• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2 ** 2003 October 31
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains the C functions that implement date and time
13 ** functions for SQLite.
14 **
15 ** There is only one exported symbol in this file - the function
16 ** sqlite3RegisterDateTimeFunctions() found at the bottom of the file.
17 ** All other code has file scope.
18 **
19 ** SQLite processes all times and dates as Julian Day numbers.  The
20 ** dates and times are stored as the number of days since noon
21 ** in Greenwich on November 24, 4714 B.C. according to the Gregorian
22 ** calendar system.
23 **
24 ** 1970-01-01 00:00:00 is JD 2440587.5
25 ** 2000-01-01 00:00:00 is JD 2451544.5
26 **
27 ** This implemention requires years to be expressed as a 4-digit number
28 ** which means that only dates between 0000-01-01 and 9999-12-31 can
29 ** be represented, even though julian day numbers allow a much wider
30 ** range of dates.
31 **
32 ** The Gregorian calendar system is used for all dates and times,
33 ** even those that predate the Gregorian calendar.  Historians usually
34 ** use the Julian calendar for dates prior to 1582-10-15 and for some
35 ** dates afterwards, depending on locale.  Beware of this difference.
36 **
37 ** The conversion algorithms are implemented based on descriptions
38 ** in the following text:
39 **
40 **      Jean Meeus
41 **      Astronomical Algorithms, 2nd Edition, 1998
42 **      ISBM 0-943396-61-1
43 **      Willmann-Bell, Inc
44 **      Richmond, Virginia (USA)
45 */
46 #include "sqliteInt.h"
47 #include <stdlib.h>
48 #include <assert.h>
49 #include <time.h>
50 
51 #ifndef SQLITE_OMIT_DATETIME_FUNCS
52 
53 /*
54 ** On recent Windows platforms, the localtime_s() function is available
55 ** as part of the "Secure CRT". It is essentially equivalent to
56 ** localtime_r() available under most POSIX platforms, except that the
57 ** order of the parameters is reversed.
58 **
59 ** See http://msdn.microsoft.com/en-us/library/a442x3ye(VS.80).aspx.
60 **
61 ** If the user has not indicated to use localtime_r() or localtime_s()
62 ** already, check for an MSVC build environment that provides
63 ** localtime_s().
64 */
65 #if !defined(HAVE_LOCALTIME_R) && !defined(HAVE_LOCALTIME_S) && \
66      defined(_MSC_VER) && defined(_CRT_INSECURE_DEPRECATE)
67 #define HAVE_LOCALTIME_S 1
68 #endif
69 
70 /*
71 ** A structure for holding a single date and time.
72 */
73 typedef struct DateTime DateTime;
74 struct DateTime {
75   sqlite3_int64 iJD; /* The julian day number times 86400000 */
76   int Y, M, D;       /* Year, month, and day */
77   int h, m;          /* Hour and minutes */
78   int tz;            /* Timezone offset in minutes */
79   double s;          /* Seconds */
80   char validYMD;     /* True (1) if Y,M,D are valid */
81   char validHMS;     /* True (1) if h,m,s are valid */
82   char validJD;      /* True (1) if iJD is valid */
83   char validTZ;      /* True (1) if tz is valid */
84 };
85 
86 
87 /*
88 ** Convert zDate into one or more integers.  Additional arguments
89 ** come in groups of 5 as follows:
90 **
91 **       N       number of digits in the integer
92 **       min     minimum allowed value of the integer
93 **       max     maximum allowed value of the integer
94 **       nextC   first character after the integer
95 **       pVal    where to write the integers value.
96 **
97 ** Conversions continue until one with nextC==0 is encountered.
98 ** The function returns the number of successful conversions.
99 */
getDigits(const char * zDate,...)100 static int getDigits(const char *zDate, ...){
101   va_list ap;
102   int val;
103   int N;
104   int min;
105   int max;
106   int nextC;
107   int *pVal;
108   int cnt = 0;
109   va_start(ap, zDate);
110   do{
111     N = va_arg(ap, int);
112     min = va_arg(ap, int);
113     max = va_arg(ap, int);
114     nextC = va_arg(ap, int);
115     pVal = va_arg(ap, int*);
116     val = 0;
117     while( N-- ){
118       if( !sqlite3Isdigit(*zDate) ){
119         goto end_getDigits;
120       }
121       val = val*10 + *zDate - '0';
122       zDate++;
123     }
124     if( val<min || val>max || (nextC!=0 && nextC!=*zDate) ){
125       goto end_getDigits;
126     }
127     *pVal = val;
128     zDate++;
129     cnt++;
130   }while( nextC );
131 end_getDigits:
132   va_end(ap);
133   return cnt;
134 }
135 
136 /*
137 ** Parse a timezone extension on the end of a date-time.
138 ** The extension is of the form:
139 **
140 **        (+/-)HH:MM
141 **
142 ** Or the "zulu" notation:
143 **
144 **        Z
145 **
146 ** If the parse is successful, write the number of minutes
147 ** of change in p->tz and return 0.  If a parser error occurs,
148 ** return non-zero.
