• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 1991, 1992 Paul Kranenburg <pk@cs.few.eur.nl>
3  * Copyright (c) 1993 Branko Lankester <branko@hacktic.nl>
4  * Copyright (c) 1993, 1994, 1995, 1996 Rick Sladkey <jrs@world.std.com>
5  * Copyright (c) 1996-1999 Wichert Akkerman <wichert@cistron.nl>
6  * Copyright (c) 1999 IBM Deutschland Entwicklung GmbH, IBM Corporation
7  *                     Linux for s390 port by D.J. Barrow
8  *                    <barrow_dj@mail.yahoo.com,djbarrow@de.ibm.com>
9  * All rights reserved.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. The name of the author may not be used to endorse or promote products
20  *    derived from this software without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
23  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
24  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
25  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
27  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
31  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include "defs.h"
35 #include <sys/user.h>
36 #include <sys/param.h>
37 
38 #ifdef HAVE_SYS_REG_H
39 # include <sys/reg.h>
40 #elif defined(HAVE_LINUX_PTRACE_H)
41 # undef PTRACE_SYSCALL
42 # ifdef HAVE_STRUCT_IA64_FPREG
43 #  define ia64_fpreg XXX_ia64_fpreg
44 # endif
45 # ifdef HAVE_STRUCT_PT_ALL_USER_REGS
46 #  define pt_all_user_regs XXX_pt_all_user_regs
47 # endif
48 # ifdef HAVE_STRUCT_PTRACE_PEEKSIGINFO_ARGS
49 #  define ptrace_peeksiginfo_args XXX_ptrace_peeksiginfo_args
50 # endif
51 # include <linux/ptrace.h>
52 # undef ptrace_peeksiginfo_args
53 # undef ia64_fpreg
54 # undef pt_all_user_regs
55 #endif
56 
57 #if defined(SPARC64)
58 # undef PTRACE_GETREGS
59 # define PTRACE_GETREGS PTRACE_GETREGS64
60 # undef PTRACE_SETREGS
61 # define PTRACE_SETREGS PTRACE_SETREGS64
62 #endif
63 
64 #if defined(IA64)
65 # include <asm/ptrace_offsets.h>
66 # include <asm/rse.h>
67 #endif
68 
69 /* for struct iovec */
70 #include <sys/uio.h>
71 /* for NT_PRSTATUS */
72 #ifdef HAVE_ELF_H
73 # include <elf.h>
74 #endif
75 
76 #if defined(AARCH64)
77 # include <asm/ptrace.h>
78 #endif
79 
80 #if defined(XTENSA)
81 # include <asm/ptrace.h>
82 #endif
83 
84 #ifndef NSIG
85 # warning: NSIG is not defined, using 32
86 # define NSIG 32
87 #endif
88 
89 #include "syscall.h"
90 
91 /* Define these shorthand notations to simplify the syscallent files. */
92 #define TD TRACE_DESC
93 #define TF TRACE_FILE
94 #define TI TRACE_IPC
95 #define TN TRACE_NETWORK
96 #define TP TRACE_PROCESS
97 #define TS TRACE_SIGNAL
98 #define TM TRACE_MEMORY
99 #define NF SYSCALL_NEVER_FAILS
100 #define MA MAX_ARGS
101 #define SI STACKTRACE_INVALIDATE_CACHE
102 #define SE STACKTRACE_CAPTURE_ON_ENTER
103 
104 const struct_sysent sysent0[] = {
105 #include "syscallent.h"
106 };
107 
108 #if SUPPORTED_PERSONALITIES > 1
109 static const struct_sysent sysent1[] = {
110 # include "syscallent1.h"
111 };
112 #endif
113 
114 #if SUPPORTED_PERSONALITIES > 2
115 static const struct_sysent sysent2[] = {
116 # include "syscallent2.h"
117 };
118 #endif
119 
120 /* Now undef them since short defines cause wicked namespace pollution. */
121 #undef TD
122 #undef TF
123 #undef TI
124 #undef TN
125 #undef TP
126 #undef TS
127 #undef TM
128 #undef NF
129 #undef MA
130 #undef SI
131 #undef SE
132 
133 /*
134  * `ioctlent.h' may be generated from `ioctlent.raw' by the auxiliary
135  * program `ioctlsort', such that the list is sorted by the `code' field.
136  * This has the side-effect of resolving the _IO.. macros into
137  * plain integers, eliminating the need to include here everything
138  * in "/usr/include".
139  */
140 
141 const char *const errnoent0[] = {
142 #include "errnoent.h"
143 };
144 const char *const signalent0[] = {
145 #include "signalent.h"
146 };
147 const struct_ioctlent ioctlent0[] = {
148 #include "ioctlent.h"
149 };
150 
151 #if SUPPORTED_PERSONALITIES > 1
152 static const char *const errnoent1[] = {
153 # include "errnoent1.h"
154 };
155 static const char *const signalent1[] = {
156 # include "signalent1.h"
157 };
158 static const struct_ioctlent ioctlent1[] = {
159 # include "ioctlent1.h"
160 };
161 #endif
162 
163 #if SUPPORTED_PERSONALITIES > 2
164 static const char *const errnoent2[] = {
165 # include "errnoent2.h"
166 };
167 static const char *const signalent2[] = {
168 # include "signalent2.h"
169 };
170 static const struct_ioctlent ioctlent2[] = {
171 # include "ioctlent2.h"
172 };
173 #endif
174 
175 enum {
176 	nsyscalls0 = ARRAY_SIZE(sysent0)
177 #if SUPPORTED_PERSONALITIES > 1
178 	, nsyscalls1 = ARRAY_SIZE(sysent1)
179 # if SUPPORTED_PERSONALITIES > 2
180 	, nsyscalls2 = ARRAY_SIZE(sysent2)
181 # endif
182 #endif
183 };
184 
185 enum {
186 	nerrnos0 = ARRAY_SIZE(errnoent0)
187 #if SUPPORTED_PERSONALITIES > 1
188 	, nerrnos1 = ARRAY_SIZE(errnoent1)
189 # if SUPPORTED_PERSONALITIES > 2
190 	, nerrnos2 = ARRAY_SIZE(errnoent2)
191 # endif
192 #endif
193 };
194 
195 enum {
196 	nsignals0 = ARRAY_SIZE(signalent0)
197 #if SUPPORTED_PERSONALITIES > 1
198 	, nsignals1 = ARRAY_SIZE(signalent1)
199 # if SUPPORTED_PERSONALITIES > 2
200 	, nsignals2 = ARRAY_SIZE(signalent2)
201 # endif
202 #endif
203 };
204 
205 enum {
206 	nioctlents0 = ARRAY_SIZE(ioctlent0)
207 #if SUPPORTED_PERSONALITIES > 1
208 	, nioctlents1 = ARRAY_SIZE(ioctlent1)
209 # if SUPPORTED_PERSONALITIES > 2
210 	, nioctlents2 = ARRAY_SIZE(ioctlent2)
211 # endif
212 #endif
213 };
214 
215 #if SUPPORTED_PERSONALITIES > 1
216 const struct_sysent *sysent = sysent0;
217 const char *const *errnoent = errnoent0;
218 const char *const *signalent = signalent0;
219 const struct_ioctlent *ioctlent = ioctlent0;
220 #endif
221 unsigned nsyscalls = nsyscalls0;
222 unsigned nerrnos = nerrnos0;
223 unsigned nsignals = nsignals0;
224 unsigned nioctlents = nioctlents0;
225 
226 unsigned num_quals;
227 qualbits_t *qual_vec[SUPPORTED_PERSONALITIES];
228 
229 static const unsigned nsyscall_vec[SUPPORTED_PERSONALITIES] = {
230 	nsyscalls0,
231 #if SUPPORTED_PERSONALITIES > 1
232 	nsyscalls1,
233 #endif
234 #if SUPPORTED_PERSONALITIES > 2
235 	nsyscalls2,
236 #endif
237 };
238 static const struct_sysent *const sysent_vec[SUPPORTED_PERSONALITIES] = {
239 	sysent0,
240 #if SUPPORTED_PERSONALITIES > 1
241 	sysent1,
242 #endif
243 #if SUPPORTED_PERSONALITIES > 2
244 	sysent2,
245 #endif
246 };
247 
248 enum {
249 	MAX_NSYSCALLS1 = (nsyscalls0
250 #if SUPPORTED_PERSONALITIES > 1
251 			> nsyscalls1 ? nsyscalls0 : nsyscalls1
252 #endif
253 			),
254 	MAX_NSYSCALLS2 = (MAX_NSYSCALLS1
255 #if SUPPORTED_PERSONALITIES > 2
256 			> nsyscalls2 ? MAX_NSYSCALLS1 : nsyscalls2
257 #endif
258 			),
259 	MAX_NSYSCALLS = MAX_NSYSCALLS2,
260 	/* We are ready for arches with up to 255 signals,
261 	 * even though the largest known signo is on MIPS and it is 128.
262 	 * The number of existing syscalls on all arches is
263 	 * larger that 255 anyway, so it is just a pedantic matter.
264 	 */
265 	MIN_QUALS = MAX_NSYSCALLS > 255 ? MAX_NSYSCALLS : 255
266 };
267 
268 #if SUPPORTED_PERSONALITIES > 1
269 unsigned current_personality;
270 
271 # ifndef current_wordsize
272 unsigned current_wordsize;
273 static const int personality_wordsize[SUPPORTED_PERSONALITIES] = {
274 	PERSONALITY0_WORDSIZE,
275 	PERSONALITY1_WORDSIZE,
276 # if SUPPORTED_PERSONALITIES > 2
277 	PERSONALITY2_WORDSIZE,
278 # endif
279 };
280 # endif
281 
282 void
set_personality(int personality)283 set_personality(int personality)
284 {
285 	nsyscalls = nsyscall_vec[personality];
286 	sysent = sysent_vec[personality];
287 
288 	switch (personality) {
289 	case 0:
290 		errnoent = errnoent0;
291 		nerrnos = nerrnos0;
292 		ioctlent = ioctlent0;
293 		nioctlents = nioctlents0;
294 		signalent = signalent0;
295 		nsignals = nsignals0;
296 		break;
297 
298 	case 1:
299 		errnoent = errnoent1;
300 		nerrnos = nerrnos1;
301 		ioctlent = ioctlent1;
302 		nioctlents = nioctlents1;
303 		signalent = signalent1;
304 		nsignals = nsignals1;
305 		break;
306 
307 # if SUPPORTED_PERSONALITIES > 2
308 	case 2:
309 		errnoent = errnoent2;
310 		nerrnos = nerrnos2;
311 		ioctlent = ioctlent2;
312 		nioctlents = nioctlents2;
313 		signalent = signalent2;
314 		nsignals = nsignals2;
315 		break;
316 # endif
317 	}
318 
319 	current_personality = personality;
320 # ifndef current_wordsize
321 	current_wordsize = personality_wordsize[personality];
322 # endif
323 }
324 
325 static void
update_personality(struct tcb * tcp,int personality)326 update_personality(struct tcb *tcp, int personality)
327 {
328 	if (personality == current_personality)
329 		return;
330 	set_personality(personality);
331 
332 	if (personality == tcp->currpers)
333 		return;
334 	tcp->currpers = personality;
335 
336 # if defined(POWERPC64)
337 	if (!qflag) {
338 		static const char *const names[] = {"64 bit", "32 bit"};
339 		fprintf(stderr, "[ Process PID=%d runs in %s mode. ]\n",
340 			tcp->pid, names[personality]);
341 	}
342 # elif defined(X86_64)
343 	if (!qflag) {
344 		static const char *const names[] = {"64 bit", "32 bit", "x32"};
345 		fprintf(stderr, "[ Process PID=%d runs in %s mode. ]\n",
346 			tcp->pid, names[personality]);
347 	}
348 # elif defined(X32)
349 	if (!qflag) {
350 		static const char *const names[] = {"x32", "32 bit"};
351 		fprintf(stderr, "[ Process PID=%d runs in %s mode. ]\n",
352 			tcp->pid, names[personality]);
