• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2 ** 2010 February 1
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 **
13 ** This file contains the implementation of a write-ahead log (WAL) used in
14 ** "journal_mode=WAL" mode.
15 **
16 ** WRITE-AHEAD LOG (WAL) FILE FORMAT
17 **
18 ** A WAL file consists of a header followed by zero or more "frames".
19 ** Each frame records the revised content of a single page from the
20 ** database file.  All changes to the database are recorded by writing
21 ** frames into the WAL.  Transactions commit when a frame is written that
22 ** contains a commit marker.  A single WAL can and usually does record
23 ** multiple transactions.  Periodically, the content of the WAL is
24 ** transferred back into the database file in an operation called a
25 ** "checkpoint".
26 **
27 ** A single WAL file can be used multiple times.  In other words, the
28 ** WAL can fill up with frames and then be checkpointed and then new
29 ** frames can overwrite the old ones.  A WAL always grows from beginning
30 ** toward the end.  Checksums and counters attached to each frame are
31 ** used to determine which frames within the WAL are valid and which
32 ** are leftovers from prior checkpoints.
33 **
34 ** The WAL header is 32 bytes in size and consists of the following eight
35 ** big-endian 32-bit unsigned integer values:
36 **
37 **     0: Magic number.  0x377f0682 or 0x377f0683
38 **     4: File format version.  Currently 3007000
39 **     8: Database page size.  Example: 1024
40 **    12: Checkpoint sequence number
41 **    16: Salt-1, random integer incremented with each checkpoint
42 **    20: Salt-2, a different random integer changing with each ckpt
43 **    24: Checksum-1 (first part of checksum for first 24 bytes of header).
44 **    28: Checksum-2 (second part of checksum for first 24 bytes of header).
45 **
46 ** Immediately following the wal-header are zero or more frames. Each
47 ** frame consists of a 24-byte frame-header followed by a <page-size> bytes
48 ** of page data. The frame-header is six big-endian 32-bit unsigned
49 ** integer values, as follows:
50 **
51 **     0: Page number.
52 **     4: For commit records, the size of the database image in pages
53 **        after the commit. For all other records, zero.
54 **     8: Salt-1 (copied from the header)
55 **    12: Salt-2 (copied from the header)
56 **    16: Checksum-1.
57 **    20: Checksum-2.
58 **
59 ** A frame is considered valid if and only if the following conditions are
60 ** true:
61 **
62 **    (1) The salt-1 and salt-2 values in the frame-header match
63 **        salt values in the wal-header
64 **
65 **    (2) The checksum values in the final 8 bytes of the frame-header
66 **        exactly match the checksum computed consecutively on the
67 **        WAL header and the first 8 bytes and the content of all frames
68 **        up to and including the current frame.
69 **
70 ** The checksum is computed using 32-bit big-endian integers if the
71 ** magic number in the first 4 bytes of the WAL is 0x377f0683 and it
72 ** is computed using little-endian if the magic number is 0x377f0682.
73 ** The checksum values are always stored in the frame header in a
74 ** big-endian format regardless of which byte order is used to compute
75 ** the checksum.  The checksum is computed by interpreting the input as
76 ** an even number of unsigned 32-bit integers: x[0] through x[N].  The
77 ** algorithm used for the checksum is as follows:
78 **
79 **   for i from 0 to n-1 step 2:
80 **     s0 += x[i] + s1;
81 **     s1 += x[i+1] + s0;
82 **   endfor
83 **
84 ** Note that s0 and s1 are both weighted checksums using fibonacci weights
85 ** in reverse order (the largest fibonacci weight occurs on the first element
86 ** of the sequence being summed.)  The s1 value spans all 32-bit
87 ** terms of the sequence whereas s0 omits the final term.
88 **
89 ** On a checkpoint, the WAL is first VFS.xSync-ed, then valid content of the
90 ** WAL is transferred into the database, then the database is VFS.xSync-ed.
91 ** The VFS.xSync operations serve as write barriers - all writes launched
92 ** before the xSync must complete before any write that launches after the
93 ** xSync begins.
94 **
95 ** After each checkpoint, the salt-1 value is incremented and the salt-2
96 ** value is randomized.  This prevents old and new frames in the WAL from
97 ** being considered valid at the same time and being checkpointing together
98 ** following a crash.
99 **
100 ** READER ALGORITHM
101 **
102 ** To read a page from the database (call it page number P), a reader
103 ** first checks the WAL to see if it contains page P.  If so, then the
104 ** last valid instance of page P that is a followed by a commit frame
105 ** or is a commit frame itself becomes the value read.  If the WAL
106 ** contains no copies of page P that are valid and which are a commit
107 ** frame or are followed by a commit frame, then page P is read from
108 ** the database file.
109 **
110 ** To start a read transaction, the reader records the index of the last
111 ** valid frame in the WAL.  The reader uses this recorded "mxFrame" value
112 ** for all subsequent read operations.  New transactions can be appended
113 ** to the WAL, but as long as the reader uses its original mxFrame value
114 ** and ignores the newly appended content, it will see a consistent snapshot
115 ** of the database from a single point in time.  This technique allows
116 ** multiple concurrent readers to view different versions of the database
117 ** content simultaneously.
118 **
119 ** The reader algorithm in the previous paragraphs works correctly, but
120 ** because frames for page P can appear anywhere within the WAL, the
121 ** reader has to scan the entire WAL looking for page P frames.  If the
122 ** WAL is large (multiple megabytes is typical) that scan can be slow,
123 ** and read performance suffers.  To overcome this problem, a separate
124 ** data structure called the wal-index is maintained to expedite the
125 ** search for frames of a particular page.
126 **
127 ** WAL-INDEX FORMAT
128 **
129 ** Conceptually, the wal-index is shared memory, though VFS implementations
130 ** might choose to implement the wal-index using a mmapped file.  Because
131 ** the wal-index is shared memory, SQLite does not support journal_mode=WAL
132 ** on a network filesystem.  All users of the database must be able to
133 ** share memory.
134 **
135 ** The wal-index is transient.  After a crash, the wal-index can (and should
136 ** be) reconstructed from the original WAL file.  In fact, the VFS is required
137 ** to either truncate or zero the header of the wal-index when the last
138 ** connection to it closes.  Because the wal-index is transient, it can
139 ** use an architecture-specific format; it does not have to be cross-platform.
140 ** Hence, unlike the database and WAL file formats which store all values
141 ** as big endian, the wal-index can store multi-byte values in the native
142 ** byte order of the host computer.
143 **
144 ** The purpose of the wal-index is to answer this question quickly:  Given
145 ** a page number P, return the index of the last frame for page P in the WAL,
146 ** or return NULL if there are no frames for page P in the WAL.
147 **
148 ** The wal-index consists of a header region, followed by an one or
149 ** more index blocks.
150 **
151 ** The wal-index header contains the total number of frames within the WAL
152 ** in the the mxFrame field.
153 **
154 ** Each index block except for the first contains information on
155 ** HASHTABLE_NPAGE frames. The first index block contains information on
156 ** HASHTABLE_NPAGE_ONE frames. The values of HASHTABLE_NPAGE_ONE and
157 ** HASHTABLE_NPAGE are selected so that together the wal-index header and
158 ** first index block are the same size as all other index blocks in the
159 ** wal-index.
160 **
161 ** Each index block contains two sections, a page-mapping that contains the
162 ** database page number associated with each wal frame, and a hash-table
163 ** that allows readers to query an index block for a specific page number.
164 ** The page-mapping is an array of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE
165 ** for the first index block) 32-bit page numbers. The first entry in the
166 ** first index-block contains the database page number corresponding to the
167 ** first frame in the WAL file. The first entry in the second index block
168 ** in the WAL file corresponds to the (HASHTABLE_NPAGE_ONE+1)th frame in
169 ** the log, and so on.
170 **
171 ** The last index block in a wal-index usually contains less than the full
172 ** complement of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE) page-numbers,
173 ** depending on the contents of the WAL file. This does not change the
174 ** allocated size of the page-mapping array - the page-mapping array merely
175 ** contains unused entries.
176 **
177 ** Even without using the hash table, the last frame for page P
178 ** can be found by scanning the page-mapping sections of each index block
179 ** starting with the last index block and moving toward the first, and
180 ** within each index block, starting at the end and moving toward the
181 ** beginning.  The first entry that equals P corresponds to the frame
182 ** holding the content for that page.
183 **
184 ** The hash table consists of HASHTABLE_NSLOT 16-bit unsigned integers.
185 ** HASHTABLE_NSLOT = 2*HASHTABLE_NPAGE, and there is one entry in the
186 ** hash table for each page number in the mapping section, so the hash
187 ** table is never more than half full.  The expected number of collisions
188 ** prior to finding a match is 1.  Each entry of the hash table is an
189 ** 1-based index of an entry in the mapping section of the same
190 ** index block.   Let K be the 1-based index of the largest entry in
191 ** the mapping section.  (For index blocks other than the last, K will
192 ** always be exactly HASHTABLE_NPAGE (4096) and for the last index block
193 ** K will be (mxFrame%HASHTABLE_NPAGE).)  Unused slots of the hash table
194 ** contain a value of 0.
195 **
196 ** To look for page P in the hash table, first compute a hash iKey on
197 ** P as follows:
198 **
199 **      iKey = (P * 383) % HASHTABLE_NSLOT
200 **
201 ** Then start scanning entries of the hash table, starting with iKey
202 ** (wrapping around to the beginning when the end of the hash table is
203 ** reached) until an unused hash slot is found. Let the first unused slot
204 ** be at index iUnused.  (iUnused might be less than iKey if there was
205 ** wrap-around.) Because the hash table is never more than half full,
206 ** the search is guaranteed to eventually hit an unused entry.  Let
207 ** iMax be the value between iKey and iUnused, closest to iUnused,
208 ** where aHash[iMax]==P.  If there is no iMax entry (if there exists
209 ** no hash slot such that aHash[i]==p) then page P is not in the
210 ** current index block.  Otherwise the iMax-th mapping entry of the
211 ** current index block corresponds to the last entry that references
212 ** page P.
213 **
214 ** A hash search begins with the last index block and moves toward the
215 ** first index block, looking for entries corresponding to page P.  On
216 ** average, only two or three slots in each index block need to be
217 ** examined in order to either find the last entry for page P, or to
218 ** establish that no such entry exists in the block.  Each index block
219 ** holds over 4000 entries.  So two or three index blocks are sufficient
220 ** to cover a typical 10 megabyte WAL file, assuming 1K pages.  8 or 10
221 ** comparisons (on average) suffice to either locate a frame in the
222 ** WAL or to establish that the frame does not exist in the WAL.  This
223 ** is much faster than scanning the entire 10MB WAL.
224 **
225 ** Note that entries are added in order of increasing K.  Hence, one
226 ** reader might be using some value K0 and a second reader that started
227 ** at a later time (after additional transactions were added to the WAL
228 ** and to the wal-index) might be using a different value K1, where K1>K0.
229 ** Both readers can use the same hash table and mapping section to get
230 ** the correct result.  There may be entries in the hash table with
231 ** K>K0 but to the first reader, those entries will appear to be unused
232 ** slots in the hash table and so the first reader will get an answer as
233 ** if no values greater than K0 had ever been inserted into the hash table
234 ** in the first place - which is what reader one wants.  Meanwhile, the
235 ** second reader using K1 will see additional values that were inserted
236 ** later, which is exactly what reader two wants.
237 **
238 ** When a rollback occurs, the value of K is decreased. Hash table entries
239 ** that correspond to frames greater than the new K value are removed
240 ** from the hash table at this point.
241 */
242 #ifndef SQLITE_OMIT_WAL
243 
244 #include "wal.h"
245 
246 /*
247 ** Trace output macros
248 */
249 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
250 int sqlite3WalTrace = 0;
251 # define WALTRACE(X)  if(sqlite3WalTrace) sqlite3DebugPrintf X
252 #else
253 # define WALTRACE(X)
254 #endif
255 
256 /*
257 ** The maximum (and only) versions of the wal and wal-index formats
258 ** that may be interpreted by this version of SQLite.
259 **
260 ** If a client begins recovering a WAL file and finds that (a) the checksum
261 ** values in the wal-header are correct and (b) the version field is not
262 ** WAL_MAX_VERSION, recovery fails and SQLite returns SQLITE_CANTOPEN.
263 **
264 ** Similarly, if a client successfully reads a wal-index header (i.e. the
265 ** checksum test is successful) and finds that the version field is not
266 ** WALINDEX_MAX_VERSION, then no read-transaction is opened and SQLite
267 ** returns SQLITE_CANTOPEN.
268 */
269 #define WAL_MAX_VERSION      3007000
270 #define WALINDEX_MAX_VERSION 3007000
271 
272 /*
273 ** Indices of various locking bytes.   WAL_NREADER is the number
274 ** of available reader locks and should be at least 3.
275 */
276 #define WAL_WRITE_LOCK         0
277 #define WAL_ALL_BUT_WRITE      1
278 #define WAL_CKPT_LOCK          1
279 #define WAL_RECOVER_LOCK       2
280 #define WAL_READ_LOCK(I)       (3+(I))
281 #define WAL_NREADER            (SQLITE_SHM_NLOCK-3)
282 
283 
284 /* Object declarations */
285 typedef struct WalIndexHdr WalIndexHdr;
286 typedef struct WalIterator WalIterator;
287 typedef struct WalCkptInfo WalCkptInfo;
288 
289 
290 /*
291 ** The following object holds a copy of the wal-index header content.
292 **
293 ** The actual header in the wal-index consists of two copies of this
294 ** object.
295 **
296 ** The szPage value can be any power of 2 between 512 and 32768, inclusive.
297 ** Or it can be 1 to represent a 65536-byte page.  The latter case was
298 ** added in 3.7.1 when support for 64K pages was added.
299 */
300 struct WalIndexHdr {
301   u32 iVersion;                   /* Wal-index version */
302   u32 unused;                     /* Unused (padding) field */
303   u32 iChange;                    /* Counter incremented each transaction */
304   u8 isInit;                      /* 1 when initialized */
305   u8 bigEndCksum;                 /* True if checksums in WAL are big-endian */
306   u16 szPage;                     /* Database page size in bytes. 1==64K */
307   u32 mxFrame;                    /* Index of last valid frame in the WAL */
308   u32 nPage;                      /* Size of database in pages */
309   u32 aFrameCksum[2];             /* Checksum of last frame in log */
310   u32 aSalt[2];                   /* Two salt values copied from WAL header */
311   u32 aCksum[2];                  /* Checksum over all prior fields */
312 };
313 
314 /*
315 ** A copy of the following object occurs in the wal-index immediately
316 ** following the second copy of the WalIndexHdr.  This object stores
317 ** information used by checkpoint.
318 **
319 ** nBackfill is the number of frames in the WAL that have been written
320 ** back into the database. (We call the act of moving content from WAL to
321 ** database "backfilling".)  The nBackfill number is never greater than
322 ** WalIndexHdr.mxFrame.  nBackfill can only be increased by threads
323 ** holding the WAL_CKPT_LOCK lock (which includes a recovery thread).
324 ** However, a WAL_WRITE_LOCK thread can move the value of nBackfill from
325 ** mxFrame back to zero when the WAL is reset.
326 **
327 ** There is one entry in aReadMark[] for each reader lock.  If a reader
328 ** holds read-lock K, then the value in aReadMark[K] is no greater than
329 ** the mxFrame for that reader.  The value READMARK_NOT_USED (0xffffffff)
330 ** for any aReadMark[] means that entry is unused.  aReadMark[0] is
331 ** a special case; its value is never used and it exists as a place-holder
332 ** to avoid having to offset aReadMark[] indexs by one.  Readers holding
333 ** WAL_READ_LOCK(0) always ignore the entire WAL and read all content
334 ** directly from the database.
335 **
336 ** The value of aReadMark[K] may only be changed by a thread that
337 ** is holding an exclusive lock on WAL_READ_LOCK(K).  Thus, the value of
338 ** aReadMark[K] cannot changed while there is a reader is using that mark
339 ** since the reader will be holding a shared lock on WAL_READ_LOCK(K).
340 **
341 ** The checkpointer may only transfer frames from WAL to database where
342 ** the frame numbers are less than or equal to every aReadMark[] that is
343 ** in use (that is, every aReadMark[j] for which there is a corresponding
344 ** WAL_READ_LOCK(j)).  New readers (usually) pick the aReadMark[] with the
345 ** largest value and will increase an unused aReadMark[] to mxFrame if there
346 ** is not already an aReadMark[] equal to mxFrame.  The exception to the
347 ** previous sentence is when nBackfill equals mxFrame (meaning that everything
348 ** in the WAL has been backfilled into the database) then new readers
349 ** will choose aReadMark[0] which has value 0 and hence such reader will
350 ** get all their all content directly from the database file and ignore
351 ** the WAL.
