1 //===-- APInt.cpp - Implement APInt class ---------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements a class to represent arbitrary precision integer
11 // constant values and provide a variety of arithmetic operations on them.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/FoldingSet.h"
17 #include "llvm/ADT/Hashing.h"
18 #include "llvm/ADT/SmallString.h"
19 #include "llvm/ADT/StringRef.h"
20 #include "llvm/Support/Debug.h"
21 #include "llvm/Support/ErrorHandling.h"
22 #include "llvm/Support/MathExtras.h"
23 #include "llvm/Support/raw_ostream.h"
24 #include <cmath>
25 #include <cstdlib>
26 #include <cstring>
27 #include <limits>
28 using namespace llvm;
29
30 #define DEBUG_TYPE "apint"
31
32 /// A utility function for allocating memory, checking for allocation failures,
33 /// and ensuring the contents are zeroed.
getClearedMemory(unsigned numWords)34 inline static uint64_t* getClearedMemory(unsigned numWords) {
35 uint64_t * result = new uint64_t[numWords];
36 assert(result && "APInt memory allocation fails!");
37 memset(result, 0, numWords * sizeof(uint64_t));
38 return result;
39 }
40
41 /// A utility function for allocating memory and checking for allocation
42 /// failure. The content is not zeroed.
getMemory(unsigned numWords)43 inline static uint64_t* getMemory(unsigned numWords) {
44 uint64_t * result = new uint64_t[numWords];
45 assert(result && "APInt memory allocation fails!");
46 return result;
47 }
48
49 /// A utility function that converts a character to a digit.
getDigit(char cdigit,uint8_t radix)50 inline static unsigned getDigit(char cdigit, uint8_t radix) {
51 unsigned r;
52
53 if (radix == 16 || radix == 36) {
54 r = cdigit - '0';
55 if (r <= 9)
56 return r;
57
58 r = cdigit - 'A';
59 if (r <= radix - 11U)
60 return r + 10;
61
62 r = cdigit - 'a';
63 if (r <= radix - 11U)
64 return r + 10;
65
66 radix = 10;
67 }
68
69 r = cdigit - '0';
70 if (r < radix)
71 return r;
72
73 return -1U;
74 }
75
76
initSlowCase(unsigned numBits,uint64_t val,bool isSigned)77 void APInt::initSlowCase(unsigned numBits, uint64_t val, bool isSigned) {
78 pVal = getClearedMemory(getNumWords());
79 pVal[0] = val;
80 if (isSigned && int64_t(val) < 0)
81 for (unsigned i = 1; i < getNumWords(); ++i)
82 pVal[i] = -1ULL;
83 }
84
initSlowCase(const APInt & that)85 void APInt::initSlowCase(const APInt& that) {
86 pVal = getMemory(getNumWords());
87 memcpy(pVal, that.pVal, getNumWords() * APINT_WORD_SIZE);
88 }
89
initFromArray(ArrayRef<uint64_t> bigVal)90 void APInt::initFromArray(ArrayRef<uint64_t> bigVal) {
91 assert(BitWidth && "Bitwidth too small");
92 assert(bigVal.data() && "Null pointer detected!");
93 if (isSingleWord())
94 VAL = bigVal[0];
95 else {
96 // Get memory, cleared to 0
97 pVal = getClearedMemory(getNumWords());
98 // Calculate the number of words to copy
99 unsigned words = std::min<unsigned>(bigVal.size(), getNumWords());
100 // Copy the words from bigVal to pVal
101 memcpy(pVal, bigVal.data(), words * APINT_WORD_SIZE);
102 }
103 // Make sure unused high bits are cleared
104 clearUnusedBits();
105 }
106
APInt(unsigned numBits,ArrayRef<uint64_t> bigVal)107 APInt::APInt(unsigned numBits, ArrayRef<uint64_t> bigVal)
108 : BitWidth(numBits), VAL(0) {
109 initFromArray(bigVal);
110 }
111
APInt(unsigned numBits,unsigned numWords,const uint64_t bigVal[])112 APInt::APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[])
113 : BitWidth(numBits), VAL(0) {
114 initFromArray(makeArrayRef(bigVal, numWords));
115 }
116
APInt(unsigned numbits,StringRef Str,uint8_t radix)117 APInt::APInt(unsigned numbits, StringRef Str, uint8_t radix)
118 : BitWidth(numbits), VAL(0) {
119 assert(BitWidth && "Bitwidth too small");
120 fromString(numbits, Str, radix);
121 }
122
AssignSlowCase(const APInt & RHS)123 APInt& APInt::AssignSlowCase(const APInt& RHS) {
124 // Don't do anything for X = X
125 if (this == &RHS)
126 return *this;
127
128 if (BitWidth == RHS.getBitWidth()) {
129 // assume same bit-width single-word case is already handled
130 assert(!isSingleWord());
131 memcpy(pVal, RHS.pVal, getNumWords() * APINT_WORD_SIZE);
132 return *this;
133 }
134
135 if (isSingleWord()) {
136 // assume case where both are single words is already handled
137 assert(!RHS.isSingleWord());
138 VAL = 0;
139 pVal = getMemory(RHS.getNumWords());
140 memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE);
141 } else if (getNumWords() == RHS.getNumWords())
142 memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE);
143 else if (RHS.isSingleWord()) {
144 delete [] pVal;
145 VAL = RHS.VAL;
146 } else {
147 delete [] pVal;
148 pVal = getMemory(RHS.getNumWords());
149 memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE);
150 }
151 BitWidth = RHS.BitWidth;
152 return clearUnusedBits();
153 }
154
operator =(uint64_t RHS)155 APInt& APInt::operator=(uint64_t RHS) {
156 if (isSingleWord())
157 VAL = RHS;
158 else {
159 pVal[0] = RHS;
160 memset(pVal+1, 0, (getNumWords() - 1) * APINT_WORD_SIZE);
161 }
162 return clearUnusedBits();
163 }
164
165 /// Profile - This method 'profiles' an APInt for use with FoldingSet.
Profile(FoldingSetNodeID & ID) const166 void APInt::Profile(FoldingSetNodeID& ID) const {
167 ID.AddInteger(BitWidth);
168
169 if (isSingleWord()) {
170 ID.AddInteger(VAL);
171 return;
172 }
173
174 unsigned NumWords = getNumWords();
175 for (unsigned i = 0; i < NumWords; ++i)
176 ID.AddInteger(pVal[i]);
177 }
178
179 /// add_1 - This function adds a single "digit" integer, y, to the multiple
180 /// "digit" integer array, x[]. x[] is modified to reflect the addition and
181 /// 1 is returned if there is a carry out, otherwise 0 is returned.
182 /// @returns the carry of the addition.
add_1(uint64_t dest[],uint64_t x[],unsigned len,uint64_t y)183 static bool add_1(uint64_t dest[], uint64_t x[], unsigned len, uint64_t y) {
184 for (unsigned i = 0; i < len; ++i) {
185 dest[i] = y + x[i];
186 if (dest[i] < y)
187 y = 1; // Carry one to next digit.
188 else {
189 y = 0; // No need to carry so exit early
190 break;
191 }
192 }
193 return y;
194 }
195
196 /// @brief Prefix increment operator. Increments the APInt by one.
operator ++()197 APInt& APInt::operator++() {
198 if (isSingleWord())
199 ++VAL;
200 else
201 add_1(pVal, pVal, getNumWords(), 1);
202 return clearUnusedBits();
203 }
204
205 /// sub_1 - This function subtracts a single "digit" (64-bit word), y, from
206 /// the multi-digit integer array, x[], propagating the borrowed 1 value until
207 /// no further borrowing is neeeded or it runs out of "digits" in x. The result
208 /// is 1 if "borrowing" exhausted the digits in x, or 0 if x was not exhausted.
209 /// In other words, if y > x then this function returns 1, otherwise 0.
210 /// @returns the borrow out of the subtraction
sub_1(uint64_t x[],unsigned len,uint64_t y)211 static bool sub_1(uint64_t x[], unsigned len, uint64_t y) {
212 for (unsigned i = 0; i < len; ++i) {
213 uint64_t X = x[i];
214 x[i] -= y;
215 if (y > X)
216 y = 1; // We have to "borrow 1" from next "digit"
217 else {
218 y = 0; // No need to borrow
219 break; // Remaining digits are unchanged so exit early
220 }
221 }
222 return bool(y);
223 }
224
225 /// @brief Prefix decrement operator. Decrements the APInt by one.
operator --()226 APInt& APInt::operator--() {
227 if (isSingleWord())
228 --VAL;
229 else
230 sub_1(pVal, getNumWords(), 1);
231 return clearUnusedBits();
232 }
233
234 /// add - This function adds the integer array x to the integer array Y and
235 /// places the result in dest.
236 /// @returns the carry out from the addition
237 /// @brief General addition of 64-bit integer arrays
add(uint64_t * dest,const uint64_t * x,const uint64_t * y,unsigned len)238 static bool add(uint64_t *dest, const uint64_t *x, const uint64_t *y,
239 unsigned len) {
240 bool carry = false;
241 for (unsigned i = 0; i< len; ++i) {
242 uint64_t limit = std::min(x[i],y[i]); // must come first in case dest == x
243 dest[i] = x[i] + y[i] + carry;
244 carry = dest[i] < limit || (carry && dest[i] == limit);
245 }
246 return carry;
247 }
248
249 /// Adds the RHS APint to this APInt.
250 /// @returns this, after addition of RHS.
251 /// @brief Addition assignment operator.
operator +=(const APInt & RHS)252 APInt& APInt::operator+=(const APInt& RHS) {
253 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
254 if (isSingleWord())
255 VAL += RHS.VAL;
256 else {
257 add(pVal, pVal, RHS.pVal, getNumWords());
258 }
259 return clearUnusedBits();
260 }
261
262 /// Subtracts the integer array y from the integer array x
263 /// @returns returns the borrow out.
264 /// @brief Generalized subtraction of 64-bit integer arrays.
sub(uint64_t * dest,const uint64_t * x,const uint64_t * y,unsigned len)265 static bool sub(uint64_t *dest, const uint64_t *x, const uint64_t *y,
266 unsigned len) {
267 bool borrow = false;
268 for (unsigned i = 0; i < len; ++i) {
269 uint64_t x_tmp = borrow ? x[i] - 1 : x[i];
270 borrow = y[i] > x_tmp || (borrow && x[i] == 0);
271 dest[i] = x_tmp - y[i];
272 }
273 return borrow;
274 }
275
276 /// Subtracts the RHS APInt from this APInt
277 /// @returns this, after subtraction
278 /// @brief Subtraction assignment operator.
operator -=(const APInt & RHS)279 APInt& APInt::operator-=(const APInt& RHS) {
280 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
281 if (isSingleWord())
282 VAL -= RHS.VAL;
283 else
284 sub(pVal, pVal, RHS.pVal, getNumWords());
285 return clearUnusedBits();
286 }
287
288 /// Multiplies an integer array, x, by a uint64_t integer and places the result
289 /// into dest.
290 /// @returns the carry out of the multiplication.
291 /// @brief Multiply a multi-digit APInt by a single digit (64-bit) integer.
mul_1(uint64_t dest[],uint64_t x[],unsigned len,uint64_t y)292 static uint64_t mul_1(uint64_t dest[], uint64_t x[], unsigned len, uint64_t y) {
293 // Split y into high 32-bit part (hy) and low 32-bit part (ly)
294 uint64_t ly = y & 0xffffffffULL, hy = y >> 32;
295 uint64_t carry = 0;
296
297 // For each digit of x.
298 for (unsigned i = 0; i < len; ++i) {
299 // Split x into high and low words
300 uint64_t lx = x[i] & 0xffffffffULL;
301 uint64_t hx = x[i] >> 32;
302 // hasCarry - A flag to indicate if there is a carry to the next digit.
303 // hasCarry == 0, no carry
304 // hasCarry == 1, has carry
305 // hasCarry == 2, no carry and the calculation result == 0.
306 uint8_t hasCarry = 0;
307 dest[i] = carry + lx * ly;
308 // Determine if the add above introduces carry.
309 hasCarry = (dest[i] < carry) ? 1 : 0;
310 carry = hx * ly + (dest[i] >> 32) + (hasCarry ? (1ULL << 32) : 0);
311 // The upper limit of carry can be (2^32 - 1)(2^32 - 1) +
312 // (2^32 - 1) + 2^32 = 2^64.
313 hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0);
314
315 carry += (lx * hy) & 0xffffffffULL;
316 dest[i] = (carry << 32) | (dest[i] & 0xffffffffULL);
317 carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0) +
318 (carry >> 32) + ((lx * hy) >> 32) + hx * hy;
319 }
320 return carry;
321 }
322
323 /// Multiplies integer array x by integer array y and stores the result into
324 /// the integer array dest. Note that dest's size must be >= xlen + ylen.
325 /// @brief Generalized multiplicate of integer arrays.
mul(uint64_t dest[],uint64_t x[],unsigned xlen,uint64_t y[],unsigned ylen)326 static void mul(uint64_t dest[], uint64_t x[], unsigned xlen, uint64_t y[],
327 unsigned ylen) {
328 dest[xlen] = mul_1(dest, x, xlen, y[0]);
329 for (unsigned i = 1; i < ylen; ++i) {
330 uint64_t ly = y[i] & 0xffffffffULL, hy = y[i] >> 32;
331 uint64_t carry = 0, lx = 0, hx = 0;
332 for (unsigned j = 0; j < xlen; ++j) {
333 lx = x[j] & 0xffffffffULL;
334 hx = x[j] >> 32;
335 // hasCarry - A flag to indicate if has carry.
336 // hasCarry == 0, no carry
337 // hasCarry == 1, has carry
338 // hasCarry == 2, no carry and the calculation result == 0.