353 	}
354 # elif defined(AARCH64)
355 	if (!qflag) {
356 		static const char *const names[] = {"32-bit", "AArch64"};
357 		fprintf(stderr, "[ Process PID=%d runs in %s mode. ]\n",
358 			tcp->pid, names[personality]);
359 	}
360 # elif defined(TILE)
361 	if (!qflag) {
362 		static const char *const names[] = {"64-bit", "32-bit"};
363 		fprintf(stderr, "[ Process PID=%d runs in %s mode. ]\n",
364 			tcp->pid, names[personality]);
365 	}
366 # endif
367 }
368 #endif
369 
370 static int qual_syscall(), qual_signal(), qual_desc();
371 
372 static const struct qual_options {
373 	int bitflag;
374 	const char *option_name;
375 	int (*qualify)(const char *, int, int);
376 	const char *argument_name;
377 } qual_options[] = {
378 	{ QUAL_TRACE,	"trace",	qual_syscall,	"system call"	},
379 	{ QUAL_TRACE,	"t",		qual_syscall,	"system call"	},
380 	{ QUAL_ABBREV,	"abbrev",	qual_syscall,	"system call"	},
381 	{ QUAL_ABBREV,	"a",		qual_syscall,	"system call"	},
382 	{ QUAL_VERBOSE,	"verbose",	qual_syscall,	"system call"	},
383 	{ QUAL_VERBOSE,	"v",		qual_syscall,	"system call"	},
384 	{ QUAL_RAW,	"raw",		qual_syscall,	"system call"	},
385 	{ QUAL_RAW,	"x",		qual_syscall,	"system call"	},
386 	{ QUAL_SIGNAL,	"signal",	qual_signal,	"signal"	},
387 	{ QUAL_SIGNAL,	"signals",	qual_signal,	"signal"	},
388 	{ QUAL_SIGNAL,	"s",		qual_signal,	"signal"	},
389 	{ QUAL_READ,	"read",		qual_desc,	"descriptor"	},
390 	{ QUAL_READ,	"reads",	qual_desc,	"descriptor"	},
391 	{ QUAL_READ,	"r",		qual_desc,	"descriptor"	},
392 	{ QUAL_WRITE,	"write",	qual_desc,	"descriptor"	},
393 	{ QUAL_WRITE,	"writes",	qual_desc,	"descriptor"	},
394 	{ QUAL_WRITE,	"w",		qual_desc,	"descriptor"	},
395 	{ 0,		NULL,		NULL,		NULL		},
396 };
397 
398 static void
reallocate_qual(int n)399 reallocate_qual(int n)
400 {
401 	unsigned p;
402 	qualbits_t *qp;
403 	for (p = 0; p < SUPPORTED_PERSONALITIES; p++) {
404 		qp = qual_vec[p] = realloc(qual_vec[p], n * sizeof(qualbits_t));
405 		if (!qp)
406 			die_out_of_memory();
407 		memset(&qp[num_quals], 0, (n - num_quals) * sizeof(qualbits_t));
408 	}
409 	num_quals = n;
410 }
411 
412 static void
qualify_one(int n,int bitflag,int not,int pers)413 qualify_one(int n, int bitflag, int not, int pers)
414 {
415 	unsigned p;
416 
417 	if (num_quals <= n)
418 		reallocate_qual(n + 1);
419 
420 	for (p = 0; p < SUPPORTED_PERSONALITIES; p++) {
421 		if (pers == p || pers < 0) {
422 			if (not)
423 				qual_vec[p][n] &= ~bitflag;
424 			else
425 				qual_vec[p][n] |= bitflag;
426 		}
427 	}
428 }
429 
430 static int
qual_syscall(const char * s,int bitflag,int not)431 qual_syscall(const char *s, int bitflag, int not)
432 {
433 	unsigned p;
434 	unsigned i;
435 	int rc = -1;
436 
437 	if (*s >= '0' && *s <= '9') {
438 		i = string_to_uint(s);
439 		if (i >= MAX_NSYSCALLS)
440 			return -1;
441 		qualify_one(i, bitflag, not, -1);
442 		return 0;
443 	}
444 
445 	for (p = 0; p < SUPPORTED_PERSONALITIES; p++) {
446 		for (i = 0; i < nsyscall_vec[p]; i++) {
447 			if (sysent_vec[p][i].sys_name
448 			 && strcmp(s, sysent_vec[p][i].sys_name) == 0
449 			) {
450 				qualify_one(i, bitflag, not, p);
451 				rc = 0;
452 			}
453 		}
454 	}
455 
456 	return rc;
457 }
458 
459 static int
qual_signal(const char * s,int bitflag,int not)460 qual_signal(const char *s, int bitflag, int not)
461 {
462 	int i;
463 
464 	if (*s >= '0' && *s <= '9') {
465 		int signo = string_to_uint(s);
466 		if (signo < 0 || signo > 255)
467 			return -1;
468 		qualify_one(signo, bitflag, not, -1);
469 		return 0;
470 	}
471 	if (strncasecmp(s, "SIG", 3) == 0)
472 		s += 3;
473 	for (i = 0; i <= NSIG; i++) {
474 		if (strcasecmp(s, signame(i) + 3) == 0) {
475 			qualify_one(i, bitflag, not, -1);
476 			return 0;
477 		}
478 	}
479 	return -1;
480 }
481 
482 static int
qual_desc(const char * s,int bitflag,int not)483 qual_desc(const char *s, int bitflag, int not)
484 {
485 	if (*s >= '0' && *s <= '9') {
486 		int desc = string_to_uint(s);
487 		if (desc < 0 || desc > 0x7fff) /* paranoia */
488 			return -1;
489 		qualify_one(desc, bitflag, not, -1);
490 		return 0;
491 	}
492 	return -1;
493 }
494 
495 static int
lookup_class(const char * s)496 lookup_class(const char *s)
497 {
498 	if (strcmp(s, "file") == 0)
499 		return TRACE_FILE;
500 	if (strcmp(s, "ipc") == 0)
501 		return TRACE_IPC;
502 	if (strcmp(s, "network") == 0)
503 		return TRACE_NETWORK;
504 	if (strcmp(s, "process") == 0)
505 		return TRACE_PROCESS;
506 	if (strcmp(s, "signal") == 0)
507 		return TRACE_SIGNAL;
508 	if (strcmp(s, "desc") == 0)
509 		return TRACE_DESC;
510 	if (strcmp(s, "memory") == 0)
511 		return TRACE_MEMORY;
512 	return -1;
513 }
514 
515 void
qualify(const char * s)516 qualify(const char *s)
517 {
518 	const struct qual_options *opt;
519 	int not;
520 	char *copy;
521 	const char *p;
522 	int i, n;
523 
524 	if (num_quals == 0)
525 		reallocate_qual(MIN_QUALS);
526 
527 	opt = &qual_options[0];
528 	for (i = 0; (p = qual_options[i].option_name); i++) {
529 		n = strlen(p);
530 		if (strncmp(s, p, n) == 0 && s[n] == '=') {
531 			opt = &qual_options[i];
532 			s += n + 1;
533 			break;
534 		}
535 	}
536 	not = 0;
537 	if (*s == '!') {
538 		not = 1;
539 		s++;
540 	}
541 	if (strcmp(s, "none") == 0) {
542 		not = 1 - not;
543 		s = "all";
544 	}
545 	if (strcmp(s, "all") == 0) {
546 		for (i = 0; i < num_quals; i++) {
547 			qualify_one(i, opt->bitflag, not, -1);
548 		}
549 		return;
550 	}
551 	for (i = 0; i < num_quals; i++) {
552 		qualify_one(i, opt->bitflag, !not, -1);
553 	}
554 	copy = strdup(s);
555 	if (!copy)
556 		die_out_of_memory();
557 	for (p = strtok(copy, ","); p; p = strtok(NULL, ",")) {
558 		if (opt->bitflag == QUAL_TRACE && (n = lookup_class(p)) > 0) {
559 			unsigned pers;
560 			for (pers = 0; pers < SUPPORTED_PERSONALITIES; pers++) {
561 				for (i = 0; i < nsyscall_vec[pers]; i++)
562 					if (sysent_vec[pers][i].sys_flags & n)
563 						qualify_one(i, opt->bitflag, not, pers);
564 			}
565 			continue;
566 		}
567 		if (opt->qualify(p, opt->bitflag, not)) {
568 			error_msg_and_die("invalid %s '%s'",
569 				opt->argument_name, p);
570 		}
571 	}
572 	free(copy);
573 	return;
574 }
575 
576 #ifdef SYS_socket_subcall
577 static void
decode_socket_subcall(struct tcb * tcp)578 decode_socket_subcall(struct tcb *tcp)
579 {
580 	unsigned long addr;
581 	unsigned int i, n, size;
582 
583 	if (tcp->u_arg[0] < 0 || tcp->u_arg[0] >= SYS_socket_nsubcalls)
584 		return;
585 
586 	tcp->scno = SYS_socket_subcall + tcp->u_arg[0];
587 	tcp->qual_flg = qual_flags[tcp->scno];
588 	tcp->s_ent = &sysent[tcp->scno];
589 	addr = tcp->u_arg[1];
590 	size = current_wordsize;
591 	n = tcp->s_ent->nargs;
592 	for (i = 0; i < n; ++i) {
593 		if (size == sizeof(int)) {
594 			unsigned int arg;
595 			if (umove(tcp, addr, &arg) < 0)
596 				arg = 0;
597 			tcp->u_arg[i] = arg;
598 		}
599 		else {
600 			unsigned long arg;
601 			if (umove(tcp, addr, &arg) < 0)
602 				arg = 0;
603 			tcp->u_arg[i] = arg;
604 		}
605 		addr += size;
606 	}
607 }
608 #endif
609 
610 #ifdef SYS_ipc_subcall
611 static void
decode_ipc_subcall(struct tcb * tcp)612 decode_ipc_subcall(struct tcb *tcp)
613 {
614 	unsigned int i, n;
615 
616 	if (tcp->u_arg[0] < 0 || tcp->u_arg[0] >= SYS_ipc_nsubcalls)
617 		return;
618 
619 	tcp->scno = SYS_ipc_subcall + tcp->u_arg[0];
620 	tcp->qual_flg = qual_flags[tcp->scno];
621 	tcp->s_ent = &sysent[tcp->scno];
622 	n = tcp->s_ent->nargs;
623 	for (i = 0; i < n; i++)
624 		tcp->u_arg[i] = tcp->u_arg[i + 1];
625 }
626 #endif
627 
628 int
printargs(struct tcb * tcp)629 printargs(struct tcb *tcp)
630 {
631 	if (entering(tcp)) {
632 		int i;
633 		int n = tcp->s_ent->nargs;
634 		for (i = 0; i < n; i++)
635 			tprintf("%s%#lx", i ? ", " : "", tcp->u_arg[i]);
636 	}
637 	return 0;
638 }
639 
640 int
printargs_lu(struct tcb * tcp)641 printargs_lu(struct tcb *tcp)
642 {
643 	if (entering(tcp)) {
644 		int i;
645 		int n = tcp->s_ent->nargs;
646 		for (i = 0; i < n; i++)
647 			tprintf("%s%lu", i ? ", " : "", tcp->u_arg[i]);
648 	}
649 	return 0;
650 }
651 
652 int
printargs_ld(struct tcb * tcp)653 printargs_ld(struct tcb *tcp)
654 {
655 	if (entering(tcp)) {
656 		int i;
657 		int n = tcp->s_ent->nargs;
658 		for (i = 0; i < n; i++)
659 			tprintf("%s%ld", i ? ", " : "", tcp->u_arg[i]);
660 	}
661 	return 0;
662 }
663 
664 #if defined(SPARC) || defined(SPARC64) || defined(IA64) || defined(SH)
665 long
getrval2(struct tcb * tcp)666 getrval2(struct tcb *tcp)
667 {
668 	long val;
669 
670 # if defined(SPARC) || defined(SPARC64)
671 	val = sparc_regs.u_regs[U_REG_O1];
672 # elif defined(SH)
673 	if (upeek(tcp->pid, 4*(REG_REG0+1), &val) < 0)
674 		return -1;
675 # elif defined(IA64)
676 	if (upeek(tcp->pid, PT_R9, &val) < 0)
677 		return -1;
678 # endif
679 
680 	return val;
681 }
682 #endif
683 
684 #if defined(I386)
685 static struct user_regs_struct i386_regs;
686 /* Cast suppresses signedness warning (.esp is long, not unsigned long) */
687 uint32_t *const i386_esp_ptr = (uint32_t*)&i386_regs.esp;
688 # define ARCH_REGS_FOR_GETREGSET i386_regs
689 #elif defined(X86_64) || defined(X32)
690 /*
691  * On i386, pt_regs and user_regs_struct are the same,
692  * but on 64 bit x86, user_regs_struct has six more fields:
693  * fs_base, gs_base, ds, es, fs, gs.
694  * PTRACE_GETREGS fills them too, so struct pt_regs would overflow.
