegister(Address pc);
515 
516   static void QuietNaN(HeapObject* nan);
517 
518   // This sets the branch destination (which gets loaded at the call address).
519   // This is for calls and branches within generated code.  The serializer
520   // has already deserialized the lui/ori instructions etc.
deserialization_set_special_target_at(Address instruction_payload,Code * code,Address target)521   inline static void deserialization_set_special_target_at(
522       Address instruction_payload, Code* code, Address target) {
523     set_target_address_at(
524         instruction_payload - kInstructionsFor32BitConstant * kInstrSize,
525         code,
526         target);
527   }
528 
529   // Size of an instruction.
530   static const int kInstrSize = sizeof(Instr);
531 
532   // Difference between address of current opcode and target address offset.
533   static const int kBranchPCOffset = 4;
534 
535   // Here we are patching the address in the LUI/ORI instruction pair.
536   // These values are used in the serialization process and must be zero for
537   // MIPS platform, as Code, Embedded Object or External-reference pointers
538   // are split across two consecutive instructions and don't exist separately
539   // in the code, so the serializer should not step forwards in memory after
540   // a target is resolved and written.
541   static const int kSpecialTargetSize = 0;
542 
543   // Number of consecutive instructions used to store 32bit constant.
544   // Before jump-optimizations, this constant was used in
545   // RelocInfo::target_address_address() function to tell serializer address of
546   // the instruction that follows LUI/ORI instruction pair. Now, with new jump
547   // optimization, where jump-through-register instruction that usually
548   // follows LUI/ORI pair is substituted with J/JAL, this constant equals
549   // to 3 instructions (LUI+ORI+J/JAL/JR/JALR).
550   static const int kInstructionsFor32BitConstant = 3;
551 
552   // Distance between the instruction referring to the address of the call
553   // target and the return address.
554   static const int kCallTargetAddressOffset = 4 * kInstrSize;
555 
556   // Distance between start of patched return sequence and the emitted address
557   // to jump to.
558   static const int kPatchReturnSequenceAddressOffset = 0;
559 
560   // Distance between start of patched debug break slot and the emitted address
561   // to jump to.
562   static const int kPatchDebugBreakSlotAddressOffset =  0 * kInstrSize;
563 
564   // Difference between address of current opcode and value read from pc
565   // register.
566   static const int kPcLoadDelta = 4;
567 
568   static const int kPatchDebugBreakSlotReturnOffset = 4 * kInstrSize;
569 
570   // Number of instructions used for the JS return sequence. The constant is
571   // used by the debugger to patch the JS return sequence.
572   static const int kJSReturnSequenceInstructions = 7;
573   static const int kDebugBreakSlotInstructions = 4;
574   static const int kDebugBreakSlotLength =
575       kDebugBreakSlotInstructions * kInstrSize;
576 
577 
578   // ---------------------------------------------------------------------------
579   // Code generation.
580 
581   // Insert the smallest number of nop instructions
582   // possible to align the pc offset to a multiple
583   // of m. m must be a power of 2 (>= 4).
584   void Align(int m);
585   // Aligns code to something that's optimal for a jump target for the platform.
586   void CodeTargetAlign();
587 
588   // Different nop operations are used by the code generator to detect certain
589   // states of the generated code.
590   enum NopMarkerTypes {
591     NON_MARKING_NOP = 0,
592     DEBUG_BREAK_NOP,
593     // IC markers.
594     PROPERTY_ACCESS_INLINED,
595     PROPERTY_ACCESS_INLINED_CONTEXT,
596     PROPERTY_ACCESS_INLINED_CONTEXT_DONT_DELETE,
597     // Helper values.
598     LAST_CODE_MARKER,
599     FIRST_IC_MARKER = PROPERTY_ACCESS_INLINED,
600     // Code aging
601     CODE_AGE_MARKER_NOP = 6,
602     CODE_AGE_SEQUENCE_NOP
603   };
604 
605   // Type == 0 is the default non-marking nop. For mips this is a
606   // sll(zero_reg, zero_reg, 0). We use rt_reg == at for non-zero
607   // marking, to avoid conflict with ssnop and ehb instructions.