149 **
150 ** A missing specifier is not considered an error.
151 */
parseTimezone(const char * zDate,DateTime * p)152 static int parseTimezone(const char *zDate, DateTime *p){
153   int sgn = 0;
154   int nHr, nMn;
155   int c;
156   while( sqlite3Isspace(*zDate) ){ zDate++; }
157   p->tz = 0;
158   c = *zDate;
159   if( c=='-' ){
160     sgn = -1;
161   }else if( c=='+' ){
162     sgn = +1;
163   }else if( c=='Z' || c=='z' ){
164     zDate++;
165     goto zulu_time;
166   }else{
167     return c!=0;
168   }
169   zDate++;
170   if( getDigits(zDate, 2, 0, 14, ':', &nHr, 2, 0, 59, 0, &nMn)!=2 ){
171     return 1;
172   }
173   zDate += 5;
174   p->tz = sgn*(nMn + nHr*60);
175 zulu_time:
176   while( sqlite3Isspace(*zDate) ){ zDate++; }
177   return *zDate!=0;
178 }
179 
180 /*
181 ** Parse times of the form HH:MM or HH:MM:SS or HH:MM:SS.FFFF.
182 ** The HH, MM, and SS must each be exactly 2 digits.  The
183 ** fractional seconds FFFF can be one or more digits.
184 **
185 ** Return 1 if there is a parsing error and 0 on success.
186 */
parseHhMmSs(const char * zDate,DateTime * p)187 static int parseHhMmSs(const char *zDate, DateTime *p){
188   int h, m, s;
189   double ms = 0.0;
190   if( getDigits(zDate, 2, 0, 24, ':', &h, 2, 0, 59, 0, &m)!=2 ){
191     return 1;
192   }
193   zDate += 5;
194   if( *zDate==':' ){
195     zDate++;
196     if( getDigits(zDate, 2, 0, 59, 0, &s)!=1 ){
197       return 1;
198     }
199     zDate += 2;
200     if( *zDate=='.' && sqlite3Isdigit(zDate[1]) ){
201       double rScale = 1.0;
202       zDate++;
203       while( sqlite3Isdigit(*zDate) ){
204         ms = ms*10.0 + *zDate - '0';
205         rScale *= 10.0;
206         zDate++;
207       }
208       ms /= rScale;
209     }
210   }else{
211     s = 0;
212   }
213   p->validJD = 0;
214   p->validHMS = 1;
215   p->h = h;
216   p->m = m;
217   p->s = s + ms;
218   if( parseTimezone(zDate, p) ) return 1;
219   p->validTZ = (p->tz!=0)?1:0;
220   return 0;
221 }
222 
223 /*
224 ** Convert from YYYY-MM-DD HH:MM:SS to julian day.  We always assume
225 ** that the YYYY-MM-DD is according to the Gregorian calendar.
226 **
227 ** Reference:  Meeus page 61
228 */
computeJD(DateTime * p)229 static void computeJD(DateTime *p){
230   int Y, M, D, A, B, X1, X2;
231 
232   if( p->validJD ) return;
233   if( p->validYMD ){
234     Y = p->Y;
235     M = p->M;
236     D = p->D;
237   }else{
238     Y = 2000;  /* If no YMD specified, assume 2000-Jan-01 */
239     M = 1;
240     D = 1;
241   }
242   if( M<=2 ){
243     Y--;
244     M += 12;
245   }
246   A = Y/100;
247   B = 2 - A + (A/4);
248   X1 = 36525*(Y+4716)/100;
249   X2 = 306001*(M+1)/10000;
250   p->iJD = (sqlite3_int64)((X1 + X2 + D + B - 1524.5 ) * 86400000);
251   p->validJD = 1;
252   if( p->validHMS ){
253     p->iJD += p->h*3600000 + p->m*60000 + (sqlite3_int64)(p->s*1000);
254     if( p->validTZ ){
255       p->iJD -= p->tz*60000;
256       p->validYMD = 0;
257       p->validHMS = 0;
258       p->validTZ = 0;
259     }
260   }
261 }
262 
263 /*
264 ** Parse dates of the form
265 **
266 **     YYYY-MM-DD HH:MM:SS.FFF
267 **     YYYY-MM-DD HH:MM:SS
268 **     YYYY-MM-DD HH:MM
269 **     YYYY-MM-DD
270 **
271 ** Write the result into the DateTime structure and return 0
272 ** on success and 1 if the input string is not a well-formed
273 ** date.