695  */
696 struct i386_user_regs_struct {
697 	uint32_t ebx;
698 	uint32_t ecx;
699 	uint32_t edx;
700 	uint32_t esi;
701 	uint32_t edi;
702 	uint32_t ebp;
703 	uint32_t eax;
704 	uint32_t xds;
705 	uint32_t xes;
706 	uint32_t xfs;
707 	uint32_t xgs;
708 	uint32_t orig_eax;
709 	uint32_t eip;
710 	uint32_t xcs;
711 	uint32_t eflags;
712 	uint32_t esp;
713 	uint32_t xss;
714 };
715 static union {
716 	struct user_regs_struct      x86_64_r;
717 	struct i386_user_regs_struct i386_r;
718 } x86_regs_union;
719 # define x86_64_regs x86_regs_union.x86_64_r
720 # define i386_regs   x86_regs_union.i386_r
721 uint32_t *const i386_esp_ptr = &i386_regs.esp;
722 static struct iovec x86_io = {
723 	.iov_base = &x86_regs_union
724 };
725 #elif defined(IA64)
726 bool ia64_ia32mode = 0; /* not static */
727 static long ia64_r8, ia64_r10;
728 #elif defined(POWERPC)
729 struct pt_regs ppc_regs;
730 #elif defined(M68K)
731 static long m68k_d0;
732 #elif defined(BFIN)
733 static long bfin_r0;
734 #elif defined(ARM)
735 struct pt_regs arm_regs; /* not static */
736 # define ARCH_REGS_FOR_GETREGSET arm_regs
737 #elif defined(AARCH64)
738 static union {
739 	struct user_pt_regs aarch64_r;
740 	struct arm_pt_regs  arm_r;
741 } arm_regs_union;
742 # define aarch64_regs arm_regs_union.aarch64_r
743 # define arm_regs     arm_regs_union.arm_r
744 static struct iovec aarch64_io = {
745 	.iov_base = &arm_regs_union
746 };
747 #elif defined(ALPHA)
748 static long alpha_r0;
749 static long alpha_a3;
750 #elif defined(AVR32)
751 static struct pt_regs avr32_regs;
752 #elif defined(SPARC) || defined(SPARC64)
753 struct pt_regs sparc_regs; /* not static */
754 #elif defined(LINUX_MIPSN32)
755 static long long mips_a3;
756 static long long mips_r2;
757 #elif defined(MIPS)
758 static long mips_a3;
759 static long mips_r2;
760 #elif defined(S390) || defined(S390X)
761 static long s390_gpr2;
762 #elif defined(HPPA)
763 static long hppa_r28;
764 #elif defined(SH)
765 static long sh_r0;
766 #elif defined(SH64)
767 static long sh64_r9;
768 #elif defined(CRISV10) || defined(CRISV32)
769 static long cris_r10;
770 #elif defined(TILE)
771 struct pt_regs tile_regs;
772 #elif defined(MICROBLAZE)
773 static long microblaze_r3;
774 #elif defined(OR1K)
775 static struct user_regs_struct or1k_regs;
776 # define ARCH_REGS_FOR_GETREGSET or1k_regs
777 #elif defined(METAG)
778 static struct user_gp_regs metag_regs;
779 # define ARCH_REGS_FOR_GETREGSET metag_regs
780 #elif defined(XTENSA)
781 static long xtensa_a2;
782 # elif defined(ARC)
783 static struct user_regs_struct arc_regs;
784 # define ARCH_REGS_FOR_GETREGSET arc_regs
785 #endif
786 
787 void
print_pc(struct tcb * tcp)788 print_pc(struct tcb *tcp)
789 {
790 #define PRINTBADPC tprintf(sizeof(long) == 4 ? "[????????] " : \
791 			   sizeof(long) == 8 ? "[????????????????] " : \
792 			   NULL /* crash */)
793 	if (get_regs_error) {
794 		PRINTBADPC;
795 		return;
796 	}
797 #if defined(I386)
798 	tprintf("[%08lx] ", i386_regs.eip);
799 #elif defined(S390) || defined(S390X)
800 	long psw;
801 	if (upeek(tcp->pid, PT_PSWADDR, &psw) < 0) {
802 		PRINTBADPC;
803 		return;
804 	}
805 # ifdef S390
806 	tprintf("[%08lx] ", psw);
807 # elif S390X
808 	tprintf("[%016lx] ", psw);
809 # endif
810 #elif defined(X86_64) || defined(X32)
811 	if (x86_io.iov_len == sizeof(i386_regs)) {
812 		tprintf("[%08x] ", (unsigned) i386_regs.eip);
813 	} else {
814 # if defined(X86_64)
815 		tprintf("[%016lx] ", (unsigned long) x86_64_regs.rip);
816 # elif defined(X32)
817 		/* Note: this truncates 64-bit rip to 32 bits */
818 		tprintf("[%08lx] ", (unsigned long) x86_64_regs.rip);
819 # endif
820 	}
821 #elif defined(IA64)
822 	long ip;
823 	if (upeek(tcp->pid, PT_B0, &ip) < 0) {
824 		PRINTBADPC;
825 		return;
826 	}
827 	tprintf("[%08lx] ", ip);
828 #elif defined(POWERPC)
829 	long pc = ppc_regs.nip;
830 # ifdef POWERPC64
831 	tprintf("[%016lx] ", pc);
832 # else
833 	tprintf("[%08lx] ", pc);
834 # endif
835 #elif defined(M68K)
836 	long pc;
837 	if (upeek(tcp->pid, 4*PT_PC, &pc) < 0) {
838 		tprints("[????????] ");
839 		return;
840 	}
841 	tprintf("[%08lx] ", pc);
842 #elif defined(ALPHA)
843 	long pc;
844 	if (upeek(tcp->pid, REG_PC, &pc) < 0) {
845 		tprints("[????????????????] ");
846 		return;
847 	}
848 	tprintf("[%08lx] ", pc);
849 #elif defined(SPARC)
850 	tprintf("[%08lx] ", sparc_regs.pc);
851 #elif defined(SPARC64)
852 	tprintf("[%08lx] ", sparc_regs.tpc);
853 #elif defined(HPPA)
854 	long pc;
855 	if (upeek(tcp->pid, PT_IAOQ0, &pc) < 0) {
856 		tprints("[????????] ");
857 		return;
858 	}
859 	tprintf("[%08lx] ", pc);
860 #elif defined(MIPS)
861 	long pc;
862 	if (upeek(tcp->pid, REG_EPC, &pc) < 0) {
863 		tprints("[????????] ");
864 		return;
865 	}
866 	tprintf("[%08lx] ", pc);
867 #elif defined(SH)
868 	long pc;
869 	if (upeek(tcp->pid, 4*REG_PC, &pc) < 0) {
870 		tprints("[????????] ");
871 		return;
872 	}
873 	tprintf("[%08lx] ", pc);
874 #elif defined(SH64)
875 	long pc;
876 	if (upeek(tcp->pid, REG_PC, &pc) < 0) {
877 		tprints("[????????????????] ");
878 		return;
879 	}
880 	tprintf("[%08lx] ", pc);
881 #elif defined(ARM)
882 	tprintf("[%08lx] ", arm_regs.ARM_pc);
883 #elif defined(AARCH64)
884 	/* tprintf("[%016lx] ", aarch64_regs.regs[???]); */
885 #elif defined(AVR32)
886 	tprintf("[%08lx] ", avr32_regs.pc);
887 #elif defined(BFIN)
888 	long pc;
889 	if (upeek(tcp->pid, PT_PC, &pc) < 0) {
890 		PRINTBADPC;
891 		return;
892 	}
893 	tprintf("[%08lx] ", pc);
894 #elif defined(CRISV10)
895 	long pc;
896 	if (upeek(tcp->pid, 4*PT_IRP, &pc) < 0) {
897 		PRINTBADPC;
898 		return;
899 	}
900 	tprintf("[%08lx] ", pc);
901 #elif defined(CRISV32)
902 	long pc;
903 	if (upeek(tcp->pid, 4*PT_ERP, &pc) < 0) {
904 		PRINTBADPC;
905 		return;
906 	}
907 	tprintf("[%08lx] ", pc);
908 #elif defined(TILE)
909 # ifdef _LP64
910 	tprintf("[%016lx] ", (unsigned long) tile_regs.pc);
911 # else
912 	tprintf("[%08lx] ", (unsigned long) tile_regs.pc);
913 # endif
914 #elif defined(OR1K)
915 	tprintf("[%08lx] ", or1k_regs.pc);
916 #elif defined(METAG)
917 	tprintf("[%08lx] ", metag_regs.pc);
918 #elif defined(XTENSA)
919 	long pc;
920 	if (upeek(tcp->pid, REG_PC, &pc) < 0) {
921 		PRINTBADPC;
922 		return;
923 	}
924 	tprintf("[%08lx] ", pc);
925 #elif defined(ARC)
926 	tprintf("[%08lx] ", arc_regs.efa);
927 #endif /* architecture */
928 }
929 
930 /* Shuffle syscall numbers so that we don't have huge gaps in syscall table.
931  * The shuffling should be reversible: shuffle_scno(shuffle_scno(n)) == n.
932  */
933 #if defined(ARM) || defined(AARCH64) /* So far only 32-bit ARM needs this */
934 static long
shuffle_scno(unsigned long scno)935 shuffle_scno(unsigned long scno)
936 {
937 	if (scno <= ARM_LAST_ORDINARY_SYSCALL)
938 		return scno;
939 
940 	/* __ARM_NR_cmpxchg? Swap with LAST_ORDINARY+1 */
941 	if (scno == 0x000ffff0)
942 		return ARM_LAST_ORDINARY_SYSCALL+1;
943 	if (scno == ARM_LAST_ORDINARY_SYSCALL+1)
944 		return 0x000ffff0;
945 
946 	/* Is it ARM specific syscall?
947 	 * Swap with [LAST_ORDINARY+2, LAST_ORDINARY+2 + LAST_SPECIAL] range.
948 	 */
949 	if (scno >= 0x000f0000
950 	 && scno <= 0x000f0000 + ARM_LAST_SPECIAL_SYSCALL
951 	) {
952 		return scno - 0x000f0000 + (ARM_LAST_ORDINARY_SYSCALL+2);
953 	}
954 	if (/* scno >= ARM_LAST_ORDINARY_SYSCALL+2 - always true */ 1
955 	 && scno <= (ARM_LAST_ORDINARY_SYSCALL+2) + ARM_LAST_SPECIAL_SYSCALL
956 	) {
957 		return scno + 0x000f0000 - (ARM_LAST_ORDINARY_SYSCALL+2);
958 	}
959 
960 	return scno;
961 }
962 #else
963 # define shuffle_scno(scno) ((long)(scno))
964 #endif
965 
966 static char*
undefined_scno_name(struct tcb * tcp)967 undefined_scno_name(struct tcb *tcp)
968 {
969 	static char buf[sizeof("syscall_%lu") + sizeof(long)*3];
970 
971 	sprintf(buf, "syscall_%lu", shuffle_scno(tcp->scno));
972 	return buf;
973 }
974 
975 #ifdef POWERPC
976 /*
977  * PTRACE_GETREGS was added to the PowerPC kernel in v2.6.23,
978  * we provide a slow fallback for old kernels.
979  */
powerpc_getregs_old(pid_t pid)980 static int powerpc_getregs_old(pid_t pid)
981 {
982 	int i;
983 	long r;
984 
985 	if (iflag) {
986 		r = upeek(pid, sizeof(long) * PT_NIP, (long *)&ppc_regs.nip);
987 		if (r)
988 			goto out;
989 	}
990 #ifdef POWERPC64 /* else we never use it */
991 	r = upeek(pid, sizeof(long) * PT_MSR, (long *)&ppc_regs.msr);
992 	if (r)
993 		goto out;
994 #endif
995 	r = upeek(pid, sizeof(long) * PT_CCR, (long *)&ppc_regs.ccr);
996 	if (r)
997 		goto out;
998 	r = upeek(pid, sizeof(long) * PT_ORIG_R3, (long *)&ppc_regs.orig_gpr3);
999 	if (r)
1000 		goto out;
1001 	for (i = 0; i <= 8; i++) {
1002 		r = upeek(pid, sizeof(long) * (PT_R0 + i),
1003 			  (long *)&ppc_regs.gpr[i]);
1004 		if (r)
1005 			goto out;
1006 	}
1007  out:
1008 	return r;
1009 }
1010 #endif
1011 
1012 #ifndef get_regs
1013 long get_regs_error;
1014 
1015 #if defined(PTRACE_GETREGSET) && defined(NT_PRSTATUS)
get_regset(pid_t pid)1016 static void get_regset(pid_t pid)
1017 {
1018 /* constant iovec */
1019 # if defined(ARM) \
1020   || defined(I386) \
1021   || defined(METAG) \
1022   || defined(OR1K) \
1023   || defined(ARC)
1024 	static struct iovec io = {
1025 		.iov_base = &ARCH_REGS_FOR_GETREGSET,
1026 		.iov_len = sizeof(ARCH_REGS_FOR_GETREGSET)
1027 	};
1028 	get_regs_error = ptrace(PTRACE_GETREGSET, pid, NT_PRSTATUS, &io);
1029 
1030 /* variable iovec */
1031 # elif defined(X86_64) || defined(X32)
1032 	/* x86_io.iov_base = &x86_regs_union; - already is */
1033 	x86_io.iov_len = sizeof(x86_regs_union);
1034 	get_regs_error = ptrace(PTRACE_GETREGSET, pid, NT_PRSTATUS, &x86_io);
1035 # elif defined(AARCH64)
1036 	/* aarch64_io.iov_base = &arm_regs_union; - already is */
1037 	aarch64_io.iov_len = sizeof(arm_regs_union);
1038 	get_regs_error = ptrace(PTRACE_GETREGSET, pid, NT_PRSTATUS, &aarch64_io);
1039 # else
1040 #  warning both PTRACE_GETREGSET and NT_PRSTATUS are available but not yet used
1041 # endif
1042 }
1043 #endif /* PTRACE_GETREGSET && NT_PRSTATUS */
1044 
1045 void
get_regs(pid_t pid)1046 get_regs(pid_t pid)
1047 {
1048 /* PTRACE_GETREGSET only */
1049 # if defined(METAG) || defined(OR1K) || defined(X32) || defined(AARCH64) || defined(ARC)
1050 	get_regset(pid);
1051 
1052 /* PTRACE_GETREGS only */
1053 # elif defined(AVR32)
1054 	get_regs_error = ptrace(PTRACE_GETREGS, pid, NULL, &avr32_regs);
1055 # elif defined(TILE)
1056 	get_regs_error = ptrace(PTRACE_GETREGS, pid, NULL, &tile_regs);
1057 # elif defined(SPARC) || defined(SPARC64)
1058 	get_regs_error = ptrace(PTRACE_GETREGS, pid, (char *)&sparc_regs, 0);
1059 # elif defined(POWERPC)
1060 	static bool old_kernel = 0;
1061 	if (old_kernel)
1062 		goto old;
1063 	get_regs_error = ptrace(PTRACE_GETREGS, pid, NULL, (long) &ppc_regs);
1064 	if (get_regs_error && errno == EIO) {
1065 		old_kernel = 1;
1066  old:
1067 		get_regs_error = powerpc_getregs_old(pid);
1068 	}
1069 
1070 /* try PTRACE_GETREGSET first, fallback to PTRACE_GETREGS */
1071 # else
1072 #  if defined(PTRACE_GETREGSET) && defined(NT_PRSTATUS)
1073 	static int getregset_support;
1074 
1075 	if (getregset_support >= 0) {
1076 		get_regset(pid);
1077 		if (getregset_support > 0)
1078 			return;
1079 		if (get_regs_error >= 0) {
1080 			getregset_support = 1;
1081 			return;
1082 		}
1083 		if (errno == EPERM || errno == ESRCH)
1084 			return;
1085 		getregset_support = -1;
1086 	}
1087 #  endif /* PTRACE_GETREGSET && NT_PRSTATUS */
1088 #  if defined(ARM)
1089 	get_regs_error = ptrace(PTRACE_GETREGS, pid, NULL, &arm_regs);
1090 #  elif defined(I386)
1091 	get_regs_error = ptrace(PTRACE_GETREGS, pid, NULL, &i386_regs);
1092 #  elif defined(X86_64)
1093 	/* Use old method, with unreliable heuristical detection of 32-bitness. */
1094 	x86_io.iov_len = sizeof(x86_64_regs);
1095 	get_regs_error = ptrace(PTRACE_GETREGS, pid, NULL, &x86_64_regs);
1096 	if (!get_regs_error && x86_64_regs.cs == 0x23) {
1097 		x86_io.iov_len = sizeof(i386_regs);
1098 		/*
1099 		 * The order is important: i386_regs and x86_64_regs
1100 		 * are overlaid in memory!
1101 		 */
1102 		i386_regs.ebx = x86_64_regs.rbx;
1103 		i386_regs.ecx = x86_64_regs.rcx;
1104 		i386_regs.edx = x86_64_regs.rdx;
1105 		i386_regs.esi = x86_64_regs.rsi;
1106 		i386_regs.edi = x86_64_regs.rdi;
1107 		i386_regs.ebp = x86_64_regs.rbp;
1108 		i386_regs.eax = x86_64_regs.rax;
1109 		/* i386_regs.xds = x86_64_regs.ds; unused by strace */
1110 		/* i386_regs.xes = x86_64_regs.es; ditto... */
1111 		/* i386_regs.xfs = x86_64_regs.fs; */
1112 		/* i386_regs.xgs = x86_64_regs.gs; */
1113 		i386_regs.orig_eax = x86_64_regs.orig_rax;
1114 		i386_regs.eip = x86_64_regs.rip;
1115 		/* i386_regs.xcs = x86_64_regs.cs; */
1116 		/* i386_regs.eflags = x86_64_regs.eflags; */
1117 		i386_regs.esp = x86_64_regs.rsp;
1118 		/* i386_regs.xss = x86_64_regs.ss; */
1119 	}
1120 #  else
1121 #   error unhandled architecture
1122 #  endif /* ARM || I386 || X86_64 */
1123 # endif
1124 }
1125 #endif /* !get_regs */
1126 
1127 /* Returns:
1128  * 0: "ignore this ptrace stop", bail out of trace_syscall_entering() silently.