608   void nop(unsigned int type = 0) {
609     ASSERT(type < 32);
610     Register nop_rt_reg = (type == 0) ? zero_reg : at;
611     sll(zero_reg, nop_rt_reg, type, true);
612   }
613 
614 
615   // --------Branch-and-jump-instructions----------
616   // We don't use likely variant of instructions.
617   void b(int16_t offset);
b(Label * L)618   void b(Label* L) { b(branch_offset(L, false)>>2); }
619   void bal(int16_t offset);
bal(Label * L)620   void bal(Label* L) { bal(branch_offset(L, false)>>2); }
621 
622   void beq(Register rs, Register rt, int16_t offset);
beq(Register rs,Register rt,Label * L)623   void beq(Register rs, Register rt, Label* L) {
624     beq(rs, rt, branch_offset(L, false) >> 2);
625   }
626   void bgez(Register rs, int16_t offset);
627   void bgezal(Register rs, int16_t offset);
628   void bgtz(Register rs, int16_t offset);
629   void blez(Register rs, int16_t offset);
630   void bltz(Register rs, int16_t offset);
631   void bltzal(Register rs, int16_t offset);
632   void bne(Register rs, Register rt, int16_t offset);
bne(Register rs,Register rt,Label * L)633   void bne(Register rs, Register rt, Label* L) {
634     bne(rs, rt, branch_offset(L, false)>>2);
635   }
636 
637   // Never use the int16_t b(l)cond version with a branch offset
638   // instead of using the Label* version.
639 
640   // Jump targets must be in the current 256 MB-aligned region. i.e. 28 bits.
641   void j(int32_t target);
642   void jal(int32_t target);
643   void jalr(Register rs, Register rd = ra);
644   void jr(Register target);
645   void j_or_jr(int32_t target, Register rs);
646   void jal_or_jalr(int32_t target, Register rs);
647 
648 
649   // -------Data-processing-instructions---------
650 
651   // Arithmetic.
652   void addu(Register rd, Register rs, Register rt);
653   void subu(Register rd, Register rs, Register rt);
654   void mult(Register rs, Register rt);
655   void multu(Register rs, Register rt);
656   void div(Register rs, Register rt);
657   void divu(Register rs, Register rt);
658   void mul(Register rd, Register rs, Register rt);
659 
660   void addiu(Register rd, Register rs, int32_t j);
661 
662   // Logical.
663   void and_(Register rd, Register rs, Register rt);
664   void or_(Register rd, Register rs, Register rt);
665   void xor_(Register rd, Register rs, Register rt);
666   void nor(Register rd, Register rs, Register rt);
667 
668   void andi(Register rd, Register rs, int32_t j);
669   void ori(Register rd, Register rs, int32_t j);
670   void xori(Register rd, Register rs, int32_t j);
671   void lui(Register rd, int32_t j);
672 
673   // Shifts.
674   // Please note: sll(zero_reg, zero_reg, x) instructions are reserved as nop
675   // and may cause problems in normal code. coming_from_nop makes sure this
676   // doesn't happen.