274 */
parseYyyyMmDd(const char * zDate,DateTime * p)275 static int parseYyyyMmDd(const char *zDate, DateTime *p){
276   int Y, M, D, neg;
277 
278   if( zDate[0]=='-' ){
279     zDate++;
280     neg = 1;
281   }else{
282     neg = 0;
283   }
284   if( getDigits(zDate,4,0,9999,'-',&Y,2,1,12,'-',&M,2,1,31,0,&D)!=3 ){
285     return 1;
286   }
287   zDate += 10;
288   while( sqlite3Isspace(*zDate) || 'T'==*(u8*)zDate ){ zDate++; }
289   if( parseHhMmSs(zDate, p)==0 ){
290     /* We got the time */
291   }else if( *zDate==0 ){
292     p->validHMS = 0;
293   }else{
294     return 1;
295   }
296   p->validJD = 0;
297   p->validYMD = 1;
298   p->Y = neg ? -Y : Y;
299   p->M = M;
300   p->D = D;
301   if( p->validTZ ){
302     computeJD(p);
303   }
304   return 0;
305 }
306 
307 /*
308 ** Set the time to the current time reported by the VFS
309 */
setDateTimeToCurrent(sqlite3_context * context,DateTime * p)310 static void setDateTimeToCurrent(sqlite3_context *context, DateTime *p){
311   sqlite3 *db = sqlite3_context_db_handle(context);
312   sqlite3OsCurrentTimeInt64(db->pVfs, &p->iJD);
313   p->validJD = 1;
314 }
315 
316 /*
317 ** Attempt to parse the given string into a Julian Day Number.  Return
318 ** the number of errors.
319 **
320 ** The following are acceptable forms for the input string:
321 **
322 **      YYYY-MM-DD HH:MM:SS.FFF  +/-HH:MM
323 **      DDDD.DD
324 **      now
325 **
326 ** In the first form, the +/-HH:MM is always optional.  The fractional
327 ** seconds extension (the ".FFF") is optional.  The seconds portion
328 ** (":SS.FFF") is option.  The year and date can be omitted as long
329 ** as there is a time string.  The time string can be omitted as long
330 ** as there is a year and date.
331 */
parseDateOrTime(sqlite3_context * context,const char * zDate,DateTime * p)332 static int parseDateOrTime(
333   sqlite3_context *context,
334   const char *zDate,
335   DateTime *p
336 ){
337   double r;
338   if( parseYyyyMmDd(zDate,p)==0 ){
339     return 0;
340   }else if( parseHhMmSs(zDate, p)==0 ){
341     return 0;
342   }else if( sqlite3StrICmp(zDate,"now")==0){
343     setDateTimeToCurrent(context, p);
344     return 0;
345   }else if( sqlite3AtoF(zDate, &r, sqlite3Strlen30(zDate), SQLITE_UTF8) ){
346     p->iJD = (sqlite3_int64)(r*86400000.0 + 0.5);
347     p->validJD = 1;
348     return 0;
349   }
350   return 1;
351 }
352 
353 /*
354 ** Compute the Year, Month, and Day from the julian day number.
355 */
computeYMD(DateTime * p)356 static void computeYMD(DateTime *p){
357   int Z, A, B, C, D, E, X1;
358   if( p->validYMD ) return;
359   if( !p->validJD ){
360     p->Y = 2000;
361     p->M = 1;
362     p->D = 1;
363   }else{
364     Z = (int)((p->iJD + 43200000)/86400000);
365     A = (int)((Z - 1867216.25)/36524.25);
366     A = Z + 1 + A - (A/4);
367     B = A + 1524;
368     C = (int)((B - 122.1)/365.25);
369     D = (36525*C)/100;
370     E = (int)((B-D)/30.6001);
371     X1 = (int)(30.6001*E);
372     p->D = B - D - X1;
373     p->M = E<14 ? E-1 : E-13;
374     p->Y = p->M>2 ? C - 4716 : C - 4715;
375   }
376   p->validYMD = 1;
377 }
378 
379 /*
380 ** Compute the Hour, Minute, and Seconds from the julian day number.
381 */
computeHMS(DateTime * p)382 static void computeHMS(DateTime *p){
383   int s;
384   if( p->validHMS ) return;
385   computeJD(p);
386   s = (int)((p->iJD + 43200000) % 86400000);
387   p->s = s/1000.0;
388   s = (int)p->s;
389   p->s -= s;
390   p->h = s/3600;
391   s -= p->h*3600;
392   p->m = s/60;
393   p->s += s - p->m*60;
394   p->validHMS = 1;
395 }
396 
397 /*
398 ** Compute both YMD and HMS
399 */
computeYMD_HMS(DateTime * p)400 static void computeYMD_HMS(DateTime *p){
401   computeYMD(p);
402   computeHMS(p);
403 }
404 
405 /*
406 ** Clear the YMD and HMS and the TZ
407 */
clearYMD_HMS_TZ(DateTime * p)408 static void clearYMD_HMS_TZ(DateTime *p){
409   p->validYMD = 0;
410   p->validHMS = 0;
411   p->validTZ = 0;
412 }
413 
414 #ifndef SQLITE_OMIT_LOCALTIME
415 /*
416 ** Compute the difference (in milliseconds)
417 ** between localtime and UTC (a.k.a. GMT)
418 ** for the time value p where p is in UTC.