352 **
353 ** Writers normally append new frames to the end of the WAL.  However,
354 ** if nBackfill equals mxFrame (meaning that all WAL content has been
355 ** written back into the database) and if no readers are using the WAL
356 ** (in other words, if there are no WAL_READ_LOCK(i) where i>0) then
357 ** the writer will first "reset" the WAL back to the beginning and start
358 ** writing new content beginning at frame 1.
359 **
360 ** We assume that 32-bit loads are atomic and so no locks are needed in
361 ** order to read from any aReadMark[] entries.
362 */
363 struct WalCkptInfo {
364   u32 nBackfill;                  /* Number of WAL frames backfilled into DB */
365   u32 aReadMark[WAL_NREADER];     /* Reader marks */
366 };
367 #define READMARK_NOT_USED  0xffffffff
368 
369 
370 /* A block of WALINDEX_LOCK_RESERVED bytes beginning at
371 ** WALINDEX_LOCK_OFFSET is reserved for locks. Since some systems
372 ** only support mandatory file-locks, we do not read or write data
373 ** from the region of the file on which locks are applied.
374 */
375 #define WALINDEX_LOCK_OFFSET   (sizeof(WalIndexHdr)*2 + sizeof(WalCkptInfo))
376 #define WALINDEX_LOCK_RESERVED 16
377 #define WALINDEX_HDR_SIZE      (WALINDEX_LOCK_OFFSET+WALINDEX_LOCK_RESERVED)
378 
379 /* Size of header before each frame in wal */
380 #define WAL_FRAME_HDRSIZE 24
381 
382 /* Size of write ahead log header, including checksum. */
383 /* #define WAL_HDRSIZE 24 */
384 #define WAL_HDRSIZE 32
385 
386 /* WAL magic value. Either this value, or the same value with the least
387 ** significant bit also set (WAL_MAGIC | 0x00000001) is stored in 32-bit
388 ** big-endian format in the first 4 bytes of a WAL file.
389 **
390 ** If the LSB is set, then the checksums for each frame within the WAL
391 ** file are calculated by treating all data as an array of 32-bit
392 ** big-endian words. Otherwise, they are calculated by interpreting
393 ** all data as 32-bit little-endian words.
394 */
395 #define WAL_MAGIC 0x377f0682
396 
397 /*
398 ** Return the offset of frame iFrame in the write-ahead log file,
399 ** assuming a database page size of szPage bytes. The offset returned
400 ** is to the start of the write-ahead log frame-header.
401 */
402 #define walFrameOffset(iFrame, szPage) (                               \
403   WAL_HDRSIZE + ((iFrame)-1)*(i64)((szPage)+WAL_FRAME_HDRSIZE)         \
404 )
405 
406 /*
407 ** An open write-ahead log file is represented by an instance of the
408 ** following object.
409 */
410 struct Wal {
411   sqlite3_vfs *pVfs;         /* The VFS used to create pDbFd */
412   sqlite3_file *pDbFd;       /* File handle for the database file */
413   sqlite3_file *pWalFd;      /* File handle for WAL file */
414   u32 iCallback;             /* Value to pass to log callback (or 0) */
415   int nWiData;               /* Size of array apWiData */
416   volatile u32 **apWiData;   /* Pointer to wal-index content in memory */
417   u32 szPage;                /* Database page size */
418   i16 readLock;              /* Which read lock is being held.  -1 for none */
419   u8 exclusiveMode;          /* Non-zero if connection is in exclusive mode */
420   u8 writeLock;              /* True if in a write transaction */
421   u8 ckptLock;               /* True if holding a checkpoint lock */
422   u8 readOnly;               /* True if the WAL file is open read-only */
423   WalIndexHdr hdr;           /* Wal-index header for current transaction */
424   const char *zWalName;      /* Name of WAL file */
425   u32 nCkpt;                 /* Checkpoint sequence counter in the wal-header */
426 #ifdef SQLITE_DEBUG
427   u8 lockError;              /* True if a locking error has occurred */
428 #endif
429 };
430 
431 /*
432 ** Candidate values for Wal.exclusiveMode.
433 */
434 #define WAL_NORMAL_MODE     0
435 #define WAL_EXCLUSIVE_MODE  1
436 #define WAL_HEAPMEMORY_MODE 2
437 
438 /*
439 ** Each page of the wal-index mapping contains a hash-table made up of
440 ** an array of HASHTABLE_NSLOT elements of the following type.
441 */
442 typedef u16 ht_slot;
443 
444 /*
445 ** This structure is used to implement an iterator that loops through
446 ** all frames in the WAL in database page order. Where two or more frames
447 ** correspond to the same database page, the iterator visits only the
448 ** frame most recently written to the WAL (in other words, the frame with
449 ** the largest index).
450 **
451 ** The internals of this structure are only accessed by:
452 **
453 **   walIteratorInit() - Create a new iterator,
454 **   walIteratorNext() - Step an iterator,
455 **   walIteratorFree() - Free an iterator.
456 **
457 ** This functionality is used by the checkpoint code (see walCheckpoint()).
458 */
459 struct WalIterator {
460   int iPrior;                     /* Last result returned from the iterator */
461   int nSegment;                   /* Number of entries in aSegment[] */
462   struct WalSegment {
463     int iNext;                    /* Next slot in aIndex[] not yet returned */
464     ht_slot *aIndex;              /* i0, i1, i2... such that aPgno[iN] ascend */
465     u32 *aPgno;                   /* Array of page numbers. */
466     int nEntry;                   /* Nr. of entries in aPgno[] and aIndex[] */
467     int iZero;                    /* Frame number associated with aPgno[0] */
468   } aSegment[1];                  /* One for every 32KB page in the wal-index */
469 };
470 
471 /*
472 ** Define the parameters of the hash tables in the wal-index file. There
473 ** is a hash-table following every HASHTABLE_NPAGE page numbers in the
474 ** wal-index.
475 **
476 ** Changing any of these constants will alter the wal-index format and
477 ** create incompatibilities.
478 */
479 #define HASHTABLE_NPAGE      4096                 /* Must be power of 2 */
480 #define HASHTABLE_HASH_1     383                  /* Should be prime */
481 #define HASHTABLE_NSLOT      (HASHTABLE_NPAGE*2)  /* Must be a power of 2 */
482 
483 /*
484 ** The block of page numbers associated with the first hash-table in a
485 ** wal-index is smaller than usual. This is so that there is a complete
486 ** hash-table on each aligned 32KB page of the wal-index.
487 */
488 #define HASHTABLE_NPAGE_ONE  (HASHTABLE_NPAGE - (WALINDEX_HDR_SIZE/sizeof(u32)))
489 
490 /* The wal-index is divided into pages of WALINDEX_PGSZ bytes each. */
491 #define WALINDEX_PGSZ   (                                         \
492     sizeof(ht_slot)*HASHTABLE_NSLOT + HASHTABLE_NPAGE*sizeof(u32) \
493 )
494 
495 /*
496 ** Obtain a pointer to the iPage'th page of the wal-index. The wal-index
497 ** is broken into pages of WALINDEX_PGSZ bytes. Wal-index pages are
498 ** numbered from zero.
499 **
500 ** If this call is successful, *ppPage is set to point to the wal-index
501 ** page and SQLITE_OK is returned. If an error (an OOM or VFS error) occurs,
502 ** then an SQLite error code is returned and *ppPage is set to 0.
503 */
walIndexPage(Wal * pWal,int iPage,volatile u32 ** ppPage)504 static int walIndexPage(Wal *pWal, int iPage, volatile u32 **ppPage){
505   int rc = SQLITE_OK;
506 
507   /* Enlarge the pWal->apWiData[] array if required */
508   if( pWal->nWiData<=iPage ){
509     int nByte = sizeof(u32*)*(iPage+1);
510     volatile u32 **apNew;
511     apNew = (volatile u32 **)sqlite3_realloc((void *)pWal->apWiData, nByte);
512     if( !apNew ){
513       *ppPage = 0;
514       return SQLITE_NOMEM;
515     }
516     memset((void*)&apNew[pWal->nWiData], 0,
517            sizeof(u32*)*(iPage+1-pWal->nWiData));
518     pWal->apWiData = apNew;
519     pWal->nWiData = iPage+1;
520   }
521 
522   /* Request a pointer to the required page from the VFS */
523   if( pWal->apWiData[iPage]==0 ){
524     if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE ){
525       pWal->apWiData[iPage] = (u32 volatile *)sqlite3MallocZero(WALINDEX_PGSZ);
526       if( !pWal->apWiData[iPage] ) rc = SQLITE_NOMEM;
527     }else{
528       rc = sqlite3OsShmMap(pWal->pDbFd, iPage, WALINDEX_PGSZ,
529           pWal->writeLock, (void volatile **)&pWal->apWiData[iPage]
530       );
531     }
532   }
533 
534   *ppPage = pWal->apWiData[iPage];
535   assert( iPage==0 || *ppPage || rc!=SQLITE_OK );
536   return rc;
537 }
538 
539 /*
540 ** Return a pointer to the WalCkptInfo structure in the wal-index.
541 */
walCkptInfo(Wal * pWal)542 static volatile WalCkptInfo *walCkptInfo(Wal *pWal){
543   assert( pWal->nWiData>0 && pWal->apWiData[0] );
544   return (volatile WalCkptInfo*)&(pWal->apWiData[0][sizeof(WalIndexHdr)/2]);
545 }
546 
547 /*
548 ** Return a pointer to the WalIndexHdr structure in the wal-index.
549 */
walIndexHdr(Wal * pWal)550 static volatile WalIndexHdr *walIndexHdr(Wal *pWal){
551   assert( pWal->nWiData>0 && pWal->apWiData[0] );
552   return (volatile WalIndexHdr*)pWal->apWiData[0];
553 }
554 
555 /*
556 ** The argument to this macro must be of type u32. On a little-endian
557 ** architecture, it returns the u32 value that results from interpreting
558 ** the 4 bytes as a big-endian value. On a big-endian architecture, it
559 ** returns the value that would be produced by intepreting the 4 bytes
560 ** of the input value as a little-endian integer.
561 */
562 #define BYTESWAP32(x) ( \
563     (((x)&0x000000FF)<<24) + (((x)&0x0000FF00)<<8)  \
564   + (((x)&0x00FF0000)>>8)  + (((x)&0xFF000000)>>24) \
565 )
566 
567 /*
568 ** Generate or extend an 8 byte checksum based on the data in
569 ** array aByte[] and the initial values of aIn[0] and aIn[1] (or
570 ** initial values of 0 and 0 if aIn==NULL).
571 **
572 ** The checksum is written back into aOut[] before returning.
573 **
574 ** nByte must be a positive multiple of 8.
575 */
walChecksumBytes(int nativeCksum,u8 * a,int nByte,const u32 * aIn,u32 * aOut)576 static void walChecksumBytes(
577   int nativeCksum, /* True for native byte-order, false for non-native */
578   u8 *a,           /* Content to be checksummed */
579   int nByte,       /* Bytes of content in a[].  Must be a multiple of 8. */
580   const u32 *aIn,  /* Initial checksum value input */
581   u32 *aOut        /* OUT: Final checksum value output */
582 ){
583   u32 s1, s2;
584   u32 *aData = (u32 *)a;
585   u32 *aEnd = (u32 *)&a[nByte];
586 
587   if( aIn ){
588     s1 = aIn[0];
589     s2 = aIn[1];
590   }else{
591     s1 = s2 = 0;
592   }
593 
594   assert( nByte>=8 );
595   assert( (nByte&0x00000007)==0 );
596 
597   if( nativeCksum ){
598     do {
599       s1 += *aData++ + s2;
600       s2 += *aData++ + s1;
601     }while( aData<aEnd );
602   }else{
603     do {
604       s1 += BYTESWAP32(aData[0]) + s2;
605       s2 += BYTESWAP32(aData[1]) + s1;
606       aData += 2;
607     }while( aData<aEnd );
608   }
609 
610   aOut[0] = s1;
611   aOut[1] = s2;
612 }
613 
walShmBarrier(Wal * pWal)614 static void walShmBarrier(Wal *pWal){
615   if( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE ){
616     sqlite3OsShmBarrier(pWal->pDbFd);
617   }
618 }
619 
620 /*
621 ** Write the header information in pWal->hdr into the wal-index.
622 **
623 ** The checksum on pWal->hdr is updated before it is written.
624 */
walIndexWriteHdr(Wal * pWal)625 static void walIndexWriteHdr(Wal *pWal){
626   volatile WalIndexHdr *aHdr = walIndexHdr(pWal);
627   const int nCksum = offsetof(WalIndexHdr, aCksum);
628 
629   assert( pWal->writeLock );
630   pWal->hdr.isInit = 1;
631   pWal->hdr.iVersion = WALINDEX_MAX_VERSION;
632   walChecksumBytes(1, (u8*)&pWal->hdr, nCksum, 0, pWal->hdr.aCksum);
633   memcpy((void *)&aHdr[1], (void *)&pWal->hdr, sizeof(WalIndexHdr));
634   walShmBarrier(pWal);
635   memcpy((void *)&aHdr[0], (void *)&pWal->hdr, sizeof(WalIndexHdr));
636 }
637 
638 /*
639 ** This function encodes a single frame header and writes it to a buffer
640 ** supplied by the caller. A frame-header is made up of a series of
641 ** 4-byte big-endian integers, as follows:
642 **
643 **     0: Page number.
644 **     4: For commit records, the size of the database image in pages
645 **        after the commit. For all other records, zero.
646 **     8: Salt-1 (copied from the wal-header)
647 **    12: Salt-2 (copied from the wal-header)
648 **    16: Checksum-1.
649 **    20: Checksum-2.
650 */
walEncodeFrame(Wal * pWal,u32 iPage,u32 nTruncate,u8 * aData,u8 * aFrame)651 static void walEncodeFrame(
652   Wal *pWal,                      /* The write-ahead log */
653   u32 iPage,                      /* Database page number for frame */
654   u32 nTruncate,                  /* New db size (or 0 for non-commit frames) */
655   u8 *aData,                      /* Pointer to page data */
656   u8 *aFrame                      /* OUT: Write encoded frame here */
657 ){
658   int nativeCksum;                /* True for native byte-order checksums */
659   u32 *aCksum = pWal->hdr.aFrameCksum;
660   assert( WAL_FRAME_HDRSIZE==24 );
661   sqlite3Put4byte(&aFrame[0], iPage);
662   sqlite3Put4byte(&aFrame[4], nTruncate);
663   memcpy(&aFrame[8], pWal->hdr.aSalt, 8);
664 
665   nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN);
666   walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum);
667   walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum);
668 
669   sqlite3Put4byte(&aFrame[16], aCksum[0]);
670   sqlite3Put4byte(&aFrame[20], aCksum[1]);
671 }
672 
673 /*
674 ** Check to see if the frame with header in aFrame[] and content
675 ** in aData[] is valid.  If it is a valid frame, fill *piPage and
676 ** *pnTruncate and return true.  Return if the frame is not valid.
677 */
walDecodeFrame(Wal * pWal,u32 * piPage,u32 * pnTruncate,u8 * aData,u8 * aFrame)678 static int walDecodeFrame(
679   Wal *pWal,                      /* The write-ahead log */
680   u32 *piPage,                    /* OUT: Database page number for frame */
681   u32 *pnTruncate,                /* OUT: New db size (or 0 if not commit) */
682   u8 *aData,                      /* Pointer to page data (for checksum) */
683   u8 *aFrame                      /* Frame data */
684 ){
685   int nativeCksum;                /* True for native byte-order checksums */
686   u32 *aCksum = pWal->hdr.aFrameCksum;
687   u32 pgno;                       /* Page number of the frame */
688   assert( WAL_FRAME_HDRSIZE==24 );
689 
690   /* A frame is only valid if the salt values in the frame-header
691   ** match the salt values in the wal-header.
692   */
693   if( memcmp(&pWal->hdr.aSalt, &aFrame[8], 8)!=0 ){
694     return 0;
695   }
696 
697   /* A frame is only valid if the page number is creater than zero.
698   */
699   pgno = sqlite3Get4byte(&aFrame[0]);
700   if( pgno==0 ){
701     return 0;
702   }
703 
704   /* A frame is only valid if a checksum of the WAL header,
705   ** all prior frams, the first 16 bytes of this frame-header,
706   ** and the frame-data matches the checksum in the last 8
707   ** bytes of this frame-header.
708   */
709   nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN);
710   walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum);
711   walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum);
712   if( aCksum[0]!=sqlite3Get4byte(&aFrame[16])
713    || aCksum[1]!=sqlite3Get4byte(&aFrame[20])
714   ){
715     /* Checksum failed. */
716     return 0;
717   }
718 
719   /* If we reach this point, the frame is valid.  Return the page number
720   ** and the new database size.
