1 // Copyright 2013 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include "src/v8.h"
6
7 #include "src/arm64/lithium-codegen-arm64.h"
8 #include "src/arm64/lithium-gap-resolver-arm64.h"
9 #include "src/code-stubs.h"
10 #include "src/stub-cache.h"
11 #include "src/hydrogen-osr.h"
12
13 namespace v8 {
14 namespace internal {
15
16
17 class SafepointGenerator V8_FINAL : public CallWrapper {
18 public:
SafepointGenerator(LCodeGen * codegen,LPointerMap * pointers,Safepoint::DeoptMode mode)19 SafepointGenerator(LCodeGen* codegen,
20 LPointerMap* pointers,
21 Safepoint::DeoptMode mode)
22 : codegen_(codegen),
23 pointers_(pointers),
24 deopt_mode_(mode) { }
~SafepointGenerator()25 virtual ~SafepointGenerator() { }
26
BeforeCall(int call_size) const27 virtual void BeforeCall(int call_size) const { }
28
AfterCall() const29 virtual void AfterCall() const {
30 codegen_->RecordSafepoint(pointers_, deopt_mode_);
31 }
32
33 private:
34 LCodeGen* codegen_;
35 LPointerMap* pointers_;
36 Safepoint::DeoptMode deopt_mode_;
37 };
38
39
40 #define __ masm()->
41
42 // Emit code to branch if the given condition holds.
43 // The code generated here doesn't modify the flags and they must have
44 // been set by some prior instructions.
45 //
46 // The EmitInverted function simply inverts the condition.
47 class BranchOnCondition : public BranchGenerator {
48 public:
BranchOnCondition(LCodeGen * codegen,Condition cond)49 BranchOnCondition(LCodeGen* codegen, Condition cond)
50 : BranchGenerator(codegen),
51 cond_(cond) { }
52
Emit(Label * label) const53 virtual void Emit(Label* label) const {
54 __ B(cond_, label);
55 }
56
EmitInverted(Label * label) const57 virtual void EmitInverted(Label* label) const {
58 if (cond_ != al) {
59 __ B(NegateCondition(cond_), label);
60 }
61 }
62
63 private:
64 Condition cond_;
65 };
66
67
68 // Emit code to compare lhs and rhs and branch if the condition holds.
69 // This uses MacroAssembler's CompareAndBranch function so it will handle
70 // converting the comparison to Cbz/Cbnz if the right-hand side is 0.
71 //
72 // EmitInverted still compares the two operands but inverts the condition.
73 class CompareAndBranch : public BranchGenerator {
74 public:
CompareAndBranch(LCodeGen * codegen,Condition cond,const Register & lhs,const Operand & rhs)75 CompareAndBranch(LCodeGen* codegen,
76 Condition cond,
77 const Register& lhs,
78 const Operand& rhs)
79 : BranchGenerator(codegen),
80 cond_(cond),
81 lhs_(lhs),
82 rhs_(rhs) { }
83
Emit(Label * label) const84 virtual void Emit(Label* label) const {
85 __ CompareAndBranch(lhs_, rhs_, cond_, label);
86 }
87
EmitInverted(Label * label) const88 virtual void EmitInverted(Label* label) const {
89 __ CompareAndBranch(lhs_, rhs_, NegateCondition(cond_), label);
90 }
91
92 private:
93 Condition cond_;
94 const Register& lhs_;
95 const Operand& rhs_;
96 };
97
98
99 // Test the input with the given mask and branch if the condition holds.
100 // If the condition is 'eq' or 'ne' this will use MacroAssembler's
101 // TestAndBranchIfAllClear and TestAndBranchIfAnySet so it will handle the
102 // conversion to Tbz/Tbnz when possible.
103 class TestAndBranch : public BranchGenerator {
104 public:
TestAndBranch(LCodeGen * codegen,Condition cond,const Register & value,uint64_t mask)105 TestAndBranch(LCodeGen* codegen,
106 Condition cond,
107 const Register& value,
108 uint64_t mask)
109 : BranchGenerator(codegen),
110 cond_(cond),
111 value_(value),
112 mask_(mask) { }
113
Emit(Label * label) const114 virtual void Emit(Label* label) const {
115 switch (cond_) {
116 case eq:
117 __ TestAndBranchIfAllClear(value_, mask_, label);
118 break;
119 case ne:
120 __ TestAndBranchIfAnySet(value_, mask_, label);
121 break;
122 default:
123 __ Tst(value_, mask_);
124 __ B(cond_, label);
125 }
126 }
127
EmitInverted(Label * label) const128 virtual void EmitInverted(Label* label) const {
129 // The inverse of "all clear" is "any set" and vice versa.
130 switch (cond_) {
131 case eq:
132 __ TestAndBranchIfAnySet(value_, mask_, label);
133 break;
134 case ne:
135 __ TestAndBranchIfAllClear(value_, mask_, label);
136 break;
137 default:
138 __ Tst(value_, mask_);
139 __ B(NegateCondition(cond_), label);
140 }
141 }
142
143 private:
144 Condition cond_;
145 const Register& value_;
146 uint64_t mask_;
147 };
148
149
150 // Test the input and branch if it is non-zero and not a NaN.
151 class BranchIfNonZeroNumber : public BranchGenerator {
152 public:
BranchIfNonZeroNumber(LCodeGen * codegen,const FPRegister & value,const FPRegister & scratch)153 BranchIfNonZeroNumber(LCodeGen* codegen, const FPRegister& value,
154 const FPRegister& scratch)
155 : BranchGenerator(codegen), value_(value), scratch_(scratch) { }
156
Emit(Label * label) const157 virtual void Emit(Label* label) const {
158 __ Fabs(scratch_, value_);
159 // Compare with 0.0. Because scratch_ is positive, the result can be one of
160 // nZCv (equal), nzCv (greater) or nzCV (unordered).
161 __ Fcmp(scratch_, 0.0);
162 __ B(gt, label);
163 }
164
EmitInverted(Label * label) const165 virtual void EmitInverted(Label* label) const {
166 __ Fabs(scratch_, value_);
167 __ Fcmp(scratch_, 0.0);
168 __ B(le, label);
169 }
170
171 private:
172 const FPRegister& value_;
173 const FPRegister& scratch_;
174 };
175
176
177 // Test the input and branch if it is a heap number.
178 class BranchIfHeapNumber : public BranchGenerator {
179 public:
BranchIfHeapNumber(LCodeGen * codegen,const Register & value)180 BranchIfHeapNumber(LCodeGen* codegen, const Register& value)
181 : BranchGenerator(codegen), value_(value) { }
182
Emit(Label * label) const183 virtual void Emit(Label* label) const {
184 __ JumpIfHeapNumber(value_, label);
185 }
186
EmitInverted(Label * label) const187 virtual void EmitInverted(Label* label) const {
188 __ JumpIfNotHeapNumber(value_, label);
189 }
190
191 private:
192 const Register& value_;
193 };
194
195
196 // Test the input and branch if it is the specified root value.
197 class BranchIfRoot : public BranchGenerator {
198 public:
BranchIfRoot(LCodeGen * codegen,const Register & value,Heap::RootListIndex index)199 BranchIfRoot(LCodeGen* codegen, const Register& value,
200 Heap::RootListIndex index)
201 : BranchGenerator(codegen), value_(value), index_(index) { }
202
Emit(Label * label) const203 virtual void Emit(Label* label) const {
204 __ JumpIfRoot(value_, index_, label);
205 }
206
EmitInverted(Label * label) const207 virtual void EmitInverted(Label* label) const {
208 __ JumpIfNotRoot(value_, index_, label);
209 }
210
211 private:
212 const Register& value_;
213 const Heap::RootListIndex index_;
214 };
215
216
WriteTranslation(LEnvironment * environment,Translation * translation)217 void LCodeGen::WriteTranslation(LEnvironment* environment,
218 Translation* translation) {
219 if (environment == NULL) return;
220
221 // The translation includes one command per value in the environment.
222 int translation_size = environment->translation_size();
223 // The output frame height does not include the parameters.
224 int height = translation_size - environment->parameter_count();
225
226 WriteTranslation(environment->outer(), translation);
227 bool has_closure_id = !info()->closure().is_null() &&
228 !info()->closure().is_identical_to(environment->closure());
229 int closure_id = has_closure_id
230 ? DefineDeoptimizationLiteral(environment->closure())
231 : Translation::kSelfLiteralId;
232
233 switch (environment->frame_type()) {
234 case JS_FUNCTION:
235 translation->BeginJSFrame(environment->ast_id(), closure_id, height);
236 break;
237 case JS_CONSTRUCT:
238 translation->BeginConstructStubFrame(closure_id, translation_size);
239 break;
240 case JS_GETTER:
241 ASSERT(translation_size == 1);
242 ASSERT(height == 0);
243 translation->BeginGetterStubFrame(closure_id);
244 break;
245 case JS_SETTER:
246 ASSERT(translation_size == 2);
247 ASSERT(height == 0);
248 translation->BeginSetterStubFrame(closure_id);
249 break;
250 case STUB:
251 translation->BeginCompiledStubFrame();
252 break;
253 case ARGUMENTS_ADAPTOR:
254 translation->BeginArgumentsAdaptorFrame(closure_id, translation_size);
255 break;
256 default:
257 UNREACHABLE();
258 }
259
260 int object_index = 0;
261 int dematerialized_index = 0;
262 for (int i = 0; i < translation_size; ++i) {
263 LOperand* value = environment->values()->at(i);
264
265 AddToTranslation(environment,
266 translation,
267 value,
268 environment->HasTaggedValueAt(i),
269 environment->HasUint32ValueAt(i),
270 &object_index,
271 &dematerialized_index);
272 }
273 }
274
275
AddToTranslation(LEnvironment * environment,Translation * translation,LOperand * op,bool is_tagged,bool is_uint32,int * object_index_pointer,int * dematerialized_index_pointer)276 void LCodeGen::AddToTranslation(LEnvironment* environment,
277 Translation* translation,
278 LOperand* op,
279 bool is_tagged,
280 bool is_uint32,
281 int* object_index_pointer,
282 int* dematerialized_index_pointer) {
283 if (op == LEnvironment::materialization_marker()) {
284 int object_index = (*object_index_pointer)++;
285 if (environment->ObjectIsDuplicateAt(object_index)) {
286 int dupe_of = environment->ObjectDuplicateOfAt(object_index);
287 translation->DuplicateObject(dupe_of);
288 return;
289 }
290 int object_length = environment->ObjectLengthAt(object_index);
291 if (environment->ObjectIsArgumentsAt(object_index)) {
292 translation->BeginArgumentsObject(object_length);
293 } else {
294 translation->BeginCapturedObject(object_length);
295 }
296 int dematerialized_index = *dematerialized_index_pointer;
297 int env_offset = environment->translation_size() + dematerialized_index;
298 *dematerialized_index_pointer += object_length;
299 for (int i = 0; i < object_length; ++i) {
300 LOperand* value = environment->values()->at(env_offset + i);
301 AddToTranslation(environment,
302 translation,
303 value,
304 environment->HasTaggedValueAt(env_offset + i),
305 environment->HasUint32ValueAt(env_offset + i),
306 object_index_pointer,
307 dematerialized_index_pointer);
308 }
309 return;
310 }
311
312 if (op->IsStackSlot()) {
313 if (is_tagged) {
314 translation->StoreStackSlot(op->index());
315 } else if (is_uint32) {
316 translation->StoreUint32StackSlot(op->index());
317 } else {
318 translation->StoreInt32StackSlot(op->index());
319 }
320 } else if (op->IsDoubleStackSlot()) {
321 translation->StoreDoubleStackSlot(op->index());
322 } else if (op->IsRegister()) {
323 Register reg = ToRegister(op);
324 if (is_tagged) {
325 translation->StoreRegister(reg);
326 } else if (is_uint32) {
327 translation->StoreUint32Register(reg);
328 } else {
329 translation->StoreInt32Register(reg);
330 }
331 } else if (op->IsDoubleRegister()) {
332 DoubleRegister reg = ToDoubleRegister(op);
333 translation->StoreDoubleRegister(reg);
334 } else if (op->IsConstantOperand()) {
335 HConstant* constant = chunk()->LookupConstant(LConstantOperand::cast(op));
336 int src_index = DefineDeoptimizationLiteral(constant->handle(isolate()));
337 translation->StoreLiteral(src_index);
338 } else {
339 UNREACHABLE();
340 }
341 }
342
343
DefineDeoptimizationLiteral(Handle<Object> literal)344 int LCodeGen::DefineDeoptimizationLiteral(Handle<Object> literal) {
345 int result = deoptimization_literals_.length();
346 for (int i = 0; i < deoptimization_literals_.length(); ++i) {
347 if (deoptimization_literals_[i].is_identical_to(literal)) return i;
348 }
349 deoptimization_literals_.Add(literal, zone());
350 return result;
351 }
352
353
RegisterEnvironmentForDeoptimization(LEnvironment * environment,Safepoint::DeoptMode mode)354 void LCodeGen::RegisterEnvironmentForDeoptimization(LEnvironment* environment,
355 Safepoint::DeoptMode mode) {
356 environment->set_has_been_used();
357 if (!environment->HasBeenRegistered()) {
358 int frame_count = 0;
359 int jsframe_count = 0;
360 for (LEnvironment* e = environment; e != NULL; e = e->outer()) {
361 ++frame_count;
362 if (e->frame_type() == JS_FUNCTION) {
363 ++jsframe_count;
364 }
365 }
366 Translation translation(&translations_, frame_count, jsframe_count, zone());
367 WriteTranslation(environment, &translation);
368 int deoptimization_index = deoptimizations_.length();
369 int pc_offset = masm()->pc_offset();
370 environment->Register(deoptimization_index,
371 translation.index(),
372 (mode == Safepoint::kLazyDeopt) ? pc_offset : -1);
373 deoptimizations_.Add(environment, zone());
374 }
375 }
376
377
CallCode(Handle<Code> code,RelocInfo::Mode mode,LInstruction * instr)378 void LCodeGen::CallCode(Handle<Code> code,
379 RelocInfo::Mode mode,
380 LInstruction* instr) {
381 CallCodeGeneric(code, mode, instr, RECORD_SIMPLE_SAFEPOINT);
382 }
383
384
CallCodeGeneric(Handle<Code> code,RelocInfo::Mode mode,LInstruction * instr,SafepointMode safepoint_mode)385 void LCodeGen::CallCodeGeneric(Handle<Code> code,
386 RelocInfo::Mode mode,
387 LInstruction* instr,
388 SafepointMode safepoint_mode) {
389 ASSERT(instr != NULL);
390
391 Assembler::BlockPoolsScope scope(masm_);
392 __ Call(code, mode);
393 RecordSafepointWithLazyDeopt(instr, safepoint_mode);
394
395 if ((code->kind() == Code::BINARY_OP_IC) ||
396 (code->kind() == Code::COMPARE_IC)) {
397 // Signal that we don't inline smi code before these stubs in the
398 // optimizing code generator.
399 InlineSmiCheckInfo::EmitNotInlined(masm());
400 }
401 }
402
403
DoCallFunction(LCallFunction * instr)404 void LCodeGen::DoCallFunction(LCallFunction* instr) {
405 ASSERT(ToRegister(instr->context()).is(cp));
406 ASSERT(ToRegister(instr->function()).Is(x1));
407 ASSERT(ToRegister(instr->result()).Is(x0));
408
409 int arity = instr->arity();
410 CallFunctionStub stub(isolate(), arity, instr->hydrogen()->function_flags());
411 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
412 after_push_argument_ = false;
413 }
414
415
DoCallNew(LCallNew * instr)416 void LCodeGen::DoCallNew(LCallNew* instr) {
417 ASSERT(ToRegister(instr->context()).is(cp));
418 ASSERT(instr->IsMarkedAsCall());
419 ASSERT(ToRegister(instr->constructor()).is(x1));
420
421 __ Mov(x0, instr->arity());
422 // No cell in x2 for construct type feedback in optimized code.
423 __ LoadRoot(x2, Heap::kUndefinedValueRootIndex);
424
425 CallConstructStub stub(isolate(), NO_CALL_CONSTRUCTOR_FLAGS);
426 CallCode(stub.GetCode(), RelocInfo::CONSTRUCT_CALL, instr);
427 after_push_argument_ = false;
428
429 ASSERT(ToRegister(instr->result()).is(x0));
430 }
431
432
DoCallNewArray(LCallNewArray * instr)433 void LCodeGen::DoCallNewArray(LCallNewArray* instr) {
434 ASSERT(instr->IsMarkedAsCall());
435 ASSERT(ToRegister(instr->context()).is(cp));
436 ASSERT(ToRegister(instr->constructor()).is(x1));
437
438 __ Mov(x0, Operand(instr->arity()));
439 __ LoadRoot(x2, Heap::kUndefinedValueRootIndex);
440
441 ElementsKind kind = instr->hydrogen()->elements_kind();
442 AllocationSiteOverrideMode override_mode =
443 (AllocationSite::GetMode(kind) == TRACK_ALLOCATION_SITE)
444 ? DISABLE_ALLOCATION_SITES
445 : DONT_OVERRIDE;
446
447 if (instr->arity() == 0) {
448 ArrayNoArgumentConstructorStub stub(isolate(), kind, override_mode);
449 CallCode(stub.GetCode(), RelocInfo::CONSTRUCT_CALL, instr);
450 } else if (instr->arity() == 1) {
451 Label done;
452 if (IsFastPackedElementsKind(kind)) {
453 Label packed_case;
454
455 // We might need to create a holey array; look at the first argument.
456 __ Peek(x10, 0);
457 __ Cbz(x10, &packed_case);
458
459 ElementsKind holey_kind = GetHoleyElementsKind(kind);
460 ArraySingleArgumentConstructorStub stub(isolate(),
461 holey_kind,
462 override_mode);
463 CallCode(stub.GetCode(), RelocInfo::CONSTRUCT_CALL, instr);
464 __ B(&done);
465 __ Bind(&packed_case);
466 }
467
468 ArraySingleArgumentConstructorStub stub(isolate(), kind, override_mode);
469 CallCode(stub.GetCode(), RelocInfo::CONSTRUCT_CALL, instr);
470 __ Bind(&done);
471 } else {
472 ArrayNArgumentsConstructorStub stub(isolate(), kind, override_mode);
473 CallCode(stub.GetCode(), RelocInfo::CONSTRUCT_CALL, instr);
474 }
475 after_push_argument_ = false;
476
477 ASSERT(ToRegister(instr->result()).is(x0));
478 }
479
480
CallRuntime(const Runtime::Function * function,int num_arguments,LInstruction * instr,SaveFPRegsMode save_doubles)481 void LCodeGen::CallRuntime(const Runtime::Function* function,
482 int num_arguments,
483 LInstruction* instr,
484 SaveFPRegsMode save_doubles) {
485 ASSERT(instr != NULL);
486
487 __ CallRuntime(function, num_arguments, save_doubles);
488
489 RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT);
490 }
491
492
LoadContextFromDeferred(LOperand * context)493 void LCodeGen::LoadContextFromDeferred(LOperand* context) {
494 if (context->IsRegister()) {
495 __ Mov(cp, ToRegister(context));
496 } else if (context->IsStackSlot()) {
497 __ Ldr(cp, ToMemOperand(context, kMustUseFramePointer));
498 } else if (context->IsConstantOperand()) {
499 HConstant* constant =
500 chunk_->LookupConstant(LConstantOperand::cast(context));
501 __ LoadHeapObject(cp,
502 Handle<HeapObject>::cast(constant->handle(isolate())));
503 } else {
504 UNREACHABLE();
505 }
506 }
507
508
CallRuntimeFromDeferred(Runtime::FunctionId id,int argc,LInstruction * instr,LOperand * context)509 void LCodeGen::CallRuntimeFromDeferred(Runtime::FunctionId id,
510 int argc,
511 LInstruction* instr,
512 LOperand* context) {
513 LoadContextFromDeferred(context);
514 __ CallRuntimeSaveDoubles(id);
515 RecordSafepointWithRegisters(
516 instr->pointer_map(), argc, Safepoint::kNoLazyDeopt);
517 }
518
519
RecordAndWritePosition(int position)520 void LCodeGen::RecordAndWritePosition(int position) {
521 if (position == RelocInfo::kNoPosition) return;
522 masm()->positions_recorder()->RecordPosition(position);
523 masm()->positions_recorder()->WriteRecordedPositions();
524 }
525
526
RecordSafepointWithLazyDeopt(LInstruction * instr,SafepointMode safepoint_mode)527 void LCodeGen::RecordSafepointWithLazyDeopt(LInstruction* instr,
528 SafepointMode safepoint_mode) {
529 if (safepoint_mode == RECORD_SIMPLE_SAFEPOINT) {
530 RecordSafepoint(instr->pointer_map(), Safepoint::kLazyDeopt);
531 } else {
532 ASSERT(safepoint_mode == RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
533 RecordSafepointWithRegisters(
534 instr->pointer_map(), 0, Safepoint::kLazyDeopt);
535 }
536 }
537
538
RecordSafepoint(LPointerMap * pointers,Safepoint::Kind kind,int arguments,Safepoint::DeoptMode deopt_mode)539 void LCodeGen::RecordSafepoint(LPointerMap* pointers,
540 Safepoint::Kind kind,
541 int arguments,
542 Safepoint::DeoptMode deopt_mode) {
543 ASSERT(expected_safepoint_kind_ == kind);
544
545 const ZoneList<LOperand*>* operands = pointers->GetNormalizedOperands();
546 Safepoint safepoint = safepoints_.DefineSafepoint(
547 masm(), kind, arguments, deopt_mode);
548
549 for (int i = 0; i < operands->length(); i++) {
550 LOperand* pointer = operands->at(i);
551 if (pointer->IsStackSlot()) {
552 safepoint.DefinePointerSlot(pointer->index(), zone());
553 } else if (pointer->IsRegister() && (kind & Safepoint::kWithRegisters)) {
554 safepoint.DefinePointerRegister(ToRegister(pointer), zone());
555 }
556 }
557
558 if (kind & Safepoint::kWithRegisters) {
559 // Register cp always contains a pointer to the context.
560 safepoint.DefinePointerRegister(cp, zone());
561 }
562 }
563
RecordSafepoint(LPointerMap * pointers,Safepoint::DeoptMode deopt_mode)564 void LCodeGen::RecordSafepoint(LPointerMap* pointers,
565 Safepoint::DeoptMode deopt_mode) {
566 RecordSafepoint(pointers, Safepoint::kSimple, 0, deopt_mode);
567 }
568
569
RecordSafepoint(Safepoint::DeoptMode deopt_mode)570 void LCodeGen::RecordSafepoint(Safepoint::DeoptMode deopt_mode) {
571 LPointerMap empty_pointers(zone());
572 RecordSafepoint(&empty_pointers, deopt_mode);
573 }
574
575
RecordSafepointWithRegisters(LPointerMap * pointers,int arguments,Safepoint::DeoptMode deopt_mode)576 void LCodeGen::RecordSafepointWithRegisters(LPointerMap* pointers,
577 int arguments,
578 Safepoint::DeoptMode deopt_mode) {
579 RecordSafepoint(pointers, Safepoint::kWithRegisters, arguments, deopt_mode);
580 }
581
582
RecordSafepointWithRegistersAndDoubles(LPointerMap * pointers,int arguments,Safepoint::DeoptMode deopt_mode)583 void LCodeGen::RecordSafepointWithRegistersAndDoubles(
584 LPointerMap* pointers, int arguments, Safepoint::DeoptMode deopt_mode) {
585 RecordSafepoint(
586 pointers, Safepoint::kWithRegistersAndDoubles, arguments, deopt_mode);
587 }
588
589
GenerateCode()590 bool LCodeGen::GenerateCode() {
591 LPhase phase("Z_Code generation", chunk());
592 ASSERT(is_unused());
593 status_ = GENERATING;
594
595 // Open a frame scope to indicate that there is a frame on the stack. The
596 // NONE indicates that the scope shouldn't actually generate code to set up
597 // the frame (that is done in GeneratePrologue).
598 FrameScope frame_scope(masm_, StackFrame::NONE);
599
600 return GeneratePrologue() &&
601 GenerateBody() &&
602 GenerateDeferredCode() &&
603 GenerateDeoptJumpTable() &&
604 GenerateSafepointTable();
605 }
606
607
SaveCallerDoubles()608 void LCodeGen::SaveCallerDoubles() {
609 ASSERT(info()->saves_caller_doubles());
610 ASSERT(NeedsEagerFrame());
611 Comment(";;; Save clobbered callee double registers");
612 BitVector* doubles = chunk()->allocated_double_registers();
613 BitVector::Iterator iterator(doubles);
614 int count = 0;
615 while (!iterator.Done()) {
616 // TODO(all): Is this supposed to save just the callee-saved doubles? It
617 // looks like it's saving all of them.
618 FPRegister value = FPRegister::FromAllocationIndex(iterator.Current());
619 __ Poke(value, count * kDoubleSize);
620 iterator.Advance();
621 count++;
622 }
623 }
624
625
RestoreCallerDoubles()626 void LCodeGen::RestoreCallerDoubles() {
627 ASSERT(info()->saves_caller_doubles());
628 ASSERT(NeedsEagerFrame());
629 Comment(";;; Restore clobbered callee double registers");
630 BitVector* doubles = chunk()->allocated_double_registers();
631 BitVector::Iterator iterator(doubles);
632 int count = 0;
633 while (!iterator.Done()) {
634 // TODO(all): Is this supposed to restore just the callee-saved doubles? It
635 // looks like it's restoring all of them.
636 FPRegister value = FPRegister::FromAllocationIndex(iterator.Current());
637 __ Peek(value, count * kDoubleSize);
638 iterator.Advance();
639 count++;
640 }
641 }
642
643
GeneratePrologue()644 bool LCodeGen::GeneratePrologue() {
645 ASSERT(is_generating());
646
647 if (info()->IsOptimizing()) {
648 ProfileEntryHookStub::MaybeCallEntryHook(masm_);
649
650 // TODO(all): Add support for stop_t FLAG in DEBUG mode.
651
652 // Sloppy mode functions and builtins need to replace the receiver with the
653 // global proxy when called as functions (without an explicit receiver
654 // object).
655 if (info_->this_has_uses() &&
656 info_->strict_mode() == SLOPPY &&
657 !info_->is_native()) {
658 Label ok;
659 int receiver_offset = info_->scope()->num_parameters() * kXRegSize;
660 __ Peek(x10, receiver_offset);
661 __ JumpIfNotRoot(x10, Heap::kUndefinedValueRootIndex, &ok);
662
663 __ Ldr(x10, GlobalObjectMemOperand());
664 __ Ldr(x10, FieldMemOperand(x10, GlobalObject::kGlobalReceiverOffset));
665 __ Poke(x10, receiver_offset);
666
667 __ Bind(&ok);
668 }
669 }
670
671 ASSERT(__ StackPointer().Is(jssp));
672 info()->set_prologue_offset(masm_->pc_offset());
673 if (NeedsEagerFrame()) {
674 if (info()->IsStub()) {
675 __ StubPrologue();
676 } else {
677 __ Prologue(info()->IsCodePreAgingActive());
678 }
679 frame_is_built_ = true;
680 info_->AddNoFrameRange(0, masm_->pc_offset());
681 }
682
683 // Reserve space for the stack slots needed by the code.
684 int slots = GetStackSlotCount();
685 if (slots > 0) {
686 __ Claim(slots, kPointerSize);
687 }
688
689 if (info()->saves_caller_doubles()) {
690 SaveCallerDoubles();
691 }
692
693 // Allocate a local context if needed.
694 int heap_slots = info()->num_heap_slots() - Context::MIN_CONTEXT_SLOTS;
695 if (heap_slots > 0) {
696 Comment(";;; Allocate local context");
697 bool need_write_barrier = true;
698 // Argument to NewContext is the function, which is in x1.
699 if (heap_slots <= FastNewContextStub::kMaximumSlots) {
700 FastNewContextStub stub(isolate(), heap_slots);
701 __ CallStub(&stub);
702 // Result of FastNewContextStub is always in new space.
703 need_write_barrier = false;
704 } else {
705 __ Push(x1);
706 __ CallRuntime(Runtime::kHiddenNewFunctionContext, 1);
707 }
708 RecordSafepoint(Safepoint::kNoLazyDeopt);
709 // Context is returned in x0. It replaces the context passed to us. It's
710 // saved in the stack and kept live in cp.
711 __ Mov(cp, x0);
712 __ Str(x0, MemOperand(fp, StandardFrameConstants::kContextOffset));
713 // Copy any necessary parameters into the context.
714 int num_parameters = scope()->num_parameters();
715 for (int i = 0; i < num_parameters; i++) {
716 Variable* var = scope()->parameter(i);
717 if (var->IsContextSlot()) {
718 Register value = x0;
719 Register scratch = x3;
720
721 int parameter_offset = StandardFrameConstants::kCallerSPOffset +
722 (num_parameters - 1 - i) * kPointerSize;
723 // Load parameter from stack.
724 __ Ldr(value, MemOperand(fp, parameter_offset));
725 // Store it in the context.
726 MemOperand target = ContextMemOperand(cp, var->index());
727 __ Str(value, target);
728 // Update the write barrier. This clobbers value and scratch.
729 if (need_write_barrier) {
730 __ RecordWriteContextSlot(cp, target.offset(), value, scratch,
731 GetLinkRegisterState(), kSaveFPRegs);
732 } else if (FLAG_debug_code) {
733 Label done;
734 __ JumpIfInNewSpace(cp, &done);
735 __ Abort(kExpectedNewSpaceObject);
736 __ bind(&done);
737 }
738 }
739 }
740 Comment(";;; End allocate local context");
741 }
742
743 // Trace the call.
744 if (FLAG_trace && info()->IsOptimizing()) {
745 // We have not executed any compiled code yet, so cp still holds the
746 // incoming context.
747 __ CallRuntime(Runtime::kTraceEnter, 0);
748 }
749
750 return !is_aborted();
751 }
752
753
GenerateOsrPrologue()754 void LCodeGen::GenerateOsrPrologue() {
755 // Generate the OSR entry prologue at the first unknown OSR value, or if there
756 // are none, at the OSR entrypoint instruction.
757 if (osr_pc_offset_ >= 0) return;
758
759 osr_pc_offset_ = masm()->pc_offset();
760
761 // Adjust the frame size, subsuming the unoptimized frame into the
762 // optimized frame.
763 int slots = GetStackSlotCount() - graph()->osr()->UnoptimizedFrameSlots();
764 ASSERT(slots >= 0);
765 __ Claim(slots);
766 }
767
768
GenerateBodyInstructionPre(LInstruction * instr)769 void LCodeGen::GenerateBodyInstructionPre(LInstruction* instr) {
770 if (instr->IsCall()) {
771 EnsureSpaceForLazyDeopt(Deoptimizer::patch_size());
772 }
773 if (!instr->IsLazyBailout() && !instr->IsGap()) {
774 safepoints_.BumpLastLazySafepointIndex();
775 }
776 }
777
778
GenerateDeferredCode()779 bool LCodeGen::GenerateDeferredCode() {
780 ASSERT(is_generating());
781 if (deferred_.length() > 0) {
782 for (int i = 0; !is_aborted() && (i < deferred_.length()); i++) {
783 LDeferredCode* code = deferred_[i];
784
785 HValue* value =
786 instructions_->at(code->instruction_index())->hydrogen_value();
787 RecordAndWritePosition(
788 chunk()->graph()->SourcePositionToScriptPosition(value->position()));
789
790 Comment(";;; <@%d,#%d> "
791 "-------------------- Deferred %s --------------------",
792 code->instruction_index(),
793 code->instr()->hydrogen_value()->id(),
794 code->instr()->Mnemonic());
795
796 __ Bind(code->entry());
797
798 if (NeedsDeferredFrame()) {
799 Comment(";;; Build frame");
800 ASSERT(!frame_is_built_);
801 ASSERT(info()->IsStub());
802 frame_is_built_ = true;
803 __ Push(lr, fp, cp);
804 __ Mov(fp, Smi::FromInt(StackFrame::STUB));
805 __ Push(fp);
806 __ Add(fp, __ StackPointer(),
807 StandardFrameConstants::kFixedFrameSizeFromFp);
808 Comment(";;; Deferred code");
809 }
810
811 code->Generate();
812
813 if (NeedsDeferredFrame()) {
814 Comment(";;; Destroy frame");
815 ASSERT(frame_is_built_);
816 __ Pop(xzr, cp, fp, lr);
817 frame_is_built_ = false;
818 }
819
820 __ B(code->exit());
821 }
822 }
823
824 // Force constant pool emission at the end of the deferred code to make
825 // sure that no constant pools are emitted after deferred code because
826 // deferred code generation is the last step which generates code. The two
827 // following steps will only output data used by crakshaft.
828 masm()->CheckConstPool(true, false);
829
830 return !is_aborted();
831 }
832
833
GenerateDeoptJumpTable()834 bool LCodeGen::GenerateDeoptJumpTable() {
835 Label needs_frame, restore_caller_doubles, call_deopt_entry;
836
837 if (deopt_jump_table_.length() > 0) {
838 Comment(";;; -------------------- Jump table --------------------");
839 Address base = deopt_jump_table_[0]->address;
840
841 UseScratchRegisterScope temps(masm());
842 Register entry_offset = temps.AcquireX();
843
844 int length = deopt_jump_table_.length();
845 for (int i = 0; i < length; i++) {
846 __ Bind(&deopt_jump_table_[i]->label);
847
848 Deoptimizer::BailoutType type = deopt_jump_table_[i]->bailout_type;
849 Address entry = deopt_jump_table_[i]->address;
850 int id = Deoptimizer::GetDeoptimizationId(isolate(), entry, type);
851 if (id == Deoptimizer::kNotDeoptimizationEntry) {
852 Comment(";;; jump table entry %d.", i);
853 } else {
854 Comment(";;; jump table entry %d: deoptimization bailout %d.", i, id);
855 }
856
857 // Second-level deopt table entries are contiguous and small, so instead
858 // of loading the full, absolute address of each one, load the base
859 // address and add an immediate offset.