419 */
localtimeOffset(DateTime * p)420 static sqlite3_int64 localtimeOffset(DateTime *p){
421   DateTime x, y;
422   time_t t;
423   x = *p;
424   computeYMD_HMS(&x);
425   if( x.Y<1971 || x.Y>=2038 ){
426     x.Y = 2000;
427     x.M = 1;
428     x.D = 1;
429     x.h = 0;
430     x.m = 0;
431     x.s = 0.0;
432   } else {
433     int s = (int)(x.s + 0.5);
434     x.s = s;
435   }
436   x.tz = 0;
437   x.validJD = 0;
438   computeJD(&x);
439   t = (time_t)(x.iJD/1000 - 21086676*(i64)10000);
440 #ifdef HAVE_LOCALTIME_R
441   {
442     struct tm sLocal;
443     localtime_r(&t, &sLocal);
444     y.Y = sLocal.tm_year + 1900;
445     y.M = sLocal.tm_mon + 1;
446     y.D = sLocal.tm_mday;
447     y.h = sLocal.tm_hour;
448     y.m = sLocal.tm_min;
449     y.s = sLocal.tm_sec;
450   }
451 #elif defined(HAVE_LOCALTIME_S) && HAVE_LOCALTIME_S
452   {
453     struct tm sLocal;
454     localtime_s(&sLocal, &t);
455     y.Y = sLocal.tm_year + 1900;
456     y.M = sLocal.tm_mon + 1;
457     y.D = sLocal.tm_mday;
458     y.h = sLocal.tm_hour;
459     y.m = sLocal.tm_min;
460     y.s = sLocal.tm_sec;
461   }
462 #else
463   {
464     struct tm *pTm;
465     sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER));
466     pTm = localtime(&t);
467     y.Y = pTm->tm_year + 1900;
468     y.M = pTm->tm_mon + 1;
469     y.D = pTm->tm_mday;
470     y.h = pTm->tm_hour;
471     y.m = pTm->tm_min;
472     y.s = pTm->tm_sec;
473     sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER));
474   }
475 #endif
476   y.validYMD = 1;
477   y.validHMS = 1;
478   y.validJD = 0;
479   y.validTZ = 0;
480   computeJD(&y);
481   return y.iJD - x.iJD;
482 }
483 #endif /* SQLITE_OMIT_LOCALTIME */
484 
485 /*
486 ** Process a modifier to a date-time stamp.  The modifiers are
487 ** as follows:
488 **
489 **     NNN days
490 **     NNN hours
491 **     NNN minutes
492 **     NNN.NNNN seconds
493 **     NNN months
494 **     NNN years
495 **     start of month
496 **     start of year
497 **     start of week
498 **     start of day
499 **     weekday N
500 **     unixepoch
501 **     localtime
502 **     utc
503 **
504 ** Return 0 on success and 1 if there is any kind of error.
505 */
parseModifier(const char * zMod,DateTime * p)506 static int parseModifier(const char *zMod, DateTime *p){
507   int rc = 1;
508   int n;
509   double r;
510   char *z, zBuf[30];
511   z = zBuf;
512   for(n=0; n<ArraySize(zBuf)-1 && zMod[n]; n++){
513     z[n] = (char)sqlite3UpperToLower[(u8)zMod[n]];
514   }
515   z[n] = 0;
516   switch( z[0] ){
517 #ifndef SQLITE_OMIT_LOCALTIME
518     case 'l': {
519       /*    localtime
520       **
521       ** Assuming the current time value is UTC (a.k.a. GMT), shift it to
522       ** show local time.
523       */
524       if( strcmp(z, "localtime")==0 ){
525         computeJD(p);
526         p->iJD += localtimeOffset(p);
527         clearYMD_HMS_TZ(p);
528         rc = 0;
529       }
530       break;
531     }
532 #endif
533     case 'u': {
534       /*
535       **    unixepoch
536       **
537       ** Treat the current value of p->iJD as the number of
538       ** seconds since 1970.  Convert to a real julian day number.
539       */
540       if( strcmp(z, "unixepoch")==0 && p->validJD ){
541         p->iJD = (p->iJD + 43200)/86400 + 21086676*(i64)10000000;
542         clearYMD_HMS_TZ(p);
543         rc = 0;
544       }
545 #ifndef SQLITE_OMIT_LOCALTIME
546       else if( strcmp(z, "utc")==0 ){
547         sqlite3_int64 c1;
548         computeJD(p);
549         c1 = localtimeOffset(p);
550         p->iJD -= c1;
551         clearYMD_HMS_TZ(p);
552         p->iJD += c1 - localtimeOffset(p);
553         rc = 0;
554       }
555 #endif
556       break;
557     }
558     case 'w': {
559       /*
560       **    weekday N
561       **
562       ** Move the date to the same time on the next occurrence of
563       ** weekday N where 0==Sunday, 1==Monday, and so forth.  If the
564       ** date is already on the appropriate weekday, this is a no-op.