1129  * 1: ok, continue in trace_syscall_entering().
1130  * other: error, trace_syscall_entering() should print error indicator
1131  *    ("????" etc) and bail out.
1132  */
1133 static int
get_scno(struct tcb * tcp)1134 get_scno(struct tcb *tcp)
1135 {
1136 	long scno = 0;
1137 
1138 #if defined(S390) || defined(S390X)
1139 	if (upeek(tcp->pid, PT_GPR2, &s390_gpr2) < 0)
1140 		return -1;
1141 
1142 	if (s390_gpr2 != -ENOSYS) {
1143 		/*
1144 		 * Since kernel version 2.5.44 the scno gets passed in gpr2.
1145 		 */
1146 		scno = s390_gpr2;
1147 	} else {
1148 		/*
1149 		 * Old style of "passing" the scno via the SVC instruction.
1150 		 */
1151 		long psw;
1152 		long opcode, offset_reg, tmp;
1153 		void *svc_addr;
1154 		static const int gpr_offset[16] = {
1155 				PT_GPR0,  PT_GPR1,  PT_ORIGGPR2, PT_GPR3,
1156 				PT_GPR4,  PT_GPR5,  PT_GPR6,     PT_GPR7,
1157 				PT_GPR8,  PT_GPR9,  PT_GPR10,    PT_GPR11,
1158 				PT_GPR12, PT_GPR13, PT_GPR14,    PT_GPR15
1159 		};
1160 
1161 		if (upeek(tcp->pid, PT_PSWADDR, &psw) < 0)
1162 			return -1;
1163 		errno = 0;
1164 		opcode = ptrace(PTRACE_PEEKTEXT, tcp->pid, (char *)(psw - sizeof(long)), 0);
1165 		if (errno) {
1166 			perror_msg("peektext(psw-oneword)");
1167 			return -1;
1168 		}
1169 
1170 		/*
1171 		 *  We have to check if the SVC got executed directly or via an
1172 		 *  EXECUTE instruction. In case of EXECUTE it is necessary to do
1173 		 *  instruction decoding to derive the system call number.
1174 		 *  Unfortunately the opcode sizes of EXECUTE and SVC are differently,
1175 		 *  so that this doesn't work if a SVC opcode is part of an EXECUTE
1176 		 *  opcode. Since there is no way to find out the opcode size this
1177 		 *  is the best we can do...
1178 		 */
1179 		if ((opcode & 0xff00) == 0x0a00) {
1180 			/* SVC opcode */
1181 			scno = opcode & 0xff;
1182 		}
1183 		else {
1184 			/* SVC got executed by EXECUTE instruction */
1185 
1186 			/*
1187 			 *  Do instruction decoding of EXECUTE. If you really want to
1188 			 *  understand this, read the Principles of Operations.
1189 			 */
1190 			svc_addr = (void *) (opcode & 0xfff);
1191 
1192 			tmp = 0;
1193 			offset_reg = (opcode & 0x000f0000) >> 16;
1194 			if (offset_reg && (upeek(tcp->pid, gpr_offset[offset_reg], &tmp) < 0))
1195 				return -1;
1196 			svc_addr += tmp;
1197 
1198 			tmp = 0;
1199 			offset_reg = (opcode & 0x0000f000) >> 12;
1200 			if (offset_reg && (upeek(tcp->pid, gpr_offset[offset_reg], &tmp) < 0))
1201 				return -1;
1202 			svc_addr += tmp;
1203 
1204 			scno = ptrace(PTRACE_PEEKTEXT, tcp->pid, svc_addr, 0);
1205 			if (errno)
1206 				return -1;
1207 # if defined(S390X)
1208 			scno >>= 48;
1209 # else
1210 			scno >>= 16;
1211 # endif
1212 			tmp = 0;
1213 			offset_reg = (opcode & 0x00f00000) >> 20;
1214 			if (offset_reg && (upeek(tcp->pid, gpr_offset[offset_reg], &tmp) < 0))
1215 				return -1;
1216 
1217 			scno = (scno | tmp) & 0xff;
1218 		}
1219 	}
1220 #elif defined(POWERPC)
1221 	scno = ppc_regs.gpr[0];
1222 # ifdef POWERPC64
1223 	int currpers;
1224 
1225 	/*
1226 	 * Check for 64/32 bit mode.
1227 	 * Embedded implementations covered by Book E extension of PPC use
1228 	 * bit 0 (CM) of 32-bit Machine state register (MSR).
1229 	 * Other implementations use bit 0 (SF) of 64-bit MSR.
1230 	 */
1231 	currpers = (ppc_regs.msr & 0x8000000080000000) ? 0 : 1;
1232 	update_personality(tcp, currpers);
1233 # endif
1234 #elif defined(AVR32)
1235 	scno = avr32_regs.r8;
1236 #elif defined(BFIN)
1237 	if (upeek(tcp->pid, PT_ORIG_P0, &scno))
1238 		return -1;
1239 #elif defined(I386)
1240 	scno = i386_regs.orig_eax;
1241 #elif defined(X86_64) || defined(X32)
1242 # ifndef __X32_SYSCALL_BIT
1243 #  define __X32_SYSCALL_BIT	0x40000000
1244 # endif
1245 	int currpers;
1246 # if 1
1247 	/* GETREGSET of NT_PRSTATUS tells us regset size,
1248 	 * which unambiguously detects i386.
1249 	 *
1250 	 * Linux kernel distinguishes x86-64 and x32 processes
1251 	 * solely by looking at __X32_SYSCALL_BIT:
1252 	 * arch/x86/include/asm/compat.h::is_x32_task():
1253 	 * if (task_pt_regs(current)->orig_ax & __X32_SYSCALL_BIT)
1254 	 *         return true;
1255 	 */
1256 	if (x86_io.iov_len == sizeof(i386_regs)) {
1257 		scno = i386_regs.orig_eax;
1258 		currpers = 1;
1259 	} else {
1260 		scno = x86_64_regs.orig_rax;
1261 		currpers = 0;
1262 		if (scno & __X32_SYSCALL_BIT) {
1263 			scno -= __X32_SYSCALL_BIT;
1264 			currpers = 2;
1265 		}
1266 	}
1267 # elif 0
1268 	/* cs = 0x33 for long mode (native 64 bit and x32)
1269 	 * cs = 0x23 for compatibility mode (32 bit)
1270 	 * ds = 0x2b for x32 mode (x86-64 in 32 bit)
1271 	 */
1272 	scno = x86_64_regs.orig_rax;
1273 	switch (x86_64_regs.cs) {
1274 		case 0x23: currpers = 1; break;
1275 		case 0x33:
1276 			if (x86_64_regs.ds == 0x2b) {
1277 				currpers = 2;
1278 				scno &= ~__X32_SYSCALL_BIT;
1279 			} else
1280 				currpers = 0;
1281 			break;
1282 		default:
1283 			fprintf(stderr, "Unknown value CS=0x%08X while "
1284 				 "detecting personality of process "
1285 				 "PID=%d\n", (int)x86_64_regs.cs, tcp->pid);
1286 			currpers = current_personality;
1287 			break;
1288 	}
1289 # elif 0
1290 	/* This version analyzes the opcode of a syscall instruction.
1291 	 * (int 0x80 on i386 vs. syscall on x86-64)
1292 	 * It works, but is too complicated, and strictly speaking, unreliable.
1293 	 */
1294 	unsigned long call, rip = x86_64_regs.rip;
1295 	/* sizeof(syscall) == sizeof(int 0x80) == 2 */
1296 	rip -= 2;
1297 	errno = 0;
1298 	call = ptrace(PTRACE_PEEKTEXT, tcp->pid, (char *)rip, (char *)0);
1299 	if (errno)
1300 		fprintf(stderr, "ptrace_peektext failed: %s\n",
1301 				strerror(errno));
1302 	switch (call & 0xffff) {
1303 		/* x86-64: syscall = 0x0f 0x05 */
1304 		case 0x050f: currpers = 0; break;
1305 		/* i386: int 0x80 = 0xcd 0x80 */
1306 		case 0x80cd: currpers = 1; break;
1307 		default:
1308 			currpers = current_personality;
1309 			fprintf(stderr,
1310 				"Unknown syscall opcode (0x%04X) while "
1311 				"detecting personality of process "
1312 				"PID=%d\n", (int)call, tcp->pid);
1313 			break;
1314 	}
1315 # endif
1316 
1317 # ifdef X32
1318 	/* If we are built for a x32 system, then personality 0 is x32
1319 	 * (not x86_64), and stracing of x86_64 apps is not supported.
1320 	 * Stracing of i386 apps is still supported.
1321 	 */
1322 	if (currpers == 0) {
1323 		fprintf(stderr, "syscall_%lu(...) in unsupported "
1324 				"64-bit mode of process PID=%d\n",
1325 			scno, tcp->pid);
1326 		return 0;
1327 	}
1328 	currpers &= ~2; /* map 2,1 to 0,1 */
1329 # endif
1330 	update_personality(tcp, currpers);
1331 #elif defined(IA64)
1332 #	define IA64_PSR_IS	((long)1 << 34)
1333 	long psr;
1334 	if (upeek(tcp->pid, PT_CR_IPSR, &psr) >= 0)
1335 		ia64_ia32mode = ((psr & IA64_PSR_IS) != 0);
1336 	if (ia64_ia32mode) {
1337 		if (upeek(tcp->pid, PT_R1, &scno) < 0)
1338 			return -1;
1339 	} else {
1340 		if (upeek(tcp->pid, PT_R15, &scno) < 0)
1341 			return -1;
1342 	}
1343 #elif defined(AARCH64)
1344 	switch (aarch64_io.iov_len) {
1345 		case sizeof(aarch64_regs):
1346 			/* We are in 64-bit mode */
1347 			scno = aarch64_regs.regs[8];
1348 			update_personality(tcp, 1);
1349 			break;
1350 		case sizeof(arm_regs):
1351 			/* We are in 32-bit mode */
1352 			/* Note: we don't support OABI, unlike 32-bit ARM build */
1353 			scno = arm_regs.ARM_r7;
1354 			scno = shuffle_scno(scno);
1355 			update_personality(tcp, 0);
1356 			break;
1357 	}
1358 #elif defined(ARM)
1359 	if (arm_regs.ARM_ip != 0) {
1360 		/* It is not a syscall entry */
1361 		fprintf(stderr, "pid %d stray syscall exit\n", tcp->pid);
1362 		tcp->flags |= TCB_INSYSCALL;
1363 		return 0;
1364 	}
1365 	/* Note: we support only 32-bit CPUs, not 26-bit */
1366 
1367 # if !defined(__ARM_EABI__) || ENABLE_ARM_OABI
1368 	if (arm_regs.ARM_cpsr & 0x20)
1369 		/* Thumb mode */
1370 		goto scno_in_r7;
1371 	/* ARM mode */
1372 	/* Check EABI/OABI by examining SVC insn's low 24 bits */
1373 	errno = 0;
1374 	scno = ptrace(PTRACE_PEEKTEXT, tcp->pid, (void *)(arm_regs.ARM_pc - 4), NULL);
1375 	if (errno)
1376 		return -1;
1377 	/* EABI syscall convention? */
1378 	if (scno != 0xef000000) {
1379 		/* No, it's OABI */
1380 		if ((scno & 0x0ff00000) != 0x0f900000) {
1381 			fprintf(stderr, "pid %d unknown syscall trap 0x%08lx\n",
1382 				tcp->pid, scno);
1383 			return -1;
1384 		}
1385 		/* Fixup the syscall number */
1386 		scno &= 0x000fffff;
1387 	} else {
1388  scno_in_r7:
1389 		scno = arm_regs.ARM_r7;
1390 	}
1391 # else /* __ARM_EABI__ || !ENABLE_ARM_OABI */
1392 	scno = arm_regs.ARM_r7;
1393 # endif
1394 	scno = shuffle_scno(scno);
1395 #elif defined(M68K)
1396 	if (upeek(tcp->pid, 4*PT_ORIG_D0, &scno) < 0)
1397 		return -1;
1398 #elif defined(LINUX_MIPSN32)
1399 	unsigned long long regs[38];
1400 
1401 	if (ptrace(PTRACE_GETREGS, tcp->pid, NULL, (long) &regs) < 0)
1402 		return -1;
1403 	mips_a3 = regs[REG_A3];
1404 	mips_r2 = regs[REG_V0];
1405 
1406 	scno = mips_r2;
1407 	if (!SCNO_IN_RANGE(scno)) {
1408 		if (mips_a3 == 0 || mips_a3 == -1) {
1409 			if (debug_flag)
1410 				fprintf(stderr, "stray syscall exit: v0 = %ld\n", scno);
1411 			return 0;
1412 		}
1413 	}
1414 #elif defined(MIPS)
1415 	if (upeek(tcp->pid, REG_A3, &mips_a3) < 0)
1416 		return -1;
1417 	if (upeek(tcp->pid, REG_V0, &scno) < 0)
1418 		return -1;
1419 
1420 	if (!SCNO_IN_RANGE(scno)) {
1421 		if (mips_a3 == 0 || mips_a3 == -1) {
1422 			if (debug_flag)
1423 				fprintf(stderr, "stray syscall exit: v0 = %ld\n", scno);
1424 			return 0;
1425 		}
1426 	}
1427 #elif defined(ALPHA)
1428 	if (upeek(tcp->pid, REG_A3, &alpha_a3) < 0)
1429 		return -1;
1430 	if (upeek(tcp->pid, REG_R0, &scno) < 0)
1431 		return -1;
1432 
1433 	/*
1434 	 * Do some sanity checks to figure out if it's
1435 	 * really a syscall entry
1436 	 */
1437 	if (!SCNO_IN_RANGE(scno)) {
1438 		if (alpha_a3 == 0 || alpha_a3 == -1) {
1439 			if (debug_flag)
1440 				fprintf(stderr, "stray syscall exit: r0 = %ld\n", scno);
1441 			return 0;
1442 		}
1443 	}
1444 #elif defined(SPARC) || defined(SPARC64)
1445 	/* Disassemble the syscall trap. */
1446 	/* Retrieve the syscall trap instruction. */
1447 	unsigned long trap;
1448 	errno = 0;
1449 # if defined(SPARC64)
1450 	trap = ptrace(PTRACE_PEEKTEXT, tcp->pid, (char *)sparc_regs.tpc, 0);
1451 	trap >>= 32;
1452 # else
1453 	trap = ptrace(PTRACE_PEEKTEXT, tcp->pid, (char *)sparc_regs.pc, 0);
1454 # endif
1455 	if (errno)
1456 		return -1;
1457 
1458 	/* Disassemble the trap to see what personality to use. */
1459 	switch (trap) {
1460 	case 0x91d02010:
1461 		/* Linux/SPARC syscall trap. */
1462 		update_personality(tcp, 0);
1463 		break;
1464 	case 0x91d0206d:
1465 		/* Linux/SPARC64 syscall trap. */
1466 		update_personality(tcp, 2);
1467 		break;
1468 	case 0x91d02000:
1469 		/* SunOS syscall trap. (pers 1) */
1470 		fprintf(stderr, "syscall: SunOS no support\n");
1471 		return -1;
1472 	case 0x91d02008:
1473 		/* Solaris 2.x syscall trap. (per 2) */
1474 		update_personality(tcp, 1);
1475 		break;
1476 	case 0x91d02009:
1477 		/* NetBSD/FreeBSD syscall trap. */
1478 		fprintf(stderr, "syscall: NetBSD/FreeBSD not supported\n");
1479 		return -1;
1480 	case 0x91d02027:
1481 		/* Solaris 2.x gettimeofday */
1482 		update_personality(tcp, 1);
1483 		break;
1484 	default:
1485 # if defined(SPARC64)
1486 		fprintf(stderr, "syscall: unknown syscall trap %08lx %016lx\n", trap, sparc_regs.tpc);
1487 # else
1488 		fprintf(stderr, "syscall: unknown syscall trap %08lx %08lx\n", trap, sparc_regs.pc);
1489 # endif
1490 		return -1;
1491 	}
1492 
1493 	/* Extract the system call number from the registers. */
1494 	if (trap == 0x91d02027)
1495 		scno = 156;
1496 	else
1497 		scno = sparc_regs.u_regs[U_REG_G1];
1498 	if (scno == 0) {
1499 		scno = sparc_regs.u_regs[U_REG_O0];
1500 		memmove(&sparc_regs.u_regs[U_REG_O0], &sparc_regs.u_regs[U_REG_O1], 7*sizeof(sparc_regs.u_regs[0]));
1501 	}
1502 #elif defined(HPPA)
1503 	if (upeek(tcp->pid, PT_GR20, &scno) < 0)
1504 		return -1;
1505 #elif defined(SH)
1506 	/*
1507 	 * In the new syscall ABI, the system call number is in R3.