860 __ Mov(entry_offset, entry - base);
861
862 // The last entry can fall through into `call_deopt_entry`, avoiding a
863 // branch.
864 bool last_entry = (i + 1) == length;
865
866 if (deopt_jump_table_[i]->needs_frame) {
867 ASSERT(!info()->saves_caller_doubles());
868 if (!needs_frame.is_bound()) {
869 // This variant of deopt can only be used with stubs. Since we don't
870 // have a function pointer to install in the stack frame that we're
871 // building, install a special marker there instead.
872 ASSERT(info()->IsStub());
873
874 UseScratchRegisterScope temps(masm());
875 Register stub_marker = temps.AcquireX();
876 __ Bind(&needs_frame);
877 __ Mov(stub_marker, Smi::FromInt(StackFrame::STUB));
878 __ Push(lr, fp, cp, stub_marker);
879 __ Add(fp, __ StackPointer(), 2 * kPointerSize);
880 if (!last_entry) __ B(&call_deopt_entry);
881 } else {
882 // Reuse the existing needs_frame code.
883 __ B(&needs_frame);
884 }
885 } else if (info()->saves_caller_doubles()) {
886 ASSERT(info()->IsStub());
887 if (!restore_caller_doubles.is_bound()) {
888 __ Bind(&restore_caller_doubles);
889 RestoreCallerDoubles();
890 if (!last_entry) __ B(&call_deopt_entry);
891 } else {
892 // Reuse the existing restore_caller_doubles code.
893 __ B(&restore_caller_doubles);
894 }
895 } else {
896 // There is nothing special to do, so just continue to the second-level
897 // table.
898 if (!last_entry) __ B(&call_deopt_entry);
899 }
900
901 masm()->CheckConstPool(false, last_entry);
902 }
903
904 // Generate common code for calling the second-level deopt table.
905 Register deopt_entry = temps.AcquireX();
906 __ Bind(&call_deopt_entry);
907 __ Mov(deopt_entry, Operand(reinterpret_cast<uint64_t>(base),
908 RelocInfo::RUNTIME_ENTRY));
909 __ Add(deopt_entry, deopt_entry, entry_offset);
910 __ Call(deopt_entry);
911 }
912
913 // Force constant pool emission at the end of the deopt jump table to make
914 // sure that no constant pools are emitted after.
915 masm()->CheckConstPool(true, false);
916
917 // The deoptimization jump table is the last part of the instruction
918 // sequence. Mark the generated code as done unless we bailed out.
919 if (!is_aborted()) status_ = DONE;
920 return !is_aborted();
921 }
922
923
GenerateSafepointTable()924 bool LCodeGen::GenerateSafepointTable() {
925 ASSERT(is_done());
926 // We do not know how much data will be emitted for the safepoint table, so
927 // force emission of the veneer pool.
928 masm()->CheckVeneerPool(true, true);
929 safepoints_.Emit(masm(), GetStackSlotCount());
930 return !is_aborted();
931 }
932
933
FinishCode(Handle<Code> code)934 void LCodeGen::FinishCode(Handle<Code> code) {
935 ASSERT(is_done());
936 code->set_stack_slots(GetStackSlotCount());
937 code->set_safepoint_table_offset(safepoints_.GetCodeOffset());
938 if (code->is_optimized_code()) RegisterWeakObjectsInOptimizedCode(code);
939 PopulateDeoptimizationData(code);
940 }
941
942
PopulateDeoptimizationData(Handle<Code> code)943 void LCodeGen::PopulateDeoptimizationData(Handle<Code> code) {
944 int length = deoptimizations_.length();
945 if (length == 0) return;
946
947 Handle<DeoptimizationInputData> data =
948 DeoptimizationInputData::New(isolate(), length, TENURED);
949
950 Handle<ByteArray> translations =
951 translations_.CreateByteArray(isolate()->factory());
952 data->SetTranslationByteArray(*translations);
953 data->SetInlinedFunctionCount(Smi::FromInt(inlined_function_count_));
954 data->SetOptimizationId(Smi::FromInt(info_->optimization_id()));
955 if (info_->IsOptimizing()) {
956 // Reference to shared function info does not change between phases.
957 AllowDeferredHandleDereference allow_handle_dereference;
958 data->SetSharedFunctionInfo(*info_->shared_info());
959 } else {
960 data->SetSharedFunctionInfo(Smi::FromInt(0));
961 }
962
963 Handle<FixedArray> literals =
964 factory()->NewFixedArray(deoptimization_literals_.length(), TENURED);
965 { AllowDeferredHandleDereference copy_handles;
966 for (int i = 0; i < deoptimization_literals_.length(); i++) {
967 literals->set(i, *deoptimization_literals_[i]);
968 }
969 data->SetLiteralArray(*literals);
970 }
971
972 data->SetOsrAstId(Smi::FromInt(info_->osr_ast_id().ToInt()));
973 data->SetOsrPcOffset(Smi::FromInt(osr_pc_offset_));
974
975 // Populate the deoptimization entries.
976 for (int i = 0; i < length; i++) {
977 LEnvironment* env = deoptimizations_[i];
978 data->SetAstId(i, env->ast_id());
979 data->SetTranslationIndex(i, Smi::FromInt(env->translation_index()));
980 data->SetArgumentsStackHeight(i,
981 Smi::FromInt(env->arguments_stack_height()));
982 data->SetPc(i, Smi::FromInt(env->pc_offset()));
983 }
984
985 code->set_deoptimization_data(*data);
986 }
987
988
PopulateDeoptimizationLiteralsWithInlinedFunctions()989 void LCodeGen::PopulateDeoptimizationLiteralsWithInlinedFunctions() {
990 ASSERT(deoptimization_literals_.length() == 0);
991
992 const ZoneList<Handle<JSFunction> >* inlined_closures =
993 chunk()->inlined_closures();
994
995 for (int i = 0, length = inlined_closures->length(); i < length; i++) {
996 DefineDeoptimizationLiteral(inlined_closures->at(i));
997 }
998
999 inlined_function_count_ = deoptimization_literals_.length();
1000 }
1001
1002
DeoptimizeBranch(LEnvironment * environment,BranchType branch_type,Register reg,int bit,Deoptimizer::BailoutType * override_bailout_type)1003 void LCodeGen::DeoptimizeBranch(
1004 LEnvironment* environment,
1005 BranchType branch_type, Register reg, int bit,
1006 Deoptimizer::BailoutType* override_bailout_type) {
1007 RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt);
1008 Deoptimizer::BailoutType bailout_type =
1009 info()->IsStub() ? Deoptimizer::LAZY : Deoptimizer::EAGER;
1010
1011 if (override_bailout_type != NULL) {
1012 bailout_type = *override_bailout_type;
1013 }
1014
1015 ASSERT(environment->HasBeenRegistered());
1016 ASSERT(info()->IsOptimizing() || info()->IsStub());
1017 int id = environment->deoptimization_index();
1018 Address entry =
1019 Deoptimizer::GetDeoptimizationEntry(isolate(), id, bailout_type);
1020
1021 if (entry == NULL) {
1022 Abort(kBailoutWasNotPrepared);
1023 }
1024
1025 if (FLAG_deopt_every_n_times != 0 && !info()->IsStub()) {
1026 Label not_zero;
1027 ExternalReference count = ExternalReference::stress_deopt_count(isolate());
1028
1029 __ Push(x0, x1, x2);
1030 __ Mrs(x2, NZCV);
1031 __ Mov(x0, count);
1032 __ Ldr(w1, MemOperand(x0));
1033 __ Subs(x1, x1, 1);
1034 __ B(gt, ¬_zero);
1035 __ Mov(w1, FLAG_deopt_every_n_times);
1036 __ Str(w1, MemOperand(x0));
1037 __ Pop(x2, x1, x0);
1038 ASSERT(frame_is_built_);
1039 __ Call(entry, RelocInfo::RUNTIME_ENTRY);
1040 __ Unreachable();
1041
1042 __ Bind(¬_zero);
1043 __ Str(w1, MemOperand(x0));
1044 __ Msr(NZCV, x2);
1045 __ Pop(x2, x1, x0);
1046 }
1047
1048 if (info()->ShouldTrapOnDeopt()) {
1049 Label dont_trap;
1050 __ B(&dont_trap, InvertBranchType(branch_type), reg, bit);
1051 __ Debug("trap_on_deopt", __LINE__, BREAK);
1052 __ Bind(&dont_trap);
1053 }
1054
1055 ASSERT(info()->IsStub() || frame_is_built_);
1056 // Go through jump table if we need to build frame, or restore caller doubles.
1057 if (branch_type == always &&
1058 frame_is_built_ && !info()->saves_caller_doubles()) {
1059 __ Call(entry, RelocInfo::RUNTIME_ENTRY);
1060 } else {
1061 // We often have several deopts to the same entry, reuse the last
1062 // jump entry if this is the case.
1063 if (deopt_jump_table_.is_empty() ||
1064 (deopt_jump_table_.last()->address != entry) ||
1065 (deopt_jump_table_.last()->bailout_type != bailout_type) ||
1066 (deopt_jump_table_.last()->needs_frame != !frame_is_built_)) {
1067 Deoptimizer::JumpTableEntry* table_entry =
1068 new(zone()) Deoptimizer::JumpTableEntry(entry,
1069 bailout_type,
1070 !frame_is_built_);
1071 deopt_jump_table_.Add(table_entry, zone());
1072 }
1073 __ B(&deopt_jump_table_.last()->label,
1074 branch_type, reg, bit);
1075 }
1076 }
1077
1078
Deoptimize(LEnvironment * environment,Deoptimizer::BailoutType * override_bailout_type)1079 void LCodeGen::Deoptimize(LEnvironment* environment,
1080 Deoptimizer::BailoutType* override_bailout_type) {
1081 DeoptimizeBranch(environment, always, NoReg, -1, override_bailout_type);
1082 }
1083
1084
DeoptimizeIf(Condition cond,LEnvironment * environment)1085 void LCodeGen::DeoptimizeIf(Condition cond, LEnvironment* environment) {
1086 DeoptimizeBranch(environment, static_cast<BranchType>(cond));
1087 }
1088
1089
DeoptimizeIfZero(Register rt,LEnvironment * environment)1090 void LCodeGen::DeoptimizeIfZero(Register rt, LEnvironment* environment) {
1091 DeoptimizeBranch(environment, reg_zero, rt);
1092 }
1093
1094
DeoptimizeIfNotZero(Register rt,LEnvironment * environment)1095 void LCodeGen::DeoptimizeIfNotZero(Register rt, LEnvironment* environment) {
1096 DeoptimizeBranch(environment, reg_not_zero, rt);
1097 }
1098
1099
DeoptimizeIfNegative(Register rt,LEnvironment * environment)1100 void LCodeGen::DeoptimizeIfNegative(Register rt, LEnvironment* environment) {
1101 int sign_bit = rt.Is64Bits() ? kXSignBit : kWSignBit;
1102 DeoptimizeIfBitSet(rt, sign_bit, environment);
1103 }
1104
1105
DeoptimizeIfSmi(Register rt,LEnvironment * environment)1106 void LCodeGen::DeoptimizeIfSmi(Register rt,
1107 LEnvironment* environment) {
1108 DeoptimizeIfBitClear(rt, MaskToBit(kSmiTagMask), environment);
1109 }
1110
1111
DeoptimizeIfNotSmi(Register rt,LEnvironment * environment)1112 void LCodeGen::DeoptimizeIfNotSmi(Register rt, LEnvironment* environment) {
1113 DeoptimizeIfBitSet(rt, MaskToBit(kSmiTagMask), environment);
1114 }
1115
1116
DeoptimizeIfRoot(Register rt,Heap::RootListIndex index,LEnvironment * environment)1117 void LCodeGen::DeoptimizeIfRoot(Register rt,
1118 Heap::RootListIndex index,
1119 LEnvironment* environment) {
1120 __ CompareRoot(rt, index);
1121 DeoptimizeIf(eq, environment);
1122 }
1123
1124
DeoptimizeIfNotRoot(Register rt,Heap::RootListIndex index,LEnvironment * environment)1125 void LCodeGen::DeoptimizeIfNotRoot(Register rt,
1126 Heap::RootListIndex index,
1127 LEnvironment* environment) {
1128 __ CompareRoot(rt, index);
1129 DeoptimizeIf(ne, environment);
1130 }
1131
1132
DeoptimizeIfMinusZero(DoubleRegister input,LEnvironment * environment)1133 void LCodeGen::DeoptimizeIfMinusZero(DoubleRegister input,
1134 LEnvironment* environment) {
1135 __ TestForMinusZero(input);
1136 DeoptimizeIf(vs, environment);
1137 }
1138
1139
DeoptimizeIfBitSet(Register rt,int bit,LEnvironment * environment)1140 void LCodeGen::DeoptimizeIfBitSet(Register rt,
1141 int bit,
1142 LEnvironment* environment) {
1143 DeoptimizeBranch(environment, reg_bit_set, rt, bit);
1144 }
1145
1146
DeoptimizeIfBitClear(Register rt,int bit,LEnvironment * environment)1147 void LCodeGen::DeoptimizeIfBitClear(Register rt,
1148 int bit,
1149 LEnvironment* environment) {
1150 DeoptimizeBranch(environment, reg_bit_clear, rt, bit);
1151 }
1152
1153
EnsureSpaceForLazyDeopt(int space_needed)1154 void LCodeGen::EnsureSpaceForLazyDeopt(int space_needed) {
1155 if (!info()->IsStub()) {
1156 // Ensure that we have enough space after the previous lazy-bailout
1157 // instruction for patching the code here.
1158 intptr_t current_pc = masm()->pc_offset();
1159
1160 if (current_pc < (last_lazy_deopt_pc_ + space_needed)) {
1161 ptrdiff_t padding_size = last_lazy_deopt_pc_ + space_needed - current_pc;
1162 ASSERT((padding_size % kInstructionSize) == 0);
1163 InstructionAccurateScope instruction_accurate(
1164 masm(), padding_size / kInstructionSize);
1165
1166 while (padding_size > 0) {
1167 __ nop();
1168 padding_size -= kInstructionSize;
1169 }
1170 }
1171 }
1172 last_lazy_deopt_pc_ = masm()->pc_offset();
1173 }
1174
1175
ToRegister(LOperand * op) const1176 Register LCodeGen::ToRegister(LOperand* op) const {
1177 // TODO(all): support zero register results, as ToRegister32.
1178 ASSERT((op != NULL) && op->IsRegister());
1179 return Register::FromAllocationIndex(op->index());
1180 }
1181
1182
ToRegister32(LOperand * op) const1183 Register LCodeGen::ToRegister32(LOperand* op) const {
1184 ASSERT(op != NULL);
1185 if (op->IsConstantOperand()) {
1186 // If this is a constant operand, the result must be the zero register.
1187 ASSERT(ToInteger32(LConstantOperand::cast(op)) == 0);
1188 return wzr;
1189 } else {
1190 return ToRegister(op).W();
1191 }
1192 }
1193
1194
ToSmi(LConstantOperand * op) const1195 Smi* LCodeGen::ToSmi(LConstantOperand* op) const {
1196 HConstant* constant = chunk_->LookupConstant(op);
1197 return Smi::FromInt(constant->Integer32Value());
1198 }
1199
1200
ToDoubleRegister(LOperand * op) const1201 DoubleRegister LCodeGen::ToDoubleRegister(LOperand* op) const {
1202 ASSERT((op != NULL) && op->IsDoubleRegister());
1203 return DoubleRegister::FromAllocationIndex(op->index());
1204 }
1205
1206
ToOperand(LOperand * op)1207 Operand LCodeGen::ToOperand(LOperand* op) {
1208 ASSERT(op != NULL);
1209 if (op->IsConstantOperand()) {
1210 LConstantOperand* const_op = LConstantOperand::cast(op);
1211 HConstant* constant = chunk()->LookupConstant(const_op);
1212 Representation r = chunk_->LookupLiteralRepresentation(const_op);
1213 if (r.IsSmi()) {
1214 ASSERT(constant->HasSmiValue());
1215 return Operand(Smi::FromInt(constant->Integer32Value()));
1216 } else if (r.IsInteger32()) {
1217 ASSERT(constant->HasInteger32Value());
1218 return Operand(constant->Integer32Value());
1219 } else if (r.IsDouble()) {
1220 Abort(kToOperandUnsupportedDoubleImmediate);
1221 }
1222 ASSERT(r.IsTagged());
1223 return Operand(constant->handle(isolate()));
1224 } else if (op->IsRegister()) {
1225 return Operand(ToRegister(op));
1226 } else if (op->IsDoubleRegister()) {
1227 Abort(kToOperandIsDoubleRegisterUnimplemented);
1228 return Operand(0);
1229 }
1230 // Stack slots not implemented, use ToMemOperand instead.
1231 UNREACHABLE();
1232 return Operand(0);
1233 }
1234
1235
ToOperand32I(LOperand * op)1236 Operand LCodeGen::ToOperand32I(LOperand* op) {
1237 return ToOperand32(op, SIGNED_INT32);
1238 }
1239
1240
ToOperand32U(LOperand * op)1241 Operand LCodeGen::ToOperand32U(LOperand* op) {
1242 return ToOperand32(op, UNSIGNED_INT32);
1243 }
1244
1245
ToOperand32(LOperand * op,IntegerSignedness signedness)1246 Operand LCodeGen::ToOperand32(LOperand* op, IntegerSignedness signedness) {
1247 ASSERT(op != NULL);
1248 if (op->IsRegister()) {
1249 return Operand(ToRegister32(op));
1250 } else if (op->IsConstantOperand()) {
1251 LConstantOperand* const_op = LConstantOperand::cast(op);
1252 HConstant* constant = chunk()->LookupConstant(const_op);
1253 Representation r = chunk_->LookupLiteralRepresentation(const_op);
1254 if (r.IsInteger32()) {
1255 ASSERT(constant->HasInteger32Value());
1256 return (signedness == SIGNED_INT32)
1257 ? Operand(constant->Integer32Value())
1258 : Operand(static_cast<uint32_t>(constant->Integer32Value()));
1259 } else {
1260 // Other constants not implemented.
1261 Abort(kToOperand32UnsupportedImmediate);
1262 }
1263 }
1264 // Other cases are not implemented.
1265 UNREACHABLE();
1266 return Operand(0);
1267 }
1268
1269
ArgumentsOffsetWithoutFrame(ptrdiff_t index)1270 static ptrdiff_t ArgumentsOffsetWithoutFrame(ptrdiff_t index) {
1271 ASSERT(index < 0);
1272 return -(index + 1) * kPointerSize;
1273 }
1274
1275
ToMemOperand(LOperand * op,StackMode stack_mode) const1276 MemOperand LCodeGen::ToMemOperand(LOperand* op, StackMode stack_mode) const {
1277 ASSERT(op != NULL);
1278 ASSERT(!op->IsRegister());
1279 ASSERT(!op->IsDoubleRegister());
1280 ASSERT(op->IsStackSlot() || op->IsDoubleStackSlot());
1281 if (NeedsEagerFrame()) {
1282 int fp_offset = StackSlotOffset(op->index());
1283 if (op->index() >= 0) {
1284 // Loads and stores have a bigger reach in positive offset than negative.
1285 // When the load or the store can't be done in one instruction via fp
1286 // (too big negative offset), we try to access via jssp (positive offset).
1287 // We can reference a stack slot from jssp only if jssp references the end
1288 // of the stack slots. It's not the case when:
1289 // - stack_mode != kCanUseStackPointer: this is the case when a deferred
1290 // code saved the registers.
1291 // - after_push_argument_: arguments has been pushed for a call.
1292 // - inlined_arguments_: inlined arguments have been pushed once. All the
1293 // remainder of the function cannot trust jssp any longer.
1294 // - saves_caller_doubles: some double registers have been pushed, jssp
1295 // references the end of the double registers and not the end of the
1296 // stack slots.
1297 // Also, if the offset from fp is small enough to make a load/store in
1298 // one instruction, we use a fp access.
1299 if ((stack_mode == kCanUseStackPointer) && !after_push_argument_ &&
1300 !inlined_arguments_ && !is_int9(fp_offset) &&
1301 !info()->saves_caller_doubles()) {
1302 int jssp_offset =
1303 (GetStackSlotCount() - op->index() - 1) * kPointerSize;
1304 return MemOperand(masm()->StackPointer(), jssp_offset);
1305 }
1306 }
1307 return MemOperand(fp, fp_offset);
1308 } else {
1309 // Retrieve parameter without eager stack-frame relative to the
1310 // stack-pointer.
1311 return MemOperand(masm()->StackPointer(),
1312 ArgumentsOffsetWithoutFrame(op->index()));
1313 }
1314 }
1315
1316
ToHandle(LConstantOperand * op) const1317 Handle<Object> LCodeGen::ToHandle(LConstantOperand* op) const {
1318 HConstant* constant = chunk_->LookupConstant(op);
1319 ASSERT(chunk_->LookupLiteralRepresentation(op).IsSmiOrTagged());
1320 return constant->handle(isolate());
1321 }
1322
1323
1324 template<class LI>
ToShiftedRightOperand32(LOperand * right,LI * shift_info,IntegerSignedness signedness)1325 Operand LCodeGen::ToShiftedRightOperand32(LOperand* right, LI* shift_info,
1326 IntegerSignedness signedness) {
1327 if (shift_info->shift() == NO_SHIFT) {
1328 return (signedness == SIGNED_INT32) ? ToOperand32I(right)
1329 : ToOperand32U(right);
1330 } else {
1331 return Operand(
1332 ToRegister32(right),
1333 shift_info->shift(),
1334 JSShiftAmountFromLConstant(shift_info->shift_amount()));
1335 }
1336 }
1337
1338
IsSmi(LConstantOperand * op) const1339 bool LCodeGen::IsSmi(LConstantOperand* op) const {
1340 return chunk_->LookupLiteralRepresentation(op).IsSmi();
1341 }
1342
1343
IsInteger32Constant(LConstantOperand * op) const1344 bool LCodeGen::IsInteger32Constant(LConstantOperand* op) const {
1345 return chunk_->LookupLiteralRepresentation(op).IsSmiOrInteger32();
1346 }
1347
1348
ToInteger32(LConstantOperand * op) const1349 int32_t LCodeGen::ToInteger32(LConstantOperand* op) const {
1350 HConstant* constant = chunk_->LookupConstant(op);
1351 return constant->Integer32Value();
1352 }
1353
1354
ToDouble(LConstantOperand * op) const1355 double LCodeGen::ToDouble(LConstantOperand* op) const {
1356 HConstant* constant = chunk_->LookupConstant(op);
1357 ASSERT(constant->HasDoubleValue());
1358 return constant->DoubleValue();
1359 }
1360
1361
TokenToCondition(Token::Value op,bool is_unsigned)1362 Condition LCodeGen::TokenToCondition(Token::Value op, bool is_unsigned) {
1363 Condition cond = nv;
1364 switch (op) {
1365 case Token::EQ:
1366 case Token::EQ_STRICT:
1367 cond = eq;
1368 break;
1369 case Token::NE:
1370 case Token::NE_STRICT:
1371 cond = ne;
1372 break;
1373 case Token::LT:
1374 cond = is_unsigned ? lo : lt;
1375 break;
1376 case Token::GT:
1377 cond = is_unsigned ? hi : gt;
1378 break;
1379 case Token::LTE:
1380 cond = is_unsigned ? ls : le;
1381 break;
1382 case Token::GTE:
1383 cond = is_unsigned ? hs : ge;
1384 break;
1385 case Token::IN:
1386 case Token::INSTANCEOF:
1387 default:
1388 UNREACHABLE();
1389 }
1390 return cond;
1391 }
1392
1393
1394 template<class InstrType>
EmitBranchGeneric(InstrType instr,const BranchGenerator & branch)1395 void LCodeGen::EmitBranchGeneric(InstrType instr,
1396 const BranchGenerator& branch) {
1397 int left_block = instr->TrueDestination(chunk_);
1398 int right_block = instr->FalseDestination(chunk_);
1399
1400 int next_block = GetNextEmittedBlock();
1401
1402 if (right_block == left_block) {
1403 EmitGoto(left_block);
1404 } else if (left_block == next_block) {
1405 branch.EmitInverted(chunk_->GetAssemblyLabel(right_block));
1406 } else if (right_block == next_block) {
1407 branch.Emit(chunk_->GetAssemblyLabel(left_block));
1408 } else {
1409 branch.Emit(chunk_->GetAssemblyLabel(left_block));
1410 __ B(chunk_->GetAssemblyLabel(right_block));
1411 }
1412 }
1413
1414
1415 template<class InstrType>
EmitBranch(InstrType instr,Condition condition)1416 void LCodeGen::EmitBranch(InstrType instr, Condition condition) {
1417 ASSERT((condition != al) && (condition != nv));
1418 BranchOnCondition branch(this, condition);
1419 EmitBranchGeneric(instr, branch);
1420 }
1421
1422
1423 template<class InstrType>
EmitCompareAndBranch(InstrType instr,Condition condition,const Register & lhs,const Operand & rhs)1424 void LCodeGen::EmitCompareAndBranch(InstrType instr,
1425 Condition condition,
1426 const Register& lhs,
1427 const Operand& rhs) {
1428 ASSERT((condition != al) && (condition != nv));
1429 CompareAndBranch branch(this, condition, lhs, rhs);
1430 EmitBranchGeneric(instr, branch);
1431 }
1432
1433
1434 template<class InstrType>
EmitTestAndBranch(InstrType instr,Condition condition,const Register & value,uint64_t mask)1435 void LCodeGen::EmitTestAndBranch(InstrType instr,
1436 Condition condition,
1437 const Register& value,
1438 uint64_t mask) {
1439 ASSERT((condition != al) && (condition != nv));
1440 TestAndBranch branch(this, condition, value, mask);
1441 EmitBranchGeneric(instr, branch);
1442 }
1443
1444
1445 template<class InstrType>
EmitBranchIfNonZeroNumber(InstrType instr,const FPRegister & value,const FPRegister & scratch)1446 void LCodeGen::EmitBranchIfNonZeroNumber(InstrType instr,
1447 const FPRegister& value,
1448 const FPRegister& scratch) {
1449 BranchIfNonZeroNumber branch(this, value, scratch);
1450 EmitBranchGeneric(instr, branch);
1451 }
1452
1453
1454 template<class InstrType>
EmitBranchIfHeapNumber(InstrType instr,const Register & value)1455 void LCodeGen::EmitBranchIfHeapNumber(InstrType instr,
1456 const Register& value) {
1457 BranchIfHeapNumber branch(this, value);
1458 EmitBranchGeneric(instr, branch);
1459 }
1460
1461
1462 template<class InstrType>
EmitBranchIfRoot(InstrType instr,const Register & value,Heap::RootListIndex index)1463 void LCodeGen::EmitBranchIfRoot(InstrType instr,
1464 const Register& value,
1465 Heap::RootListIndex index) {
1466 BranchIfRoot branch(this, value, index);
1467 EmitBranchGeneric(instr, branch);
1468 }
1469
1470
DoGap(LGap * gap)1471 void LCodeGen::DoGap(LGap* gap) {
1472 for (int i = LGap::FIRST_INNER_POSITION;
1473 i <= LGap::LAST_INNER_POSITION;
1474 i++) {
1475 LGap::InnerPosition inner_pos = static_cast<LGap::InnerPosition>(i);
1476 LParallelMove* move = gap->GetParallelMove(inner_pos);
1477 if (move != NULL) {
1478 resolver_.Resolve(move);
1479 }
1480 }
1481 }
1482
1483
DoAccessArgumentsAt(LAccessArgumentsAt * instr)1484 void LCodeGen::DoAccessArgumentsAt(LAccessArgumentsAt* instr) {
1485 Register arguments = ToRegister(instr->arguments());
1486 Register result = ToRegister(instr->result());
1487
1488 // The pointer to the arguments array come from DoArgumentsElements.
1489 // It does not point directly to the arguments and there is an offest of
1490 // two words that we must take into account when accessing an argument.
1491 // Subtracting the index from length accounts for one, so we add one more.
1492
1493 if (instr->length()->IsConstantOperand() &&
1494 instr->index()->IsConstantOperand()) {
1495 int index = ToInteger32(LConstantOperand::cast(instr->index()));
1496 int length = ToInteger32(LConstantOperand::cast(instr->length()));
1497 int offset = ((length - index) + 1) * kPointerSize;
1498 __ Ldr(result, MemOperand(arguments, offset));
1499 } else if (instr->index()->IsConstantOperand()) {
1500 Register length = ToRegister32(instr->length());
1501 int index = ToInteger32(LConstantOperand::cast(instr->index()));
1502 int loc = index - 1;
1503 if (loc != 0) {
1504 __ Sub(result.W(), length, loc);
1505 __ Ldr(result, MemOperand(arguments, result, UXTW, kPointerSizeLog2));
1506 } else {
1507 __ Ldr(result, MemOperand(arguments, length, UXTW, kPointerSizeLog2));
1508 }
1509 } else {
1510 Register length = ToRegister32(instr->length());
1511 Operand index = ToOperand32I(instr->index());
1512 __ Sub(result.W(), length, index);
1513 __ Add(result.W(), result.W(), 1);
1514 __ Ldr(result, MemOperand(arguments, result, UXTW, kPointerSizeLog2));
1515 }
1516 }
1517
1518
DoAddE(LAddE * instr)1519 void LCodeGen::DoAddE(LAddE* instr) {
1520 Register result = ToRegister(instr->result());
1521 Register left = ToRegister(instr->left());
1522 Operand right = (instr->right()->IsConstantOperand())
1523 ? ToInteger32(LConstantOperand::cast(instr->right()))
1524 : Operand(ToRegister32(instr->right()), SXTW);
1525
1526 ASSERT(!instr->hydrogen()->CheckFlag(HValue::kCanOverflow));
1527 __ Add(result, left, right);
1528 }
1529
1530
DoAddI(LAddI * instr)1531 void LCodeGen::DoAddI(LAddI* instr) {
1532 bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
1533 Register result = ToRegister32(instr->result());
1534 Register left = ToRegister32(instr->left());
1535 Operand right = ToShiftedRightOperand32I(instr->right(), instr);
1536
1537 if (can_overflow) {
1538 __ Adds(result, left, right);
1539 DeoptimizeIf(vs, instr->environment());
1540 } else {
1541 __ Add(result, left, right);
1542 }
1543 }
1544
1545
DoAddS(LAddS * instr)1546 void LCodeGen::DoAddS(LAddS* instr) {
1547 bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
1548 Register result = ToRegister(instr->result());
1549 Register left = ToRegister(instr->left());
1550 Operand right = ToOperand(instr->right());
1551 if (can_overflow) {
1552 __ Adds(result, left, right);
1553 DeoptimizeIf(vs, instr->environment());
1554 } else {
1555 __ Add(result, left, right);
1556 }
1557 }
1558
1559
DoAllocate(LAllocate * instr)1560 void LCodeGen::DoAllocate(LAllocate* instr) {
1561 class DeferredAllocate: public LDeferredCode {
1562 public:
1563 DeferredAllocate(LCodeGen* codegen, LAllocate* instr)
1564 : LDeferredCode(codegen), instr_(instr) { }
1565 virtual void Generate() { codegen()->DoDeferredAllocate(instr_); }
1566 virtual LInstruction* instr() { return instr_; }
1567 private:
1568 LAllocate* instr_;
1569 };
1570
1571 DeferredAllocate* deferred = new(zone()) DeferredAllocate(this, instr);
1572
1573 Register result = ToRegister(instr->result());
1574 Register temp1 = ToRegister(instr->temp1());
1575 Register temp2 = ToRegister(instr->temp2());
1576
1577 // Allocate memory for the object.