677   void sll(Register rd, Register rt, uint16_t sa, bool coming_from_nop = false);
678   void sllv(Register rd, Register rt, Register rs);
679   void srl(Register rd, Register rt, uint16_t sa);
680   void srlv(Register rd, Register rt, Register rs);
681   void sra(Register rt, Register rd, uint16_t sa);
682   void srav(Register rt, Register rd, Register rs);
683   void rotr(Register rd, Register rt, uint16_t sa);
684   void rotrv(Register rd, Register rt, Register rs);
685 
686 
687   // ------------Memory-instructions-------------
688 
689   void lb(Register rd, const MemOperand& rs);
690   void lbu(Register rd, const MemOperand& rs);
691   void lh(Register rd, const MemOperand& rs);
692   void lhu(Register rd, const MemOperand& rs);
693   void lw(Register rd, const MemOperand& rs);
694   void lwl(Register rd, const MemOperand& rs);
695   void lwr(Register rd, const MemOperand& rs);
696   void sb(Register rd, const MemOperand& rs);
697   void sh(Register rd, const MemOperand& rs);
698   void sw(Register rd, const MemOperand& rs);
699   void swl(Register rd, const MemOperand& rs);
700   void swr(Register rd, const MemOperand& rs);
701 
702 
703   // ----------------Prefetch--------------------
704 
705   void pref(int32_t hint, const MemOperand& rs);
706 
707 
708   // -------------Misc-instructions--------------
709 
710   // Break / Trap instructions.
711   void break_(uint32_t code, bool break_as_stop = false);
712   void stop(const char* msg, uint32_t code = kMaxStopCode);
713   void tge(Register rs, Register rt, uint16_t code);
714   void tgeu(Register rs, Register rt, uint16_t code);
715   void tlt(Register rs, Register rt, uint16_t code);
716   void tltu(Register rs, Register rt, uint16_t code);
717   void teq(Register rs, Register rt, uint16_t code);
718   void tne(Register rs, Register rt, uint16_t code);
719 
720   // Move from HI/LO register.
721   void mfhi(Register rd);
722   void mflo(Register rd);
723 
724   // Set on less than.
725   void slt(Register rd, Register rs, Register rt);
726   void sltu(Register rd, Register rs, Register rt);
727   void slti(Register rd, Register rs, int32_t j);
728   void sltiu(Register rd, Register rs, int32_t j);
729 
730   // Conditional move.
731   void movz(Register rd, Register rs, Register rt);
732   void movn(Register rd, Register rs, Register rt);
733   void movt(Register rd, Register rs, uint16_t cc = 0);
734   void movf(Register rd, Register rs, uint16_t cc = 0);
735 
736   // Bit twiddling.
737   void clz(Register rd, Register rs);
738   void ins_(Register rt, Register rs, uint16_t pos, uint16_t size);
739   void ext_(Register rt, Register rs, uint16_t pos, uint16_t size);
740 
741   // --------Coprocessor-instructions----------------
742 
743   // Load, store, and move.
744   void lwc1(FPURegister fd, const MemOperand& src);
745   void ldc1(FPURegister fd, const MemOperand& src);
746 
747   void swc1(FPURegister fs, const MemOperand& dst);
748   void sdc1(FPURegister fs, const MemOperand& dst);
749 
750   void mtc1(Register rt, FPURegister fs);
751   void mfc1(Register rt, FPURegister fs);
752 
753   void ctc1(Register rt, FPUControlRegister fs);
754   void cfc1(Register rt, FPUControlRegister fs);
755 
756   // Arithmetic.
757   void add_d(FPURegister fd, FPURegister fs, FPURegister ft);
758   void sub_d(FPURegister fd, FPURegister fs, FPURegister ft);
759   void mul_d(FPURegister fd, FPURegister fs, FPURegister ft);
760   void madd_d(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft);
761   void div_d(FPURegister fd, FPURegister fs, FPURegister ft);
762   void abs_d(FPURegister fd, FPURegister fs);
763   void mov_d(FPURegister fd, FPURegister fs);
764   void neg_d(FPURegister fd, FPURegister fs);
765   void sqrt_d(FPURegister fd, FPURegister fs);
766 
767   // Conversion.