1508 	 */
1509 	if (upeek(tcp->pid, 4*(REG_REG0+3), &scno) < 0)
1510 		return -1;
1511 
1512 	if (scno < 0) {
1513 		/* Odd as it may seem, a glibc bug has been known to cause
1514 		   glibc to issue bogus negative syscall numbers.  So for
1515 		   our purposes, make strace print what it *should* have been */
1516 		long correct_scno = (scno & 0xff);
1517 		if (debug_flag)
1518 			fprintf(stderr,
1519 				"Detected glibc bug: bogus system call"
1520 				" number = %ld, correcting to %ld\n",
1521 				scno,
1522 				correct_scno);
1523 		scno = correct_scno;
1524 	}
1525 #elif defined(SH64)
1526 	if (upeek(tcp->pid, REG_SYSCALL, &scno) < 0)
1527 		return -1;
1528 	scno &= 0xFFFF;
1529 #elif defined(CRISV10) || defined(CRISV32)
1530 	if (upeek(tcp->pid, 4*PT_R9, &scno) < 0)
1531 		return -1;
1532 #elif defined(TILE)
1533 	int currpers;
1534 	scno = tile_regs.regs[10];
1535 # ifdef __tilepro__
1536 	currpers = 1;
1537 # else
1538 #  ifndef PT_FLAGS_COMPAT
1539 #   define PT_FLAGS_COMPAT 0x10000  /* from Linux 3.8 on */
1540 #  endif
1541 	if (tile_regs.flags & PT_FLAGS_COMPAT)
1542 		currpers = 1;
1543 	else
1544 		currpers = 0;
1545 # endif
1546 	update_personality(tcp, currpers);
1547 #elif defined(MICROBLAZE)
1548 	if (upeek(tcp->pid, 0, &scno) < 0)
1549 		return -1;
1550 #elif defined(OR1K)
1551 	scno = or1k_regs.gpr[11];
1552 #elif defined(METAG)
1553 	scno = metag_regs.dx[0][1];	/* syscall number in D1Re0 (D1.0) */
1554 #elif defined(XTENSA)
1555 	if (upeek(tcp->pid, SYSCALL_NR, &scno) < 0)
1556 		return -1;
1557 # elif defined(ARC)
1558 	scno = arc_regs.scratch.r8;
1559 #endif
1560 
1561 	tcp->scno = scno;
1562 	if (SCNO_IS_VALID(tcp->scno)) {
1563 		tcp->s_ent = &sysent[scno];
1564 		tcp->qual_flg = qual_flags[scno];
1565 	} else {
1566 		static const struct_sysent unknown = {
1567 			.nargs = MAX_ARGS,
1568 			.sys_flags = 0,
1569 			.sys_func = printargs,
1570 			.sys_name = "unknown", /* not used */
1571 		};
1572 		tcp->s_ent = &unknown;
1573 		tcp->qual_flg = UNDEFINED_SCNO | QUAL_RAW | DEFAULT_QUAL_FLAGS;
1574 	}
1575 	return 1;
1576 }
1577 
1578 /* Called at each syscall entry.
1579  * Returns:
1580  * 0: "ignore this ptrace stop", bail out of trace_syscall_entering() silently.
1581  * 1: ok, continue in trace_syscall_entering().
1582  * other: error, trace_syscall_entering() should print error indicator
1583  *    ("????" etc) and bail out.
1584  */
1585 static int
syscall_fixup_on_sysenter(struct tcb * tcp)1586 syscall_fixup_on_sysenter(struct tcb *tcp)
1587 {
1588 	/* A common case of "not a syscall entry" is post-execve SIGTRAP */
1589 #if defined(I386)
1590 	if (i386_regs.eax != -ENOSYS) {
1591 		if (debug_flag)
1592 			fprintf(stderr, "not a syscall entry (eax = %ld)\n", i386_regs.eax);
1593 		return 0;
1594 	}
1595 #elif defined(X86_64) || defined(X32)
1596 	{
1597 		long rax;
1598 		if (x86_io.iov_len == sizeof(i386_regs)) {
1599 			/* Sign extend from 32 bits */
1600 			rax = (int32_t)i386_regs.eax;
1601 		} else {
1602 			/* Note: in X32 build, this truncates 64 to 32 bits */
1603 			rax = x86_64_regs.rax;
1604 		}
1605 		if (rax != -ENOSYS) {
1606 			if (debug_flag)
1607 				fprintf(stderr, "not a syscall entry (rax = %ld)\n", rax);
1608 			return 0;
1609 		}
1610 	}
1611 #elif defined(M68K)
1612 	/* TODO? Eliminate upeek's in arches below like we did in x86 */
1613 	if (upeek(tcp->pid, 4*PT_D0, &m68k_d0) < 0)
1614 		return -1;
1615 	if (m68k_d0 != -ENOSYS) {
1616 		if (debug_flag)
1617 			fprintf(stderr, "not a syscall entry (d0 = %ld)\n", m68k_d0);
1618 		return 0;
1619 	}
1620 #elif defined(IA64)
1621 	if (upeek(tcp->pid, PT_R10, &ia64_r10) < 0)
1622 		return -1;
1623 	if (upeek(tcp->pid, PT_R8, &ia64_r8) < 0)
1624 		return -1;
1625 	if (ia64_ia32mode && ia64_r8 != -ENOSYS) {
1626 		if (debug_flag)
1627 			fprintf(stderr, "not a syscall entry (r8 = %ld)\n", ia64_r8);
1628 		return 0;
1629 	}
1630 #elif defined(CRISV10) || defined(CRISV32)
1631 	if (upeek(tcp->pid, 4*PT_R10, &cris_r10) < 0)
1632 		return -1;
1633 	if (cris_r10 != -ENOSYS) {
1634 		if (debug_flag)
1635 			fprintf(stderr, "not a syscall entry (r10 = %ld)\n", cris_r10);
1636 		return 0;
1637 	}
1638 #elif defined(MICROBLAZE)
1639 	if (upeek(tcp->pid, 3 * 4, &microblaze_r3) < 0)
1640 		return -1;
1641 	if (microblaze_r3 != -ENOSYS) {
1642 		if (debug_flag)
1643 			fprintf(stderr, "not a syscall entry (r3 = %ld)\n", microblaze_r3);
1644 		return 0;
1645 	}
1646 #endif
1647 	return 1;
1648 }
1649 
1650 static void
internal_fork(struct tcb * tcp)1651 internal_fork(struct tcb *tcp)
1652 {
1653 #if defined S390 || defined S390X || defined CRISV10 || defined CRISV32
1654 # define ARG_FLAGS	1
1655 #else
1656 # define ARG_FLAGS	0
1657 #endif
1658 #ifndef CLONE_UNTRACED
1659 # define CLONE_UNTRACED	0x00800000
1660 #endif
1661 	if ((ptrace_setoptions
1662 	    & (PTRACE_O_TRACECLONE | PTRACE_O_TRACEFORK | PTRACE_O_TRACEVFORK))
1663 	   == (PTRACE_O_TRACECLONE | PTRACE_O_TRACEFORK | PTRACE_O_TRACEVFORK))
1664 		return;
1665 
1666 	if (!followfork)
1667 		return;
1668 
1669 	if (entering(tcp)) {
1670 		/*
1671 		 * We won't see the new child if clone is called with
1672 		 * CLONE_UNTRACED, so we keep the same logic with that option
1673 		 * and don't trace it.
1674 		 */
1675 		if ((tcp->s_ent->sys_func == sys_clone)
1676 		 && (tcp->u_arg[ARG_FLAGS] & CLONE_UNTRACED)
1677 		)
1678 			return;
1679 		setbpt(tcp);
1680 	} else {
1681 		if (tcp->flags & TCB_BPTSET)
1682 			clearbpt(tcp);
1683 	}
1684 }
1685 
1686 #if defined(TCB_WAITEXECVE)
1687 static void
internal_exec(struct tcb * tcp)1688 internal_exec(struct tcb *tcp)
1689 {
1690 	/* Maybe we have post-execve SIGTRAP suppressed? */
1691 	if (ptrace_setoptions & PTRACE_O_TRACEEXEC)
1692 		return; /* yes, no need to do anything */
1693 
1694 	if (exiting(tcp) && syserror(tcp))
1695 		/* Error in execve, no post-execve SIGTRAP expected */
1696 		tcp->flags &= ~TCB_WAITEXECVE;
1697 	else
1698 		tcp->flags |= TCB_WAITEXECVE;
1699 }
1700 #endif
1701 
1702 static void
syscall_fixup_for_fork_exec(struct tcb * tcp)1703 syscall_fixup_for_fork_exec(struct tcb *tcp)
1704 {
1705 	/*
1706 	 * We must always trace a few critical system calls in order to
1707 	 * correctly support following forks in the presence of tracing
1708 	 * qualifiers.