721   */
722   *piPage = pgno;
723   *pnTruncate = sqlite3Get4byte(&aFrame[4]);
724   return 1;
725 }
726 
727 
728 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
729 /*
730 ** Names of locks.  This routine is used to provide debugging output and is not
731 ** a part of an ordinary build.
732 */
walLockName(int lockIdx)733 static const char *walLockName(int lockIdx){
734   if( lockIdx==WAL_WRITE_LOCK ){
735     return "WRITE-LOCK";
736   }else if( lockIdx==WAL_CKPT_LOCK ){
737     return "CKPT-LOCK";
738   }else if( lockIdx==WAL_RECOVER_LOCK ){
739     return "RECOVER-LOCK";
740   }else{
741     static char zName[15];
742     sqlite3_snprintf(sizeof(zName), zName, "READ-LOCK[%d]",
743                      lockIdx-WAL_READ_LOCK(0));
744     return zName;
745   }
746 }
747 #endif /*defined(SQLITE_TEST) || defined(SQLITE_DEBUG) */
748 
749 
750 /*
751 ** Set or release locks on the WAL.  Locks are either shared or exclusive.
752 ** A lock cannot be moved directly between shared and exclusive - it must go
753 ** through the unlocked state first.
754 **
755 ** In locking_mode=EXCLUSIVE, all of these routines become no-ops.
756 */
walLockShared(Wal * pWal,int lockIdx)757 static int walLockShared(Wal *pWal, int lockIdx){
758   int rc;
759   if( pWal->exclusiveMode ) return SQLITE_OK;
760   rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1,
761                         SQLITE_SHM_LOCK | SQLITE_SHM_SHARED);
762   WALTRACE(("WAL%p: acquire SHARED-%s %s\n", pWal,
763             walLockName(lockIdx), rc ? "failed" : "ok"));
764   VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && rc!=SQLITE_BUSY); )
765   return rc;
766 }
walUnlockShared(Wal * pWal,int lockIdx)767 static void walUnlockShared(Wal *pWal, int lockIdx){
768   if( pWal->exclusiveMode ) return;
769   (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1,
770                          SQLITE_SHM_UNLOCK | SQLITE_SHM_SHARED);
771   WALTRACE(("WAL%p: release SHARED-%s\n", pWal, walLockName(lockIdx)));
772 }
walLockExclusive(Wal * pWal,int lockIdx,int n)773 static int walLockExclusive(Wal *pWal, int lockIdx, int n){
774   int rc;
775   if( pWal->exclusiveMode ) return SQLITE_OK;
776   rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, n,
777                         SQLITE_SHM_LOCK | SQLITE_SHM_EXCLUSIVE);
778   WALTRACE(("WAL%p: acquire EXCLUSIVE-%s cnt=%d %s\n", pWal,
779             walLockName(lockIdx), n, rc ? "failed" : "ok"));
780   VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && rc!=SQLITE_BUSY); )
781   return rc;
782 }
walUnlockExclusive(Wal * pWal,int lockIdx,int n)783 static void walUnlockExclusive(Wal *pWal, int lockIdx, int n){
784   if( pWal->exclusiveMode ) return;
785   (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, n,
786                          SQLITE_SHM_UNLOCK | SQLITE_SHM_EXCLUSIVE);
787   WALTRACE(("WAL%p: release EXCLUSIVE-%s cnt=%d\n", pWal,
788              walLockName(lockIdx), n));
789 }
790 
791 /*
792 ** Compute a hash on a page number.  The resulting hash value must land
793 ** between 0 and (HASHTABLE_NSLOT-1).  The walHashNext() function advances
794 ** the hash to the next value in the event of a collision.
795 */
walHash(u32 iPage)796 static int walHash(u32 iPage){
797   assert( iPage>0 );
798   assert( (HASHTABLE_NSLOT & (HASHTABLE_NSLOT-1))==0 );
799   return (iPage*HASHTABLE_HASH_1) & (HASHTABLE_NSLOT-1);
800 }
walNextHash(int iPriorHash)801 static int walNextHash(int iPriorHash){
802   return (iPriorHash+1)&(HASHTABLE_NSLOT-1);
803 }
804 
805 /*
806 ** Return pointers to the hash table and page number array stored on
807 ** page iHash of the wal-index. The wal-index is broken into 32KB pages
808 ** numbered starting from 0.
809 **
810 ** Set output variable *paHash to point to the start of the hash table
811 ** in the wal-index file. Set *piZero to one less than the frame
812 ** number of the first frame indexed by this hash table. If a
813 ** slot in the hash table is set to N, it refers to frame number
814 ** (*piZero+N) in the log.
815 **
816 ** Finally, set *paPgno so that *paPgno[1] is the page number of the
817 ** first frame indexed by the hash table, frame (*piZero+1).
818 */
walHashGet(Wal * pWal,int iHash,volatile ht_slot ** paHash,volatile u32 ** paPgno,u32 * piZero)819 static int walHashGet(
820   Wal *pWal,                      /* WAL handle */
821   int iHash,                      /* Find the iHash'th table */
822   volatile ht_slot **paHash,      /* OUT: Pointer to hash index */
823   volatile u32 **paPgno,          /* OUT: Pointer to page number array */
824   u32 *piZero                     /* OUT: Frame associated with *paPgno[0] */
825 ){
826   int rc;                         /* Return code */
827   volatile u32 *aPgno;
828 
829   rc = walIndexPage(pWal, iHash, &aPgno);
830   assert( rc==SQLITE_OK || iHash>0 );
831 
832   if( rc==SQLITE_OK ){
833     u32 iZero;
834     volatile ht_slot *aHash;
835 
836     aHash = (volatile ht_slot *)&aPgno[HASHTABLE_NPAGE];
837     if( iHash==0 ){
838       aPgno = &aPgno[WALINDEX_HDR_SIZE/sizeof(u32)];
839       iZero = 0;
840     }else{
841       iZero = HASHTABLE_NPAGE_ONE + (iHash-1)*HASHTABLE_NPAGE;
842     }
843 
844     *paPgno = &aPgno[-1];
845     *paHash = aHash;
846     *piZero = iZero;
847   }
848   return rc;
849 }
850 
851 /*
852 ** Return the number of the wal-index page that contains the hash-table
853 ** and page-number array that contain entries corresponding to WAL frame
854 ** iFrame. The wal-index is broken up into 32KB pages. Wal-index pages
855 ** are numbered starting from 0.
856 */
walFramePage(u32 iFrame)857 static int walFramePage(u32 iFrame){
858   int iHash = (iFrame+HASHTABLE_NPAGE-HASHTABLE_NPAGE_ONE-1) / HASHTABLE_NPAGE;
859   assert( (iHash==0 || iFrame>HASHTABLE_NPAGE_ONE)
860        && (iHash>=1 || iFrame<=HASHTABLE_NPAGE_ONE)
861        && (iHash<=1 || iFrame>(HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE))
862        && (iHash>=2 || iFrame<=HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE)
863        && (iHash<=2 || iFrame>(HASHTABLE_NPAGE_ONE+2*HASHTABLE_NPAGE))
864   );
865   return iHash;
866 }
867 
868 /*
869 ** Return the page number associated with frame iFrame in this WAL.
870 */
walFramePgno(Wal * pWal,u32 iFrame)871 static u32 walFramePgno(Wal *pWal, u32 iFrame){
872   int iHash = walFramePage(iFrame);
873   if( iHash==0 ){
874     return pWal->apWiData[0][WALINDEX_HDR_SIZE/sizeof(u32) + iFrame - 1];
875   }
876   return pWal->apWiData[iHash][(iFrame-1-HASHTABLE_NPAGE_ONE)%HASHTABLE_NPAGE];
877 }
878 
879 /*
880 ** Remove entries from the hash table that point to WAL slots greater
881 ** than pWal->hdr.mxFrame.
882 **
883 ** This function is called whenever pWal->hdr.mxFrame is decreased due
884 ** to a rollback or savepoint.
885 **
886 ** At most only the hash table containing pWal->hdr.mxFrame needs to be
887 ** updated.  Any later hash tables will be automatically cleared when
888 ** pWal->hdr.mxFrame advances to the point where those hash tables are
889 ** actually needed.
890 */
walCleanupHash(Wal * pWal)891 static void walCleanupHash(Wal *pWal){
892   volatile ht_slot *aHash = 0;    /* Pointer to hash table to clear */
893   volatile u32 *aPgno = 0;        /* Page number array for hash table */
894   u32 iZero = 0;                  /* frame == (aHash[x]+iZero) */
895   int iLimit = 0;                 /* Zero values greater than this */
896   int nByte;                      /* Number of bytes to zero in aPgno[] */
897   int i;                          /* Used to iterate through aHash[] */
898 
899   assert( pWal->writeLock );
900   testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE-1 );
901   testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE );
902   testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE+1 );
903 
904   if( pWal->hdr.mxFrame==0 ) return;
905 
906   /* Obtain pointers to the hash-table and page-number array containing
907   ** the entry that corresponds to frame pWal->hdr.mxFrame. It is guaranteed
908   ** that the page said hash-table and array reside on is already mapped.
909   */
910   assert( pWal->nWiData>walFramePage(pWal->hdr.mxFrame) );
911   assert( pWal->apWiData[walFramePage(pWal->hdr.mxFrame)] );
912   walHashGet(pWal, walFramePage(pWal->hdr.mxFrame), &aHash, &aPgno, &iZero);
913 
914   /* Zero all hash-table entries that correspond to frame numbers greater
915   ** than pWal->hdr.mxFrame.
916   */
917   iLimit = pWal->hdr.mxFrame - iZero;
918   assert( iLimit>0 );
919   for(i=0; i<HASHTABLE_NSLOT; i++){
920     if( aHash[i]>iLimit ){
921       aHash[i] = 0;
922     }
923   }
924 
925   /* Zero the entries in the aPgno array that correspond to frames with
926   ** frame numbers greater than pWal->hdr.mxFrame.
927   */
928   nByte = (int)((char *)aHash - (char *)&aPgno[iLimit+1]);
929   memset((void *)&aPgno[iLimit+1], 0, nByte);
930 
931 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
932   /* Verify that the every entry in the mapping region is still reachable
933   ** via the hash table even after the cleanup.
934   */
935   if( iLimit ){
936     int i;           /* Loop counter */
937     int iKey;        /* Hash key */
938     for(i=1; i<=iLimit; i++){
939       for(iKey=walHash(aPgno[i]); aHash[iKey]; iKey=walNextHash(iKey)){
940         if( aHash[iKey]==i ) break;
941       }
942       assert( aHash[iKey]==i );
943     }
944   }
945 #endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */
946 }
947 
948 
949 /*
950 ** Set an entry in the wal-index that will map database page number
951 ** pPage into WAL frame iFrame.
952 */
walIndexAppend(Wal * pWal,u32 iFrame,u32 iPage)953 static int walIndexAppend(Wal *pWal, u32 iFrame, u32 iPage){
954   int rc;                         /* Return code */
955   u32 iZero = 0;                  /* One less than frame number of aPgno[1] */
956   volatile u32 *aPgno = 0;        /* Page number array */
957   volatile ht_slot *aHash = 0;    /* Hash table */
958 
959   rc = walHashGet(pWal, walFramePage(iFrame), &aHash, &aPgno, &iZero);
960 
961   /* Assuming the wal-index file was successfully mapped, populate the
962   ** page number array and hash table entry.
963   */
964   if( rc==SQLITE_OK ){
965     int iKey;                     /* Hash table key */
966     int idx;                      /* Value to write to hash-table slot */
967     int nCollide;                 /* Number of hash collisions */
968 
969     idx = iFrame - iZero;
970     assert( idx <= HASHTABLE_NSLOT/2 + 1 );
971 
972     /* If this is the first entry to be added to this hash-table, zero the
973     ** entire hash table and aPgno[] array before proceding.
974     */
975     if( idx==1 ){
976       int nByte = (int)((u8 *)&aHash[HASHTABLE_NSLOT] - (u8 *)&aPgno[1]);
977       memset((void*)&aPgno[1], 0, nByte);
978     }
979 
980     /* If the entry in aPgno[] is already set, then the previous writer
981     ** must have exited unexpectedly in the middle of a transaction (after
982     ** writing one or more dirty pages to the WAL to free up memory).
983     ** Remove the remnants of that writers uncommitted transaction from
984     ** the hash-table before writing any new entries.
985     */
986     if( aPgno[idx] ){
987       walCleanupHash(pWal);
988       assert( !aPgno[idx] );
989     }
990 
991     /* Write the aPgno[] array entry and the hash-table slot. */
992     nCollide = idx;
993     for(iKey=walHash(iPage); aHash[iKey]; iKey=walNextHash(iKey)){
994       if( (nCollide--)==0 ) return SQLITE_CORRUPT_BKPT;
995     }
996     aPgno[idx] = iPage;
997     aHash[iKey] = (ht_slot)idx;
998 
999 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
1000     /* Verify that the number of entries in the hash table exactly equals
1001     ** the number of entries in the mapping region.
1002     */
1003     {
1004       int i;           /* Loop counter */
1005       int nEntry = 0;  /* Number of entries in the hash table */
1006       for(i=0; i<HASHTABLE_NSLOT; i++){ if( aHash[i] ) nEntry++; }
1007       assert( nEntry==idx );
1008     }
1009 
1010     /* Verify that the every entry in the mapping region is reachable
1011     ** via the hash table.  This turns out to be a really, really expensive
1012     ** thing to check, so only do this occasionally - not on every
1013     ** iteration.
1014     */
1015     if( (idx&0x3ff)==0 ){
1016       int i;           /* Loop counter */
1017       for(i=1; i<=idx; i++){
1018         for(iKey=walHash(aPgno[i]); aHash[iKey]; iKey=walNextHash(iKey)){
1019           if( aHash[iKey]==i ) break;
1020         }
1021         assert( aHash[iKey]==i );
1022       }
1023     }
1024 #endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */
1025   }
1026 
1027 
1028   return rc;
1029 }
1030 
1031 
1032 /*
1033 ** Recover the wal-index by reading the write-ahead log file.
1034 **
1035 ** This routine first tries to establish an exclusive lock on the
1036 ** wal-index to prevent other threads/processes from doing anything
1037 ** with the WAL or wal-index while recovery is running.  The
1038 ** WAL_RECOVER_LOCK is also held so that other threads will know
1039 ** that this thread is running recovery.  If unable to establish
1040 ** the necessary locks, this routine returns SQLITE_BUSY.
1041 */
walIndexRecover(Wal * pWal)1042 static int walIndexRecover(Wal *pWal){
1043   int rc;                         /* Return Code */
1044   i64 nSize;                      /* Size of log file */
1045   u32 aFrameCksum[2] = {0, 0};
1046   int iLock;                      /* Lock offset to lock for checkpoint */
1047   int nLock;                      /* Number of locks to hold */
1048 
1049   /* Obtain an exclusive lock on all byte in the locking range not already
1050   ** locked by the caller. The caller is guaranteed to have locked the
1051   ** WAL_WRITE_LOCK byte, and may have also locked the WAL_CKPT_LOCK byte.
1052   ** If successful, the same bytes that are locked here are unlocked before
1053   ** this function returns.
1054   */
1055   assert( pWal->ckptLock==1 || pWal->ckptLock==0 );
1056   assert( WAL_ALL_BUT_WRITE==WAL_WRITE_LOCK+1 );
1057   assert( WAL_CKPT_LOCK==WAL_ALL_BUT_WRITE );
1058   assert( pWal->writeLock );
1059   iLock = WAL_ALL_BUT_WRITE + pWal->ckptLock;
1060   nLock = SQLITE_SHM_NLOCK - iLock;
1061   rc = walLockExclusive(pWal, iLock, nLock);
1062   if( rc ){
1063     return rc;
1064   }
1065   WALTRACE(("WAL%p: recovery begin...\n", pWal));
1066 
1067   memset(&pWal->hdr, 0, sizeof(WalIndexHdr));
1068 
1069   rc = sqlite3OsFileSize(pWal->pWalFd, &nSize);
1070   if( rc!=SQLITE_OK ){
1071     goto recovery_error;
1072   }
1073 
1074   if( nSize>WAL_HDRSIZE ){
1075     u8 aBuf[WAL_HDRSIZE];         /* Buffer to load WAL header into */
1076     u8 *aFrame = 0;               /* Malloc'd buffer to load entire frame */
1077     int szFrame;                  /* Number of bytes in buffer aFrame[] */
1078     u8 *aData;                    /* Pointer to data part of aFrame buffer */
1079     int iFrame;                   /* Index of last frame read */
1080     i64 iOffset;                  /* Next offset to read from log file */
1081     int szPage;                   /* Page size according to the log */
1082     u32 magic;                    /* Magic value read from WAL header */
1083     u32 version;                  /* Magic value read from WAL header */
1084 
1085     /* Read in the WAL header. */
1086     rc = sqlite3OsRead(pWal->pWalFd, aBuf, WAL_HDRSIZE, 0);
1087     if( rc!=SQLITE_OK ){
1088       goto recovery_error;
1089     }
1090 
1091     /* If the database page size is not a power of two, or is greater than
1092     ** SQLITE_MAX_PAGE_SIZE, conclude that the WAL file contains no valid
1093     ** data. Similarly, if the 'magic' value is invalid, ignore the whole
1094     ** WAL file.
