1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** Internal interface definitions for SQLite. 13 ** 14 */ 15 #ifndef _SQLITEINT_H_ 16 #define _SQLITEINT_H_ 17 18 /* 19 ** These #defines should enable >2GB file support on POSIX if the 20 ** underlying operating system supports it. If the OS lacks 21 ** large file support, or if the OS is windows, these should be no-ops. 22 ** 23 ** Ticket #2739: The _LARGEFILE_SOURCE macro must appear before any 24 ** system #includes. Hence, this block of code must be the very first 25 ** code in all source files. 26 ** 27 ** Large file support can be disabled using the -DSQLITE_DISABLE_LFS switch 28 ** on the compiler command line. This is necessary if you are compiling 29 ** on a recent machine (ex: Red Hat 7.2) but you want your code to work 30 ** on an older machine (ex: Red Hat 6.0). If you compile on Red Hat 7.2 31 ** without this option, LFS is enable. But LFS does not exist in the kernel 32 ** in Red Hat 6.0, so the code won't work. Hence, for maximum binary 33 ** portability you should omit LFS. 34 ** 35 ** Similar is true for Mac OS X. LFS is only supported on Mac OS X 9 and later. 36 */ 37 #ifndef SQLITE_DISABLE_LFS 38 # define _LARGE_FILE 1 39 # ifndef _FILE_OFFSET_BITS 40 # define _FILE_OFFSET_BITS 64 41 # endif 42 # define _LARGEFILE_SOURCE 1 43 #endif 44 45 /* 46 ** Include the configuration header output by 'configure' if we're using the 47 ** autoconf-based build 48 */ 49 #ifdef _HAVE_SQLITE_CONFIG_H 50 #include "config.h" 51 #endif 52 53 #include "sqliteLimit.h" 54 55 /* Disable nuisance warnings on Borland compilers */ 56 #if defined(__BORLANDC__) 57 #pragma warn -rch /* unreachable code */ 58 #pragma warn -ccc /* Condition is always true or false */ 59 #pragma warn -aus /* Assigned value is never used */ 60 #pragma warn -csu /* Comparing signed and unsigned */ 61 #pragma warn -spa /* Suspicious pointer arithmetic */ 62 #endif 63 64 /* Needed for various definitions... */ 65 #ifndef _GNU_SOURCE 66 # define _GNU_SOURCE 67 #endif 68 69 /* 70 ** Include standard header files as necessary 71 */ 72 #ifdef HAVE_STDINT_H 73 #include <stdint.h> 74 #endif 75 #ifdef HAVE_INTTYPES_H 76 #include <inttypes.h> 77 #endif 78 79 /* 80 ** The number of samples of an index that SQLite takes in order to 81 ** construct a histogram of the table content when running ANALYZE 82 ** and with SQLITE_ENABLE_STAT2 83 */ 84 #define SQLITE_INDEX_SAMPLES 10 85 86 /* 87 ** The following macros are used to cast pointers to integers and 88 ** integers to pointers. The way you do this varies from one compiler 89 ** to the next, so we have developed the following set of #if statements 90 ** to generate appropriate macros for a wide range of compilers. 91 ** 92 ** The correct "ANSI" way to do this is to use the intptr_t type. 93 ** Unfortunately, that typedef is not available on all compilers, or 94 ** if it is available, it requires an #include of specific headers 95 ** that vary from one machine to the next. 96 ** 97 ** Ticket #3860: The llvm-gcc-4.2 compiler from Apple chokes on 98 ** the ((void*)&((char*)0)[X]) construct. But MSVC chokes on ((void*)(X)). 99 ** So we have to define the macros in different ways depending on the 100 ** compiler. 101 */ 102 #if defined(__PTRDIFF_TYPE__) /* This case should work for GCC */ 103 # define SQLITE_INT_TO_PTR(X) ((void*)(__PTRDIFF_TYPE__)(X)) 104 # define SQLITE_PTR_TO_INT(X) ((int)(__PTRDIFF_TYPE__)(X)) 105 #elif !defined(__GNUC__) /* Works for compilers other than LLVM */ 106 # define SQLITE_INT_TO_PTR(X) ((void*)&((char*)0)[X]) 107 # define SQLITE_PTR_TO_INT(X) ((int)(((char*)X)-(char*)0)) 108 #elif defined(HAVE_STDINT_H) /* Use this case if we have ANSI headers */ 109 # define SQLITE_INT_TO_PTR(X) ((void*)(intptr_t)(X)) 110 # define SQLITE_PTR_TO_INT(X) ((int)(intptr_t)(X)) 111 #else /* Generates a warning - but it always works */ 112 # define SQLITE_INT_TO_PTR(X) ((void*)(X)) 113 # define SQLITE_PTR_TO_INT(X) ((int)(X)) 114 #endif 115 116 /* 117 ** The SQLITE_THREADSAFE macro must be defined as 0, 1, or 2. 118 ** 0 means mutexes are permanently disable and the library is never 119 ** threadsafe. 1 means the library is serialized which is the highest 120 ** level of threadsafety. 2 means the libary is multithreaded - multiple 121 ** threads can use SQLite as long as no two threads try to use the same 122 ** database connection at the same time. 123 ** 124 ** Older versions of SQLite used an optional THREADSAFE macro. 125 ** We support that for legacy. 126 */ 127 #if !defined(SQLITE_THREADSAFE) 128 #if defined(THREADSAFE) 129 # define SQLITE_THREADSAFE THREADSAFE 130 #else 131 # define SQLITE_THREADSAFE 1 /* IMP: R-07272-22309 */ 132 #endif 133 #endif 134 135 /* 136 ** The SQLITE_DEFAULT_MEMSTATUS macro must be defined as either 0 or 1. 137 ** It determines whether or not the features related to 138 ** SQLITE_CONFIG_MEMSTATUS are available by default or not. This value can 139 ** be overridden at runtime using the sqlite3_config() API. 140 */ 141 #if !defined(SQLITE_DEFAULT_MEMSTATUS) 142 # define SQLITE_DEFAULT_MEMSTATUS 1 143 #endif 144 145 /* 146 ** Exactly one of the following macros must be defined in order to 147 ** specify which memory allocation subsystem to use. 148 ** 149 ** SQLITE_SYSTEM_MALLOC // Use normal system malloc() 150 ** SQLITE_MEMDEBUG // Debugging version of system malloc() 151 ** 152 ** (Historical note: There used to be several other options, but we've 153 ** pared it down to just these two.) 154 ** 155 ** If none of the above are defined, then set SQLITE_SYSTEM_MALLOC as 156 ** the default. 157 */ 158 #if defined(SQLITE_SYSTEM_MALLOC)+defined(SQLITE_MEMDEBUG)>1 159 # error "At most one of the following compile-time configuration options\ 160 is allows: SQLITE_SYSTEM_MALLOC, SQLITE_MEMDEBUG" 161 #endif 162 #if defined(SQLITE_SYSTEM_MALLOC)+defined(SQLITE_MEMDEBUG)==0 163 # define SQLITE_SYSTEM_MALLOC 1 164 #endif 165 166 /* 167 ** If SQLITE_MALLOC_SOFT_LIMIT is not zero, then try to keep the 168 ** sizes of memory allocations below this value where possible. 169 */ 170 #if !defined(SQLITE_MALLOC_SOFT_LIMIT) 171 # define SQLITE_MALLOC_SOFT_LIMIT 1024 172 #endif 173 174 /* 175 ** We need to define _XOPEN_SOURCE as follows in order to enable 176 ** recursive mutexes on most Unix systems. But Mac OS X is different. 177 ** The _XOPEN_SOURCE define causes problems for Mac OS X we are told, 178 ** so it is omitted there. See ticket #2673. 179 ** 180 ** Later we learn that _XOPEN_SOURCE is poorly or incorrectly 181 ** implemented on some systems. So we avoid defining it at all 182 ** if it is already defined or if it is unneeded because we are 183 ** not doing a threadsafe build. Ticket #2681. 184 ** 185 ** See also ticket #2741. 186 */ 187 #if !defined(_XOPEN_SOURCE) && !defined(__DARWIN__) && !defined(__APPLE__) && SQLITE_THREADSAFE 188 # define _XOPEN_SOURCE 500 /* Needed to enable pthread recursive mutexes */ 189 #endif 190 191 /* 192 ** The TCL headers are only needed when compiling the TCL bindings. 193 */ 194 #if defined(SQLITE_TCL) || defined(TCLSH) 195 # include <tcl.h> 196 #endif 197 198 /* 199 ** Many people are failing to set -DNDEBUG=1 when compiling SQLite. 200 ** Setting NDEBUG makes the code smaller and run faster. So the following 201 ** lines are added to automatically set NDEBUG unless the -DSQLITE_DEBUG=1 202 ** option is set. Thus NDEBUG becomes an opt-in rather than an opt-out 203 ** feature. 204 */ 205 #if !defined(NDEBUG) && !defined(SQLITE_DEBUG) 206 # define NDEBUG 1 207 #endif 208 209 /* 210 ** The testcase() macro is used to aid in coverage testing. When 211 ** doing coverage testing, the condition inside the argument to 212 ** testcase() must be evaluated both true and false in order to 213 ** get full branch coverage. The testcase() macro is inserted 214 ** to help ensure adequate test coverage in places where simple 215 ** condition/decision coverage is inadequate. For example, testcase() 216 ** can be used to make sure boundary values are tested. For 217 ** bitmask tests, testcase() can be used to make sure each bit 218 ** is significant and used at least once. On switch statements 219 ** where multiple cases go to the same block of code, testcase() 220 ** can insure that all cases are evaluated. 221 ** 222 */ 223 #ifdef SQLITE_COVERAGE_TEST 224 void sqlite3Coverage(int); 225 # define testcase(X) if( X ){ sqlite3Coverage(__LINE__); } 226 #else 227 # define testcase(X) 228 #endif 229 230 /* 231 ** The TESTONLY macro is used to enclose variable declarations or 232 ** other bits of code that are needed to support the arguments 233 ** within testcase() and assert() macros. 