1578 AllocationFlags flags = TAG_OBJECT;
1579 if (instr->hydrogen()->MustAllocateDoubleAligned()) {
1580 flags = static_cast<AllocationFlags>(flags | DOUBLE_ALIGNMENT);
1581 }
1582
1583 if (instr->hydrogen()->IsOldPointerSpaceAllocation()) {
1584 ASSERT(!instr->hydrogen()->IsOldDataSpaceAllocation());
1585 ASSERT(!instr->hydrogen()->IsNewSpaceAllocation());
1586 flags = static_cast<AllocationFlags>(flags | PRETENURE_OLD_POINTER_SPACE);
1587 } else if (instr->hydrogen()->IsOldDataSpaceAllocation()) {
1588 ASSERT(!instr->hydrogen()->IsNewSpaceAllocation());
1589 flags = static_cast<AllocationFlags>(flags | PRETENURE_OLD_DATA_SPACE);
1590 }
1591
1592 if (instr->size()->IsConstantOperand()) {
1593 int32_t size = ToInteger32(LConstantOperand::cast(instr->size()));
1594 if (size <= Page::kMaxRegularHeapObjectSize) {
1595 __ Allocate(size, result, temp1, temp2, deferred->entry(), flags);
1596 } else {
1597 __ B(deferred->entry());
1598 }
1599 } else {
1600 Register size = ToRegister32(instr->size());
1601 __ Sxtw(size.X(), size);
1602 __ Allocate(size.X(), result, temp1, temp2, deferred->entry(), flags);
1603 }
1604
1605 __ Bind(deferred->exit());
1606
1607 if (instr->hydrogen()->MustPrefillWithFiller()) {
1608 Register filler_count = temp1;
1609 Register filler = temp2;
1610 Register untagged_result = ToRegister(instr->temp3());
1611
1612 if (instr->size()->IsConstantOperand()) {
1613 int32_t size = ToInteger32(LConstantOperand::cast(instr->size()));
1614 __ Mov(filler_count, size / kPointerSize);
1615 } else {
1616 __ Lsr(filler_count.W(), ToRegister32(instr->size()), kPointerSizeLog2);
1617 }
1618
1619 __ Sub(untagged_result, result, kHeapObjectTag);
1620 __ Mov(filler, Operand(isolate()->factory()->one_pointer_filler_map()));
1621 __ FillFields(untagged_result, filler_count, filler);
1622 } else {
1623 ASSERT(instr->temp3() == NULL);
1624 }
1625 }
1626
1627
DoDeferredAllocate(LAllocate * instr)1628 void LCodeGen::DoDeferredAllocate(LAllocate* instr) {
1629 // TODO(3095996): Get rid of this. For now, we need to make the
1630 // result register contain a valid pointer because it is already
1631 // contained in the register pointer map.
1632 __ Mov(ToRegister(instr->result()), Smi::FromInt(0));
1633
1634 PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters);
1635 // We're in a SafepointRegistersScope so we can use any scratch registers.
1636 Register size = x0;
1637 if (instr->size()->IsConstantOperand()) {
1638 __ Mov(size, ToSmi(LConstantOperand::cast(instr->size())));
1639 } else {
1640 __ SmiTag(size, ToRegister32(instr->size()).X());
1641 }
1642 int flags = AllocateDoubleAlignFlag::encode(
1643 instr->hydrogen()->MustAllocateDoubleAligned());
1644 if (instr->hydrogen()->IsOldPointerSpaceAllocation()) {
1645 ASSERT(!instr->hydrogen()->IsOldDataSpaceAllocation());
1646 ASSERT(!instr->hydrogen()->IsNewSpaceAllocation());
1647 flags = AllocateTargetSpace::update(flags, OLD_POINTER_SPACE);
1648 } else if (instr->hydrogen()->IsOldDataSpaceAllocation()) {
1649 ASSERT(!instr->hydrogen()->IsNewSpaceAllocation());
1650 flags = AllocateTargetSpace::update(flags, OLD_DATA_SPACE);
1651 } else {
1652 flags = AllocateTargetSpace::update(flags, NEW_SPACE);
1653 }
1654 __ Mov(x10, Smi::FromInt(flags));
1655 __ Push(size, x10);
1656
1657 CallRuntimeFromDeferred(
1658 Runtime::kHiddenAllocateInTargetSpace, 2, instr, instr->context());
1659 __ StoreToSafepointRegisterSlot(x0, ToRegister(instr->result()));
1660 }
1661
1662
DoApplyArguments(LApplyArguments * instr)1663 void LCodeGen::DoApplyArguments(LApplyArguments* instr) {
1664 Register receiver = ToRegister(instr->receiver());
1665 Register function = ToRegister(instr->function());
1666 Register length = ToRegister32(instr->length());
1667
1668 Register elements = ToRegister(instr->elements());
1669 Register scratch = x5;
1670 ASSERT(receiver.Is(x0)); // Used for parameter count.
1671 ASSERT(function.Is(x1)); // Required by InvokeFunction.
1672 ASSERT(ToRegister(instr->result()).Is(x0));
1673 ASSERT(instr->IsMarkedAsCall());
1674
1675 // Copy the arguments to this function possibly from the
1676 // adaptor frame below it.
1677 const uint32_t kArgumentsLimit = 1 * KB;
1678 __ Cmp(length, kArgumentsLimit);
1679 DeoptimizeIf(hi, instr->environment());
1680
1681 // Push the receiver and use the register to keep the original
1682 // number of arguments.
1683 __ Push(receiver);
1684 Register argc = receiver;
1685 receiver = NoReg;
1686 __ Sxtw(argc, length);
1687 // The arguments are at a one pointer size offset from elements.
1688 __ Add(elements, elements, 1 * kPointerSize);
1689
1690 // Loop through the arguments pushing them onto the execution
1691 // stack.
1692 Label invoke, loop;
1693 // length is a small non-negative integer, due to the test above.
1694 __ Cbz(length, &invoke);
1695 __ Bind(&loop);
1696 __ Ldr(scratch, MemOperand(elements, length, SXTW, kPointerSizeLog2));
1697 __ Push(scratch);
1698 __ Subs(length, length, 1);
1699 __ B(ne, &loop);
1700
1701 __ Bind(&invoke);
1702 ASSERT(instr->HasPointerMap());
1703 LPointerMap* pointers = instr->pointer_map();
1704 SafepointGenerator safepoint_generator(this, pointers, Safepoint::kLazyDeopt);
1705 // The number of arguments is stored in argc (receiver) which is x0, as
1706 // expected by InvokeFunction.
1707 ParameterCount actual(argc);
1708 __ InvokeFunction(function, actual, CALL_FUNCTION, safepoint_generator);
1709 }
1710
1711
DoArgumentsElements(LArgumentsElements * instr)1712 void LCodeGen::DoArgumentsElements(LArgumentsElements* instr) {
1713 // We push some arguments and they will be pop in an other block. We can't
1714 // trust that jssp references the end of the stack slots until the end of
1715 // the function.
1716 inlined_arguments_ = true;
1717 Register result = ToRegister(instr->result());
1718
1719 if (instr->hydrogen()->from_inlined()) {
1720 // When we are inside an inlined function, the arguments are the last things
1721 // that have been pushed on the stack. Therefore the arguments array can be
1722 // accessed directly from jssp.
1723 // However in the normal case, it is accessed via fp but there are two words
1724 // on the stack between fp and the arguments (the saved lr and fp) and the
1725 // LAccessArgumentsAt implementation take that into account.
1726 // In the inlined case we need to subtract the size of 2 words to jssp to
1727 // get a pointer which will work well with LAccessArgumentsAt.
1728 ASSERT(masm()->StackPointer().Is(jssp));
1729 __ Sub(result, jssp, 2 * kPointerSize);
1730 } else {
1731 ASSERT(instr->temp() != NULL);
1732 Register previous_fp = ToRegister(instr->temp());
1733
1734 __ Ldr(previous_fp,
1735 MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
1736 __ Ldr(result,
1737 MemOperand(previous_fp, StandardFrameConstants::kContextOffset));
1738 __ Cmp(result, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
1739 __ Csel(result, fp, previous_fp, ne);
1740 }
1741 }
1742
1743
DoArgumentsLength(LArgumentsLength * instr)1744 void LCodeGen::DoArgumentsLength(LArgumentsLength* instr) {
1745 Register elements = ToRegister(instr->elements());
1746 Register result = ToRegister32(instr->result());
1747 Label done;
1748
1749 // If no arguments adaptor frame the number of arguments is fixed.
1750 __ Cmp(fp, elements);
1751 __ Mov(result, scope()->num_parameters());
1752 __ B(eq, &done);
1753
1754 // Arguments adaptor frame present. Get argument length from there.
1755 __ Ldr(result.X(), MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
1756 __ Ldr(result,
1757 UntagSmiMemOperand(result.X(),
1758 ArgumentsAdaptorFrameConstants::kLengthOffset));
1759
1760 // Argument length is in result register.
1761 __ Bind(&done);
1762 }
1763
1764
DoArithmeticD(LArithmeticD * instr)1765 void LCodeGen::DoArithmeticD(LArithmeticD* instr) {
1766 DoubleRegister left = ToDoubleRegister(instr->left());
1767 DoubleRegister right = ToDoubleRegister(instr->right());
1768 DoubleRegister result = ToDoubleRegister(instr->result());
1769
1770 switch (instr->op()) {
1771 case Token::ADD: __ Fadd(result, left, right); break;
1772 case Token::SUB: __ Fsub(result, left, right); break;
1773 case Token::MUL: __ Fmul(result, left, right); break;
1774 case Token::DIV: __ Fdiv(result, left, right); break;
1775 case Token::MOD: {
1776 // The ECMA-262 remainder operator is the remainder from a truncating
1777 // (round-towards-zero) division. Note that this differs from IEEE-754.
1778 //
1779 // TODO(jbramley): See if it's possible to do this inline, rather than by
1780 // calling a helper function. With frintz (to produce the intermediate
1781 // quotient) and fmsub (to calculate the remainder without loss of
1782 // precision), it should be possible. However, we would need support for
1783 // fdiv in round-towards-zero mode, and the ARM64 simulator doesn't
1784 // support that yet.
1785 ASSERT(left.Is(d0));
1786 ASSERT(right.Is(d1));
1787 __ CallCFunction(
1788 ExternalReference::mod_two_doubles_operation(isolate()),
1789 0, 2);
1790 ASSERT(result.Is(d0));
1791 break;
1792 }
1793 default:
1794 UNREACHABLE();
1795 break;
1796 }
1797 }
1798
1799
DoArithmeticT(LArithmeticT * instr)1800 void LCodeGen::DoArithmeticT(LArithmeticT* instr) {
1801 ASSERT(ToRegister(instr->context()).is(cp));
1802 ASSERT(ToRegister(instr->left()).is(x1));
1803 ASSERT(ToRegister(instr->right()).is(x0));
1804 ASSERT(ToRegister(instr->result()).is(x0));
1805
1806 BinaryOpICStub stub(isolate(), instr->op(), NO_OVERWRITE);
1807 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
1808 }
1809
1810
DoBitI(LBitI * instr)1811 void LCodeGen::DoBitI(LBitI* instr) {
1812 Register result = ToRegister32(instr->result());
1813 Register left = ToRegister32(instr->left());
1814 Operand right = ToShiftedRightOperand32U(instr->right(), instr);
1815
1816 switch (instr->op()) {
1817 case Token::BIT_AND: __ And(result, left, right); break;
1818 case Token::BIT_OR: __ Orr(result, left, right); break;
1819 case Token::BIT_XOR: __ Eor(result, left, right); break;
1820 default:
1821 UNREACHABLE();
1822 break;
1823 }
1824 }
1825
1826
DoBitS(LBitS * instr)1827 void LCodeGen::DoBitS(LBitS* instr) {
1828 Register result = ToRegister(instr->result());
1829 Register left = ToRegister(instr->left());
1830 Operand right = ToOperand(instr->right());
1831
1832 switch (instr->op()) {
1833 case Token::BIT_AND: __ And(result, left, right); break;
1834 case Token::BIT_OR: __ Orr(result, left, right); break;
1835 case Token::BIT_XOR: __ Eor(result, left, right); break;
1836 default:
1837 UNREACHABLE();
1838 break;
1839 }
1840 }
1841
1842
DoBoundsCheck(LBoundsCheck * instr)1843 void LCodeGen::DoBoundsCheck(LBoundsCheck *instr) {
1844 Condition cond = instr->hydrogen()->allow_equality() ? hi : hs;
1845 ASSERT(instr->hydrogen()->index()->representation().IsInteger32());
1846 ASSERT(instr->hydrogen()->length()->representation().IsInteger32());
1847 if (instr->index()->IsConstantOperand()) {
1848 Operand index = ToOperand32I(instr->index());
1849 Register length = ToRegister32(instr->length());
1850 __ Cmp(length, index);
1851 cond = CommuteCondition(cond);
1852 } else {
1853 Register index = ToRegister32(instr->index());
1854 Operand length = ToOperand32I(instr->length());
1855 __ Cmp(index, length);
1856 }
1857 if (FLAG_debug_code && instr->hydrogen()->skip_check()) {
1858 __ Assert(NegateCondition(cond), kEliminatedBoundsCheckFailed);
1859 } else {
1860 DeoptimizeIf(cond, instr->environment());
1861 }
1862 }
1863
1864
DoBranch(LBranch * instr)1865 void LCodeGen::DoBranch(LBranch* instr) {
1866 Representation r = instr->hydrogen()->value()->representation();
1867 Label* true_label = instr->TrueLabel(chunk_);
1868 Label* false_label = instr->FalseLabel(chunk_);
1869
1870 if (r.IsInteger32()) {
1871 ASSERT(!info()->IsStub());
1872 EmitCompareAndBranch(instr, ne, ToRegister32(instr->value()), 0);
1873 } else if (r.IsSmi()) {
1874 ASSERT(!info()->IsStub());
1875 STATIC_ASSERT(kSmiTag == 0);
1876 EmitCompareAndBranch(instr, ne, ToRegister(instr->value()), 0);
1877 } else if (r.IsDouble()) {
1878 DoubleRegister value = ToDoubleRegister(instr->value());
1879 // Test the double value. Zero and NaN are false.
1880 EmitBranchIfNonZeroNumber(instr, value, double_scratch());
1881 } else {
1882 ASSERT(r.IsTagged());
1883 Register value = ToRegister(instr->value());
1884 HType type = instr->hydrogen()->value()->type();
1885
1886 if (type.IsBoolean()) {
1887 ASSERT(!info()->IsStub());
1888 __ CompareRoot(value, Heap::kTrueValueRootIndex);
1889 EmitBranch(instr, eq);
1890 } else if (type.IsSmi()) {
1891 ASSERT(!info()->IsStub());
1892 EmitCompareAndBranch(instr, ne, value, Smi::FromInt(0));
1893 } else if (type.IsJSArray()) {
1894 ASSERT(!info()->IsStub());
1895 EmitGoto(instr->TrueDestination(chunk()));
1896 } else if (type.IsHeapNumber()) {
1897 ASSERT(!info()->IsStub());
1898 __ Ldr(double_scratch(), FieldMemOperand(value,
1899 HeapNumber::kValueOffset));
1900 // Test the double value. Zero and NaN are false.
1901 EmitBranchIfNonZeroNumber(instr, double_scratch(), double_scratch());
1902 } else if (type.IsString()) {
1903 ASSERT(!info()->IsStub());
1904 Register temp = ToRegister(instr->temp1());
1905 __ Ldr(temp, FieldMemOperand(value, String::kLengthOffset));
1906 EmitCompareAndBranch(instr, ne, temp, 0);
1907 } else {
1908 ToBooleanStub::Types expected = instr->hydrogen()->expected_input_types();
1909 // Avoid deopts in the case where we've never executed this path before.
1910 if (expected.IsEmpty()) expected = ToBooleanStub::Types::Generic();
1911
1912 if (expected.Contains(ToBooleanStub::UNDEFINED)) {
1913 // undefined -> false.
1914 __ JumpIfRoot(
1915 value, Heap::kUndefinedValueRootIndex, false_label);
1916 }
1917
1918 if (expected.Contains(ToBooleanStub::BOOLEAN)) {
1919 // Boolean -> its value.
1920 __ JumpIfRoot(
1921 value, Heap::kTrueValueRootIndex, true_label);
1922 __ JumpIfRoot(
1923 value, Heap::kFalseValueRootIndex, false_label);
1924 }
1925
1926 if (expected.Contains(ToBooleanStub::NULL_TYPE)) {
1927 // 'null' -> false.
1928 __ JumpIfRoot(
1929 value, Heap::kNullValueRootIndex, false_label);
1930 }
1931
1932 if (expected.Contains(ToBooleanStub::SMI)) {
1933 // Smis: 0 -> false, all other -> true.
1934 ASSERT(Smi::FromInt(0) == 0);
1935 __ Cbz(value, false_label);
1936 __ JumpIfSmi(value, true_label);
1937 } else if (expected.NeedsMap()) {
1938 // If we need a map later and have a smi, deopt.
1939 DeoptimizeIfSmi(value, instr->environment());
1940 }
1941
1942 Register map = NoReg;
1943 Register scratch = NoReg;
1944
1945 if (expected.NeedsMap()) {
1946 ASSERT((instr->temp1() != NULL) && (instr->temp2() != NULL));
1947 map = ToRegister(instr->temp1());
1948 scratch = ToRegister(instr->temp2());
1949
1950 __ Ldr(map, FieldMemOperand(value, HeapObject::kMapOffset));
1951
1952 if (expected.CanBeUndetectable()) {
1953 // Undetectable -> false.
1954 __ Ldrb(scratch, FieldMemOperand(map, Map::kBitFieldOffset));
1955 __ TestAndBranchIfAnySet(
1956 scratch, 1 << Map::kIsUndetectable, false_label);
1957 }
1958 }
1959
1960 if (expected.Contains(ToBooleanStub::SPEC_OBJECT)) {
1961 // spec object -> true.
1962 __ CompareInstanceType(map, scratch, FIRST_SPEC_OBJECT_TYPE);
1963 __ B(ge, true_label);
1964 }
1965
1966 if (expected.Contains(ToBooleanStub::STRING)) {
1967 // String value -> false iff empty.
1968 Label not_string;
1969 __ CompareInstanceType(map, scratch, FIRST_NONSTRING_TYPE);
1970 __ B(ge, ¬_string);
1971 __ Ldr(scratch, FieldMemOperand(value, String::kLengthOffset));
1972 __ Cbz(scratch, false_label);
1973 __ B(true_label);
1974 __ Bind(¬_string);
1975 }
1976
1977 if (expected.Contains(ToBooleanStub::SYMBOL)) {
1978 // Symbol value -> true.
1979 __ CompareInstanceType(map, scratch, SYMBOL_TYPE);
1980 __ B(eq, true_label);
1981 }
1982
1983 if (expected.Contains(ToBooleanStub::HEAP_NUMBER)) {
1984 Label not_heap_number;
1985 __ JumpIfNotRoot(map, Heap::kHeapNumberMapRootIndex, ¬_heap_number);
1986
1987 __ Ldr(double_scratch(),
1988 FieldMemOperand(value, HeapNumber::kValueOffset));
1989 __ Fcmp(double_scratch(), 0.0);
1990 // If we got a NaN (overflow bit is set), jump to the false branch.
1991 __ B(vs, false_label);
1992 __ B(eq, false_label);
1993 __ B(true_label);
1994 __ Bind(¬_heap_number);
1995 }
1996
1997 if (!expected.IsGeneric()) {
1998 // We've seen something for the first time -> deopt.
1999 // This can only happen if we are not generic already.
2000 Deoptimize(instr->environment());
2001 }
2002 }
2003 }
2004 }
2005
2006
CallKnownFunction(Handle<JSFunction> function,int formal_parameter_count,int arity,LInstruction * instr,Register function_reg)2007 void LCodeGen::CallKnownFunction(Handle<JSFunction> function,
2008 int formal_parameter_count,
2009 int arity,
2010 LInstruction* instr,
2011 Register function_reg) {
2012 bool dont_adapt_arguments =
2013 formal_parameter_count == SharedFunctionInfo::kDontAdaptArgumentsSentinel;
2014 bool can_invoke_directly =
2015 dont_adapt_arguments || formal_parameter_count == arity;
2016
2017 // The function interface relies on the following register assignments.
2018 ASSERT(function_reg.Is(x1) || function_reg.IsNone());
2019 Register arity_reg = x0;
2020
2021 LPointerMap* pointers = instr->pointer_map();
2022
2023 // If necessary, load the function object.
2024 if (function_reg.IsNone()) {
2025 function_reg = x1;
2026 __ LoadObject(function_reg, function);
2027 }
2028
2029 if (FLAG_debug_code) {
2030 Label is_not_smi;
2031 // Try to confirm that function_reg (x1) is a tagged pointer.
2032 __ JumpIfNotSmi(function_reg, &is_not_smi);
2033 __ Abort(kExpectedFunctionObject);
2034 __ Bind(&is_not_smi);
2035 }
2036
2037 if (can_invoke_directly) {
2038 // Change context.
2039 __ Ldr(cp, FieldMemOperand(function_reg, JSFunction::kContextOffset));
2040
2041 // Set the arguments count if adaption is not needed. Assumes that x0 is
2042 // available to write to at this point.
2043 if (dont_adapt_arguments) {
2044 __ Mov(arity_reg, arity);
2045 }
2046
2047 // Invoke function.
2048 __ Ldr(x10, FieldMemOperand(function_reg, JSFunction::kCodeEntryOffset));
2049 __ Call(x10);
2050
2051 // Set up deoptimization.
2052 RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT);
2053 } else {
2054 SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt);
2055 ParameterCount count(arity);
2056 ParameterCount expected(formal_parameter_count);
2057 __ InvokeFunction(function_reg, expected, count, CALL_FUNCTION, generator);
2058 }
2059 }
2060
2061
DoCallWithDescriptor(LCallWithDescriptor * instr)2062 void LCodeGen::DoCallWithDescriptor(LCallWithDescriptor* instr) {
2063 ASSERT(instr->IsMarkedAsCall());
2064 ASSERT(ToRegister(instr->result()).Is(x0));
2065
2066 LPointerMap* pointers = instr->pointer_map();
2067 SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt);
2068
2069 if (instr->target()->IsConstantOperand()) {
2070 LConstantOperand* target = LConstantOperand::cast(instr->target());
2071 Handle<Code> code = Handle<Code>::cast(ToHandle(target));
2072 generator.BeforeCall(__ CallSize(code, RelocInfo::CODE_TARGET));
2073 // TODO(all): on ARM we use a call descriptor to specify a storage mode
2074 // but on ARM64 we only have one storage mode so it isn't necessary. Check
2075 // this understanding is correct.
2076 __ Call(code, RelocInfo::CODE_TARGET, TypeFeedbackId::None());
2077 } else {
2078 ASSERT(instr->target()->IsRegister());
2079 Register target = ToRegister(instr->target());
2080 generator.BeforeCall(__ CallSize(target));
2081 __ Add(target, target, Code::kHeaderSize - kHeapObjectTag);
2082 __ Call(target);
2083 }
2084 generator.AfterCall();
2085 after_push_argument_ = false;
2086 }
2087
2088
DoCallJSFunction(LCallJSFunction * instr)2089 void LCodeGen::DoCallJSFunction(LCallJSFunction* instr) {
2090 ASSERT(instr->IsMarkedAsCall());
2091 ASSERT(ToRegister(instr->function()).is(x1));
2092
2093 if (instr->hydrogen()->pass_argument_count()) {
2094 __ Mov(x0, Operand(instr->arity()));
2095 }
2096
2097 // Change context.
2098 __ Ldr(cp, FieldMemOperand(x1, JSFunction::kContextOffset));
2099
2100 // Load the code entry address
2101 __ Ldr(x10, FieldMemOperand(x1, JSFunction::kCodeEntryOffset));
2102 __ Call(x10);
2103
2104 RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT);
2105 after_push_argument_ = false;
2106 }
2107
2108
DoCallRuntime(LCallRuntime * instr)2109 void LCodeGen::DoCallRuntime(LCallRuntime* instr) {
2110 CallRuntime(instr->function(), instr->arity(), instr);
2111 after_push_argument_ = false;
2112 }
2113
2114
DoCallStub(LCallStub * instr)2115 void LCodeGen::DoCallStub(LCallStub* instr) {
2116 ASSERT(ToRegister(instr->context()).is(cp));
2117 ASSERT(ToRegister(instr->result()).is(x0));
2118 switch (instr->hydrogen()->major_key()) {
2119 case CodeStub::RegExpExec: {
2120 RegExpExecStub stub(isolate());
2121 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
2122 break;
2123 }
2124 case CodeStub::SubString: {
2125 SubStringStub stub(isolate());
2126 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
2127 break;
2128 }
2129 case CodeStub::StringCompare: {
2130 StringCompareStub stub(isolate());
2131 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
2132 break;
2133 }
2134 default:
2135 UNREACHABLE();
2136 }
2137 after_push_argument_ = false;
2138 }
2139
2140
DoUnknownOSRValue(LUnknownOSRValue * instr)2141 void LCodeGen::DoUnknownOSRValue(LUnknownOSRValue* instr) {
2142 GenerateOsrPrologue();
2143 }
2144
2145
DoDeferredInstanceMigration(LCheckMaps * instr,Register object)2146 void LCodeGen::DoDeferredInstanceMigration(LCheckMaps* instr, Register object) {
2147 Register temp = ToRegister(instr->temp());
2148 {
2149 PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters);
2150 __ Push(object);
2151 __ Mov(cp, 0);
2152 __ CallRuntimeSaveDoubles(Runtime::kTryMigrateInstance);
2153 RecordSafepointWithRegisters(
2154 instr->pointer_map(), 1, Safepoint::kNoLazyDeopt);
2155 __ StoreToSafepointRegisterSlot(x0, temp);
2156 }
2157 DeoptimizeIfSmi(temp, instr->environment());
2158 }
2159
2160
DoCheckMaps(LCheckMaps * instr)2161 void LCodeGen::DoCheckMaps(LCheckMaps* instr) {
2162 class DeferredCheckMaps: public LDeferredCode {
2163 public:
2164 DeferredCheckMaps(LCodeGen* codegen, LCheckMaps* instr, Register object)
2165 : LDeferredCode(codegen), instr_(instr), object_(object) {
2166 SetExit(check_maps());
2167 }
2168 virtual void Generate() {
2169 codegen()->DoDeferredInstanceMigration(instr_, object_);
2170 }
2171 Label* check_maps() { return &check_maps_; }
2172 virtual LInstruction* instr() { return instr_; }
2173 private:
2174 LCheckMaps* instr_;
2175 Label check_maps_;
2176 Register object_;
2177 };
2178
2179 if (instr->hydrogen()->IsStabilityCheck()) {
2180 const UniqueSet<Map>* maps = instr->hydrogen()->maps();
2181 for (int i = 0; i < maps->size(); ++i) {
2182 AddStabilityDependency(maps->at(i).handle());
2183 }
2184 return;
2185 }
2186
2187 Register object = ToRegister(instr->value());
2188 Register map_reg = ToRegister(instr->temp());
2189
2190 __ Ldr(map_reg, FieldMemOperand(object, HeapObject::kMapOffset));
2191
2192 DeferredCheckMaps* deferred = NULL;
2193 if (instr->hydrogen()->HasMigrationTarget()) {
2194 deferred = new(zone()) DeferredCheckMaps(this, instr, object);
2195 __ Bind(deferred->check_maps());
2196 }
2197
2198 const UniqueSet<Map>* maps = instr->hydrogen()->maps();
2199 Label success;
2200 for (int i = 0; i < maps->size() - 1; i++) {
2201 Handle<Map> map = maps->at(i).handle();
2202 __ CompareMap(map_reg, map);
2203 __ B(eq, &success);
2204 }
2205 Handle<Map> map = maps->at(maps->size() - 1).handle();
2206 __ CompareMap(map_reg, map);
2207
2208 // We didn't match a map.
2209 if (instr->hydrogen()->HasMigrationTarget()) {
2210 __ B(ne, deferred->entry());
2211 } else {
2212 DeoptimizeIf(ne, instr->environment());
2213 }
2214
2215 __ Bind(&success);
2216 }
2217
2218
DoCheckNonSmi(LCheckNonSmi * instr)2219 void LCodeGen::DoCheckNonSmi(LCheckNonSmi* instr) {
2220 if (!instr->hydrogen()->value()->type().IsHeapObject()) {
2221 DeoptimizeIfSmi(ToRegister(instr->value()), instr->environment());
2222 }
2223 }
2224
2225
DoCheckSmi(LCheckSmi * instr)2226 void LCodeGen::DoCheckSmi(LCheckSmi* instr) {
2227 Register value = ToRegister(instr->value());
2228 ASSERT(!instr->result() || ToRegister(instr->result()).Is(value));
2229 DeoptimizeIfNotSmi(value, instr->environment());
2230 }
2231
2232
DoCheckInstanceType(LCheckInstanceType * instr)2233 void LCodeGen::DoCheckInstanceType(LCheckInstanceType* instr) {
2234 Register input = ToRegister(instr->value());
2235 Register scratch = ToRegister(instr->temp());
2236
2237 __ Ldr(scratch, FieldMemOperand(input, HeapObject::kMapOffset));
2238 __ Ldrb(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset));
2239
2240 if (instr->hydrogen()->is_interval_check()) {
2241 InstanceType first, last;
2242 instr->hydrogen()->GetCheckInterval(&first, &last);
2243
2244 __ Cmp(scratch, first);
2245 if (first == last) {
2246 // If there is only one type in the interval check for equality.
2247 DeoptimizeIf(ne, instr->environment());
2248 } else if (last == LAST_TYPE) {
2249 // We don't need to compare with the higher bound of the interval.
2250 DeoptimizeIf(lo, instr->environment());
2251 } else {
2252 // If we are below the lower bound, set the C flag and clear the Z flag
2253 // to force a deopt.
2254 __ Ccmp(scratch, last, CFlag, hs);
2255 DeoptimizeIf(hi, instr->environment());
2256 }
2257 } else {
2258 uint8_t mask;
2259 uint8_t tag;
2260 instr->hydrogen()->GetCheckMaskAndTag(&mask, &tag);
2261
2262 if (IsPowerOf2(mask)) {
2263 ASSERT((tag == 0) || (tag == mask));
2264 if (tag == 0) {
2265 DeoptimizeIfBitSet(scratch, MaskToBit(mask), instr->environment());
2266 } else {
2267 DeoptimizeIfBitClear(scratch, MaskToBit(mask), instr->environment());
2268 }
2269 } else {
2270 if (tag == 0) {
2271 __ Tst(scratch, mask);
2272 } else {
2273 __ And(scratch, scratch, mask);
2274 __ Cmp(scratch, tag);
2275 }
2276 DeoptimizeIf(ne, instr->environment());
2277 }
2278 }
2279 }
2280
2281
DoClampDToUint8(LClampDToUint8 * instr)2282 void LCodeGen::DoClampDToUint8(LClampDToUint8* instr) {
2283 DoubleRegister input = ToDoubleRegister(instr->unclamped());
2284 Register result = ToRegister32(instr->result());
2285 __ ClampDoubleToUint8(result, input, double_scratch());
2286 }
2287
2288
DoClampIToUint8(LClampIToUint8 * instr)2289 void LCodeGen::DoClampIToUint8(LClampIToUint8* instr) {
2290 Register input = ToRegister32(instr->unclamped());
2291 Register result = ToRegister32(instr->result());
2292 __ ClampInt32ToUint8(result, input);
2293 }
2294
2295
DoClampTToUint8(LClampTToUint8 * instr)2296 void LCodeGen::DoClampTToUint8(LClampTToUint8* instr) {
2297 Register input = ToRegister(instr->unclamped());
2298 Register result = ToRegister32(instr->result());
2299 Register scratch = ToRegister(instr->temp1());
2300 Label done;
2301
2302 // Both smi and heap number cases are handled.
2303 Label is_not_smi;
2304 __ JumpIfNotSmi(input, &is_not_smi);
2305 __ SmiUntag(result.X(), input);
2306 __ ClampInt32ToUint8(result);
2307 __ B(&done);
2308
2309 __ Bind(&is_not_smi);
2310
2311 // Check for heap number.
2312 Label is_heap_number;
2313 __ Ldr(scratch, FieldMemOperand(input, HeapObject::kMapOffset));
2314 __ JumpIfRoot(scratch, Heap::kHeapNumberMapRootIndex, &is_heap_number);
2315
2316 // Check for undefined. Undefined is coverted to zero for clamping conversion.
2317 DeoptimizeIfNotRoot(input, Heap::kUndefinedValueRootIndex,
2318 instr->environment());
2319 __ Mov(result, 0);
2320 __ B(&done);
2321
2322 // Heap number case.
2323 __ Bind(&is_heap_number);
2324 DoubleRegister dbl_scratch = double_scratch();
2325 DoubleRegister dbl_scratch2 = ToDoubleRegister(instr->temp2());
2326 __ Ldr(dbl_scratch, FieldMemOperand(input, HeapNumber::kValueOffset));
2327 __ ClampDoubleToUint8(result, dbl_scratch, dbl_scratch2);
2328
2329 __ Bind(&done);
2330 }
2331
2332
DoDoubleBits(LDoubleBits * instr)2333 void LCodeGen::DoDoubleBits(LDoubleBits* instr) {
2334 DoubleRegister value_reg = ToDoubleRegister(instr->value());
2335 Register result_reg = ToRegister(instr->result());
2336 if (instr->hydrogen()->bits() == HDoubleBits::HIGH) {
2337 __ Fmov(result_reg, value_reg);
2338 __ Lsr(result_reg, result_reg, 32);
2339 } else {
2340 __ Fmov(result_reg.W(), value_reg.S());
2341 }
2342 }
2343
2344
DoConstructDouble(LConstructDouble * instr)2345 void LCodeGen::DoConstructDouble(LConstructDouble* instr) {
2346 Register hi_reg = ToRegister(instr->hi());
2347 Register lo_reg = ToRegister(instr->lo());
2348 DoubleRegister result_reg = ToDoubleRegister(instr->result());
2349
2350 // Insert the least significant 32 bits of hi_reg into the most significant
2351 // 32 bits of lo_reg, and move to a floating point register.