1709 	 */
1710 	int (*func)();
1711 
1712 	func = tcp->s_ent->sys_func;
1713 
1714 	if (   sys_fork == func
1715 	    || sys_clone == func
1716 	   ) {
1717 		internal_fork(tcp);
1718 		return;
1719 	}
1720 
1721 #if defined(TCB_WAITEXECVE)
1722 	if (   sys_execve == func
1723 # if defined(SPARC) || defined(SPARC64)
1724 	    || sys_execv == func
1725 # endif
1726 	   ) {
1727 		internal_exec(tcp);
1728 		return;
1729 	}
1730 #endif
1731 }
1732 
1733 /* Return -1 on error or 1 on success (never 0!) */
1734 static int
get_syscall_args(struct tcb * tcp)1735 get_syscall_args(struct tcb *tcp)
1736 {
1737 	int i, nargs;
1738 
1739 	nargs = tcp->s_ent->nargs;
1740 
1741 #if defined(S390) || defined(S390X)
1742 	for (i = 0; i < nargs; ++i)
1743 		if (upeek(tcp->pid, i==0 ? PT_ORIGGPR2 : PT_GPR2 + i*sizeof(long), &tcp->u_arg[i]) < 0)
1744 			return -1;
1745 #elif defined(ALPHA)
1746 	for (i = 0; i < nargs; ++i)
1747 		if (upeek(tcp->pid, REG_A0+i, &tcp->u_arg[i]) < 0)
1748 			return -1;
1749 #elif defined(IA64)
1750 	if (!ia64_ia32mode) {
1751 		unsigned long *out0, cfm, sof, sol;
1752 		long rbs_end;
1753 		/* be backwards compatible with kernel < 2.4.4... */
1754 #		ifndef PT_RBS_END
1755 #		  define PT_RBS_END	PT_AR_BSP
1756 #		endif
1757 
1758 		if (upeek(tcp->pid, PT_RBS_END, &rbs_end) < 0)
1759 			return -1;
1760 		if (upeek(tcp->pid, PT_CFM, (long *) &cfm) < 0)
1761 			return -1;
1762 
1763 		sof = (cfm >> 0) & 0x7f;
1764 		sol = (cfm >> 7) & 0x7f;
1765 		out0 = ia64_rse_skip_regs((unsigned long *) rbs_end, -sof + sol);
1766 
1767 		for (i = 0; i < nargs; ++i) {
1768 			if (umoven(tcp, (unsigned long) ia64_rse_skip_regs(out0, i),
1769 				   sizeof(long), (char *) &tcp->u_arg[i]) < 0)
1770 				return -1;
1771 		}
1772 	} else {
1773 		static const int argreg[MAX_ARGS] = { PT_R11 /* EBX = out0 */,
1774 						      PT_R9  /* ECX = out1 */,
1775 						      PT_R10 /* EDX = out2 */,
1776 						      PT_R14 /* ESI = out3 */,
1777 						      PT_R15 /* EDI = out4 */,
1778 						      PT_R13 /* EBP = out5 */};
1779 
1780 		for (i = 0; i < nargs; ++i) {
1781 			if (upeek(tcp->pid, argreg[i], &tcp->u_arg[i]) < 0)
1782 				return -1;
1783 			/* truncate away IVE sign-extension */
1784 			tcp->u_arg[i] &= 0xffffffff;
1785 		}
1786 	}
1787 #elif defined(LINUX_MIPSN32) || defined(LINUX_MIPSN64)
1788 	/* N32 and N64 both use up to six registers.  */
1789 	unsigned long long regs[38];
1790 
1791 	if (ptrace(PTRACE_GETREGS, tcp->pid, NULL, (long) &regs) < 0)
1792 		return -1;
1793 
1794 	for (i = 0; i < nargs; ++i) {
1795 		tcp->u_arg[i] = regs[REG_A0 + i];
1796 # if defined(LINUX_MIPSN32)
1797 		tcp->ext_arg[i] = regs[REG_A0 + i];
1798 # endif
1799 	}
1800 #elif defined(MIPS)
1801 	if (nargs > 4) {
1802 		long sp;
1803 
1804 		if (upeek(tcp->pid, REG_SP, &sp) < 0)
1805 			return -1;
1806 		for (i = 0; i < 4; ++i)
1807 			if (upeek(tcp->pid, REG_A0 + i, &tcp->u_arg[i]) < 0)
1808 				return -1;
1809 		umoven(tcp, sp + 16, (nargs - 4) * sizeof(tcp->u_arg[0]),
1810 		       (char *)(tcp->u_arg + 4));
1811 	} else {
1812 		for (i = 0; i < nargs; ++i)
1813 			if (upeek(tcp->pid, REG_A0 + i, &tcp->u_arg[i]) < 0)
1814 				return -1;
1815 	}
1816 #elif defined(POWERPC)
1817 	(void)i;
1818 	(void)nargs;
1819 	tcp->u_arg[0] = ppc_regs.orig_gpr3;
1820 	tcp->u_arg[1] = ppc_regs.gpr[4];
1821 	tcp->u_arg[2] = ppc_regs.gpr[5];
1822 	tcp->u_arg[3] = ppc_regs.gpr[6];
1823 	tcp->u_arg[4] = ppc_regs.gpr[7];
1824 	tcp->u_arg[5] = ppc_regs.gpr[8];
1825 #elif defined(SPARC) || defined(SPARC64)
1826 	for (i = 0; i < nargs; ++i)
1827 		tcp->u_arg[i] = sparc_regs.u_regs[U_REG_O0 + i];
1828 #elif defined(HPPA)
1829 	for (i = 0; i < nargs; ++i)
1830 		if (upeek(tcp->pid, PT_GR26-4*i, &tcp->u_arg[i]) < 0)
1831 			return -1;
1832 #elif defined(ARM) || defined(AARCH64)
1833 # if defined(AARCH64)
1834 	if (tcp->currpers == 1)
1835 		for (i = 0; i < nargs; ++i)
1836 			tcp->u_arg[i] = aarch64_regs.regs[i];
1837 	else
1838 # endif
1839 	for (i = 0; i < nargs; ++i)
1840 		tcp->u_arg[i] = arm_regs.uregs[i];
1841 #elif defined(AVR32)
1842 	(void)i;
1843 	(void)nargs;
1844 	tcp->u_arg[0] = avr32_regs.r12;
1845 	tcp->u_arg[1] = avr32_regs.r11;
1846 	tcp->u_arg[2] = avr32_regs.r10;
1847 	tcp->u_arg[3] = avr32_regs.r9;
1848 	tcp->u_arg[4] = avr32_regs.r5;
1849 	tcp->u_arg[5] = avr32_regs.r3;
1850 #elif defined(BFIN)
1851 	static const int argreg[MAX_ARGS] = { PT_R0, PT_R1, PT_R2, PT_R3, PT_R4, PT_R5 };
1852 
1853 	for (i = 0; i < nargs; ++i)
1854 		if (upeek(tcp->pid, argreg[i], &tcp->u_arg[i]) < 0)
1855 			return -1;
1856 #elif defined(SH)
1857 	static const int syscall_regs[MAX_ARGS] = {
1858 		4 * (REG_REG0+4), 4 * (REG_REG0+5), 4 * (REG_REG0+6),
1859 		4 * (REG_REG0+7), 4 * (REG_REG0  ), 4 * (REG_REG0+1)
1860 	};
1861 
1862 	for (i = 0; i < nargs; ++i)
1863 		if (upeek(tcp->pid, syscall_regs[i], &tcp->u_arg[i]) < 0)
1864 			return -1;
1865 #elif defined(SH64)
1866 	int i;
1867 	/* Registers used by SH5 Linux system calls for parameters */
1868 	static const int syscall_regs[MAX_ARGS] = { 2, 3, 4, 5, 6, 7 };
1869 
1870 	for (i = 0; i < nargs; ++i)
1871 		if (upeek(tcp->pid, REG_GENERAL(syscall_regs[i]), &tcp->u_arg[i]) < 0)
1872 			return -1;
1873 #elif defined(I386)
1874 	(void)i;
1875 	(void)nargs;
1876 	tcp->u_arg[0] = i386_regs.ebx;
1877 	tcp->u_arg[1] = i386_regs.ecx;
1878 	tcp->u_arg[2] = i386_regs.edx;
1879 	tcp->u_arg[3] = i386_regs.esi;
1880 	tcp->u_arg[4] = i386_regs.edi;
1881 	tcp->u_arg[5] = i386_regs.ebp;
1882 #elif defined(X86_64) || defined(X32)
1883 	(void)i;
1884 	(void)nargs;
1885 	if (x86_io.iov_len != sizeof(i386_regs)) {
1886 		/* x86-64 or x32 ABI */
1887 		tcp->u_arg[0] = x86_64_regs.rdi;
1888 		tcp->u_arg[1] = x86_64_regs.rsi;
1889 		tcp->u_arg[2] = x86_64_regs.rdx;
1890 		tcp->u_arg[3] = x86_64_regs.r10;
1891 		tcp->u_arg[4] = x86_64_regs.r8;
1892 		tcp->u_arg[5] = x86_64_regs.r9;
1893 #  ifdef X32
1894 		tcp->ext_arg[0] = x86_64_regs.rdi;
1895 		tcp->ext_arg[1] = x86_64_regs.rsi;
1896 		tcp->ext_arg[2] = x86_64_regs.rdx;
1897 		tcp->ext_arg[3] = x86_64_regs.r10;
1898 		tcp->ext_arg[4] = x86_64_regs.r8;
1899 		tcp->ext_arg[5] = x86_64_regs.r9;
1900 #  endif
1901 	} else {
1902 		/* i386 ABI */
1903 		/* Zero-extend from 32 bits */
1904 		/* Use widen_to_long(tcp->u_arg[N]) in syscall handlers
1905 		 * if you need to use *sign-extended* parameter.
1906 		 */
1907 		tcp->u_arg[0] = (long)(uint32_t)i386_regs.ebx;
1908 		tcp->u_arg[1] = (long)(uint32_t)i386_regs.ecx;
1909 		tcp->u_arg[2] = (long)(uint32_t)i386_regs.edx;
1910 		tcp->u_arg[3] = (long)(uint32_t)i386_regs.esi;
1911 		tcp->u_arg[4] = (long)(uint32_t)i386_regs.edi;
1912 		tcp->u_arg[5] = (long)(uint32_t)i386_regs.ebp;
1913 	}
1914 #elif defined(MICROBLAZE)
1915 	for (i = 0; i < nargs; ++i)
1916 		if (upeek(tcp->pid, (5 + i) * 4, &tcp->u_arg[i]) < 0)
1917 			return -1;
1918 #elif defined(CRISV10) || defined(CRISV32)
1919 	static const int crisregs[MAX_ARGS] = {
1920 		4*PT_ORIG_R10, 4*PT_R11, 4*PT_R12,
1921 		4*PT_R13     , 4*PT_MOF, 4*PT_SRP
1922 	};
1923 
1924 	for (i = 0; i < nargs; ++i)
1925 		if (upeek(tcp->pid, crisregs[i], &tcp->u_arg[i]) < 0)
1926 			return -1;
1927 #elif defined(TILE)
1928 	for (i = 0; i < nargs; ++i)
1929 		tcp->u_arg[i] = tile_regs.regs[i];
1930 #elif defined(M68K)
1931 	for (i = 0; i < nargs; ++i)
1932 		if (upeek(tcp->pid, (i < 5 ? i : i + 2)*4, &tcp->u_arg[i]) < 0)
1933 			return -1;
1934 #elif defined(OR1K)
1935 	(void)nargs;
1936 	for (i = 0; i < 6; ++i)
1937 		tcp->u_arg[i] = or1k_regs.gpr[3 + i];
1938 #elif defined(METAG)
1939 	for (i = 0; i < nargs; i++)
1940 		/* arguments go backwards from D1Ar1 (D1.3) */
1941 		tcp->u_arg[i] = ((unsigned long *)&metag_regs.dx[3][1])[-i];
1942 #elif defined(XTENSA)
1943 	/* arg0: a6, arg1: a3, arg2: a4, arg3: a5, arg4: a8, arg5: a9 */
1944 	static const int xtensaregs[MAX_ARGS] = { 6, 3, 4, 5, 8, 9 };
1945 	for (i = 0; i < nargs; ++i)
1946 		if (upeek(tcp->pid, REG_A_BASE + xtensaregs[i], &tcp->u_arg[i]) < 0)
1947 			return -1;
1948 # elif defined(ARC)
1949 	long *arc_args = &arc_regs.scratch.r0;
1950 	for (i = 0; i < nargs; ++i)
1951 		tcp->u_arg[i] = *arc_args--;
1952 
1953 #else /* Other architecture (32bits specific) */
1954 	for (i = 0; i < nargs; ++i)
1955 		if (upeek(tcp->pid, i*4, &tcp->u_arg[i]) < 0)
1956 			return -1;
1957 #endif
1958 	return 1;
1959 }
1960 
1961 static int
trace_syscall_entering(struct tcb * tcp)1962 trace_syscall_entering(struct tcb *tcp)
1963 {
1964 	int res, scno_good;
1965 
1966 #if defined TCB_WAITEXECVE
1967 	if (tcp->flags & TCB_WAITEXECVE) {
1968 		/* This is the post-execve SIGTRAP. */
1969 		tcp->flags &= ~TCB_WAITEXECVE;
1970 		return 0;
1971 	}
1972 #endif
1973 
1974 	scno_good = res = (get_regs_error ? -1 : get_scno(tcp));
1975 	if (res == 0)
1976 		return res;
1977 	if (res == 1) {
1978 		res = syscall_fixup_on_sysenter(tcp);
1979 		if (res == 0)
1980 			return res;
1981 		if (res == 1)
1982 			res = get_syscall_args(tcp);
1983 	}
1984 
1985 	if (res != 1) {
1986 		printleader(tcp);
1987 		if (scno_good != 1)
1988 			tprints("????" /* anti-trigraph gap */ "(");
1989 		else if (tcp->qual_flg & UNDEFINED_SCNO)
1990 			tprintf("%s(", undefined_scno_name(tcp));
1991 		else
1992 			tprintf("%s(", tcp->s_ent->sys_name);
1993 		/*
1994 		 * " <unavailable>" will be added later by the code which
1995 		 * detects ptrace errors.
1996 		 */
1997 		goto ret;
1998 	}
1999 
2000 	if (   sys_execve == tcp->s_ent->sys_func
2001 # if defined(SPARC) || defined(SPARC64)
2002 	    || sys_execv == tcp->s_ent->sys_func
2003 # endif
2004 	   ) {
2005 		hide_log_until_execve = 0;
2006 	}
2007 
2008 #if defined(SYS_socket_subcall) || defined(SYS_ipc_subcall)
2009 	while (1) {
2010 # ifdef SYS_socket_subcall
2011 		if (tcp->s_ent->sys_func == sys_socketcall) {
2012 			decode_socket_subcall(tcp);
2013 			break;
2014 		}
2015 # endif
2016 # ifdef SYS_ipc_subcall
2017 		if (tcp->s_ent->sys_func == sys_ipc) {
2018 			decode_ipc_subcall(tcp);
2019 			break;
2020 		}
2021 # endif
2022 		break;
2023 	}
2024 #endif
2025 
2026 	if (need_fork_exec_workarounds)
2027 		syscall_fixup_for_fork_exec(tcp);
2028 
2029 	if (!(tcp->qual_flg & QUAL_TRACE)
2030 	 || (tracing_paths && !pathtrace_match(tcp))
2031 	) {
2032 		tcp->flags |= TCB_INSYSCALL | TCB_FILTERED;
2033 		return 0;
2034 	}
2035 
2036 	tcp->flags &= ~TCB_FILTERED;
2037 
2038 	if (cflag == CFLAG_ONLY_STATS || hide_log_until_execve) {
2039 		res = 0;
2040 		goto ret;
2041 	}
2042 
2043 #ifdef USE_LIBUNWIND
2044 	if (stack_trace_enabled) {
2045 		if (tcp->s_ent->sys_flags & STACKTRACE_CAPTURE_ON_ENTER)
2046 			unwind_capture_stacktrace(tcp);
2047 	}
2048 #endif
2049 
2050 	printleader(tcp);
2051 	if (tcp->qual_flg & UNDEFINED_SCNO)
2052 		tprintf("%s(", undefined_scno_name(tcp));
2053 	else
2054 		tprintf("%s(", tcp->s_ent->sys_name);
2055 	if ((tcp->qual_flg & QUAL_RAW) && tcp->s_ent->sys_func != sys_exit)
2056 		res = printargs(tcp);
2057 	else
2058 		res = tcp->s_ent->sys_func(tcp);
2059 
2060 	fflush(tcp->outf);
2061  ret:
2062 	tcp->flags |= TCB_INSYSCALL;
2063 	/* Measure the entrance time as late as possible to avoid errors. */
2064 	if (Tflag || cflag)
2065 		gettimeofday(&tcp->etime, NULL);
2066 	return res;
2067 }
2068 
2069 /* Returns:
2070  * 1: ok, continue in trace_syscall_exiting().