565       */
566       if( strncmp(z, "weekday ", 8)==0
567                && sqlite3AtoF(&z[8], &r, sqlite3Strlen30(&z[8]), SQLITE_UTF8)
568                && (n=(int)r)==r && n>=0 && r<7 ){
569         sqlite3_int64 Z;
570         computeYMD_HMS(p);
571         p->validTZ = 0;
572         p->validJD = 0;
573         computeJD(p);
574         Z = ((p->iJD + 129600000)/86400000) % 7;
575         if( Z>n ) Z -= 7;
576         p->iJD += (n - Z)*86400000;
577         clearYMD_HMS_TZ(p);
578         rc = 0;
579       }
580       break;
581     }
582     case 's': {
583       /*
584       **    start of TTTTT
585       **
586       ** Move the date backwards to the beginning of the current day,
587       ** or month or year.
588       */
589       if( strncmp(z, "start of ", 9)!=0 ) break;
590       z += 9;
591       computeYMD(p);
592       p->validHMS = 1;
593       p->h = p->m = 0;
594       p->s = 0.0;
595       p->validTZ = 0;
596       p->validJD = 0;
597       if( strcmp(z,"month")==0 ){
598         p->D = 1;
599         rc = 0;
600       }else if( strcmp(z,"year")==0 ){
601         computeYMD(p);
602         p->M = 1;
603         p->D = 1;
604         rc = 0;
605       }else if( strcmp(z,"day")==0 ){
606         rc = 0;
607       }
608       break;
609     }
610     case '+':
611     case '-':
612     case '0':
613     case '1':
614     case '2':
615     case '3':
616     case '4':
617     case '5':
618     case '6':
619     case '7':
620     case '8':
621     case '9': {
622       double rRounder;
623       for(n=1; z[n] && z[n]!=':' && !sqlite3Isspace(z[n]); n++){}
624       if( !sqlite3AtoF(z, &r, n, SQLITE_UTF8) ){
625         rc = 1;
626         break;
627       }
628       if( z[n]==':' ){
629         /* A modifier of the form (+|-)HH:MM:SS.FFF adds (or subtracts) the
630         ** specified number of hours, minutes, seconds, and fractional seconds
631         ** to the time.  The ".FFF" may be omitted.  The ":SS.FFF" may be
632         ** omitted.
633         */
634         const char *z2 = z;
635         DateTime tx;
636         sqlite3_int64 day;
637         if( !sqlite3Isdigit(*z2) ) z2++;
638         memset(&tx, 0, sizeof(tx));
639         if( parseHhMmSs(z2, &tx) ) break;
640         computeJD(&tx);
641         tx.iJD -= 43200000;
642         day = tx.iJD/86400000;
643         tx.iJD -= day*86400000;
644         if( z[0]=='-' ) tx.iJD = -tx.iJD;
645         computeJD(p);
646         clearYMD_HMS_TZ(p);
647         p->iJD += tx.iJD;
648         rc = 0;
649         break;
650       }
651       z += n;
652       while( sqlite3Isspace(*z) ) z++;
653       n = sqlite3Strlen30(z);
654       if( n>10 || n<3 ) break;
655       if( z[n-1]=='s' ){ z[n-1] = 0; n--; }
656       computeJD(p);
657       rc = 0;
658       rRounder = r<0 ? -0.5 : +0.5;
659       if( n==3 && strcmp(z,"day")==0 ){
660         p->iJD += (sqlite3_int64)(r*86400000.0 + rRounder);
661       }else if( n==4 && strcmp(z,"hour")==0 ){
662         p->iJD += (sqlite3_int64)(r*(86400000.0/24.0) + rRounder);
663       }else if( n==6 && strcmp(z,"minute")==0 ){
664         p->iJD += (sqlite3_int64)(r*(86400000.0/(24.0*60.0)) + rRounder);
665       }else if( n==6 && strcmp(z,"second")==0 ){
666         p->iJD += (sqlite3_int64)(r*(86400000.0/(24.0*60.0*60.0)) + rRounder);
667       }else if( n==5 && strcmp(z,"month")==0 ){
668         int x, y;
669         computeYMD_HMS(p);
670         p->M += (int)r;
671         x = p->M>0 ? (p->M-1)/12 : (p->M-12)/12;
672         p->Y += x;
673         p->M -= x*12;
674         p->validJD = 0;
675         computeJD(p);
676         y = (int)r;
677         if( y!=r ){
678           p->iJD += (sqlite3_int64)((r - y)*30.0*86400000.0 + rRounder);
679         }
680       }else if( n==4 && strcmp(z,"year")==0 ){
681         int y = (int)r;
682         computeYMD_HMS(p);
683         p->Y += y;
684         p->validJD = 0;
685         computeJD(p);
686         if( y!=r ){
687           p->iJD += (sqlite3_int64)((r - y)*365.0*86400000.0 + rRounder);
688         }
689       }else{
690         rc = 1;
691       }
692       clearYMD_HMS_TZ(p);
693       break;
694     }
695     default: {
696       break;
697     }
698   }
699   return rc;
700 }
701 
702 /*
703 ** Process time function arguments.  argv[0] is a date-time stamp.
704 ** argv[1] and following are modifiers.  Parse them all and write
705 ** the resulting time into the DateTime structure p.  Return 0
706 ** on success and 1 if there are any errors.