234 */ 235 #if !defined(NDEBUG) || defined(SQLITE_COVERAGE_TEST) 236 # define TESTONLY(X) X 237 #else 238 # define TESTONLY(X) 239 #endif 240 241 /* 242 ** Sometimes we need a small amount of code such as a variable initialization 243 ** to setup for a later assert() statement. We do not want this code to 244 ** appear when assert() is disabled. The following macro is therefore 245 ** used to contain that setup code. The "VVA" acronym stands for 246 ** "Verification, Validation, and Accreditation". In other words, the 247 ** code within VVA_ONLY() will only run during verification processes. 248 */ 249 #ifndef NDEBUG 250 # define VVA_ONLY(X) X 251 #else 252 # define VVA_ONLY(X) 253 #endif 254 255 /* 256 ** The ALWAYS and NEVER macros surround boolean expressions which 257 ** are intended to always be true or false, respectively. Such 258 ** expressions could be omitted from the code completely. But they 259 ** are included in a few cases in order to enhance the resilience 260 ** of SQLite to unexpected behavior - to make the code "self-healing" 261 ** or "ductile" rather than being "brittle" and crashing at the first 262 ** hint of unplanned behavior. 263 ** 264 ** In other words, ALWAYS and NEVER are added for defensive code. 265 ** 266 ** When doing coverage testing ALWAYS and NEVER are hard-coded to 267 ** be true and false so that the unreachable code then specify will 268 ** not be counted as untested code. 269 */ 270 #if defined(SQLITE_COVERAGE_TEST) 271 # define ALWAYS(X) (1) 272 # define NEVER(X) (0) 273 #elif !defined(NDEBUG) 274 # define ALWAYS(X) ((X)?1:(assert(0),0)) 275 # define NEVER(X) ((X)?(assert(0),1):0) 276 #else 277 # define ALWAYS(X) (X) 278 # define NEVER(X) (X) 279 #endif 280 281 /* 282 ** Return true (non-zero) if the input is a integer that is too large 283 ** to fit in 32-bits. This macro is used inside of various testcase() 284 ** macros to verify that we have tested SQLite for large-file support. 285 */ 286 #define IS_BIG_INT(X) (((X)&~(i64)0xffffffff)!=0) 287 288 /* 289 ** The macro unlikely() is a hint that surrounds a boolean 290 ** expression that is usually false. Macro likely() surrounds 291 ** a boolean expression that is usually true. GCC is able to 292 ** use these hints to generate better code, sometimes. 293 */ 294 #if defined(__GNUC__) && 0 295 # define likely(X) __builtin_expect((X),1) 296 # define unlikely(X) __builtin_expect((X),0) 297 #else 298 # define likely(X) !!(X) 299 # define unlikely(X) !!(X) 300 #endif 301 302 #include "sqlite3.h" 303 #include "hash.h" 304 #include "parse.h" 305 #include <stdio.h> 306 #include <stdlib.h> 307 #include <string.h> 308 #include <assert.h> 309 #include <stddef.h> 310 311 /* 312 ** If compiling for a processor that lacks floating point support, 313 ** substitute integer for floating-point 314 */ 315 #ifdef SQLITE_OMIT_FLOATING_POINT 316 # define double sqlite_int64 317 # define float sqlite_int64 318 # define LONGDOUBLE_TYPE sqlite_int64 319 # ifndef SQLITE_BIG_DBL 320 # define SQLITE_BIG_DBL (((sqlite3_int64)1)<<50) 321 # endif 322 # define SQLITE_OMIT_DATETIME_FUNCS 1 323 # define SQLITE_OMIT_TRACE 1 324 # undef SQLITE_MIXED_ENDIAN_64BIT_FLOAT 325 # undef SQLITE_HAVE_ISNAN 326 #endif 327 #ifndef SQLITE_BIG_DBL 328 # define SQLITE_BIG_DBL (1e99) 329 #endif 330 331 /* 332 ** OMIT_TEMPDB is set to 1 if SQLITE_OMIT_TEMPDB is defined, or 0 333 ** afterward. Having this macro allows us to cause the C compiler 334 ** to omit code used by TEMP tables without messy #ifndef statements. 335 */ 336 #ifdef SQLITE_OMIT_TEMPDB 337 #define OMIT_TEMPDB 1 338 #else 339 #define OMIT_TEMPDB 0 340 #endif 341 342 /* 343 ** The "file format" number is an integer that is incremented whenever 344 ** the VDBE-level file format changes. The following macros define the 345 ** the default file format for new databases and the maximum file format 346 ** that the library can read. 347 */ 348 #define SQLITE_MAX_FILE_FORMAT 4 349 #ifndef SQLITE_DEFAULT_FILE_FORMAT 350 # define SQLITE_DEFAULT_FILE_FORMAT 1 351 #endif 352 353 /* 354 ** Determine whether triggers are recursive by default. This can be 355 ** changed at run-time using a pragma. 356 */ 357 #ifndef SQLITE_DEFAULT_RECURSIVE_TRIGGERS 358 # define SQLITE_DEFAULT_RECURSIVE_TRIGGERS 0 359 #endif 360 361 /* 362 ** Provide a default value for SQLITE_TEMP_STORE in case it is not specified 363 ** on the command-line 364 */ 365 #ifndef SQLITE_TEMP_STORE 366 # define SQLITE_TEMP_STORE 1 367 #endif 368 369 /* 370 ** GCC does not define the offsetof() macro so we'll have to do it 371 ** ourselves. 372 */ 373 #ifndef offsetof 374 #define offsetof(STRUCTURE,FIELD) ((int)((char*)&((STRUCTURE*)0)->FIELD)) 375 #endif 376 377 /* 378 ** Check to see if this machine uses EBCDIC. (Yes, believe it or 379 ** not, there are still machines out there that use EBCDIC.) 380 */ 381 #if 'A' == '\301' 382 # define SQLITE_EBCDIC 1 383 #else 384 # define SQLITE_ASCII 1 385 #endif 386 387 /* 388 ** Integers of known sizes. These typedefs might change for architectures 389 ** where the sizes very. Preprocessor macros are available so that the 390 ** types can be conveniently redefined at compile-type. Like this: 391 ** 392 ** cc '-DUINTPTR_TYPE=long long int' ... 393 */ 394 #ifndef UINT32_TYPE 395 # ifdef HAVE_UINT32_T 396 # define UINT32_TYPE uint32_t 397 # else 398 # define UINT32_TYPE unsigned int 399 # endif 400 #endif 401 #ifndef UINT16_TYPE 402 # ifdef HAVE_UINT16_T 403 # define UINT16_TYPE uint16_t 404 # else 405 # define UINT16_TYPE unsigned short int 406 # endif 407 #endif 408 #ifndef INT16_TYPE 409 # ifdef HAVE_INT16_T 410 # define INT16_TYPE int16_t 411 # else 412 # define INT16_TYPE short int 413 # endif 414 #endif 415 #ifndef UINT8_TYPE 416 # ifdef HAVE_UINT8_T 417 # define UINT8_TYPE uint8_t 418 # else 419 # define UINT8_TYPE unsigned char 420 # endif 421 #endif 422 #ifndef INT8_TYPE 423 # ifdef HAVE_INT8_T 424 # define INT8_TYPE int8_t 425 # else 426 # define INT8_TYPE signed char 427 # endif 428 #endif 429 #ifndef LONGDOUBLE_TYPE 430 # define LONGDOUBLE_TYPE long double 431 #endif 432 typedef sqlite_int64 i64; /* 8-byte signed integer */ 433 typedef sqlite_uint64 u64; /* 8-byte unsigned integer */ 434 typedef UINT32_TYPE u32; /* 4-byte unsigned integer */ 435 typedef UINT16_TYPE u16; /* 2-byte unsigned integer */ 436 typedef INT16_TYPE i16; /* 2-byte signed integer */ 437 typedef UINT8_TYPE u8; /* 1-byte unsigned integer */ 438 typedef INT8_TYPE i8; /* 1-byte signed integer */ 439 440 /* 441 ** SQLITE_MAX_U32 is a u64 constant that is the maximum u64 value 442 ** that can be stored in a u32 without loss of data. The value 443 ** is 0x00000000ffffffff. But because of quirks of some compilers, we 444 ** have to specify the value in the less intuitive manner shown: 445 */ 446 #define SQLITE_MAX_U32 ((((u64)1)<<32)-1) 447 448 /* 449 ** Macros to determine whether the machine is big or little endian, 450 ** evaluated at runtime. 451 */ 452 #ifdef SQLITE_AMALGAMATION 453 const int sqlite3one = 1; 454 #else 455 extern const int sqlite3one; 456 #endif 457 #if defined(i386) || defined(__i386__) || defined(_M_IX86)\ 458 || defined(__x86_64) || defined(__x86_64__) 459 # define SQLITE_BIGENDIAN 0 460 # define SQLITE_LITTLEENDIAN 1 461 # define SQLITE_UTF16NATIVE SQLITE_UTF16LE 462 #else 463 # define SQLITE_BIGENDIAN (*(char *)(&sqlite3one)==0) 464 # define SQLITE_LITTLEENDIAN (*(char *)(&sqlite3one)==1) 465 # define SQLITE_UTF16NATIVE (SQLITE_BIGENDIAN?SQLITE_UTF16BE:SQLITE_UTF16LE) 466 #endif 467 468 /* 469 ** Constants for the largest and smallest possible 64-bit signed integers. 470 ** These macros are designed to work correctly on both 32-bit and 64-bit 471 ** compilers. 472 */ 473 #define LARGEST_INT64 (0xffffffff|(((i64)0x7fffffff)<<32)) 474 #define SMALLEST_INT64 (((i64)-1) - LARGEST_INT64) 475 476 /* 477 ** Round up a number to the next larger multiple of 8. This is used 478 ** to force 8-byte alignment on 64-bit architectures. 479 */ 480 #define ROUND8(x) (((x)+7)&~7) 481 482 /* 483 ** Round down to the nearest multiple of 8 484 */ 485 #define ROUNDDOWN8(x) ((x)&~7) 486 487 /* 488 ** Assert that the pointer X is aligned to an 8-byte boundary. This 489 ** macro is used only within assert() to verify that the code gets 490 ** all alignment restrictions correct. 491 ** 492 ** Except, if SQLITE_4_BYTE_ALIGNED_MALLOC is defined, then the 493 ** underlying malloc() implemention might return us 4-byte aligned 494 ** pointers. In that case, only verify 4-byte alignment. 495 */ 496 #ifdef SQLITE_4_BYTE_ALIGNED_MALLOC 497 # define EIGHT_BYTE_ALIGNMENT(X) ((((char*)(X) - (char*)0)&3)==0) 498 #else 499 # define EIGHT_BYTE_ALIGNMENT(X) ((((char*)(X) - (char*)0)&7)==0) 500 #endif 501 502 503 /* 504 ** An instance of the following structure is used to store the busy-handler 505 ** callback for a given sqlite handle. 