1095     */
1096     magic = sqlite3Get4byte(&aBuf[0]);
1097     szPage = sqlite3Get4byte(&aBuf[8]);
1098     if( (magic&0xFFFFFFFE)!=WAL_MAGIC
1099      || szPage&(szPage-1)
1100      || szPage>SQLITE_MAX_PAGE_SIZE
1101      || szPage<512
1102     ){
1103       goto finished;
1104     }
1105     pWal->hdr.bigEndCksum = (u8)(magic&0x00000001);
1106     pWal->szPage = szPage;
1107     pWal->nCkpt = sqlite3Get4byte(&aBuf[12]);
1108     memcpy(&pWal->hdr.aSalt, &aBuf[16], 8);
1109 
1110     /* Verify that the WAL header checksum is correct */
1111     walChecksumBytes(pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN,
1112         aBuf, WAL_HDRSIZE-2*4, 0, pWal->hdr.aFrameCksum
1113     );
1114     if( pWal->hdr.aFrameCksum[0]!=sqlite3Get4byte(&aBuf[24])
1115      || pWal->hdr.aFrameCksum[1]!=sqlite3Get4byte(&aBuf[28])
1116     ){
1117       goto finished;
1118     }
1119 
1120     /* Verify that the version number on the WAL format is one that
1121     ** are able to understand */
1122     version = sqlite3Get4byte(&aBuf[4]);
1123     if( version!=WAL_MAX_VERSION ){
1124       rc = SQLITE_CANTOPEN_BKPT;
1125       goto finished;
1126     }
1127 
1128     /* Malloc a buffer to read frames into. */
1129     szFrame = szPage + WAL_FRAME_HDRSIZE;
1130     aFrame = (u8 *)sqlite3_malloc(szFrame);
1131     if( !aFrame ){
1132       rc = SQLITE_NOMEM;
1133       goto recovery_error;
1134     }
1135     aData = &aFrame[WAL_FRAME_HDRSIZE];
1136 
1137     /* Read all frames from the log file. */
1138     iFrame = 0;
1139     for(iOffset=WAL_HDRSIZE; (iOffset+szFrame)<=nSize; iOffset+=szFrame){
1140       u32 pgno;                   /* Database page number for frame */
1141       u32 nTruncate;              /* dbsize field from frame header */
1142       int isValid;                /* True if this frame is valid */
1143 
1144       /* Read and decode the next log frame. */
1145       rc = sqlite3OsRead(pWal->pWalFd, aFrame, szFrame, iOffset);
1146       if( rc!=SQLITE_OK ) break;
1147       isValid = walDecodeFrame(pWal, &pgno, &nTruncate, aData, aFrame);
1148       if( !isValid ) break;
1149       rc = walIndexAppend(pWal, ++iFrame, pgno);
1150       if( rc!=SQLITE_OK ) break;
1151 
1152       /* If nTruncate is non-zero, this is a commit record. */
1153       if( nTruncate ){
1154         pWal->hdr.mxFrame = iFrame;
1155         pWal->hdr.nPage = nTruncate;
1156         pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16));
1157         testcase( szPage<=32768 );
1158         testcase( szPage>=65536 );
1159         aFrameCksum[0] = pWal->hdr.aFrameCksum[0];
1160         aFrameCksum[1] = pWal->hdr.aFrameCksum[1];
1161       }
1162     }
1163 
1164     sqlite3_free(aFrame);
1165   }
1166 
1167 finished:
1168   if( rc==SQLITE_OK ){
1169     volatile WalCkptInfo *pInfo;
1170     int i;
1171     pWal->hdr.aFrameCksum[0] = aFrameCksum[0];
1172     pWal->hdr.aFrameCksum[1] = aFrameCksum[1];
1173     walIndexWriteHdr(pWal);
1174 
1175     /* Reset the checkpoint-header. This is safe because this thread is
1176     ** currently holding locks that exclude all other readers, writers and
1177     ** checkpointers.
1178     */
1179     pInfo = walCkptInfo(pWal);
1180     pInfo->nBackfill = 0;
1181     pInfo->aReadMark[0] = 0;
1182     for(i=1; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED;
1183 
1184     /* If more than one frame was recovered from the log file, report an
1185     ** event via sqlite3_log(). This is to help with identifying performance
1186     ** problems caused by applications routinely shutting down without
1187     ** checkpointing the log file.
1188     */
1189     if( pWal->hdr.nPage ){
1190       sqlite3_log(SQLITE_OK, "Recovered %d frames from WAL file %s",
1191           pWal->hdr.nPage, pWal->zWalName
1192       );
1193     }
1194   }
1195 
1196 recovery_error:
1197   WALTRACE(("WAL%p: recovery %s\n", pWal, rc ? "failed" : "ok"));
1198   walUnlockExclusive(pWal, iLock, nLock);
1199   return rc;
1200 }
1201 
1202 /*
1203 ** Close an open wal-index.
1204 */
walIndexClose(Wal * pWal,int isDelete)1205 static void walIndexClose(Wal *pWal, int isDelete){
1206   if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE ){
1207     int i;
1208     for(i=0; i<pWal->nWiData; i++){
1209       sqlite3_free((void *)pWal->apWiData[i]);
1210       pWal->apWiData[i] = 0;
1211     }
1212   }else{
1213     sqlite3OsShmUnmap(pWal->pDbFd, isDelete);
1214   }
1215 }
1216 
1217 /*
1218 ** Open a connection to the WAL file zWalName. The database file must
1219 ** already be opened on connection pDbFd. The buffer that zWalName points
1220 ** to must remain valid for the lifetime of the returned Wal* handle.
1221 **
1222 ** A SHARED lock should be held on the database file when this function
1223 ** is called. The purpose of this SHARED lock is to prevent any other
1224 ** client from unlinking the WAL or wal-index file. If another process
1225 ** were to do this just after this client opened one of these files, the
1226 ** system would be badly broken.
1227 **
1228 ** If the log file is successfully opened, SQLITE_OK is returned and
1229 ** *ppWal is set to point to a new WAL handle. If an error occurs,
1230 ** an SQLite error code is returned and *ppWal is left unmodified.
1231 */
sqlite3WalOpen(sqlite3_vfs * pVfs,sqlite3_file * pDbFd,const char * zWalName,int bNoShm,Wal ** ppWal)1232 int sqlite3WalOpen(
1233   sqlite3_vfs *pVfs,              /* vfs module to open wal and wal-index */
1234   sqlite3_file *pDbFd,            /* The open database file */
1235   const char *zWalName,           /* Name of the WAL file */
1236   int bNoShm,                     /* True to run in heap-memory mode */
1237   Wal **ppWal                     /* OUT: Allocated Wal handle */
1238 ){
1239   int rc;                         /* Return Code */
1240   Wal *pRet;                      /* Object to allocate and return */
1241   int flags;                      /* Flags passed to OsOpen() */
1242 
1243   assert( zWalName && zWalName[0] );
1244   assert( pDbFd );
1245 
1246   /* In the amalgamation, the os_unix.c and os_win.c source files come before
1247   ** this source file.  Verify that the #defines of the locking byte offsets
1248   ** in os_unix.c and os_win.c agree with the WALINDEX_LOCK_OFFSET value.
1249   */
1250 #ifdef WIN_SHM_BASE
1251   assert( WIN_SHM_BASE==WALINDEX_LOCK_OFFSET );
1252 #endif
1253 #ifdef UNIX_SHM_BASE
1254   assert( UNIX_SHM_BASE==WALINDEX_LOCK_OFFSET );
1255 #endif
1256 
1257 
1258   /* Allocate an instance of struct Wal to return. */
1259   *ppWal = 0;
1260   pRet = (Wal*)sqlite3MallocZero(sizeof(Wal) + pVfs->szOsFile);
1261   if( !pRet ){
1262     return SQLITE_NOMEM;
1263   }
1264 
1265   pRet->pVfs = pVfs;
1266   pRet->pWalFd = (sqlite3_file *)&pRet[1];
1267   pRet->pDbFd = pDbFd;
1268   pRet->readLock = -1;
1269   pRet->zWalName = zWalName;
1270   pRet->exclusiveMode = (bNoShm ? WAL_HEAPMEMORY_MODE: WAL_NORMAL_MODE);
1271 
1272   /* Open file handle on the write-ahead log file. */
1273   flags = (SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|SQLITE_OPEN_WAL);
1274   rc = sqlite3OsOpen(pVfs, zWalName, pRet->pWalFd, flags, &flags);
1275   if( rc==SQLITE_OK && flags&SQLITE_OPEN_READONLY ){
1276     pRet->readOnly = 1;
1277   }
1278 
1279   if( rc!=SQLITE_OK ){
1280     walIndexClose(pRet, 0);
1281     sqlite3OsClose(pRet->pWalFd);
1282     sqlite3_free(pRet);
1283   }else{
1284     *ppWal = pRet;
1285     WALTRACE(("WAL%d: opened\n", pRet));
1286   }
1287   return rc;
1288 }
1289 
1290 /*
1291 ** Find the smallest page number out of all pages held in the WAL that
1292 ** has not been returned by any prior invocation of this method on the
1293 ** same WalIterator object.   Write into *piFrame the frame index where
1294 ** that page was last written into the WAL.  Write into *piPage the page
1295 ** number.
1296 **
1297 ** Return 0 on success.  If there are no pages in the WAL with a page
1298 ** number larger than *piPage, then return 1.
1299 */
walIteratorNext(WalIterator * p,u32 * piPage,u32 * piFrame)1300 static int walIteratorNext(
1301   WalIterator *p,               /* Iterator */
1302   u32 *piPage,                  /* OUT: The page number of the next page */
1303   u32 *piFrame                  /* OUT: Wal frame index of next page */
1304 ){
1305   u32 iMin;                     /* Result pgno must be greater than iMin */
1306   u32 iRet = 0xFFFFFFFF;        /* 0xffffffff is never a valid page number */
1307   int i;                        /* For looping through segments */
1308 
1309   iMin = p->iPrior;
1310   assert( iMin<0xffffffff );
1311   for(i=p->nSegment-1; i>=0; i--){
1312     struct WalSegment *pSegment = &p->aSegment[i];
1313     while( pSegment->iNext<pSegment->nEntry ){
1314       u32 iPg = pSegment->aPgno[pSegment->aIndex[pSegment->iNext]];
1315       if( iPg>iMin ){
1316         if( iPg<iRet ){
1317           iRet = iPg;
1318           *piFrame = pSegment->iZero + pSegment->aIndex[pSegment->iNext];
1319         }
1320         break;
1321       }
1322       pSegment->iNext++;
1323     }
1324   }
1325 
1326   *piPage = p->iPrior = iRet;
1327   return (iRet==0xFFFFFFFF);
1328 }
1329 
1330 /*
1331 ** This function merges two sorted lists into a single sorted list.
1332 **
1333 ** aLeft[] and aRight[] are arrays of indices.  The sort key is
1334 ** aContent[aLeft[]] and aContent[aRight[]].  Upon entry, the following
1335 ** is guaranteed for all J<K:
1336 **
1337 **        aContent[aLeft[J]] < aContent[aLeft[K]]
1338 **        aContent[aRight[J]] < aContent[aRight[K]]
1339 **
1340 ** This routine overwrites aRight[] with a new (probably longer) sequence
1341 ** of indices such that the aRight[] contains every index that appears in
1342 ** either aLeft[] or the old aRight[] and such that the second condition
1343 ** above is still met.
1344 **
1345 ** The aContent[aLeft[X]] values will be unique for all X.  And the
1346 ** aContent[aRight[X]] values will be unique too.  But there might be
1347 ** one or more combinations of X and Y such that
1348 **
1349 **      aLeft[X]!=aRight[Y]  &&  aContent[aLeft[X]] == aContent[aRight[Y]]
1350 **
1351 ** When that happens, omit the aLeft[X] and use the aRight[Y] index.
1352 */
walMerge(const u32 * aContent,ht_slot * aLeft,int nLeft,ht_slot ** paRight,int * pnRight,ht_slot * aTmp)1353 static void walMerge(
1354   const u32 *aContent,            /* Pages in wal - keys for the sort */
1355   ht_slot *aLeft,                 /* IN: Left hand input list */
1356   int nLeft,                      /* IN: Elements in array *paLeft */
1357   ht_slot **paRight,              /* IN/OUT: Right hand input list */
1358   int *pnRight,                   /* IN/OUT: Elements in *paRight */
1359   ht_slot *aTmp                   /* Temporary buffer */
1360 ){
1361   int iLeft = 0;                  /* Current index in aLeft */
1362   int iRight = 0;                 /* Current index in aRight */
1363   int iOut = 0;                   /* Current index in output buffer */
1364   int nRight = *pnRight;
1365   ht_slot *aRight = *paRight;
1366 
1367   assert( nLeft>0 && nRight>0 );
1368   while( iRight<nRight || iLeft<nLeft ){
1369     ht_slot logpage;
1370     Pgno dbpage;
1371 
1372     if( (iLeft<nLeft)
1373      && (iRight>=nRight || aContent[aLeft[iLeft]]<aContent[aRight[iRight]])
1374     ){
1375       logpage = aLeft[iLeft++];
1376     }else{
1377       logpage = aRight[iRight++];
1378     }
1379     dbpage = aContent[logpage];
1380 
1381     aTmp[iOut++] = logpage;
1382     if( iLeft<nLeft && aContent[aLeft[iLeft]]==dbpage ) iLeft++;
1383 
1384     assert( iLeft>=nLeft || aContent[aLeft[iLeft]]>dbpage );
1385     assert( iRight>=nRight || aContent[aRight[iRight]]>dbpage );
1386   }
1387 
1388   *paRight = aLeft;
1389   *pnRight = iOut;
1390   memcpy(aLeft, aTmp, sizeof(aTmp[0])*iOut);
1391 }
1392 
1393 /*
1394 ** Sort the elements in list aList using aContent[] as the sort key.
1395 ** Remove elements with duplicate keys, preferring to keep the
1396 ** larger aList[] values.
1397 **
1398 ** The aList[] entries are indices into aContent[].  The values in
1399 ** aList[] are to be sorted so that for all J<K:
1400 **
1401 **      aContent[aList[J]] < aContent[aList[K]]
1402 **
1403 ** For any X and Y such that
1404 **
1405 **      aContent[aList[X]] == aContent[aList[Y]]
1406 **
1407 ** Keep the larger of the two values aList[X] and aList[Y] and discard
1408 ** the smaller.
1409 */
walMergesort(const u32 * aContent,ht_slot * aBuffer,ht_slot * aList,int * pnList)1410 static void walMergesort(
1411   const u32 *aContent,            /* Pages in wal */
1412   ht_slot *aBuffer,               /* Buffer of at least *pnList items to use */
1413   ht_slot *aList,                 /* IN/OUT: List to sort */
1414   int *pnList                     /* IN/OUT: Number of elements in aList[] */
1415 ){
1416   struct Sublist {
1417     int nList;                    /* Number of elements in aList */
1418     ht_slot *aList;               /* Pointer to sub-list content */
1419   };
1420 
1421   const int nList = *pnList;      /* Size of input list */
1422   int nMerge = 0;                 /* Number of elements in list aMerge */
1423   ht_slot *aMerge = 0;            /* List to be merged */
1424   int iList;                      /* Index into input list */
1425   int iSub = 0;                   /* Index into aSub array */
1426   struct Sublist aSub[13];        /* Array of sub-lists */
1427 
1428   memset(aSub, 0, sizeof(aSub));
1429   assert( nList<=HASHTABLE_NPAGE && nList>0 );
1430   assert( HASHTABLE_NPAGE==(1<<(ArraySize(aSub)-1)) );
1431 
1432   for(iList=0; iList<nList; iList++){
1433     nMerge = 1;
1434     aMerge = &aList[iList];
1435     for(iSub=0; iList & (1<<iSub); iSub++){
1436       struct Sublist *p = &aSub[iSub];
1437       assert( p->aList && p->nList<=(1<<iSub) );
1438       assert( p->aList==&aList[iList&~((2<<iSub)-1)] );
1439       walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer);
1440     }
1441     aSub[iSub].aList = aMerge;
1442     aSub[iSub].nList = nMerge;
1443   }
1444 
1445   for(iSub++; iSub<ArraySize(aSub); iSub++){
1446     if( nList & (1<<iSub) ){
1447       struct Sublist *p = &aSub[iSub];
1448       assert( p->nList<=(1<<iSub) );
1449       assert( p->aList==&aList[nList&~((2<<iSub)-1)] );
1450       walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer);
1451     }
1452   }
1453   assert( aMerge==aList );
1454   *pnList = nMerge;
1455 
1456 #ifdef SQLITE_DEBUG
1457   {
1458     int i;
1459     for(i=1; i<*pnList; i++){
1460       assert( aContent[aList[i]] > aContent[aList[i-1]] );
1461     }
1462   }
1463 #endif
1464 }
1465 
1466 /*
1467 ** Free an iterator allocated by walIteratorInit().