768   void cvt_w_s(FPURegister fd, FPURegister fs);
769   void cvt_w_d(FPURegister fd, FPURegister fs);
770   void trunc_w_s(FPURegister fd, FPURegister fs);
771   void trunc_w_d(FPURegister fd, FPURegister fs);
772   void round_w_s(FPURegister fd, FPURegister fs);
773   void round_w_d(FPURegister fd, FPURegister fs);
774   void floor_w_s(FPURegister fd, FPURegister fs);
775   void floor_w_d(FPURegister fd, FPURegister fs);
776   void ceil_w_s(FPURegister fd, FPURegister fs);
777   void ceil_w_d(FPURegister fd, FPURegister fs);
778 
779   void cvt_l_s(FPURegister fd, FPURegister fs);
780   void cvt_l_d(FPURegister fd, FPURegister fs);
781   void trunc_l_s(FPURegister fd, FPURegister fs);
782   void trunc_l_d(FPURegister fd, FPURegister fs);
783   void round_l_s(FPURegister fd, FPURegister fs);
784   void round_l_d(FPURegister fd, FPURegister fs);
785   void floor_l_s(FPURegister fd, FPURegister fs);
786   void floor_l_d(FPURegister fd, FPURegister fs);
787   void ceil_l_s(FPURegister fd, FPURegister fs);
788   void ceil_l_d(FPURegister fd, FPURegister fs);
789 
790   void cvt_s_w(FPURegister fd, FPURegister fs);
791   void cvt_s_l(FPURegister fd, FPURegister fs);
792   void cvt_s_d(FPURegister fd, FPURegister fs);
793 
794   void cvt_d_w(FPURegister fd, FPURegister fs);
795   void cvt_d_l(FPURegister fd, FPURegister fs);
796   void cvt_d_s(FPURegister fd, FPURegister fs);
797 
798   // Conditions and branches.
799   void c(FPUCondition cond, SecondaryField fmt,
800          FPURegister ft, FPURegister fs, uint16_t cc = 0);
801 
802   void bc1f(int16_t offset, uint16_t cc = 0);
803   void bc1f(Label* L, uint16_t cc = 0) { bc1f(branch_offset(L, false)>>2, cc); }
804   void bc1t(int16_t offset, uint16_t cc = 0);
805   void bc1t(Label* L, uint16_t cc = 0) { bc1t(branch_offset(L, false)>>2, cc); }
806   void fcmp(FPURegister src1, const double src2, FPUCondition cond);
807 
808   // Check the code size generated from label to here.
SizeOfCodeGeneratedSince(Label * label)809   int SizeOfCodeGeneratedSince(Label* label) {
810     return pc_offset() - label->pos();
811   }
812 
813   // Check the number of instructions generated from label to here.
InstructionsGeneratedSince(Label * label)814   int InstructionsGeneratedSince(Label* label) {
815     return SizeOfCodeGeneratedSince(label) / kInstrSize;
816   }
817 
818   // Class for scoping postponing the trampoline pool generation.
819   class BlockTrampolinePoolScope {
820    public:
BlockTrampolinePoolScope(Assembler * assem)821     explicit BlockTrampolinePoolScope(Assembler* assem) : assem_(assem) {
822       assem_->StartBlockTrampolinePool();
823     }
~BlockTrampolinePoolScope()824     ~BlockTrampolinePoolScope() {
825       assem_->EndBlockTrampolinePool();
826     }
827 
828    private:
829     Assembler* assem_;
830 
831     DISALLOW_IMPLICIT_CONSTRUCTORS(BlockTrampolinePoolScope);
832   };
833 
834   // Class for postponing the assembly buffer growth. Typically used for
835   // sequences of instructions that must be emitted as a unit, before
836   // buffer growth (and relocation) can occur.
837   // This blocking scope is not nestable.
838   class BlockGrowBufferScope {
839    public:
BlockGrowBufferScope(Assembler * assem)840     explicit BlockGrowBufferScope(Assembler* assem) : assem_(assem) {
841       assem_->StartBlockGrowBuffer();
842     }
~BlockGrowBufferScope()843     ~BlockGrowBufferScope() {
844       assem_->EndBlockGrowBuffer();
845     }
846 
847    private:
848     Assembler* assem_;
849 
850     DISALLOW_IMPLICIT_CONSTRUCTORS(BlockGrowBufferScope);
851   };
852 
853   // Debugging.