506 ** 507 ** The sqlite.busyHandler member of the sqlite struct contains the busy 508 ** callback for the database handle. Each pager opened via the sqlite 509 ** handle is passed a pointer to sqlite.busyHandler. The busy-handler 510 ** callback is currently invoked only from within pager.c. 511 */ 512 typedef struct BusyHandler BusyHandler; 513 struct BusyHandler { 514 int (*xFunc)(void *,int); /* The busy callback */ 515 void *pArg; /* First arg to busy callback */ 516 int nBusy; /* Incremented with each busy call */ 517 }; 518 519 /* 520 ** Name of the master database table. The master database table 521 ** is a special table that holds the names and attributes of all 522 ** user tables and indices. 523 */ 524 #define MASTER_NAME "sqlite_master" 525 #define TEMP_MASTER_NAME "sqlite_temp_master" 526 527 /* 528 ** The root-page of the master database table. 529 */ 530 #define MASTER_ROOT 1 531 532 /* 533 ** The name of the schema table. 534 */ 535 #define SCHEMA_TABLE(x) ((!OMIT_TEMPDB)&&(x==1)?TEMP_MASTER_NAME:MASTER_NAME) 536 537 /* 538 ** A convenience macro that returns the number of elements in 539 ** an array. 540 */ 541 #define ArraySize(X) ((int)(sizeof(X)/sizeof(X[0]))) 542 543 /* 544 ** The following value as a destructor means to use sqlite3DbFree(). 545 ** This is an internal extension to SQLITE_STATIC and SQLITE_TRANSIENT. 546 */ 547 #define SQLITE_DYNAMIC ((sqlite3_destructor_type)sqlite3DbFree) 548 549 /* 550 ** When SQLITE_OMIT_WSD is defined, it means that the target platform does 551 ** not support Writable Static Data (WSD) such as global and static variables. 552 ** All variables must either be on the stack or dynamically allocated from 553 ** the heap. When WSD is unsupported, the variable declarations scattered 554 ** throughout the SQLite code must become constants instead. The SQLITE_WSD 555 ** macro is used for this purpose. And instead of referencing the variable 556 ** directly, we use its constant as a key to lookup the run-time allocated 557 ** buffer that holds real variable. The constant is also the initializer 558 ** for the run-time allocated buffer. 559 ** 560 ** In the usual case where WSD is supported, the SQLITE_WSD and GLOBAL 561 ** macros become no-ops and have zero performance impact. 562 */ 563 #ifdef SQLITE_OMIT_WSD 564 #define SQLITE_WSD const 565 #define GLOBAL(t,v) (*(t*)sqlite3_wsd_find((void*)&(v), sizeof(v))) 566 #define sqlite3GlobalConfig GLOBAL(struct Sqlite3Config, sqlite3Config) 567 int sqlite3_wsd_init(int N, int J); 568 void *sqlite3_wsd_find(void *K, int L); 569 #else 570 #define SQLITE_WSD 571 #define GLOBAL(t,v) v 572 #define sqlite3GlobalConfig sqlite3Config 573 #endif 574 575 /* 576 ** The following macros are used to suppress compiler warnings and to 577 ** make it clear to human readers when a function parameter is deliberately 578 ** left unused within the body of a function. This usually happens when 579 ** a function is called via a function pointer. For example the 580 ** implementation of an SQL aggregate step callback may not use the 581 ** parameter indicating the number of arguments passed to the aggregate, 582 ** if it knows that this is enforced elsewhere. 583 ** 584 ** When a function parameter is not used at all within the body of a function, 585 ** it is generally named "NotUsed" or "NotUsed2" to make things even clearer. 586 ** However, these macros may also be used to suppress warnings related to 587 ** parameters that may or may not be used depending on compilation options. 588 ** For example those parameters only used in assert() statements. In these 589 ** cases the parameters are named as per the usual conventions. 590 */ 591 #define UNUSED_PARAMETER(x) (void)(x) 592 #define UNUSED_PARAMETER2(x,y) UNUSED_PARAMETER(x),UNUSED_PARAMETER(y) 593 594 /* 595 ** Forward references to structures 596 */ 597 typedef struct AggInfo AggInfo; 598 typedef struct AuthContext AuthContext; 599 typedef struct AutoincInfo AutoincInfo; 600 typedef struct Bitvec Bitvec; 601 typedef struct CollSeq CollSeq; 602 typedef struct Column Column; 603 typedef struct Db Db; 604 typedef struct Schema Schema; 605 typedef struct Expr Expr; 606 typedef struct ExprList ExprList; 607 typedef struct ExprSpan ExprSpan; 608 typedef struct FKey FKey; 609 typedef struct FuncDestructor FuncDestructor; 610 typedef struct FuncDef FuncDef; 611 typedef struct FuncDefHash FuncDefHash; 612 typedef struct IdList IdList; 613 typedef struct Index Index; 614 typedef struct IndexSample IndexSample; 615 typedef struct KeyClass KeyClass; 616 typedef struct KeyInfo KeyInfo; 617 typedef struct Lookaside Lookaside; 618 typedef struct LookasideSlot LookasideSlot; 619 typedef struct Module Module; 620 typedef struct NameContext NameContext; 621 typedef struct Parse Parse; 622 typedef struct RowSet RowSet; 623 typedef struct Savepoint Savepoint; 624 typedef struct Select Select; 625 typedef struct SrcList SrcList; 626 typedef struct StrAccum StrAccum; 627 typedef struct Table Table; 628 typedef struct TableLock TableLock; 629 typedef struct Token Token; 630 typedef struct Trigger Trigger; 631 typedef struct TriggerPrg TriggerPrg; 632 typedef struct TriggerStep TriggerStep; 633 typedef struct UnpackedRecord UnpackedRecord; 634 typedef struct VTable VTable; 635 typedef struct Walker Walker; 636 typedef struct WherePlan WherePlan; 637 typedef struct WhereInfo WhereInfo; 638 typedef struct WhereLevel WhereLevel; 639 640 /* 641 ** Defer sourcing vdbe.h and btree.h until after the "u8" and 642 ** "BusyHandler" typedefs. vdbe.h also requires a few of the opaque 643 ** pointer types (i.e. FuncDef) defined above. 644 */ 645 #include "btree.h" 646 #include "vdbe.h" 647 #include "pager.h" 648 #include "pcache.h" 649 650 #include "os.h" 651 #include "mutex.h" 652 653 654 /* 655 ** Each database file to be accessed by the system is an instance 656 ** of the following structure. There are normally two of these structures 657 ** in the sqlite.aDb[] array. aDb[0] is the main database file and 658 ** aDb[1] is the database file used to hold temporary tables. Additional 659 ** databases may be attached. 660 */ 661 struct Db { 662 char *zName; /* Name of this database */ 663 Btree *pBt; /* The B*Tree structure for this database file */ 664 u8 inTrans; /* 0: not writable. 1: Transaction. 2: Checkpoint */ 665 u8 safety_level; /* How aggressive at syncing data to disk */ 666 Schema *pSchema; /* Pointer to database schema (possibly shared) */ 667 }; 668 669 /* 670 ** An instance of the following structure stores a database schema. 671 ** 672 ** Most Schema objects are associated with a Btree. The exception is 673 ** the Schema for the TEMP databaes (sqlite3.aDb[1]) which is free-standing. 674 ** In shared cache mode, a single Schema object can be shared by multiple 675 ** Btrees that refer to the same underlying BtShared object. 676 ** 677 ** Schema objects are automatically deallocated when the last Btree that 678 ** references them is destroyed. The TEMP Schema is manually freed by 679 ** sqlite3_close(). 680 * 681 ** A thread must be holding a mutex on the corresponding Btree in order 682 ** to access Schema content. This implies that the thread must also be 683 ** holding a mutex on the sqlite3 connection pointer that owns the Btree. 684 ** For a TEMP Schema, on the connection mutex is required. 685 */ 686 struct Schema { 687 int schema_cookie; /* Database schema version number for this file */ 688 int iGeneration; /* Generation counter. Incremented with each change */ 689 Hash tblHash; /* All tables indexed by name */ 690 Hash idxHash; /* All (named) indices indexed by name */ 691 Hash trigHash; /* All triggers indexed by name */ 692 Hash fkeyHash; /* All foreign keys by referenced table name */ 693 Table *pSeqTab; /* The sqlite_sequence table used by AUTOINCREMENT */ 694 u8 file_format; /* Schema format version for this file */ 695 u8 enc; /* Text encoding used by this database */ 696 u16 flags; /* Flags associated with this schema */ 697 int cache_size; /* Number of pages to use in the cache */ 698 }; 699 700 /* 701 ** These macros can be used to test, set, or clear bits in the 702 ** Db.pSchema->flags field. 703 */ 704 #define DbHasProperty(D,I,P) (((D)->aDb[I].pSchema->flags&(P))==(P)) 705 #define DbHasAnyProperty(D,I,P) (((D)->aDb[I].pSchema->flags&(P))!=0) 706 #define DbSetProperty(D,I,P) (D)->aDb[I].pSchema->flags|=(P) 707 #define DbClearProperty(D,I,P) (D)->aDb[I].pSchema->flags&=~(P) 708 709 /* 710 ** Allowed values for the DB.pSchema->flags field. 711 ** 712 ** The DB_SchemaLoaded flag is set after the database schema has been 713 ** read into internal hash tables. 714 ** 715 ** DB_UnresetViews means that one or more views have column names that 716 ** have been filled out. If the schema changes, these column names might 717 ** changes and so the view will need to be reset. 