1468 */
walIteratorFree(WalIterator * p)1469 static void walIteratorFree(WalIterator *p){
1470   sqlite3ScratchFree(p);
1471 }
1472 
1473 /*
1474 ** Construct a WalInterator object that can be used to loop over all
1475 ** pages in the WAL in ascending order. The caller must hold the checkpoint
1476 ** lock.
1477 **
1478 ** On success, make *pp point to the newly allocated WalInterator object
1479 ** return SQLITE_OK. Otherwise, return an error code. If this routine
1480 ** returns an error, the value of *pp is undefined.
1481 **
1482 ** The calling routine should invoke walIteratorFree() to destroy the
1483 ** WalIterator object when it has finished with it.
1484 */
walIteratorInit(Wal * pWal,WalIterator ** pp)1485 static int walIteratorInit(Wal *pWal, WalIterator **pp){
1486   WalIterator *p;                 /* Return value */
1487   int nSegment;                   /* Number of segments to merge */
1488   u32 iLast;                      /* Last frame in log */
1489   int nByte;                      /* Number of bytes to allocate */
1490   int i;                          /* Iterator variable */
1491   ht_slot *aTmp;                  /* Temp space used by merge-sort */
1492   int rc = SQLITE_OK;             /* Return Code */
1493 
1494   /* This routine only runs while holding the checkpoint lock. And
1495   ** it only runs if there is actually content in the log (mxFrame>0).
1496   */
1497   assert( pWal->ckptLock && pWal->hdr.mxFrame>0 );
1498   iLast = pWal->hdr.mxFrame;
1499 
1500   /* Allocate space for the WalIterator object. */
1501   nSegment = walFramePage(iLast) + 1;
1502   nByte = sizeof(WalIterator)
1503         + (nSegment-1)*sizeof(struct WalSegment)
1504         + iLast*sizeof(ht_slot);
1505   p = (WalIterator *)sqlite3ScratchMalloc(nByte);
1506   if( !p ){
1507     return SQLITE_NOMEM;
1508   }
1509   memset(p, 0, nByte);
1510   p->nSegment = nSegment;
1511 
1512   /* Allocate temporary space used by the merge-sort routine. This block
1513   ** of memory will be freed before this function returns.
1514   */
1515   aTmp = (ht_slot *)sqlite3ScratchMalloc(
1516       sizeof(ht_slot) * (iLast>HASHTABLE_NPAGE?HASHTABLE_NPAGE:iLast)
1517   );
1518   if( !aTmp ){
1519     rc = SQLITE_NOMEM;
1520   }
1521 
1522   for(i=0; rc==SQLITE_OK && i<nSegment; i++){
1523     volatile ht_slot *aHash;
1524     u32 iZero;
1525     volatile u32 *aPgno;
1526 
1527     rc = walHashGet(pWal, i, &aHash, &aPgno, &iZero);
1528     if( rc==SQLITE_OK ){
1529       int j;                      /* Counter variable */
1530       int nEntry;                 /* Number of entries in this segment */
1531       ht_slot *aIndex;            /* Sorted index for this segment */
1532 
1533       aPgno++;
1534       if( (i+1)==nSegment ){
1535         nEntry = (int)(iLast - iZero);
1536       }else{
1537         nEntry = (int)((u32*)aHash - (u32*)aPgno);
1538       }
1539       aIndex = &((ht_slot *)&p->aSegment[p->nSegment])[iZero];
1540       iZero++;
1541 
1542       for(j=0; j<nEntry; j++){
1543         aIndex[j] = (ht_slot)j;
1544       }
1545       walMergesort((u32 *)aPgno, aTmp, aIndex, &nEntry);
1546       p->aSegment[i].iZero = iZero;
1547       p->aSegment[i].nEntry = nEntry;
1548       p->aSegment[i].aIndex = aIndex;
1549       p->aSegment[i].aPgno = (u32 *)aPgno;
1550     }
1551   }
1552   sqlite3ScratchFree(aTmp);
1553 
1554   if( rc!=SQLITE_OK ){
1555     walIteratorFree(p);
1556   }
1557   *pp = p;
1558   return rc;
1559 }
1560 
1561 /*
1562 ** Attempt to obtain the exclusive WAL lock defined by parameters lockIdx and
1563 ** n. If the attempt fails and parameter xBusy is not NULL, then it is a
1564 ** busy-handler function. Invoke it and retry the lock until either the
1565 ** lock is successfully obtained or the busy-handler returns 0.
1566 */
walBusyLock(Wal * pWal,int (* xBusy)(void *),void * pBusyArg,int lockIdx,int n)1567 static int walBusyLock(
1568   Wal *pWal,                      /* WAL connection */
1569   int (*xBusy)(void*),            /* Function to call when busy */
1570   void *pBusyArg,                 /* Context argument for xBusyHandler */
1571   int lockIdx,                    /* Offset of first byte to lock */
1572   int n                           /* Number of bytes to lock */
1573 ){
1574   int rc;
1575   do {
1576     rc = walLockExclusive(pWal, lockIdx, n);
1577   }while( xBusy && rc==SQLITE_BUSY && xBusy(pBusyArg) );
1578   return rc;
1579 }
1580 
1581 /*
1582 ** The cache of the wal-index header must be valid to call this function.
1583 ** Return the page-size in bytes used by the database.
1584 */
walPagesize(Wal * pWal)1585 static int walPagesize(Wal *pWal){
1586   return (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16);
1587 }
1588 
1589 /*
1590 ** Copy as much content as we can from the WAL back into the database file
1591 ** in response to an sqlite3_wal_checkpoint() request or the equivalent.
1592 **
1593 ** The amount of information copies from WAL to database might be limited
1594 ** by active readers.  This routine will never overwrite a database page
1595 ** that a concurrent reader might be using.
1596 **
1597 ** All I/O barrier operations (a.k.a fsyncs) occur in this routine when
1598 ** SQLite is in WAL-mode in synchronous=NORMAL.  That means that if
1599 ** checkpoints are always run by a background thread or background
1600 ** process, foreground threads will never block on a lengthy fsync call.
1601 **
1602 ** Fsync is called on the WAL before writing content out of the WAL and
1603 ** into the database.  This ensures that if the new content is persistent
1604 ** in the WAL and can be recovered following a power-loss or hard reset.
1605 **
1606 ** Fsync is also called on the database file if (and only if) the entire
1607 ** WAL content is copied into the database file.  This second fsync makes
1608 ** it safe to delete the WAL since the new content will persist in the
1609 ** database file.
1610 **
1611 ** This routine uses and updates the nBackfill field of the wal-index header.
1612 ** This is the only routine tha will increase the value of nBackfill.
1613 ** (A WAL reset or recovery will revert nBackfill to zero, but not increase
1614 ** its value.)
1615 **
1616 ** The caller must be holding sufficient locks to ensure that no other
1617 ** checkpoint is running (in any other thread or process) at the same
1618 ** time.
1619 */
walCheckpoint(Wal * pWal,int eMode,int (* xBusyCall)(void *),void * pBusyArg,int sync_flags,u8 * zBuf)1620 static int walCheckpoint(
1621   Wal *pWal,                      /* Wal connection */
1622   int eMode,                      /* One of PASSIVE, FULL or RESTART */
1623   int (*xBusyCall)(void*),        /* Function to call when busy */
1624   void *pBusyArg,                 /* Context argument for xBusyHandler */
1625   int sync_flags,                 /* Flags for OsSync() (or 0) */
1626   u8 *zBuf                        /* Temporary buffer to use */
1627 ){
1628   int rc;                         /* Return code */
1629   int szPage;                     /* Database page-size */
1630   WalIterator *pIter = 0;         /* Wal iterator context */
1631   u32 iDbpage = 0;                /* Next database page to write */
1632   u32 iFrame = 0;                 /* Wal frame containing data for iDbpage */
1633   u32 mxSafeFrame;                /* Max frame that can be backfilled */
1634   u32 mxPage;                     /* Max database page to write */
1635   int i;                          /* Loop counter */
1636   volatile WalCkptInfo *pInfo;    /* The checkpoint status information */
1637   int (*xBusy)(void*) = 0;        /* Function to call when waiting for locks */
1638 
1639   szPage = walPagesize(pWal);
1640   testcase( szPage<=32768 );
1641   testcase( szPage>=65536 );
1642   pInfo = walCkptInfo(pWal);
1643   if( pInfo->nBackfill>=pWal->hdr.mxFrame ) return SQLITE_OK;
1644 
1645   /* Allocate the iterator */
1646   rc = walIteratorInit(pWal, &pIter);
1647   if( rc!=SQLITE_OK ){
1648     return rc;
1649   }
1650   assert( pIter );
1651 
1652   if( eMode!=SQLITE_CHECKPOINT_PASSIVE ) xBusy = xBusyCall;
1653 
1654   /* Compute in mxSafeFrame the index of the last frame of the WAL that is
1655   ** safe to write into the database.  Frames beyond mxSafeFrame might
1656   ** overwrite database pages that are in use by active readers and thus
1657   ** cannot be backfilled from the WAL.
1658   */
1659   mxSafeFrame = pWal->hdr.mxFrame;
1660   mxPage = pWal->hdr.nPage;
1661   for(i=1; i<WAL_NREADER; i++){
1662     u32 y = pInfo->aReadMark[i];
1663     if( mxSafeFrame>y ){
1664       assert( y<=pWal->hdr.mxFrame );
1665       rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(i), 1);
1666       if( rc==SQLITE_OK ){
1667         pInfo->aReadMark[i] = READMARK_NOT_USED;
1668         walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1);
1669       }else if( rc==SQLITE_BUSY ){
1670         mxSafeFrame = y;
1671         xBusy = 0;
1672       }else{
1673         goto walcheckpoint_out;
1674       }
1675     }
1676   }
1677 
1678   if( pInfo->nBackfill<mxSafeFrame
1679    && (rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(0), 1))==SQLITE_OK
1680   ){
1681     i64 nSize;                    /* Current size of database file */
1682     u32 nBackfill = pInfo->nBackfill;
1683 
1684     /* Sync the WAL to disk */
1685     if( sync_flags ){
1686       rc = sqlite3OsSync(pWal->pWalFd, sync_flags);
1687     }
1688 
1689     /* If the database file may grow as a result of this checkpoint, hint
1690     ** about the eventual size of the db file to the VFS layer.
1691     */
1692     if( rc==SQLITE_OK ){
1693       i64 nReq = ((i64)mxPage * szPage);
1694       rc = sqlite3OsFileSize(pWal->pDbFd, &nSize);
1695       if( rc==SQLITE_OK && nSize<nReq ){
1696         sqlite3OsFileControl(pWal->pDbFd, SQLITE_FCNTL_SIZE_HINT, &nReq);
1697       }
1698     }
1699 
1700     /* Iterate through the contents of the WAL, copying data to the db file. */
1701     while( rc==SQLITE_OK && 0==walIteratorNext(pIter, &iDbpage, &iFrame) ){
1702       i64 iOffset;
1703       assert( walFramePgno(pWal, iFrame)==iDbpage );
1704       if( iFrame<=nBackfill || iFrame>mxSafeFrame || iDbpage>mxPage ) continue;
1705       iOffset = walFrameOffset(iFrame, szPage) + WAL_FRAME_HDRSIZE;
1706       /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL file */
1707       rc = sqlite3OsRead(pWal->pWalFd, zBuf, szPage, iOffset);
1708       if( rc!=SQLITE_OK ) break;
1709       iOffset = (iDbpage-1)*(i64)szPage;
1710       testcase( IS_BIG_INT(iOffset) );
1711       rc = sqlite3OsWrite(pWal->pDbFd, zBuf, szPage, iOffset);
1712       if( rc!=SQLITE_OK ) break;
1713     }
1714 
1715     /* If work was actually accomplished... */
1716     if( rc==SQLITE_OK ){
1717       if( mxSafeFrame==walIndexHdr(pWal)->mxFrame ){
1718         i64 szDb = pWal->hdr.nPage*(i64)szPage;
1719         testcase( IS_BIG_INT(szDb) );
1720         rc = sqlite3OsTruncate(pWal->pDbFd, szDb);
1721         if( rc==SQLITE_OK && sync_flags ){
1722           rc = sqlite3OsSync(pWal->pDbFd, sync_flags);
1723         }
1724       }
1725       if( rc==SQLITE_OK ){
1726         pInfo->nBackfill = mxSafeFrame;
1727       }
1728     }
1729 
1730     /* Release the reader lock held while backfilling */
1731     walUnlockExclusive(pWal, WAL_READ_LOCK(0), 1);
1732   }
1733 
1734   if( rc==SQLITE_BUSY ){
1735     /* Reset the return code so as not to report a checkpoint failure
1736     ** just because there are active readers.  */
1737     rc = SQLITE_OK;
1738   }
1739 
1740   /* If this is an SQLITE_CHECKPOINT_RESTART operation, and the entire wal
1741   ** file has been copied into the database file, then block until all
1742   ** readers have finished using the wal file. This ensures that the next
1743   ** process to write to the database restarts the wal file.
1744   */
1745   if( rc==SQLITE_OK && eMode!=SQLITE_CHECKPOINT_PASSIVE ){
1746     assert( pWal->writeLock );
1747     if( pInfo->nBackfill<pWal->hdr.mxFrame ){
1748       rc = SQLITE_BUSY;
1749     }else if( eMode==SQLITE_CHECKPOINT_RESTART ){
1750       assert( mxSafeFrame==pWal->hdr.mxFrame );
1751       rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(1), WAL_NREADER-1);
1752       if( rc==SQLITE_OK ){
1753         walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
1754       }
1755     }
1756   }
1757 
1758  walcheckpoint_out:
1759   walIteratorFree(pIter);
1760   return rc;
1761 }
1762 
1763 /*
1764 ** Close a connection to a log file.
1765 */
sqlite3WalClose(Wal * pWal,int sync_flags,int nBuf,u8 * zBuf)1766 int sqlite3WalClose(
1767   Wal *pWal,                      /* Wal to close */
1768   int sync_flags,                 /* Flags to pass to OsSync() (or 0) */
1769   int nBuf,
1770   u8 *zBuf                        /* Buffer of at least nBuf bytes */
1771 ){
1772   int rc = SQLITE_OK;
1773   if( pWal ){
1774     int isDelete = 0;             /* True to unlink wal and wal-index files */
1775 
1776     /* If an EXCLUSIVE lock can be obtained on the database file (using the
1777     ** ordinary, rollback-mode locking methods, this guarantees that the
1778     ** connection associated with this log file is the only connection to
1779     ** the database. In this case checkpoint the database and unlink both
1780     ** the wal and wal-index files.
1781     **
1782     ** The EXCLUSIVE lock is not released before returning.
1783     */
1784     rc = sqlite3OsLock(pWal->pDbFd, SQLITE_LOCK_EXCLUSIVE);
1785     if( rc==SQLITE_OK ){
1786       if( pWal->exclusiveMode==WAL_NORMAL_MODE ){
1787         pWal->exclusiveMode = WAL_EXCLUSIVE_MODE;
1788       }
1789       rc = sqlite3WalCheckpoint(
1790           pWal, SQLITE_CHECKPOINT_PASSIVE, 0, 0, sync_flags, nBuf, zBuf, 0, 0
1791       );
1792       if( rc==SQLITE_OK ){
1793         isDelete = 1;
1794       }
1795     }
1796 
1797     walIndexClose(pWal, isDelete);
1798     sqlite3OsClose(pWal->pWalFd);
1799     if( isDelete ){
1800       sqlite3OsDelete(pWal->pVfs, pWal->zWalName, 0);
1801     }
1802     WALTRACE(("WAL%p: closed\n", pWal));
1803     sqlite3_free((void *)pWal->apWiData);
1804     sqlite3_free(pWal);
1805   }
1806   return rc;
1807 }
1808 
1809 /*
1810 ** Try to read the wal-index header.  Return 0 on success and 1 if
1811 ** there is a problem.
1812 **
1813 ** The wal-index is in shared memory.  Another thread or process might
1814 ** be writing the header at the same time this procedure is trying to
1815 ** read it, which might result in inconsistency.  A dirty read is detected
1816 ** by verifying that both copies of the header are the same and also by
1817 ** a checksum on the header.
1818 **
1819 ** If and only if the read is consistent and the header is different from
1820 ** pWal->hdr, then pWal->hdr is updated to the content of the new header
1821 ** and *pChanged is set to 1.