339 uint8_t hasCarry = 0;
340 uint64_t resul = carry + lx * ly;
341 hasCarry = (resul < carry) ? 1 : 0;
342 carry = (hasCarry ? (1ULL << 32) : 0) + hx * ly + (resul >> 32);
343 hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0);
344
345 carry += (lx * hy) & 0xffffffffULL;
346 resul = (carry << 32) | (resul & 0xffffffffULL);
347 dest[i+j] += resul;
348 carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0)+
349 (carry >> 32) + (dest[i+j] < resul ? 1 : 0) +
350 ((lx * hy) >> 32) + hx * hy;
351 }
352 dest[i+xlen] = carry;
353 }
354 }
355
operator *=(const APInt & RHS)356 APInt& APInt::operator*=(const APInt& RHS) {
357 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
358 if (isSingleWord()) {
359 VAL *= RHS.VAL;
360 clearUnusedBits();
361 return *this;
362 }
363
364 // Get some bit facts about LHS and check for zero
365 unsigned lhsBits = getActiveBits();
366 unsigned lhsWords = !lhsBits ? 0 : whichWord(lhsBits - 1) + 1;
367 if (!lhsWords)
368 // 0 * X ===> 0
369 return *this;
370
371 // Get some bit facts about RHS and check for zero
372 unsigned rhsBits = RHS.getActiveBits();
373 unsigned rhsWords = !rhsBits ? 0 : whichWord(rhsBits - 1) + 1;
374 if (!rhsWords) {
375 // X * 0 ===> 0
376 clearAllBits();
377 return *this;
378 }
379
380 // Allocate space for the result
381 unsigned destWords = rhsWords + lhsWords;
382 uint64_t *dest = getMemory(destWords);
383
384 // Perform the long multiply
385 mul(dest, pVal, lhsWords, RHS.pVal, rhsWords);
386
387 // Copy result back into *this
388 clearAllBits();
389 unsigned wordsToCopy = destWords >= getNumWords() ? getNumWords() : destWords;
390 memcpy(pVal, dest, wordsToCopy * APINT_WORD_SIZE);
391 clearUnusedBits();
392
393 // delete dest array and return
394 delete[] dest;
395 return *this;
396 }
397
operator &=(const APInt & RHS)398 APInt& APInt::operator&=(const APInt& RHS) {
399 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
400 if (isSingleWord()) {
401 VAL &= RHS.VAL;
402 return *this;
403 }
404 unsigned numWords = getNumWords();
405 for (unsigned i = 0; i < numWords; ++i)
406 pVal[i] &= RHS.pVal[i];
407 return *this;
408 }
409
operator |=(const APInt & RHS)410 APInt& APInt::operator|=(const APInt& RHS) {
411 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
412 if (isSingleWord()) {
413 VAL |= RHS.VAL;
414 return *this;
415 }
416 unsigned numWords = getNumWords();
417 for (unsigned i = 0; i < numWords; ++i)
418 pVal[i] |= RHS.pVal[i];
419 return *this;
420 }
421
operator ^=(const APInt & RHS)422 APInt& APInt::operator^=(const APInt& RHS) {
423 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
424 if (isSingleWord()) {
425 VAL ^= RHS.VAL;
426 this->clearUnusedBits();
427 return *this;
428 }
429 unsigned numWords = getNumWords();
430 for (unsigned i = 0; i < numWords; ++i)
431 pVal[i] ^= RHS.pVal[i];
432 return clearUnusedBits();
433 }
434
AndSlowCase(const APInt & RHS) const435 APInt APInt::AndSlowCase(const APInt& RHS) const {
436 unsigned numWords = getNumWords();
437 uint64_t* val = getMemory(numWords);
438 for (unsigned i = 0; i < numWords; ++i)
439 val[i] = pVal[i] & RHS.pVal[i];
440 return APInt(val, getBitWidth());
441 }
442
OrSlowCase(const APInt & RHS) const443 APInt APInt::OrSlowCase(const APInt& RHS) const {
444 unsigned numWords = getNumWords();
445 uint64_t *val = getMemory(numWords);
446 for (unsigned i = 0; i < numWords; ++i)
447 val[i] = pVal[i] | RHS.pVal[i];
448 return APInt(val, getBitWidth());
449 }
450
XorSlowCase(const APInt & RHS) const451 APInt APInt::XorSlowCase(const APInt& RHS) const {
452 unsigned numWords = getNumWords();
453 uint64_t *val = getMemory(numWords);
454 for (unsigned i = 0; i < numWords; ++i)
455 val[i] = pVal[i] ^ RHS.pVal[i];
456
457 // 0^0==1 so clear the high bits in case they got set.
458 return APInt(val, getBitWidth()).clearUnusedBits();
459 }
460
operator *(const APInt & RHS) const461 APInt APInt::operator*(const APInt& RHS) const {
462 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
463 if (isSingleWord())
464 return APInt(BitWidth, VAL * RHS.VAL);
465 APInt Result(*this);
466 Result *= RHS;
467 return Result;
468 }
469
operator +(const APInt & RHS) const470 APInt APInt::operator+(const APInt& RHS) const {
471 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
472 if (isSingleWord())
473 return APInt(BitWidth, VAL + RHS.VAL);
474 APInt Result(BitWidth, 0);
475 add(Result.pVal, this->pVal, RHS.pVal, getNumWords());
476 return Result.clearUnusedBits();
477 }
478
operator -(const APInt & RHS) const479 APInt APInt::operator-(const APInt& RHS) const {
480 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
481 if (isSingleWord())
482 return APInt(BitWidth, VAL - RHS.VAL);
483 APInt Result(BitWidth, 0);
484 sub(Result.pVal, this->pVal, RHS.pVal, getNumWords());
485 return Result.clearUnusedBits();
486 }
487
EqualSlowCase(const APInt & RHS) const488 bool APInt::EqualSlowCase(const APInt& RHS) const {
489 // Get some facts about the number of bits used in the two operands.
490 unsigned n1 = getActiveBits();
491 unsigned n2 = RHS.getActiveBits();
492
493 // If the number of bits isn't the same, they aren't equal
494 if (n1 != n2)
495 return false;
496
497 // If the number of bits fits in a word, we only need to compare the low word.
498 if (n1 <= APINT_BITS_PER_WORD)
499 return pVal[0] == RHS.pVal[0];
500
501 // Otherwise, compare everything
502 for (int i = whichWord(n1 - 1); i >= 0; --i)
503 if (pVal[i] != RHS.pVal[i])
504 return false;
505 return true;
506 }
507
EqualSlowCase(uint64_t Val) const508 bool APInt::EqualSlowCase(uint64_t Val) const {
509 unsigned n = getActiveBits();
510 if (n <= APINT_BITS_PER_WORD)
511 return pVal[0] == Val;
512 else
513 return false;
514 }
515
ult(const APInt & RHS) const516 bool APInt::ult(const APInt& RHS) const {
517 assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison");
518 if (isSingleWord())
519 return VAL < RHS.VAL;
520
521 // Get active bit length of both operands
522 unsigned n1 = getActiveBits();
523 unsigned n2 = RHS.getActiveBits();
524
525 // If magnitude of LHS is less than RHS, return true.
526 if (n1 < n2)
527 return true;
528
529 // If magnitude of RHS is greather than LHS, return false.
530 if (n2 < n1)
531 return false;
532
533 // If they bot fit in a word, just compare the low order word
534 if (n1 <= APINT_BITS_PER_WORD && n2 <= APINT_BITS_PER_WORD)
535 return pVal[0] < RHS.pVal[0];
536
537 // Otherwise, compare all words
538 unsigned topWord = whichWord(std::max(n1,n2)-1);
539 for (int i = topWord; i >= 0; --i) {
540 if (pVal[i] > RHS.pVal[i])
541 return false;
542 if (pVal[i] < RHS.pVal[i])
543 return true;
544 }
545 return false;
546 }
547
slt(const APInt & RHS) const548 bool APInt::slt(const APInt& RHS) const {
549 assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison");
550 if (isSingleWord()) {
551 int64_t lhsSext = (int64_t(VAL) << (64-BitWidth)) >> (64-BitWidth);
552 int64_t rhsSext = (int64_t(RHS.VAL) << (64-BitWidth)) >> (64-BitWidth);
553 return lhsSext < rhsSext;
554 }
555
556 APInt lhs(*this);
557 APInt rhs(RHS);
558 bool lhsNeg = isNegative();
559 bool rhsNeg = rhs.isNegative();
560 if (lhsNeg) {
561 // Sign bit is set so perform two's complement to make it positive
562 lhs.flipAllBits();
563 ++lhs;
564 }
565 if (rhsNeg) {
566 // Sign bit is set so perform two's complement to make it positive
567 rhs.flipAllBits();
568 ++rhs;
569 }
570
571 // Now we have unsigned values to compare so do the comparison if necessary
572 // based on the negativeness of the values.
573 if (lhsNeg)
574 if (rhsNeg)
575 return lhs.ugt(rhs);
576 else
577 return true;
578 else if (rhsNeg)
579 return false;
580 else
581 return lhs.ult(rhs);
582 }
583
setBit(unsigned bitPosition)584 void APInt::setBit(unsigned bitPosition) {
585 if (isSingleWord())
586 VAL |= maskBit(bitPosition);
587 else
588 pVal[whichWord(bitPosition)] |= maskBit(bitPosition);
589 }
590
591 /// Set the given bit to 0 whose position is given as "bitPosition".
592 /// @brief Set a given bit to 0.
clearBit(unsigned bitPosition)593 void APInt::clearBit(unsigned bitPosition) {
594 if (isSingleWord())
595 VAL &= ~maskBit(bitPosition);
596 else
597 pVal[whichWord(bitPosition)] &= ~maskBit(bitPosition);
598 }
599
600 /// @brief Toggle every bit to its opposite value.
601
602 /// Toggle a given bit to its opposite value whose position is given
603 /// as "bitPosition".
604 /// @brief Toggles a given bit to its opposite value.
flipBit(unsigned bitPosition)605 void APInt::flipBit(unsigned bitPosition) {
606 assert(bitPosition < BitWidth && "Out of the bit-width range!");
607 if ((*this)[bitPosition]) clearBit(bitPosition);
608 else setBit(bitPosition);
609 }
610
getBitsNeeded(StringRef str,uint8_t radix)611 unsigned APInt::getBitsNeeded(StringRef str, uint8_t radix) {
612 assert(!str.empty() && "Invalid string length");
613 assert((radix == 10 || radix == 8 || radix == 16 || radix == 2 ||
614 radix == 36) &&
615 "Radix should be 2, 8, 10, 16, or 36!");
616
617 size_t slen = str.size();
618
619 // Each computation below needs to know if it's negative.
620 StringRef::iterator p = str.begin();
621 unsigned isNegative = *p == '-';
622 if (*p == '-' || *p == '+') {
623 p++;
624 slen--;
625 assert(slen && "String is only a sign, needs a value.");
626 }
627
628 // For radixes of power-of-two values, the bits required is accurately and
629 // easily computed
630 if (radix == 2)
631 return slen + isNegative;
632 if (radix == 8)
633 return slen * 3 + isNegative;
634 if (radix == 16)
635 return slen * 4 + isNegative;
636
637 // FIXME: base 36
638
639 // This is grossly inefficient but accurate. We could probably do something
640 // with a computation of roughly slen*64/20 and then adjust by the value of
641 // the first few digits. But, I'm not sure how accurate that could be.
642
643 // Compute a sufficient number of bits that is always large enough but might
644 // be too large. This avoids the assertion in the constructor. This
645 // calculation doesn't work appropriately for the numbers 0-9, so just use 4
646 // bits in that case.
647 unsigned sufficient
648 = radix == 10? (slen == 1 ? 4 : slen * 64/18)
649 : (slen == 1 ? 7 : slen * 16/3);
650
651 // Convert to the actual binary value.
652 APInt tmp(sufficient, StringRef(p, slen), radix);
653
654 // Compute how many bits are required. If the log is infinite, assume we need
655 // just bit.
656 unsigned log = tmp.logBase2();
657 if (log == (unsigned)-1) {
658 return isNegative + 1;
659 } else {
660 return isNegative + log + 1;
661 }
662 }
663
hash_value(const APInt & Arg)664 hash_code llvm::hash_value(const APInt &Arg) {
665 if (Arg.isSingleWord())
666 return hash_combine(Arg.VAL);
667
668 return hash_combine_range(Arg.pVal, Arg.pVal + Arg.getNumWords());
669 }
670
671 /// HiBits - This function returns the high "numBits" bits of this APInt.
getHiBits(unsigned numBits) const672 APInt APInt::getHiBits(unsigned numBits) const {
673 return APIntOps::lshr(*this, BitWidth - numBits);
674 }
675
676 /// LoBits - This function returns the low "numBits" bits of this APInt.
getLoBits(unsigned numBits) const677 APInt APInt::getLoBits(unsigned numBits) const {
678 return APIntOps::lshr(APIntOps::shl(*this, BitWidth - numBits),
679 BitWidth - numBits);
680 }
681
countLeadingZerosSlowCase() const682 unsigned APInt::countLeadingZerosSlowCase() const {
683 // Treat the most significand word differently because it might have
684 // meaningless bits set beyond the precision.
685 unsigned BitsInMSW = BitWidth % APINT_BITS_PER_WORD;
686 integerPart MSWMask;
687 if (BitsInMSW) MSWMask = (integerPart(1) << BitsInMSW) - 1;
688 else {
689 MSWMask = ~integerPart(0);
690 BitsInMSW = APINT_BITS_PER_WORD;
691 }
692
693 unsigned i = getNumWords();
694 integerPart MSW = pVal[i-1] & MSWMask;
695 if (MSW)
696 return llvm::countLeadingZeros(MSW) - (APINT_BITS_PER_WORD - BitsInMSW);
697
698 unsigned Count = BitsInMSW;
699 for (--i; i > 0u; --i) {
700 if (pVal[i-1] == 0)
701 Count += APINT_BITS_PER_WORD;
702 else {
703 Count += llvm::countLeadingZeros(pVal[i-1]);
704 break;
705 }
706 }
707 return Count;
708 }
709
countLeadingOnes() const710 unsigned APInt::countLeadingOnes() const {
711 if (isSingleWord())
712 return CountLeadingOnes_64(VAL << (APINT_BITS_PER_WORD - BitWidth));
713
714 unsigned highWordBits = BitWidth % APINT_BITS_PER_WORD;
715 unsigned shift;
716 if (!highWordBits) {
717 highWordBits = APINT_BITS_PER_WORD;
718 shift = 0;
719 } else {
720 shift = APINT_BITS_PER_WORD - highWordBits;
721 }
722 int i = getNumWords() - 1;
723 unsigned Count = CountLeadingOnes_64(pVal[i] << shift);
724 if (Count == highWordBits) {
725 for (i--; i >= 0; --i) {
726 if (pVal[i] == -1ULL)
727 Count += APINT_BITS_PER_WORD;
728 else {
729 Count += CountLeadingOnes_64(pVal[i]);
730 break;
731 }
732 }
733 }
734 return Count;
735 }
736
countTrailingZeros() const737 unsigned APInt::countTrailingZeros() const {
738 if (isSingleWord())
739 return std::min(unsigned(llvm::countTrailingZeros(VAL)), BitWidth);
740 unsigned Count = 0;
741 unsigned i = 0;
742 for (; i < getNumWords() && pVal[i] == 0; ++i)
743 Count += APINT_BITS_PER_WORD;
744 if (i < getNumWords())
745 Count += llvm::countTrailingZeros(pVal[i]);
746 return std::min(Count, BitWidth);
747 }
748
countTrailingOnesSlowCase() const749 unsigned APInt::countTrailingOnesSlowCase() const {
750 unsigned Count = 0;
751 unsigned i = 0;
752 for (; i < getNumWords() && pVal[i] == -1ULL; ++i)
753 Count += APINT_BITS_PER_WORD;
754 if (i < getNumWords())
755 Count += CountTrailingOnes_64(pVal[i]);
756 return std::min(Count, BitWidth);
757 }
758
countPopulationSlowCase() const759 unsigned APInt::countPopulationSlowCase() const {
760 unsigned Count = 0;
761 for (unsigned i = 0; i < getNumWords(); ++i)
762 Count += CountPopulation_64(pVal[i]);
763 return Count;
764 }
765
766 /// Perform a logical right-shift from Src to Dst, which must be equal or
767 /// non-overlapping, of Words words, by Shift, which must be less than 64.