718 */ 719 #define DB_SchemaLoaded 0x0001 /* The schema has been loaded */ 720 #define DB_UnresetViews 0x0002 /* Some views have defined column names */ 721 #define DB_Empty 0x0004 /* The file is empty (length 0 bytes) */ 722 723 /* 724 ** The number of different kinds of things that can be limited 725 ** using the sqlite3_limit() interface. 726 */ 727 #define SQLITE_N_LIMIT (SQLITE_LIMIT_TRIGGER_DEPTH+1) 728 729 /* 730 ** Lookaside malloc is a set of fixed-size buffers that can be used 731 ** to satisfy small transient memory allocation requests for objects 732 ** associated with a particular database connection. The use of 733 ** lookaside malloc provides a significant performance enhancement 734 ** (approx 10%) by avoiding numerous malloc/free requests while parsing 735 ** SQL statements. 736 ** 737 ** The Lookaside structure holds configuration information about the 738 ** lookaside malloc subsystem. Each available memory allocation in 739 ** the lookaside subsystem is stored on a linked list of LookasideSlot 740 ** objects. 741 ** 742 ** Lookaside allocations are only allowed for objects that are associated 743 ** with a particular database connection. Hence, schema information cannot 744 ** be stored in lookaside because in shared cache mode the schema information 745 ** is shared by multiple database connections. Therefore, while parsing 746 ** schema information, the Lookaside.bEnabled flag is cleared so that 747 ** lookaside allocations are not used to construct the schema objects. 748 */ 749 struct Lookaside { 750 u16 sz; /* Size of each buffer in bytes */ 751 u8 bEnabled; /* False to disable new lookaside allocations */ 752 u8 bMalloced; /* True if pStart obtained from sqlite3_malloc() */ 753 int nOut; /* Number of buffers currently checked out */ 754 int mxOut; /* Highwater mark for nOut */ 755 int anStat[3]; /* 0: hits. 1: size misses. 2: full misses */ 756 LookasideSlot *pFree; /* List of available buffers */ 757 void *pStart; /* First byte of available memory space */ 758 void *pEnd; /* First byte past end of available space */ 759 }; 760 struct LookasideSlot { 761 LookasideSlot *pNext; /* Next buffer in the list of free buffers */ 762 }; 763 764 /* 765 ** A hash table for function definitions. 766 ** 767 ** Hash each FuncDef structure into one of the FuncDefHash.a[] slots. 768 ** Collisions are on the FuncDef.pHash chain. 769 */ 770 struct FuncDefHash { 771 FuncDef *a[23]; /* Hash table for functions */ 772 }; 773 774 /* 775 ** Each database connection is an instance of the following structure. 776 ** 777 ** The sqlite.lastRowid records the last insert rowid generated by an 778 ** insert statement. Inserts on views do not affect its value. Each 779 ** trigger has its own context, so that lastRowid can be updated inside 780 ** triggers as usual. The previous value will be restored once the trigger 781 ** exits. Upon entering a before or instead of trigger, lastRowid is no 782 ** longer (since after version 2.8.12) reset to -1. 783 ** 784 ** The sqlite.nChange does not count changes within triggers and keeps no 785 ** context. It is reset at start of sqlite3_exec. 786 ** The sqlite.lsChange represents the number of changes made by the last 787 ** insert, update, or delete statement. It remains constant throughout the 788 ** length of a statement and is then updated by OP_SetCounts. It keeps a 789 ** context stack just like lastRowid so that the count of changes 790 ** within a trigger is not seen outside the trigger. Changes to views do not 791 ** affect the value of lsChange. 792 ** The sqlite.csChange keeps track of the number of current changes (since 793 ** the last statement) and is used to update sqlite_lsChange. 794 ** 795 ** The member variables sqlite.errCode, sqlite.zErrMsg and sqlite.zErrMsg16 796 ** store the most recent error code and, if applicable, string. The 797 ** internal function sqlite3Error() is used to set these variables 798 ** consistently. 799 */ 800 struct sqlite3 { 801 sqlite3_vfs *pVfs; /* OS Interface */ 802 int nDb; /* Number of backends currently in use */ 803 Db *aDb; /* All backends */ 804 int flags; /* Miscellaneous flags. See below */ 805 int openFlags; /* Flags passed to sqlite3_vfs.xOpen() */ 806 int errCode; /* Most recent error code (SQLITE_*) */ 807 int errMask; /* & result codes with this before returning */ 808 u8 autoCommit; /* The auto-commit flag. */ 809 u8 temp_store; /* 1: file 2: memory 0: default */ 810 u8 mallocFailed; /* True if we have seen a malloc failure */ 811 u8 dfltLockMode; /* Default locking-mode for attached dbs */ 812 signed char nextAutovac; /* Autovac setting after VACUUM if >=0 */ 813 u8 suppressErr; /* Do not issue error messages if true */ 814 int nextPagesize; /* Pagesize after VACUUM if >0 */ 815 int nTable; /* Number of tables in the database */ 816 CollSeq *pDfltColl; /* The default collating sequence (BINARY) */ 817 i64 lastRowid; /* ROWID of most recent insert (see above) */ 818 u32 magic; /* Magic number for detect library misuse */ 819 int nChange; /* Value returned by sqlite3_changes() */ 820 int nTotalChange; /* Value returned by sqlite3_total_changes() */ 821 sqlite3_mutex *mutex; /* Connection mutex */ 822 int aLimit[SQLITE_N_LIMIT]; /* Limits */ 823 struct sqlite3InitInfo { /* Information used during initialization */ 824 int iDb; /* When back is being initialized */ 825 int newTnum; /* Rootpage of table being initialized */ 826 u8 busy; /* TRUE if currently initializing */ 827 u8 orphanTrigger; /* Last statement is orphaned TEMP trigger */ 828 } init; 829 int nExtension; /* Number of loaded extensions */ 830 void **aExtension; /* Array of shared library handles */ 831 struct Vdbe *pVdbe; /* List of active virtual machines */ 832 int activeVdbeCnt; /* Number of VDBEs currently executing */ 833 int writeVdbeCnt; /* Number of active VDBEs that are writing */ 834 int vdbeExecCnt; /* Number of nested calls to VdbeExec() */ 835 void (*xTrace)(void*,const char*); /* Trace function */ 836 void *pTraceArg; /* Argument to the trace function */ 837 void (*xProfile)(void*,const char*,u64); /* Profiling function */ 838 void *pProfileArg; /* Argument to profile function */ 839 void *pCommitArg; /* Argument to xCommitCallback() */ 840 int (*xCommitCallback)(void*); /* Invoked at every commit. */ 841 void *pRollbackArg; /* Argument to xRollbackCallback() */ 842 void (*xRollbackCallback)(void*); /* Invoked at every commit. */ 843 void *pUpdateArg; 844 void (*xUpdateCallback)(void*,int, const char*,const char*,sqlite_int64); 845 #ifndef SQLITE_OMIT_WAL 846 int (*xWalCallback)(void *, sqlite3 *, const char *, int); 847 void *pWalArg; 848 #endif 849 void(*xCollNeeded)(void*,sqlite3*,int eTextRep,const char*); 850 void(*xCollNeeded16)(void*,sqlite3*,int eTextRep,const void*); 851 void *pCollNeededArg; 852 sqlite3_value *pErr; /* Most recent error message */ 853 char *zErrMsg; /* Most recent error message (UTF-8 encoded) */ 854 char *zErrMsg16; /* Most recent error message (UTF-16 encoded) */ 855 union { 856 volatile int isInterrupted; /* True if sqlite3_interrupt has been called */ 857 double notUsed1; /* Spacer */ 858 } u1; 859 Lookaside lookaside; /* Lookaside malloc configuration */ 860 #ifndef SQLITE_OMIT_AUTHORIZATION 861 int (*xAuth)(void*,int,const char*,const char*,const char*,const char*); 862 /* Access authorization function */ 863 void *pAuthArg; /* 1st argument to the access auth function */ 864 #endif 865 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 866 int (*xProgress)(void *); /* The progress callback */ 867 void *pProgressArg; /* Argument to the progress callback */ 868 int nProgressOps; /* Number of opcodes for progress callback */ 869 #endif 870 #ifndef SQLITE_OMIT_VIRTUALTABLE 871 Hash aModule; /* populated by sqlite3_create_module() */ 872 Table *pVTab; /* vtab with active Connect/Create method */ 873 VTable **aVTrans; /* Virtual tables with open transactions */ 874 int nVTrans; /* Allocated size of aVTrans */ 875 VTable *pDisconnect; /* Disconnect these in next sqlite3_prepare() */ 876 #endif 877 FuncDefHash aFunc; /* Hash table of connection functions */ 878 Hash aCollSeq; /* All collating sequences */ 879 BusyHandler busyHandler; /* Busy callback */ 880 int busyTimeout; /* Busy handler timeout, in msec */ 881 Db aDbStatic[2]; /* Static space for the 2 default backends */ 882 Savepoint *pSavepoint; /* List of active savepoints */ 883 int nSavepoint; /* Number of non-transaction savepoints */ 884 int nStatement; /* Number of nested statement-transactions */ 885 u8 isTransactionSavepoint; /* True if the outermost savepoint is a TS */ 886 i64 nDeferredCons; /* Net deferred constraints this transaction. */ 887 int *pnBytesFreed; /* If not NULL, increment this in DbFree() */ 888 889 #ifdef SQLITE_ENABLE_UNLOCK_NOTIFY 890 /* The following variables are all protected by the STATIC_MASTER 891 ** mutex, not by sqlite3.mutex. They are used by code in notify.c. 892 ** 893 ** When X.pUnlockConnection==Y, that means that X is waiting for Y to 894 ** unlock so that it can proceed. 