2071  * -1: error, trace_syscall_exiting() should print error indicator
2072  *    ("????" etc) and bail out.
2073  */
2074 static int
get_syscall_result(struct tcb * tcp)2075 get_syscall_result(struct tcb *tcp)
2076 {
2077 #if defined(S390) || defined(S390X)
2078 	if (upeek(tcp->pid, PT_GPR2, &s390_gpr2) < 0)
2079 		return -1;
2080 #elif defined(POWERPC)
2081 	/* already done by get_regs */
2082 #elif defined(AVR32)
2083 	/* already done by get_regs */
2084 #elif defined(BFIN)
2085 	if (upeek(tcp->pid, PT_R0, &bfin_r0) < 0)
2086 		return -1;
2087 #elif defined(I386)
2088 	/* already done by get_regs */
2089 #elif defined(X86_64) || defined(X32)
2090 	/* already done by get_regs */
2091 #elif defined(IA64)
2092 #	define IA64_PSR_IS	((long)1 << 34)
2093 	long psr;
2094 	if (upeek(tcp->pid, PT_CR_IPSR, &psr) >= 0)
2095 		ia64_ia32mode = ((psr & IA64_PSR_IS) != 0);
2096 	if (upeek(tcp->pid, PT_R8, &ia64_r8) < 0)
2097 		return -1;
2098 	if (upeek(tcp->pid, PT_R10, &ia64_r10) < 0)
2099 		return -1;
2100 #elif defined(ARM)
2101 	/* already done by get_regs */
2102 #elif defined(AARCH64)
2103 	/* register reading already done by get_regs */
2104 
2105 	/* Used to do this, but we did it on syscall entry already: */
2106 	/* We are in 64-bit mode (personality 1) if register struct is aarch64_regs,
2107 	 * else it's personality 0.
2108 	 */
2109 	/*update_personality(tcp, aarch64_io.iov_len == sizeof(aarch64_regs));*/
2110 #elif defined(M68K)
2111 	if (upeek(tcp->pid, 4*PT_D0, &m68k_d0) < 0)
2112 		return -1;
2113 #elif defined(LINUX_MIPSN32)
2114 	unsigned long long regs[38];
2115 
2116 	if (ptrace(PTRACE_GETREGS, tcp->pid, NULL, (long) &regs) < 0)
2117 		return -1;
2118 	mips_a3 = regs[REG_A3];
2119 	mips_r2 = regs[REG_V0];
2120 #elif defined(MIPS)
2121 	if (upeek(tcp->pid, REG_A3, &mips_a3) < 0)
2122 		return -1;
2123 	if (upeek(tcp->pid, REG_V0, &mips_r2) < 0)
2124 		return -1;
2125 #elif defined(ALPHA)
2126 	if (upeek(tcp->pid, REG_A3, &alpha_a3) < 0)
2127 		return -1;
2128 	if (upeek(tcp->pid, REG_R0, &alpha_r0) < 0)
2129 		return -1;
2130 #elif defined(SPARC) || defined(SPARC64)
2131 	/* already done by get_regs */
2132 #elif defined(HPPA)
2133 	if (upeek(tcp->pid, PT_GR28, &hppa_r28) < 0)
2134 		return -1;
2135 #elif defined(SH)
2136 	/* new syscall ABI returns result in R0 */
2137 	if (upeek(tcp->pid, 4*REG_REG0, (long *)&sh_r0) < 0)
2138 		return -1;
2139 #elif defined(SH64)
2140 	/* ABI defines result returned in r9 */
2141 	if (upeek(tcp->pid, REG_GENERAL(9), (long *)&sh64_r9) < 0)
2142 		return -1;
2143 #elif defined(CRISV10) || defined(CRISV32)
2144 	if (upeek(tcp->pid, 4*PT_R10, &cris_r10) < 0)
2145 		return -1;
2146 #elif defined(TILE)
2147 	/* already done by get_regs */
2148 #elif defined(MICROBLAZE)
2149 	if (upeek(tcp->pid, 3 * 4, &microblaze_r3) < 0)
2150 		return -1;
2151 #elif defined(OR1K)
2152 	/* already done by get_regs */
2153 #elif defined(METAG)
2154 	/* already done by get_regs */
2155 #elif defined(XTENSA)
2156 	if (upeek(tcp->pid, REG_A_BASE + 2, &xtensa_a2) < 0)
2157 		return -1;
2158 #elif defined(ARC)
2159 	/* already done by get_regs */
2160 #endif
2161 	return 1;
2162 }
2163 
2164 /* Called at each syscall exit */
2165 static void
syscall_fixup_on_sysexit(struct tcb * tcp)2166 syscall_fixup_on_sysexit(struct tcb *tcp)
2167 {
2168 #if defined(S390) || defined(S390X)
2169 	if ((tcp->flags & TCB_WAITEXECVE)
2170 		 && (s390_gpr2 == -ENOSYS || s390_gpr2 == tcp->scno)) {
2171 		/*
2172 		 * Return from execve.
2173 		 * Fake a return value of zero.  We leave the TCB_WAITEXECVE
2174 		 * flag set for the post-execve SIGTRAP to see and reset.
2175 		 */
2176 		s390_gpr2 = 0;
2177 	}
2178 #endif
2179 }
2180 
2181 /*
2182  * Check the syscall return value register value for whether it is
2183  * a negated errno code indicating an error, or a success return value.
2184  */
2185 static inline int
is_negated_errno(unsigned long int val)2186 is_negated_errno(unsigned long int val)
2187 {
2188 	unsigned long int max = -(long int) nerrnos;
2189 #if SUPPORTED_PERSONALITIES > 1 && SIZEOF_LONG > 4
2190 	if (current_wordsize < sizeof(val)) {
2191 		val = (unsigned int) val;
2192 		max = (unsigned int) max;
2193 	}
2194 #endif
2195 	return val > max;
2196 }
2197 
2198 #if defined(X32)
2199 static inline int
is_negated_errno_x32(unsigned long long val)2200 is_negated_errno_x32(unsigned long long val)
2201 {
2202 	unsigned long long max = -(long long) nerrnos;
2203 	/*
2204 	 * current_wordsize is 4 even in personality 0 (native X32)
2205 	 * but truncation _must not_ be done in it.
2206 	 * can't check current_wordsize here!
2207 	 */
2208 	if (current_personality != 0) {
2209 		val = (uint32_t) val;
2210 		max = (uint32_t) max;
2211 	}
2212 	return val > max;
2213 }
2214 #endif
2215 
2216 /* Returns:
2217  * 1: ok, continue in trace_syscall_exiting().
2218  * -1: error, trace_syscall_exiting() should print error indicator
2219  *    ("????" etc) and bail out.
2220  */
2221 static void
get_error(struct tcb * tcp)2222 get_error(struct tcb *tcp)
2223 {
2224 	int u_error = 0;
2225 	int check_errno = 1;
2226 	if (tcp->s_ent->sys_flags & SYSCALL_NEVER_FAILS) {
2227 		check_errno = 0;
2228 	}
2229 #if defined(S390) || defined(S390X)
2230 	if (check_errno && is_negated_errno(s390_gpr2)) {
2231 		tcp->u_rval = -1;
2232 		u_error = -s390_gpr2;
2233 	}
2234 	else {
2235 		tcp->u_rval = s390_gpr2;
2236 	}
2237 #elif defined(I386)
2238 	if (check_errno && is_negated_errno(i386_regs.eax)) {
2239 		tcp->u_rval = -1;
2240 		u_error = -i386_regs.eax;
2241 	}
2242 	else {
2243 		tcp->u_rval = i386_regs.eax;
2244 	}
2245 #elif defined(X86_64)
2246 	long rax;
2247 	if (x86_io.iov_len == sizeof(i386_regs)) {
2248 		/* Sign extend from 32 bits */
2249 		rax = (int32_t)i386_regs.eax;
2250 	} else {
2251 		rax = x86_64_regs.rax;
2252 	}
2253 	if (check_errno && is_negated_errno(rax)) {
2254 		tcp->u_rval = -1;
2255 		u_error = -rax;
2256 	}
2257 	else {
2258 		tcp->u_rval = rax;
2259 	}
2260 #elif defined(X32)
2261 	/* In X32, return value is 64-bit (llseek uses one).
2262 	 * Using merely "long rax" would not work.
2263 	 */
2264 	long long rax;
2265 	if (x86_io.iov_len == sizeof(i386_regs)) {
2266 		/* Sign extend from 32 bits */
2267 		rax = (int32_t)i386_regs.eax;
2268 	} else {
2269 		rax = x86_64_regs.rax;
2270 	}
2271 	/* Careful: is_negated_errno() works only on longs */
2272 	if (check_errno && is_negated_errno_x32(rax)) {
2273 		tcp->u_rval = -1;
2274 		u_error = -rax;
2275 	}
2276 	else {
2277 		tcp->u_rval = rax; /* truncating */
2278 		tcp->u_lrval = rax;
2279 	}
2280 #elif defined(IA64)
2281 	if (ia64_ia32mode) {
2282 		int err;
2283 
2284 		err = (int)ia64_r8;
2285 		if (check_errno && is_negated_errno(err)) {
2286 			tcp->u_rval = -1;
2287 			u_error = -err;
2288 		}
2289 		else {
2290 			tcp->u_rval = err;
2291 		}
2292 	} else {
2293 		if (check_errno && ia64_r10) {
2294 			tcp->u_rval = -1;
2295 			u_error = ia64_r8;
2296 		} else {
2297 			tcp->u_rval = ia64_r8;
2298 		}
2299 	}
2300 #elif defined(MIPS)
2301 	if (check_errno && mips_a3) {
2302 		tcp->u_rval = -1;
2303 		u_error = mips_r2;
2304 	} else {
2305 		tcp->u_rval = mips_r2;
2306 # if defined(LINUX_MIPSN32)
2307 		tcp->u_lrval = mips_r2;
2308 # endif
2309 	}
2310 #elif defined(POWERPC)
2311 	if (check_errno && (ppc_regs.ccr & 0x10000000)) {
2312 		tcp->u_rval = -1;
2313 		u_error = ppc_regs.gpr[3];
2314 	}
2315 	else {
2316 		tcp->u_rval = ppc_regs.gpr[3];
2317 	}
2318 #elif defined(M68K)
2319 	if (check_errno && is_negated_errno(m68k_d0)) {
2320 		tcp->u_rval = -1;
2321 		u_error = -m68k_d0;
2322 	}
2323 	else {
2324 		tcp->u_rval = m68k_d0;
2325 	}
2326 #elif defined(ARM) || defined(AARCH64)
2327 # if defined(AARCH64)
2328 	if (tcp->currpers == 1) {
2329 		if (check_errno && is_negated_errno(aarch64_regs.regs[0])) {
2330 			tcp->u_rval = -1;
2331 			u_error = -aarch64_regs.regs[0];
2332 		}
2333 		else {
2334 			tcp->u_rval = aarch64_regs.regs[0];
2335 		}
2336 	}
2337 	else
2338 # endif
2339 	{
2340 		if (check_errno && is_negated_errno(arm_regs.ARM_r0)) {
2341 			tcp->u_rval = -1;
2342 			u_error = -arm_regs.ARM_r0;
2343 		}
2344 		else {
2345 			tcp->u_rval = arm_regs.ARM_r0;
2346 		}
2347 	}
2348 #elif defined(AVR32)
2349 	if (check_errno && avr32_regs.r12 && (unsigned) -avr32_regs.r12 < nerrnos) {
2350 		tcp->u_rval = -1;
2351 		u_error = -avr32_regs.r12;
2352 	}
2353 	else {
2354 		tcp->u_rval = avr32_regs.r12;
2355 	}
2356 #elif defined(BFIN)
2357 	if (check_errno && is_negated_errno(bfin_r0)) {
2358 		tcp->u_rval = -1;
2359 		u_error = -bfin_r0;
2360 	} else {
2361 		tcp->u_rval = bfin_r0;
2362 	}
2363 #elif defined(ALPHA)
2364 	if (check_errno && alpha_a3) {
2365 		tcp->u_rval = -1;
2366 		u_error = alpha_r0;
2367 	}
2368 	else {
2369 		tcp->u_rval = alpha_r0;
2370 	}
2371 #elif defined(SPARC)
2372 	if (check_errno && sparc_regs.psr & PSR_C) {
2373 		tcp->u_rval = -1;
2374 		u_error = sparc_regs.u_regs[U_REG_O0];
2375 	}
2376 	else {
2377 		tcp->u_rval = sparc_regs.u_regs[U_REG_O0];
2378 	}
2379 #elif defined(SPARC64)
2380 	if (check_errno && sparc_regs.tstate & 0x1100000000UL) {
2381 		tcp->u_rval = -1;
2382 		u_error = sparc_regs.u_regs[U_REG_O0];
2383 	}
2384 	else {
2385 		tcp->u_rval = sparc_regs.u_regs[U_REG_O0];
2386 	}
2387 #elif defined(HPPA)
2388 	if (check_errno && is_negated_errno(hppa_r28)) {
2389 		tcp->u_rval = -1;
2390 		u_error = -hppa_r28;
2391 	}
2392 	else {
2393 		tcp->u_rval = hppa_r28;
2394 	}
2395 #elif defined(SH)
2396 	if (check_errno && is_negated_errno(sh_r0)) {
2397 		tcp->u_rval = -1;
2398 		u_error = -sh_r0;
2399 	}
2400 	else {
2401 		tcp->u_rval = sh_r0;
2402 	}
2403 #elif defined(SH64)
2404 	if (check_errno && is_negated_errno(sh64_r9)) {
2405 		tcp->u_rval = -1;
2406 		u_error = -sh64_r9;
2407 	}
2408 	else {
2409 		tcp->u_rval = sh64_r9;
2410 	}
2411 #elif defined(METAG)
2412 	/* result pointer in D0Re0 (D0.0) */
2413 	if (check_errno && is_negated_errno(metag_regs.dx[0][0])) {
2414 		tcp->u_rval = -1;
2415 		u_error = -metag_regs.dx[0][0];
2416 	}
2417 	else {
2418 		tcp->u_rval = metag_regs.dx[0][0];
2419 	}
2420 #elif defined(CRISV10) || defined(CRISV32)
2421 	if (check_errno && cris_r10 && (unsigned) -cris_r10 < nerrnos) {
2422 		tcp->u_rval = -1;
2423 		u_error = -cris_r10;
2424 	}
2425 	else {
2426 		tcp->u_rval = cris_r10;
2427 	}
2428 #elif defined(TILE)
2429 	/*
2430 	 * The standard tile calling convention returns the value (or negative
2431 	 * errno) in r0, and zero (or positive errno) in r1.