lshrNear(uint64_t * Dst,uint64_t * Src,unsigned Words,unsigned Shift)768 static void lshrNear(uint64_t *Dst, uint64_t *Src, unsigned Words,
769 unsigned Shift) {
770 uint64_t Carry = 0;
771 for (int I = Words - 1; I >= 0; --I) {
772 uint64_t Tmp = Src[I];
773 Dst[I] = (Tmp >> Shift) | Carry;
774 Carry = Tmp << (64 - Shift);
775 }
776 }
777
byteSwap() const778 APInt APInt::byteSwap() const {
779 assert(BitWidth >= 16 && BitWidth % 16 == 0 && "Cannot byteswap!");
780 if (BitWidth == 16)
781 return APInt(BitWidth, ByteSwap_16(uint16_t(VAL)));
782 if (BitWidth == 32)
783 return APInt(BitWidth, ByteSwap_32(unsigned(VAL)));
784 if (BitWidth == 48) {
785 unsigned Tmp1 = unsigned(VAL >> 16);
786 Tmp1 = ByteSwap_32(Tmp1);
787 uint16_t Tmp2 = uint16_t(VAL);
788 Tmp2 = ByteSwap_16(Tmp2);
789 return APInt(BitWidth, (uint64_t(Tmp2) << 32) | Tmp1);
790 }
791 if (BitWidth == 64)
792 return APInt(BitWidth, ByteSwap_64(VAL));
793
794 APInt Result(getNumWords() * APINT_BITS_PER_WORD, 0);
795 for (unsigned I = 0, N = getNumWords(); I != N; ++I)
796 Result.pVal[I] = ByteSwap_64(pVal[N - I - 1]);
797 if (Result.BitWidth != BitWidth) {
798 lshrNear(Result.pVal, Result.pVal, getNumWords(),
799 Result.BitWidth - BitWidth);
800 Result.BitWidth = BitWidth;
801 }
802 return Result;
803 }
804
GreatestCommonDivisor(const APInt & API1,const APInt & API2)805 APInt llvm::APIntOps::GreatestCommonDivisor(const APInt& API1,
806 const APInt& API2) {
807 APInt A = API1, B = API2;
808 while (!!B) {
809 APInt T = B;
810 B = APIntOps::urem(A, B);
811 A = T;
812 }
813 return A;
814 }
815
RoundDoubleToAPInt(double Double,unsigned width)816 APInt llvm::APIntOps::RoundDoubleToAPInt(double Double, unsigned width) {
817 union {
818 double D;
819 uint64_t I;
820 } T;
821 T.D = Double;
822
823 // Get the sign bit from the highest order bit
824 bool isNeg = T.I >> 63;
825
826 // Get the 11-bit exponent and adjust for the 1023 bit bias
827 int64_t exp = ((T.I >> 52) & 0x7ff) - 1023;
828
829 // If the exponent is negative, the value is < 0 so just return 0.
830 if (exp < 0)
831 return APInt(width, 0u);
832
833 // Extract the mantissa by clearing the top 12 bits (sign + exponent).
834 uint64_t mantissa = (T.I & (~0ULL >> 12)) | 1ULL << 52;
835
836 // If the exponent doesn't shift all bits out of the mantissa
837 if (exp < 52)
838 return isNeg ? -APInt(width, mantissa >> (52 - exp)) :
839 APInt(width, mantissa >> (52 - exp));
840
841 // If the client didn't provide enough bits for us to shift the mantissa into
842 // then the result is undefined, just return 0
843 if (width <= exp - 52)
844 return APInt(width, 0);
845
846 // Otherwise, we have to shift the mantissa bits up to the right location
847 APInt Tmp(width, mantissa);
848 Tmp = Tmp.shl((unsigned)exp - 52);
849 return isNeg ? -Tmp : Tmp;
850 }
851
852 /// RoundToDouble - This function converts this APInt to a double.
853 /// The layout for double is as following (IEEE Standard 754):
854 /// --------------------------------------
855 /// | Sign Exponent Fraction Bias |
856 /// |-------------------------------------- |
857 /// | 1[63] 11[62-52] 52[51-00] 1023 |
858 /// --------------------------------------
roundToDouble(bool isSigned) const859 double APInt::roundToDouble(bool isSigned) const {
860
861 // Handle the simple case where the value is contained in one uint64_t.
862 // It is wrong to optimize getWord(0) to VAL; there might be more than one word.
863 if (isSingleWord() || getActiveBits() <= APINT_BITS_PER_WORD) {
864 if (isSigned) {
865 int64_t sext = (int64_t(getWord(0)) << (64-BitWidth)) >> (64-BitWidth);
866 return double(sext);
867 } else
868 return double(getWord(0));
869 }
870
871 // Determine if the value is negative.
872 bool isNeg = isSigned ? (*this)[BitWidth-1] : false;
873
874 // Construct the absolute value if we're negative.
875 APInt Tmp(isNeg ? -(*this) : (*this));
876
877 // Figure out how many bits we're using.
878 unsigned n = Tmp.getActiveBits();
879
880 // The exponent (without bias normalization) is just the number of bits
881 // we are using. Note that the sign bit is gone since we constructed the
882 // absolute value.
883 uint64_t exp = n;
884
885 // Return infinity for exponent overflow
886 if (exp > 1023) {
887 if (!isSigned || !isNeg)
888 return std::numeric_limits<double>::infinity();
889 else
890 return -std::numeric_limits<double>::infinity();
891 }
892 exp += 1023; // Increment for 1023 bias
893
894 // Number of bits in mantissa is 52. To obtain the mantissa value, we must
895 // extract the high 52 bits from the correct words in pVal.
896 uint64_t mantissa;
897 unsigned hiWord = whichWord(n-1);
898 if (hiWord == 0) {
899 mantissa = Tmp.pVal[0];
900 if (n > 52)
901 mantissa >>= n - 52; // shift down, we want the top 52 bits.
902 } else {
903 assert(hiWord > 0 && "huh?");
904 uint64_t hibits = Tmp.pVal[hiWord] << (52 - n % APINT_BITS_PER_WORD);
905 uint64_t lobits = Tmp.pVal[hiWord-1] >> (11 + n % APINT_BITS_PER_WORD);
906 mantissa = hibits | lobits;
907 }
908
909 // The leading bit of mantissa is implicit, so get rid of it.
910 uint64_t sign = isNeg ? (1ULL << (APINT_BITS_PER_WORD - 1)) : 0;
911 union {
912 double D;
913 uint64_t I;
914 } T;
915 T.I = sign | (exp << 52) | mantissa;
916 return T.D;
917 }
918
919 // Truncate to new width.
trunc(unsigned width) const920 APInt APInt::trunc(unsigned width) const {
921 assert(width < BitWidth && "Invalid APInt Truncate request");
922 assert(width && "Can't truncate to 0 bits");
923
924 if (width <= APINT_BITS_PER_WORD)
925 return APInt(width, getRawData()[0]);
926
927 APInt Result(getMemory(getNumWords(width)), width);
928
929 // Copy full words.
930 unsigned i;
931 for (i = 0; i != width / APINT_BITS_PER_WORD; i++)
932 Result.pVal[i] = pVal[i];
933
934 // Truncate and copy any partial word.
935 unsigned bits = (0 - width) % APINT_BITS_PER_WORD;
936 if (bits != 0)
937 Result.pVal[i] = pVal[i] << bits >> bits;
938
939 return Result;
940 }
941
942 // Sign extend to a new width.
sext(unsigned width) const943 APInt APInt::sext(unsigned width) const {
944 assert(width > BitWidth && "Invalid APInt SignExtend request");
945
946 if (width <= APINT_BITS_PER_WORD) {
947 uint64_t val = VAL << (APINT_BITS_PER_WORD - BitWidth);
948 val = (int64_t)val >> (width - BitWidth);
949 return APInt(width, val >> (APINT_BITS_PER_WORD - width));
950 }
951
952 APInt Result(getMemory(getNumWords(width)), width);
953
954 // Copy full words.
955 unsigned i;
956 uint64_t word = 0;
957 for (i = 0; i != BitWidth / APINT_BITS_PER_WORD; i++) {
958 word = getRawData()[i];
959 Result.pVal[i] = word;
960 }
961
962 // Read and sign-extend any partial word.
963 unsigned bits = (0 - BitWidth) % APINT_BITS_PER_WORD;
964 if (bits != 0)
965 word = (int64_t)getRawData()[i] << bits >> bits;
966 else
967 word = (int64_t)word >> (APINT_BITS_PER_WORD - 1);
968
969 // Write remaining full words.
970 for (; i != width / APINT_BITS_PER_WORD; i++) {
971 Result.pVal[i] = word;
972 word = (int64_t)word >> (APINT_BITS_PER_WORD - 1);
973 }
974
975 // Write any partial word.
976 bits = (0 - width) % APINT_BITS_PER_WORD;
977 if (bits != 0)
978 Result.pVal[i] = word << bits >> bits;
979
980 return Result;
981 }
982
983 // Zero extend to a new width.
zext(unsigned width) const984 APInt APInt::zext(unsigned width) const {
985 assert(width > BitWidth && "Invalid APInt ZeroExtend request");
986
987 if (width <= APINT_BITS_PER_WORD)
988 return APInt(width, VAL);
989
990 APInt Result(getMemory(getNumWords(width)), width);
991
992 // Copy words.
993 unsigned i;
994 for (i = 0; i != getNumWords(); i++)
995 Result.pVal[i] = getRawData()[i];
996
997 // Zero remaining words.
998 memset(&Result.pVal[i], 0, (Result.getNumWords() - i) * APINT_WORD_SIZE);
999
1000 return Result;
1001 }
1002
zextOrTrunc(unsigned width) const1003 APInt APInt::zextOrTrunc(unsigned width) const {
1004 if (BitWidth < width)
1005 return zext(width);
1006 if (BitWidth > width)
1007 return trunc(width);
1008 return *this;
1009 }
1010
sextOrTrunc(unsigned width) const1011 APInt APInt::sextOrTrunc(unsigned width) const {
1012 if (BitWidth < width)
1013 return sext(width);
1014 if (BitWidth > width)
1015 return trunc(width);
1016 return *this;
1017 }
1018
zextOrSelf(unsigned width) const1019 APInt APInt::zextOrSelf(unsigned width) const {
1020 if (BitWidth < width)
1021 return zext(width);
1022 return *this;
1023 }
1024
sextOrSelf(unsigned width) const1025 APInt APInt::sextOrSelf(unsigned width) const {
1026 if (BitWidth < width)
1027 return sext(width);
1028 return *this;
1029 }
1030
1031 /// Arithmetic right-shift this APInt by shiftAmt.
1032 /// @brief Arithmetic right-shift function.
ashr(const APInt & shiftAmt) const1033 APInt APInt::ashr(const APInt &shiftAmt) const {
1034 return ashr((unsigned)shiftAmt.getLimitedValue(BitWidth));
1035 }
1036
1037 /// Arithmetic right-shift this APInt by shiftAmt.
1038 /// @brief Arithmetic right-shift function.
ashr(unsigned shiftAmt) const1039 APInt APInt::ashr(unsigned shiftAmt) const {
1040 assert(shiftAmt <= BitWidth && "Invalid shift amount");
1041 // Handle a degenerate case
1042 if (shiftAmt == 0)
1043 return *this;
1044
1045 // Handle single word shifts with built-in ashr
1046 if (isSingleWord()) {
1047 if (shiftAmt == BitWidth)
1048 return APInt(BitWidth, 0); // undefined
1049 else {
1050 unsigned SignBit = APINT_BITS_PER_WORD - BitWidth;
1051 return APInt(BitWidth,
1052 (((int64_t(VAL) << SignBit) >> SignBit) >> shiftAmt));
1053 }
1054 }
1055
1056 // If all the bits were shifted out, the result is, technically, undefined.
1057 // We return -1 if it was negative, 0 otherwise. We check this early to avoid
1058 // issues in the algorithm below.
1059 if (shiftAmt == BitWidth) {
1060 if (isNegative())
1061 return APInt(BitWidth, -1ULL, true);
1062 else
1063 return APInt(BitWidth, 0);
1064 }
1065
1066 // Create some space for the result.
1067 uint64_t * val = new uint64_t[getNumWords()];
1068
1069 // Compute some values needed by the following shift algorithms
1070 unsigned wordShift = shiftAmt % APINT_BITS_PER_WORD; // bits to shift per word
1071 unsigned offset = shiftAmt / APINT_BITS_PER_WORD; // word offset for shift
1072 unsigned breakWord = getNumWords() - 1 - offset; // last word affected
1073 unsigned bitsInWord = whichBit(BitWidth); // how many bits in last word?
1074 if (bitsInWord == 0)
1075 bitsInWord = APINT_BITS_PER_WORD;
1076
1077 // If we are shifting whole words, just move whole words
1078 if (wordShift == 0) {
1079 // Move the words containing significant bits
1080 for (unsigned i = 0; i <= breakWord; ++i)
1081 val[i] = pVal[i+offset]; // move whole word
1082
1083 // Adjust the top significant word for sign bit fill, if negative
1084 if (isNegative())
1085 if (bitsInWord < APINT_BITS_PER_WORD)
1086 val[breakWord] |= ~0ULL << bitsInWord; // set high bits
1087 } else {
1088 // Shift the low order words
1089 for (unsigned i = 0; i < breakWord; ++i) {
1090 // This combines the shifted corresponding word with the low bits from
1091 // the next word (shifted into this word's high bits).
1092 val[i] = (pVal[i+offset] >> wordShift) |
1093 (pVal[i+offset+1] << (APINT_BITS_PER_WORD - wordShift));
1094 }
1095
1096 // Shift the break word. In this case there are no bits from the next word
1097 // to include in this word.
1098 val[breakWord] = pVal[breakWord+offset] >> wordShift;
1099
1100 // Deal with sign extension in the break word, and possibly the word before
1101 // it.
1102 if (isNegative()) {
1103 if (wordShift > bitsInWord) {
1104 if (breakWord > 0)
1105 val[breakWord-1] |=
1106 ~0ULL << (APINT_BITS_PER_WORD - (wordShift - bitsInWord));
1107 val[breakWord] |= ~0ULL;
1108 } else
1109 val[breakWord] |= (~0ULL << (bitsInWord - wordShift));
1110 }
1111 }
1112
1113 // Remaining words are 0 or -1, just assign them.
1114 uint64_t fillValue = (isNegative() ? -1ULL : 0);
1115 for (unsigned i = breakWord+1; i < getNumWords(); ++i)
1116 val[i] = fillValue;
1117 return APInt(val, BitWidth).clearUnusedBits();
1118 }
1119
1120 /// Logical right-shift this APInt by shiftAmt.
1121 /// @brief Logical right-shift function.
lshr(const APInt & shiftAmt) const1122 APInt APInt::lshr(const APInt &shiftAmt) const {
1123 return lshr((unsigned)shiftAmt.getLimitedValue(BitWidth));
1124 }
1125
1126 /// Logical right-shift this APInt by shiftAmt.