707 **
708 ** If there are zero parameters (if even argv[0] is undefined)
709 ** then assume a default value of "now" for argv[0].
710 */
isDate(sqlite3_context * context,int argc,sqlite3_value ** argv,DateTime * p)711 static int isDate(
712   sqlite3_context *context,
713   int argc,
714   sqlite3_value **argv,
715   DateTime *p
716 ){
717   int i;
718   const unsigned char *z;
719   int eType;
720   memset(p, 0, sizeof(*p));
721   if( argc==0 ){
722     setDateTimeToCurrent(context, p);
723   }else if( (eType = sqlite3_value_type(argv[0]))==SQLITE_FLOAT
724                    || eType==SQLITE_INTEGER ){
725     p->iJD = (sqlite3_int64)(sqlite3_value_double(argv[0])*86400000.0 + 0.5);
726     p->validJD = 1;
727   }else{
728     z = sqlite3_value_text(argv[0]);
729     if( !z || parseDateOrTime(context, (char*)z, p) ){
730       return 1;
731     }
732   }
733   for(i=1; i<argc; i++){
734     if( (z = sqlite3_value_text(argv[i]))==0 || parseModifier((char*)z, p) ){
735       return 1;
736     }
737   }
738   return 0;
739 }
740 
741 
742 /*
743 ** The following routines implement the various date and time functions
744 ** of SQLite.
745 */
746 
747 /*
748 **    julianday( TIMESTRING, MOD, MOD, ...)
749 **
750 ** Return the julian day number of the date specified in the arguments
751 */
juliandayFunc(sqlite3_context * context,int argc,sqlite3_value ** argv)752 static void juliandayFunc(
753   sqlite3_context *context,
754   int argc,
755   sqlite3_value **argv
756 ){
757   DateTime x;
758   if( isDate(context, argc, argv, &x)==0 ){
759     computeJD(&x);
760     sqlite3_result_double(context, x.iJD/86400000.0);
761   }
762 }
763 
764 /*
765 **    datetime( TIMESTRING, MOD, MOD, ...)
766 **
767 ** Return YYYY-MM-DD HH:MM:SS
768 */
datetimeFunc(sqlite3_context * context,int argc,sqlite3_value ** argv)769 static void datetimeFunc(
770   sqlite3_context *context,
771   int argc,
772   sqlite3_value **argv
773 ){
774   DateTime x;
775   if( isDate(context, argc, argv, &x)==0 ){
776     char zBuf[100];
777     computeYMD_HMS(&x);
778     sqlite3_snprintf(sizeof(zBuf), zBuf, "%04d-%02d-%02d %02d:%02d:%02d",
779                      x.Y, x.M, x.D, x.h, x.m, (int)(x.s));
780     sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT);
781   }
782 }
783 
784 /*
785 **    time( TIMESTRING, MOD, MOD, ...)
786 **
787 ** Return HH:MM:SS
788 */
timeFunc(sqlite3_context * context,int argc,sqlite3_value ** argv)789 static void timeFunc(
790   sqlite3_context *context,
791   int argc,
792   sqlite3_value **argv
793 ){
794   DateTime x;
795   if( isDate(context, argc, argv, &x)==0 ){
796     char zBuf[100];
797     computeHMS(&x);
798     sqlite3_snprintf(sizeof(zBuf), zBuf, "%02d:%02d:%02d", x.h, x.m, (int)x.s);
799     sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT);
800   }
801 }
802 
803 /*
804 **    date( TIMESTRING, MOD, MOD, ...)
805 **
806 ** Return YYYY-MM-DD
807 */
dateFunc(sqlite3_context * context,int argc,sqlite3_value ** argv)808 static void dateFunc(
809   sqlite3_context *context,
810   int argc,
811   sqlite3_value **argv
812 ){
813   DateTime x;
814   if( isDate(context, argc, argv, &x)==0 ){
815     char zBuf[100];
816     computeYMD(&x);
817     sqlite3_snprintf(sizeof(zBuf), zBuf, "%04d-%02d-%02d", x.Y, x.M, x.D);
818     sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT);
819   }
820 }
821 
822 /*
823 **    strftime( FORMAT, TIMESTRING, MOD, MOD, ...)