2432 	 * Until at least kernel 3.8, however, the r1 value is not reflected
2433 	 * in ptregs at this point, so we use r0 here.
2434 	 */
2435 	if (check_errno && is_negated_errno(tile_regs.regs[0])) {
2436 		tcp->u_rval = -1;
2437 		u_error = -tile_regs.regs[0];
2438 	} else {
2439 		tcp->u_rval = tile_regs.regs[0];
2440 	}
2441 #elif defined(MICROBLAZE)
2442 	if (check_errno && is_negated_errno(microblaze_r3)) {
2443 		tcp->u_rval = -1;
2444 		u_error = -microblaze_r3;
2445 	}
2446 	else {
2447 		tcp->u_rval = microblaze_r3;
2448 	}
2449 #elif defined(OR1K)
2450 	if (check_errno && is_negated_errno(or1k_regs.gpr[11])) {
2451 		tcp->u_rval = -1;
2452 		u_error = -or1k_regs.gpr[11];
2453 	}
2454 	else {
2455 		tcp->u_rval = or1k_regs.gpr[11];
2456 	}
2457 #elif defined(XTENSA)
2458 	if (check_errno && is_negated_errno(xtensa_a2)) {
2459 		tcp->u_rval = -1;
2460 		u_error = -xtensa_a2;
2461 	}
2462 	else {
2463 		tcp->u_rval = xtensa_a2;
2464 	}
2465 #elif defined(ARC)
2466 	if (check_errno && is_negated_errno(arc_regs.scratch.r0)) {
2467 		tcp->u_rval = -1;
2468 		u_error = -arc_regs.scratch.r0;
2469 	}
2470 	else {
2471 		tcp->u_rval = arc_regs.scratch.r0;
2472 	}
2473 #endif
2474 	tcp->u_error = u_error;
2475 }
2476 
2477 static void
dumpio(struct tcb * tcp)2478 dumpio(struct tcb *tcp)
2479 {
2480 	int (*func)();
2481 
2482 	if (syserror(tcp))
2483 		return;
2484 	if ((unsigned long) tcp->u_arg[0] >= num_quals)
2485 		return;
2486 	func = tcp->s_ent->sys_func;
2487 	if (func == printargs)
2488 		return;
2489 	if (qual_flags[tcp->u_arg[0]] & QUAL_READ) {
2490 		if (func == sys_read ||
2491 		    func == sys_pread ||
2492 		    func == sys_recv ||
2493 		    func == sys_recvfrom)
2494 			dumpstr(tcp, tcp->u_arg[1], tcp->u_rval);
2495 		else if (func == sys_readv)
2496 			dumpiov(tcp, tcp->u_arg[2], tcp->u_arg[1]);
2497 		return;
2498 	}
2499 	if (qual_flags[tcp->u_arg[0]] & QUAL_WRITE) {
2500 		if (func == sys_write ||
2501 		    func == sys_pwrite ||
2502 		    func == sys_send ||
2503 		    func == sys_sendto)
2504 			dumpstr(tcp, tcp->u_arg[1], tcp->u_arg[2]);
2505 		else if (func == sys_writev)
2506 			dumpiov(tcp, tcp->u_arg[2], tcp->u_arg[1]);
2507 		return;
2508 	}
2509 }
2510 
2511 static int
trace_syscall_exiting(struct tcb * tcp)2512 trace_syscall_exiting(struct tcb *tcp)
2513 {
2514 	int sys_res;
2515 	struct timeval tv;
2516 	int res;
2517 	long u_error;
2518 
2519 	/* Measure the exit time as early as possible to avoid errors. */
2520 	if (Tflag || cflag)
2521 		gettimeofday(&tv, NULL);
2522 
2523 #ifdef USE_LIBUNWIND
2524 	if (stack_trace_enabled) {
2525 		if (tcp->s_ent->sys_flags & STACKTRACE_INVALIDATE_CACHE)
2526 			unwind_cache_invalidate(tcp);
2527 	}
2528 #endif
2529 
2530 #if SUPPORTED_PERSONALITIES > 1
2531 	update_personality(tcp, tcp->currpers);
2532 #endif
2533 	res = (get_regs_error ? -1 : get_syscall_result(tcp));
2534 	if (res == 1) {
2535 		syscall_fixup_on_sysexit(tcp); /* never fails */
2536 		get_error(tcp); /* never fails */
2537 		if (need_fork_exec_workarounds)
2538 			syscall_fixup_for_fork_exec(tcp);
2539 		if (filtered(tcp) || hide_log_until_execve)
2540 			goto ret;
2541 	}
2542 
2543 	if (cflag) {
2544 		count_syscall(tcp, &tv);
2545 		if (cflag == CFLAG_ONLY_STATS) {
2546 			goto ret;
2547 		}
2548 	}
2549 
2550 	/* If not in -ff mode, and printing_tcp != tcp,
2551 	 * then the log currently does not end with output
2552 	 * of _our syscall entry_, but with something else.
2553 	 * We need to say which syscall's return is this.
2554 	 *
2555 	 * Forced reprinting via TCB_REPRINT is used only by
2556 	 * "strace -ff -oLOG test/threaded_execve" corner case.
2557 	 * It's the only case when -ff mode needs reprinting.
2558 	 */
2559 	if ((followfork < 2 && printing_tcp != tcp) || (tcp->flags & TCB_REPRINT)) {
2560 		tcp->flags &= ~TCB_REPRINT;
2561 		printleader(tcp);
2562 		if (tcp->qual_flg & UNDEFINED_SCNO)
2563 			tprintf("<... %s resumed> ", undefined_scno_name(tcp));
2564 		else
2565 			tprintf("<... %s resumed> ", tcp->s_ent->sys_name);
2566 	}
2567 	printing_tcp = tcp;
2568 
2569 	if (res != 1) {
2570 		/* There was error in one of prior ptrace ops */
2571 		tprints(") ");
2572 		tabto();
2573 		tprints("= ? <unavailable>\n");
2574 		line_ended();
2575 		tcp->flags &= ~TCB_INSYSCALL;
2576 		return res;
2577 	}
2578 
2579 	sys_res = 0;
2580 	if (tcp->qual_flg & QUAL_RAW) {
2581 		/* sys_res = printargs(tcp); - but it's nop on sysexit */
2582 	} else {
2583 	/* FIXME: not_failing_only (IOW, option -z) is broken:
2584 	 * failure of syscall is known only after syscall return.
2585 	 * Thus we end up with something like this on, say, ENOENT:
2586 	 *     open("doesnt_exist", O_RDONLY <unfinished ...>
2587 	 *     {next syscall decode}
2588 	 * whereas the intended result is that open(...) line
2589 	 * is not shown at all.
2590 	 */
2591 		if (not_failing_only && tcp->u_error)
2592 			goto ret;	/* ignore failed syscalls */
2593 		sys_res = tcp->s_ent->sys_func(tcp);
2594 	}
2595 
2596 	tprints(") ");
2597 	tabto();
2598 	u_error = tcp->u_error;
2599 	if (tcp->qual_flg & QUAL_RAW) {
2600 		if (u_error)
2601 			tprintf("= -1 (errno %ld)", u_error);
2602 		else
2603 			tprintf("= %#lx", tcp->u_rval);
2604 	}
2605 	else if (!(sys_res & RVAL_NONE) && u_error) {
2606 		switch (u_error) {
2607 		/* Blocked signals do not interrupt any syscalls.
2608 		 * In this case syscalls don't return ERESTARTfoo codes.
2609 		 *
2610 		 * Deadly signals set to SIG_DFL interrupt syscalls
2611 		 * and kill the process regardless of which of the codes below
2612 		 * is returned by the interrupted syscall.
2613 		 * In some cases, kernel forces a kernel-generated deadly
2614 		 * signal to be unblocked and set to SIG_DFL (and thus cause
2615 		 * death) if it is blocked or SIG_IGNed: for example, SIGSEGV
2616 		 * or SIGILL. (The alternative is to leave process spinning
2617 		 * forever on the faulty instruction - not useful).
2618 		 *
2619 		 * SIG_IGNed signals and non-deadly signals set to SIG_DFL
2620 		 * (for example, SIGCHLD, SIGWINCH) interrupt syscalls,
2621 		 * but kernel will always restart them.
2622 		 */
2623 		case ERESTARTSYS:
2624 			/* Most common type of signal-interrupted syscall exit code.
2625 			 * The system call will be restarted with the same arguments
2626 			 * if SA_RESTART is set; otherwise, it will fail with EINTR.
2627 			 */
2628 			tprints("= ? ERESTARTSYS (To be restarted if SA_RESTART is set)");
2629 			break;
2630 		case ERESTARTNOINTR:
2631 			/* Rare. For example, fork() returns this if interrupted.
2632 			 * SA_RESTART is ignored (assumed set): the restart is unconditional.
2633 			 */
2634 			tprints("= ? ERESTARTNOINTR (To be restarted)");
2635 			break;
2636 		case ERESTARTNOHAND:
2637 			/* pause(), rt_sigsuspend() etc use this code.
2638 			 * SA_RESTART is ignored (assumed not set):
2639 			 * syscall won't restart (will return EINTR instead)
2640 			 * even after signal with SA_RESTART set. However,
2641 			 * after SIG_IGN or SIG_DFL signal it will restart
2642 			 * (thus the name "restart only if has no handler").
2643 			 */
2644 			tprints("= ? ERESTARTNOHAND (To be restarted if no handler)");
2645 			break;
2646 		case ERESTART_RESTARTBLOCK:
2647 			/* Syscalls like nanosleep(), poll() which can't be
2648 			 * restarted with their original arguments use this
2649 			 * code. Kernel will execute restart_syscall() instead,
2650 			 * which changes arguments before restarting syscall.
2651 			 * SA_RESTART is ignored (assumed not set) similarly
2652 			 * to ERESTARTNOHAND. (Kernel can't honor SA_RESTART
2653 			 * since restart data is saved in "restart block"
2654 			 * in task struct, and if signal handler uses a syscall
2655 			 * which in turn saves another such restart block,
2656 			 * old data is lost and restart becomes impossible)
2657 			 */
2658 			tprints("= ? ERESTART_RESTARTBLOCK (Interrupted by signal)");
2659 			break;
2660 		default:
2661 			if (u_error < 0)
2662 				tprintf("= -1 E??? (errno %ld)", u_error);
2663 			else if (u_error < nerrnos)
2664 				tprintf("= -1 %s (%s)", errnoent[u_error],
2665 					strerror(u_error));
2666 			else
2667 				tprintf("= -1 ERRNO_%ld (%s)", u_error,
2668 					strerror(u_error));
2669 			break;
2670 		}
2671 		if ((sys_res & RVAL_STR) && tcp->auxstr)
2672 			tprintf(" (%s)", tcp->auxstr);
2673 	}
2674 	else {
2675 		if (sys_res & RVAL_NONE)
2676 			tprints("= ?");
2677 		else {
2678 			switch (sys_res & RVAL_MASK) {
2679 			case RVAL_HEX:
2680 				tprintf("= %#lx", tcp->u_rval);
2681 				break;
2682 			case RVAL_OCTAL:
2683 				tprintf("= %#lo", tcp->u_rval);
2684 				break;
2685 			case RVAL_UDECIMAL:
2686 				tprintf("= %lu", tcp->u_rval);
2687 				break;
2688 			case RVAL_DECIMAL:
2689 				tprintf("= %ld", tcp->u_rval);
2690 				break;
2691 			case RVAL_FD:
2692 				if (show_fd_path) {
2693 					tprints("= ");
2694 					printfd(tcp, tcp->u_rval);
2695 				}
2696 				else
2697 					tprintf("= %ld", tcp->u_rval);
2698 				break;
2699 #if defined(LINUX_MIPSN32) || defined(X32)
2700 			/*
2701 			case RVAL_LHEX:
2702 				tprintf("= %#llx", tcp->u_lrval);
2703 				break;
2704 			case RVAL_LOCTAL:
2705 				tprintf("= %#llo", tcp->u_lrval);
2706 				break;
2707 			*/
2708 			case RVAL_LUDECIMAL:
2709 				tprintf("= %llu", tcp->u_lrval);
2710 				break;
2711 			/*
2712 			case RVAL_LDECIMAL:
2713 				tprintf("= %lld", tcp->u_lrval);
2714 				break;
2715 			*/
2716 #endif
2717 			default:
2718 				fprintf(stderr,
2719 					"invalid rval format\n");
2720 				break;
2721 			}
2722 		}
2723 		if ((sys_res & RVAL_STR) && tcp->auxstr)
2724 			tprintf(" (%s)", tcp->auxstr);
2725 	}
2726 	if (Tflag) {
2727 		tv_sub(&tv, &tv, &tcp->etime);
2728 		tprintf(" <%ld.%06ld>",
2729 			(long) tv.tv_sec, (long) tv.tv_usec);
2730 	}
2731 	tprints("\n");
2732 	dumpio(tcp);
2733 	line_ended();
2734 
2735 #ifdef USE_LIBUNWIND
2736 	if (stack_trace_enabled)
2737 		unwind_print_stacktrace(tcp);
2738 #endif
2739 
2740  ret:
2741 	tcp->flags &= ~TCB_INSYSCALL;
2742 	return 0;
2743 }
2744 
2745 int
trace_syscall(struct tcb * tcp)2746 trace_syscall(struct tcb *tcp)
2747 {
2748 	return exiting(tcp) ?
2749 		trace_syscall_exiting(tcp) : trace_syscall_entering(tcp);
2750 }
2751