895 ** 896 ** When X.pBlockingConnection==Y, that means that something that X tried 897 ** tried to do recently failed with an SQLITE_LOCKED error due to locks 898 ** held by Y. 899 */ 900 sqlite3 *pBlockingConnection; /* Connection that caused SQLITE_LOCKED */ 901 sqlite3 *pUnlockConnection; /* Connection to watch for unlock */ 902 void *pUnlockArg; /* Argument to xUnlockNotify */ 903 void (*xUnlockNotify)(void **, int); /* Unlock notify callback */ 904 sqlite3 *pNextBlocked; /* Next in list of all blocked connections */ 905 #endif 906 }; 907 908 /* 909 ** A macro to discover the encoding of a database. 910 */ 911 #define ENC(db) ((db)->aDb[0].pSchema->enc) 912 913 /* 914 ** Possible values for the sqlite3.flags. 915 */ 916 #define SQLITE_VdbeTrace 0x00000100 /* True to trace VDBE execution */ 917 #define SQLITE_InternChanges 0x00000200 /* Uncommitted Hash table changes */ 918 #define SQLITE_FullColNames 0x00000400 /* Show full column names on SELECT */ 919 #define SQLITE_ShortColNames 0x00000800 /* Show short columns names */ 920 #define SQLITE_CountRows 0x00001000 /* Count rows changed by INSERT, */ 921 /* DELETE, or UPDATE and return */ 922 /* the count using a callback. */ 923 #define SQLITE_NullCallback 0x00002000 /* Invoke the callback once if the */ 924 /* result set is empty */ 925 #define SQLITE_SqlTrace 0x00004000 /* Debug print SQL as it executes */ 926 #define SQLITE_VdbeListing 0x00008000 /* Debug listings of VDBE programs */ 927 #define SQLITE_WriteSchema 0x00010000 /* OK to update SQLITE_MASTER */ 928 #define SQLITE_NoReadlock 0x00020000 /* Readlocks are omitted when 929 ** accessing read-only databases */ 930 #define SQLITE_IgnoreChecks 0x00040000 /* Do not enforce check constraints */ 931 #define SQLITE_ReadUncommitted 0x0080000 /* For shared-cache mode */ 932 #define SQLITE_LegacyFileFmt 0x00100000 /* Create new databases in format 1 */ 933 #define SQLITE_FullFSync 0x00200000 /* Use full fsync on the backend */ 934 #define SQLITE_CkptFullFSync 0x00400000 /* Use full fsync for checkpoint */ 935 #define SQLITE_RecoveryMode 0x00800000 /* Ignore schema errors */ 936 #define SQLITE_ReverseOrder 0x01000000 /* Reverse unordered SELECTs */ 937 #define SQLITE_RecTriggers 0x02000000 /* Enable recursive triggers */ 938 #define SQLITE_ForeignKeys 0x04000000 /* Enforce foreign key constraints */ 939 #define SQLITE_AutoIndex 0x08000000 /* Enable automatic indexes */ 940 #define SQLITE_PreferBuiltin 0x10000000 /* Preference to built-in funcs */ 941 #define SQLITE_LoadExtension 0x20000000 /* Enable load_extension */ 942 #define SQLITE_EnableTrigger 0x40000000 /* True to enable triggers */ 943 944 /* 945 ** Bits of the sqlite3.flags field that are used by the 946 ** sqlite3_test_control(SQLITE_TESTCTRL_OPTIMIZATIONS,...) interface. 947 ** These must be the low-order bits of the flags field. 948 */ 949 #define SQLITE_QueryFlattener 0x01 /* Disable query flattening */ 950 #define SQLITE_ColumnCache 0x02 /* Disable the column cache */ 951 #define SQLITE_IndexSort 0x04 /* Disable indexes for sorting */ 952 #define SQLITE_IndexSearch 0x08 /* Disable indexes for searching */ 953 #define SQLITE_IndexCover 0x10 /* Disable index covering table */ 954 #define SQLITE_GroupByOrder 0x20 /* Disable GROUPBY cover of ORDERBY */ 955 #define SQLITE_FactorOutConst 0x40 /* Disable factoring out constants */ 956 #define SQLITE_OptMask 0xff /* Mask of all disablable opts */ 957 958 /* 959 ** Possible values for the sqlite.magic field. 960 ** The numbers are obtained at random and have no special meaning, other 961 ** than being distinct from one another. 962 */ 963 #define SQLITE_MAGIC_OPEN 0xa029a697 /* Database is open */ 964 #define SQLITE_MAGIC_CLOSED 0x9f3c2d33 /* Database is closed */ 965 #define SQLITE_MAGIC_SICK 0x4b771290 /* Error and awaiting close */ 966 #define SQLITE_MAGIC_BUSY 0xf03b7906 /* Database currently in use */ 967 #define SQLITE_MAGIC_ERROR 0xb5357930 /* An SQLITE_MISUSE error occurred */ 968 969 /* 970 ** Each SQL function is defined by an instance of the following 971 ** structure. A pointer to this structure is stored in the sqlite.aFunc 972 ** hash table. When multiple functions have the same name, the hash table 973 ** points to a linked list of these structures. 974 */ 975 struct FuncDef { 976 i16 nArg; /* Number of arguments. -1 means unlimited */ 977 u8 iPrefEnc; /* Preferred text encoding (SQLITE_UTF8, 16LE, 16BE) */ 978 u8 flags; /* Some combination of SQLITE_FUNC_* */ 979 void *pUserData; /* User data parameter */ 980 FuncDef *pNext; /* Next function with same name */ 981 void (*xFunc)(sqlite3_context*,int,sqlite3_value**); /* Regular function */ 982 void (*xStep)(sqlite3_context*,int,sqlite3_value**); /* Aggregate step */ 983 void (*xFinalize)(sqlite3_context*); /* Aggregate finalizer */ 984 char *zName; /* SQL name of the function. */ 985 FuncDef *pHash; /* Next with a different name but the same hash */ 986 FuncDestructor *pDestructor; /* Reference counted destructor function */ 987 }; 988 989 /* 990 ** This structure encapsulates a user-function destructor callback (as 991 ** configured using create_function_v2()) and a reference counter. When 992 ** create_function_v2() is called to create a function with a destructor, 993 ** a single object of this type is allocated. FuncDestructor.nRef is set to 994 ** the number of FuncDef objects created (either 1 or 3, depending on whether 995 ** or not the specified encoding is SQLITE_ANY). The FuncDef.pDestructor 996 ** member of each of the new FuncDef objects is set to point to the allocated 997 ** FuncDestructor. 998 ** 999 ** Thereafter, when one of the FuncDef objects is deleted, the reference 1000 ** count on this object is decremented. When it reaches 0, the destructor 1001 ** is invoked and the FuncDestructor structure freed. 1002 */ 1003 struct FuncDestructor { 1004 int nRef; 1005 void (*xDestroy)(void *); 1006 void *pUserData; 1007 }; 1008 1009 /* 1010 ** Possible values for FuncDef.flags 1011 */ 1012 #define SQLITE_FUNC_LIKE 0x01 /* Candidate for the LIKE optimization */ 1013 #define SQLITE_FUNC_CASE 0x02 /* Case-sensitive LIKE-type function */ 1014 #define SQLITE_FUNC_EPHEM 0x04 /* Ephemeral. Delete with VDBE */ 1015 #define SQLITE_FUNC_NEEDCOLL 0x08 /* sqlite3GetFuncCollSeq() might be called */ 1016 #define SQLITE_FUNC_PRIVATE 0x10 /* Allowed for internal use only */ 1017 #define SQLITE_FUNC_COUNT 0x20 /* Built-in count(*) aggregate */ 1018 #define SQLITE_FUNC_COALESCE 0x40 /* Built-in coalesce() or ifnull() function */ 1019 1020 /* 1021 ** The following three macros, FUNCTION(), LIKEFUNC() and AGGREGATE() are 1022 ** used to create the initializers for the FuncDef structures. 1023 ** 1024 ** FUNCTION(zName, nArg, iArg, bNC, xFunc) 1025 ** Used to create a scalar function definition of a function zName 1026 ** implemented by C function xFunc that accepts nArg arguments. The 1027 ** value passed as iArg is cast to a (void*) and made available 1028 ** as the user-data (sqlite3_user_data()) for the function. If 1029 ** argument bNC is true, then the SQLITE_FUNC_NEEDCOLL flag is set. 1030 ** 1031 ** AGGREGATE(zName, nArg, iArg, bNC, xStep, xFinal) 1032 ** Used to create an aggregate function definition implemented by 1033 ** the C functions xStep and xFinal. The first four parameters 1034 ** are interpreted in the same way as the first 4 parameters to 1035 ** FUNCTION(). 1036 ** 1037 ** LIKEFUNC(zName, nArg, pArg, flags) 1038 ** Used to create a scalar function definition of a function zName 1039 ** that accepts nArg arguments and is implemented by a call to C 1040 ** function likeFunc. Argument pArg is cast to a (void *) and made 1041 ** available as the function user-data (sqlite3_user_data()). The 1042 ** FuncDef.flags variable is set to the value passed as the flags 1043 ** parameter. 1044 */ 1045 #define FUNCTION(zName, nArg, iArg, bNC, xFunc) \ 1046 {nArg, SQLITE_UTF8, bNC*SQLITE_FUNC_NEEDCOLL, \ 1047 SQLITE_INT_TO_PTR(iArg), 0, xFunc, 0, 0, #zName, 0, 0} 1048 #define STR_FUNCTION(zName, nArg, pArg, bNC, xFunc) \ 1049 {nArg, SQLITE_UTF8, bNC*SQLITE_FUNC_NEEDCOLL, \ 1050 pArg, 0, xFunc, 0, 0, #zName, 0, 0} 1051 #define LIKEFUNC(zName, nArg, arg, flags) \ 1052 {nArg, SQLITE_UTF8, flags, (void *)arg, 0, likeFunc, 0, 0, #zName, 0, 0} 1053 #define AGGREGATE(zName, nArg, arg, nc, xStep, xFinal) \ 1054 {nArg, SQLITE_UTF8, nc*SQLITE_FUNC_NEEDCOLL, \ 1055 SQLITE_INT_TO_PTR(arg), 0, 0, xStep,xFinal,#zName,0,0} 1056 1057 /* 1058 ** All current savepoints are stored in a linked list starting at 1059 ** sqlite3.pSavepoint. The first element in the list is the most recently 1060 ** opened savepoint. Savepoints are added to the list by the vdbe 1061 ** OP_Savepoint instruction. 