1127 /// @brief Logical right-shift function.
lshr(unsigned shiftAmt) const1128 APInt APInt::lshr(unsigned shiftAmt) const {
1129 if (isSingleWord()) {
1130 if (shiftAmt >= BitWidth)
1131 return APInt(BitWidth, 0);
1132 else
1133 return APInt(BitWidth, this->VAL >> shiftAmt);
1134 }
1135
1136 // If all the bits were shifted out, the result is 0. This avoids issues
1137 // with shifting by the size of the integer type, which produces undefined
1138 // results. We define these "undefined results" to always be 0.
1139 if (shiftAmt >= BitWidth)
1140 return APInt(BitWidth, 0);
1141
1142 // If none of the bits are shifted out, the result is *this. This avoids
1143 // issues with shifting by the size of the integer type, which produces
1144 // undefined results in the code below. This is also an optimization.
1145 if (shiftAmt == 0)
1146 return *this;
1147
1148 // Create some space for the result.
1149 uint64_t * val = new uint64_t[getNumWords()];
1150
1151 // If we are shifting less than a word, compute the shift with a simple carry
1152 if (shiftAmt < APINT_BITS_PER_WORD) {
1153 lshrNear(val, pVal, getNumWords(), shiftAmt);
1154 return APInt(val, BitWidth).clearUnusedBits();
1155 }
1156
1157 // Compute some values needed by the remaining shift algorithms
1158 unsigned wordShift = shiftAmt % APINT_BITS_PER_WORD;
1159 unsigned offset = shiftAmt / APINT_BITS_PER_WORD;
1160
1161 // If we are shifting whole words, just move whole words
1162 if (wordShift == 0) {
1163 for (unsigned i = 0; i < getNumWords() - offset; ++i)
1164 val[i] = pVal[i+offset];
1165 for (unsigned i = getNumWords()-offset; i < getNumWords(); i++)
1166 val[i] = 0;
1167 return APInt(val,BitWidth).clearUnusedBits();
1168 }
1169
1170 // Shift the low order words
1171 unsigned breakWord = getNumWords() - offset -1;
1172 for (unsigned i = 0; i < breakWord; ++i)
1173 val[i] = (pVal[i+offset] >> wordShift) |
1174 (pVal[i+offset+1] << (APINT_BITS_PER_WORD - wordShift));
1175 // Shift the break word.
1176 val[breakWord] = pVal[breakWord+offset] >> wordShift;
1177
1178 // Remaining words are 0
1179 for (unsigned i = breakWord+1; i < getNumWords(); ++i)
1180 val[i] = 0;
1181 return APInt(val, BitWidth).clearUnusedBits();
1182 }
1183
1184 /// Left-shift this APInt by shiftAmt.
1185 /// @brief Left-shift function.
shl(const APInt & shiftAmt) const1186 APInt APInt::shl(const APInt &shiftAmt) const {
1187 // It's undefined behavior in C to shift by BitWidth or greater.
1188 return shl((unsigned)shiftAmt.getLimitedValue(BitWidth));
1189 }
1190
shlSlowCase(unsigned shiftAmt) const1191 APInt APInt::shlSlowCase(unsigned shiftAmt) const {
1192 // If all the bits were shifted out, the result is 0. This avoids issues
1193 // with shifting by the size of the integer type, which produces undefined
1194 // results. We define these "undefined results" to always be 0.
1195 if (shiftAmt == BitWidth)
1196 return APInt(BitWidth, 0);
1197
1198 // If none of the bits are shifted out, the result is *this. This avoids a
1199 // lshr by the words size in the loop below which can produce incorrect
1200 // results. It also avoids the expensive computation below for a common case.
1201 if (shiftAmt == 0)
1202 return *this;
1203
1204 // Create some space for the result.
1205 uint64_t * val = new uint64_t[getNumWords()];
1206
1207 // If we are shifting less than a word, do it the easy way
1208 if (shiftAmt < APINT_BITS_PER_WORD) {
1209 uint64_t carry = 0;
1210 for (unsigned i = 0; i < getNumWords(); i++) {
1211 val[i] = pVal[i] << shiftAmt | carry;
1212 carry = pVal[i] >> (APINT_BITS_PER_WORD - shiftAmt);
1213 }
1214 return APInt(val, BitWidth).clearUnusedBits();
1215 }
1216
1217 // Compute some values needed by the remaining shift algorithms
1218 unsigned wordShift = shiftAmt % APINT_BITS_PER_WORD;
1219 unsigned offset = shiftAmt / APINT_BITS_PER_WORD;
1220
1221 // If we are shifting whole words, just move whole words
1222 if (wordShift == 0) {
1223 for (unsigned i = 0; i < offset; i++)
1224 val[i] = 0;
1225 for (unsigned i = offset; i < getNumWords(); i++)
1226 val[i] = pVal[i-offset];
1227 return APInt(val,BitWidth).clearUnusedBits();
1228 }
1229
1230 // Copy whole words from this to Result.
1231 unsigned i = getNumWords() - 1;
1232 for (; i > offset; --i)
1233 val[i] = pVal[i-offset] << wordShift |
1234 pVal[i-offset-1] >> (APINT_BITS_PER_WORD - wordShift);
1235 val[offset] = pVal[0] << wordShift;
1236 for (i = 0; i < offset; ++i)
1237 val[i] = 0;
1238 return APInt(val, BitWidth).clearUnusedBits();
1239 }
1240
rotl(const APInt & rotateAmt) const1241 APInt APInt::rotl(const APInt &rotateAmt) const {
1242 return rotl((unsigned)rotateAmt.getLimitedValue(BitWidth));
1243 }
1244
rotl(unsigned rotateAmt) const1245 APInt APInt::rotl(unsigned rotateAmt) const {
1246 rotateAmt %= BitWidth;
1247 if (rotateAmt == 0)
1248 return *this;
1249 return shl(rotateAmt) | lshr(BitWidth - rotateAmt);
1250 }
1251
rotr(const APInt & rotateAmt) const1252 APInt APInt::rotr(const APInt &rotateAmt) const {
1253 return rotr((unsigned)rotateAmt.getLimitedValue(BitWidth));
1254 }
1255
rotr(unsigned rotateAmt) const1256 APInt APInt::rotr(unsigned rotateAmt) const {
1257 rotateAmt %= BitWidth;
1258 if (rotateAmt == 0)
1259 return *this;
1260 return lshr(rotateAmt) | shl(BitWidth - rotateAmt);
1261 }
1262
1263 // Square Root - this method computes and returns the square root of "this".
1264 // Three mechanisms are used for computation. For small values (<= 5 bits),
1265 // a table lookup is done. This gets some performance for common cases. For
1266 // values using less than 52 bits, the value is converted to double and then
1267 // the libc sqrt function is called. The result is rounded and then converted
1268 // back to a uint64_t which is then used to construct the result. Finally,
1269 // the Babylonian method for computing square roots is used.
sqrt() const1270 APInt APInt::sqrt() const {
1271
1272 // Determine the magnitude of the value.
1273 unsigned magnitude = getActiveBits();
1274
1275 // Use a fast table for some small values. This also gets rid of some
1276 // rounding errors in libc sqrt for small values.
1277 if (magnitude <= 5) {
1278 static const uint8_t results[32] = {
1279 /* 0 */ 0,
1280 /* 1- 2 */ 1, 1,
1281 /* 3- 6 */ 2, 2, 2, 2,
1282 /* 7-12 */ 3, 3, 3, 3, 3, 3,
1283 /* 13-20 */ 4, 4, 4, 4, 4, 4, 4, 4,
1284 /* 21-30 */ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
1285 /* 31 */ 6
1286 };
1287 return APInt(BitWidth, results[ (isSingleWord() ? VAL : pVal[0]) ]);
1288 }
1289
1290 // If the magnitude of the value fits in less than 52 bits (the precision of
1291 // an IEEE double precision floating point value), then we can use the
1292 // libc sqrt function which will probably use a hardware sqrt computation.
1293 // This should be faster than the algorithm below.
1294 if (magnitude < 52) {
1295 #if HAVE_ROUND
1296 return APInt(BitWidth,
1297 uint64_t(::round(::sqrt(double(isSingleWord()?VAL:pVal[0])))));
1298 #else
1299 return APInt(BitWidth,
1300 uint64_t(::sqrt(double(isSingleWord()?VAL:pVal[0])) + 0.5));
1301 #endif
1302 }
1303
1304 // Okay, all the short cuts are exhausted. We must compute it. The following
1305 // is a classical Babylonian method for computing the square root. This code
1306 // was adapted to APINt from a wikipedia article on such computations.
1307 // See http://www.wikipedia.org/ and go to the page named
1308 // Calculate_an_integer_square_root.
1309 unsigned nbits = BitWidth, i = 4;
1310 APInt testy(BitWidth, 16);
1311 APInt x_old(BitWidth, 1);
1312 APInt x_new(BitWidth, 0);
1313 APInt two(BitWidth, 2);
1314
1315 // Select a good starting value using binary logarithms.
1316 for (;; i += 2, testy = testy.shl(2))
1317 if (i >= nbits || this->ule(testy)) {
1318 x_old = x_old.shl(i / 2);
1319 break;
1320 }
1321
1322 // Use the Babylonian method to arrive at the integer square root:
1323 for (;;) {
1324 x_new = (this->udiv(x_old) + x_old).udiv(two);
1325 if (x_old.ule(x_new))
1326 break;
1327 x_old = x_new;
1328 }
1329
1330 // Make sure we return the closest approximation
1331 // NOTE: The rounding calculation below is correct. It will produce an
1332 // off-by-one discrepancy with results from pari/gp. That discrepancy has been
1333 // determined to be a rounding issue with pari/gp as it begins to use a
1334 // floating point representation after 192 bits. There are no discrepancies
1335 // between this algorithm and pari/gp for bit widths < 192 bits.
1336 APInt square(x_old * x_old);
1337 APInt nextSquare((x_old + 1) * (x_old +1));
1338 if (this->ult(square))
1339 return x_old;
1340 assert(this->ule(nextSquare) && "Error in APInt::sqrt computation");
1341 APInt midpoint((nextSquare - square).udiv(two));
1342 APInt offset(*this - square);
1343 if (offset.ult(midpoint))
1344 return x_old;
1345 return x_old + 1;
1346 }
1347
1348 /// Computes the multiplicative inverse of this APInt for a given modulo. The
1349 /// iterative extended Euclidean algorithm is used to solve for this value,
1350 /// however we simplify it to speed up calculating only the inverse, and take
1351 /// advantage of div+rem calculations. We also use some tricks to avoid copying
1352 /// (potentially large) APInts around.
multiplicativeInverse(const APInt & modulo) const1353 APInt APInt::multiplicativeInverse(const APInt& modulo) const {
1354 assert(ult(modulo) && "This APInt must be smaller than the modulo");
1355
1356 // Using the properties listed at the following web page (accessed 06/21/08):
1357 // http://www.numbertheory.org/php/euclid.html
1358 // (especially the properties numbered 3, 4 and 9) it can be proved that
1359 // BitWidth bits suffice for all the computations in the algorithm implemented
1360 // below. More precisely, this number of bits suffice if the multiplicative
1361 // inverse exists, but may not suffice for the general extended Euclidean
1362 // algorithm.
1363
1364 APInt r[2] = { modulo, *this };
1365 APInt t[2] = { APInt(BitWidth, 0), APInt(BitWidth, 1) };
1366 APInt q(BitWidth, 0);
1367
1368 unsigned i;
1369 for (i = 0; r[i^1] != 0; i ^= 1) {
1370 // An overview of the math without the confusing bit-flipping:
1371 // q = r[i-2] / r[i-1]
1372 // r[i] = r[i-2] % r[i-1]
1373 // t[i] = t[i-2] - t[i-1] * q
1374 udivrem(r[i], r[i^1], q, r[i]);
1375 t[i] -= t[i^1] * q;
1376 }
1377
1378 // If this APInt and the modulo are not coprime, there is no multiplicative
1379 // inverse, so return 0. We check this by looking at the next-to-last
1380 // remainder, which is the gcd(*this,modulo) as calculated by the Euclidean
1381 // algorithm.
1382 if (r[i] != 1)
1383 return APInt(BitWidth, 0);
1384
1385 // The next-to-last t is the multiplicative inverse. However, we are
1386 // interested in a positive inverse. Calcuate a positive one from a negative
1387 // one if necessary. A simple addition of the modulo suffices because
1388 // abs(t[i]) is known to be less than *this/2 (see the link above).
1389 return t[i].isNegative() ? t[i] + modulo : t[i];
1390 }
1391
1392 /// Calculate the magic numbers required to implement a signed integer division
1393 /// by a constant as a sequence of multiplies, adds and shifts. Requires that
1394 /// the divisor not be 0, 1, or -1. Taken from "Hacker's Delight", Henry S.
1395 /// Warren, Jr., chapter 10.
magic() const1396 APInt::ms APInt::magic() const {
1397 const APInt& d = *this;
1398 unsigned p;
1399 APInt ad, anc, delta, q1, r1, q2, r2, t;
1400 APInt signedMin = APInt::getSignedMinValue(d.getBitWidth());
1401 struct ms mag;
1402
1403 ad = d.abs();
1404 t = signedMin + (d.lshr(d.getBitWidth() - 1));
1405 anc = t - 1 - t.urem(ad); // absolute value of nc
1406 p = d.getBitWidth() - 1; // initialize p
1407 q1 = signedMin.udiv(anc); // initialize q1 = 2p/abs(nc)
1408 r1 = signedMin - q1*anc; // initialize r1 = rem(2p,abs(nc))
1409 q2 = signedMin.udiv(ad); // initialize q2 = 2p/abs(d)
1410 r2 = signedMin - q2*ad; // initialize r2 = rem(2p,abs(d))
1411 do {
1412 p = p + 1;
1413 q1 = q1<<1; // update q1 = 2p/abs(nc)
1414 r1 = r1<<1; // update r1 = rem(2p/abs(nc))
1415 if (r1.uge(anc)) { // must be unsigned comparison
1416 q1 = q1 + 1;
1417 r1 = r1 - anc;
1418 }
1419 q2 = q2<<1; // update q2 = 2p/abs(d)
1420 r2 = r2<<1; // update r2 = rem(2p/abs(d))
1421 if (r2.uge(ad)) { // must be unsigned comparison
1422 q2 = q2 + 1;
1423 r2 = r2 - ad;
1424 }
1425 delta = ad - r2;
1426 } while (q1.ult(delta) || (q1 == delta && r1 == 0));
1427
1428 mag.m = q2 + 1;
1429 if (d.isNegative()) mag.m = -mag.m; // resulting magic number
1430 mag.s = p - d.getBitWidth(); // resulting shift
1431 return mag;
1432 }
1433
1434 /// Calculate the magic numbers required to implement an unsigned integer
1435 /// division by a constant as a sequence of multiplies, adds and shifts.
1436 /// Requires that the divisor not be 0. Taken from "Hacker's Delight", Henry
1437 /// S. Warren, Jr., chapter 10.