1822 **
1823 ** If the checksum cannot be verified return non-zero. If the header
1824 ** is read successfully and the checksum verified, return zero.
1825 */
walIndexTryHdr(Wal * pWal,int * pChanged)1826 static int walIndexTryHdr(Wal *pWal, int *pChanged){
1827   u32 aCksum[2];                  /* Checksum on the header content */
1828   WalIndexHdr h1, h2;             /* Two copies of the header content */
1829   WalIndexHdr volatile *aHdr;     /* Header in shared memory */
1830 
1831   /* The first page of the wal-index must be mapped at this point. */
1832   assert( pWal->nWiData>0 && pWal->apWiData[0] );
1833 
1834   /* Read the header. This might happen concurrently with a write to the
1835   ** same area of shared memory on a different CPU in a SMP,
1836   ** meaning it is possible that an inconsistent snapshot is read
1837   ** from the file. If this happens, return non-zero.
1838   **
1839   ** There are two copies of the header at the beginning of the wal-index.
1840   ** When reading, read [0] first then [1].  Writes are in the reverse order.
1841   ** Memory barriers are used to prevent the compiler or the hardware from
1842   ** reordering the reads and writes.
1843   */
1844   aHdr = walIndexHdr(pWal);
1845   memcpy(&h1, (void *)&aHdr[0], sizeof(h1));
1846   walShmBarrier(pWal);
1847   memcpy(&h2, (void *)&aHdr[1], sizeof(h2));
1848 
1849   if( memcmp(&h1, &h2, sizeof(h1))!=0 ){
1850     return 1;   /* Dirty read */
1851   }
1852   if( h1.isInit==0 ){
1853     return 1;   /* Malformed header - probably all zeros */
1854   }
1855   walChecksumBytes(1, (u8*)&h1, sizeof(h1)-sizeof(h1.aCksum), 0, aCksum);
1856   if( aCksum[0]!=h1.aCksum[0] || aCksum[1]!=h1.aCksum[1] ){
1857     return 1;   /* Checksum does not match */
1858   }
1859 
1860   if( memcmp(&pWal->hdr, &h1, sizeof(WalIndexHdr)) ){
1861     *pChanged = 1;
1862     memcpy(&pWal->hdr, &h1, sizeof(WalIndexHdr));
1863     pWal->szPage = (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16);
1864     testcase( pWal->szPage<=32768 );
1865     testcase( pWal->szPage>=65536 );
1866   }
1867 
1868   /* The header was successfully read. Return zero. */
1869   return 0;
1870 }
1871 
1872 /*
1873 ** Read the wal-index header from the wal-index and into pWal->hdr.
1874 ** If the wal-header appears to be corrupt, try to reconstruct the
1875 ** wal-index from the WAL before returning.
1876 **
1877 ** Set *pChanged to 1 if the wal-index header value in pWal->hdr is
1878 ** changed by this opertion.  If pWal->hdr is unchanged, set *pChanged
1879 ** to 0.
1880 **
1881 ** If the wal-index header is successfully read, return SQLITE_OK.
1882 ** Otherwise an SQLite error code.
1883 */
walIndexReadHdr(Wal * pWal,int * pChanged)1884 static int walIndexReadHdr(Wal *pWal, int *pChanged){
1885   int rc;                         /* Return code */
1886   int badHdr;                     /* True if a header read failed */
1887   volatile u32 *page0;            /* Chunk of wal-index containing header */
1888 
1889   /* Ensure that page 0 of the wal-index (the page that contains the
1890   ** wal-index header) is mapped. Return early if an error occurs here.
1891   */
1892   assert( pChanged );
1893   rc = walIndexPage(pWal, 0, &page0);
1894   if( rc!=SQLITE_OK ){
1895     return rc;
1896   };
1897   assert( page0 || pWal->writeLock==0 );
1898 
1899   /* If the first page of the wal-index has been mapped, try to read the
1900   ** wal-index header immediately, without holding any lock. This usually
1901   ** works, but may fail if the wal-index header is corrupt or currently
1902   ** being modified by another thread or process.
1903   */
1904   badHdr = (page0 ? walIndexTryHdr(pWal, pChanged) : 1);
1905 
1906   /* If the first attempt failed, it might have been due to a race
1907   ** with a writer.  So get a WRITE lock and try again.
1908   */
1909   assert( badHdr==0 || pWal->writeLock==0 );
1910   if( badHdr && SQLITE_OK==(rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1)) ){
1911     pWal->writeLock = 1;
1912     if( SQLITE_OK==(rc = walIndexPage(pWal, 0, &page0)) ){
1913       badHdr = walIndexTryHdr(pWal, pChanged);
1914       if( badHdr ){
1915         /* If the wal-index header is still malformed even while holding
1916         ** a WRITE lock, it can only mean that the header is corrupted and
1917         ** needs to be reconstructed.  So run recovery to do exactly that.
1918         */
1919         rc = walIndexRecover(pWal);
1920         *pChanged = 1;
1921       }
1922     }
1923     pWal->writeLock = 0;
1924     walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
1925   }
1926 
1927   /* If the header is read successfully, check the version number to make
1928   ** sure the wal-index was not constructed with some future format that
1929   ** this version of SQLite cannot understand.
1930   */
1931   if( badHdr==0 && pWal->hdr.iVersion!=WALINDEX_MAX_VERSION ){
1932     rc = SQLITE_CANTOPEN_BKPT;
1933   }
1934 
1935   return rc;
1936 }
1937 
1938 /*
1939 ** This is the value that walTryBeginRead returns when it needs to
1940 ** be retried.
1941 */
1942 #define WAL_RETRY  (-1)
1943 
1944 /*
1945 ** Attempt to start a read transaction.  This might fail due to a race or
1946 ** other transient condition.  When that happens, it returns WAL_RETRY to
1947 ** indicate to the caller that it is safe to retry immediately.
1948 **
1949 ** On success return SQLITE_OK.  On a permanent failure (such an
1950 ** I/O error or an SQLITE_BUSY because another process is running
1951 ** recovery) return a positive error code.
1952 **
1953 ** The useWal parameter is true to force the use of the WAL and disable
1954 ** the case where the WAL is bypassed because it has been completely
1955 ** checkpointed.  If useWal==0 then this routine calls walIndexReadHdr()
1956 ** to make a copy of the wal-index header into pWal->hdr.  If the
1957 ** wal-index header has changed, *pChanged is set to 1 (as an indication
1958 ** to the caller that the local paget cache is obsolete and needs to be
1959 ** flushed.)  When useWal==1, the wal-index header is assumed to already
1960 ** be loaded and the pChanged parameter is unused.
1961 **
1962 ** The caller must set the cnt parameter to the number of prior calls to
1963 ** this routine during the current read attempt that returned WAL_RETRY.
1964 ** This routine will start taking more aggressive measures to clear the
1965 ** race conditions after multiple WAL_RETRY returns, and after an excessive
1966 ** number of errors will ultimately return SQLITE_PROTOCOL.  The
1967 ** SQLITE_PROTOCOL return indicates that some other process has gone rogue
1968 ** and is not honoring the locking protocol.  There is a vanishingly small
1969 ** chance that SQLITE_PROTOCOL could be returned because of a run of really
1970 ** bad luck when there is lots of contention for the wal-index, but that
1971 ** possibility is so small that it can be safely neglected, we believe.
1972 **
1973 ** On success, this routine obtains a read lock on
1974 ** WAL_READ_LOCK(pWal->readLock).  The pWal->readLock integer is
1975 ** in the range 0 <= pWal->readLock < WAL_NREADER.  If pWal->readLock==(-1)
1976 ** that means the Wal does not hold any read lock.  The reader must not
1977 ** access any database page that is modified by a WAL frame up to and
1978 ** including frame number aReadMark[pWal->readLock].  The reader will
1979 ** use WAL frames up to and including pWal->hdr.mxFrame if pWal->readLock>0
1980 ** Or if pWal->readLock==0, then the reader will ignore the WAL
1981 ** completely and get all content directly from the database file.
1982 ** If the useWal parameter is 1 then the WAL will never be ignored and
1983 ** this routine will always set pWal->readLock>0 on success.
1984 ** When the read transaction is completed, the caller must release the
1985 ** lock on WAL_READ_LOCK(pWal->readLock) and set pWal->readLock to -1.
1986 **
1987 ** This routine uses the nBackfill and aReadMark[] fields of the header
1988 ** to select a particular WAL_READ_LOCK() that strives to let the
1989 ** checkpoint process do as much work as possible.  This routine might
1990 ** update values of the aReadMark[] array in the header, but if it does
1991 ** so it takes care to hold an exclusive lock on the corresponding
1992 ** WAL_READ_LOCK() while changing values.
1993 */
walTryBeginRead(Wal * pWal,int * pChanged,int useWal,int cnt)1994 static int walTryBeginRead(Wal *pWal, int *pChanged, int useWal, int cnt){
1995   volatile WalCkptInfo *pInfo;    /* Checkpoint information in wal-index */
1996   u32 mxReadMark;                 /* Largest aReadMark[] value */
1997   int mxI;                        /* Index of largest aReadMark[] value */
1998   int i;                          /* Loop counter */
1999   int rc = SQLITE_OK;             /* Return code  */
2000 
2001   assert( pWal->readLock<0 );     /* Not currently locked */
2002 
2003   /* Take steps to avoid spinning forever if there is a protocol error.
2004   **
2005   ** Circumstances that cause a RETRY should only last for the briefest
2006   ** instances of time.  No I/O or other system calls are done while the
2007   ** locks are held, so the locks should not be held for very long. But
2008   ** if we are unlucky, another process that is holding a lock might get
2009   ** paged out or take a page-fault that is time-consuming to resolve,
2010   ** during the few nanoseconds that it is holding the lock.  In that case,
2011   ** it might take longer than normal for the lock to free.
2012   **
2013   ** After 5 RETRYs, we begin calling sqlite3OsSleep().  The first few
2014   ** calls to sqlite3OsSleep() have a delay of 1 microsecond.  Really this
2015   ** is more of a scheduler yield than an actual delay.  But on the 10th
2016   ** an subsequent retries, the delays start becoming longer and longer,
2017   ** so that on the 100th (and last) RETRY we delay for 21 milliseconds.
2018   ** The total delay time before giving up is less than 1 second.
2019   */
2020   if( cnt>5 ){
2021     int nDelay = 1;                      /* Pause time in microseconds */
2022     if( cnt>100 ){
2023       VVA_ONLY( pWal->lockError = 1; )
2024       return SQLITE_PROTOCOL;
2025     }
2026     if( cnt>=10 ) nDelay = (cnt-9)*238;  /* Max delay 21ms. Total delay 996ms */
2027     sqlite3OsSleep(pWal->pVfs, nDelay);
2028   }
2029 
2030   if( !useWal ){
2031     rc = walIndexReadHdr(pWal, pChanged);
2032     if( rc==SQLITE_BUSY ){
2033       /* If there is not a recovery running in another thread or process
2034       ** then convert BUSY errors to WAL_RETRY.  If recovery is known to
2035       ** be running, convert BUSY to BUSY_RECOVERY.  There is a race here
2036       ** which might cause WAL_RETRY to be returned even if BUSY_RECOVERY
2037       ** would be technically correct.  But the race is benign since with
2038       ** WAL_RETRY this routine will be called again and will probably be
2039       ** right on the second iteration.
2040       */
2041       if( pWal->apWiData[0]==0 ){
2042         /* This branch is taken when the xShmMap() method returns SQLITE_BUSY.
2043         ** We assume this is a transient condition, so return WAL_RETRY. The
2044         ** xShmMap() implementation used by the default unix and win32 VFS
2045         ** modules may return SQLITE_BUSY due to a race condition in the
2046         ** code that determines whether or not the shared-memory region
2047         ** must be zeroed before the requested page is returned.
2048         */
2049         rc = WAL_RETRY;
2050       }else if( SQLITE_OK==(rc = walLockShared(pWal, WAL_RECOVER_LOCK)) ){
2051         walUnlockShared(pWal, WAL_RECOVER_LOCK);
2052         rc = WAL_RETRY;
2053       }else if( rc==SQLITE_BUSY ){
2054         rc = SQLITE_BUSY_RECOVERY;
2055       }
2056     }
2057     if( rc!=SQLITE_OK ){
2058       return rc;
2059     }
2060   }
2061 
2062   pInfo = walCkptInfo(pWal);
2063   if( !useWal && pInfo->nBackfill==pWal->hdr.mxFrame ){
2064     /* The WAL has been completely backfilled (or it is empty).
2065     ** and can be safely ignored.
2066     */
2067     rc = walLockShared(pWal, WAL_READ_LOCK(0));
2068     walShmBarrier(pWal);
2069     if( rc==SQLITE_OK ){
2070       if( memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr)) ){
2071         /* It is not safe to allow the reader to continue here if frames
2072         ** may have been appended to the log before READ_LOCK(0) was obtained.
2073         ** When holding READ_LOCK(0), the reader ignores the entire log file,
2074         ** which implies that the database file contains a trustworthy
2075         ** snapshoT. Since holding READ_LOCK(0) prevents a checkpoint from
2076         ** happening, this is usually correct.
2077         **
2078         ** However, if frames have been appended to the log (or if the log
2079         ** is wrapped and written for that matter) before the READ_LOCK(0)
2080         ** is obtained, that is not necessarily true. A checkpointer may
2081         ** have started to backfill the appended frames but crashed before
2082         ** it finished. Leaving a corrupt image in the database file.
2083         */
2084         walUnlockShared(pWal, WAL_READ_LOCK(0));
2085         return WAL_RETRY;
2086       }
2087       pWal->readLock = 0;
2088       return SQLITE_OK;
2089     }else if( rc!=SQLITE_BUSY ){
2090       return rc;
2091     }
2092   }
2093 
2094   /* If we get this far, it means that the reader will want to use
2095   ** the WAL to get at content from recent commits.  The job now is
2096   ** to select one of the aReadMark[] entries that is closest to
2097   ** but not exceeding pWal->hdr.mxFrame and lock that entry.
2098   */
2099   mxReadMark = 0;
2100   mxI = 0;
2101   for(i=1; i<WAL_NREADER; i++){
2102     u32 thisMark = pInfo->aReadMark[i];
2103     if( mxReadMark<=thisMark && thisMark<=pWal->hdr.mxFrame ){
2104       assert( thisMark!=READMARK_NOT_USED );
2105       mxReadMark = thisMark;
2106       mxI = i;
2107     }
2108   }
2109   /* There was once an "if" here. The extra "{" is to preserve indentation. */
2110   {
2111     if( mxReadMark < pWal->hdr.mxFrame || mxI==0 ){
2112       for(i=1; i<WAL_NREADER; i++){
2113         rc = walLockExclusive(pWal, WAL_READ_LOCK(i), 1);
2114         if( rc==SQLITE_OK ){
2115           mxReadMark = pInfo->aReadMark[i] = pWal->hdr.mxFrame;
2116           mxI = i;
2117           walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1);
2118           break;
2119         }else if( rc!=SQLITE_BUSY ){
2120           return rc;
2121         }
2122       }
2123     }
2124     if( mxI==0 ){
2125       assert( rc==SQLITE_BUSY );
2126       return WAL_RETRY;
2127     }
2128 
2129     rc = walLockShared(pWal, WAL_READ_LOCK(mxI));
2130     if( rc ){
2131       return rc==SQLITE_BUSY ? WAL_RETRY : rc;
2132     }
2133     /* Now that the read-lock has been obtained, check that neither the
2134     ** value in the aReadMark[] array or the contents of the wal-index
2135     ** header have changed.
2136     **
2137     ** It is necessary to check that the wal-index header did not change
2138     ** between the time it was read and when the shared-lock was obtained
2139     ** on WAL_READ_LOCK(mxI) was obtained to account for the possibility
2140     ** that the log file may have been wrapped by a writer, or that frames
2141     ** that occur later in the log than pWal->hdr.mxFrame may have been
2142     ** copied into the database by a checkpointer. If either of these things
2143     ** happened, then reading the database with the current value of
2144     ** pWal->hdr.mxFrame risks reading a corrupted snapshot. So, retry
2145     ** instead.
2146     **
2147     ** This does not guarantee that the copy of the wal-index header is up to
2148     ** date before proceeding. That would not be possible without somehow
2149     ** blocking writers. It only guarantees that a dangerous checkpoint or
2150     ** log-wrap (either of which would require an exclusive lock on
2151     ** WAL_READ_LOCK(mxI)) has not occurred since the snapshot was valid.
2152     */
2153     walShmBarrier(pWal);
2154     if( pInfo->aReadMark[mxI]!=mxReadMark
2155      || memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr))
2156     ){
2157       walUnlockShared(pWal, WAL_READ_LOCK(mxI));
2158       return WAL_RETRY;
2159     }else{
2160       assert( mxReadMark<=pWal->hdr.mxFrame );
2161       pWal->readLock = (i16)mxI;
2162     }
2163   }
2164   return rc;
2165 }
2166 
2167 /*
2168 ** Begin a read transaction on the database.