2352 __ Bfi(lo_reg, hi_reg, 32, 32);
2353 __ Fmov(result_reg, lo_reg);
2354 }
2355
2356
DoClassOfTestAndBranch(LClassOfTestAndBranch * instr)2357 void LCodeGen::DoClassOfTestAndBranch(LClassOfTestAndBranch* instr) {
2358 Handle<String> class_name = instr->hydrogen()->class_name();
2359 Label* true_label = instr->TrueLabel(chunk_);
2360 Label* false_label = instr->FalseLabel(chunk_);
2361 Register input = ToRegister(instr->value());
2362 Register scratch1 = ToRegister(instr->temp1());
2363 Register scratch2 = ToRegister(instr->temp2());
2364
2365 __ JumpIfSmi(input, false_label);
2366
2367 Register map = scratch2;
2368 if (class_name->IsUtf8EqualTo(CStrVector("Function"))) {
2369 // Assuming the following assertions, we can use the same compares to test
2370 // for both being a function type and being in the object type range.
2371 STATIC_ASSERT(NUM_OF_CALLABLE_SPEC_OBJECT_TYPES == 2);
2372 STATIC_ASSERT(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE ==
2373 FIRST_SPEC_OBJECT_TYPE + 1);
2374 STATIC_ASSERT(LAST_NONCALLABLE_SPEC_OBJECT_TYPE ==
2375 LAST_SPEC_OBJECT_TYPE - 1);
2376 STATIC_ASSERT(LAST_SPEC_OBJECT_TYPE == LAST_TYPE);
2377
2378 // We expect CompareObjectType to load the object instance type in scratch1.
2379 __ CompareObjectType(input, map, scratch1, FIRST_SPEC_OBJECT_TYPE);
2380 __ B(lt, false_label);
2381 __ B(eq, true_label);
2382 __ Cmp(scratch1, LAST_SPEC_OBJECT_TYPE);
2383 __ B(eq, true_label);
2384 } else {
2385 __ IsObjectJSObjectType(input, map, scratch1, false_label);
2386 }
2387
2388 // Now we are in the FIRST-LAST_NONCALLABLE_SPEC_OBJECT_TYPE range.
2389 // Check if the constructor in the map is a function.
2390 __ Ldr(scratch1, FieldMemOperand(map, Map::kConstructorOffset));
2391
2392 // Objects with a non-function constructor have class 'Object'.
2393 if (class_name->IsUtf8EqualTo(CStrVector("Object"))) {
2394 __ JumpIfNotObjectType(
2395 scratch1, scratch2, scratch2, JS_FUNCTION_TYPE, true_label);
2396 } else {
2397 __ JumpIfNotObjectType(
2398 scratch1, scratch2, scratch2, JS_FUNCTION_TYPE, false_label);
2399 }
2400
2401 // The constructor function is in scratch1. Get its instance class name.
2402 __ Ldr(scratch1,
2403 FieldMemOperand(scratch1, JSFunction::kSharedFunctionInfoOffset));
2404 __ Ldr(scratch1,
2405 FieldMemOperand(scratch1,
2406 SharedFunctionInfo::kInstanceClassNameOffset));
2407
2408 // The class name we are testing against is internalized since it's a literal.
2409 // The name in the constructor is internalized because of the way the context
2410 // is booted. This routine isn't expected to work for random API-created
2411 // classes and it doesn't have to because you can't access it with natives
2412 // syntax. Since both sides are internalized it is sufficient to use an
2413 // identity comparison.
2414 EmitCompareAndBranch(instr, eq, scratch1, Operand(class_name));
2415 }
2416
2417
DoCmpHoleAndBranchD(LCmpHoleAndBranchD * instr)2418 void LCodeGen::DoCmpHoleAndBranchD(LCmpHoleAndBranchD* instr) {
2419 ASSERT(instr->hydrogen()->representation().IsDouble());
2420 FPRegister object = ToDoubleRegister(instr->object());
2421 Register temp = ToRegister(instr->temp());
2422
2423 // If we don't have a NaN, we don't have the hole, so branch now to avoid the
2424 // (relatively expensive) hole-NaN check.
2425 __ Fcmp(object, object);
2426 __ B(vc, instr->FalseLabel(chunk_));
2427
2428 // We have a NaN, but is it the hole?
2429 __ Fmov(temp, object);
2430 EmitCompareAndBranch(instr, eq, temp, kHoleNanInt64);
2431 }
2432
2433
DoCmpHoleAndBranchT(LCmpHoleAndBranchT * instr)2434 void LCodeGen::DoCmpHoleAndBranchT(LCmpHoleAndBranchT* instr) {
2435 ASSERT(instr->hydrogen()->representation().IsTagged());
2436 Register object = ToRegister(instr->object());
2437
2438 EmitBranchIfRoot(instr, object, Heap::kTheHoleValueRootIndex);
2439 }
2440
2441
DoCmpMapAndBranch(LCmpMapAndBranch * instr)2442 void LCodeGen::DoCmpMapAndBranch(LCmpMapAndBranch* instr) {
2443 Register value = ToRegister(instr->value());
2444 Register map = ToRegister(instr->temp());
2445
2446 __ Ldr(map, FieldMemOperand(value, HeapObject::kMapOffset));
2447 EmitCompareAndBranch(instr, eq, map, Operand(instr->map()));
2448 }
2449
2450
DoCompareMinusZeroAndBranch(LCompareMinusZeroAndBranch * instr)2451 void LCodeGen::DoCompareMinusZeroAndBranch(LCompareMinusZeroAndBranch* instr) {
2452 Representation rep = instr->hydrogen()->value()->representation();
2453 ASSERT(!rep.IsInteger32());
2454 Register scratch = ToRegister(instr->temp());
2455
2456 if (rep.IsDouble()) {
2457 __ JumpIfMinusZero(ToDoubleRegister(instr->value()),
2458 instr->TrueLabel(chunk()));
2459 } else {
2460 Register value = ToRegister(instr->value());
2461 __ CheckMap(value, scratch, Heap::kHeapNumberMapRootIndex,
2462 instr->FalseLabel(chunk()), DO_SMI_CHECK);
2463 __ Ldr(scratch, FieldMemOperand(value, HeapNumber::kValueOffset));
2464 __ JumpIfMinusZero(scratch, instr->TrueLabel(chunk()));
2465 }
2466 EmitGoto(instr->FalseDestination(chunk()));
2467 }
2468
2469
DoCompareNumericAndBranch(LCompareNumericAndBranch * instr)2470 void LCodeGen::DoCompareNumericAndBranch(LCompareNumericAndBranch* instr) {
2471 LOperand* left = instr->left();
2472 LOperand* right = instr->right();
2473 bool is_unsigned =
2474 instr->hydrogen()->left()->CheckFlag(HInstruction::kUint32) ||
2475 instr->hydrogen()->right()->CheckFlag(HInstruction::kUint32);
2476 Condition cond = TokenToCondition(instr->op(), is_unsigned);
2477
2478 if (left->IsConstantOperand() && right->IsConstantOperand()) {
2479 // We can statically evaluate the comparison.
2480 double left_val = ToDouble(LConstantOperand::cast(left));
2481 double right_val = ToDouble(LConstantOperand::cast(right));
2482 int next_block = EvalComparison(instr->op(), left_val, right_val) ?
2483 instr->TrueDestination(chunk_) : instr->FalseDestination(chunk_);
2484 EmitGoto(next_block);
2485 } else {
2486 if (instr->is_double()) {
2487 if (right->IsConstantOperand()) {
2488 __ Fcmp(ToDoubleRegister(left),
2489 ToDouble(LConstantOperand::cast(right)));
2490 } else if (left->IsConstantOperand()) {
2491 // Commute the operands and the condition.
2492 __ Fcmp(ToDoubleRegister(right),
2493 ToDouble(LConstantOperand::cast(left)));
2494 cond = CommuteCondition(cond);
2495 } else {
2496 __ Fcmp(ToDoubleRegister(left), ToDoubleRegister(right));
2497 }
2498
2499 // If a NaN is involved, i.e. the result is unordered (V set),
2500 // jump to false block label.
2501 __ B(vs, instr->FalseLabel(chunk_));
2502 EmitBranch(instr, cond);
2503 } else {
2504 if (instr->hydrogen_value()->representation().IsInteger32()) {
2505 if (right->IsConstantOperand()) {
2506 EmitCompareAndBranch(instr,
2507 cond,
2508 ToRegister32(left),
2509 ToOperand32I(right));
2510 } else {
2511 // Commute the operands and the condition.
2512 EmitCompareAndBranch(instr,
2513 CommuteCondition(cond),
2514 ToRegister32(right),
2515 ToOperand32I(left));
2516 }
2517 } else {
2518 ASSERT(instr->hydrogen_value()->representation().IsSmi());
2519 if (right->IsConstantOperand()) {
2520 int32_t value = ToInteger32(LConstantOperand::cast(right));
2521 EmitCompareAndBranch(instr,
2522 cond,
2523 ToRegister(left),
2524 Operand(Smi::FromInt(value)));
2525 } else if (left->IsConstantOperand()) {
2526 // Commute the operands and the condition.
2527 int32_t value = ToInteger32(LConstantOperand::cast(left));
2528 EmitCompareAndBranch(instr,
2529 CommuteCondition(cond),
2530 ToRegister(right),
2531 Operand(Smi::FromInt(value)));
2532 } else {
2533 EmitCompareAndBranch(instr,
2534 cond,
2535 ToRegister(left),
2536 ToRegister(right));
2537 }
2538 }
2539 }
2540 }
2541 }
2542
2543
DoCmpObjectEqAndBranch(LCmpObjectEqAndBranch * instr)2544 void LCodeGen::DoCmpObjectEqAndBranch(LCmpObjectEqAndBranch* instr) {
2545 Register left = ToRegister(instr->left());
2546 Register right = ToRegister(instr->right());
2547 EmitCompareAndBranch(instr, eq, left, right);
2548 }
2549
2550
DoCmpT(LCmpT * instr)2551 void LCodeGen::DoCmpT(LCmpT* instr) {
2552 ASSERT(ToRegister(instr->context()).is(cp));
2553 Token::Value op = instr->op();
2554 Condition cond = TokenToCondition(op, false);
2555
2556 ASSERT(ToRegister(instr->left()).Is(x1));
2557 ASSERT(ToRegister(instr->right()).Is(x0));
2558 Handle<Code> ic = CompareIC::GetUninitialized(isolate(), op);
2559 CallCode(ic, RelocInfo::CODE_TARGET, instr);
2560 // Signal that we don't inline smi code before this stub.
2561 InlineSmiCheckInfo::EmitNotInlined(masm());
2562
2563 // Return true or false depending on CompareIC result.
2564 // This instruction is marked as call. We can clobber any register.
2565 ASSERT(instr->IsMarkedAsCall());
2566 __ LoadTrueFalseRoots(x1, x2);
2567 __ Cmp(x0, 0);
2568 __ Csel(ToRegister(instr->result()), x1, x2, cond);
2569 }
2570
2571
DoConstantD(LConstantD * instr)2572 void LCodeGen::DoConstantD(LConstantD* instr) {
2573 ASSERT(instr->result()->IsDoubleRegister());
2574 DoubleRegister result = ToDoubleRegister(instr->result());
2575 if (instr->value() == 0) {
2576 if (copysign(1.0, instr->value()) == 1.0) {
2577 __ Fmov(result, fp_zero);
2578 } else {
2579 __ Fneg(result, fp_zero);
2580 }
2581 } else {
2582 __ Fmov(result, instr->value());
2583 }
2584 }
2585
2586
DoConstantE(LConstantE * instr)2587 void LCodeGen::DoConstantE(LConstantE* instr) {
2588 __ Mov(ToRegister(instr->result()), Operand(instr->value()));
2589 }
2590
2591
DoConstantI(LConstantI * instr)2592 void LCodeGen::DoConstantI(LConstantI* instr) {
2593 ASSERT(is_int32(instr->value()));
2594 // Cast the value here to ensure that the value isn't sign extended by the
2595 // implicit Operand constructor.
2596 __ Mov(ToRegister32(instr->result()), static_cast<uint32_t>(instr->value()));
2597 }
2598
2599
DoConstantS(LConstantS * instr)2600 void LCodeGen::DoConstantS(LConstantS* instr) {
2601 __ Mov(ToRegister(instr->result()), Operand(instr->value()));
2602 }
2603
2604
DoConstantT(LConstantT * instr)2605 void LCodeGen::DoConstantT(LConstantT* instr) {
2606 Handle<Object> object = instr->value(isolate());
2607 AllowDeferredHandleDereference smi_check;
2608 __ LoadObject(ToRegister(instr->result()), object);
2609 }
2610
2611
DoContext(LContext * instr)2612 void LCodeGen::DoContext(LContext* instr) {
2613 // If there is a non-return use, the context must be moved to a register.
2614 Register result = ToRegister(instr->result());
2615 if (info()->IsOptimizing()) {
2616 __ Ldr(result, MemOperand(fp, StandardFrameConstants::kContextOffset));
2617 } else {
2618 // If there is no frame, the context must be in cp.
2619 ASSERT(result.is(cp));
2620 }
2621 }
2622
2623
DoCheckValue(LCheckValue * instr)2624 void LCodeGen::DoCheckValue(LCheckValue* instr) {
2625 Register reg = ToRegister(instr->value());
2626 Handle<HeapObject> object = instr->hydrogen()->object().handle();
2627 AllowDeferredHandleDereference smi_check;
2628 if (isolate()->heap()->InNewSpace(*object)) {
2629 UseScratchRegisterScope temps(masm());
2630 Register temp = temps.AcquireX();
2631 Handle<Cell> cell = isolate()->factory()->NewCell(object);
2632 __ Mov(temp, Operand(Handle<Object>(cell)));
2633 __ Ldr(temp, FieldMemOperand(temp, Cell::kValueOffset));
2634 __ Cmp(reg, temp);
2635 } else {
2636 __ Cmp(reg, Operand(object));
2637 }
2638 DeoptimizeIf(ne, instr->environment());
2639 }
2640
2641
DoLazyBailout(LLazyBailout * instr)2642 void LCodeGen::DoLazyBailout(LLazyBailout* instr) {
2643 last_lazy_deopt_pc_ = masm()->pc_offset();
2644 ASSERT(instr->HasEnvironment());
2645 LEnvironment* env = instr->environment();
2646 RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt);
2647 safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index());
2648 }
2649
2650
DoDateField(LDateField * instr)2651 void LCodeGen::DoDateField(LDateField* instr) {
2652 Register object = ToRegister(instr->date());
2653 Register result = ToRegister(instr->result());
2654 Register temp1 = x10;
2655 Register temp2 = x11;
2656 Smi* index = instr->index();
2657 Label runtime, done;
2658
2659 ASSERT(object.is(result) && object.Is(x0));
2660 ASSERT(instr->IsMarkedAsCall());
2661
2662 DeoptimizeIfSmi(object, instr->environment());
2663 __ CompareObjectType(object, temp1, temp1, JS_DATE_TYPE);
2664 DeoptimizeIf(ne, instr->environment());
2665
2666 if (index->value() == 0) {
2667 __ Ldr(result, FieldMemOperand(object, JSDate::kValueOffset));
2668 } else {
2669 if (index->value() < JSDate::kFirstUncachedField) {
2670 ExternalReference stamp = ExternalReference::date_cache_stamp(isolate());
2671 __ Mov(temp1, Operand(stamp));
2672 __ Ldr(temp1, MemOperand(temp1));
2673 __ Ldr(temp2, FieldMemOperand(object, JSDate::kCacheStampOffset));
2674 __ Cmp(temp1, temp2);
2675 __ B(ne, &runtime);
2676 __ Ldr(result, FieldMemOperand(object, JSDate::kValueOffset +
2677 kPointerSize * index->value()));
2678 __ B(&done);
2679 }
2680
2681 __ Bind(&runtime);
2682 __ Mov(x1, Operand(index));
2683 __ CallCFunction(ExternalReference::get_date_field_function(isolate()), 2);
2684 }
2685
2686 __ Bind(&done);
2687 }
2688
2689
DoDeoptimize(LDeoptimize * instr)2690 void LCodeGen::DoDeoptimize(LDeoptimize* instr) {
2691 Deoptimizer::BailoutType type = instr->hydrogen()->type();
2692 // TODO(danno): Stubs expect all deopts to be lazy for historical reasons (the
2693 // needed return address), even though the implementation of LAZY and EAGER is
2694 // now identical. When LAZY is eventually completely folded into EAGER, remove
2695 // the special case below.
2696 if (info()->IsStub() && (type == Deoptimizer::EAGER)) {
2697 type = Deoptimizer::LAZY;
2698 }
2699
2700 Comment(";;; deoptimize: %s", instr->hydrogen()->reason());
2701 Deoptimize(instr->environment(), &type);
2702 }
2703
2704
DoDivByPowerOf2I(LDivByPowerOf2I * instr)2705 void LCodeGen::DoDivByPowerOf2I(LDivByPowerOf2I* instr) {
2706 Register dividend = ToRegister32(instr->dividend());
2707 int32_t divisor = instr->divisor();
2708 Register result = ToRegister32(instr->result());
2709 ASSERT(divisor == kMinInt || IsPowerOf2(Abs(divisor)));
2710 ASSERT(!result.is(dividend));
2711
2712 // Check for (0 / -x) that will produce negative zero.
2713 HDiv* hdiv = instr->hydrogen();
2714 if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
2715 DeoptimizeIfZero(dividend, instr->environment());
2716 }
2717 // Check for (kMinInt / -1).
2718 if (hdiv->CheckFlag(HValue::kCanOverflow) && divisor == -1) {
2719 // Test dividend for kMinInt by subtracting one (cmp) and checking for
2720 // overflow.
2721 __ Cmp(dividend, 1);
2722 DeoptimizeIf(vs, instr->environment());
2723 }
2724 // Deoptimize if remainder will not be 0.
2725 if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32) &&
2726 divisor != 1 && divisor != -1) {
2727 int32_t mask = divisor < 0 ? -(divisor + 1) : (divisor - 1);
2728 __ Tst(dividend, mask);
2729 DeoptimizeIf(ne, instr->environment());
2730 }
2731
2732 if (divisor == -1) { // Nice shortcut, not needed for correctness.
2733 __ Neg(result, dividend);
2734 return;
2735 }
2736 int32_t shift = WhichPowerOf2Abs(divisor);
2737 if (shift == 0) {
2738 __ Mov(result, dividend);
2739 } else if (shift == 1) {
2740 __ Add(result, dividend, Operand(dividend, LSR, 31));
2741 } else {
2742 __ Mov(result, Operand(dividend, ASR, 31));
2743 __ Add(result, dividend, Operand(result, LSR, 32 - shift));
2744 }
2745 if (shift > 0) __ Mov(result, Operand(result, ASR, shift));
2746 if (divisor < 0) __ Neg(result, result);
2747 }
2748
2749
DoDivByConstI(LDivByConstI * instr)2750 void LCodeGen::DoDivByConstI(LDivByConstI* instr) {
2751 Register dividend = ToRegister32(instr->dividend());
2752 int32_t divisor = instr->divisor();
2753 Register result = ToRegister32(instr->result());
2754 ASSERT(!AreAliased(dividend, result));
2755
2756 if (divisor == 0) {
2757 Deoptimize(instr->environment());
2758 return;
2759 }
2760
2761 // Check for (0 / -x) that will produce negative zero.
2762 HDiv* hdiv = instr->hydrogen();
2763 if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
2764 DeoptimizeIfZero(dividend, instr->environment());
2765 }
2766
2767 __ TruncatingDiv(result, dividend, Abs(divisor));
2768 if (divisor < 0) __ Neg(result, result);
2769
2770 if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32)) {
2771 Register temp = ToRegister32(instr->temp());
2772 ASSERT(!AreAliased(dividend, result, temp));
2773 __ Sxtw(dividend.X(), dividend);
2774 __ Mov(temp, divisor);
2775 __ Smsubl(temp.X(), result, temp, dividend.X());
2776 DeoptimizeIfNotZero(temp, instr->environment());
2777 }
2778 }
2779
2780
2781 // TODO(svenpanne) Refactor this to avoid code duplication with DoFlooringDivI.
DoDivI(LDivI * instr)2782 void LCodeGen::DoDivI(LDivI* instr) {
2783 HBinaryOperation* hdiv = instr->hydrogen();
2784 Register dividend = ToRegister32(instr->dividend());
2785 Register divisor = ToRegister32(instr->divisor());
2786 Register result = ToRegister32(instr->result());
2787
2788 // Issue the division first, and then check for any deopt cases whilst the
2789 // result is computed.
2790 __ Sdiv(result, dividend, divisor);
2791
2792 if (hdiv->CheckFlag(HValue::kAllUsesTruncatingToInt32)) {
2793 ASSERT_EQ(NULL, instr->temp());
2794 return;
2795 }
2796
2797 // Check for x / 0.
2798 if (hdiv->CheckFlag(HValue::kCanBeDivByZero)) {
2799 DeoptimizeIfZero(divisor, instr->environment());
2800 }
2801
2802 // Check for (0 / -x) as that will produce negative zero.
2803 if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero)) {
2804 __ Cmp(divisor, 0);
2805
2806 // If the divisor < 0 (mi), compare the dividend, and deopt if it is
2807 // zero, ie. zero dividend with negative divisor deopts.
2808 // If the divisor >= 0 (pl, the opposite of mi) set the flags to
2809 // condition ne, so we don't deopt, ie. positive divisor doesn't deopt.
2810 __ Ccmp(dividend, 0, NoFlag, mi);
2811 DeoptimizeIf(eq, instr->environment());
2812 }
2813
2814 // Check for (kMinInt / -1).
2815 if (hdiv->CheckFlag(HValue::kCanOverflow)) {
2816 // Test dividend for kMinInt by subtracting one (cmp) and checking for
2817 // overflow.
2818 __ Cmp(dividend, 1);
2819 // If overflow is set, ie. dividend = kMinInt, compare the divisor with
2820 // -1. If overflow is clear, set the flags for condition ne, as the
2821 // dividend isn't -1, and thus we shouldn't deopt.
2822 __ Ccmp(divisor, -1, NoFlag, vs);
2823 DeoptimizeIf(eq, instr->environment());
2824 }
2825
2826 // Compute remainder and deopt if it's not zero.
2827 Register remainder = ToRegister32(instr->temp());
2828 __ Msub(remainder, result, divisor, dividend);
2829 DeoptimizeIfNotZero(remainder, instr->environment());
2830 }
2831
2832
DoDoubleToIntOrSmi(LDoubleToIntOrSmi * instr)2833 void LCodeGen::DoDoubleToIntOrSmi(LDoubleToIntOrSmi* instr) {
2834 DoubleRegister input = ToDoubleRegister(instr->value());
2835 Register result = ToRegister32(instr->result());
2836
2837 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
2838 DeoptimizeIfMinusZero(input, instr->environment());
2839 }
2840
2841 __ TryRepresentDoubleAsInt32(result, input, double_scratch());
2842 DeoptimizeIf(ne, instr->environment());
2843
2844 if (instr->tag_result()) {
2845 __ SmiTag(result.X());
2846 }
2847 }
2848
2849
DoDrop(LDrop * instr)2850 void LCodeGen::DoDrop(LDrop* instr) {
2851 __ Drop(instr->count());
2852 }
2853
2854
DoDummy(LDummy * instr)2855 void LCodeGen::DoDummy(LDummy* instr) {
2856 // Nothing to see here, move on!
2857 }
2858
2859
DoDummyUse(LDummyUse * instr)2860 void LCodeGen::DoDummyUse(LDummyUse* instr) {
2861 // Nothing to see here, move on!
2862 }
2863
2864
DoFunctionLiteral(LFunctionLiteral * instr)2865 void LCodeGen::DoFunctionLiteral(LFunctionLiteral* instr) {
2866 ASSERT(ToRegister(instr->context()).is(cp));
2867 // FunctionLiteral instruction is marked as call, we can trash any register.
2868 ASSERT(instr->IsMarkedAsCall());
2869
2870 // Use the fast case closure allocation code that allocates in new
2871 // space for nested functions that don't need literals cloning.
2872 bool pretenure = instr->hydrogen()->pretenure();
2873 if (!pretenure && instr->hydrogen()->has_no_literals()) {
2874 FastNewClosureStub stub(isolate(),
2875 instr->hydrogen()->strict_mode(),
2876 instr->hydrogen()->is_generator());
2877 __ Mov(x2, Operand(instr->hydrogen()->shared_info()));
2878 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
2879 } else {
2880 __ Mov(x2, Operand(instr->hydrogen()->shared_info()));
2881 __ Mov(x1, Operand(pretenure ? factory()->true_value()
2882 : factory()->false_value()));
2883 __ Push(cp, x2, x1);
2884 CallRuntime(Runtime::kHiddenNewClosure, 3, instr);
2885 }
2886 }
2887
2888
DoForInCacheArray(LForInCacheArray * instr)2889 void LCodeGen::DoForInCacheArray(LForInCacheArray* instr) {
2890 Register map = ToRegister(instr->map());
2891 Register result = ToRegister(instr->result());
2892 Label load_cache, done;
2893
2894 __ EnumLengthUntagged(result, map);
2895 __ Cbnz(result, &load_cache);
2896
2897 __ Mov(result, Operand(isolate()->factory()->empty_fixed_array()));
2898 __ B(&done);
2899
2900 __ Bind(&load_cache);
2901 __ LoadInstanceDescriptors(map, result);
2902 __ Ldr(result, FieldMemOperand(result, DescriptorArray::kEnumCacheOffset));
2903 __ Ldr(result, FieldMemOperand(result, FixedArray::SizeFor(instr->idx())));
2904 DeoptimizeIfZero(result, instr->environment());
2905
2906 __ Bind(&done);
2907 }
2908
2909
DoForInPrepareMap(LForInPrepareMap * instr)2910 void LCodeGen::DoForInPrepareMap(LForInPrepareMap* instr) {
2911 Register object = ToRegister(instr->object());
2912 Register null_value = x5;
2913
2914 ASSERT(instr->IsMarkedAsCall());
2915 ASSERT(object.Is(x0));
2916
2917 DeoptimizeIfRoot(object, Heap::kUndefinedValueRootIndex,
2918 instr->environment());
2919
2920 __ LoadRoot(null_value, Heap::kNullValueRootIndex);
2921 __ Cmp(object, null_value);
2922 DeoptimizeIf(eq, instr->environment());
2923
2924 DeoptimizeIfSmi(object, instr->environment());
2925
2926 STATIC_ASSERT(FIRST_JS_PROXY_TYPE == FIRST_SPEC_OBJECT_TYPE);
2927 __ CompareObjectType(object, x1, x1, LAST_JS_PROXY_TYPE);
2928 DeoptimizeIf(le, instr->environment());
2929
2930 Label use_cache, call_runtime;
2931 __ CheckEnumCache(object, null_value, x1, x2, x3, x4, &call_runtime);
2932
2933 __ Ldr(object, FieldMemOperand(object, HeapObject::kMapOffset));
2934 __ B(&use_cache);
2935
2936 // Get the set of properties to enumerate.
2937 __ Bind(&call_runtime);
2938 __ Push(object);
2939 CallRuntime(Runtime::kGetPropertyNamesFast, 1, instr);
2940
2941 __ Ldr(x1, FieldMemOperand(object, HeapObject::kMapOffset));
2942 DeoptimizeIfNotRoot(x1, Heap::kMetaMapRootIndex, instr->environment());
2943
2944 __ Bind(&use_cache);
2945 }
2946
2947
DoGetCachedArrayIndex(LGetCachedArrayIndex * instr)2948 void LCodeGen::DoGetCachedArrayIndex(LGetCachedArrayIndex* instr) {
2949 Register input = ToRegister(instr->value());
2950 Register result = ToRegister(instr->result());
2951
2952 __ AssertString(input);
2953
2954 // Assert that we can use a W register load to get the hash.
2955 ASSERT((String::kHashShift + String::kArrayIndexValueBits) < kWRegSizeInBits);
2956 __ Ldr(result.W(), FieldMemOperand(input, String::kHashFieldOffset));
2957 __ IndexFromHash(result, result);
2958 }
2959
2960
EmitGoto(int block)2961 void LCodeGen::EmitGoto(int block) {
2962 // Do not emit jump if we are emitting a goto to the next block.
2963 if (!IsNextEmittedBlock(block)) {
2964 __ B(chunk_->GetAssemblyLabel(LookupDestination(block)));
2965 }
2966 }
2967
2968
DoGoto(LGoto * instr)2969 void LCodeGen::DoGoto(LGoto* instr) {
2970 EmitGoto(instr->block_id());
2971 }
2972
2973
DoHasCachedArrayIndexAndBranch(LHasCachedArrayIndexAndBranch * instr)2974 void LCodeGen::DoHasCachedArrayIndexAndBranch(
2975 LHasCachedArrayIndexAndBranch* instr) {
2976 Register input = ToRegister(instr->value());
2977 Register temp = ToRegister32(instr->temp());
2978
2979 // Assert that the cache status bits fit in a W register.
2980 ASSERT(is_uint32(String::kContainsCachedArrayIndexMask));
2981 __ Ldr(temp, FieldMemOperand(input, String::kHashFieldOffset));
2982 __ Tst(temp, String::kContainsCachedArrayIndexMask);
2983 EmitBranch(instr, eq);
2984 }
2985
2986
2987 // HHasInstanceTypeAndBranch instruction is built with an interval of type
2988 // to test but is only used in very restricted ways. The only possible kinds
2989 // of intervals are:
2990 // - [ FIRST_TYPE, instr->to() ]
2991 // - [ instr->form(), LAST_TYPE ]
2992 // - instr->from() == instr->to()
2993 //
2994 // These kinds of intervals can be check with only one compare instruction
2995 // providing the correct value and test condition are used.
2996 //
2997 // TestType() will return the value to use in the compare instruction and
2998 // BranchCondition() will return the condition to use depending on the kind
2999 // of interval actually specified in the instruction.
TestType(HHasInstanceTypeAndBranch * instr)3000 static InstanceType TestType(HHasInstanceTypeAndBranch* instr) {
3001 InstanceType from = instr->from();
3002 InstanceType to = instr->to();
3003 if (from == FIRST_TYPE) return to;
3004 ASSERT((from == to) || (to == LAST_TYPE));
3005 return from;
3006 }
3007
3008
3009 // See comment above TestType function for what this function does.
BranchCondition(HHasInstanceTypeAndBranch * instr)3010 static Condition BranchCondition(HHasInstanceTypeAndBranch* instr) {
3011 InstanceType from = instr->from();
3012 InstanceType to = instr->to();
3013 if (from == to) return eq;
3014 if (to == LAST_TYPE) return hs;
3015 if (from == FIRST_TYPE) return ls;
3016 UNREACHABLE();
3017 return eq;
3018 }
3019
3020
DoHasInstanceTypeAndBranch(LHasInstanceTypeAndBranch * instr)3021 void LCodeGen::DoHasInstanceTypeAndBranch(LHasInstanceTypeAndBranch* instr) {
3022 Register input = ToRegister(instr->value());
3023 Register scratch = ToRegister(instr->temp());
3024
3025 if (!instr->hydrogen()->value()->type().IsHeapObject()) {
3026 __ JumpIfSmi(input, instr->FalseLabel(chunk_));
3027 }
3028 __ CompareObjectType(input, scratch, scratch, TestType(instr->hydrogen()));
3029 EmitBranch(instr, BranchCondition(instr->hydrogen()));
3030 }
3031
3032
DoInnerAllocatedObject(LInnerAllocatedObject * instr)3033 void LCodeGen::DoInnerAllocatedObject(LInnerAllocatedObject* instr) {
3034 Register result = ToRegister(instr->result());
3035 Register base = ToRegister(instr->base_object());
3036 if (instr->offset()->IsConstantOperand()) {
3037 __ Add(result, base, ToOperand32I(instr->offset()));
3038 } else {
3039 __ Add(result, base, Operand(ToRegister32(instr->offset()), SXTW));
3040 }
3041 }
3042
3043
DoInstanceOf(LInstanceOf * instr)3044 void LCodeGen::DoInstanceOf(LInstanceOf* instr) {
3045 ASSERT(ToRegister(instr->context()).is(cp));
3046 // Assert that the arguments are in the registers expected by InstanceofStub.
3047 ASSERT(ToRegister(instr->left()).Is(InstanceofStub::left()));
3048 ASSERT(ToRegister(instr->right()).Is(InstanceofStub::right()));
3049
3050 InstanceofStub stub(isolate(), InstanceofStub::kArgsInRegisters);
3051 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
3052
3053 // InstanceofStub returns a result in x0:
3054 // 0 => not an instance
3055 // smi 1 => instance.
3056 __ Cmp(x0, 0);
3057 __ LoadTrueFalseRoots(x0, x1);
3058 __ Csel(x0, x0, x1, eq);
3059 }
3060
3061
DoInstanceOfKnownGlobal(LInstanceOfKnownGlobal * instr)3062 void LCodeGen::DoInstanceOfKnownGlobal(LInstanceOfKnownGlobal* instr) {
3063 class DeferredInstanceOfKnownGlobal: public LDeferredCode {
3064 public:
3065 DeferredInstanceOfKnownGlobal(LCodeGen* codegen,
3066 LInstanceOfKnownGlobal* instr)
3067 : LDeferredCode(codegen), instr_(instr) { }
3068 virtual void Generate() {
3069 codegen()->DoDeferredInstanceOfKnownGlobal(instr_);
3070 }
3071 virtual LInstruction* instr() { return instr_; }
3072 private:
3073 LInstanceOfKnownGlobal* instr_;
3074 };
3075
3076 DeferredInstanceOfKnownGlobal* deferred =
3077 new(zone()) DeferredInstanceOfKnownGlobal(this, instr);
3078
3079 Label map_check, return_false, cache_miss, done;
3080 Register object = ToRegister(instr->value());
3081 Register result = ToRegister(instr->result());
3082 // x4 is expected in the associated deferred code and stub.