1438 /// LeadingZeros can be used to simplify the calculation if the upper bits
1439 /// of the divided value are known zero.
magicu(unsigned LeadingZeros) const1440 APInt::mu APInt::magicu(unsigned LeadingZeros) const {
1441 const APInt& d = *this;
1442 unsigned p;
1443 APInt nc, delta, q1, r1, q2, r2;
1444 struct mu magu;
1445 magu.a = 0; // initialize "add" indicator
1446 APInt allOnes = APInt::getAllOnesValue(d.getBitWidth()).lshr(LeadingZeros);
1447 APInt signedMin = APInt::getSignedMinValue(d.getBitWidth());
1448 APInt signedMax = APInt::getSignedMaxValue(d.getBitWidth());
1449
1450 nc = allOnes - (allOnes - d).urem(d);
1451 p = d.getBitWidth() - 1; // initialize p
1452 q1 = signedMin.udiv(nc); // initialize q1 = 2p/nc
1453 r1 = signedMin - q1*nc; // initialize r1 = rem(2p,nc)
1454 q2 = signedMax.udiv(d); // initialize q2 = (2p-1)/d
1455 r2 = signedMax - q2*d; // initialize r2 = rem((2p-1),d)
1456 do {
1457 p = p + 1;
1458 if (r1.uge(nc - r1)) {
1459 q1 = q1 + q1 + 1; // update q1
1460 r1 = r1 + r1 - nc; // update r1
1461 }
1462 else {
1463 q1 = q1+q1; // update q1
1464 r1 = r1+r1; // update r1
1465 }
1466 if ((r2 + 1).uge(d - r2)) {
1467 if (q2.uge(signedMax)) magu.a = 1;
1468 q2 = q2+q2 + 1; // update q2
1469 r2 = r2+r2 + 1 - d; // update r2
1470 }
1471 else {
1472 if (q2.uge(signedMin)) magu.a = 1;
1473 q2 = q2+q2; // update q2
1474 r2 = r2+r2 + 1; // update r2
1475 }
1476 delta = d - 1 - r2;
1477 } while (p < d.getBitWidth()*2 &&
1478 (q1.ult(delta) || (q1 == delta && r1 == 0)));
1479 magu.m = q2 + 1; // resulting magic number
1480 magu.s = p - d.getBitWidth(); // resulting shift
1481 return magu;
1482 }
1483
1484 /// Implementation of Knuth's Algorithm D (Division of nonnegative integers)
1485 /// from "Art of Computer Programming, Volume 2", section 4.3.1, p. 272. The
1486 /// variables here have the same names as in the algorithm. Comments explain
1487 /// the algorithm and any deviation from it.
KnuthDiv(unsigned * u,unsigned * v,unsigned * q,unsigned * r,unsigned m,unsigned n)1488 static void KnuthDiv(unsigned *u, unsigned *v, unsigned *q, unsigned* r,
1489 unsigned m, unsigned n) {
1490 assert(u && "Must provide dividend");
1491 assert(v && "Must provide divisor");
1492 assert(q && "Must provide quotient");
1493 assert(u != v && u != q && v != q && "Must us different memory");
1494 assert(n>1 && "n must be > 1");
1495
1496 // Knuth uses the value b as the base of the number system. In our case b
1497 // is 2^31 so we just set it to -1u.
1498 uint64_t b = uint64_t(1) << 32;
1499
1500 #if 0
1501 DEBUG(dbgs() << "KnuthDiv: m=" << m << " n=" << n << '\n');
1502 DEBUG(dbgs() << "KnuthDiv: original:");
1503 DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i]);
1504 DEBUG(dbgs() << " by");
1505 DEBUG(for (int i = n; i >0; i--) dbgs() << " " << v[i-1]);
1506 DEBUG(dbgs() << '\n');
1507 #endif
1508 // D1. [Normalize.] Set d = b / (v[n-1] + 1) and multiply all the digits of
1509 // u and v by d. Note that we have taken Knuth's advice here to use a power
1510 // of 2 value for d such that d * v[n-1] >= b/2 (b is the base). A power of
1511 // 2 allows us to shift instead of multiply and it is easy to determine the
1512 // shift amount from the leading zeros. We are basically normalizing the u
1513 // and v so that its high bits are shifted to the top of v's range without
1514 // overflow. Note that this can require an extra word in u so that u must
1515 // be of length m+n+1.
1516 unsigned shift = countLeadingZeros(v[n-1]);
1517 unsigned v_carry = 0;
1518 unsigned u_carry = 0;
1519 if (shift) {
1520 for (unsigned i = 0; i < m+n; ++i) {
1521 unsigned u_tmp = u[i] >> (32 - shift);
1522 u[i] = (u[i] << shift) | u_carry;
1523 u_carry = u_tmp;
1524 }
1525 for (unsigned i = 0; i < n; ++i) {
1526 unsigned v_tmp = v[i] >> (32 - shift);
1527 v[i] = (v[i] << shift) | v_carry;
1528 v_carry = v_tmp;
1529 }
1530 }
1531 u[m+n] = u_carry;
1532 #if 0
1533 DEBUG(dbgs() << "KnuthDiv: normal:");
1534 DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i]);
1535 DEBUG(dbgs() << " by");
1536 DEBUG(for (int i = n; i >0; i--) dbgs() << " " << v[i-1]);
1537 DEBUG(dbgs() << '\n');
1538 #endif
1539
1540 // D2. [Initialize j.] Set j to m. This is the loop counter over the places.
1541 int j = m;
1542 do {
1543 DEBUG(dbgs() << "KnuthDiv: quotient digit #" << j << '\n');
1544 // D3. [Calculate q'.].
1545 // Set qp = (u[j+n]*b + u[j+n-1]) / v[n-1]. (qp=qprime=q')
1546 // Set rp = (u[j+n]*b + u[j+n-1]) % v[n-1]. (rp=rprime=r')
1547 // Now test if qp == b or qp*v[n-2] > b*rp + u[j+n-2]; if so, decrease
1548 // qp by 1, inrease rp by v[n-1], and repeat this test if rp < b. The test
1549 // on v[n-2] determines at high speed most of the cases in which the trial
1550 // value qp is one too large, and it eliminates all cases where qp is two
1551 // too large.
1552 uint64_t dividend = ((uint64_t(u[j+n]) << 32) + u[j+n-1]);
1553 DEBUG(dbgs() << "KnuthDiv: dividend == " << dividend << '\n');
1554 uint64_t qp = dividend / v[n-1];
1555 uint64_t rp = dividend % v[n-1];
1556 if (qp == b || qp*v[n-2] > b*rp + u[j+n-2]) {
1557 qp--;
1558 rp += v[n-1];
1559 if (rp < b && (qp == b || qp*v[n-2] > b*rp + u[j+n-2]))
1560 qp--;
1561 }
1562 DEBUG(dbgs() << "KnuthDiv: qp == " << qp << ", rp == " << rp << '\n');
1563
1564 // D4. [Multiply and subtract.] Replace (u[j+n]u[j+n-1]...u[j]) with
1565 // (u[j+n]u[j+n-1]..u[j]) - qp * (v[n-1]...v[1]v[0]). This computation
1566 // consists of a simple multiplication by a one-place number, combined with
1567 // a subtraction.
1568 bool isNeg = false;
1569 for (unsigned i = 0; i < n; ++i) {
1570 uint64_t u_tmp = uint64_t(u[j+i]) | (uint64_t(u[j+i+1]) << 32);
1571 uint64_t subtrahend = uint64_t(qp) * uint64_t(v[i]);
1572 bool borrow = subtrahend > u_tmp;
1573 DEBUG(dbgs() << "KnuthDiv: u_tmp == " << u_tmp
1574 << ", subtrahend == " << subtrahend
1575 << ", borrow = " << borrow << '\n');
1576
1577 uint64_t result = u_tmp - subtrahend;
1578 unsigned k = j + i;
1579 u[k++] = (unsigned)(result & (b-1)); // subtract low word
1580 u[k++] = (unsigned)(result >> 32); // subtract high word
1581 while (borrow && k <= m+n) { // deal with borrow to the left
1582 borrow = u[k] == 0;
1583 u[k]--;
1584 k++;
1585 }
1586 isNeg |= borrow;
1587 DEBUG(dbgs() << "KnuthDiv: u[j+i] == " << u[j+i] << ", u[j+i+1] == " <<
1588 u[j+i+1] << '\n');
1589 }
1590 DEBUG(dbgs() << "KnuthDiv: after subtraction:");
1591 DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i]);
1592 DEBUG(dbgs() << '\n');
1593 // The digits (u[j+n]...u[j]) should be kept positive; if the result of
1594 // this step is actually negative, (u[j+n]...u[j]) should be left as the
1595 // true value plus b**(n+1), namely as the b's complement of
1596 // the true value, and a "borrow" to the left should be remembered.
1597 //
1598 if (isNeg) {
1599 bool carry = true; // true because b's complement is "complement + 1"
1600 for (unsigned i = 0; i <= m+n; ++i) {
1601 u[i] = ~u[i] + carry; // b's complement
1602 carry = carry && u[i] == 0;
1603 }
1604 }
1605 DEBUG(dbgs() << "KnuthDiv: after complement:");
1606 DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i]);
1607 DEBUG(dbgs() << '\n');
1608
1609 // D5. [Test remainder.] Set q[j] = qp. If the result of step D4 was
1610 // negative, go to step D6; otherwise go on to step D7.
1611 q[j] = (unsigned)qp;
1612 if (isNeg) {
1613 // D6. [Add back]. The probability that this step is necessary is very
1614 // small, on the order of only 2/b. Make sure that test data accounts for
1615 // this possibility. Decrease q[j] by 1
1616 q[j]--;
1617 // and add (0v[n-1]...v[1]v[0]) to (u[j+n]u[j+n-1]...u[j+1]u[j]).
1618 // A carry will occur to the left of u[j+n], and it should be ignored
1619 // since it cancels with the borrow that occurred in D4.
1620 bool carry = false;
1621 for (unsigned i = 0; i < n; i++) {
1622 unsigned limit = std::min(u[j+i],v[i]);
1623 u[j+i] += v[i] + carry;
1624 carry = u[j+i] < limit || (carry && u[j+i] == limit);
1625 }
1626 u[j+n] += carry;
1627 }
1628 DEBUG(dbgs() << "KnuthDiv: after correction:");
1629 DEBUG(for (int i = m+n; i >=0; i--) dbgs() <<" " << u[i]);
1630 DEBUG(dbgs() << "\nKnuthDiv: digit result = " << q[j] << '\n');
1631
1632 // D7. [Loop on j.] Decrease j by one. Now if j >= 0, go back to D3.
1633 } while (--j >= 0);
1634
1635 DEBUG(dbgs() << "KnuthDiv: quotient:");
1636 DEBUG(for (int i = m; i >=0; i--) dbgs() <<" " << q[i]);
1637 DEBUG(dbgs() << '\n');
1638
1639 // D8. [Unnormalize]. Now q[...] is the desired quotient, and the desired
1640 // remainder may be obtained by dividing u[...] by d. If r is non-null we
1641 // compute the remainder (urem uses this).
1642 if (r) {
1643 // The value d is expressed by the "shift" value above since we avoided
1644 // multiplication by d by using a shift left. So, all we have to do is
1645 // shift right here. In order to mak
1646 if (shift) {
1647 unsigned carry = 0;
1648 DEBUG(dbgs() << "KnuthDiv: remainder:");
1649 for (int i = n-1; i >= 0; i--) {
1650 r[i] = (u[i] >> shift) | carry;
1651 carry = u[i] << (32 - shift);
1652 DEBUG(dbgs() << " " << r[i]);
1653 }
1654 } else {
1655 for (int i = n-1; i >= 0; i--) {
1656 r[i] = u[i];
1657 DEBUG(dbgs() << " " << r[i]);
1658 }
1659 }
1660 DEBUG(dbgs() << '\n');
1661 }
1662 #if 0
1663 DEBUG(dbgs() << '\n');
1664 #endif
1665 }
1666
divide(const APInt LHS,unsigned lhsWords,const APInt & RHS,unsigned rhsWords,APInt * Quotient,APInt * Remainder)1667 void APInt::divide(const APInt LHS, unsigned lhsWords,
1668 const APInt &RHS, unsigned rhsWords,
1669 APInt *Quotient, APInt *Remainder)
1670 {
1671 assert(lhsWords >= rhsWords && "Fractional result");
1672
1673 // First, compose the values into an array of 32-bit words instead of
1674 // 64-bit words. This is a necessity of both the "short division" algorithm
1675 // and the Knuth "classical algorithm" which requires there to be native
1676 // operations for +, -, and * on an m bit value with an m*2 bit result. We
1677 // can't use 64-bit operands here because we don't have native results of
1678 // 128-bits. Furthermore, casting the 64-bit values to 32-bit values won't
1679 // work on large-endian machines.
1680 uint64_t mask = ~0ull >> (sizeof(unsigned)*CHAR_BIT);
1681 unsigned n = rhsWords * 2;
1682 unsigned m = (lhsWords * 2) - n;
1683
1684 // Allocate space for the temporary values we need either on the stack, if
1685 // it will fit, or on the heap if it won't.
1686 unsigned SPACE[128];
1687 unsigned *U = nullptr;
1688 unsigned *V = nullptr;
1689 unsigned *Q = nullptr;
1690 unsigned *R = nullptr;
1691 if ((Remainder?4:3)*n+2*m+1 <= 128) {
1692 U = &SPACE[0];
1693 V = &SPACE[m+n+1];
1694 Q = &SPACE[(m+n+1) + n];
1695 if (Remainder)
1696 R = &SPACE[(m+n+1) + n + (m+n)];
1697 } else {
1698 U = new unsigned[m + n + 1];
1699 V = new unsigned[n];
1700 Q = new unsigned[m+n];
1701 if (Remainder)
1702 R = new unsigned[n];
1703 }
1704
1705 // Initialize the dividend
1706 memset(U, 0, (m+n+1)*sizeof(unsigned));
1707 for (unsigned i = 0; i < lhsWords; ++i) {
1708 uint64_t tmp = (LHS.getNumWords() == 1 ? LHS.VAL : LHS.pVal[i]);
1709 U[i * 2] = (unsigned)(tmp & mask);
1710 U[i * 2 + 1] = (unsigned)(tmp >> (sizeof(unsigned)*CHAR_BIT));
1711 }
1712 U[m+n] = 0; // this extra word is for "spill" in the Knuth algorithm.
1713
1714 // Initialize the divisor
1715 memset(V, 0, (n)*sizeof(unsigned));
1716 for (unsigned i = 0; i < rhsWords; ++i) {
1717 uint64_t tmp = (RHS.getNumWords() == 1 ? RHS.VAL : RHS.pVal[i]);
1718 V[i * 2] = (unsigned)(tmp & mask);
1719 V[i * 2 + 1] = (unsigned)(tmp >> (sizeof(unsigned)*CHAR_BIT));
1720 }
1721
1722 // initialize the quotient and remainder
1723 memset(Q, 0, (m+n) * sizeof(unsigned));
1724 if (Remainder)
1725 memset(R, 0, n * sizeof(unsigned));
1726
1727 // Now, adjust m and n for the Knuth division. n is the number of words in
1728 // the divisor. m is the number of words by which the dividend exceeds the
1729 // divisor (i.e. m+n is the length of the dividend). These sizes must not
1730 // contain any zero words or the Knuth algorithm fails.