1062 */ 1063 struct Savepoint { 1064 char *zName; /* Savepoint name (nul-terminated) */ 1065 i64 nDeferredCons; /* Number of deferred fk violations */ 1066 Savepoint *pNext; /* Parent savepoint (if any) */ 1067 }; 1068 1069 /* 1070 ** The following are used as the second parameter to sqlite3Savepoint(), 1071 ** and as the P1 argument to the OP_Savepoint instruction. 1072 */ 1073 #define SAVEPOINT_BEGIN 0 1074 #define SAVEPOINT_RELEASE 1 1075 #define SAVEPOINT_ROLLBACK 2 1076 1077 1078 /* 1079 ** Each SQLite module (virtual table definition) is defined by an 1080 ** instance of the following structure, stored in the sqlite3.aModule 1081 ** hash table. 1082 */ 1083 struct Module { 1084 const sqlite3_module *pModule; /* Callback pointers */ 1085 const char *zName; /* Name passed to create_module() */ 1086 void *pAux; /* pAux passed to create_module() */ 1087 void (*xDestroy)(void *); /* Module destructor function */ 1088 }; 1089 1090 /* 1091 ** information about each column of an SQL table is held in an instance 1092 ** of this structure. 1093 */ 1094 struct Column { 1095 char *zName; /* Name of this column */ 1096 Expr *pDflt; /* Default value of this column */ 1097 char *zDflt; /* Original text of the default value */ 1098 char *zType; /* Data type for this column */ 1099 char *zColl; /* Collating sequence. If NULL, use the default */ 1100 u8 notNull; /* True if there is a NOT NULL constraint */ 1101 u8 isPrimKey; /* True if this column is part of the PRIMARY KEY */ 1102 char affinity; /* One of the SQLITE_AFF_... values */ 1103 #ifndef SQLITE_OMIT_VIRTUALTABLE 1104 u8 isHidden; /* True if this column is 'hidden' */ 1105 #endif 1106 }; 1107 1108 /* 1109 ** A "Collating Sequence" is defined by an instance of the following 1110 ** structure. Conceptually, a collating sequence consists of a name and 1111 ** a comparison routine that defines the order of that sequence. 1112 ** 1113 ** There may two separate implementations of the collation function, one 1114 ** that processes text in UTF-8 encoding (CollSeq.xCmp) and another that 1115 ** processes text encoded in UTF-16 (CollSeq.xCmp16), using the machine 1116 ** native byte order. When a collation sequence is invoked, SQLite selects 1117 ** the version that will require the least expensive encoding 1118 ** translations, if any. 1119 ** 1120 ** The CollSeq.pUser member variable is an extra parameter that passed in 1121 ** as the first argument to the UTF-8 comparison function, xCmp. 1122 ** CollSeq.pUser16 is the equivalent for the UTF-16 comparison function, 1123 ** xCmp16. 1124 ** 1125 ** If both CollSeq.xCmp and CollSeq.xCmp16 are NULL, it means that the 1126 ** collating sequence is undefined. Indices built on an undefined 1127 ** collating sequence may not be read or written. 1128 */ 1129 struct CollSeq { 1130 char *zName; /* Name of the collating sequence, UTF-8 encoded */ 1131 u8 enc; /* Text encoding handled by xCmp() */ 1132 u8 type; /* One of the SQLITE_COLL_... values below */ 1133 void *pUser; /* First argument to xCmp() */ 1134 int (*xCmp)(void*,int, const void*, int, const void*); 1135 void (*xDel)(void*); /* Destructor for pUser */ 1136 }; 1137 1138 /* 1139 ** Allowed values of CollSeq.type: 1140 */ 1141 #define SQLITE_COLL_BINARY 1 /* The default memcmp() collating sequence */ 1142 #define SQLITE_COLL_NOCASE 2 /* The built-in NOCASE collating sequence */ 1143 #define SQLITE_COLL_REVERSE 3 /* The built-in REVERSE collating sequence */ 1144 #define SQLITE_COLL_USER 0 /* Any other user-defined collating sequence */ 1145 1146 /* 1147 ** A sort order can be either ASC or DESC. 1148 */ 1149 #define SQLITE_SO_ASC 0 /* Sort in ascending order */ 1150 #define SQLITE_SO_DESC 1 /* Sort in ascending order */ 1151 1152 /* 1153 ** Column affinity types. 1154 ** 1155 ** These used to have mnemonic name like 'i' for SQLITE_AFF_INTEGER and 1156 ** 't' for SQLITE_AFF_TEXT. But we can save a little space and improve 1157 ** the speed a little by numbering the values consecutively. 1158 ** 1159 ** But rather than start with 0 or 1, we begin with 'a'. That way, 1160 ** when multiple affinity types are concatenated into a string and 1161 ** used as the P4 operand, they will be more readable. 1162 ** 1163 ** Note also that the numeric types are grouped together so that testing 1164 ** for a numeric type is a single comparison. 1165 */ 1166 #define SQLITE_AFF_TEXT 'a' 1167 #define SQLITE_AFF_NONE 'b' 1168 #define SQLITE_AFF_NUMERIC 'c' 1169 #define SQLITE_AFF_INTEGER 'd' 1170 #define SQLITE_AFF_REAL 'e' 1171 1172 #define sqlite3IsNumericAffinity(X) ((X)>=SQLITE_AFF_NUMERIC) 1173 1174 /* 1175 ** The SQLITE_AFF_MASK values masks off the significant bits of an 1176 ** affinity value. 1177 */ 1178 #define SQLITE_AFF_MASK 0x67 1179 1180 /* 1181 ** Additional bit values that can be ORed with an affinity without 1182 ** changing the affinity. 1183 */ 1184 #define SQLITE_JUMPIFNULL 0x08 /* jumps if either operand is NULL */ 1185 #define SQLITE_STOREP2 0x10 /* Store result in reg[P2] rather than jump */ 1186 #define SQLITE_NULLEQ 0x80 /* NULL=NULL */ 1187 1188 /* 1189 ** An object of this type is created for each virtual table present in 1190 ** the database schema. 1191 ** 1192 ** If the database schema is shared, then there is one instance of this 1193 ** structure for each database connection (sqlite3*) that uses the shared 1194 ** schema. This is because each database connection requires its own unique 1195 ** instance of the sqlite3_vtab* handle used to access the virtual table 1196 ** implementation. sqlite3_vtab* handles can not be shared between 1197 ** database connections, even when the rest of the in-memory database 1198 ** schema is shared, as the implementation often stores the database 1199 ** connection handle passed to it via the xConnect() or xCreate() method 1200 ** during initialization internally. This database connection handle may 1201 ** then be used by the virtual table implementation to access real tables 1202 ** within the database. So that they appear as part of the callers 1203 ** transaction, these accesses need to be made via the same database 1204 ** connection as that used to execute SQL operations on the virtual table. 1205 ** 1206 ** All VTable objects that correspond to a single table in a shared 1207 ** database schema are initially stored in a linked-list pointed to by 1208 ** the Table.pVTable member variable of the corresponding Table object. 1209 ** When an sqlite3_prepare() operation is required to access the virtual 1210 ** table, it searches the list for the VTable that corresponds to the 1211 ** database connection doing the preparing so as to use the correct 1212 ** sqlite3_vtab* handle in the compiled query. 1213 ** 1214 ** When an in-memory Table object is deleted (for example when the 1215 ** schema is being reloaded for some reason), the VTable objects are not 1216 ** deleted and the sqlite3_vtab* handles are not xDisconnect()ed 1217 ** immediately. Instead, they are moved from the Table.pVTable list to 1218 ** another linked list headed by the sqlite3.pDisconnect member of the 1219 ** corresponding sqlite3 structure. They are then deleted/xDisconnected 1220 ** next time a statement is prepared using said sqlite3*. This is done 1221 ** to avoid deadlock issues involving multiple sqlite3.mutex mutexes. 1222 ** Refer to comments above function sqlite3VtabUnlockList() for an 1223 ** explanation as to why it is safe to add an entry to an sqlite3.pDisconnect 1224 ** list without holding the corresponding sqlite3.mutex mutex. 1225 ** 1226 ** The memory for objects of this type is always allocated by 1227 ** sqlite3DbMalloc(), using the connection handle stored in VTable.db as 1228 ** the first argument. 1229 */ 1230 struct VTable { 1231 sqlite3 *db; /* Database connection associated with this table */ 1232 Module *pMod; /* Pointer to module implementation */ 1233 sqlite3_vtab *pVtab; /* Pointer to vtab instance */ 1234 int nRef; /* Number of pointers to this structure */ 1235 VTable *pNext; /* Next in linked list (see above) */ 1236 }; 1237 1238 /* 1239 ** Each SQL table is represented in memory by an instance of the 1240 ** following structure. 1241 ** 1242 ** Table.zName is the name of the table. The case of the original 1243 ** CREATE TABLE statement is stored, but case is not significant for 1244 ** comparisons. 1245 ** 1246 ** Table.nCol is the number of columns in this table. Table.aCol is a 1247 ** pointer to an array of Column structures, one for each column. 