3083 Register map_check_site = x4;
3084 Register map = x5;
3085
3086 // This instruction is marked as call. We can clobber any register.
3087 ASSERT(instr->IsMarkedAsCall());
3088
3089 // We must take into account that object is in x11.
3090 ASSERT(object.Is(x11));
3091 Register scratch = x10;
3092
3093 // A Smi is not instance of anything.
3094 __ JumpIfSmi(object, &return_false);
3095
3096 // This is the inlined call site instanceof cache. The two occurences of the
3097 // hole value will be patched to the last map/result pair generated by the
3098 // instanceof stub.
3099 __ Ldr(map, FieldMemOperand(object, HeapObject::kMapOffset));
3100 {
3101 // Below we use Factory::the_hole_value() on purpose instead of loading from
3102 // the root array to force relocation and later be able to patch with a
3103 // custom value.
3104 InstructionAccurateScope scope(masm(), 5);
3105 __ bind(&map_check);
3106 // Will be patched with the cached map.
3107 Handle<Cell> cell = factory()->NewCell(factory()->the_hole_value());
3108 __ ldr(scratch, Immediate(Handle<Object>(cell)));
3109 __ ldr(scratch, FieldMemOperand(scratch, PropertyCell::kValueOffset));
3110 __ cmp(map, scratch);
3111 __ b(&cache_miss, ne);
3112 // The address of this instruction is computed relative to the map check
3113 // above, so check the size of the code generated.
3114 ASSERT(masm()->InstructionsGeneratedSince(&map_check) == 4);
3115 // Will be patched with the cached result.
3116 __ ldr(result, Immediate(factory()->the_hole_value()));
3117 }
3118 __ B(&done);
3119
3120 // The inlined call site cache did not match.
3121 // Check null and string before calling the deferred code.
3122 __ Bind(&cache_miss);
3123 // Compute the address of the map check. It must not be clobbered until the
3124 // InstanceOfStub has used it.
3125 __ Adr(map_check_site, &map_check);
3126 // Null is not instance of anything.
3127 __ JumpIfRoot(object, Heap::kNullValueRootIndex, &return_false);
3128
3129 // String values are not instances of anything.
3130 // Return false if the object is a string. Otherwise, jump to the deferred
3131 // code.
3132 // Note that we can't jump directly to deferred code from
3133 // IsObjectJSStringType, because it uses tbz for the jump and the deferred
3134 // code can be out of range.
3135 __ IsObjectJSStringType(object, scratch, NULL, &return_false);
3136 __ B(deferred->entry());
3137
3138 __ Bind(&return_false);
3139 __ LoadRoot(result, Heap::kFalseValueRootIndex);
3140
3141 // Here result is either true or false.
3142 __ Bind(deferred->exit());
3143 __ Bind(&done);
3144 }
3145
3146
DoDeferredInstanceOfKnownGlobal(LInstanceOfKnownGlobal * instr)3147 void LCodeGen::DoDeferredInstanceOfKnownGlobal(LInstanceOfKnownGlobal* instr) {
3148 Register result = ToRegister(instr->result());
3149 ASSERT(result.Is(x0)); // InstanceofStub returns its result in x0.
3150 InstanceofStub::Flags flags = InstanceofStub::kNoFlags;
3151 flags = static_cast<InstanceofStub::Flags>(
3152 flags | InstanceofStub::kArgsInRegisters);
3153 flags = static_cast<InstanceofStub::Flags>(
3154 flags | InstanceofStub::kReturnTrueFalseObject);
3155 flags = static_cast<InstanceofStub::Flags>(
3156 flags | InstanceofStub::kCallSiteInlineCheck);
3157
3158 PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters);
3159 LoadContextFromDeferred(instr->context());
3160
3161 // Prepare InstanceofStub arguments.
3162 ASSERT(ToRegister(instr->value()).Is(InstanceofStub::left()));
3163 __ LoadObject(InstanceofStub::right(), instr->function());
3164
3165 InstanceofStub stub(isolate(), flags);
3166 CallCodeGeneric(stub.GetCode(),
3167 RelocInfo::CODE_TARGET,
3168 instr,
3169 RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
3170 LEnvironment* env = instr->GetDeferredLazyDeoptimizationEnvironment();
3171 safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index());
3172
3173 // Put the result value into the result register slot.
3174 __ StoreToSafepointRegisterSlot(result, result);
3175 }
3176
3177
DoInstructionGap(LInstructionGap * instr)3178 void LCodeGen::DoInstructionGap(LInstructionGap* instr) {
3179 DoGap(instr);
3180 }
3181
3182
DoInteger32ToDouble(LInteger32ToDouble * instr)3183 void LCodeGen::DoInteger32ToDouble(LInteger32ToDouble* instr) {
3184 Register value = ToRegister32(instr->value());
3185 DoubleRegister result = ToDoubleRegister(instr->result());
3186 __ Scvtf(result, value);
3187 }
3188
3189
DoInvokeFunction(LInvokeFunction * instr)3190 void LCodeGen::DoInvokeFunction(LInvokeFunction* instr) {
3191 ASSERT(ToRegister(instr->context()).is(cp));
3192 // The function is required to be in x1.
3193 ASSERT(ToRegister(instr->function()).is(x1));
3194 ASSERT(instr->HasPointerMap());
3195
3196 Handle<JSFunction> known_function = instr->hydrogen()->known_function();
3197 if (known_function.is_null()) {
3198 LPointerMap* pointers = instr->pointer_map();
3199 SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt);
3200 ParameterCount count(instr->arity());
3201 __ InvokeFunction(x1, count, CALL_FUNCTION, generator);
3202 } else {
3203 CallKnownFunction(known_function,
3204 instr->hydrogen()->formal_parameter_count(),
3205 instr->arity(),
3206 instr,
3207 x1);
3208 }
3209 after_push_argument_ = false;
3210 }
3211
3212
DoIsConstructCallAndBranch(LIsConstructCallAndBranch * instr)3213 void LCodeGen::DoIsConstructCallAndBranch(LIsConstructCallAndBranch* instr) {
3214 Register temp1 = ToRegister(instr->temp1());
3215 Register temp2 = ToRegister(instr->temp2());
3216
3217 // Get the frame pointer for the calling frame.
3218 __ Ldr(temp1, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
3219
3220 // Skip the arguments adaptor frame if it exists.
3221 Label check_frame_marker;
3222 __ Ldr(temp2, MemOperand(temp1, StandardFrameConstants::kContextOffset));
3223 __ Cmp(temp2, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
3224 __ B(ne, &check_frame_marker);
3225 __ Ldr(temp1, MemOperand(temp1, StandardFrameConstants::kCallerFPOffset));
3226
3227 // Check the marker in the calling frame.
3228 __ Bind(&check_frame_marker);
3229 __ Ldr(temp1, MemOperand(temp1, StandardFrameConstants::kMarkerOffset));
3230
3231 EmitCompareAndBranch(
3232 instr, eq, temp1, Operand(Smi::FromInt(StackFrame::CONSTRUCT)));
3233 }
3234
3235
DoIsObjectAndBranch(LIsObjectAndBranch * instr)3236 void LCodeGen::DoIsObjectAndBranch(LIsObjectAndBranch* instr) {
3237 Label* is_object = instr->TrueLabel(chunk_);
3238 Label* is_not_object = instr->FalseLabel(chunk_);
3239 Register value = ToRegister(instr->value());
3240 Register map = ToRegister(instr->temp1());
3241 Register scratch = ToRegister(instr->temp2());
3242
3243 __ JumpIfSmi(value, is_not_object);
3244 __ JumpIfRoot(value, Heap::kNullValueRootIndex, is_object);
3245
3246 __ Ldr(map, FieldMemOperand(value, HeapObject::kMapOffset));
3247
3248 // Check for undetectable objects.
3249 __ Ldrb(scratch, FieldMemOperand(map, Map::kBitFieldOffset));
3250 __ TestAndBranchIfAnySet(scratch, 1 << Map::kIsUndetectable, is_not_object);
3251
3252 // Check that instance type is in object type range.
3253 __ IsInstanceJSObjectType(map, scratch, NULL);
3254 // Flags have been updated by IsInstanceJSObjectType. We can now test the
3255 // flags for "le" condition to check if the object's type is a valid
3256 // JS object type.
3257 EmitBranch(instr, le);
3258 }
3259
3260
EmitIsString(Register input,Register temp1,Label * is_not_string,SmiCheck check_needed=INLINE_SMI_CHECK)3261 Condition LCodeGen::EmitIsString(Register input,
3262 Register temp1,
3263 Label* is_not_string,
3264 SmiCheck check_needed = INLINE_SMI_CHECK) {
3265 if (check_needed == INLINE_SMI_CHECK) {
3266 __ JumpIfSmi(input, is_not_string);
3267 }
3268 __ CompareObjectType(input, temp1, temp1, FIRST_NONSTRING_TYPE);
3269
3270 return lt;
3271 }
3272
3273
DoIsStringAndBranch(LIsStringAndBranch * instr)3274 void LCodeGen::DoIsStringAndBranch(LIsStringAndBranch* instr) {
3275 Register val = ToRegister(instr->value());
3276 Register scratch = ToRegister(instr->temp());
3277
3278 SmiCheck check_needed =
3279 instr->hydrogen()->value()->type().IsHeapObject()
3280 ? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
3281 Condition true_cond =
3282 EmitIsString(val, scratch, instr->FalseLabel(chunk_), check_needed);
3283
3284 EmitBranch(instr, true_cond);
3285 }
3286
3287
DoIsSmiAndBranch(LIsSmiAndBranch * instr)3288 void LCodeGen::DoIsSmiAndBranch(LIsSmiAndBranch* instr) {
3289 Register value = ToRegister(instr->value());
3290 STATIC_ASSERT(kSmiTag == 0);
3291 EmitTestAndBranch(instr, eq, value, kSmiTagMask);
3292 }
3293
3294
DoIsUndetectableAndBranch(LIsUndetectableAndBranch * instr)3295 void LCodeGen::DoIsUndetectableAndBranch(LIsUndetectableAndBranch* instr) {
3296 Register input = ToRegister(instr->value());
3297 Register temp = ToRegister(instr->temp());
3298
3299 if (!instr->hydrogen()->value()->type().IsHeapObject()) {
3300 __ JumpIfSmi(input, instr->FalseLabel(chunk_));
3301 }
3302 __ Ldr(temp, FieldMemOperand(input, HeapObject::kMapOffset));
3303 __ Ldrb(temp, FieldMemOperand(temp, Map::kBitFieldOffset));
3304
3305 EmitTestAndBranch(instr, ne, temp, 1 << Map::kIsUndetectable);
3306 }
3307
3308
LabelType(LLabel * label)3309 static const char* LabelType(LLabel* label) {
3310 if (label->is_loop_header()) return " (loop header)";
3311 if (label->is_osr_entry()) return " (OSR entry)";
3312 return "";
3313 }
3314
3315
DoLabel(LLabel * label)3316 void LCodeGen::DoLabel(LLabel* label) {
3317 Comment(";;; <@%d,#%d> -------------------- B%d%s --------------------",
3318 current_instruction_,
3319 label->hydrogen_value()->id(),
3320 label->block_id(),
3321 LabelType(label));
3322
3323 __ Bind(label->label());
3324 current_block_ = label->block_id();
3325 DoGap(label);
3326 }
3327
3328
DoLoadContextSlot(LLoadContextSlot * instr)3329 void LCodeGen::DoLoadContextSlot(LLoadContextSlot* instr) {
3330 Register context = ToRegister(instr->context());
3331 Register result = ToRegister(instr->result());
3332 __ Ldr(result, ContextMemOperand(context, instr->slot_index()));
3333 if (instr->hydrogen()->RequiresHoleCheck()) {
3334 if (instr->hydrogen()->DeoptimizesOnHole()) {
3335 DeoptimizeIfRoot(result, Heap::kTheHoleValueRootIndex,
3336 instr->environment());
3337 } else {
3338 Label not_the_hole;
3339 __ JumpIfNotRoot(result, Heap::kTheHoleValueRootIndex, ¬_the_hole);
3340 __ LoadRoot(result, Heap::kUndefinedValueRootIndex);
3341 __ Bind(¬_the_hole);
3342 }
3343 }
3344 }
3345
3346
DoLoadFunctionPrototype(LLoadFunctionPrototype * instr)3347 void LCodeGen::DoLoadFunctionPrototype(LLoadFunctionPrototype* instr) {
3348 Register function = ToRegister(instr->function());
3349 Register result = ToRegister(instr->result());
3350 Register temp = ToRegister(instr->temp());
3351
3352 // Check that the function really is a function. Leaves map in the result
3353 // register.
3354 __ CompareObjectType(function, result, temp, JS_FUNCTION_TYPE);
3355 DeoptimizeIf(ne, instr->environment());
3356
3357 // Make sure that the function has an instance prototype.
3358 Label non_instance;
3359 __ Ldrb(temp, FieldMemOperand(result, Map::kBitFieldOffset));
3360 __ Tbnz(temp, Map::kHasNonInstancePrototype, &non_instance);
3361
3362 // Get the prototype or initial map from the function.
3363 __ Ldr(result, FieldMemOperand(function,
3364 JSFunction::kPrototypeOrInitialMapOffset));
3365
3366 // Check that the function has a prototype or an initial map.
3367 DeoptimizeIfRoot(result, Heap::kTheHoleValueRootIndex,
3368 instr->environment());
3369
3370 // If the function does not have an initial map, we're done.
3371 Label done;
3372 __ CompareObjectType(result, temp, temp, MAP_TYPE);
3373 __ B(ne, &done);
3374
3375 // Get the prototype from the initial map.
3376 __ Ldr(result, FieldMemOperand(result, Map::kPrototypeOffset));
3377 __ B(&done);
3378
3379 // Non-instance prototype: fetch prototype from constructor field in initial
3380 // map.
3381 __ Bind(&non_instance);
3382 __ Ldr(result, FieldMemOperand(result, Map::kConstructorOffset));
3383
3384 // All done.
3385 __ Bind(&done);
3386 }
3387
3388
DoLoadGlobalCell(LLoadGlobalCell * instr)3389 void LCodeGen::DoLoadGlobalCell(LLoadGlobalCell* instr) {
3390 Register result = ToRegister(instr->result());
3391 __ Mov(result, Operand(Handle<Object>(instr->hydrogen()->cell().handle())));
3392 __ Ldr(result, FieldMemOperand(result, Cell::kValueOffset));
3393 if (instr->hydrogen()->RequiresHoleCheck()) {
3394 DeoptimizeIfRoot(
3395 result, Heap::kTheHoleValueRootIndex, instr->environment());
3396 }
3397 }
3398
3399
DoLoadGlobalGeneric(LLoadGlobalGeneric * instr)3400 void LCodeGen::DoLoadGlobalGeneric(LLoadGlobalGeneric* instr) {
3401 ASSERT(ToRegister(instr->context()).is(cp));
3402 ASSERT(ToRegister(instr->global_object()).Is(x0));
3403 ASSERT(ToRegister(instr->result()).Is(x0));
3404 __ Mov(x2, Operand(instr->name()));
3405 ContextualMode mode = instr->for_typeof() ? NOT_CONTEXTUAL : CONTEXTUAL;
3406 Handle<Code> ic = LoadIC::initialize_stub(isolate(), mode);
3407 CallCode(ic, RelocInfo::CODE_TARGET, instr);
3408 }
3409
3410
PrepareKeyedExternalArrayOperand(Register key,Register base,Register scratch,bool key_is_smi,bool key_is_constant,int constant_key,ElementsKind elements_kind,int base_offset)3411 MemOperand LCodeGen::PrepareKeyedExternalArrayOperand(
3412 Register key,
3413 Register base,
3414 Register scratch,
3415 bool key_is_smi,
3416 bool key_is_constant,
3417 int constant_key,
3418 ElementsKind elements_kind,
3419 int base_offset) {
3420 int element_size_shift = ElementsKindToShiftSize(elements_kind);
3421
3422 if (key_is_constant) {
3423 int key_offset = constant_key << element_size_shift;
3424 return MemOperand(base, key_offset + base_offset);
3425 }
3426
3427 if (key_is_smi) {
3428 __ Add(scratch, base, Operand::UntagSmiAndScale(key, element_size_shift));
3429 return MemOperand(scratch, base_offset);
3430 }
3431
3432 if (base_offset == 0) {
3433 return MemOperand(base, key, SXTW, element_size_shift);
3434 }
3435
3436 ASSERT(!AreAliased(scratch, key));
3437 __ Add(scratch, base, base_offset);
3438 return MemOperand(scratch, key, SXTW, element_size_shift);
3439 }
3440
3441
DoLoadKeyedExternal(LLoadKeyedExternal * instr)3442 void LCodeGen::DoLoadKeyedExternal(LLoadKeyedExternal* instr) {
3443 Register ext_ptr = ToRegister(instr->elements());
3444 Register scratch;
3445 ElementsKind elements_kind = instr->elements_kind();
3446
3447 bool key_is_smi = instr->hydrogen()->key()->representation().IsSmi();
3448 bool key_is_constant = instr->key()->IsConstantOperand();
3449 Register key = no_reg;
3450 int constant_key = 0;
3451 if (key_is_constant) {
3452 ASSERT(instr->temp() == NULL);
3453 constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
3454 if (constant_key & 0xf0000000) {
3455 Abort(kArrayIndexConstantValueTooBig);
3456 }
3457 } else {
3458 scratch = ToRegister(instr->temp());
3459 key = ToRegister(instr->key());
3460 }
3461
3462 MemOperand mem_op =
3463 PrepareKeyedExternalArrayOperand(key, ext_ptr, scratch, key_is_smi,
3464 key_is_constant, constant_key,
3465 elements_kind,
3466 instr->base_offset());
3467
3468 if ((elements_kind == EXTERNAL_FLOAT32_ELEMENTS) ||
3469 (elements_kind == FLOAT32_ELEMENTS)) {
3470 DoubleRegister result = ToDoubleRegister(instr->result());
3471 __ Ldr(result.S(), mem_op);
3472 __ Fcvt(result, result.S());
3473 } else if ((elements_kind == EXTERNAL_FLOAT64_ELEMENTS) ||
3474 (elements_kind == FLOAT64_ELEMENTS)) {
3475 DoubleRegister result = ToDoubleRegister(instr->result());
3476 __ Ldr(result, mem_op);
3477 } else {
3478 Register result = ToRegister(instr->result());
3479
3480 switch (elements_kind) {
3481 case EXTERNAL_INT8_ELEMENTS:
3482 case INT8_ELEMENTS:
3483 __ Ldrsb(result, mem_op);
3484 break;
3485 case EXTERNAL_UINT8_CLAMPED_ELEMENTS:
3486 case EXTERNAL_UINT8_ELEMENTS:
3487 case UINT8_ELEMENTS:
3488 case UINT8_CLAMPED_ELEMENTS:
3489 __ Ldrb(result, mem_op);
3490 break;
3491 case EXTERNAL_INT16_ELEMENTS:
3492 case INT16_ELEMENTS:
3493 __ Ldrsh(result, mem_op);
3494 break;
3495 case EXTERNAL_UINT16_ELEMENTS:
3496 case UINT16_ELEMENTS:
3497 __ Ldrh(result, mem_op);
3498 break;
3499 case EXTERNAL_INT32_ELEMENTS:
3500 case INT32_ELEMENTS:
3501 __ Ldrsw(result, mem_op);
3502 break;
3503 case EXTERNAL_UINT32_ELEMENTS:
3504 case UINT32_ELEMENTS:
3505 __ Ldr(result.W(), mem_op);
3506 if (!instr->hydrogen()->CheckFlag(HInstruction::kUint32)) {
3507 // Deopt if value > 0x80000000.
3508 __ Tst(result, 0xFFFFFFFF80000000);
3509 DeoptimizeIf(ne, instr->environment());
3510 }
3511 break;
3512 case FLOAT32_ELEMENTS:
3513 case FLOAT64_ELEMENTS:
3514 case EXTERNAL_FLOAT32_ELEMENTS:
3515 case EXTERNAL_FLOAT64_ELEMENTS:
3516 case FAST_HOLEY_DOUBLE_ELEMENTS:
3517 case FAST_HOLEY_ELEMENTS:
3518 case FAST_HOLEY_SMI_ELEMENTS:
3519 case FAST_DOUBLE_ELEMENTS:
3520 case FAST_ELEMENTS:
3521 case FAST_SMI_ELEMENTS:
3522 case DICTIONARY_ELEMENTS:
3523 case SLOPPY_ARGUMENTS_ELEMENTS:
3524 UNREACHABLE();
3525 break;
3526 }
3527 }
3528 }
3529
3530
PrepareKeyedArrayOperand(Register base,Register elements,Register key,bool key_is_tagged,ElementsKind elements_kind,Representation representation,int base_offset)3531 MemOperand LCodeGen::PrepareKeyedArrayOperand(Register base,
3532 Register elements,
3533 Register key,
3534 bool key_is_tagged,
3535 ElementsKind elements_kind,
3536 Representation representation,
3537 int base_offset) {
3538 STATIC_ASSERT((kSmiValueSize == 32) && (kSmiShift == 32) && (kSmiTag == 0));
3539 int element_size_shift = ElementsKindToShiftSize(elements_kind);
3540
3541 // Even though the HLoad/StoreKeyed instructions force the input
3542 // representation for the key to be an integer, the input gets replaced during
3543 // bounds check elimination with the index argument to the bounds check, which
3544 // can be tagged, so that case must be handled here, too.
3545 if (key_is_tagged) {
3546 __ Add(base, elements, Operand::UntagSmiAndScale(key, element_size_shift));
3547 if (representation.IsInteger32()) {
3548 ASSERT(elements_kind == FAST_SMI_ELEMENTS);
3549 // Read or write only the most-significant 32 bits in the case of fast smi
3550 // arrays.
3551 return UntagSmiMemOperand(base, base_offset);
3552 } else {
3553 return MemOperand(base, base_offset);
3554 }
3555 } else {
3556 // Sign extend key because it could be a 32-bit negative value or contain
3557 // garbage in the top 32-bits. The address computation happens in 64-bit.
3558 ASSERT((element_size_shift >= 0) && (element_size_shift <= 4));
3559 if (representation.IsInteger32()) {
3560 ASSERT(elements_kind == FAST_SMI_ELEMENTS);
3561 // Read or write only the most-significant 32 bits in the case of fast smi
3562 // arrays.
3563 __ Add(base, elements, Operand(key, SXTW, element_size_shift));
3564 return UntagSmiMemOperand(base, base_offset);
3565 } else {
3566 __ Add(base, elements, base_offset);
3567 return MemOperand(base, key, SXTW, element_size_shift);
3568 }
3569 }
3570 }
3571
3572
DoLoadKeyedFixedDouble(LLoadKeyedFixedDouble * instr)3573 void LCodeGen::DoLoadKeyedFixedDouble(LLoadKeyedFixedDouble* instr) {
3574 Register elements = ToRegister(instr->elements());
3575 DoubleRegister result = ToDoubleRegister(instr->result());
3576 MemOperand mem_op;
3577
3578 if (instr->key()->IsConstantOperand()) {
3579 ASSERT(instr->hydrogen()->RequiresHoleCheck() ||
3580 (instr->temp() == NULL));
3581
3582 int constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
3583 if (constant_key & 0xf0000000) {
3584 Abort(kArrayIndexConstantValueTooBig);
3585 }
3586 int offset = instr->base_offset() + constant_key * kDoubleSize;
3587 mem_op = MemOperand(elements, offset);
3588 } else {
3589 Register load_base = ToRegister(instr->temp());
3590 Register key = ToRegister(instr->key());
3591 bool key_is_tagged = instr->hydrogen()->key()->representation().IsSmi();
3592 mem_op = PrepareKeyedArrayOperand(load_base, elements, key, key_is_tagged,
3593 instr->hydrogen()->elements_kind(),
3594 instr->hydrogen()->representation(),
3595 instr->base_offset());
3596 }
3597
3598 __ Ldr(result, mem_op);
3599
3600 if (instr->hydrogen()->RequiresHoleCheck()) {
3601 Register scratch = ToRegister(instr->temp());
3602 // Detect the hole NaN by adding one to the integer representation of the
3603 // result, and checking for overflow.
3604 STATIC_ASSERT(kHoleNanInt64 == 0x7fffffffffffffff);
3605 __ Ldr(scratch, mem_op);
3606 __ Cmn(scratch, 1);
3607 DeoptimizeIf(vs, instr->environment());
3608 }
3609 }
3610
3611
DoLoadKeyedFixed(LLoadKeyedFixed * instr)3612 void LCodeGen::DoLoadKeyedFixed(LLoadKeyedFixed* instr) {
3613 Register elements = ToRegister(instr->elements());
3614 Register result = ToRegister(instr->result());
3615 MemOperand mem_op;
3616
3617 Representation representation = instr->hydrogen()->representation();
3618 if (instr->key()->IsConstantOperand()) {
3619 ASSERT(instr->temp() == NULL);
3620 LConstantOperand* const_operand = LConstantOperand::cast(instr->key());
3621 int offset = instr->base_offset() +
3622 ToInteger32(const_operand) * kPointerSize;
3623 if (representation.IsInteger32()) {
3624 ASSERT(instr->hydrogen()->elements_kind() == FAST_SMI_ELEMENTS);
3625 STATIC_ASSERT((kSmiValueSize == 32) && (kSmiShift == 32) &&
3626 (kSmiTag == 0));
3627 mem_op = UntagSmiMemOperand(elements, offset);
3628 } else {
3629 mem_op = MemOperand(elements, offset);
3630 }
3631 } else {
3632 Register load_base = ToRegister(instr->temp());
3633 Register key = ToRegister(instr->key());
3634 bool key_is_tagged = instr->hydrogen()->key()->representation().IsSmi();
3635
3636 mem_op = PrepareKeyedArrayOperand(load_base, elements, key, key_is_tagged,
3637 instr->hydrogen()->elements_kind(),
3638 representation, instr->base_offset());
3639 }
3640
3641 __ Load(result, mem_op, representation);
3642
3643 if (instr->hydrogen()->RequiresHoleCheck()) {
3644 if (IsFastSmiElementsKind(instr->hydrogen()->elements_kind())) {
3645 DeoptimizeIfNotSmi(result, instr->environment());
3646 } else {
3647 DeoptimizeIfRoot(result, Heap::kTheHoleValueRootIndex,
3648 instr->environment());
3649 }
3650 }
3651 }
3652
3653
DoLoadKeyedGeneric(LLoadKeyedGeneric * instr)3654 void LCodeGen::DoLoadKeyedGeneric(LLoadKeyedGeneric* instr) {
3655 ASSERT(ToRegister(instr->context()).is(cp));
3656 ASSERT(ToRegister(instr->object()).Is(x1));
3657 ASSERT(ToRegister(instr->key()).Is(x0));
3658
3659 Handle<Code> ic = isolate()->builtins()->KeyedLoadIC_Initialize();
3660 CallCode(ic, RelocInfo::CODE_TARGET, instr);
3661
3662 ASSERT(ToRegister(instr->result()).Is(x0));
3663 }
3664
3665
DoLoadNamedField(LLoadNamedField * instr)3666 void LCodeGen::DoLoadNamedField(LLoadNamedField* instr) {
3667 HObjectAccess access = instr->hydrogen()->access();
3668 int offset = access.offset();
3669 Register object = ToRegister(instr->object());
3670
3671 if (access.IsExternalMemory()) {
3672 Register result = ToRegister(instr->result());
3673 __ Load(result, MemOperand(object, offset), access.representation());
3674 return;
3675 }
3676
3677 if (instr->hydrogen()->representation().IsDouble()) {
3678 FPRegister result = ToDoubleRegister(instr->result());
3679 __ Ldr(result, FieldMemOperand(object, offset));
3680 return;
3681 }
3682
3683 Register result = ToRegister(instr->result());
3684 Register source;
3685 if (access.IsInobject()) {
3686 source = object;
3687 } else {
3688 // Load the properties array, using result as a scratch register.
3689 __ Ldr(result, FieldMemOperand(object, JSObject::kPropertiesOffset));
3690 source = result;
3691 }
3692
3693 if (access.representation().IsSmi() &&
3694 instr->hydrogen()->representation().IsInteger32()) {
3695 // Read int value directly from upper half of the smi.
3696 STATIC_ASSERT(kSmiValueSize == 32 && kSmiShift == 32 && kSmiTag == 0);
3697 __ Load(result, UntagSmiFieldMemOperand(source, offset),
3698 Representation::Integer32());
3699 } else {
3700 __ Load(result, FieldMemOperand(source, offset), access.representation());
3701 }
3702 }
3703
3704
DoLoadNamedGeneric(LLoadNamedGeneric * instr)3705 void LCodeGen::DoLoadNamedGeneric(LLoadNamedGeneric* instr) {
3706 ASSERT(ToRegister(instr->context()).is(cp));
3707 // LoadIC expects x2 to hold the name, and x0 to hold the receiver.
3708 ASSERT(ToRegister(instr->object()).is(x0));
3709 __ Mov(x2, Operand(instr->name()));
3710
3711 Handle<Code> ic = LoadIC::initialize_stub(isolate(), NOT_CONTEXTUAL);
3712 CallCode(ic, RelocInfo::CODE_TARGET, instr);
3713
3714 ASSERT(ToRegister(instr->result()).is(x0));
3715 }
3716
3717
DoLoadRoot(LLoadRoot * instr)3718 void LCodeGen::DoLoadRoot(LLoadRoot* instr) {
3719 Register result = ToRegister(instr->result());
3720 __ LoadRoot(result, instr->index());
3721 }
3722
3723
DoMapEnumLength(LMapEnumLength * instr)3724 void LCodeGen::DoMapEnumLength(LMapEnumLength* instr) {
3725 Register result = ToRegister(instr->result());
3726 Register map = ToRegister(instr->value());
3727 __ EnumLengthSmi(result, map);
3728 }
3729
3730
DoMathAbs(LMathAbs * instr)3731 void LCodeGen::DoMathAbs(LMathAbs* instr) {
3732 Representation r = instr->hydrogen()->value()->representation();
3733 if (r.IsDouble()) {
3734 DoubleRegister input = ToDoubleRegister(instr->value());
3735 DoubleRegister result = ToDoubleRegister(instr->result());
3736 __ Fabs(result, input);
3737 } else if (r.IsSmi() || r.IsInteger32()) {
3738 Register input = r.IsSmi() ? ToRegister(instr->value())
3739 : ToRegister32(instr->value());
3740 Register result = r.IsSmi() ? ToRegister(instr->result())
3741 : ToRegister32(instr->result());
3742 __ Abs(result, input);
3743 DeoptimizeIf(vs, instr->environment());
3744 }
3745 }
3746
3747
DoDeferredMathAbsTagged(LMathAbsTagged * instr,Label * exit,Label * allocation_entry)3748 void LCodeGen::DoDeferredMathAbsTagged(LMathAbsTagged* instr,
3749 Label* exit,
3750 Label* allocation_entry) {
3751 // Handle the tricky cases of MathAbsTagged:
3752 // - HeapNumber inputs.
3753 // - Negative inputs produce a positive result, so a new HeapNumber is
3754 // allocated to hold it.
3755 // - Positive inputs are returned as-is, since there is no need to allocate
3756 // a new HeapNumber for the result.
3757 // - The (smi) input -0x80000000, produces +0x80000000, which does not fit
3758 // a smi. In this case, the inline code sets the result and jumps directly
3759 // to the allocation_entry label.
3760 ASSERT(instr->context() != NULL);
3761 ASSERT(ToRegister(instr->context()).is(cp));
3762 Register input = ToRegister(instr->value());
3763 Register temp1 = ToRegister(instr->temp1());
3764 Register temp2 = ToRegister(instr->temp2());
3765 Register result_bits = ToRegister(instr->temp3());
3766 Register result = ToRegister(instr->result());
3767
3768 Label runtime_allocation;
3769
3770 // Deoptimize if the input is not a HeapNumber.
3771 __ Ldr(temp1, FieldMemOperand(input, HeapObject::kMapOffset));
3772 DeoptimizeIfNotRoot(temp1, Heap::kHeapNumberMapRootIndex,
3773 instr->environment());
3774
3775 // If the argument is positive, we can return it as-is, without any need to
3776 // allocate a new HeapNumber for the result. We have to do this in integer
3777 // registers (rather than with fabs) because we need to be able to distinguish
3778 // the two zeroes.
3779 __ Ldr(result_bits, FieldMemOperand(input, HeapNumber::kValueOffset));
3780 __ Mov(result, input);
3781 __ Tbz(result_bits, kXSignBit, exit);
3782
3783 // Calculate abs(input) by clearing the sign bit.
3784 __ Bic(result_bits, result_bits, kXSignMask);
3785
3786 // Allocate a new HeapNumber to hold the result.
3787 // result_bits The bit representation of the (double) result.
3788 __ Bind(allocation_entry);
3789 __ AllocateHeapNumber(result, &runtime_allocation, temp1, temp2);
3790 // The inline (non-deferred) code will store result_bits into result.
3791 __ B(exit);
3792
3793 __ Bind(&runtime_allocation);
3794 if (FLAG_debug_code) {
3795 // Because result is in the pointer map, we need to make sure it has a valid
3796 // tagged value before we call the runtime. We speculatively set it to the
3797 // input (for abs(+x)) or to a smi (for abs(-SMI_MIN)), so it should already
3798 // be valid.