1731 for (unsigned i = n; i > 0 && V[i-1] == 0; i--) {
1732 n--;
1733 m++;
1734 }
1735 for (unsigned i = m+n; i > 0 && U[i-1] == 0; i--)
1736 m--;
1737
1738 // If we're left with only a single word for the divisor, Knuth doesn't work
1739 // so we implement the short division algorithm here. This is much simpler
1740 // and faster because we are certain that we can divide a 64-bit quantity
1741 // by a 32-bit quantity at hardware speed and short division is simply a
1742 // series of such operations. This is just like doing short division but we
1743 // are using base 2^32 instead of base 10.
1744 assert(n != 0 && "Divide by zero?");
1745 if (n == 1) {
1746 unsigned divisor = V[0];
1747 unsigned remainder = 0;
1748 for (int i = m+n-1; i >= 0; i--) {
1749 uint64_t partial_dividend = uint64_t(remainder) << 32 | U[i];
1750 if (partial_dividend == 0) {
1751 Q[i] = 0;
1752 remainder = 0;
1753 } else if (partial_dividend < divisor) {
1754 Q[i] = 0;
1755 remainder = (unsigned)partial_dividend;
1756 } else if (partial_dividend == divisor) {
1757 Q[i] = 1;
1758 remainder = 0;
1759 } else {
1760 Q[i] = (unsigned)(partial_dividend / divisor);
1761 remainder = (unsigned)(partial_dividend - (Q[i] * divisor));
1762 }
1763 }
1764 if (R)
1765 R[0] = remainder;
1766 } else {
1767 // Now we're ready to invoke the Knuth classical divide algorithm. In this
1768 // case n > 1.
1769 KnuthDiv(U, V, Q, R, m, n);
1770 }
1771
1772 // If the caller wants the quotient
1773 if (Quotient) {
1774 // Set up the Quotient value's memory.
1775 if (Quotient->BitWidth != LHS.BitWidth) {
1776 if (Quotient->isSingleWord())
1777 Quotient->VAL = 0;
1778 else
1779 delete [] Quotient->pVal;
1780 Quotient->BitWidth = LHS.BitWidth;
1781 if (!Quotient->isSingleWord())
1782 Quotient->pVal = getClearedMemory(Quotient->getNumWords());
1783 } else
1784 Quotient->clearAllBits();
1785
1786 // The quotient is in Q. Reconstitute the quotient into Quotient's low
1787 // order words.
1788 if (lhsWords == 1) {
1789 uint64_t tmp =
1790 uint64_t(Q[0]) | (uint64_t(Q[1]) << (APINT_BITS_PER_WORD / 2));
1791 if (Quotient->isSingleWord())
1792 Quotient->VAL = tmp;
1793 else
1794 Quotient->pVal[0] = tmp;
1795 } else {
1796 assert(!Quotient->isSingleWord() && "Quotient APInt not large enough");
1797 for (unsigned i = 0; i < lhsWords; ++i)
1798 Quotient->pVal[i] =
1799 uint64_t(Q[i*2]) | (uint64_t(Q[i*2+1]) << (APINT_BITS_PER_WORD / 2));
1800 }
1801 }
1802
1803 // If the caller wants the remainder
1804 if (Remainder) {
1805 // Set up the Remainder value's memory.
1806 if (Remainder->BitWidth != RHS.BitWidth) {
1807 if (Remainder->isSingleWord())
1808 Remainder->VAL = 0;
1809 else
1810 delete [] Remainder->pVal;
1811 Remainder->BitWidth = RHS.BitWidth;
1812 if (!Remainder->isSingleWord())
1813 Remainder->pVal = getClearedMemory(Remainder->getNumWords());
1814 } else
1815 Remainder->clearAllBits();
1816
1817 // The remainder is in R. Reconstitute the remainder into Remainder's low
1818 // order words.
1819 if (rhsWords == 1) {
1820 uint64_t tmp =
1821 uint64_t(R[0]) | (uint64_t(R[1]) << (APINT_BITS_PER_WORD / 2));
1822 if (Remainder->isSingleWord())
1823 Remainder->VAL = tmp;
1824 else
1825 Remainder->pVal[0] = tmp;
1826 } else {
1827 assert(!Remainder->isSingleWord() && "Remainder APInt not large enough");
1828 for (unsigned i = 0; i < rhsWords; ++i)
1829 Remainder->pVal[i] =
1830 uint64_t(R[i*2]) | (uint64_t(R[i*2+1]) << (APINT_BITS_PER_WORD / 2));
1831 }
1832 }
1833
1834 // Clean up the memory we allocated.
1835 if (U != &SPACE[0]) {
1836 delete [] U;
1837 delete [] V;
1838 delete [] Q;
1839 delete [] R;
1840 }
1841 }
1842
udiv(const APInt & RHS) const1843 APInt APInt::udiv(const APInt& RHS) const {
1844 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
1845
1846 // First, deal with the easy case
1847 if (isSingleWord()) {
1848 assert(RHS.VAL != 0 && "Divide by zero?");
1849 return APInt(BitWidth, VAL / RHS.VAL);
1850 }
1851
1852 // Get some facts about the LHS and RHS number of bits and words
1853 unsigned rhsBits = RHS.getActiveBits();
1854 unsigned rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
1855 assert(rhsWords && "Divided by zero???");
1856 unsigned lhsBits = this->getActiveBits();
1857 unsigned lhsWords = !lhsBits ? 0 : (APInt::whichWord(lhsBits - 1) + 1);
1858
1859 // Deal with some degenerate cases
1860 if (!lhsWords)
1861 // 0 / X ===> 0
1862 return APInt(BitWidth, 0);
1863 else if (lhsWords < rhsWords || this->ult(RHS)) {
1864 // X / Y ===> 0, iff X < Y
1865 return APInt(BitWidth, 0);
1866 } else if (*this == RHS) {
1867 // X / X ===> 1
1868 return APInt(BitWidth, 1);
1869 } else if (lhsWords == 1 && rhsWords == 1) {
1870 // All high words are zero, just use native divide
1871 return APInt(BitWidth, this->pVal[0] / RHS.pVal[0]);
1872 }
1873
1874 // We have to compute it the hard way. Invoke the Knuth divide algorithm.
1875 APInt Quotient(1,0); // to hold result.
1876 divide(*this, lhsWords, RHS, rhsWords, &Quotient, nullptr);
1877 return Quotient;
1878 }
1879
sdiv(const APInt & RHS) const1880 APInt APInt::sdiv(const APInt &RHS) const {
1881 if (isNegative()) {
1882 if (RHS.isNegative())
1883 return (-(*this)).udiv(-RHS);
1884 return -((-(*this)).udiv(RHS));
1885 }
1886 if (RHS.isNegative())
1887 return -(this->udiv(-RHS));
1888 return this->udiv(RHS);
1889 }
1890
urem(const APInt & RHS) const1891 APInt APInt::urem(const APInt& RHS) const {
1892 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
1893 if (isSingleWord()) {
1894 assert(RHS.VAL != 0 && "Remainder by zero?");
1895 return APInt(BitWidth, VAL % RHS.VAL);
1896 }
1897
1898 // Get some facts about the LHS
1899 unsigned lhsBits = getActiveBits();
1900 unsigned lhsWords = !lhsBits ? 0 : (whichWord(lhsBits - 1) + 1);
1901
1902 // Get some facts about the RHS
1903 unsigned rhsBits = RHS.getActiveBits();
1904 unsigned rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
1905 assert(rhsWords && "Performing remainder operation by zero ???");
1906
1907 // Check the degenerate cases
1908 if (lhsWords == 0) {
1909 // 0 % Y ===> 0
1910 return APInt(BitWidth, 0);
1911 } else if (lhsWords < rhsWords || this->ult(RHS)) {
1912 // X % Y ===> X, iff X < Y
1913 return *this;
1914 } else if (*this == RHS) {
1915 // X % X == 0;
1916 return APInt(BitWidth, 0);
1917 } else if (lhsWords == 1) {
1918 // All high words are zero, just use native remainder
1919 return APInt(BitWidth, pVal[0] % RHS.pVal[0]);
1920 }
1921
1922 // We have to compute it the hard way. Invoke the Knuth divide algorithm.
1923 APInt Remainder(1,0);
1924 divide(*this, lhsWords, RHS, rhsWords, nullptr, &Remainder);
1925 return Remainder;
1926 }
1927
srem(const APInt & RHS) const1928 APInt APInt::srem(const APInt &RHS) const {
1929 if (isNegative()) {
1930 if (RHS.isNegative())
1931 return -((-(*this)).urem(-RHS));
1932 return -((-(*this)).urem(RHS));
1933 }
1934 if (RHS.isNegative())
1935 return this->urem(-RHS);
1936 return this->urem(RHS);
1937 }
1938
udivrem(const APInt & LHS,const APInt & RHS,APInt & Quotient,APInt & Remainder)1939 void APInt::udivrem(const APInt &LHS, const APInt &RHS,
1940 APInt &Quotient, APInt &Remainder) {
1941 // Get some size facts about the dividend and divisor
1942 unsigned lhsBits = LHS.getActiveBits();
1943 unsigned lhsWords = !lhsBits ? 0 : (APInt::whichWord(lhsBits - 1) + 1);
1944 unsigned rhsBits = RHS.getActiveBits();
1945 unsigned rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
1946
1947 // Check the degenerate cases
1948 if (lhsWords == 0) {
1949 Quotient = 0; // 0 / Y ===> 0
1950 Remainder = 0; // 0 % Y ===> 0
1951 return;
1952 }
1953
1954 if (lhsWords < rhsWords || LHS.ult(RHS)) {
1955 Remainder = LHS; // X % Y ===> X, iff X < Y
1956 Quotient = 0; // X / Y ===> 0, iff X < Y
1957 return;
1958 }
1959
1960 if (LHS == RHS) {
1961 Quotient = 1; // X / X ===> 1
1962 Remainder = 0; // X % X ===> 0;
1963 return;
1964 }
1965
1966 if (lhsWords == 1 && rhsWords == 1) {
1967 // There is only one word to consider so use the native versions.
1968 uint64_t lhsValue = LHS.isSingleWord() ? LHS.VAL : LHS.pVal[0];
1969 uint64_t rhsValue = RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0];
1970 Quotient = APInt(LHS.getBitWidth(), lhsValue / rhsValue);
1971 Remainder = APInt(LHS.getBitWidth(), lhsValue % rhsValue);
1972 return;
1973 }
1974
1975 // Okay, lets do it the long way
1976 divide(LHS, lhsWords, RHS, rhsWords, &Quotient, &Remainder);
1977 }
1978
sdivrem(const APInt & LHS,const APInt & RHS,APInt & Quotient,APInt & Remainder)1979 void APInt::sdivrem(const APInt &LHS, const APInt &RHS,
1980 APInt &Quotient, APInt &Remainder) {
1981 if (LHS.isNegative()) {
1982 if (RHS.isNegative())
1983 APInt::udivrem(-LHS, -RHS, Quotient, Remainder);
1984 else {
1985 APInt::udivrem(-LHS, RHS, Quotient, Remainder);
1986 Quotient = -Quotient;
1987 }
1988 Remainder = -Remainder;
1989 } else if (RHS.isNegative()) {
1990 APInt::udivrem(LHS, -RHS, Quotient, Remainder);
1991 Quotient = -Quotient;
1992 } else {
1993 APInt::udivrem(LHS, RHS, Quotient, Remainder);
1994 }
1995 }
1996
sadd_ov(const APInt & RHS,bool & Overflow) const1997 APInt APInt::sadd_ov(const APInt &RHS, bool &Overflow) const {
1998 APInt Res = *this+RHS;
1999 Overflow = isNonNegative() == RHS.isNonNegative() &&
2000 Res.isNonNegative() != isNonNegative();
2001 return Res;
2002 }
2003
uadd_ov(const APInt & RHS,bool & Overflow) const2004 APInt APInt::uadd_ov(const APInt &RHS, bool &Overflow) const {
2005 APInt Res = *this+RHS;
2006 Overflow = Res.ult(RHS);
2007 return Res;
2008 }
2009
ssub_ov(const APInt & RHS,bool & Overflow) const2010 APInt APInt::ssub_ov(const APInt &RHS, bool &Overflow) const {
2011 APInt Res = *this - RHS;
2012 Overflow = isNonNegative() != RHS.isNonNegative() &&
2013 Res.isNonNegative() != isNonNegative();
2014 return Res;
2015 }
2016
usub_ov(const APInt & RHS,bool & Overflow) const2017 APInt APInt::usub_ov(const APInt &RHS, bool &Overflow) const {
2018 APInt Res = *this-RHS;
2019 Overflow = Res.ugt(*this);
2020 return Res;
2021 }
2022
sdiv_ov(const APInt & RHS,bool & Overflow) const2023 APInt APInt::sdiv_ov(const APInt &RHS, bool &Overflow) const {
2024 // MININT/-1 --> overflow.
2025 Overflow = isMinSignedValue() && RHS.isAllOnesValue();
2026 return sdiv(RHS);
2027 }
2028
smul_ov(const APInt & RHS,bool & Overflow) const2029 APInt APInt::smul_ov(const APInt &RHS, bool &Overflow) const {
2030 APInt Res = *this * RHS;
2031
2032 if (*this != 0 && RHS != 0)
2033 Overflow = Res.sdiv(RHS) != *this || Res.sdiv(*this) != RHS;
2034 else
2035 Overflow = false;
2036 return Res;
2037 }
2038
umul_ov(const APInt & RHS,bool & Overflow) const2039 APInt APInt::umul_ov(const APInt &RHS, bool &Overflow) const {
2040 APInt Res = *this * RHS;
2041
2042 if (*this != 0 && RHS != 0)
2043 Overflow = Res.udiv(RHS) != *this || Res.udiv(*this) != RHS;
2044 else
2045 Overflow = false;
2046 return Res;
2047 }
2048
sshl_ov(unsigned ShAmt,bool & Overflow) const2049 APInt APInt::sshl_ov(unsigned ShAmt, bool &Overflow) const {
2050 Overflow = ShAmt >= getBitWidth();
2051 if (Overflow)
2052 ShAmt = getBitWidth()-1;
2053
2054 if (isNonNegative()) // Don't allow sign change.