1248 ** 1249 ** If the table has an INTEGER PRIMARY KEY, then Table.iPKey is the index of 1250 ** the column that is that key. Otherwise Table.iPKey is negative. Note 1251 ** that the datatype of the PRIMARY KEY must be INTEGER for this field to 1252 ** be set. An INTEGER PRIMARY KEY is used as the rowid for each row of 1253 ** the table. If a table has no INTEGER PRIMARY KEY, then a random rowid 1254 ** is generated for each row of the table. TF_HasPrimaryKey is set if 1255 ** the table has any PRIMARY KEY, INTEGER or otherwise. 1256 ** 1257 ** Table.tnum is the page number for the root BTree page of the table in the 1258 ** database file. If Table.iDb is the index of the database table backend 1259 ** in sqlite.aDb[]. 0 is for the main database and 1 is for the file that 1260 ** holds temporary tables and indices. If TF_Ephemeral is set 1261 ** then the table is stored in a file that is automatically deleted 1262 ** when the VDBE cursor to the table is closed. In this case Table.tnum 1263 ** refers VDBE cursor number that holds the table open, not to the root 1264 ** page number. Transient tables are used to hold the results of a 1265 ** sub-query that appears instead of a real table name in the FROM clause 1266 ** of a SELECT statement. 1267 */ 1268 struct Table { 1269 char *zName; /* Name of the table or view */ 1270 int iPKey; /* If not negative, use aCol[iPKey] as the primary key */ 1271 int nCol; /* Number of columns in this table */ 1272 Column *aCol; /* Information about each column */ 1273 Index *pIndex; /* List of SQL indexes on this table. */ 1274 int tnum; /* Root BTree node for this table (see note above) */ 1275 unsigned nRowEst; /* Estimated rows in table - from sqlite_stat1 table */ 1276 Select *pSelect; /* NULL for tables. Points to definition if a view. */ 1277 u16 nRef; /* Number of pointers to this Table */ 1278 u8 tabFlags; /* Mask of TF_* values */ 1279 u8 keyConf; /* What to do in case of uniqueness conflict on iPKey */ 1280 FKey *pFKey; /* Linked list of all foreign keys in this table */ 1281 char *zColAff; /* String defining the affinity of each column */ 1282 #ifndef SQLITE_OMIT_CHECK 1283 Expr *pCheck; /* The AND of all CHECK constraints */ 1284 #endif 1285 #ifndef SQLITE_OMIT_ALTERTABLE 1286 int addColOffset; /* Offset in CREATE TABLE stmt to add a new column */ 1287 #endif 1288 #ifndef SQLITE_OMIT_VIRTUALTABLE 1289 VTable *pVTable; /* List of VTable objects. */ 1290 int nModuleArg; /* Number of arguments to the module */ 1291 char **azModuleArg; /* Text of all module args. [0] is module name */ 1292 #endif 1293 Trigger *pTrigger; /* List of triggers stored in pSchema */ 1294 Schema *pSchema; /* Schema that contains this table */ 1295 Table *pNextZombie; /* Next on the Parse.pZombieTab list */ 1296 }; 1297 1298 /* 1299 ** Allowed values for Tabe.tabFlags. 1300 */ 1301 #define TF_Readonly 0x01 /* Read-only system table */ 1302 #define TF_Ephemeral 0x02 /* An ephemeral table */ 1303 #define TF_HasPrimaryKey 0x04 /* Table has a primary key */ 1304 #define TF_Autoincrement 0x08 /* Integer primary key is autoincrement */ 1305 #define TF_Virtual 0x10 /* Is a virtual table */ 1306 #define TF_NeedMetadata 0x20 /* aCol[].zType and aCol[].pColl missing */ 1307 1308 1309 1310 /* 1311 ** Test to see whether or not a table is a virtual table. This is 1312 ** done as a macro so that it will be optimized out when virtual 1313 ** table support is omitted from the build. 1314 */ 1315 #ifndef SQLITE_OMIT_VIRTUALTABLE 1316 # define IsVirtual(X) (((X)->tabFlags & TF_Virtual)!=0) 1317 # define IsHiddenColumn(X) ((X)->isHidden) 1318 #else 1319 # define IsVirtual(X) 0 1320 # define IsHiddenColumn(X) 0 1321 #endif 1322 1323 /* 1324 ** Each foreign key constraint is an instance of the following structure. 1325 ** 1326 ** A foreign key is associated with two tables. The "from" table is 1327 ** the table that contains the REFERENCES clause that creates the foreign 1328 ** key. The "to" table is the table that is named in the REFERENCES clause. 1329 ** Consider this example: 1330 ** 1331 ** CREATE TABLE ex1( 1332 ** a INTEGER PRIMARY KEY, 1333 ** b INTEGER CONSTRAINT fk1 REFERENCES ex2(x) 1334 ** ); 1335 ** 1336 ** For foreign key "fk1", the from-table is "ex1" and the to-table is "ex2". 1337 ** 1338 ** Each REFERENCES clause generates an instance of the following structure 1339 ** which is attached to the from-table. The to-table need not exist when 1340 ** the from-table is created. The existence of the to-table is not checked. 1341 */ 1342 struct FKey { 1343 Table *pFrom; /* Table containing the REFERENCES clause (aka: Child) */ 1344 FKey *pNextFrom; /* Next foreign key in pFrom */ 1345 char *zTo; /* Name of table that the key points to (aka: Parent) */ 1346 FKey *pNextTo; /* Next foreign key on table named zTo */ 1347 FKey *pPrevTo; /* Previous foreign key on table named zTo */ 1348 int nCol; /* Number of columns in this key */ 1349 /* EV: R-30323-21917 */ 1350 u8 isDeferred; /* True if constraint checking is deferred till COMMIT */ 1351 u8 aAction[2]; /* ON DELETE and ON UPDATE actions, respectively */ 1352 Trigger *apTrigger[2]; /* Triggers for aAction[] actions */ 1353 struct sColMap { /* Mapping of columns in pFrom to columns in zTo */ 1354 int iFrom; /* Index of column in pFrom */ 1355 char *zCol; /* Name of column in zTo. If 0 use PRIMARY KEY */ 1356 } aCol[1]; /* One entry for each of nCol column s */ 1357 }; 1358 1359 /* 1360 ** SQLite supports many different ways to resolve a constraint 1361 ** error. ROLLBACK processing means that a constraint violation 1362 ** causes the operation in process to fail and for the current transaction 1363 ** to be rolled back. ABORT processing means the operation in process 1364 ** fails and any prior changes from that one operation are backed out, 1365 ** but the transaction is not rolled back. FAIL processing means that 1366 ** the operation in progress stops and returns an error code. But prior 1367 ** changes due to the same operation are not backed out and no rollback 1368 ** occurs. IGNORE means that the particular row that caused the constraint 1369 ** error is not inserted or updated. Processing continues and no error 1370 ** is returned. REPLACE means that preexisting database rows that caused 1371 ** a UNIQUE constraint violation are removed so that the new insert or 1372 ** update can proceed. Processing continues and no error is reported. 1373 ** 1374 ** RESTRICT, SETNULL, and CASCADE actions apply only to foreign keys. 1375 ** RESTRICT is the same as ABORT for IMMEDIATE foreign keys and the 1376 ** same as ROLLBACK for DEFERRED keys. SETNULL means that the foreign 1377 ** key is set to NULL. CASCADE means that a DELETE or UPDATE of the 1378 ** referenced table row is propagated into the row that holds the 1379 ** foreign key. 1380 ** 1381 ** The following symbolic values are used to record which type 1382 ** of action to take. 1383 */ 1384 #define OE_None 0 /* There is no constraint to check */ 1385 #define OE_Rollback 1 /* Fail the operation and rollback the transaction */ 1386 #define OE_Abort 2 /* Back out changes but do no rollback transaction */ 1387 #define OE_Fail 3 /* Stop the operation but leave all prior changes */ 1388 #define OE_Ignore 4 /* Ignore the error. Do not do the INSERT or UPDATE */ 1389 #define OE_Replace 5 /* Delete existing record, then do INSERT or UPDATE */ 1390 1391 #define OE_Restrict 6 /* OE_Abort for IMMEDIATE, OE_Rollback for DEFERRED */ 1392 #define OE_SetNull 7 /* Set the foreign key value to NULL */ 1393 #define OE_SetDflt 8 /* Set the foreign key value to its default */ 1394 #define OE_Cascade 9 /* Cascade the changes */ 1395 1396 #define OE_Default 99 /* Do whatever the default action is */ 1397 1398 1399 /* 1400 ** An instance of the following structure is passed as the first 1401 ** argument to sqlite3VdbeKeyCompare and is used to control the 1402 ** comparison of the two index keys. 1403 */ 1404 struct KeyInfo { 1405 sqlite3 *db; /* The database connection */ 1406 u8 enc; /* Text encoding - one of the SQLITE_UTF* values */ 1407 u16 nField; /* Number of entries in aColl[] */ 1408 u8 *aSortOrder; /* Sort order for each column. May be NULL */ 1409 CollSeq *aColl[1]; /* Collating sequence for each term of the key */ 1410 }; 1411 1412 /* 1413 ** An instance of the following structure holds information about a 1414 ** single index record that has already been parsed out into individual 1415 ** values. 1416 ** 1417 ** A record is an object that contains one or more fields of data. 1418 ** Records are used to store the content of a table row and to store 1419 ** the key of an index. A blob encoding of a record is created by 1420 ** the OP_MakeRecord opcode of the VDBE and is disassembled by the 1421 ** OP_Column opcode. 1422 ** 1423 ** This structure holds a record that has already been disassembled 1424 ** into its constituent fields. 