854 
855   // Mark address of the ExitJSFrame code.
856   void RecordJSReturn();
857 
858   // Mark address of a debug break slot.
859   void RecordDebugBreakSlot();
860 
861   // Record the AST id of the CallIC being compiled, so that it can be placed
862   // in the relocation information.
SetRecordedAstId(TypeFeedbackId ast_id)863   void SetRecordedAstId(TypeFeedbackId ast_id) {
864     ASSERT(recorded_ast_id_.IsNone());
865     recorded_ast_id_ = ast_id;
866   }
867 
RecordedAstId()868   TypeFeedbackId RecordedAstId() {
869     ASSERT(!recorded_ast_id_.IsNone());
870     return recorded_ast_id_;
871   }
872 
ClearRecordedAstId()873   void ClearRecordedAstId() { recorded_ast_id_ = TypeFeedbackId::None(); }
874 
875   // Record a comment relocation entry that can be used by a disassembler.
876   // Use --code-comments to enable.
877   void RecordComment(const char* msg);
878 
879   static int RelocateInternalReference(byte* pc, intptr_t pc_delta);
880 
881   // Writes a single byte or word of data in the code stream.  Used for
882   // inline tables, e.g., jump-tables.
883   void db(uint8_t data);
884   void dd(uint32_t data);
885 
886   // Emits the address of the code stub's first instruction.
887   void emit_code_stub_address(Code* stub);
888 
positions_recorder()889   PositionsRecorder* positions_recorder() { return &positions_recorder_; }
890 
891   // Postpone the generation of the trampoline pool for the specified number of
892   // instructions.
893   void BlockTrampolinePoolFor(int instructions);
894 
895   // Check if there is less than kGap bytes available in the buffer.
896   // If this is the case, we need to grow the buffer before emitting
897   // an instruction or relocation information.
overflow()898   inline bool overflow() const { return pc_ >= reloc_info_writer.pos() - kGap; }
899 
900   // Get the number of bytes available in the buffer.
available_space()901   inline int available_space() const { return reloc_info_writer.pos() - pc_; }
902 
903   // Read/patch instructions.
instr_at(byte * pc)904   static Instr instr_at(byte* pc) { return *reinterpret_cast<Instr*>(pc); }
instr_at_put(byte * pc,Instr instr)905   static void instr_at_put(byte* pc, Instr instr) {
906     *reinterpret_cast<Instr*>(pc) = instr;
907   }
instr_at(int pos)908   Instr instr_at(int pos) { return *reinterpret_cast<Instr*>(buffer_ + pos); }
instr_at_put(int pos,Instr instr)909   void instr_at_put(int pos, Instr instr) {
910     *reinterpret_cast<Instr*>(buffer_ + pos) = instr;
911   }
912 
913   // Check if an instruction is a branch of some kind.