3799 Label result_ok;
3800 Register input = ToRegister(instr->value());
3801 __ JumpIfSmi(result, &result_ok);
3802 __ Cmp(input, result);
3803 __ Assert(eq, kUnexpectedValue);
3804 __ Bind(&result_ok);
3805 }
3806
3807 { PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters);
3808 CallRuntimeFromDeferred(Runtime::kHiddenAllocateHeapNumber, 0, instr,
3809 instr->context());
3810 __ StoreToSafepointRegisterSlot(x0, result);
3811 }
3812 // The inline (non-deferred) code will store result_bits into result.
3813 }
3814
3815
DoMathAbsTagged(LMathAbsTagged * instr)3816 void LCodeGen::DoMathAbsTagged(LMathAbsTagged* instr) {
3817 // Class for deferred case.
3818 class DeferredMathAbsTagged: public LDeferredCode {
3819 public:
3820 DeferredMathAbsTagged(LCodeGen* codegen, LMathAbsTagged* instr)
3821 : LDeferredCode(codegen), instr_(instr) { }
3822 virtual void Generate() {
3823 codegen()->DoDeferredMathAbsTagged(instr_, exit(),
3824 allocation_entry());
3825 }
3826 virtual LInstruction* instr() { return instr_; }
3827 Label* allocation_entry() { return &allocation; }
3828 private:
3829 LMathAbsTagged* instr_;
3830 Label allocation;
3831 };
3832
3833 // TODO(jbramley): The early-exit mechanism would skip the new frame handling
3834 // in GenerateDeferredCode. Tidy this up.
3835 ASSERT(!NeedsDeferredFrame());
3836
3837 DeferredMathAbsTagged* deferred =
3838 new(zone()) DeferredMathAbsTagged(this, instr);
3839
3840 ASSERT(instr->hydrogen()->value()->representation().IsTagged() ||
3841 instr->hydrogen()->value()->representation().IsSmi());
3842 Register input = ToRegister(instr->value());
3843 Register result_bits = ToRegister(instr->temp3());
3844 Register result = ToRegister(instr->result());
3845 Label done;
3846
3847 // Handle smis inline.
3848 // We can treat smis as 64-bit integers, since the (low-order) tag bits will
3849 // never get set by the negation. This is therefore the same as the Integer32
3850 // case in DoMathAbs, except that it operates on 64-bit values.
3851 STATIC_ASSERT((kSmiValueSize == 32) && (kSmiShift == 32) && (kSmiTag == 0));
3852
3853 __ JumpIfNotSmi(input, deferred->entry());
3854
3855 __ Abs(result, input, NULL, &done);
3856
3857 // The result is the magnitude (abs) of the smallest value a smi can
3858 // represent, encoded as a double.
3859 __ Mov(result_bits, double_to_rawbits(0x80000000));
3860 __ B(deferred->allocation_entry());
3861
3862 __ Bind(deferred->exit());
3863 __ Str(result_bits, FieldMemOperand(result, HeapNumber::kValueOffset));
3864
3865 __ Bind(&done);
3866 }
3867
3868
DoMathExp(LMathExp * instr)3869 void LCodeGen::DoMathExp(LMathExp* instr) {
3870 DoubleRegister input = ToDoubleRegister(instr->value());
3871 DoubleRegister result = ToDoubleRegister(instr->result());
3872 DoubleRegister double_temp1 = ToDoubleRegister(instr->double_temp1());
3873 DoubleRegister double_temp2 = double_scratch();
3874 Register temp1 = ToRegister(instr->temp1());
3875 Register temp2 = ToRegister(instr->temp2());
3876 Register temp3 = ToRegister(instr->temp3());
3877
3878 MathExpGenerator::EmitMathExp(masm(), input, result,
3879 double_temp1, double_temp2,
3880 temp1, temp2, temp3);
3881 }
3882
3883
DoMathFloorD(LMathFloorD * instr)3884 void LCodeGen::DoMathFloorD(LMathFloorD* instr) {
3885 DoubleRegister input = ToDoubleRegister(instr->value());
3886 DoubleRegister result = ToDoubleRegister(instr->result());
3887
3888 __ Frintm(result, input);
3889 }
3890
3891
DoMathFloorI(LMathFloorI * instr)3892 void LCodeGen::DoMathFloorI(LMathFloorI* instr) {
3893 DoubleRegister input = ToDoubleRegister(instr->value());
3894 Register result = ToRegister(instr->result());
3895
3896 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
3897 DeoptimizeIfMinusZero(input, instr->environment());
3898 }
3899
3900 __ Fcvtms(result, input);
3901
3902 // Check that the result fits into a 32-bit integer.
3903 // - The result did not overflow.
3904 __ Cmp(result, Operand(result, SXTW));
3905 // - The input was not NaN.
3906 __ Fccmp(input, input, NoFlag, eq);
3907 DeoptimizeIf(ne, instr->environment());
3908 }
3909
3910
DoFlooringDivByPowerOf2I(LFlooringDivByPowerOf2I * instr)3911 void LCodeGen::DoFlooringDivByPowerOf2I(LFlooringDivByPowerOf2I* instr) {
3912 Register dividend = ToRegister32(instr->dividend());
3913 Register result = ToRegister32(instr->result());
3914 int32_t divisor = instr->divisor();
3915
3916 // If the divisor is 1, return the dividend.
3917 if (divisor == 1) {
3918 __ Mov(result, dividend, kDiscardForSameWReg);
3919 return;
3920 }
3921
3922 // If the divisor is positive, things are easy: There can be no deopts and we
3923 // can simply do an arithmetic right shift.
3924 int32_t shift = WhichPowerOf2Abs(divisor);
3925 if (divisor > 1) {
3926 __ Mov(result, Operand(dividend, ASR, shift));
3927 return;
3928 }
3929
3930 // If the divisor is negative, we have to negate and handle edge cases.
3931 __ Negs(result, dividend);
3932 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
3933 DeoptimizeIf(eq, instr->environment());
3934 }
3935
3936 // Dividing by -1 is basically negation, unless we overflow.
3937 if (divisor == -1) {
3938 if (instr->hydrogen()->CheckFlag(HValue::kLeftCanBeMinInt)) {
3939 DeoptimizeIf(vs, instr->environment());
3940 }
3941 return;
3942 }
3943
3944 // If the negation could not overflow, simply shifting is OK.
3945 if (!instr->hydrogen()->CheckFlag(HValue::kLeftCanBeMinInt)) {
3946 __ Mov(result, Operand(dividend, ASR, shift));
3947 return;
3948 }
3949
3950 __ Asr(result, result, shift);
3951 __ Csel(result, result, kMinInt / divisor, vc);
3952 }
3953
3954
DoFlooringDivByConstI(LFlooringDivByConstI * instr)3955 void LCodeGen::DoFlooringDivByConstI(LFlooringDivByConstI* instr) {
3956 Register dividend = ToRegister32(instr->dividend());
3957 int32_t divisor = instr->divisor();
3958 Register result = ToRegister32(instr->result());
3959 ASSERT(!AreAliased(dividend, result));
3960
3961 if (divisor == 0) {
3962 Deoptimize(instr->environment());
3963 return;
3964 }
3965
3966 // Check for (0 / -x) that will produce negative zero.
3967 HMathFloorOfDiv* hdiv = instr->hydrogen();
3968 if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
3969 DeoptimizeIfZero(dividend, instr->environment());
3970 }
3971
3972 // Easy case: We need no dynamic check for the dividend and the flooring
3973 // division is the same as the truncating division.
3974 if ((divisor > 0 && !hdiv->CheckFlag(HValue::kLeftCanBeNegative)) ||
3975 (divisor < 0 && !hdiv->CheckFlag(HValue::kLeftCanBePositive))) {
3976 __ TruncatingDiv(result, dividend, Abs(divisor));
3977 if (divisor < 0) __ Neg(result, result);
3978 return;
3979 }
3980
3981 // In the general case we may need to adjust before and after the truncating
3982 // division to get a flooring division.
3983 Register temp = ToRegister32(instr->temp());
3984 ASSERT(!AreAliased(temp, dividend, result));
3985 Label needs_adjustment, done;
3986 __ Cmp(dividend, 0);
3987 __ B(divisor > 0 ? lt : gt, &needs_adjustment);
3988 __ TruncatingDiv(result, dividend, Abs(divisor));
3989 if (divisor < 0) __ Neg(result, result);
3990 __ B(&done);
3991 __ Bind(&needs_adjustment);
3992 __ Add(temp, dividend, Operand(divisor > 0 ? 1 : -1));
3993 __ TruncatingDiv(result, temp, Abs(divisor));
3994 if (divisor < 0) __ Neg(result, result);
3995 __ Sub(result, result, Operand(1));
3996 __ Bind(&done);
3997 }
3998
3999
4000 // TODO(svenpanne) Refactor this to avoid code duplication with DoDivI.
DoFlooringDivI(LFlooringDivI * instr)4001 void LCodeGen::DoFlooringDivI(LFlooringDivI* instr) {
4002 Register dividend = ToRegister32(instr->dividend());
4003 Register divisor = ToRegister32(instr->divisor());
4004 Register remainder = ToRegister32(instr->temp());
4005 Register result = ToRegister32(instr->result());
4006
4007 // This can't cause an exception on ARM, so we can speculatively
4008 // execute it already now.
4009 __ Sdiv(result, dividend, divisor);
4010
4011 // Check for x / 0.
4012 DeoptimizeIfZero(divisor, instr->environment());
4013
4014 // Check for (kMinInt / -1).
4015 if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) {
4016 // The V flag will be set iff dividend == kMinInt.
4017 __ Cmp(dividend, 1);
4018 __ Ccmp(divisor, -1, NoFlag, vs);
4019 DeoptimizeIf(eq, instr->environment());
4020 }
4021
4022 // Check for (0 / -x) that will produce negative zero.
4023 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
4024 __ Cmp(divisor, 0);
4025 __ Ccmp(dividend, 0, ZFlag, mi);
4026 // "divisor" can't be null because the code would have already been
4027 // deoptimized. The Z flag is set only if (divisor < 0) and (dividend == 0).
4028 // In this case we need to deoptimize to produce a -0.
4029 DeoptimizeIf(eq, instr->environment());
4030 }
4031
4032 Label done;
4033 // If both operands have the same sign then we are done.
4034 __ Eor(remainder, dividend, divisor);
4035 __ Tbz(remainder, kWSignBit, &done);
4036
4037 // Check if the result needs to be corrected.
4038 __ Msub(remainder, result, divisor, dividend);
4039 __ Cbz(remainder, &done);
4040 __ Sub(result, result, 1);
4041
4042 __ Bind(&done);
4043 }
4044
4045
DoMathLog(LMathLog * instr)4046 void LCodeGen::DoMathLog(LMathLog* instr) {
4047 ASSERT(instr->IsMarkedAsCall());
4048 ASSERT(ToDoubleRegister(instr->value()).is(d0));
4049 __ CallCFunction(ExternalReference::math_log_double_function(isolate()),
4050 0, 1);
4051 ASSERT(ToDoubleRegister(instr->result()).Is(d0));
4052 }
4053
4054
DoMathClz32(LMathClz32 * instr)4055 void LCodeGen::DoMathClz32(LMathClz32* instr) {
4056 Register input = ToRegister32(instr->value());
4057 Register result = ToRegister32(instr->result());
4058 __ Clz(result, input);
4059 }
4060
4061
DoMathPowHalf(LMathPowHalf * instr)4062 void LCodeGen::DoMathPowHalf(LMathPowHalf* instr) {
4063 DoubleRegister input = ToDoubleRegister(instr->value());
4064 DoubleRegister result = ToDoubleRegister(instr->result());
4065 Label done;
4066
4067 // Math.pow(x, 0.5) differs from fsqrt(x) in the following cases:
4068 // Math.pow(-Infinity, 0.5) == +Infinity
4069 // Math.pow(-0.0, 0.5) == +0.0
4070
4071 // Catch -infinity inputs first.
4072 // TODO(jbramley): A constant infinity register would be helpful here.
4073 __ Fmov(double_scratch(), kFP64NegativeInfinity);
4074 __ Fcmp(double_scratch(), input);
4075 __ Fabs(result, input);
4076 __ B(&done, eq);
4077
4078 // Add +0.0 to convert -0.0 to +0.0.
4079 __ Fadd(double_scratch(), input, fp_zero);
4080 __ Fsqrt(result, double_scratch());
4081
4082 __ Bind(&done);
4083 }
4084
4085
DoPower(LPower * instr)4086 void LCodeGen::DoPower(LPower* instr) {
4087 Representation exponent_type = instr->hydrogen()->right()->representation();
4088 // Having marked this as a call, we can use any registers.
4089 // Just make sure that the input/output registers are the expected ones.
4090 ASSERT(!instr->right()->IsDoubleRegister() ||
4091 ToDoubleRegister(instr->right()).is(d1));
4092 ASSERT(exponent_type.IsInteger32() || !instr->right()->IsRegister() ||
4093 ToRegister(instr->right()).is(x11));
4094 ASSERT(!exponent_type.IsInteger32() || ToRegister(instr->right()).is(x12));
4095 ASSERT(ToDoubleRegister(instr->left()).is(d0));
4096 ASSERT(ToDoubleRegister(instr->result()).is(d0));
4097
4098 if (exponent_type.IsSmi()) {
4099 MathPowStub stub(isolate(), MathPowStub::TAGGED);
4100 __ CallStub(&stub);
4101 } else if (exponent_type.IsTagged()) {
4102 Label no_deopt;
4103 __ JumpIfSmi(x11, &no_deopt);
4104 __ Ldr(x0, FieldMemOperand(x11, HeapObject::kMapOffset));
4105 DeoptimizeIfNotRoot(x0, Heap::kHeapNumberMapRootIndex,
4106 instr->environment());
4107 __ Bind(&no_deopt);
4108 MathPowStub stub(isolate(), MathPowStub::TAGGED);
4109 __ CallStub(&stub);
4110 } else if (exponent_type.IsInteger32()) {
4111 // Ensure integer exponent has no garbage in top 32-bits, as MathPowStub
4112 // supports large integer exponents.
4113 Register exponent = ToRegister(instr->right());
4114 __ Sxtw(exponent, exponent);
4115 MathPowStub stub(isolate(), MathPowStub::INTEGER);
4116 __ CallStub(&stub);
4117 } else {
4118 ASSERT(exponent_type.IsDouble());
4119 MathPowStub stub(isolate(), MathPowStub::DOUBLE);
4120 __ CallStub(&stub);
4121 }
4122 }
4123
4124
DoMathRoundD(LMathRoundD * instr)4125 void LCodeGen::DoMathRoundD(LMathRoundD* instr) {
4126 DoubleRegister input = ToDoubleRegister(instr->value());
4127 DoubleRegister result = ToDoubleRegister(instr->result());
4128 DoubleRegister scratch_d = double_scratch();
4129
4130 ASSERT(!AreAliased(input, result, scratch_d));
4131
4132 Label done;
4133
4134 __ Frinta(result, input);
4135 __ Fcmp(input, 0.0);
4136 __ Fccmp(result, input, ZFlag, lt);
4137 // The result is correct if the input was in [-0, +infinity], or was a
4138 // negative integral value.
4139 __ B(eq, &done);
4140
4141 // Here the input is negative, non integral, with an exponent lower than 52.
4142 // We do not have to worry about the 0.49999999999999994 (0x3fdfffffffffffff)
4143 // case. So we can safely add 0.5.
4144 __ Fmov(scratch_d, 0.5);
4145 __ Fadd(result, input, scratch_d);
4146 __ Frintm(result, result);
4147 // The range [-0.5, -0.0[ yielded +0.0. Force the sign to negative.
4148 __ Fabs(result, result);
4149 __ Fneg(result, result);
4150
4151 __ Bind(&done);
4152 }
4153
4154
DoMathRoundI(LMathRoundI * instr)4155 void LCodeGen::DoMathRoundI(LMathRoundI* instr) {
4156 DoubleRegister input = ToDoubleRegister(instr->value());
4157 DoubleRegister temp = ToDoubleRegister(instr->temp1());
4158 DoubleRegister dot_five = double_scratch();
4159 Register result = ToRegister(instr->result());
4160 Label done;
4161
4162 // Math.round() rounds to the nearest integer, with ties going towards
4163 // +infinity. This does not match any IEEE-754 rounding mode.
4164 // - Infinities and NaNs are propagated unchanged, but cause deopts because
4165 // they can't be represented as integers.
4166 // - The sign of the result is the same as the sign of the input. This means
4167 // that -0.0 rounds to itself, and values -0.5 <= input < 0 also produce a
4168 // result of -0.0.
4169
4170 // Add 0.5 and round towards -infinity.
4171 __ Fmov(dot_five, 0.5);
4172 __ Fadd(temp, input, dot_five);
4173 __ Fcvtms(result, temp);
4174
4175 // The result is correct if:
4176 // result is not 0, as the input could be NaN or [-0.5, -0.0].
4177 // result is not 1, as 0.499...94 will wrongly map to 1.
4178 // result fits in 32 bits.
4179 __ Cmp(result, Operand(result.W(), SXTW));
4180 __ Ccmp(result, 1, ZFlag, eq);
4181 __ B(hi, &done);
4182
4183 // At this point, we have to handle possible inputs of NaN or numbers in the
4184 // range [-0.5, 1.5[, or numbers larger than 32 bits.
4185
4186 // Deoptimize if the result > 1, as it must be larger than 32 bits.
4187 __ Cmp(result, 1);
4188 DeoptimizeIf(hi, instr->environment());
4189
4190 // Deoptimize for negative inputs, which at this point are only numbers in
4191 // the range [-0.5, -0.0]
4192 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
4193 __ Fmov(result, input);
4194 DeoptimizeIfNegative(result, instr->environment());
4195 }
4196
4197 // Deoptimize if the input was NaN.
4198 __ Fcmp(input, dot_five);
4199 DeoptimizeIf(vs, instr->environment());
4200
4201 // Now, the only unhandled inputs are in the range [0.0, 1.5[ (or [-0.5, 1.5[
4202 // if we didn't generate a -0.0 bailout). If input >= 0.5 then return 1,
4203 // else 0; we avoid dealing with 0.499...94 directly.
4204 __ Cset(result, ge);
4205 __ Bind(&done);
4206 }
4207
4208
DoMathSqrt(LMathSqrt * instr)4209 void LCodeGen::DoMathSqrt(LMathSqrt* instr) {
4210 DoubleRegister input = ToDoubleRegister(instr->value());
4211 DoubleRegister result = ToDoubleRegister(instr->result());
4212 __ Fsqrt(result, input);
4213 }
4214
4215
DoMathMinMax(LMathMinMax * instr)4216 void LCodeGen::DoMathMinMax(LMathMinMax* instr) {
4217 HMathMinMax::Operation op = instr->hydrogen()->operation();
4218 if (instr->hydrogen()->representation().IsInteger32()) {
4219 Register result = ToRegister32(instr->result());
4220 Register left = ToRegister32(instr->left());
4221 Operand right = ToOperand32I(instr->right());
4222
4223 __ Cmp(left, right);
4224 __ Csel(result, left, right, (op == HMathMinMax::kMathMax) ? ge : le);
4225 } else if (instr->hydrogen()->representation().IsSmi()) {
4226 Register result = ToRegister(instr->result());
4227 Register left = ToRegister(instr->left());
4228 Operand right = ToOperand(instr->right());
4229
4230 __ Cmp(left, right);
4231 __ Csel(result, left, right, (op == HMathMinMax::kMathMax) ? ge : le);
4232 } else {
4233 ASSERT(instr->hydrogen()->representation().IsDouble());
4234 DoubleRegister result = ToDoubleRegister(instr->result());
4235 DoubleRegister left = ToDoubleRegister(instr->left());
4236 DoubleRegister right = ToDoubleRegister(instr->right());
4237
4238 if (op == HMathMinMax::kMathMax) {
4239 __ Fmax(result, left, right);
4240 } else {
4241 ASSERT(op == HMathMinMax::kMathMin);
4242 __ Fmin(result, left, right);
4243 }
4244 }
4245 }
4246
4247
DoModByPowerOf2I(LModByPowerOf2I * instr)4248 void LCodeGen::DoModByPowerOf2I(LModByPowerOf2I* instr) {
4249 Register dividend = ToRegister32(instr->dividend());
4250 int32_t divisor = instr->divisor();
4251 ASSERT(dividend.is(ToRegister32(instr->result())));
4252
4253 // Theoretically, a variation of the branch-free code for integer division by
4254 // a power of 2 (calculating the remainder via an additional multiplication
4255 // (which gets simplified to an 'and') and subtraction) should be faster, and
4256 // this is exactly what GCC and clang emit. Nevertheless, benchmarks seem to
4257 // indicate that positive dividends are heavily favored, so the branching
4258 // version performs better.
4259 HMod* hmod = instr->hydrogen();
4260 int32_t mask = divisor < 0 ? -(divisor + 1) : (divisor - 1);
4261 Label dividend_is_not_negative, done;
4262 if (hmod->CheckFlag(HValue::kLeftCanBeNegative)) {
4263 __ Tbz(dividend, kWSignBit, ÷nd_is_not_negative);
4264 // Note that this is correct even for kMinInt operands.
4265 __ Neg(dividend, dividend);
4266 __ And(dividend, dividend, mask);
4267 __ Negs(dividend, dividend);
4268 if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
4269 DeoptimizeIf(eq, instr->environment());
4270 }
4271 __ B(&done);
4272 }
4273
4274 __ bind(÷nd_is_not_negative);
4275 __ And(dividend, dividend, mask);
4276 __ bind(&done);
4277 }
4278
4279
DoModByConstI(LModByConstI * instr)4280 void LCodeGen::DoModByConstI(LModByConstI* instr) {
4281 Register dividend = ToRegister32(instr->dividend());
4282 int32_t divisor = instr->divisor();
4283 Register result = ToRegister32(instr->result());
4284 Register temp = ToRegister32(instr->temp());
4285 ASSERT(!AreAliased(dividend, result, temp));
4286
4287 if (divisor == 0) {
4288 Deoptimize(instr->environment());
4289 return;
4290 }
4291
4292 __ TruncatingDiv(result, dividend, Abs(divisor));
4293 __ Sxtw(dividend.X(), dividend);
4294 __ Mov(temp, Abs(divisor));
4295 __ Smsubl(result.X(), result, temp, dividend.X());
4296
4297 // Check for negative zero.
4298 HMod* hmod = instr->hydrogen();
4299 if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
4300 Label remainder_not_zero;
4301 __ Cbnz(result, &remainder_not_zero);
4302 DeoptimizeIfNegative(dividend, instr->environment());
4303 __ bind(&remainder_not_zero);
4304 }
4305 }
4306
4307
DoModI(LModI * instr)4308 void LCodeGen::DoModI(LModI* instr) {
4309 Register dividend = ToRegister32(instr->left());
4310 Register divisor = ToRegister32(instr->right());
4311 Register result = ToRegister32(instr->result());
4312
4313 Label done;
4314 // modulo = dividend - quotient * divisor
4315 __ Sdiv(result, dividend, divisor);
4316 if (instr->hydrogen()->CheckFlag(HValue::kCanBeDivByZero)) {
4317 DeoptimizeIfZero(divisor, instr->environment());
4318 }
4319 __ Msub(result, result, divisor, dividend);
4320 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
4321 __ Cbnz(result, &done);
4322 DeoptimizeIfNegative(dividend, instr->environment());
4323 }
4324 __ Bind(&done);
4325 }
4326
4327
DoMulConstIS(LMulConstIS * instr)4328 void LCodeGen::DoMulConstIS(LMulConstIS* instr) {
4329 ASSERT(instr->hydrogen()->representation().IsSmiOrInteger32());
4330 bool is_smi = instr->hydrogen()->representation().IsSmi();
4331 Register result =
4332 is_smi ? ToRegister(instr->result()) : ToRegister32(instr->result());
4333 Register left =
4334 is_smi ? ToRegister(instr->left()) : ToRegister32(instr->left()) ;
4335 int32_t right = ToInteger32(instr->right());
4336 ASSERT((right > -kMaxInt) || (right < kMaxInt));
4337
4338 bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
4339 bool bailout_on_minus_zero =
4340 instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero);
4341
4342 if (bailout_on_minus_zero) {
4343 if (right < 0) {
4344 // The result is -0 if right is negative and left is zero.
4345 DeoptimizeIfZero(left, instr->environment());
4346 } else if (right == 0) {
4347 // The result is -0 if the right is zero and the left is negative.
4348 DeoptimizeIfNegative(left, instr->environment());
4349 }
4350 }
4351
4352 switch (right) {
4353 // Cases which can detect overflow.
4354 case -1:
4355 if (can_overflow) {
4356 // Only 0x80000000 can overflow here.
4357 __ Negs(result, left);
4358 DeoptimizeIf(vs, instr->environment());
4359 } else {
4360 __ Neg(result, left);
4361 }
4362 break;
4363 case 0:
4364 // This case can never overflow.
4365 __ Mov(result, 0);
4366 break;
4367 case 1:
4368 // This case can never overflow.
4369 __ Mov(result, left, kDiscardForSameWReg);
4370 break;
4371 case 2:
4372 if (can_overflow) {
4373 __ Adds(result, left, left);
4374 DeoptimizeIf(vs, instr->environment());
4375 } else {
4376 __ Add(result, left, left);
4377 }
4378 break;
4379
4380 default:
4381 // Multiplication by constant powers of two (and some related values)
4382 // can be done efficiently with shifted operands.
4383 int32_t right_abs = Abs(right);
4384
4385 if (IsPowerOf2(right_abs)) {
4386 int right_log2 = WhichPowerOf2(right_abs);
4387
4388 if (can_overflow) {
4389 Register scratch = result;
4390 ASSERT(!AreAliased(scratch, left));
4391 __ Cls(scratch, left);
4392 __ Cmp(scratch, right_log2);
4393 DeoptimizeIf(lt, instr->environment());
4394 }
4395
4396 if (right >= 0) {
4397 // result = left << log2(right)
4398 __ Lsl(result, left, right_log2);
4399 } else {
4400 // result = -left << log2(-right)
4401 if (can_overflow) {
4402 __ Negs(result, Operand(left, LSL, right_log2));
4403 DeoptimizeIf(vs, instr->environment());
4404 } else {
4405 __ Neg(result, Operand(left, LSL, right_log2));
4406 }
4407 }
4408 return;
4409 }
4410
4411
4412 // For the following cases, we could perform a conservative overflow check
4413 // with CLS as above. However the few cycles saved are likely not worth
4414 // the risk of deoptimizing more often than required.
4415 ASSERT(!can_overflow);
4416
4417 if (right >= 0) {
4418 if (IsPowerOf2(right - 1)) {
4419 // result = left + left << log2(right - 1)
4420 __ Add(result, left, Operand(left, LSL, WhichPowerOf2(right - 1)));
4421 } else if (IsPowerOf2(right + 1)) {
4422 // result = -left + left << log2(right + 1)
4423 __ Sub(result, left, Operand(left, LSL, WhichPowerOf2(right + 1)));
4424 __ Neg(result, result);
4425 } else {
4426 UNREACHABLE();
4427 }
4428 } else {
4429 if (IsPowerOf2(-right + 1)) {
4430 // result = left - left << log2(-right + 1)
4431 __ Sub(result, left, Operand(left, LSL, WhichPowerOf2(-right + 1)));
4432 } else if (IsPowerOf2(-right - 1)) {
4433 // result = -left - left << log2(-right - 1)
4434 __ Add(result, left, Operand(left, LSL, WhichPowerOf2(-right - 1)));
4435 __ Neg(result, result);
4436 } else {
4437 UNREACHABLE();
4438 }
4439 }
4440 }
4441 }
4442
4443
DoMulI(LMulI * instr)4444 void LCodeGen::DoMulI(LMulI* instr) {
4445 Register result = ToRegister32(instr->result());
4446 Register left = ToRegister32(instr->left());
4447 Register right = ToRegister32(instr->right());
4448
4449 bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
4450 bool bailout_on_minus_zero =
4451 instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero);
4452
4453 if (bailout_on_minus_zero && !left.Is(right)) {
4454 // If one operand is zero and the other is negative, the result is -0.
4455 // - Set Z (eq) if either left or right, or both, are 0.
4456 __ Cmp(left, 0);
4457 __ Ccmp(right, 0, ZFlag, ne);
4458 // - If so (eq), set N (mi) if left + right is negative.
4459 // - Otherwise, clear N.
4460 __ Ccmn(left, right, NoFlag, eq);
4461 DeoptimizeIf(mi, instr->environment());
4462 }
4463
4464 if (can_overflow) {
4465 __ Smull(result.X(), left, right);
4466 __ Cmp(result.X(), Operand(result, SXTW));
4467 DeoptimizeIf(ne, instr->environment());
4468 } else {
4469 __ Mul(result, left, right);
4470 }
4471 }
4472
4473
DoMulS(LMulS * instr)4474 void LCodeGen::DoMulS(LMulS* instr) {
4475 Register result = ToRegister(instr->result());
4476 Register left = ToRegister(instr->left());
4477 Register right = ToRegister(instr->right());
4478
4479 bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
4480 bool bailout_on_minus_zero =
4481 instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero);
4482
4483 if (bailout_on_minus_zero && !left.Is(right)) {
4484 // If one operand is zero and the other is negative, the result is -0.
4485 // - Set Z (eq) if either left or right, or both, are 0.
4486 __ Cmp(left, 0);
4487 __ Ccmp(right, 0, ZFlag, ne);
4488 // - If so (eq), set N (mi) if left + right is negative.
4489 // - Otherwise, clear N.
4490 __ Ccmn(left, right, NoFlag, eq);
4491 DeoptimizeIf(mi, instr->environment());
4492 }
4493
4494 STATIC_ASSERT((kSmiShift == 32) && (kSmiTag == 0));
4495 if (can_overflow) {
4496 __ Smulh(result, left, right);
4497 __ Cmp(result, Operand(result.W(), SXTW));
4498 __ SmiTag(result);
4499 DeoptimizeIf(ne, instr->environment());
4500 } else {
4501 if (AreAliased(result, left, right)) {
4502 // All three registers are the same: half untag the input and then
4503 // multiply, giving a tagged result.
4504 STATIC_ASSERT((kSmiShift % 2) == 0);
4505 __ Asr(result, left, kSmiShift / 2);
4506 __ Mul(result, result, result);
4507 } else if (result.Is(left) && !left.Is(right)) {
4508 // Registers result and left alias, right is distinct: untag left into
4509 // result, and then multiply by right, giving a tagged result.
4510 __ SmiUntag(result, left);
4511 __ Mul(result, result, right);
4512 } else {
4513 ASSERT(!left.Is(result));
4514 // Registers result and right alias, left is distinct, or all registers
4515 // are distinct: untag right into result, and then multiply by left,
4516 // giving a tagged result.
4517 __ SmiUntag(result, right);
4518 __ Mul(result, left, result);
4519 }
4520 }
4521 }
4522
4523
DoDeferredNumberTagD(LNumberTagD * instr)4524 void LCodeGen::DoDeferredNumberTagD(LNumberTagD* instr) {
4525 // TODO(3095996): Get rid of this. For now, we need to make the
4526 // result register contain a valid pointer because it is already
4527 // contained in the register pointer map.
4528 Register result = ToRegister(instr->result());
4529 __ Mov(result, 0);
4530
4531 PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters);
4532 // NumberTagU and NumberTagD use the context from the frame, rather than
4533 // the environment's HContext or HInlinedContext value.
4534 // They only call Runtime::kHiddenAllocateHeapNumber.
4535 // The corresponding HChange instructions are added in a phase that does
4536 // not have easy access to the local context.
4537 __ Ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
4538 __ CallRuntimeSaveDoubles(Runtime::kHiddenAllocateHeapNumber);
4539 RecordSafepointWithRegisters(
4540 instr->pointer_map(), 0, Safepoint::kNoLazyDeopt);
4541 __ StoreToSafepointRegisterSlot(x0, result);
4542 }
4543
4544
DoNumberTagD(LNumberTagD * instr)4545 void LCodeGen::DoNumberTagD(LNumberTagD* instr) {
4546 class DeferredNumberTagD: public LDeferredCode {
4547 public:
4548 DeferredNumberTagD(LCodeGen* codegen, LNumberTagD* instr)
4549 : LDeferredCode(codegen), instr_(instr) { }
4550 virtual void Generate() { codegen()->DoDeferredNumberTagD(instr_); }
4551 virtual LInstruction* instr() { return instr_; }
4552 private:
4553 LNumberTagD* instr_;
4554 };
4555
4556 DoubleRegister input = ToDoubleRegister(instr->value());
4557 Register result = ToRegister(instr->result());
4558 Register temp1 = ToRegister(instr->temp1());
4559 Register temp2 = ToRegister(instr->temp2());
4560
4561 DeferredNumberTagD* deferred = new(zone()) DeferredNumberTagD(this, instr);
4562 if (FLAG_inline_new) {
4563 __ AllocateHeapNumber(result, deferred->entry(), temp1, temp2);
4564 } else {
4565 __ B(deferred->entry());
4566 }
4567
4568 __ Bind(deferred->exit());
4569 __ Str(input, FieldMemOperand(result, HeapNumber::kValueOffset));
4570 }
4571
4572
DoDeferredNumberTagU(LInstruction * instr,LOperand * value,LOperand * temp1,LOperand * temp2)4573 void LCodeGen::DoDeferredNumberTagU(LInstruction* instr,
4574 LOperand* value,
4575 LOperand* temp1,
4576 LOperand* temp2) {
4577 Label slow, convert_and_store;
4578 Register src = ToRegister32(value);
4579 Register dst = ToRegister(instr->result());
4580 Register scratch1 = ToRegister(temp1);
4581
4582 if (FLAG_inline_new) {
4583 Register scratch2 = ToRegister(temp2);
4584 __ AllocateHeapNumber(dst, &slow, scratch1, scratch2);
4585 __ B(&convert_and_store);
4586 }
4587
4588 // Slow case: call the runtime system to do the number allocation.