2055 Overflow = ShAmt >= countLeadingZeros();
2056 else
2057 Overflow = ShAmt >= countLeadingOnes();
2058
2059 return *this << ShAmt;
2060 }
2061
2062
2063
2064
fromString(unsigned numbits,StringRef str,uint8_t radix)2065 void APInt::fromString(unsigned numbits, StringRef str, uint8_t radix) {
2066 // Check our assumptions here
2067 assert(!str.empty() && "Invalid string length");
2068 assert((radix == 10 || radix == 8 || radix == 16 || radix == 2 ||
2069 radix == 36) &&
2070 "Radix should be 2, 8, 10, 16, or 36!");
2071
2072 StringRef::iterator p = str.begin();
2073 size_t slen = str.size();
2074 bool isNeg = *p == '-';
2075 if (*p == '-' || *p == '+') {
2076 p++;
2077 slen--;
2078 assert(slen && "String is only a sign, needs a value.");
2079 }
2080 assert((slen <= numbits || radix != 2) && "Insufficient bit width");
2081 assert(((slen-1)*3 <= numbits || radix != 8) && "Insufficient bit width");
2082 assert(((slen-1)*4 <= numbits || radix != 16) && "Insufficient bit width");
2083 assert((((slen-1)*64)/22 <= numbits || radix != 10) &&
2084 "Insufficient bit width");
2085
2086 // Allocate memory
2087 if (!isSingleWord())
2088 pVal = getClearedMemory(getNumWords());
2089
2090 // Figure out if we can shift instead of multiply
2091 unsigned shift = (radix == 16 ? 4 : radix == 8 ? 3 : radix == 2 ? 1 : 0);
2092
2093 // Set up an APInt for the digit to add outside the loop so we don't
2094 // constantly construct/destruct it.
2095 APInt apdigit(getBitWidth(), 0);
2096 APInt apradix(getBitWidth(), radix);
2097
2098 // Enter digit traversal loop
2099 for (StringRef::iterator e = str.end(); p != e; ++p) {
2100 unsigned digit = getDigit(*p, radix);
2101 assert(digit < radix && "Invalid character in digit string");
2102
2103 // Shift or multiply the value by the radix
2104 if (slen > 1) {
2105 if (shift)
2106 *this <<= shift;
2107 else
2108 *this *= apradix;
2109 }
2110
2111 // Add in the digit we just interpreted
2112 if (apdigit.isSingleWord())
2113 apdigit.VAL = digit;
2114 else
2115 apdigit.pVal[0] = digit;
2116 *this += apdigit;
2117 }
2118 // If its negative, put it in two's complement form
2119 if (isNeg) {
2120 --(*this);
2121 this->flipAllBits();
2122 }
2123 }
2124
toString(SmallVectorImpl<char> & Str,unsigned Radix,bool Signed,bool formatAsCLiteral) const2125 void APInt::toString(SmallVectorImpl<char> &Str, unsigned Radix,
2126 bool Signed, bool formatAsCLiteral) const {
2127 assert((Radix == 10 || Radix == 8 || Radix == 16 || Radix == 2 ||
2128 Radix == 36) &&
2129 "Radix should be 2, 8, 10, 16, or 36!");
2130
2131 const char *Prefix = "";
2132 if (formatAsCLiteral) {
2133 switch (Radix) {
2134 case 2:
2135 // Binary literals are a non-standard extension added in gcc 4.3:
2136 // http://gcc.gnu.org/onlinedocs/gcc-4.3.0/gcc/Binary-constants.html
2137 Prefix = "0b";
2138 break;
2139 case 8:
2140 Prefix = "0";
2141 break;
2142 case 10:
2143 break; // No prefix
2144 case 16:
2145 Prefix = "0x";
2146 break;
2147 default:
2148 llvm_unreachable("Invalid radix!");
2149 }
2150 }
2151
2152 // First, check for a zero value and just short circuit the logic below.
2153 if (*this == 0) {
2154 while (*Prefix) {
2155 Str.push_back(*Prefix);
2156 ++Prefix;
2157 };
2158 Str.push_back('0');
2159 return;
2160 }
2161
2162 static const char Digits[] = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ";
2163
2164 if (isSingleWord()) {
2165 char Buffer[65];
2166 char *BufPtr = Buffer+65;
2167
2168 uint64_t N;
2169 if (!Signed) {
2170 N = getZExtValue();
2171 } else {
2172 int64_t I = getSExtValue();
2173 if (I >= 0) {
2174 N = I;
2175 } else {
2176 Str.push_back('-');
2177 N = -(uint64_t)I;
2178 }
2179 }
2180
2181 while (*Prefix) {
2182 Str.push_back(*Prefix);
2183 ++Prefix;
2184 };
2185
2186 while (N) {
2187 *--BufPtr = Digits[N % Radix];
2188 N /= Radix;
2189 }
2190 Str.append(BufPtr, Buffer+65);
2191 return;
2192 }
2193
2194 APInt Tmp(*this);
2195
2196 if (Signed && isNegative()) {
2197 // They want to print the signed version and it is a negative value
2198 // Flip the bits and add one to turn it into the equivalent positive
2199 // value and put a '-' in the result.
2200 Tmp.flipAllBits();
2201 ++Tmp;
2202 Str.push_back('-');
2203 }
2204
2205 while (*Prefix) {
2206 Str.push_back(*Prefix);
2207 ++Prefix;
2208 };
2209
2210 // We insert the digits backward, then reverse them to get the right order.
2211 unsigned StartDig = Str.size();
2212
2213 // For the 2, 8 and 16 bit cases, we can just shift instead of divide
2214 // because the number of bits per digit (1, 3 and 4 respectively) divides
2215 // equaly. We just shift until the value is zero.
2216 if (Radix == 2 || Radix == 8 || Radix == 16) {
2217 // Just shift tmp right for each digit width until it becomes zero
2218 unsigned ShiftAmt = (Radix == 16 ? 4 : (Radix == 8 ? 3 : 1));
2219 unsigned MaskAmt = Radix - 1;
2220
2221 while (Tmp != 0) {
2222 unsigned Digit = unsigned(Tmp.getRawData()[0]) & MaskAmt;
2223 Str.push_back(Digits[Digit]);
2224 Tmp = Tmp.lshr(ShiftAmt);
2225 }
2226 } else {
2227 APInt divisor(Radix == 10? 4 : 8, Radix);
2228 while (Tmp != 0) {
2229 APInt APdigit(1, 0);
2230 APInt tmp2(Tmp.getBitWidth(), 0);
2231 divide(Tmp, Tmp.getNumWords(), divisor, divisor.getNumWords(), &tmp2,
2232 &APdigit);
2233 unsigned Digit = (unsigned)APdigit.getZExtValue();
2234 assert(Digit < Radix && "divide failed");
2235 Str.push_back(Digits[Digit]);
2236 Tmp = tmp2;
2237 }
2238 }
2239
2240 // Reverse the digits before returning.
2241 std::reverse(Str.begin()+StartDig, Str.end());
2242 }
2243
2244 /// toString - This returns the APInt as a std::string. Note that this is an
2245 /// inefficient method. It is better to pass in a SmallVector/SmallString
2246 /// to the methods above.
toString(unsigned Radix=10,bool Signed=true) const2247 std::string APInt::toString(unsigned Radix = 10, bool Signed = true) const {
2248 SmallString<40> S;
2249 toString(S, Radix, Signed, /* formatAsCLiteral = */false);
2250 return S.str();
2251 }
2252
2253
dump() const2254 void APInt::dump() const {
2255 SmallString<40> S, U;
2256 this->toStringUnsigned(U);
2257 this->toStringSigned(S);
2258 dbgs() << "APInt(" << BitWidth << "b, "
2259 << U.str() << "u " << S.str() << "s)";
2260 }
2261
print(raw_ostream & OS,bool isSigned) const2262 void APInt::print(raw_ostream &OS, bool isSigned) const {
2263 SmallString<40> S;
2264 this->toString(S, 10, isSigned, /* formatAsCLiteral = */false);
2265 OS << S.str();
2266 }
2267
2268 // This implements a variety of operations on a representation of
2269 // arbitrary precision, two's-complement, bignum integer values.
2270
2271 // Assumed by lowHalf, highHalf, partMSB and partLSB. A fairly safe
2272 // and unrestricting assumption.
2273 #define COMPILE_TIME_ASSERT(cond) extern int CTAssert[(cond) ? 1 : -1]
2274 COMPILE_TIME_ASSERT(integerPartWidth % 2 == 0);
2275
2276 /* Some handy functions local to this file. */
2277 namespace {
2278
2279 /* Returns the integer part with the least significant BITS set.
2280 BITS cannot be zero. */
2281 static inline integerPart
lowBitMask(unsigned int bits)2282 lowBitMask(unsigned int bits)
2283 {
2284 assert(bits != 0 && bits <= integerPartWidth);
2285
2286 return ~(integerPart) 0 >> (integerPartWidth - bits);
2287 }
2288
2289 /* Returns the value of the lower half of PART. */
2290 static inline integerPart
lowHalf(integerPart part)2291 lowHalf(integerPart part)
2292 {
2293 return part & lowBitMask(integerPartWidth / 2);
2294 }
2295
2296 /* Returns the value of the upper half of PART. */
2297 static inline integerPart
highHalf(integerPart part)2298 highHalf(integerPart part)
2299 {
2300 return part >> (integerPartWidth / 2);
2301 }
2302
2303 /* Returns the bit number of the most significant set bit of a part.
2304 If the input number has no bits set -1U is returned. */
2305 static unsigned int
partMSB(integerPart value)2306 partMSB(integerPart value)
2307 {
2308 return findLastSet(value, ZB_Max);
2309 }
2310
2311 /* Returns the bit number of the least significant set bit of a
2312 part. If the input number has no bits set -1U is returned. */
2313 static unsigned int
partLSB(integerPart value)2314 partLSB(integerPart value)
2315 {
2316 return findFirstSet(value, ZB_Max);
2317 }
2318 }
2319
2320 /* Sets the least significant part of a bignum to the input value, and
2321 zeroes out higher parts. */
2322 void
tcSet(integerPart * dst,integerPart part,unsigned int parts)2323 APInt::tcSet(integerPart *dst, integerPart part, unsigned int parts)
2324 {
2325 unsigned int i;
2326
2327 assert(parts > 0);
2328
2329 dst[0] = part;
2330 for (i = 1; i < parts; i++)
2331 dst[i] = 0;
2332 }
2333
2334 /* Assign one bignum to another. */
2335 void
tcAssign(integerPart * dst,const integerPart * src,unsigned int parts)2336 APInt::tcAssign(integerPart *dst, const integerPart *src, unsigned int parts)
2337 {
2338 unsigned int i;
2339
2340 for (i = 0; i < parts; i++)
2341 dst[i] = src[i];
2342 }
2343
2344 /* Returns true if a bignum is zero, false otherwise. */
2345 bool
tcIsZero(const integerPart * src,unsigned int parts)2346 APInt::tcIsZero(const integerPart *src, unsigned int parts)
2347 {
2348 unsigned int i;
2349
2350 for (i = 0; i < parts; i++)
2351 if (src[i])
2352 return false;
2353
2354 return true;
2355 }
2356
2357 /* Extract the given bit of a bignum; returns 0 or 1. */
2358 int
tcExtractBit(const integerPart * parts,unsigned int bit)2359 APInt::tcExtractBit(const integerPart *parts, unsigned int bit)
2360 {
2361 return (parts[bit / integerPartWidth] &
2362 ((integerPart) 1 << bit % integerPartWidth)) != 0;
2363 }
2364
2365 /* Set the given bit of a bignum. */
2366 void
tcSetBit(integerPart * parts,unsigned int bit)2367 APInt::tcSetBit(integerPart *parts, unsigned int bit)
2368 {
2369 parts[bit / integerPartWidth] |= (integerPart) 1 << (bit % integerPartWidth);
2370 }
2371
2372 /* Clears the given bit of a bignum. */
2373 void
tcClearBit(integerPart * parts,unsigned int bit)2374 APInt::tcClearBit(integerPart *parts, unsigned int bit)
2375 {
2376 parts[bit / integerPartWidth] &=
2377 ~((integerPart) 1 << (bit % integerPartWidth));
2378 }
2379
2380 /* Returns the bit number of the least significant set bit of a
2381 number. If the input number has no bits set -1U is returned. */
2382 unsigned int
tcLSB(const integerPart * parts,unsigned int n)2383 APInt::tcLSB(const integerPart *parts, unsigned int n)
2384 {
2385 unsigned int i, lsb;
2386
2387 for (i = 0; i < n; i++) {
2388 if (parts[i] != 0) {
2389 lsb = partLSB(parts[i]);
2390
2391 return lsb + i * integerPartWidth;
2392 }
2393 }
2394
2395 return -1U;
2396 }
2397
2398 /* Returns the bit number of the most significant set bit of a number.
2399 If the input number has no bits set -1U is returned. */
2400 unsigned int
tcMSB(const integerPart * parts,unsigned int n)2401 APInt::tcMSB(const integerPart *parts, unsigned int n)
2402 {
2403 unsigned int msb;
2404
2405 do {
2406 --n;
2407
2408 if (parts[n] != 0) {
2409 msb = partMSB(parts[n]);
2410
2411 return msb + n * integerPartWidth;
2412 }
2413 } while (n);
2414
2415 return -1U;
2416 }
2417
2418 /* Copy the bit vector of width srcBITS from SRC, starting at bit
2419 srcLSB, to DST, of dstCOUNT parts, such that the bit srcLSB becomes
2420 the least significant bit of DST. All high bits above srcBITS in
2421 DST are zero-filled. */
2422 void
tcExtract(integerPart * dst,unsigned int dstCount,const integerPart * src,unsigned int srcBits,unsigned int srcLSB)2423 APInt::tcExtract(integerPart *dst, unsigned int dstCount,const integerPart *src,
2424 unsigned int srcBits, unsigned int srcLSB)
2425 {
2426 unsigned int firstSrcPart, dstParts, shift, n;
2427
2428 dstParts = (srcBits + integerPartWidth - 1) / integerPartWidth;
2429 assert(dstParts <= dstCount);
2430
2431 firstSrcPart = srcLSB / integerPartWidth;
2432 tcAssign (dst, src + firstSrcPart, dstParts);
2433
2434 shift = srcLSB % integerPartWidth;
2435 tcShiftRight (dst, dstParts, shift);
2436
2437 /* We now have (dstParts * integerPartWidth - shift) bits from SRC
2438 in DST. If this is less that srcBits, append the rest, else
2439 clear the high bits. */
2440 n = dstParts * integerPartWidth - shift;
2441 if (n < srcBits) {
2442 integerPart mask = lowBitMask (srcBits - n);
2443 dst[dstParts - 1] |= ((src[firstSrcPart + dstParts] & mask)
2444 << n % integerPartWidth);
2445 } else if (n > srcBits) {
2446 if (srcBits % integerPartWidth)
2447 dst[dstParts - 1] &= lowBitMask (srcBits % integerPartWidth);
2448 }
2449
2450 /* Clear high parts. */
2451 while (dstParts < dstCount)
2452 dst[dstParts++] = 0;
2453 }
2454
2455 /* DST += RHS + C where C is zero or one. Returns the carry flag. */
2456 integerPart
tcAdd(integerPart * dst,const integerPart * rhs,integerPart c,unsigned int parts)2457 APInt::tcAdd(integerPart *dst, const integerPart *rhs,
2458 integerPart c, unsigned int parts)
2459 {
2460 unsigned int i;
2461
2462 assert(c <= 1);
2463
2464 for (i = 0; i < parts; i++) {
2465 integerPart l;
2466
2467 l = dst[i];
2468 if (c) {
2469 dst[i] += rhs[i] + 1;
2470 c = (dst[i] <= l);
2471 } else {
2472 dst[i] += rhs[i];
2473 c = (dst[i] < l);
2474 }
2475 }
2476
2477 return c;
2478 }
2479
2480 /* DST -= RHS + C where C is zero or one. Returns the carry flag. */
2481 integerPart
tcSubtract(integerPart * dst,const integerPart * rhs,integerPart c,unsigned int parts)2482 APInt::tcSubtract(integerPart *dst, const integerPart *rhs,
2483 integerPart c, unsigned int parts)
2484 {
2485 unsigned int i;
2486
2487 assert(c <= 1);
2488
2489 for (i = 0; i < parts; i++) {
2490 integerPart l;
2491
2492 l = dst[i];
2493 if (c) {
2494 dst[i] -= rhs[i] + 1;
2495 c = (dst[i] >= l);
2496 } else {
2497 dst[i] -= rhs[i];
2498 c = (dst[i] > l);
2499 }
2500 }
2501
2502 return c;
2503 }
2504
2505 /* Negate a bignum in-place. */
2506 void
tcNegate(integerPart * dst,unsigned int parts)2507 APInt::tcNegate(integerPart *dst, unsigned int parts)
2508 {
2509 tcComplement(dst, parts);
2510 tcIncrement(dst, parts);
2511 }
2512
2513 /* DST += SRC * MULTIPLIER + CARRY if add is true
2514 DST = SRC * MULTIPLIER + CARRY if add is false
2515
2516 Requires 0 <= DSTPARTS <= SRCPARTS + 1. If DST overlaps SRC
2517 they must start at the same point, i.e. DST == SRC.