2169 **
2170 ** This routine used to be called sqlite3OpenSnapshot() and with good reason:
2171 ** it takes a snapshot of the state of the WAL and wal-index for the current
2172 ** instant in time.  The current thread will continue to use this snapshot.
2173 ** Other threads might append new content to the WAL and wal-index but
2174 ** that extra content is ignored by the current thread.
2175 **
2176 ** If the database contents have changes since the previous read
2177 ** transaction, then *pChanged is set to 1 before returning.  The
2178 ** Pager layer will use this to know that is cache is stale and
2179 ** needs to be flushed.
2180 */
sqlite3WalBeginReadTransaction(Wal * pWal,int * pChanged)2181 int sqlite3WalBeginReadTransaction(Wal *pWal, int *pChanged){
2182   int rc;                         /* Return code */
2183   int cnt = 0;                    /* Number of TryBeginRead attempts */
2184 
2185   do{
2186     rc = walTryBeginRead(pWal, pChanged, 0, ++cnt);
2187   }while( rc==WAL_RETRY );
2188   testcase( (rc&0xff)==SQLITE_BUSY );
2189   testcase( (rc&0xff)==SQLITE_IOERR );
2190   testcase( rc==SQLITE_PROTOCOL );
2191   testcase( rc==SQLITE_OK );
2192   return rc;
2193 }
2194 
2195 /*
2196 ** Finish with a read transaction.  All this does is release the
2197 ** read-lock.
2198 */
sqlite3WalEndReadTransaction(Wal * pWal)2199 void sqlite3WalEndReadTransaction(Wal *pWal){
2200   sqlite3WalEndWriteTransaction(pWal);
2201   if( pWal->readLock>=0 ){
2202     walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock));
2203     pWal->readLock = -1;
2204   }
2205 }
2206 
2207 /*
2208 ** Read a page from the WAL, if it is present in the WAL and if the
2209 ** current read transaction is configured to use the WAL.
2210 **
2211 ** The *pInWal is set to 1 if the requested page is in the WAL and
2212 ** has been loaded.  Or *pInWal is set to 0 if the page was not in
2213 ** the WAL and needs to be read out of the database.
2214 */
sqlite3WalRead(Wal * pWal,Pgno pgno,int * pInWal,int nOut,u8 * pOut)2215 int sqlite3WalRead(
2216   Wal *pWal,                      /* WAL handle */
2217   Pgno pgno,                      /* Database page number to read data for */
2218   int *pInWal,                    /* OUT: True if data is read from WAL */
2219   int nOut,                       /* Size of buffer pOut in bytes */
2220   u8 *pOut                        /* Buffer to write page data to */
2221 ){
2222   u32 iRead = 0;                  /* If !=0, WAL frame to return data from */
2223   u32 iLast = pWal->hdr.mxFrame;  /* Last page in WAL for this reader */
2224   int iHash;                      /* Used to loop through N hash tables */
2225 
2226   /* This routine is only be called from within a read transaction. */
2227   assert( pWal->readLock>=0 || pWal->lockError );
2228 
2229   /* If the "last page" field of the wal-index header snapshot is 0, then
2230   ** no data will be read from the wal under any circumstances. Return early
2231   ** in this case as an optimization.  Likewise, if pWal->readLock==0,
2232   ** then the WAL is ignored by the reader so return early, as if the
2233   ** WAL were empty.
2234   */
2235   if( iLast==0 || pWal->readLock==0 ){
2236     *pInWal = 0;
2237     return SQLITE_OK;
2238   }
2239 
2240   /* Search the hash table or tables for an entry matching page number
2241   ** pgno. Each iteration of the following for() loop searches one
2242   ** hash table (each hash table indexes up to HASHTABLE_NPAGE frames).
2243   **
2244   ** This code might run concurrently to the code in walIndexAppend()
2245   ** that adds entries to the wal-index (and possibly to this hash
2246   ** table). This means the value just read from the hash
2247   ** slot (aHash[iKey]) may have been added before or after the
2248   ** current read transaction was opened. Values added after the
2249   ** read transaction was opened may have been written incorrectly -
2250   ** i.e. these slots may contain garbage data. However, we assume
2251   ** that any slots written before the current read transaction was
2252   ** opened remain unmodified.
2253   **
2254   ** For the reasons above, the if(...) condition featured in the inner
2255   ** loop of the following block is more stringent that would be required
2256   ** if we had exclusive access to the hash-table:
2257   **
2258   **   (aPgno[iFrame]==pgno):
2259   **     This condition filters out normal hash-table collisions.
2260   **
2261   **   (iFrame<=iLast):
2262   **     This condition filters out entries that were added to the hash
2263   **     table after the current read-transaction had started.
2264   */
2265   for(iHash=walFramePage(iLast); iHash>=0 && iRead==0; iHash--){
2266     volatile ht_slot *aHash;      /* Pointer to hash table */
2267     volatile u32 *aPgno;          /* Pointer to array of page numbers */
2268     u32 iZero;                    /* Frame number corresponding to aPgno[0] */
2269     int iKey;                     /* Hash slot index */
2270     int nCollide;                 /* Number of hash collisions remaining */
2271     int rc;                       /* Error code */
2272 
2273     rc = walHashGet(pWal, iHash, &aHash, &aPgno, &iZero);
2274     if( rc!=SQLITE_OK ){
2275       return rc;
2276     }
2277     nCollide = HASHTABLE_NSLOT;
2278     for(iKey=walHash(pgno); aHash[iKey]; iKey=walNextHash(iKey)){
2279       u32 iFrame = aHash[iKey] + iZero;
2280       if( iFrame<=iLast && aPgno[aHash[iKey]]==pgno ){
2281         assert( iFrame>iRead );
2282         iRead = iFrame;
2283       }
2284       if( (nCollide--)==0 ){
2285         return SQLITE_CORRUPT_BKPT;
2286       }
2287     }
2288   }
2289 
2290 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
2291   /* If expensive assert() statements are available, do a linear search
2292   ** of the wal-index file content. Make sure the results agree with the
2293   ** result obtained using the hash indexes above.  */
2294   {
2295     u32 iRead2 = 0;
2296     u32 iTest;
2297     for(iTest=iLast; iTest>0; iTest--){
2298       if( walFramePgno(pWal, iTest)==pgno ){
2299         iRead2 = iTest;
2300         break;
2301       }
2302     }
2303     assert( iRead==iRead2 );
2304   }
2305 #endif
2306 
2307   /* If iRead is non-zero, then it is the log frame number that contains the
2308   ** required page. Read and return data from the log file.
2309   */
2310   if( iRead ){
2311     int sz;
2312     i64 iOffset;
2313     sz = pWal->hdr.szPage;
2314     sz = (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16);
2315     testcase( sz<=32768 );
2316     testcase( sz>=65536 );
2317     iOffset = walFrameOffset(iRead, sz) + WAL_FRAME_HDRSIZE;
2318     *pInWal = 1;
2319     /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL */
2320     return sqlite3OsRead(pWal->pWalFd, pOut, nOut, iOffset);
2321   }
2322 
2323   *pInWal = 0;
2324   return SQLITE_OK;
2325 }
2326 
2327 
2328 /*
2329 ** Return the size of the database in pages (or zero, if unknown).
2330 */
sqlite3WalDbsize(Wal * pWal)2331 Pgno sqlite3WalDbsize(Wal *pWal){
2332   if( pWal && ALWAYS(pWal->readLock>=0) ){
2333     return pWal->hdr.nPage;
2334   }
2335   return 0;
2336 }
2337 
2338 
2339 /*
2340 ** This function starts a write transaction on the WAL.
2341 **
2342 ** A read transaction must have already been started by a prior call
2343 ** to sqlite3WalBeginReadTransaction().
2344 **
2345 ** If another thread or process has written into the database since
2346 ** the read transaction was started, then it is not possible for this
2347 ** thread to write as doing so would cause a fork.  So this routine
2348 ** returns SQLITE_BUSY in that case and no write transaction is started.
2349 **
2350 ** There can only be a single writer active at a time.
2351 */
sqlite3WalBeginWriteTransaction(Wal * pWal)2352 int sqlite3WalBeginWriteTransaction(Wal *pWal){
2353   int rc;
2354 
2355   /* Cannot start a write transaction without first holding a read
2356   ** transaction. */
2357   assert( pWal->readLock>=0 );
2358 
2359   if( pWal->readOnly ){
2360     return SQLITE_READONLY;
2361   }
2362 
2363   /* Only one writer allowed at a time.  Get the write lock.  Return
2364   ** SQLITE_BUSY if unable.
2365   */
2366   rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1);
2367   if( rc ){
2368     return rc;
2369   }
2370   pWal->writeLock = 1;
2371 
2372   /* If another connection has written to the database file since the
2373   ** time the read transaction on this connection was started, then
2374   ** the write is disallowed.
2375   */
2376   if( memcmp(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr))!=0 ){
2377     walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
2378     pWal->writeLock = 0;
2379     rc = SQLITE_BUSY;
2380   }
2381 
2382   return rc;
2383 }
2384 
2385 /*
2386 ** End a write transaction.  The commit has already been done.  This
2387 ** routine merely releases the lock.
2388 */
sqlite3WalEndWriteTransaction(Wal * pWal)2389 int sqlite3WalEndWriteTransaction(Wal *pWal){
2390   if( pWal->writeLock ){
2391     walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
2392     pWal->writeLock = 0;
2393   }
2394   return SQLITE_OK;
2395 }
2396 
2397 /*
2398 ** If any data has been written (but not committed) to the log file, this
2399 ** function moves the write-pointer back to the start of the transaction.
2400 **
2401 ** Additionally, the callback function is invoked for each frame written
2402 ** to the WAL since the start of the transaction. If the callback returns
2403 ** other than SQLITE_OK, it is not invoked again and the error code is
2404 ** returned to the caller.
2405 **
2406 ** Otherwise, if the callback function does not return an error, this
2407 ** function returns SQLITE_OK.
2408 */
sqlite3WalUndo(Wal * pWal,int (* xUndo)(void *,Pgno),void * pUndoCtx)2409 int sqlite3WalUndo(Wal *pWal, int (*xUndo)(void *, Pgno), void *pUndoCtx){
2410   int rc = SQLITE_OK;
2411   if( ALWAYS(pWal->writeLock) ){
2412     Pgno iMax = pWal->hdr.mxFrame;
2413     Pgno iFrame;
2414 
2415     /* Restore the clients cache of the wal-index header to the state it
2416     ** was in before the client began writing to the database.
2417     */
2418     memcpy(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr));
2419 
2420     for(iFrame=pWal->hdr.mxFrame+1;
2421         ALWAYS(rc==SQLITE_OK) && iFrame<=iMax;
2422         iFrame++
2423     ){
2424       /* This call cannot fail. Unless the page for which the page number
2425       ** is passed as the second argument is (a) in the cache and
2426       ** (b) has an outstanding reference, then xUndo is either a no-op
2427       ** (if (a) is false) or simply expels the page from the cache (if (b)
2428       ** is false).
2429       **
2430       ** If the upper layer is doing a rollback, it is guaranteed that there
2431       ** are no outstanding references to any page other than page 1. And
2432       ** page 1 is never written to the log until the transaction is
2433       ** committed. As a result, the call to xUndo may not fail.
2434       */
2435       assert( walFramePgno(pWal, iFrame)!=1 );
2436       rc = xUndo(pUndoCtx, walFramePgno(pWal, iFrame));
2437     }
2438     walCleanupHash(pWal);
2439   }
2440   assert( rc==SQLITE_OK );
2441   return rc;
2442 }
2443 
2444 /*
2445 ** Argument aWalData must point to an array of WAL_SAVEPOINT_NDATA u32
2446 ** values. This function populates the array with values required to
2447 ** "rollback" the write position of the WAL handle back to the current
2448 ** point in the event of a savepoint rollback (via WalSavepointUndo()).
2449 */
sqlite3WalSavepoint(Wal * pWal,u32 * aWalData)2450 void sqlite3WalSavepoint(Wal *pWal, u32 *aWalData){
2451   assert( pWal->writeLock );
2452   aWalData[0] = pWal->hdr.mxFrame;
2453   aWalData[1] = pWal->hdr.aFrameCksum[0];
2454   aWalData[2] = pWal->hdr.aFrameCksum[1];
2455   aWalData[3] = pWal->nCkpt;
2456 }
2457 
2458 /*
2459 ** Move the write position of the WAL back to the point identified by
2460 ** the values in the aWalData[] array. aWalData must point to an array
2461 ** of WAL_SAVEPOINT_NDATA u32 values that has been previously populated
2462 ** by a call to WalSavepoint().
2463 */
sqlite3WalSavepointUndo(Wal * pWal,u32 * aWalData)2464 int sqlite3WalSavepointUndo(Wal *pWal, u32 *aWalData){
2465   int rc = SQLITE_OK;
2466 
2467   assert( pWal->writeLock );
2468   assert( aWalData[3]!=pWal->nCkpt || aWalData[0]<=pWal->hdr.mxFrame );
2469 
2470   if( aWalData[3]!=pWal->nCkpt ){
2471     /* This savepoint was opened immediately after the write-transaction
2472     ** was started. Right after that, the writer decided to wrap around
2473     ** to the start of the log. Update the savepoint values to match.
2474     */
2475     aWalData[0] = 0;
2476     aWalData[3] = pWal->nCkpt;
2477   }
2478 
2479   if( aWalData[0]<pWal->hdr.mxFrame ){
2480     pWal->hdr.mxFrame = aWalData[0];
2481     pWal->hdr.aFrameCksum[0] = aWalData[1];
2482     pWal->hdr.aFrameCksum[1] = aWalData[2];
2483     walCleanupHash(pWal);
2484   }
2485 
2486   return rc;
2487 }
2488 
2489 /*
2490 ** This function is called just before writing a set of frames to the log
2491 ** file (see sqlite3WalFrames()). It checks to see if, instead of appending
2492 ** to the current log file, it is possible to overwrite the start of the
2493 ** existing log file with the new frames (i.e. "reset" the log). If so,
2494 ** it sets pWal->hdr.mxFrame to 0. Otherwise, pWal->hdr.mxFrame is left
2495 ** unchanged.
2496 **
2497 ** SQLITE_OK is returned if no error is encountered (regardless of whether
2498 ** or not pWal->hdr.mxFrame is modified). An SQLite error code is returned
2499 ** if an error occurs.
2500 */
walRestartLog(Wal * pWal)2501 static int walRestartLog(Wal *pWal){
2502   int rc = SQLITE_OK;
2503   int cnt;
2504 
2505   if( pWal->readLock==0 ){
2506     volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
2507     assert( pInfo->nBackfill==pWal->hdr.mxFrame );
2508     if( pInfo->nBackfill>0 ){
2509       u32 salt1;
2510       sqlite3_randomness(4, &salt1);
2511       rc = walLockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
2512       if( rc==SQLITE_OK ){
2513         /* If all readers are using WAL_READ_LOCK(0) (in other words if no
2514         ** readers are currently using the WAL), then the transactions
2515         ** frames will overwrite the start of the existing log. Update the
2516         ** wal-index header to reflect this.
2517         **
2518         ** In theory it would be Ok to update the cache of the header only
2519         ** at this point. But updating the actual wal-index header is also
2520         ** safe and means there is no special case for sqlite3WalUndo()
2521         ** to handle if this transaction is rolled back.
2522         */
2523         int i;                    /* Loop counter */
2524         u32 *aSalt = pWal->hdr.aSalt;       /* Big-endian salt values */
2525         pWal->nCkpt++;
2526         pWal->hdr.mxFrame = 0;
2527         sqlite3Put4byte((u8*)&aSalt[0], 1 + sqlite3Get4byte((u8*)&aSalt[0]));
2528         aSalt[1] = salt1;
2529         walIndexWriteHdr(pWal);
2530         pInfo->nBackfill = 0;
2531         for(i=1; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED;
2532         assert( pInfo->aReadMark[0]==0 );
2533         walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
2534       }else if( rc!=SQLITE_BUSY ){
2535         return rc;
2536       }
2537     }
2538     walUnlockShared(pWal, WAL_READ_LOCK(0));
2539     pWal->readLock = -1;
2540     cnt = 0;
2541     do{
2542       int notUsed;
2543       rc = walTryBeginRead(pWal, &notUsed, 1, ++cnt);
2544     }while( rc==WAL_RETRY );
2545     assert( (rc&0xff)!=SQLITE_BUSY ); /* BUSY not possible when useWal==1 */
2546     testcase( (rc&0xff)==SQLITE_IOERR );
2547     testcase( rc==SQLITE_PROTOCOL );
2548     testcase( rc==SQLITE_OK );
2549   }
2550   return rc;
2551 }
2552 
2553 /*
2554 ** Write a set of frames to the log. The caller must hold the write-lock
2555 ** on the log file (obtained using sqlite3WalBeginWriteTransaction()).