4589 __ Bind(&slow);
4590 // TODO(3095996): Put a valid pointer value in the stack slot where the result
4591 // register is stored, as this register is in the pointer map, but contains an
4592 // integer value.
4593 __ Mov(dst, 0);
4594 {
4595 // Preserve the value of all registers.
4596 PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters);
4597
4598 // NumberTagU and NumberTagD use the context from the frame, rather than
4599 // the environment's HContext or HInlinedContext value.
4600 // They only call Runtime::kHiddenAllocateHeapNumber.
4601 // The corresponding HChange instructions are added in a phase that does
4602 // not have easy access to the local context.
4603 __ Ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
4604 __ CallRuntimeSaveDoubles(Runtime::kHiddenAllocateHeapNumber);
4605 RecordSafepointWithRegisters(
4606 instr->pointer_map(), 0, Safepoint::kNoLazyDeopt);
4607 __ StoreToSafepointRegisterSlot(x0, dst);
4608 }
4609
4610 // Convert number to floating point and store in the newly allocated heap
4611 // number.
4612 __ Bind(&convert_and_store);
4613 DoubleRegister dbl_scratch = double_scratch();
4614 __ Ucvtf(dbl_scratch, src);
4615 __ Str(dbl_scratch, FieldMemOperand(dst, HeapNumber::kValueOffset));
4616 }
4617
4618
DoNumberTagU(LNumberTagU * instr)4619 void LCodeGen::DoNumberTagU(LNumberTagU* instr) {
4620 class DeferredNumberTagU: public LDeferredCode {
4621 public:
4622 DeferredNumberTagU(LCodeGen* codegen, LNumberTagU* instr)
4623 : LDeferredCode(codegen), instr_(instr) { }
4624 virtual void Generate() {
4625 codegen()->DoDeferredNumberTagU(instr_,
4626 instr_->value(),
4627 instr_->temp1(),
4628 instr_->temp2());
4629 }
4630 virtual LInstruction* instr() { return instr_; }
4631 private:
4632 LNumberTagU* instr_;
4633 };
4634
4635 Register value = ToRegister32(instr->value());
4636 Register result = ToRegister(instr->result());
4637
4638 DeferredNumberTagU* deferred = new(zone()) DeferredNumberTagU(this, instr);
4639 __ Cmp(value, Smi::kMaxValue);
4640 __ B(hi, deferred->entry());
4641 __ SmiTag(result, value.X());
4642 __ Bind(deferred->exit());
4643 }
4644
4645
DoNumberUntagD(LNumberUntagD * instr)4646 void LCodeGen::DoNumberUntagD(LNumberUntagD* instr) {
4647 Register input = ToRegister(instr->value());
4648 Register scratch = ToRegister(instr->temp());
4649 DoubleRegister result = ToDoubleRegister(instr->result());
4650 bool can_convert_undefined_to_nan =
4651 instr->hydrogen()->can_convert_undefined_to_nan();
4652
4653 Label done, load_smi;
4654
4655 // Work out what untag mode we're working with.
4656 HValue* value = instr->hydrogen()->value();
4657 NumberUntagDMode mode = value->representation().IsSmi()
4658 ? NUMBER_CANDIDATE_IS_SMI : NUMBER_CANDIDATE_IS_ANY_TAGGED;
4659
4660 if (mode == NUMBER_CANDIDATE_IS_ANY_TAGGED) {
4661 __ JumpIfSmi(input, &load_smi);
4662
4663 Label convert_undefined;
4664
4665 // Heap number map check.
4666 __ Ldr(scratch, FieldMemOperand(input, HeapObject::kMapOffset));
4667 if (can_convert_undefined_to_nan) {
4668 __ JumpIfNotRoot(scratch, Heap::kHeapNumberMapRootIndex,
4669 &convert_undefined);
4670 } else {
4671 DeoptimizeIfNotRoot(scratch, Heap::kHeapNumberMapRootIndex,
4672 instr->environment());
4673 }
4674
4675 // Load heap number.
4676 __ Ldr(result, FieldMemOperand(input, HeapNumber::kValueOffset));
4677 if (instr->hydrogen()->deoptimize_on_minus_zero()) {
4678 DeoptimizeIfMinusZero(result, instr->environment());
4679 }
4680 __ B(&done);
4681
4682 if (can_convert_undefined_to_nan) {
4683 __ Bind(&convert_undefined);
4684 DeoptimizeIfNotRoot(input, Heap::kUndefinedValueRootIndex,
4685 instr->environment());
4686
4687 __ LoadRoot(scratch, Heap::kNanValueRootIndex);
4688 __ Ldr(result, FieldMemOperand(scratch, HeapNumber::kValueOffset));
4689 __ B(&done);
4690 }
4691
4692 } else {
4693 ASSERT(mode == NUMBER_CANDIDATE_IS_SMI);
4694 // Fall through to load_smi.
4695 }
4696
4697 // Smi to double register conversion.
4698 __ Bind(&load_smi);
4699 __ SmiUntagToDouble(result, input);
4700
4701 __ Bind(&done);
4702 }
4703
4704
DoOsrEntry(LOsrEntry * instr)4705 void LCodeGen::DoOsrEntry(LOsrEntry* instr) {
4706 // This is a pseudo-instruction that ensures that the environment here is
4707 // properly registered for deoptimization and records the assembler's PC
4708 // offset.
4709 LEnvironment* environment = instr->environment();
4710
4711 // If the environment were already registered, we would have no way of
4712 // backpatching it with the spill slot operands.
4713 ASSERT(!environment->HasBeenRegistered());
4714 RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt);
4715
4716 GenerateOsrPrologue();
4717 }
4718
4719
DoParameter(LParameter * instr)4720 void LCodeGen::DoParameter(LParameter* instr) {
4721 // Nothing to do.
4722 }
4723
4724
DoPreparePushArguments(LPreparePushArguments * instr)4725 void LCodeGen::DoPreparePushArguments(LPreparePushArguments* instr) {
4726 __ PushPreamble(instr->argc(), kPointerSize);
4727 }
4728
4729
DoPushArguments(LPushArguments * instr)4730 void LCodeGen::DoPushArguments(LPushArguments* instr) {
4731 MacroAssembler::PushPopQueue args(masm());
4732
4733 for (int i = 0; i < instr->ArgumentCount(); ++i) {
4734 LOperand* arg = instr->argument(i);
4735 if (arg->IsDoubleRegister() || arg->IsDoubleStackSlot()) {
4736 Abort(kDoPushArgumentNotImplementedForDoubleType);
4737 return;
4738 }
4739 args.Queue(ToRegister(arg));
4740 }
4741
4742 // The preamble was done by LPreparePushArguments.
4743 args.PushQueued(MacroAssembler::PushPopQueue::SKIP_PREAMBLE);
4744
4745 after_push_argument_ = true;
4746 }
4747
4748
DoReturn(LReturn * instr)4749 void LCodeGen::DoReturn(LReturn* instr) {
4750 if (FLAG_trace && info()->IsOptimizing()) {
4751 // Push the return value on the stack as the parameter.
4752 // Runtime::TraceExit returns its parameter in x0. We're leaving the code
4753 // managed by the register allocator and tearing down the frame, it's
4754 // safe to write to the context register.
4755 __ Push(x0);
4756 __ Ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
4757 __ CallRuntime(Runtime::kTraceExit, 1);
4758 }
4759
4760 if (info()->saves_caller_doubles()) {
4761 RestoreCallerDoubles();
4762 }
4763
4764 int no_frame_start = -1;
4765 if (NeedsEagerFrame()) {
4766 Register stack_pointer = masm()->StackPointer();
4767 __ Mov(stack_pointer, fp);
4768 no_frame_start = masm_->pc_offset();
4769 __ Pop(fp, lr);
4770 }
4771
4772 if (instr->has_constant_parameter_count()) {
4773 int parameter_count = ToInteger32(instr->constant_parameter_count());
4774 __ Drop(parameter_count + 1);
4775 } else {
4776 Register parameter_count = ToRegister(instr->parameter_count());
4777 __ DropBySMI(parameter_count);
4778 }
4779 __ Ret();
4780
4781 if (no_frame_start != -1) {
4782 info_->AddNoFrameRange(no_frame_start, masm_->pc_offset());
4783 }
4784 }
4785
4786
BuildSeqStringOperand(Register string,Register temp,LOperand * index,String::Encoding encoding)4787 MemOperand LCodeGen::BuildSeqStringOperand(Register string,
4788 Register temp,
4789 LOperand* index,
4790 String::Encoding encoding) {
4791 if (index->IsConstantOperand()) {
4792 int offset = ToInteger32(LConstantOperand::cast(index));
4793 if (encoding == String::TWO_BYTE_ENCODING) {
4794 offset *= kUC16Size;
4795 }
4796 STATIC_ASSERT(kCharSize == 1);
4797 return FieldMemOperand(string, SeqString::kHeaderSize + offset);
4798 }
4799
4800 __ Add(temp, string, SeqString::kHeaderSize - kHeapObjectTag);
4801 if (encoding == String::ONE_BYTE_ENCODING) {
4802 return MemOperand(temp, ToRegister32(index), SXTW);
4803 } else {
4804 STATIC_ASSERT(kUC16Size == 2);
4805 return MemOperand(temp, ToRegister32(index), SXTW, 1);
4806 }
4807 }
4808
4809
DoSeqStringGetChar(LSeqStringGetChar * instr)4810 void LCodeGen::DoSeqStringGetChar(LSeqStringGetChar* instr) {
4811 String::Encoding encoding = instr->hydrogen()->encoding();
4812 Register string = ToRegister(instr->string());
4813 Register result = ToRegister(instr->result());
4814 Register temp = ToRegister(instr->temp());
4815
4816 if (FLAG_debug_code) {
4817 // Even though this lithium instruction comes with a temp register, we
4818 // can't use it here because we want to use "AtStart" constraints on the
4819 // inputs and the debug code here needs a scratch register.
4820 UseScratchRegisterScope temps(masm());
4821 Register dbg_temp = temps.AcquireX();
4822
4823 __ Ldr(dbg_temp, FieldMemOperand(string, HeapObject::kMapOffset));
4824 __ Ldrb(dbg_temp, FieldMemOperand(dbg_temp, Map::kInstanceTypeOffset));
4825
4826 __ And(dbg_temp, dbg_temp,
4827 Operand(kStringRepresentationMask | kStringEncodingMask));
4828 static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag;
4829 static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag;
4830 __ Cmp(dbg_temp, Operand(encoding == String::ONE_BYTE_ENCODING
4831 ? one_byte_seq_type : two_byte_seq_type));
4832 __ Check(eq, kUnexpectedStringType);
4833 }
4834
4835 MemOperand operand =
4836 BuildSeqStringOperand(string, temp, instr->index(), encoding);
4837 if (encoding == String::ONE_BYTE_ENCODING) {
4838 __ Ldrb(result, operand);
4839 } else {
4840 __ Ldrh(result, operand);
4841 }
4842 }
4843
4844
DoSeqStringSetChar(LSeqStringSetChar * instr)4845 void LCodeGen::DoSeqStringSetChar(LSeqStringSetChar* instr) {
4846 String::Encoding encoding = instr->hydrogen()->encoding();
4847 Register string = ToRegister(instr->string());
4848 Register value = ToRegister(instr->value());
4849 Register temp = ToRegister(instr->temp());
4850
4851 if (FLAG_debug_code) {
4852 ASSERT(ToRegister(instr->context()).is(cp));
4853 Register index = ToRegister(instr->index());
4854 static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag;
4855 static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag;
4856 int encoding_mask =
4857 instr->hydrogen()->encoding() == String::ONE_BYTE_ENCODING
4858 ? one_byte_seq_type : two_byte_seq_type;
4859 __ EmitSeqStringSetCharCheck(string, index, kIndexIsInteger32, temp,
4860 encoding_mask);
4861 }
4862 MemOperand operand =
4863 BuildSeqStringOperand(string, temp, instr->index(), encoding);
4864 if (encoding == String::ONE_BYTE_ENCODING) {
4865 __ Strb(value, operand);
4866 } else {
4867 __ Strh(value, operand);
4868 }
4869 }
4870
4871
DoSmiTag(LSmiTag * instr)4872 void LCodeGen::DoSmiTag(LSmiTag* instr) {
4873 HChange* hchange = instr->hydrogen();
4874 Register input = ToRegister(instr->value());
4875 Register output = ToRegister(instr->result());
4876 if (hchange->CheckFlag(HValue::kCanOverflow) &&
4877 hchange->value()->CheckFlag(HValue::kUint32)) {
4878 DeoptimizeIfNegative(input.W(), instr->environment());
4879 }
4880 __ SmiTag(output, input);
4881 }
4882
4883
DoSmiUntag(LSmiUntag * instr)4884 void LCodeGen::DoSmiUntag(LSmiUntag* instr) {
4885 Register input = ToRegister(instr->value());
4886 Register result = ToRegister(instr->result());
4887 Label done, untag;
4888
4889 if (instr->needs_check()) {
4890 DeoptimizeIfNotSmi(input, instr->environment());
4891 }
4892
4893 __ Bind(&untag);
4894 __ SmiUntag(result, input);
4895 __ Bind(&done);
4896 }
4897
4898
DoShiftI(LShiftI * instr)4899 void LCodeGen::DoShiftI(LShiftI* instr) {
4900 LOperand* right_op = instr->right();
4901 Register left = ToRegister32(instr->left());
4902 Register result = ToRegister32(instr->result());
4903
4904 if (right_op->IsRegister()) {
4905 Register right = ToRegister32(instr->right());
4906 switch (instr->op()) {
4907 case Token::ROR: __ Ror(result, left, right); break;
4908 case Token::SAR: __ Asr(result, left, right); break;
4909 case Token::SHL: __ Lsl(result, left, right); break;
4910 case Token::SHR:
4911 if (instr->can_deopt()) {
4912 Label right_not_zero;
4913 __ Cbnz(right, &right_not_zero);
4914 DeoptimizeIfNegative(left, instr->environment());
4915 __ Bind(&right_not_zero);
4916 }
4917 __ Lsr(result, left, right);
4918 break;
4919 default: UNREACHABLE();
4920 }
4921 } else {
4922 ASSERT(right_op->IsConstantOperand());
4923 int shift_count = JSShiftAmountFromLConstant(right_op);
4924 if (shift_count == 0) {
4925 if ((instr->op() == Token::SHR) && instr->can_deopt()) {
4926 DeoptimizeIfNegative(left, instr->environment());
4927 }
4928 __ Mov(result, left, kDiscardForSameWReg);
4929 } else {
4930 switch (instr->op()) {
4931 case Token::ROR: __ Ror(result, left, shift_count); break;
4932 case Token::SAR: __ Asr(result, left, shift_count); break;
4933 case Token::SHL: __ Lsl(result, left, shift_count); break;
4934 case Token::SHR: __ Lsr(result, left, shift_count); break;
4935 default: UNREACHABLE();
4936 }
4937 }
4938 }
4939 }
4940
4941
DoShiftS(LShiftS * instr)4942 void LCodeGen::DoShiftS(LShiftS* instr) {
4943 LOperand* right_op = instr->right();
4944 Register left = ToRegister(instr->left());
4945 Register result = ToRegister(instr->result());
4946
4947 // Only ROR by register needs a temp.
4948 ASSERT(((instr->op() == Token::ROR) && right_op->IsRegister()) ||
4949 (instr->temp() == NULL));
4950
4951 if (right_op->IsRegister()) {
4952 Register right = ToRegister(instr->right());
4953 switch (instr->op()) {
4954 case Token::ROR: {
4955 Register temp = ToRegister(instr->temp());
4956 __ Ubfx(temp, right, kSmiShift, 5);
4957 __ SmiUntag(result, left);
4958 __ Ror(result.W(), result.W(), temp.W());
4959 __ SmiTag(result);
4960 break;
4961 }
4962 case Token::SAR:
4963 __ Ubfx(result, right, kSmiShift, 5);
4964 __ Asr(result, left, result);
4965 __ Bic(result, result, kSmiShiftMask);
4966 break;
4967 case Token::SHL:
4968 __ Ubfx(result, right, kSmiShift, 5);
4969 __ Lsl(result, left, result);
4970 break;
4971 case Token::SHR:
4972 if (instr->can_deopt()) {
4973 Label right_not_zero;
4974 __ Cbnz(right, &right_not_zero);
4975 DeoptimizeIfNegative(left, instr->environment());
4976 __ Bind(&right_not_zero);
4977 }
4978 __ Ubfx(result, right, kSmiShift, 5);
4979 __ Lsr(result, left, result);
4980 __ Bic(result, result, kSmiShiftMask);
4981 break;
4982 default: UNREACHABLE();
4983 }
4984 } else {
4985 ASSERT(right_op->IsConstantOperand());
4986 int shift_count = JSShiftAmountFromLConstant(right_op);
4987 if (shift_count == 0) {
4988 if ((instr->op() == Token::SHR) && instr->can_deopt()) {
4989 DeoptimizeIfNegative(left, instr->environment());
4990 }
4991 __ Mov(result, left);
4992 } else {
4993 switch (instr->op()) {
4994 case Token::ROR:
4995 __ SmiUntag(result, left);
4996 __ Ror(result.W(), result.W(), shift_count);
4997 __ SmiTag(result);
4998 break;
4999 case Token::SAR:
5000 __ Asr(result, left, shift_count);
5001 __ Bic(result, result, kSmiShiftMask);
5002 break;
5003 case Token::SHL:
5004 __ Lsl(result, left, shift_count);
5005 break;
5006 case Token::SHR:
5007 __ Lsr(result, left, shift_count);
5008 __ Bic(result, result, kSmiShiftMask);
5009 break;
5010 default: UNREACHABLE();
5011 }
5012 }
5013 }
5014 }
5015
5016
DoDebugBreak(LDebugBreak * instr)5017 void LCodeGen::DoDebugBreak(LDebugBreak* instr) {
5018 __ Debug("LDebugBreak", 0, BREAK);
5019 }
5020
5021
DoDeclareGlobals(LDeclareGlobals * instr)5022 void LCodeGen::DoDeclareGlobals(LDeclareGlobals* instr) {
5023 ASSERT(ToRegister(instr->context()).is(cp));
5024 Register scratch1 = x5;
5025 Register scratch2 = x6;
5026 ASSERT(instr->IsMarkedAsCall());
5027
5028 ASM_UNIMPLEMENTED_BREAK("DoDeclareGlobals");
5029 // TODO(all): if Mov could handle object in new space then it could be used
5030 // here.
5031 __ LoadHeapObject(scratch1, instr->hydrogen()->pairs());
5032 __ Mov(scratch2, Smi::FromInt(instr->hydrogen()->flags()));
5033 __ Push(cp, scratch1, scratch2); // The context is the first argument.
5034 CallRuntime(Runtime::kHiddenDeclareGlobals, 3, instr);
5035 }
5036
5037
DoDeferredStackCheck(LStackCheck * instr)5038 void LCodeGen::DoDeferredStackCheck(LStackCheck* instr) {
5039 PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters);
5040 LoadContextFromDeferred(instr->context());
5041 __ CallRuntimeSaveDoubles(Runtime::kHiddenStackGuard);
5042 RecordSafepointWithLazyDeopt(
5043 instr, RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
5044 ASSERT(instr->HasEnvironment());
5045 LEnvironment* env = instr->environment();
5046 safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index());
5047 }
5048
5049
DoStackCheck(LStackCheck * instr)5050 void LCodeGen::DoStackCheck(LStackCheck* instr) {
5051 class DeferredStackCheck: public LDeferredCode {
5052 public:
5053 DeferredStackCheck(LCodeGen* codegen, LStackCheck* instr)
5054 : LDeferredCode(codegen), instr_(instr) { }
5055 virtual void Generate() { codegen()->DoDeferredStackCheck(instr_); }
5056 virtual LInstruction* instr() { return instr_; }
5057 private:
5058 LStackCheck* instr_;
5059 };
5060
5061 ASSERT(instr->HasEnvironment());
5062 LEnvironment* env = instr->environment();
5063 // There is no LLazyBailout instruction for stack-checks. We have to
5064 // prepare for lazy deoptimization explicitly here.
5065 if (instr->hydrogen()->is_function_entry()) {
5066 // Perform stack overflow check.
5067 Label done;
5068 __ CompareRoot(masm()->StackPointer(), Heap::kStackLimitRootIndex);
5069 __ B(hs, &done);
5070
5071 PredictableCodeSizeScope predictable(masm_,
5072 Assembler::kCallSizeWithRelocation);
5073 ASSERT(instr->context()->IsRegister());
5074 ASSERT(ToRegister(instr->context()).is(cp));
5075 CallCode(isolate()->builtins()->StackCheck(),
5076 RelocInfo::CODE_TARGET,
5077 instr);
5078 __ Bind(&done);
5079 } else {
5080 ASSERT(instr->hydrogen()->is_backwards_branch());
5081 // Perform stack overflow check if this goto needs it before jumping.
5082 DeferredStackCheck* deferred_stack_check =
5083 new(zone()) DeferredStackCheck(this, instr);
5084 __ CompareRoot(masm()->StackPointer(), Heap::kStackLimitRootIndex);
5085 __ B(lo, deferred_stack_check->entry());
5086
5087 EnsureSpaceForLazyDeopt(Deoptimizer::patch_size());
5088 __ Bind(instr->done_label());
5089 deferred_stack_check->SetExit(instr->done_label());
5090 RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt);
5091 // Don't record a deoptimization index for the safepoint here.
5092 // This will be done explicitly when emitting call and the safepoint in
5093 // the deferred code.
5094 }
5095 }
5096
5097
DoStoreCodeEntry(LStoreCodeEntry * instr)5098 void LCodeGen::DoStoreCodeEntry(LStoreCodeEntry* instr) {
5099 Register function = ToRegister(instr->function());
5100 Register code_object = ToRegister(instr->code_object());
5101 Register temp = ToRegister(instr->temp());
5102 __ Add(temp, code_object, Code::kHeaderSize - kHeapObjectTag);
5103 __ Str(temp, FieldMemOperand(function, JSFunction::kCodeEntryOffset));
5104 }
5105
5106
DoStoreContextSlot(LStoreContextSlot * instr)5107 void LCodeGen::DoStoreContextSlot(LStoreContextSlot* instr) {
5108 Register context = ToRegister(instr->context());
5109 Register value = ToRegister(instr->value());
5110 Register scratch = ToRegister(instr->temp());
5111 MemOperand target = ContextMemOperand(context, instr->slot_index());
5112
5113 Label skip_assignment;
5114
5115 if (instr->hydrogen()->RequiresHoleCheck()) {
5116 __ Ldr(scratch, target);
5117 if (instr->hydrogen()->DeoptimizesOnHole()) {
5118 DeoptimizeIfRoot(scratch, Heap::kTheHoleValueRootIndex,
5119 instr->environment());
5120 } else {
5121 __ JumpIfNotRoot(scratch, Heap::kTheHoleValueRootIndex, &skip_assignment);
5122 }
5123 }
5124
5125 __ Str(value, target);
5126 if (instr->hydrogen()->NeedsWriteBarrier()) {
5127 SmiCheck check_needed =
5128 instr->hydrogen()->value()->type().IsHeapObject()
5129 ? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
5130 __ RecordWriteContextSlot(context,
5131 target.offset(),
5132 value,
5133 scratch,
5134 GetLinkRegisterState(),
5135 kSaveFPRegs,
5136 EMIT_REMEMBERED_SET,
5137 check_needed);
5138 }
5139 __ Bind(&skip_assignment);
5140 }
5141
5142
DoStoreGlobalCell(LStoreGlobalCell * instr)5143 void LCodeGen::DoStoreGlobalCell(LStoreGlobalCell* instr) {
5144 Register value = ToRegister(instr->value());
5145 Register cell = ToRegister(instr->temp1());
5146
5147 // Load the cell.
5148 __ Mov(cell, Operand(instr->hydrogen()->cell().handle()));
5149
5150 // If the cell we are storing to contains the hole it could have
5151 // been deleted from the property dictionary. In that case, we need
5152 // to update the property details in the property dictionary to mark
5153 // it as no longer deleted. We deoptimize in that case.
5154 if (instr->hydrogen()->RequiresHoleCheck()) {
5155 Register payload = ToRegister(instr->temp2());
5156 __ Ldr(payload, FieldMemOperand(cell, Cell::kValueOffset));
5157 DeoptimizeIfRoot(
5158 payload, Heap::kTheHoleValueRootIndex, instr->environment());
5159 }
5160
5161 // Store the value.
5162 __ Str(value, FieldMemOperand(cell, Cell::kValueOffset));
5163 // Cells are always rescanned, so no write barrier here.
5164 }
5165
5166
DoStoreKeyedExternal(LStoreKeyedExternal * instr)5167 void LCodeGen::DoStoreKeyedExternal(LStoreKeyedExternal* instr) {
5168 Register ext_ptr = ToRegister(instr->elements());
5169 Register key = no_reg;
5170 Register scratch;
5171 ElementsKind elements_kind = instr->elements_kind();
5172
5173 bool key_is_smi = instr->hydrogen()->key()->representation().IsSmi();
5174 bool key_is_constant = instr->key()->IsConstantOperand();
5175 int constant_key = 0;
5176 if (key_is_constant) {
5177 ASSERT(instr->temp() == NULL);
5178 constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
5179 if (constant_key & 0xf0000000) {
5180 Abort(kArrayIndexConstantValueTooBig);
5181 }
5182 } else {
5183 key = ToRegister(instr->key());
5184 scratch = ToRegister(instr->temp());
5185 }
5186
5187 MemOperand dst =
5188 PrepareKeyedExternalArrayOperand(key, ext_ptr, scratch, key_is_smi,
5189 key_is_constant, constant_key,
5190 elements_kind,
5191 instr->base_offset());
5192
5193 if ((elements_kind == EXTERNAL_FLOAT32_ELEMENTS) ||
5194 (elements_kind == FLOAT32_ELEMENTS)) {
5195 DoubleRegister value = ToDoubleRegister(instr->value());
5196 DoubleRegister dbl_scratch = double_scratch();
5197 __ Fcvt(dbl_scratch.S(), value);
5198 __ Str(dbl_scratch.S(), dst);
5199 } else if ((elements_kind == EXTERNAL_FLOAT64_ELEMENTS) ||
5200 (elements_kind == FLOAT64_ELEMENTS)) {
5201 DoubleRegister value = ToDoubleRegister(instr->value());
5202 __ Str(value, dst);
5203 } else {
5204 Register value = ToRegister(instr->value());
5205
5206 switch (elements_kind) {
5207 case EXTERNAL_UINT8_CLAMPED_ELEMENTS:
5208 case EXTERNAL_INT8_ELEMENTS:
5209 case EXTERNAL_UINT8_ELEMENTS:
5210 case UINT8_ELEMENTS:
5211 case UINT8_CLAMPED_ELEMENTS:
5212 case INT8_ELEMENTS:
5213 __ Strb(value, dst);
5214 break;
5215 case EXTERNAL_INT16_ELEMENTS:
5216 case EXTERNAL_UINT16_ELEMENTS:
5217 case INT16_ELEMENTS:
5218 case UINT16_ELEMENTS:
5219 __ Strh(value, dst);
5220 break;
5221 case EXTERNAL_INT32_ELEMENTS:
5222 case EXTERNAL_UINT32_ELEMENTS:
5223 case INT32_ELEMENTS:
5224 case UINT32_ELEMENTS:
5225 __ Str(value.W(), dst);
5226 break;
5227 case FLOAT32_ELEMENTS:
5228 case FLOAT64_ELEMENTS:
5229 case EXTERNAL_FLOAT32_ELEMENTS:
5230 case EXTERNAL_FLOAT64_ELEMENTS:
5231 case FAST_DOUBLE_ELEMENTS:
5232 case FAST_ELEMENTS:
5233 case FAST_SMI_ELEMENTS:
5234 case FAST_HOLEY_DOUBLE_ELEMENTS:
5235 case FAST_HOLEY_ELEMENTS:
5236 case FAST_HOLEY_SMI_ELEMENTS:
5237 case DICTIONARY_ELEMENTS:
5238 case SLOPPY_ARGUMENTS_ELEMENTS:
5239 UNREACHABLE();
5240 break;
5241 }
5242 }
5243 }
5244
5245
DoStoreKeyedFixedDouble(LStoreKeyedFixedDouble * instr)5246 void LCodeGen::DoStoreKeyedFixedDouble(LStoreKeyedFixedDouble* instr) {
5247 Register elements = ToRegister(instr->elements());
5248 DoubleRegister value = ToDoubleRegister(instr->value());
5249 MemOperand mem_op;
5250
5251 if (instr->key()->IsConstantOperand()) {
5252 int constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
5253 if (constant_key & 0xf0000000) {
5254 Abort(kArrayIndexConstantValueTooBig);
5255 }
5256 int offset = instr->base_offset() + constant_key * kDoubleSize;
5257 mem_op = MemOperand(elements, offset);
5258 } else {
5259 Register store_base = ToRegister(instr->temp());
5260 Register key = ToRegister(instr->key());
5261 bool key_is_tagged = instr->hydrogen()->key()->representation().IsSmi();
5262 mem_op = PrepareKeyedArrayOperand(store_base, elements, key, key_is_tagged,
5263 instr->hydrogen()->elements_kind(),
5264 instr->hydrogen()->representation(),
5265 instr->base_offset());
5266 }
5267
5268 if (instr->NeedsCanonicalization()) {
5269 __ CanonicalizeNaN(double_scratch(), value);
5270 __ Str(double_scratch(), mem_op);
5271 } else {
5272 __ Str(value, mem_op);
5273 }
5274 }
5275
5276
DoStoreKeyedFixed(LStoreKeyedFixed * instr)5277 void LCodeGen::DoStoreKeyedFixed(LStoreKeyedFixed* instr) {
5278 Register value = ToRegister(instr->value());
5279 Register elements = ToRegister(instr->elements());
5280 Register scratch = no_reg;
5281 Register store_base = no_reg;
5282 Register key = no_reg;
5283 MemOperand mem_op;
5284
5285 if (!instr->key()->IsConstantOperand() ||
5286 instr->hydrogen()->NeedsWriteBarrier()) {
5287 scratch = ToRegister(instr->temp());
5288 }
5289
5290 Representation representation = instr->hydrogen()->value()->representation();
5291 if (instr->key()->IsConstantOperand()) {
5292 LConstantOperand* const_operand = LConstantOperand::cast(instr->key());
5293 int offset = instr->base_offset() +
5294 ToInteger32(const_operand) * kPointerSize;
5295 store_base = elements;
5296 if (representation.IsInteger32()) {
5297 ASSERT(instr->hydrogen()->store_mode() == STORE_TO_INITIALIZED_ENTRY);
5298 ASSERT(instr->hydrogen()->elements_kind() == FAST_SMI_ELEMENTS);
5299 STATIC_ASSERT((kSmiValueSize == 32) && (kSmiShift == 32) &&
5300 (kSmiTag == 0));
5301 mem_op = UntagSmiMemOperand(store_base, offset);
5302 } else {
5303 mem_op = MemOperand(store_base, offset);
5304 }
5305 } else {
5306 store_base = scratch;
5307 key = ToRegister(instr->key());
5308 bool key_is_tagged = instr->hydrogen()->key()->representation().IsSmi();
5309
5310 mem_op = PrepareKeyedArrayOperand(store_base, elements, key, key_is_tagged,
5311 instr->hydrogen()->elements_kind(),
5312 representation, instr->base_offset());
5313 }
5314
5315 __ Store(value, mem_op, representation);
5316
5317 if (instr->hydrogen()->NeedsWriteBarrier()) {
5318 ASSERT(representation.IsTagged());
5319 // This assignment may cause element_addr to alias store_base.
5320 Register element_addr = scratch;
5321 SmiCheck check_needed =
5322 instr->hydrogen()->value()->type().IsHeapObject()
5323 ? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
5324 // Compute address of modified element and store it into key register.