2518
2519 If DSTPARTS == SRCPARTS + 1 no overflow occurs and zero is
2520 returned. Otherwise DST is filled with the least significant
2521 DSTPARTS parts of the result, and if all of the omitted higher
2522 parts were zero return zero, otherwise overflow occurred and
2523 return one. */
2524 int
tcMultiplyPart(integerPart * dst,const integerPart * src,integerPart multiplier,integerPart carry,unsigned int srcParts,unsigned int dstParts,bool add)2525 APInt::tcMultiplyPart(integerPart *dst, const integerPart *src,
2526 integerPart multiplier, integerPart carry,
2527 unsigned int srcParts, unsigned int dstParts,
2528 bool add)
2529 {
2530 unsigned int i, n;
2531
2532 /* Otherwise our writes of DST kill our later reads of SRC. */
2533 assert(dst <= src || dst >= src + srcParts);
2534 assert(dstParts <= srcParts + 1);
2535
2536 /* N loops; minimum of dstParts and srcParts. */
2537 n = dstParts < srcParts ? dstParts: srcParts;
2538
2539 for (i = 0; i < n; i++) {
2540 integerPart low, mid, high, srcPart;
2541
2542 /* [ LOW, HIGH ] = MULTIPLIER * SRC[i] + DST[i] + CARRY.
2543
2544 This cannot overflow, because
2545
2546 (n - 1) * (n - 1) + 2 (n - 1) = (n - 1) * (n + 1)
2547
2548 which is less than n^2. */
2549
2550 srcPart = src[i];
2551
2552 if (multiplier == 0 || srcPart == 0) {
2553 low = carry;
2554 high = 0;
2555 } else {
2556 low = lowHalf(srcPart) * lowHalf(multiplier);
2557 high = highHalf(srcPart) * highHalf(multiplier);
2558
2559 mid = lowHalf(srcPart) * highHalf(multiplier);
2560 high += highHalf(mid);
2561 mid <<= integerPartWidth / 2;
2562 if (low + mid < low)
2563 high++;
2564 low += mid;
2565
2566 mid = highHalf(srcPart) * lowHalf(multiplier);
2567 high += highHalf(mid);
2568 mid <<= integerPartWidth / 2;
2569 if (low + mid < low)
2570 high++;
2571 low += mid;
2572
2573 /* Now add carry. */
2574 if (low + carry < low)
2575 high++;
2576 low += carry;
2577 }
2578
2579 if (add) {
2580 /* And now DST[i], and store the new low part there. */
2581 if (low + dst[i] < low)
2582 high++;
2583 dst[i] += low;
2584 } else
2585 dst[i] = low;
2586
2587 carry = high;
2588 }
2589
2590 if (i < dstParts) {
2591 /* Full multiplication, there is no overflow. */
2592 assert(i + 1 == dstParts);
2593 dst[i] = carry;
2594 return 0;
2595 } else {
2596 /* We overflowed if there is carry. */
2597 if (carry)
2598 return 1;
2599
2600 /* We would overflow if any significant unwritten parts would be
2601 non-zero. This is true if any remaining src parts are non-zero
2602 and the multiplier is non-zero. */
2603 if (multiplier)
2604 for (; i < srcParts; i++)
2605 if (src[i])
2606 return 1;
2607
2608 /* We fitted in the narrow destination. */
2609 return 0;
2610 }
2611 }
2612
2613 /* DST = LHS * RHS, where DST has the same width as the operands and
2614 is filled with the least significant parts of the result. Returns
2615 one if overflow occurred, otherwise zero. DST must be disjoint
2616 from both operands. */
2617 int
tcMultiply(integerPart * dst,const integerPart * lhs,const integerPart * rhs,unsigned int parts)2618 APInt::tcMultiply(integerPart *dst, const integerPart *lhs,
2619 const integerPart *rhs, unsigned int parts)
2620 {
2621 unsigned int i;
2622 int overflow;
2623
2624 assert(dst != lhs && dst != rhs);
2625
2626 overflow = 0;
2627 tcSet(dst, 0, parts);
2628
2629 for (i = 0; i < parts; i++)
2630 overflow |= tcMultiplyPart(&dst[i], lhs, rhs[i], 0, parts,
2631 parts - i, true);
2632
2633 return overflow;
2634 }
2635
2636 /* DST = LHS * RHS, where DST has width the sum of the widths of the
2637 operands. No overflow occurs. DST must be disjoint from both
2638 operands. Returns the number of parts required to hold the
2639 result. */
2640 unsigned int
tcFullMultiply(integerPart * dst,const integerPart * lhs,const integerPart * rhs,unsigned int lhsParts,unsigned int rhsParts)2641 APInt::tcFullMultiply(integerPart *dst, const integerPart *lhs,
2642 const integerPart *rhs, unsigned int lhsParts,
2643 unsigned int rhsParts)
2644 {
2645 /* Put the narrower number on the LHS for less loops below. */
2646 if (lhsParts > rhsParts) {
2647 return tcFullMultiply (dst, rhs, lhs, rhsParts, lhsParts);
2648 } else {
2649 unsigned int n;
2650
2651 assert(dst != lhs && dst != rhs);
2652
2653 tcSet(dst, 0, rhsParts);
2654
2655 for (n = 0; n < lhsParts; n++)
2656 tcMultiplyPart(&dst[n], rhs, lhs[n], 0, rhsParts, rhsParts + 1, true);
2657
2658 n = lhsParts + rhsParts;
2659
2660 return n - (dst[n - 1] == 0);
2661 }
2662 }
2663
2664 /* If RHS is zero LHS and REMAINDER are left unchanged, return one.
2665 Otherwise set LHS to LHS / RHS with the fractional part discarded,
2666 set REMAINDER to the remainder, return zero. i.e.
2667
2668 OLD_LHS = RHS * LHS + REMAINDER
2669
2670 SCRATCH is a bignum of the same size as the operands and result for
2671 use by the routine; its contents need not be initialized and are
2672 destroyed. LHS, REMAINDER and SCRATCH must be distinct.
2673 */
2674 int
tcDivide(integerPart * lhs,const integerPart * rhs,integerPart * remainder,integerPart * srhs,unsigned int parts)2675 APInt::tcDivide(integerPart *lhs, const integerPart *rhs,
2676 integerPart *remainder, integerPart *srhs,
2677 unsigned int parts)
2678 {
2679 unsigned int n, shiftCount;
2680 integerPart mask;
2681
2682 assert(lhs != remainder && lhs != srhs && remainder != srhs);
2683
2684 shiftCount = tcMSB(rhs, parts) + 1;
2685 if (shiftCount == 0)
2686 return true;
2687
2688 shiftCount = parts * integerPartWidth - shiftCount;
2689 n = shiftCount / integerPartWidth;
2690 mask = (integerPart) 1 << (shiftCount % integerPartWidth);
2691
2692 tcAssign(srhs, rhs, parts);
2693 tcShiftLeft(srhs, parts, shiftCount);
2694 tcAssign(remainder, lhs, parts);
2695 tcSet(lhs, 0, parts);
2696
2697 /* Loop, subtracting SRHS if REMAINDER is greater and adding that to
2698 the total. */
2699 for (;;) {
2700 int compare;
2701
2702 compare = tcCompare(remainder, srhs, parts);
2703 if (compare >= 0) {
2704 tcSubtract(remainder, srhs, 0, parts);
2705 lhs[n] |= mask;
2706 }
2707
2708 if (shiftCount == 0)
2709 break;
2710 shiftCount--;
2711 tcShiftRight(srhs, parts, 1);
2712 if ((mask >>= 1) == 0)
2713 mask = (integerPart) 1 << (integerPartWidth - 1), n--;
2714 }
2715
2716 return false;
2717 }
2718
2719 /* Shift a bignum left COUNT bits in-place. Shifted in bits are zero.
2720 There are no restrictions on COUNT. */
2721 void
tcShiftLeft(integerPart * dst,unsigned int parts,unsigned int count)2722 APInt::tcShiftLeft(integerPart *dst, unsigned int parts, unsigned int count)
2723 {
2724 if (count) {
2725 unsigned int jump, shift;
2726
2727 /* Jump is the inter-part jump; shift is is intra-part shift. */
2728 jump = count / integerPartWidth;
2729 shift = count % integerPartWidth;
2730
2731 while (parts > jump) {
2732 integerPart part;
2733
2734 parts--;
2735
2736 /* dst[i] comes from the two parts src[i - jump] and, if we have
2737 an intra-part shift, src[i - jump - 1]. */
2738 part = dst[parts - jump];
2739 if (shift) {
2740 part <<= shift;
2741 if (parts >= jump + 1)
2742 part |= dst[parts - jump - 1] >> (integerPartWidth - shift);
2743 }
2744
2745 dst[parts] = part;
2746 }
2747
2748 while (parts > 0)
2749 dst[--parts] = 0;
2750 }
2751 }
2752
2753 /* Shift a bignum right COUNT bits in-place. Shifted in bits are
2754 zero. There are no restrictions on COUNT. */
2755 void
tcShiftRight(integerPart * dst,unsigned int parts,unsigned int count)2756 APInt::tcShiftRight(integerPart *dst, unsigned int parts, unsigned int count)
2757 {
2758 if (count) {
2759 unsigned int i, jump, shift;
2760
2761 /* Jump is the inter-part jump; shift is is intra-part shift. */
2762 jump = count / integerPartWidth;
2763 shift = count % integerPartWidth;
2764
2765 /* Perform the shift. This leaves the most significant COUNT bits
2766 of the result at zero. */
2767 for (i = 0; i < parts; i++) {
2768 integerPart part;
2769
2770 if (i + jump >= parts) {
2771 part = 0;
2772 } else {
2773 part = dst[i + jump];
2774 if (shift) {
2775 part >>= shift;
2776 if (i + jump + 1 < parts)
2777 part |= dst[i + jump + 1] << (integerPartWidth - shift);
2778 }
2779 }
2780
2781 dst[i] = part;
2782 }
2783 }
2784 }
2785
2786 /* Bitwise and of two bignums. */
2787 void
tcAnd(integerPart * dst,const integerPart * rhs,unsigned int parts)2788 APInt::tcAnd(integerPart *dst, const integerPart *rhs, unsigned int parts)
2789 {
2790 unsigned int i;
2791
2792 for (i = 0; i < parts; i++)
2793 dst[i] &= rhs[i];
2794 }
2795
2796 /* Bitwise inclusive or of two bignums. */
2797 void
tcOr(integerPart * dst,const integerPart * rhs,unsigned int parts)2798 APInt::tcOr(integerPart *dst, const integerPart *rhs, unsigned int parts)
2799 {
2800 unsigned int i;
2801
2802 for (i = 0; i < parts; i++)
2803 dst[i] |= rhs[i];
2804 }
2805
2806 /* Bitwise exclusive or of two bignums. */
2807 void
tcXor(integerPart * dst,const integerPart * rhs,unsigned int parts)2808 APInt::tcXor(integerPart *dst, const integerPart *rhs, unsigned int parts)
2809 {
2810 unsigned int i;
2811
2812 for (i = 0; i < parts; i++)
2813 dst[i] ^= rhs[i];
2814 }
2815
2816 /* Complement a bignum in-place. */
2817 void
tcComplement(integerPart * dst,unsigned int parts)2818 APInt::tcComplement(integerPart *dst, unsigned int parts)
2819 {
2820 unsigned int i;
2821
2822 for (i = 0; i < parts; i++)
2823 dst[i] = ~dst[i];
2824 }
2825
2826 /* Comparison (unsigned) of two bignums. */
2827 int
tcCompare(const integerPart * lhs,const integerPart * rhs,unsigned int parts)2828 APInt::tcCompare(const integerPart *lhs, const integerPart *rhs,
2829 unsigned int parts)
2830 {
2831 while (parts) {
2832 parts--;
2833 if (lhs[parts] == rhs[parts])
2834 continue;
2835
2836 if (lhs[parts] > rhs[parts])
2837 return 1;
2838 else
2839 return -1;
2840 }
2841
2842 return 0;
2843 }
2844
2845 /* Increment a bignum in-place, return the carry flag. */
2846 integerPart
tcIncrement(integerPart * dst,unsigned int parts)2847 APInt::tcIncrement(integerPart *dst, unsigned int parts)
2848 {
2849 unsigned int i;
2850
2851 for (i = 0; i < parts; i++)
2852 if (++dst[i] != 0)
2853 break;
2854
2855 return i == parts;
2856 }
2857
2858 /* Decrement a bignum in-place, return the borrow flag. */
2859 integerPart
tcDecrement(integerPart * dst,unsigned int parts)2860 APInt::tcDecrement(integerPart *dst, unsigned int parts) {
2861 for (unsigned int i = 0; i < parts; i++) {
2862 // If the current word is non-zero, then the decrement has no effect on the
2863 // higher-order words of the integer and no borrow can occur. Exit early.
2864 if (dst[i]--)
2865 return 0;
2866 }
2867 // If every word was zero, then there is a borrow.
2868 return 1;
2869 }
2870
2871
2872 /* Set the least significant BITS bits of a bignum, clear the
2873 rest. */
2874 void
tcSetLeastSignificantBits(integerPart * dst,unsigned int parts,unsigned int bits)2875 APInt::tcSetLeastSignificantBits(integerPart *dst, unsigned int parts,
2876 unsigned int bits)
2877 {
2878 unsigned int i;
2879
2880 i = 0;
2881 while (bits > integerPartWidth) {
2882 dst[i++] = ~(integerPart) 0;
2883 bits -= integerPartWidth;
2884 }
2885
2886 if (bits)
2887 dst[i++] = ~(integerPart) 0 >> (integerPartWidth - bits);
2888
2889 while (i < parts)
2890 dst[i++] = 0;
2891 }
2892