824 **
825 ** Return a string described by FORMAT.  Conversions as follows:
826 **
827 **   %d  day of month
828 **   %f  ** fractional seconds  SS.SSS
829 **   %H  hour 00-24
830 **   %j  day of year 000-366
831 **   %J  ** Julian day number
832 **   %m  month 01-12
833 **   %M  minute 00-59
834 **   %s  seconds since 1970-01-01
835 **   %S  seconds 00-59
836 **   %w  day of week 0-6  sunday==0
837 **   %W  week of year 00-53
838 **   %Y  year 0000-9999
839 **   %%  %
840 */
strftimeFunc(sqlite3_context * context,int argc,sqlite3_value ** argv)841 static void strftimeFunc(
842   sqlite3_context *context,
843   int argc,
844   sqlite3_value **argv
845 ){
846   DateTime x;
847   u64 n;
848   size_t i,j;
849   char *z;
850   sqlite3 *db;
851   const char *zFmt = (const char*)sqlite3_value_text(argv[0]);
852   char zBuf[100];
853   if( zFmt==0 || isDate(context, argc-1, argv+1, &x) ) return;
854   db = sqlite3_context_db_handle(context);
855   for(i=0, n=1; zFmt[i]; i++, n++){
856     if( zFmt[i]=='%' ){
857       switch( zFmt[i+1] ){
858         case 'd':
859         case 'H':
860         case 'm':
861         case 'M':
862         case 'S':
863         case 'W':
864           n++;
865           /* fall thru */
866         case 'w':
867         case '%':
868           break;
869         case 'f':
870           n += 8;
871           break;
872         case 'j':
873           n += 3;
874           break;
875         case 'Y':
876           n += 8;
877           break;
878         case 's':
879         case 'J':
880           n += 50;
881           break;
882         default:
883           return;  /* ERROR.  return a NULL */
884       }
885       i++;
886     }
887   }
888   testcase( n==sizeof(zBuf)-1 );
889   testcase( n==sizeof(zBuf) );
890   testcase( n==(u64)db->aLimit[SQLITE_LIMIT_LENGTH]+1 );
891   testcase( n==(u64)db->aLimit[SQLITE_LIMIT_LENGTH] );
892   if( n<sizeof(zBuf) ){
893     z = zBuf;
894   }else if( n>(u64)db->aLimit[SQLITE_LIMIT_LENGTH] ){
895     sqlite3_result_error_toobig(context);
896     return;
897   }else{
898     z = sqlite3DbMallocRaw(db, (int)n);
899     if( z==0 ){
900       sqlite3_result_error_nomem(context);
901       return;
902     }
903   }
904   computeJD(&x);
905   computeYMD_HMS(&x);
906   for(i=j=0; zFmt[i]; i++){
907     if( zFmt[i]!='%' ){
908       z[j++] = zFmt[i];
909     }else{
910       i++;
911       switch( zFmt[i] ){
912         case 'd':  sqlite3_snprintf(3, &z[j],"%02d",x.D); j+=2; break;
913         case 'f': {
914           double s = x.s;
915           if( s>59.999 ) s = 59.999;
916           sqlite3_snprintf(7, &z[j],"%06.3f", s);
917           j += sqlite3Strlen30(&z[j]);
918           break;
919         }
920         case 'H':  sqlite3_snprintf(3, &z[j],"%02d",x.h); j+=2; break;
921         case 'W': /* Fall thru */
922         case 'j': {
923           int nDay;             /* Number of days since 1st day of year */
924           DateTime y = x;
925           y.validJD = 0;
926           y.M = 1;
927           y.D = 1;
928           computeJD(&y);
929           nDay = (int)((x.iJD-y.iJD+43200000)/86400000);
930           if( zFmt[i]=='W' ){
931             int wd;   /* 0=Monday, 1=Tuesday, ... 6=Sunday */
932             wd = (int)(((x.iJD+43200000)/86400000)%7);
933             sqlite3_snprintf(3, &z[j],"%02d",(nDay+7-wd)/7);
934             j += 2;
935           }else{
936             sqlite3_snprintf(4, &z[j],"%03d",nDay+1);
937             j += 3;
938           }
939           break;
940         }
941         case 'J': {
942           sqlite3_snprintf(20, &z[j],"%.16g",x.iJD/86400000.0);
943           j+=sqlite3Strlen30(&z[j]);
944           break;
945         }
946         case 'm':  sqlite3_snprintf(3, &z[j],"%02d",x.M); j+=2; break;
947         case 'M':  sqlite3_snprintf(3, &z[j],"%02d",x.m); j+=2; break;
948         case 's': {
949           sqlite3_snprintf(30,&z[j],"%lld",
950                            (i64)(x.iJD/1000 - 21086676*(i64)10000));
951           j += sqlite3Strlen30(&z[j]);
952           break;
953         }
954         case 'S':  sqlite3_snprintf(3,&z[j],"%02d",(int)x.s); j+=2; break;
955         case 'w': {
956           z[j++] = (char)(((x.iJD+129600000)/86400000) % 7) + '0';
957           break;
958         }
959         case 'Y': {
960           sqlite3_snprintf(5,&z[j],"%04d",x.Y); j+=sqlite3Strlen30(&z[j]);
961           break;
962         }
963         default:   z[j++] = '%'; break;
964       }
965     }
966   }
967   z[j] = 0;
968   sqlite3_result_text(context, z, -1,
969                       z==zBuf ? SQLITE_TRANSIENT : SQLITE_DYNAMIC);
970 }
971 
972 /*
973 ** current_time()
974 **
975 ** This function returns the same value as time('now').
976 */
ctimeFunc(sqlite3_context * context,int NotUsed,sqlite3_value ** NotUsed2)977 static void ctimeFunc(
978   sqlite3_context *context,
979   int NotUsed,
980   sqlite3_value **NotUsed2
981 ){
982   UNUSED_PARAMETER2(NotUsed, NotUsed2);
983   timeFunc(context, 0, 0);
984 }
985 
986 /*
987 ** current_date()
988 **
989 ** This function returns the same value as date('now').