914   static bool IsBranch(Instr instr);
915   static bool IsBeq(Instr instr);
916   static bool IsBne(Instr instr);
917 
918   static bool IsJump(Instr instr);
919   static bool IsJ(Instr instr);
920   static bool IsLui(Instr instr);
921   static bool IsOri(Instr instr);
922 
923   static bool IsJal(Instr instr);
924   static bool IsJr(Instr instr);
925   static bool IsJalr(Instr instr);
926 
927   static bool IsNop(Instr instr, unsigned int type);
928   static bool IsPop(Instr instr);
929   static bool IsPush(Instr instr);
930   static bool IsLwRegFpOffset(Instr instr);
931   static bool IsSwRegFpOffset(Instr instr);
932   static bool IsLwRegFpNegOffset(Instr instr);
933   static bool IsSwRegFpNegOffset(Instr instr);
934 
935   static Register GetRtReg(Instr instr);
936   static Register GetRsReg(Instr instr);
937   static Register GetRdReg(Instr instr);
938 
939   static uint32_t GetRt(Instr instr);
940   static uint32_t GetRtField(Instr instr);
941   static uint32_t GetRs(Instr instr);
942   static uint32_t GetRsField(Instr instr);
943   static uint32_t GetRd(Instr instr);
944   static uint32_t GetRdField(Instr instr);
945   static uint32_t GetSa(Instr instr);
946   static uint32_t GetSaField(Instr instr);
947   static uint32_t GetOpcodeField(Instr instr);
948   static uint32_t GetFunction(Instr instr);
949   static uint32_t GetFunctionField(Instr instr);
950   static uint32_t GetImmediate16(Instr instr);
951   static uint32_t GetLabelConst(Instr instr);
952 
953   static int32_t GetBranchOffset(Instr instr);
954   static bool IsLw(Instr instr);
955   static int16_t GetLwOffset(Instr instr);
956   static Instr SetLwOffset(Instr instr, int16_t offset);
957 
958   static bool IsSw(Instr instr);
959   static Instr SetSwOffset(Instr instr, int16_t offset);
960   static bool IsAddImmediate(Instr instr);
961   static Instr SetAddImmediateOffset(Instr instr, int16_t offset);
962 
963   static bool IsAndImmediate(Instr instr);
964   static bool IsEmittedConstant(Instr instr);
965 
966   void CheckTrampolinePool();
967 
968   // Allocate a constant pool of the correct size for the generated code.
969   Handle<ConstantPoolArray> NewConstantPool(Isolate* isolate);
970 
971   // Generate the constant pool for the generated code.
972   void PopulateConstantPool(ConstantPoolArray* constant_pool);
973 
974  protected:
975   // Relocation for a type-recording IC has the AST id added to it.  This
976   // member variable is a way to pass the information from the call site to
977   // the relocation info.
978   TypeFeedbackId recorded_ast_id_;
979 
buffer_space()980   int32_t buffer_space() const { return reloc_info_writer.pos() - pc_; }
981 
982   // Decode branch instruction at pos and return branch target pos.
983   int target_at(int32_t pos);
984 
985   // Patch branch instruction at pos to branch to given branch target pos.
986   void target_at_put(int32_t pos, int32_t target_pos);
987 
988   // Say if we need to relocate with this mode.
989   bool MustUseReg(RelocInfo::Mode rmode);
990 
991   // Record reloc info for current pc_.
992   void RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data = 0);
993 
994   // Block the emission of the trampoline pool before pc_offset.
BlockTrampolinePoolBefore(int pc_offset)995   void BlockTrampolinePoolBefore(int pc_offset) {
996     if (no_trampoline_pool_before_ < pc_offset)
997       no_trampoline_pool_before_ = pc_offset;
998   }
999 
StartBlockTrampolinePool()1000   void StartBlockTrampolinePool() {
1001     trampoline_pool_blocked_nesting_++;
1002   }
1003 
EndBlockTrampolinePool()1004   void EndBlockTrampolinePool() {
1005     trampoline_pool_blocked_nesting_--;
1006   }
1007 
is_trampoline_pool_blocked()1008   bool is_trampoline_pool_blocked() const {
1009     return trampoline_pool_blocked_nesting_ > 0;
1010   }
1011 
has_exception()1012   bool has_exception() const {
1013     return internal_trampoline_exception_;
1014   }
1015 
1016   void DoubleAsTwoUInt32(double d, uint32_t* lo, uint32_t* hi);
1017 
is_trampoline_emitted()1018   bool is_trampoline_emitted() const {
1019     return trampoline_emitted_;
1020   }
1021 
1022   // Temporarily block automatic assembly buffer growth.
StartBlockGrowBuffer()1023   void StartBlockGrowBuffer() {
1024     ASSERT(!block_buffer_growth_);
1025     block_buffer_growth_ = true;
1026   }
1027 
EndBlockGrowBuffer()1028   void EndBlockGrowBuffer() {
1029     ASSERT(block_buffer_growth_);
1030     block_buffer_growth_ = false;
1031   }
1032 
is_buffer_growth_blocked()1033   bool is_buffer_growth_blocked() const {
1034     return block_buffer_growth_;
1035   }
1036 
1037  private:
1038   // Buffer size and constant pool distance are checked together at regular
1039   // intervals of kBufferCheckInterval emitted bytes.