2556 */
sqlite3WalFrames(Wal * pWal,int szPage,PgHdr * pList,Pgno nTruncate,int isCommit,int sync_flags)2557 int sqlite3WalFrames(
2558   Wal *pWal,                      /* Wal handle to write to */
2559   int szPage,                     /* Database page-size in bytes */
2560   PgHdr *pList,                   /* List of dirty pages to write */
2561   Pgno nTruncate,                 /* Database size after this commit */
2562   int isCommit,                   /* True if this is a commit */
2563   int sync_flags                  /* Flags to pass to OsSync() (or 0) */
2564 ){
2565   int rc;                         /* Used to catch return codes */
2566   u32 iFrame;                     /* Next frame address */
2567   u8 aFrame[WAL_FRAME_HDRSIZE];   /* Buffer to assemble frame-header in */
2568   PgHdr *p;                       /* Iterator to run through pList with. */
2569   PgHdr *pLast = 0;               /* Last frame in list */
2570   int nLast = 0;                  /* Number of extra copies of last page */
2571 
2572   assert( pList );
2573   assert( pWal->writeLock );
2574 
2575 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
2576   { int cnt; for(cnt=0, p=pList; p; p=p->pDirty, cnt++){}
2577     WALTRACE(("WAL%p: frame write begin. %d frames. mxFrame=%d. %s\n",
2578               pWal, cnt, pWal->hdr.mxFrame, isCommit ? "Commit" : "Spill"));
2579   }
2580 #endif
2581 
2582   /* See if it is possible to write these frames into the start of the
2583   ** log file, instead of appending to it at pWal->hdr.mxFrame.
2584   */
2585   if( SQLITE_OK!=(rc = walRestartLog(pWal)) ){
2586     return rc;
2587   }
2588 
2589   /* If this is the first frame written into the log, write the WAL
2590   ** header to the start of the WAL file. See comments at the top of
2591   ** this source file for a description of the WAL header format.
2592   */
2593   iFrame = pWal->hdr.mxFrame;
2594   if( iFrame==0 ){
2595     u8 aWalHdr[WAL_HDRSIZE];      /* Buffer to assemble wal-header in */
2596     u32 aCksum[2];                /* Checksum for wal-header */
2597 
2598     sqlite3Put4byte(&aWalHdr[0], (WAL_MAGIC | SQLITE_BIGENDIAN));
2599     sqlite3Put4byte(&aWalHdr[4], WAL_MAX_VERSION);
2600     sqlite3Put4byte(&aWalHdr[8], szPage);
2601     sqlite3Put4byte(&aWalHdr[12], pWal->nCkpt);
2602     sqlite3_randomness(8, pWal->hdr.aSalt);
2603     memcpy(&aWalHdr[16], pWal->hdr.aSalt, 8);
2604     walChecksumBytes(1, aWalHdr, WAL_HDRSIZE-2*4, 0, aCksum);
2605     sqlite3Put4byte(&aWalHdr[24], aCksum[0]);
2606     sqlite3Put4byte(&aWalHdr[28], aCksum[1]);
2607 
2608     pWal->szPage = szPage;
2609     pWal->hdr.bigEndCksum = SQLITE_BIGENDIAN;
2610     pWal->hdr.aFrameCksum[0] = aCksum[0];
2611     pWal->hdr.aFrameCksum[1] = aCksum[1];
2612 
2613     rc = sqlite3OsWrite(pWal->pWalFd, aWalHdr, sizeof(aWalHdr), 0);
2614     WALTRACE(("WAL%p: wal-header write %s\n", pWal, rc ? "failed" : "ok"));
2615     if( rc!=SQLITE_OK ){
2616       return rc;
2617     }
2618   }
2619   assert( (int)pWal->szPage==szPage );
2620 
2621   /* Write the log file. */
2622   for(p=pList; p; p=p->pDirty){
2623     u32 nDbsize;                  /* Db-size field for frame header */
2624     i64 iOffset;                  /* Write offset in log file */
2625     void *pData;
2626 
2627     iOffset = walFrameOffset(++iFrame, szPage);
2628     /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL */
2629 
2630     /* Populate and write the frame header */
2631     nDbsize = (isCommit && p->pDirty==0) ? nTruncate : 0;
2632 #if defined(SQLITE_HAS_CODEC)
2633     if( (pData = sqlite3PagerCodec(p))==0 ) return SQLITE_NOMEM;
2634 #else
2635     pData = p->pData;
2636 #endif
2637     walEncodeFrame(pWal, p->pgno, nDbsize, pData, aFrame);
2638     rc = sqlite3OsWrite(pWal->pWalFd, aFrame, sizeof(aFrame), iOffset);
2639     if( rc!=SQLITE_OK ){
2640       return rc;
2641     }
2642 
2643     /* Write the page data */
2644     rc = sqlite3OsWrite(pWal->pWalFd, pData, szPage, iOffset+sizeof(aFrame));
2645     if( rc!=SQLITE_OK ){
2646       return rc;
2647     }
2648     pLast = p;
2649   }
2650 
2651   /* Sync the log file if the 'isSync' flag was specified. */
2652   if( sync_flags ){
2653     i64 iSegment = sqlite3OsSectorSize(pWal->pWalFd);
2654     i64 iOffset = walFrameOffset(iFrame+1, szPage);
2655 
2656     assert( isCommit );
2657     assert( iSegment>0 );
2658 
2659     iSegment = (((iOffset+iSegment-1)/iSegment) * iSegment);
2660     while( iOffset<iSegment ){
2661       void *pData;
2662 #if defined(SQLITE_HAS_CODEC)
2663       if( (pData = sqlite3PagerCodec(pLast))==0 ) return SQLITE_NOMEM;
2664 #else
2665       pData = pLast->pData;
2666 #endif
2667       walEncodeFrame(pWal, pLast->pgno, nTruncate, pData, aFrame);
2668       /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL */
2669       rc = sqlite3OsWrite(pWal->pWalFd, aFrame, sizeof(aFrame), iOffset);
2670       if( rc!=SQLITE_OK ){
2671         return rc;
2672       }
2673       iOffset += WAL_FRAME_HDRSIZE;
2674       rc = sqlite3OsWrite(pWal->pWalFd, pData, szPage, iOffset);
2675       if( rc!=SQLITE_OK ){
2676         return rc;
2677       }
2678       nLast++;
2679       iOffset += szPage;
2680     }
2681 
2682     rc = sqlite3OsSync(pWal->pWalFd, sync_flags);
2683   }
2684 
2685   /* Append data to the wal-index. It is not necessary to lock the
2686   ** wal-index to do this as the SQLITE_SHM_WRITE lock held on the wal-index
2687   ** guarantees that there are no other writers, and no data that may
2688   ** be in use by existing readers is being overwritten.
2689   */
2690   iFrame = pWal->hdr.mxFrame;
2691   for(p=pList; p && rc==SQLITE_OK; p=p->pDirty){
2692     iFrame++;
2693     rc = walIndexAppend(pWal, iFrame, p->pgno);
2694   }
2695   while( nLast>0 && rc==SQLITE_OK ){
2696     iFrame++;
2697     nLast--;
2698     rc = walIndexAppend(pWal, iFrame, pLast->pgno);
2699   }
2700 
2701   if( rc==SQLITE_OK ){
2702     /* Update the private copy of the header. */
2703     pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16));
2704     testcase( szPage<=32768 );
2705     testcase( szPage>=65536 );
2706     pWal->hdr.mxFrame = iFrame;
2707     if( isCommit ){
2708       pWal->hdr.iChange++;
2709       pWal->hdr.nPage = nTruncate;
2710     }
2711     /* If this is a commit, update the wal-index header too. */
2712     if( isCommit ){
2713       walIndexWriteHdr(pWal);
2714       pWal->iCallback = iFrame;
2715     }
2716   }
2717 
2718   WALTRACE(("WAL%p: frame write %s\n", pWal, rc ? "failed" : "ok"));
2719   return rc;
2720 }
2721 
2722 /*
2723 ** This routine is called to implement sqlite3_wal_checkpoint() and
2724 ** related interfaces.
2725 **
2726 ** Obtain a CHECKPOINT lock and then backfill as much information as
2727 ** we can from WAL into the database.
2728 **
2729 ** If parameter xBusy is not NULL, it is a pointer to a busy-handler
2730 ** callback. In this case this function runs a blocking checkpoint.
2731 */
sqlite3WalCheckpoint(Wal * pWal,int eMode,int (* xBusy)(void *),void * pBusyArg,int sync_flags,int nBuf,u8 * zBuf,int * pnLog,int * pnCkpt)2732 int sqlite3WalCheckpoint(
2733   Wal *pWal,                      /* Wal connection */
2734   int eMode,                      /* PASSIVE, FULL or RESTART */
2735   int (*xBusy)(void*),            /* Function to call when busy */
2736   void *pBusyArg,                 /* Context argument for xBusyHandler */
2737   int sync_flags,                 /* Flags to sync db file with (or 0) */
2738   int nBuf,                       /* Size of temporary buffer */
2739   u8 *zBuf,                       /* Temporary buffer to use */
2740   int *pnLog,                     /* OUT: Number of frames in WAL */
2741   int *pnCkpt                     /* OUT: Number of backfilled frames in WAL */
2742 ){
2743   int rc;                         /* Return code */
2744   int isChanged = 0;              /* True if a new wal-index header is loaded */
2745   int eMode2 = eMode;             /* Mode to pass to walCheckpoint() */
2746 
2747   assert( pWal->ckptLock==0 );
2748   assert( pWal->writeLock==0 );
2749 
2750   WALTRACE(("WAL%p: checkpoint begins\n", pWal));
2751   rc = walLockExclusive(pWal, WAL_CKPT_LOCK, 1);
2752   if( rc ){
2753     /* Usually this is SQLITE_BUSY meaning that another thread or process
2754     ** is already running a checkpoint, or maybe a recovery.  But it might
2755     ** also be SQLITE_IOERR. */
2756     return rc;
2757   }
2758   pWal->ckptLock = 1;
2759 
2760   /* If this is a blocking-checkpoint, then obtain the write-lock as well
2761   ** to prevent any writers from running while the checkpoint is underway.
2762   ** This has to be done before the call to walIndexReadHdr() below.
2763   **
2764   ** If the writer lock cannot be obtained, then a passive checkpoint is
2765   ** run instead. Since the checkpointer is not holding the writer lock,
2766   ** there is no point in blocking waiting for any readers. Assuming no
2767   ** other error occurs, this function will return SQLITE_BUSY to the caller.
2768   */
2769   if( eMode!=SQLITE_CHECKPOINT_PASSIVE ){
2770     rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_WRITE_LOCK, 1);
2771     if( rc==SQLITE_OK ){
2772       pWal->writeLock = 1;
2773     }else if( rc==SQLITE_BUSY ){
2774       eMode2 = SQLITE_CHECKPOINT_PASSIVE;
2775       rc = SQLITE_OK;
2776     }
2777   }
2778 
2779   /* Read the wal-index header. */
2780   if( rc==SQLITE_OK ){
2781     rc = walIndexReadHdr(pWal, &isChanged);
2782   }
2783 
2784   /* Copy data from the log to the database file. */
2785   if( rc==SQLITE_OK ){
2786     if( pWal->hdr.mxFrame && walPagesize(pWal)!=nBuf ){
2787       rc = SQLITE_CORRUPT_BKPT;
2788     }else{
2789       rc = walCheckpoint(pWal, eMode2, xBusy, pBusyArg, sync_flags, zBuf);
2790     }
2791 
2792     /* If no error occurred, set the output variables. */
2793     if( rc==SQLITE_OK || rc==SQLITE_BUSY ){
2794       if( pnLog ) *pnLog = (int)pWal->hdr.mxFrame;
2795       if( pnCkpt ) *pnCkpt = (int)(walCkptInfo(pWal)->nBackfill);
2796     }
2797   }
2798 
2799   if( isChanged ){
2800     /* If a new wal-index header was loaded before the checkpoint was
2801     ** performed, then the pager-cache associated with pWal is now
2802     ** out of date. So zero the cached wal-index header to ensure that
2803     ** next time the pager opens a snapshot on this database it knows that
2804     ** the cache needs to be reset.
2805     */
2806     memset(&pWal->hdr, 0, sizeof(WalIndexHdr));
2807   }
2808 
2809   /* Release the locks. */
2810   sqlite3WalEndWriteTransaction(pWal);
2811   walUnlockExclusive(pWal, WAL_CKPT_LOCK, 1);
2812   pWal->ckptLock = 0;
2813   WALTRACE(("WAL%p: checkpoint %s\n", pWal, rc ? "failed" : "ok"));
2814   return (rc==SQLITE_OK && eMode!=eMode2 ? SQLITE_BUSY : rc);
2815 }
2816 
2817 /* Return the value to pass to a sqlite3_wal_hook callback, the
2818 ** number of frames in the WAL at the point of the last commit since
2819 ** sqlite3WalCallback() was called.  If no commits have occurred since
2820 ** the last call, then return 0.
2821 */
sqlite3WalCallback(Wal * pWal)2822 int sqlite3WalCallback(Wal *pWal){
2823   u32 ret = 0;
2824   if( pWal ){
2825     ret = pWal->iCallback;
2826     pWal->iCallback = 0;
2827   }
2828   return (int)ret;
2829 }
2830 
2831 /*
2832 ** This function is called to change the WAL subsystem into or out
2833 ** of locking_mode=EXCLUSIVE.
2834 **
2835 ** If op is zero, then attempt to change from locking_mode=EXCLUSIVE
2836 ** into locking_mode=NORMAL.  This means that we must acquire a lock
2837 ** on the pWal->readLock byte.  If the WAL is already in locking_mode=NORMAL
2838 ** or if the acquisition of the lock fails, then return 0.  If the
2839 ** transition out of exclusive-mode is successful, return 1.  This
2840 ** operation must occur while the pager is still holding the exclusive
2841 ** lock on the main database file.
2842 **
2843 ** If op is one, then change from locking_mode=NORMAL into
2844 ** locking_mode=EXCLUSIVE.  This means that the pWal->readLock must
2845 ** be released.  Return 1 if the transition is made and 0 if the
2846 ** WAL is already in exclusive-locking mode - meaning that this
2847 ** routine is a no-op.  The pager must already hold the exclusive lock
2848 ** on the main database file before invoking this operation.
2849 **
2850 ** If op is negative, then do a dry-run of the op==1 case but do
2851 ** not actually change anything. The pager uses this to see if it
2852 ** should acquire the database exclusive lock prior to invoking
2853 ** the op==1 case.
2854 */
sqlite3WalExclusiveMode(Wal * pWal,int op)2855 int sqlite3WalExclusiveMode(Wal *pWal, int op){
2856   int rc;
2857   assert( pWal->writeLock==0 );
2858   assert( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE || op==-1 );
2859 
2860   /* pWal->readLock is usually set, but might be -1 if there was a
2861   ** prior error while attempting to acquire are read-lock. This cannot
2862   ** happen if the connection is actually in exclusive mode (as no xShmLock
2863   ** locks are taken in this case). Nor should the pager attempt to
2864   ** upgrade to exclusive-mode following such an error.
2865   */
2866   assert( pWal->readLock>=0 || pWal->lockError );
2867   assert( pWal->readLock>=0 || (op<=0 && pWal->exclusiveMode==0) );
2868 
2869   if( op==0 ){
2870     if( pWal->exclusiveMode ){
2871       pWal->exclusiveMode = 0;
2872       if( walLockShared(pWal, WAL_READ_LOCK(pWal->readLock))!=SQLITE_OK ){
2873         pWal->exclusiveMode = 1;
2874       }
2875       rc = pWal->exclusiveMode==0;
2876     }else{
2877       /* Already in locking_mode=NORMAL */
2878       rc = 0;
2879     }
2880   }else if( op>0 ){
2881     assert( pWal->exclusiveMode==0 );
2882     assert( pWal->readLock>=0 );
2883     walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock));
2884     pWal->exclusiveMode = 1;
2885     rc = 1;
2886   }else{
2887     rc = pWal->exclusiveMode==0;
2888   }
2889   return rc;
2890 }
2891 
2892 /*
2893 ** Return true if the argument is non-NULL and the WAL module is using
2894 ** heap-memory for the wal-index. Otherwise, if the argument is NULL or the
2895 ** WAL module is using shared-memory, return false.
2896 */
sqlite3WalHeapMemory(Wal * pWal)2897 int sqlite3WalHeapMemory(Wal *pWal){
2898   return (pWal && pWal->exclusiveMode==WAL_HEAPMEMORY_MODE );
2899 }
2900 
2901 #endif /* #ifndef SQLITE_OMIT_WAL */
2902