990 */
cdateFunc(sqlite3_context * context,int NotUsed,sqlite3_value ** NotUsed2)991 static void cdateFunc(
992   sqlite3_context *context,
993   int NotUsed,
994   sqlite3_value **NotUsed2
995 ){
996   UNUSED_PARAMETER2(NotUsed, NotUsed2);
997   dateFunc(context, 0, 0);
998 }
999 
1000 /*
1001 ** current_timestamp()
1002 **
1003 ** This function returns the same value as datetime('now').
1004 */
ctimestampFunc(sqlite3_context * context,int NotUsed,sqlite3_value ** NotUsed2)1005 static void ctimestampFunc(
1006   sqlite3_context *context,
1007   int NotUsed,
1008   sqlite3_value **NotUsed2
1009 ){
1010   UNUSED_PARAMETER2(NotUsed, NotUsed2);
1011   datetimeFunc(context, 0, 0);
1012 }
1013 #endif /* !defined(SQLITE_OMIT_DATETIME_FUNCS) */
1014 
1015 #ifdef SQLITE_OMIT_DATETIME_FUNCS
1016 /*
1017 ** If the library is compiled to omit the full-scale date and time
1018 ** handling (to get a smaller binary), the following minimal version
1019 ** of the functions current_time(), current_date() and current_timestamp()
1020 ** are included instead. This is to support column declarations that
1021 ** include "DEFAULT CURRENT_TIME" etc.
1022 **
1023 ** This function uses the C-library functions time(), gmtime()
1024 ** and strftime(). The format string to pass to strftime() is supplied
1025 ** as the user-data for the function.
1026 */
currentTimeFunc(sqlite3_context * context,int argc,sqlite3_value ** argv)1027 static void currentTimeFunc(
1028   sqlite3_context *context,
1029   int argc,
1030   sqlite3_value **argv
1031 ){
1032   time_t t;
1033   char *zFormat = (char *)sqlite3_user_data(context);
1034   sqlite3 *db;
1035   sqlite3_int64 iT;
1036   char zBuf[20];
1037 
1038   UNUSED_PARAMETER(argc);
1039   UNUSED_PARAMETER(argv);
1040 
1041   db = sqlite3_context_db_handle(context);
1042   sqlite3OsCurrentTimeInt64(db->pVfs, &iT);
1043   t = iT/1000 - 10000*(sqlite3_int64)21086676;
1044 #ifdef HAVE_GMTIME_R
1045   {
1046     struct tm sNow;
1047     gmtime_r(&t, &sNow);
1048     strftime(zBuf, 20, zFormat, &sNow);
1049   }
1050 #else
1051   {
1052     struct tm *pTm;
1053     sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER));
1054     pTm = gmtime(&t);
1055     strftime(zBuf, 20, zFormat, pTm);
1056     sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER));
1057   }
1058 #endif
1059 
1060   sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT);
1061 }
1062 #endif
1063 
1064 /*
1065 ** This function registered all of the above C functions as SQL
1066 ** functions.  This should be the only routine in this file with
1067 ** external linkage.
1068 */
sqlite3RegisterDateTimeFunctions(void)1069 void sqlite3RegisterDateTimeFunctions(void){
1070   static SQLITE_WSD FuncDef aDateTimeFuncs[] = {
1071 #ifndef SQLITE_OMIT_DATETIME_FUNCS
1072     FUNCTION(julianday,        -1, 0, 0, juliandayFunc ),
1073     FUNCTION(date,             -1, 0, 0, dateFunc      ),
1074     FUNCTION(time,             -1, 0, 0, timeFunc      ),
1075     FUNCTION(datetime,         -1, 0, 0, datetimeFunc  ),
1076     FUNCTION(strftime,         -1, 0, 0, strftimeFunc  ),
1077     FUNCTION(current_time,      0, 0, 0, ctimeFunc     ),
1078     FUNCTION(current_timestamp, 0, 0, 0, ctimestampFunc),
1079     FUNCTION(current_date,      0, 0, 0, cdateFunc     ),
1080 #else
1081     STR_FUNCTION(current_time,      0, "%H:%M:%S",          0, currentTimeFunc),
1082     STR_FUNCTION(current_date,      0, "%Y-%m-%d",          0, currentTimeFunc),
1083     STR_FUNCTION(current_timestamp, 0, "%Y-%m-%d %H:%M:%S", 0, currentTimeFunc),
1084 #endif
1085   };
1086   int i;
1087   FuncDefHash *pHash = &GLOBAL(FuncDefHash, sqlite3GlobalFunctions);
1088   FuncDef *aFunc = (FuncDef*)&GLOBAL(FuncDef, aDateTimeFuncs);
1089 
1090   for(i=0; i<ArraySize(aDateTimeFuncs); i++){
1091     sqlite3FuncDefInsert(pHash, &aFunc[i]);
1092   }
1093 }
1094