1040   static const int kBufferCheckInterval = 1*KB/2;
1041 
1042   // Code generation.
1043   // The relocation writer's position is at least kGap bytes below the end of
1044   // the generated instructions. This is so that multi-instruction sequences do
1045   // not have to check for overflow. The same is true for writes of large
1046   // relocation info entries.
1047   static const int kGap = 32;
1048 
1049 
1050   // Repeated checking whether the trampoline pool should be emitted is rather
1051   // expensive. By default we only check again once a number of instructions
1052   // has been generated.
1053   static const int kCheckConstIntervalInst = 32;
1054   static const int kCheckConstInterval = kCheckConstIntervalInst * kInstrSize;
1055 
1056   int next_buffer_check_;  // pc offset of next buffer check.
1057 
1058   // Emission of the trampoline pool may be blocked in some code sequences.
1059   int trampoline_pool_blocked_nesting_;  // Block emission if this is not zero.
1060   int no_trampoline_pool_before_;  // Block emission before this pc offset.
1061 
1062   // Keep track of the last emitted pool to guarantee a maximal distance.
1063   int last_trampoline_pool_end_;  // pc offset of the end of the last pool.
1064 
1065   // Automatic growth of the assembly buffer may be blocked for some sequences.
1066   bool block_buffer_growth_;  // Block growth when true.
1067 
1068   // Relocation information generation.
1069   // Each relocation is encoded as a variable size value.
1070   static const int kMaxRelocSize = RelocInfoWriter::kMaxSize;
1071   RelocInfoWriter reloc_info_writer;
1072 
1073   // The bound position, before this we cannot do instruction elimination.
1074   int last_bound_pos_;
1075 
1076   // Code emission.
1077   inline void CheckBuffer();
1078   void GrowBuffer();
1079   inline void emit(Instr x);
1080   inline void CheckTrampolinePoolQuick();
1081 
1082   // Instruction generation.
1083   // We have 3 different kind of encoding layout on MIPS.
1084   // However due to many different types of objects encoded in the same fields
1085   // we have quite a few aliases for each mode.
1086   // Using the same structure to refer to Register and FPURegister would spare a
1087   // few aliases, but mixing both does not look clean to me.
1088   // Anyway we could surely implement this differently.
1089 
1090   void GenInstrRegister(Opcode opcode,
1091                         Register rs,
1092                         Register rt,
1093                         Register rd,
1094                         uint16_t sa = 0,
1095                         SecondaryField func = NULLSF);
1096 
1097   void GenInstrRegister(Opcode opcode,
1098                         Register rs,
1099                         Register rt,
1100                         uint16_t msb,
1101                         uint16_t lsb,
1102                         SecondaryField func);
1103 
1104   void GenInstrRegister(Opcode opcode,
1105                         SecondaryField fmt,
1106                         FPURegister ft,
1107                         FPURegister fs,
1108                         FPURegister fd,
1109                         SecondaryField func = NULLSF);
1110 
1111   void GenInstrRegister(Opcode opcode,
1112                         FPURegister fr,
1113                         FPURegister ft,
1114                         FPURegister fs,
1115                         FPURegister fd,
1116                         SecondaryField func = NULLSF);
1117 
1118   void GenInstrRegister(Opcode opcode,
1119                         SecondaryField fmt,
1120                         Register rt,
1121                         FPURegister fs,
1122                         FPURegister fd,
1123                         SecondaryField func = NULLSF);
1124 
1125   void GenInstrRegister(Opcode opcode,
1126                         SecondaryField fmt,
1127                         Register rt,
1128                         FPUControlRegister fs,
1129                         SecondaryField func = NULLSF);
1130 
1131 
1132   void GenInstrImmediate(Opcode opcode,
1133                          Register rs,
1134                          Register rt,
1135                          int32_t  j);
1136   void GenInstrImmediate(Opcode opcode,
1137                          Register rs,
1138                          SecondaryField SF,
1139                          int32_t  j);
1140   void GenInstrImmediate(Opcode opcode,
1141                          Register r1,
1142                          FPURegister r2,
1143                          int32_t  j);
1144 
1145 
1146   void GenInstrJump(Opcode opcode,
1147                      uint32_t address);
1148 
1149   // Helpers.