5325 __ Add(element_addr, mem_op.base(), mem_op.OffsetAsOperand());
5326 __ RecordWrite(elements, element_addr, value, GetLinkRegisterState(),
5327 kSaveFPRegs, EMIT_REMEMBERED_SET, check_needed,
5328 instr->hydrogen()->PointersToHereCheckForValue());
5329 }
5330 }
5331
5332
DoStoreKeyedGeneric(LStoreKeyedGeneric * instr)5333 void LCodeGen::DoStoreKeyedGeneric(LStoreKeyedGeneric* instr) {
5334 ASSERT(ToRegister(instr->context()).is(cp));
5335 ASSERT(ToRegister(instr->object()).Is(x2));
5336 ASSERT(ToRegister(instr->key()).Is(x1));
5337 ASSERT(ToRegister(instr->value()).Is(x0));
5338
5339 Handle<Code> ic = instr->strict_mode() == STRICT
5340 ? isolate()->builtins()->KeyedStoreIC_Initialize_Strict()
5341 : isolate()->builtins()->KeyedStoreIC_Initialize();
5342 CallCode(ic, RelocInfo::CODE_TARGET, instr);
5343 }
5344
5345
DoStoreNamedField(LStoreNamedField * instr)5346 void LCodeGen::DoStoreNamedField(LStoreNamedField* instr) {
5347 Representation representation = instr->representation();
5348
5349 Register object = ToRegister(instr->object());
5350 HObjectAccess access = instr->hydrogen()->access();
5351 int offset = access.offset();
5352
5353 if (access.IsExternalMemory()) {
5354 ASSERT(!instr->hydrogen()->has_transition());
5355 ASSERT(!instr->hydrogen()->NeedsWriteBarrier());
5356 Register value = ToRegister(instr->value());
5357 __ Store(value, MemOperand(object, offset), representation);
5358 return;
5359 }
5360
5361 __ AssertNotSmi(object);
5362
5363 if (representation.IsDouble()) {
5364 ASSERT(access.IsInobject());
5365 ASSERT(!instr->hydrogen()->has_transition());
5366 ASSERT(!instr->hydrogen()->NeedsWriteBarrier());
5367 FPRegister value = ToDoubleRegister(instr->value());
5368 __ Str(value, FieldMemOperand(object, offset));
5369 return;
5370 }
5371
5372 Register value = ToRegister(instr->value());
5373
5374 ASSERT(!representation.IsSmi() ||
5375 !instr->value()->IsConstantOperand() ||
5376 IsInteger32Constant(LConstantOperand::cast(instr->value())));
5377
5378 if (instr->hydrogen()->has_transition()) {
5379 Handle<Map> transition = instr->hydrogen()->transition_map();
5380 AddDeprecationDependency(transition);
5381 // Store the new map value.
5382 Register new_map_value = ToRegister(instr->temp0());
5383 __ Mov(new_map_value, Operand(transition));
5384 __ Str(new_map_value, FieldMemOperand(object, HeapObject::kMapOffset));
5385 if (instr->hydrogen()->NeedsWriteBarrierForMap()) {
5386 // Update the write barrier for the map field.
5387 __ RecordWriteForMap(object,
5388 new_map_value,
5389 ToRegister(instr->temp1()),
5390 GetLinkRegisterState(),
5391 kSaveFPRegs);
5392 }
5393 }
5394
5395 // Do the store.
5396 Register destination;
5397 if (access.IsInobject()) {
5398 destination = object;
5399 } else {
5400 Register temp0 = ToRegister(instr->temp0());
5401 __ Ldr(temp0, FieldMemOperand(object, JSObject::kPropertiesOffset));
5402 destination = temp0;
5403 }
5404
5405 if (representation.IsSmi() &&
5406 instr->hydrogen()->value()->representation().IsInteger32()) {
5407 ASSERT(instr->hydrogen()->store_mode() == STORE_TO_INITIALIZED_ENTRY);
5408 #ifdef DEBUG
5409 Register temp0 = ToRegister(instr->temp0());
5410 __ Ldr(temp0, FieldMemOperand(destination, offset));
5411 __ AssertSmi(temp0);
5412 // If destination aliased temp0, restore it to the address calculated
5413 // earlier.
5414 if (destination.Is(temp0)) {
5415 ASSERT(!access.IsInobject());
5416 __ Ldr(destination, FieldMemOperand(object, JSObject::kPropertiesOffset));
5417 }
5418 #endif
5419 STATIC_ASSERT(kSmiValueSize == 32 && kSmiShift == 32 && kSmiTag == 0);
5420 __ Store(value, UntagSmiFieldMemOperand(destination, offset),
5421 Representation::Integer32());
5422 } else {
5423 __ Store(value, FieldMemOperand(destination, offset), representation);
5424 }
5425 if (instr->hydrogen()->NeedsWriteBarrier()) {
5426 __ RecordWriteField(destination,
5427 offset,
5428 value, // Clobbered.
5429 ToRegister(instr->temp1()), // Clobbered.
5430 GetLinkRegisterState(),
5431 kSaveFPRegs,
5432 EMIT_REMEMBERED_SET,
5433 instr->hydrogen()->SmiCheckForWriteBarrier(),
5434 instr->hydrogen()->PointersToHereCheckForValue());
5435 }
5436 }
5437
5438
DoStoreNamedGeneric(LStoreNamedGeneric * instr)5439 void LCodeGen::DoStoreNamedGeneric(LStoreNamedGeneric* instr) {
5440 ASSERT(ToRegister(instr->context()).is(cp));
5441 ASSERT(ToRegister(instr->value()).is(x0));
5442 ASSERT(ToRegister(instr->object()).is(x1));
5443
5444 // Name must be in x2.
5445 __ Mov(x2, Operand(instr->name()));
5446 Handle<Code> ic = StoreIC::initialize_stub(isolate(), instr->strict_mode());
5447 CallCode(ic, RelocInfo::CODE_TARGET, instr);
5448 }
5449
5450
DoStringAdd(LStringAdd * instr)5451 void LCodeGen::DoStringAdd(LStringAdd* instr) {
5452 ASSERT(ToRegister(instr->context()).is(cp));
5453 ASSERT(ToRegister(instr->left()).Is(x1));
5454 ASSERT(ToRegister(instr->right()).Is(x0));
5455 StringAddStub stub(isolate(),
5456 instr->hydrogen()->flags(),
5457 instr->hydrogen()->pretenure_flag());
5458 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
5459 }
5460
5461
DoStringCharCodeAt(LStringCharCodeAt * instr)5462 void LCodeGen::DoStringCharCodeAt(LStringCharCodeAt* instr) {
5463 class DeferredStringCharCodeAt: public LDeferredCode {
5464 public:
5465 DeferredStringCharCodeAt(LCodeGen* codegen, LStringCharCodeAt* instr)
5466 : LDeferredCode(codegen), instr_(instr) { }
5467 virtual void Generate() { codegen()->DoDeferredStringCharCodeAt(instr_); }
5468 virtual LInstruction* instr() { return instr_; }
5469 private:
5470 LStringCharCodeAt* instr_;
5471 };
5472
5473 DeferredStringCharCodeAt* deferred =
5474 new(zone()) DeferredStringCharCodeAt(this, instr);
5475
5476 StringCharLoadGenerator::Generate(masm(),
5477 ToRegister(instr->string()),
5478 ToRegister32(instr->index()),
5479 ToRegister(instr->result()),
5480 deferred->entry());
5481 __ Bind(deferred->exit());
5482 }
5483
5484
DoDeferredStringCharCodeAt(LStringCharCodeAt * instr)5485 void LCodeGen::DoDeferredStringCharCodeAt(LStringCharCodeAt* instr) {
5486 Register string = ToRegister(instr->string());
5487 Register result = ToRegister(instr->result());
5488
5489 // TODO(3095996): Get rid of this. For now, we need to make the
5490 // result register contain a valid pointer because it is already
5491 // contained in the register pointer map.
5492 __ Mov(result, 0);
5493
5494 PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters);
5495 __ Push(string);
5496 // Push the index as a smi. This is safe because of the checks in
5497 // DoStringCharCodeAt above.
5498 Register index = ToRegister(instr->index());
5499 __ SmiTagAndPush(index);
5500
5501 CallRuntimeFromDeferred(Runtime::kHiddenStringCharCodeAt, 2, instr,
5502 instr->context());
5503 __ AssertSmi(x0);
5504 __ SmiUntag(x0);
5505 __ StoreToSafepointRegisterSlot(x0, result);
5506 }
5507
5508
DoStringCharFromCode(LStringCharFromCode * instr)5509 void LCodeGen::DoStringCharFromCode(LStringCharFromCode* instr) {
5510 class DeferredStringCharFromCode: public LDeferredCode {
5511 public:
5512 DeferredStringCharFromCode(LCodeGen* codegen, LStringCharFromCode* instr)
5513 : LDeferredCode(codegen), instr_(instr) { }
5514 virtual void Generate() { codegen()->DoDeferredStringCharFromCode(instr_); }
5515 virtual LInstruction* instr() { return instr_; }
5516 private:
5517 LStringCharFromCode* instr_;
5518 };
5519
5520 DeferredStringCharFromCode* deferred =
5521 new(zone()) DeferredStringCharFromCode(this, instr);
5522
5523 ASSERT(instr->hydrogen()->value()->representation().IsInteger32());
5524 Register char_code = ToRegister32(instr->char_code());
5525 Register result = ToRegister(instr->result());
5526
5527 __ Cmp(char_code, String::kMaxOneByteCharCode);
5528 __ B(hi, deferred->entry());
5529 __ LoadRoot(result, Heap::kSingleCharacterStringCacheRootIndex);
5530 __ Add(result, result, FixedArray::kHeaderSize - kHeapObjectTag);
5531 __ Ldr(result, MemOperand(result, char_code, SXTW, kPointerSizeLog2));
5532 __ CompareRoot(result, Heap::kUndefinedValueRootIndex);
5533 __ B(eq, deferred->entry());
5534 __ Bind(deferred->exit());
5535 }
5536
5537
DoDeferredStringCharFromCode(LStringCharFromCode * instr)5538 void LCodeGen::DoDeferredStringCharFromCode(LStringCharFromCode* instr) {
5539 Register char_code = ToRegister(instr->char_code());
5540 Register result = ToRegister(instr->result());
5541
5542 // TODO(3095996): Get rid of this. For now, we need to make the
5543 // result register contain a valid pointer because it is already
5544 // contained in the register pointer map.
5545 __ Mov(result, 0);
5546
5547 PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters);
5548 __ SmiTagAndPush(char_code);
5549 CallRuntimeFromDeferred(Runtime::kCharFromCode, 1, instr, instr->context());
5550 __ StoreToSafepointRegisterSlot(x0, result);
5551 }
5552
5553
DoStringCompareAndBranch(LStringCompareAndBranch * instr)5554 void LCodeGen::DoStringCompareAndBranch(LStringCompareAndBranch* instr) {
5555 ASSERT(ToRegister(instr->context()).is(cp));
5556 Token::Value op = instr->op();
5557
5558 Handle<Code> ic = CompareIC::GetUninitialized(isolate(), op);
5559 CallCode(ic, RelocInfo::CODE_TARGET, instr);
5560 InlineSmiCheckInfo::EmitNotInlined(masm());
5561
5562 Condition condition = TokenToCondition(op, false);
5563
5564 EmitCompareAndBranch(instr, condition, x0, 0);
5565 }
5566
5567
DoSubI(LSubI * instr)5568 void LCodeGen::DoSubI(LSubI* instr) {
5569 bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
5570 Register result = ToRegister32(instr->result());
5571 Register left = ToRegister32(instr->left());
5572 Operand right = ToShiftedRightOperand32I(instr->right(), instr);
5573
5574 if (can_overflow) {
5575 __ Subs(result, left, right);
5576 DeoptimizeIf(vs, instr->environment());
5577 } else {
5578 __ Sub(result, left, right);
5579 }
5580 }
5581
5582
DoSubS(LSubS * instr)5583 void LCodeGen::DoSubS(LSubS* instr) {
5584 bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
5585 Register result = ToRegister(instr->result());
5586 Register left = ToRegister(instr->left());
5587 Operand right = ToOperand(instr->right());
5588 if (can_overflow) {
5589 __ Subs(result, left, right);
5590 DeoptimizeIf(vs, instr->environment());
5591 } else {
5592 __ Sub(result, left, right);
5593 }
5594 }
5595
5596
DoDeferredTaggedToI(LTaggedToI * instr,LOperand * value,LOperand * temp1,LOperand * temp2)5597 void LCodeGen::DoDeferredTaggedToI(LTaggedToI* instr,
5598 LOperand* value,
5599 LOperand* temp1,
5600 LOperand* temp2) {
5601 Register input = ToRegister(value);
5602 Register scratch1 = ToRegister(temp1);
5603 DoubleRegister dbl_scratch1 = double_scratch();
5604
5605 Label done;
5606
5607 // Load heap object map.
5608 __ Ldr(scratch1, FieldMemOperand(input, HeapObject::kMapOffset));
5609
5610 if (instr->truncating()) {
5611 Register output = ToRegister(instr->result());
5612 Label check_bools;
5613
5614 // If it's not a heap number, jump to undefined check.
5615 __ JumpIfNotRoot(scratch1, Heap::kHeapNumberMapRootIndex, &check_bools);
5616
5617 // A heap number: load value and convert to int32 using truncating function.
5618 __ TruncateHeapNumberToI(output, input);
5619 __ B(&done);
5620
5621 __ Bind(&check_bools);
5622
5623 Register true_root = output;
5624 Register false_root = scratch1;
5625 __ LoadTrueFalseRoots(true_root, false_root);
5626 __ Cmp(input, true_root);
5627 __ Cset(output, eq);
5628 __ Ccmp(input, false_root, ZFlag, ne);
5629 __ B(eq, &done);
5630
5631 // Output contains zero, undefined is converted to zero for truncating
5632 // conversions.
5633 DeoptimizeIfNotRoot(input, Heap::kUndefinedValueRootIndex,
5634 instr->environment());
5635 } else {
5636 Register output = ToRegister32(instr->result());
5637
5638 DoubleRegister dbl_scratch2 = ToDoubleRegister(temp2);
5639
5640 // Deoptimized if it's not a heap number.
5641 DeoptimizeIfNotRoot(scratch1, Heap::kHeapNumberMapRootIndex,
5642 instr->environment());
5643
5644 // A heap number: load value and convert to int32 using non-truncating
5645 // function. If the result is out of range, branch to deoptimize.
5646 __ Ldr(dbl_scratch1, FieldMemOperand(input, HeapNumber::kValueOffset));
5647 __ TryRepresentDoubleAsInt32(output, dbl_scratch1, dbl_scratch2);
5648 DeoptimizeIf(ne, instr->environment());
5649
5650 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
5651 __ Cmp(output, 0);
5652 __ B(ne, &done);
5653 __ Fmov(scratch1, dbl_scratch1);
5654 DeoptimizeIfNegative(scratch1, instr->environment());
5655 }
5656 }
5657 __ Bind(&done);
5658 }
5659
5660
DoTaggedToI(LTaggedToI * instr)5661 void LCodeGen::DoTaggedToI(LTaggedToI* instr) {
5662 class DeferredTaggedToI: public LDeferredCode {
5663 public:
5664 DeferredTaggedToI(LCodeGen* codegen, LTaggedToI* instr)
5665 : LDeferredCode(codegen), instr_(instr) { }
5666 virtual void Generate() {
5667 codegen()->DoDeferredTaggedToI(instr_, instr_->value(), instr_->temp1(),
5668 instr_->temp2());
5669 }
5670
5671 virtual LInstruction* instr() { return instr_; }
5672 private:
5673 LTaggedToI* instr_;
5674 };
5675
5676 Register input = ToRegister(instr->value());
5677 Register output = ToRegister(instr->result());
5678
5679 if (instr->hydrogen()->value()->representation().IsSmi()) {
5680 __ SmiUntag(output, input);
5681 } else {
5682 DeferredTaggedToI* deferred = new(zone()) DeferredTaggedToI(this, instr);
5683
5684 __ JumpIfNotSmi(input, deferred->entry());
5685 __ SmiUntag(output, input);
5686 __ Bind(deferred->exit());
5687 }
5688 }
5689
5690
DoThisFunction(LThisFunction * instr)5691 void LCodeGen::DoThisFunction(LThisFunction* instr) {
5692 Register result = ToRegister(instr->result());
5693 __ Ldr(result, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
5694 }
5695
5696
DoToFastProperties(LToFastProperties * instr)5697 void LCodeGen::DoToFastProperties(LToFastProperties* instr) {
5698 ASSERT(ToRegister(instr->value()).Is(x0));
5699 ASSERT(ToRegister(instr->result()).Is(x0));
5700 __ Push(x0);
5701 CallRuntime(Runtime::kToFastProperties, 1, instr);
5702 }
5703
5704
DoRegExpLiteral(LRegExpLiteral * instr)5705 void LCodeGen::DoRegExpLiteral(LRegExpLiteral* instr) {
5706 ASSERT(ToRegister(instr->context()).is(cp));
5707 Label materialized;
5708 // Registers will be used as follows:
5709 // x7 = literals array.
5710 // x1 = regexp literal.
5711 // x0 = regexp literal clone.
5712 // x10-x12 are used as temporaries.
5713 int literal_offset =
5714 FixedArray::OffsetOfElementAt(instr->hydrogen()->literal_index());
5715 __ LoadObject(x7, instr->hydrogen()->literals());
5716 __ Ldr(x1, FieldMemOperand(x7, literal_offset));
5717 __ JumpIfNotRoot(x1, Heap::kUndefinedValueRootIndex, &materialized);
5718
5719 // Create regexp literal using runtime function
5720 // Result will be in x0.
5721 __ Mov(x12, Operand(Smi::FromInt(instr->hydrogen()->literal_index())));
5722 __ Mov(x11, Operand(instr->hydrogen()->pattern()));
5723 __ Mov(x10, Operand(instr->hydrogen()->flags()));
5724 __ Push(x7, x12, x11, x10);
5725 CallRuntime(Runtime::kHiddenMaterializeRegExpLiteral, 4, instr);
5726 __ Mov(x1, x0);
5727
5728 __ Bind(&materialized);
5729 int size = JSRegExp::kSize + JSRegExp::kInObjectFieldCount * kPointerSize;
5730 Label allocated, runtime_allocate;
5731
5732 __ Allocate(size, x0, x10, x11, &runtime_allocate, TAG_OBJECT);
5733 __ B(&allocated);
5734
5735 __ Bind(&runtime_allocate);
5736 __ Mov(x0, Smi::FromInt(size));
5737 __ Push(x1, x0);
5738 CallRuntime(Runtime::kHiddenAllocateInNewSpace, 1, instr);
5739 __ Pop(x1);
5740
5741 __ Bind(&allocated);
5742 // Copy the content into the newly allocated memory.
5743 __ CopyFields(x0, x1, CPURegList(x10, x11, x12), size / kPointerSize);
5744 }
5745
5746
DoTransitionElementsKind(LTransitionElementsKind * instr)5747 void LCodeGen::DoTransitionElementsKind(LTransitionElementsKind* instr) {
5748 Register object = ToRegister(instr->object());
5749
5750 Handle<Map> from_map = instr->original_map();
5751 Handle<Map> to_map = instr->transitioned_map();
5752 ElementsKind from_kind = instr->from_kind();
5753 ElementsKind to_kind = instr->to_kind();
5754
5755 Label not_applicable;
5756
5757 if (IsSimpleMapChangeTransition(from_kind, to_kind)) {
5758 Register temp1 = ToRegister(instr->temp1());
5759 Register new_map = ToRegister(instr->temp2());
5760 __ CheckMap(object, temp1, from_map, ¬_applicable, DONT_DO_SMI_CHECK);
5761 __ Mov(new_map, Operand(to_map));
5762 __ Str(new_map, FieldMemOperand(object, HeapObject::kMapOffset));
5763 // Write barrier.
5764 __ RecordWriteForMap(object, new_map, temp1, GetLinkRegisterState(),
5765 kDontSaveFPRegs);
5766 } else {
5767 {
5768 UseScratchRegisterScope temps(masm());
5769 // Use the temp register only in a restricted scope - the codegen checks
5770 // that we do not use any register across a call.
5771 __ CheckMap(object, temps.AcquireX(), from_map, ¬_applicable,
5772 DONT_DO_SMI_CHECK);
5773 }
5774 ASSERT(object.is(x0));
5775 ASSERT(ToRegister(instr->context()).is(cp));
5776 PushSafepointRegistersScope scope(
5777 this, Safepoint::kWithRegistersAndDoubles);
5778 __ Mov(x1, Operand(to_map));
5779 bool is_js_array = from_map->instance_type() == JS_ARRAY_TYPE;
5780 TransitionElementsKindStub stub(isolate(), from_kind, to_kind, is_js_array);
5781 __ CallStub(&stub);
5782 RecordSafepointWithRegistersAndDoubles(
5783 instr->pointer_map(), 0, Safepoint::kLazyDeopt);
5784 }
5785 __ Bind(¬_applicable);
5786 }
5787
5788
DoTrapAllocationMemento(LTrapAllocationMemento * instr)5789 void LCodeGen::DoTrapAllocationMemento(LTrapAllocationMemento* instr) {
5790 Register object = ToRegister(instr->object());
5791 Register temp1 = ToRegister(instr->temp1());
5792 Register temp2 = ToRegister(instr->temp2());
5793
5794 Label no_memento_found;
5795 __ TestJSArrayForAllocationMemento(object, temp1, temp2, &no_memento_found);
5796 DeoptimizeIf(eq, instr->environment());
5797 __ Bind(&no_memento_found);
5798 }
5799
5800
DoTruncateDoubleToIntOrSmi(LTruncateDoubleToIntOrSmi * instr)5801 void LCodeGen::DoTruncateDoubleToIntOrSmi(LTruncateDoubleToIntOrSmi* instr) {
5802 DoubleRegister input = ToDoubleRegister(instr->value());
5803 Register result = ToRegister(instr->result());
5804 __ TruncateDoubleToI(result, input);
5805 if (instr->tag_result()) {
5806 __ SmiTag(result, result);
5807 }
5808 }
5809
5810
DoTypeof(LTypeof * instr)5811 void LCodeGen::DoTypeof(LTypeof* instr) {
5812 Register input = ToRegister(instr->value());
5813 __ Push(input);
5814 CallRuntime(Runtime::kTypeof, 1, instr);
5815 }
5816
5817
DoTypeofIsAndBranch(LTypeofIsAndBranch * instr)5818 void LCodeGen::DoTypeofIsAndBranch(LTypeofIsAndBranch* instr) {
5819 Handle<String> type_name = instr->type_literal();
5820 Label* true_label = instr->TrueLabel(chunk_);
5821 Label* false_label = instr->FalseLabel(chunk_);
5822 Register value = ToRegister(instr->value());
5823
5824 Factory* factory = isolate()->factory();
5825 if (String::Equals(type_name, factory->number_string())) {
5826 ASSERT(instr->temp1() != NULL);
5827 Register map = ToRegister(instr->temp1());
5828
5829 __ JumpIfSmi(value, true_label);
5830 __ Ldr(map, FieldMemOperand(value, HeapObject::kMapOffset));
5831 __ CompareRoot(map, Heap::kHeapNumberMapRootIndex);
5832 EmitBranch(instr, eq);
5833
5834 } else if (String::Equals(type_name, factory->string_string())) {
5835 ASSERT((instr->temp1() != NULL) && (instr->temp2() != NULL));
5836 Register map = ToRegister(instr->temp1());
5837 Register scratch = ToRegister(instr->temp2());
5838
5839 __ JumpIfSmi(value, false_label);
5840 __ JumpIfObjectType(
5841 value, map, scratch, FIRST_NONSTRING_TYPE, false_label, ge);
5842 __ Ldrb(scratch, FieldMemOperand(map, Map::kBitFieldOffset));
5843 EmitTestAndBranch(instr, eq, scratch, 1 << Map::kIsUndetectable);
5844
5845 } else if (String::Equals(type_name, factory->symbol_string())) {
5846 ASSERT((instr->temp1() != NULL) && (instr->temp2() != NULL));
5847 Register map = ToRegister(instr->temp1());
5848 Register scratch = ToRegister(instr->temp2());
5849
5850 __ JumpIfSmi(value, false_label);
5851 __ CompareObjectType(value, map, scratch, SYMBOL_TYPE);
5852 EmitBranch(instr, eq);
5853
5854 } else if (String::Equals(type_name, factory->boolean_string())) {
5855 __ JumpIfRoot(value, Heap::kTrueValueRootIndex, true_label);
5856 __ CompareRoot(value, Heap::kFalseValueRootIndex);
5857 EmitBranch(instr, eq);
5858
5859 } else if (FLAG_harmony_typeof &&
5860 String::Equals(type_name, factory->null_string())) {
5861 __ CompareRoot(value, Heap::kNullValueRootIndex);
5862 EmitBranch(instr, eq);
5863
5864 } else if (String::Equals(type_name, factory->undefined_string())) {
5865 ASSERT(instr->temp1() != NULL);
5866 Register scratch = ToRegister(instr->temp1());
5867
5868 __ JumpIfRoot(value, Heap::kUndefinedValueRootIndex, true_label);
5869 __ JumpIfSmi(value, false_label);
5870 // Check for undetectable objects and jump to the true branch in this case.
5871 __ Ldr(scratch, FieldMemOperand(value, HeapObject::kMapOffset));
5872 __ Ldrb(scratch, FieldMemOperand(scratch, Map::kBitFieldOffset));
5873 EmitTestAndBranch(instr, ne, scratch, 1 << Map::kIsUndetectable);
5874
5875 } else if (String::Equals(type_name, factory->function_string())) {
5876 STATIC_ASSERT(NUM_OF_CALLABLE_SPEC_OBJECT_TYPES == 2);
5877 ASSERT(instr->temp1() != NULL);
5878 Register type = ToRegister(instr->temp1());
5879
5880 __ JumpIfSmi(value, false_label);
5881 __ JumpIfObjectType(value, type, type, JS_FUNCTION_TYPE, true_label);
5882 // HeapObject's type has been loaded into type register by JumpIfObjectType.
5883 EmitCompareAndBranch(instr, eq, type, JS_FUNCTION_PROXY_TYPE);
5884
5885 } else if (String::Equals(type_name, factory->object_string())) {
5886 ASSERT((instr->temp1() != NULL) && (instr->temp2() != NULL));
5887 Register map = ToRegister(instr->temp1());
5888 Register scratch = ToRegister(instr->temp2());
5889
5890 __ JumpIfSmi(value, false_label);
5891 if (!FLAG_harmony_typeof) {
5892 __ JumpIfRoot(value, Heap::kNullValueRootIndex, true_label);
5893 }
5894 __ JumpIfObjectType(value, map, scratch,
5895 FIRST_NONCALLABLE_SPEC_OBJECT_TYPE, false_label, lt);
5896 __ CompareInstanceType(map, scratch, LAST_NONCALLABLE_SPEC_OBJECT_TYPE);
5897 __ B(gt, false_label);
5898 // Check for undetectable objects => false.
5899 __ Ldrb(scratch, FieldMemOperand(map, Map::kBitFieldOffset));
5900 EmitTestAndBranch(instr, eq, scratch, 1 << Map::kIsUndetectable);
5901
5902 } else {
5903 __ B(false_label);
5904 }
5905 }
5906
5907
DoUint32ToDouble(LUint32ToDouble * instr)5908 void LCodeGen::DoUint32ToDouble(LUint32ToDouble* instr) {
5909 __ Ucvtf(ToDoubleRegister(instr->result()), ToRegister32(instr->value()));
5910 }
5911
5912
DoCheckMapValue(LCheckMapValue * instr)5913 void LCodeGen::DoCheckMapValue(LCheckMapValue* instr) {
5914 Register object = ToRegister(instr->value());
5915 Register map = ToRegister(instr->map());
5916 Register temp = ToRegister(instr->temp());
5917 __ Ldr(temp, FieldMemOperand(object, HeapObject::kMapOffset));
5918 __ Cmp(map, temp);
5919 DeoptimizeIf(ne, instr->environment());
5920 }
5921
5922
DoWrapReceiver(LWrapReceiver * instr)5923 void LCodeGen::DoWrapReceiver(LWrapReceiver* instr) {
5924 Register receiver = ToRegister(instr->receiver());
5925 Register function = ToRegister(instr->function());
5926 Register result = ToRegister(instr->result());
5927
5928 // If the receiver is null or undefined, we have to pass the global object as
5929 // a receiver to normal functions. Values have to be passed unchanged to
5930 // builtins and strict-mode functions.
5931 Label global_object, done, copy_receiver;
5932
5933 if (!instr->hydrogen()->known_function()) {
5934 __ Ldr(result, FieldMemOperand(function,
5935 JSFunction::kSharedFunctionInfoOffset));
5936
5937 // CompilerHints is an int32 field. See objects.h.
5938 __ Ldr(result.W(),
5939 FieldMemOperand(result, SharedFunctionInfo::kCompilerHintsOffset));
5940
5941 // Do not transform the receiver to object for strict mode functions.
5942 __ Tbnz(result, SharedFunctionInfo::kStrictModeFunction, ©_receiver);
5943
5944 // Do not transform the receiver to object for builtins.
5945 __ Tbnz(result, SharedFunctionInfo::kNative, ©_receiver);
5946 }
5947
5948 // Normal function. Replace undefined or null with global receiver.
5949 __ JumpIfRoot(receiver, Heap::kNullValueRootIndex, &global_object);
5950 __ JumpIfRoot(receiver, Heap::kUndefinedValueRootIndex, &global_object);
5951
5952 // Deoptimize if the receiver is not a JS object.
5953 DeoptimizeIfSmi(receiver, instr->environment());
5954 __ CompareObjectType(receiver, result, result, FIRST_SPEC_OBJECT_TYPE);
5955 __ B(ge, ©_receiver);
5956 Deoptimize(instr->environment());
5957
5958 __ Bind(&global_object);
5959 __ Ldr(result, FieldMemOperand(function, JSFunction::kContextOffset));
5960 __ Ldr(result, ContextMemOperand(result, Context::GLOBAL_OBJECT_INDEX));
5961 __ Ldr(result, FieldMemOperand(result, GlobalObject::kGlobalReceiverOffset));
5962 __ B(&done);
5963
5964 __ Bind(©_receiver);
5965 __ Mov(result, receiver);
5966 __ Bind(&done);
5967 }
5968
5969
DoDeferredLoadMutableDouble(LLoadFieldByIndex * instr,Register result,Register object,Register index)5970 void LCodeGen::DoDeferredLoadMutableDouble(LLoadFieldByIndex* instr,
5971 Register result,
5972 Register object,
5973 Register index) {
5974 PushSafepointRegistersScope scope(this, Safepoint::kWithRegisters);
5975 __ Push(object);
5976 __ Push(index);
5977 __ Mov(cp, 0);
5978 __ CallRuntimeSaveDoubles(Runtime::kLoadMutableDouble);
5979 RecordSafepointWithRegisters(
5980 instr->pointer_map(), 2, Safepoint::kNoLazyDeopt);
5981 __ StoreToSafepointRegisterSlot(x0, result);
5982 }
5983
5984
DoLoadFieldByIndex(LLoadFieldByIndex * instr)5985 void LCodeGen::DoLoadFieldByIndex(LLoadFieldByIndex* instr) {
5986 class DeferredLoadMutableDouble V8_FINAL : public LDeferredCode {
5987 public:
5988 DeferredLoadMutableDouble(LCodeGen* codegen,
5989 LLoadFieldByIndex* instr,
5990 Register result,
5991 Register object,
5992 Register index)
5993 : LDeferredCode(codegen),
5994 instr_(instr),
5995 result_(result),
5996 object_(object),
5997 index_(index) {
5998 }
5999 virtual void Generate() V8_OVERRIDE {
6000 codegen()->DoDeferredLoadMutableDouble(instr_, result_, object_, index_);
6001 }
6002 virtual LInstruction* instr() V8_OVERRIDE { return instr_; }
6003 private:
6004 LLoadFieldByIndex* instr_;
6005 Register result_;
6006 Register object_;
6007 Register index_;
6008 };
6009 Register object = ToRegister(instr->object());
6010 Register index = ToRegister(instr->index());
6011 Register result = ToRegister(instr->result());
6012
6013 __ AssertSmi(index);
6014
6015 DeferredLoadMutableDouble* deferred;
6016 deferred = new(zone()) DeferredLoadMutableDouble(
6017 this, instr, result, object, index);
6018
6019 Label out_of_object, done;
6020
6021 __ TestAndBranchIfAnySet(
6022 index, reinterpret_cast<uint64_t>(Smi::FromInt(1)), deferred->entry());
6023 __ Mov(index, Operand(index, ASR, 1));
6024
6025 __ Cmp(index, Smi::FromInt(0));
6026 __ B(lt, &out_of_object);
6027
6028 STATIC_ASSERT(kPointerSizeLog2 > kSmiTagSize);
6029 __ Add(result, object, Operand::UntagSmiAndScale(index, kPointerSizeLog2));
6030 __ Ldr(result, FieldMemOperand(result, JSObject::kHeaderSize));
6031
6032 __ B(&done);
6033
6034 __ Bind(&out_of_object);
6035 __ Ldr(result, FieldMemOperand(object, JSObject::kPropertiesOffset));
6036 // Index is equal to negated out of object property index plus 1.
6037 __ Sub(result, result, Operand::UntagSmiAndScale(index, kPointerSizeLog2));
6038 __ Ldr(result, FieldMemOperand(result,
6039 FixedArray::kHeaderSize - kPointerSize));
6040 __ Bind(deferred->exit());
6041 __ Bind(&done);
6042 }
6043
6044
DoStoreFrameContext(LStoreFrameContext * instr)6045 void LCodeGen::DoStoreFrameContext(LStoreFrameContext* instr) {
6046 Register context = ToRegister(instr->context());
6047 __ Str(context, MemOperand(fp, StandardFrameConstants::kContextOffset));
6048 }
6049
6050
DoAllocateBlockContext(LAllocateBlockContext * instr)6051 void LCodeGen::DoAllocateBlockContext(LAllocateBlockContext* instr) {
6052 Handle<ScopeInfo> scope_info = instr->scope_info();
6053 __ Push(scope_info);
6054 __ Push(ToRegister(instr->function()));
6055 CallRuntime(Runtime::kHiddenPushBlockContext, 2, instr);
6056 RecordSafepoint(Safepoint::kNoLazyDeopt);
6057 }
6058
6059
6060
6061 } } // namespace v8::internal
6062