1150   void LoadRegPlusOffsetToAt(const MemOperand& src);
1151 
1152   // Labels.
1153   void print(Label* L);
1154   void bind_to(Label* L, int pos);
1155   void next(Label* L);
1156 
1157   // One trampoline consists of:
1158   // - space for trampoline slots,
1159   // - space for labels.
1160   //
1161   // Space for trampoline slots is equal to slot_count * 2 * kInstrSize.
1162   // Space for trampoline slots preceeds space for labels. Each label is of one
1163   // instruction size, so total amount for labels is equal to
1164   // label_count *  kInstrSize.
1165   class Trampoline {
1166    public:
Trampoline()1167     Trampoline() {
1168       start_ = 0;
1169       next_slot_ = 0;
1170       free_slot_count_ = 0;
1171       end_ = 0;
1172     }
Trampoline(int start,int slot_count)1173     Trampoline(int start, int slot_count) {
1174       start_ = start;
1175       next_slot_ = start;
1176       free_slot_count_ = slot_count;
1177       end_ = start + slot_count * kTrampolineSlotsSize;
1178     }
start()1179     int start() {
1180       return start_;
1181     }
end()1182     int end() {
1183       return end_;
1184     }
take_slot()1185     int take_slot() {
1186       int trampoline_slot = kInvalidSlotPos;
1187       if (free_slot_count_ <= 0) {
1188         // We have run out of space on trampolines.
1189         // Make sure we fail in debug mode, so we become aware of each case
1190         // when this happens.
1191         ASSERT(0);
1192         // Internal exception will be caught.
1193       } else {
1194         trampoline_slot = next_slot_;
1195         free_slot_count_--;
1196         next_slot_ += kTrampolineSlotsSize;
1197       }
1198       return trampoline_slot;
1199     }
1200 
1201    private:
1202     int start_;
1203     int end_;
1204     int next_slot_;
1205     int free_slot_count_;
1206   };
1207 
1208   int32_t get_trampoline_entry(int32_t pos);
1209   int unbound_labels_count_;
1210   // If trampoline is emitted, generated code is becoming large. As this is
1211   // already a slow case which can possibly break our code generation for the
1212   // extreme case, we use this information to trigger different mode of
1213   // branch instruction generation, where we use jump instructions rather
1214   // than regular branch instructions.
1215   bool trampoline_emitted_;
1216   static const int kTrampolineSlotsSize = 4 * kInstrSize;
1217   static const int kMaxBranchOffset = (1 << (18 - 1)) - 1;
1218   static const int kInvalidSlotPos = -1;
1219 
1220   Trampoline trampoline_;
1221   bool internal_trampoline_exception_;
1222 
1223   friend class RegExpMacroAssemblerMIPS;
1224   friend class RelocInfo;
1225   friend class CodePatcher;
1226   friend class BlockTrampolinePoolScope;
1227 
1228   PositionsRecorder positions_recorder_;
1229   friend class PositionsRecorder;
1230   friend class EnsureSpace;
1231 };
1232 
1233 
1234 class EnsureSpace BASE_EMBEDDED {
1235  public:
EnsureSpace(Assembler * assembler)1236   explicit EnsureSpace(Assembler* assembler) {
1237     assembler->CheckBuffer();
1238   }
1239 };
1240 
1241 } }  // namespace v8::internal
1242 
1243 #endif  // V8_ARM_ASSEMBLER_MIPS_H_
1244