1425 */ 1426 struct UnpackedRecord { 1427 KeyInfo *pKeyInfo; /* Collation and sort-order information */ 1428 u16 nField; /* Number of entries in apMem[] */ 1429 u16 flags; /* Boolean settings. UNPACKED_... below */ 1430 i64 rowid; /* Used by UNPACKED_PREFIX_SEARCH */ 1431 Mem *aMem; /* Values */ 1432 }; 1433 1434 /* 1435 ** Allowed values of UnpackedRecord.flags 1436 */ 1437 #define UNPACKED_NEED_FREE 0x0001 /* Memory is from sqlite3Malloc() */ 1438 #define UNPACKED_NEED_DESTROY 0x0002 /* apMem[]s should all be destroyed */ 1439 #define UNPACKED_IGNORE_ROWID 0x0004 /* Ignore trailing rowid on key1 */ 1440 #define UNPACKED_INCRKEY 0x0008 /* Make this key an epsilon larger */ 1441 #define UNPACKED_PREFIX_MATCH 0x0010 /* A prefix match is considered OK */ 1442 #define UNPACKED_PREFIX_SEARCH 0x0020 /* A prefix match is considered OK */ 1443 1444 /* 1445 ** Each SQL index is represented in memory by an 1446 ** instance of the following structure. 1447 ** 1448 ** The columns of the table that are to be indexed are described 1449 ** by the aiColumn[] field of this structure. For example, suppose 1450 ** we have the following table and index: 1451 ** 1452 ** CREATE TABLE Ex1(c1 int, c2 int, c3 text); 1453 ** CREATE INDEX Ex2 ON Ex1(c3,c1); 1454 ** 1455 ** In the Table structure describing Ex1, nCol==3 because there are 1456 ** three columns in the table. In the Index structure describing 1457 ** Ex2, nColumn==2 since 2 of the 3 columns of Ex1 are indexed. 1458 ** The value of aiColumn is {2, 0}. aiColumn[0]==2 because the 1459 ** first column to be indexed (c3) has an index of 2 in Ex1.aCol[]. 1460 ** The second column to be indexed (c1) has an index of 0 in 1461 ** Ex1.aCol[], hence Ex2.aiColumn[1]==0. 1462 ** 1463 ** The Index.onError field determines whether or not the indexed columns 1464 ** must be unique and what to do if they are not. When Index.onError=OE_None, 1465 ** it means this is not a unique index. Otherwise it is a unique index 1466 ** and the value of Index.onError indicate the which conflict resolution 1467 ** algorithm to employ whenever an attempt is made to insert a non-unique 1468 ** element. 1469 */ 1470 struct Index { 1471 char *zName; /* Name of this index */ 1472 int nColumn; /* Number of columns in the table used by this index */ 1473 int *aiColumn; /* Which columns are used by this index. 1st is 0 */ 1474 unsigned *aiRowEst; /* Result of ANALYZE: Est. rows selected by each column */ 1475 Table *pTable; /* The SQL table being indexed */ 1476 int tnum; /* Page containing root of this index in database file */ 1477 u8 onError; /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */ 1478 u8 autoIndex; /* True if is automatically created (ex: by UNIQUE) */ 1479 u8 bUnordered; /* Use this index for == or IN queries only */ 1480 char *zColAff; /* String defining the affinity of each column */ 1481 Index *pNext; /* The next index associated with the same table */ 1482 Schema *pSchema; /* Schema containing this index */ 1483 u8 *aSortOrder; /* Array of size Index.nColumn. True==DESC, False==ASC */ 1484 char **azColl; /* Array of collation sequence names for index */ 1485 IndexSample *aSample; /* Array of SQLITE_INDEX_SAMPLES samples */ 1486 }; 1487 1488 /* 1489 ** Each sample stored in the sqlite_stat2 table is represented in memory 1490 ** using a structure of this type. 1491 */ 1492 struct IndexSample { 1493 union { 1494 char *z; /* Value if eType is SQLITE_TEXT or SQLITE_BLOB */ 1495 double r; /* Value if eType is SQLITE_FLOAT or SQLITE_INTEGER */ 1496 } u; 1497 u8 eType; /* SQLITE_NULL, SQLITE_INTEGER ... etc. */ 1498 u8 nByte; /* Size in byte of text or blob. */ 1499 }; 1500 1501 /* 1502 ** Each token coming out of the lexer is an instance of 1503 ** this structure. Tokens are also used as part of an expression. 1504 ** 1505 ** Note if Token.z==0 then Token.dyn and Token.n are undefined and 1506 ** may contain random values. Do not make any assumptions about Token.dyn 1507 ** and Token.n when Token.z==0. 1508 */ 1509 struct Token { 1510 const char *z; /* Text of the token. Not NULL-terminated! */ 1511 unsigned int n; /* Number of characters in this token */ 1512 }; 1513 1514 /* 1515 ** An instance of this structure contains information needed to generate 1516 ** code for a SELECT that contains aggregate functions. 1517 ** 1518 ** If Expr.op==TK_AGG_COLUMN or TK_AGG_FUNCTION then Expr.pAggInfo is a 1519 ** pointer to this structure. The Expr.iColumn field is the index in 1520 ** AggInfo.aCol[] or AggInfo.aFunc[] of information needed to generate 1521 ** code for that node. 1522 ** 1523 ** AggInfo.pGroupBy and AggInfo.aFunc.pExpr point to fields within the 1524 ** original Select structure that describes the SELECT statement. These 1525 ** fields do not need to be freed when deallocating the AggInfo structure. 1526 */ 1527 struct AggInfo { 1528 u8 directMode; /* Direct rendering mode means take data directly 1529 ** from source tables rather than from accumulators */ 1530 u8 useSortingIdx; /* In direct mode, reference the sorting index rather 1531 ** than the source table */ 1532 int sortingIdx; /* Cursor number of the sorting index */ 1533 ExprList *pGroupBy; /* The group by clause */ 1534 int nSortingColumn; /* Number of columns in the sorting index */ 1535 struct AggInfo_col { /* For each column used in source tables */ 1536 Table *pTab; /* Source table */ 1537 int iTable; /* Cursor number of the source table */ 1538 int iColumn; /* Column number within the source table */ 1539 int iSorterColumn; /* Column number in the sorting index */ 1540 int iMem; /* Memory location that acts as accumulator */ 1541 Expr *pExpr; /* The original expression */ 1542 } *aCol; 1543 int nColumn; /* Number of used entries in aCol[] */ 1544 int nColumnAlloc; /* Number of slots allocated for aCol[] */ 1545 int nAccumulator; /* Number of columns that show through to the output. 1546 ** Additional columns are used only as parameters to 1547 ** aggregate functions */ 1548 struct AggInfo_func { /* For each aggregate function */ 1549 Expr *pExpr; /* Expression encoding the function */ 1550 FuncDef *pFunc; /* The aggregate function implementation */ 1551 int iMem; /* Memory location that acts as accumulator */ 1552 int iDistinct; /* Ephemeral table used to enforce DISTINCT */ 1553 } *aFunc; 1554 int nFunc; /* Number of entries in aFunc[] */ 1555 int nFuncAlloc; /* Number of slots allocated for aFunc[] */ 1556 }; 1557 1558 /* 1559 ** The datatype ynVar is a signed integer, either 16-bit or 32-bit. 1560 ** Usually it is 16-bits. But if SQLITE_MAX_VARIABLE_NUMBER is greater 1561 ** than 32767 we have to make it 32-bit. 16-bit is preferred because 1562 ** it uses less memory in the Expr object, which is a big memory user 1563 ** in systems with lots of prepared statements. And few applications 1564 ** need more than about 10 or 20 variables. But some extreme users want 1565 ** to have prepared statements with over 32767 variables, and for them 1566 ** the option is available (at compile-time). 1567 */ 1568 #if SQLITE_MAX_VARIABLE_NUMBER<=32767 1569 typedef i16 ynVar; 1570 #else 1571 typedef int ynVar; 1572 #endif 1573 1574 /* 1575 ** Each node of an expression in the parse tree is an instance 1576 ** of this structure. 1577 ** 1578 ** Expr.op is the opcode. The integer parser token codes are reused 1579 ** as opcodes here. For example, the parser defines TK_GE to be an integer 1580 ** code representing the ">=" operator. This same integer code is reused 1581 ** to represent the greater-than-or-equal-to operator in the expression 1582 ** tree. 1583 ** 1584 ** If the expression is an SQL literal (TK_INTEGER, TK_FLOAT, TK_BLOB, 1585 ** or TK_STRING), then Expr.token contains the text of the SQL literal. If 1586 ** the expression is a variable (TK_VARIABLE), then Expr.token contains the 1587 ** variable name. Finally, if the expression is an SQL function (TK_FUNCTION), 1588 ** then Expr.token contains the name of the function. 1589 ** 1590 ** Expr.pRight and Expr.pLeft are the left and right subexpressions of a 1591 ** binary operator. Either or both may be NULL. 1592 ** 1593 ** Expr.x.pList is a list of arguments if the expression is an SQL function, 1594 ** a CASE expression or an IN expression of the form "<lhs> IN (<y>, <z>...)". 1595 ** Expr.x.pSelect is used if the expression is a sub-select or an expression of 1596 ** the form "<lhs> IN (SELECT ...)". If the EP_xIsSelect bit is set in the 1597 ** Expr.flags mask, then Expr.x.pSelect is valid. Otherwise, Expr.x.pList is 1598 ** valid. 1599 ** 1600 ** An expression of the form ID or ID.ID refers to a column in a table. 1601 ** For such expressions, Expr.op is set to TK_COLUMN and Expr.iTable is 1602 ** the integer cursor number of a VDBE cursor pointing to that table and 1603 ** Expr.iColumn is the column number for the specific column. If the 1604 ** expression is used as a result in an aggregate SELECT, then the 1605 ** value is also stored in the Expr.iAgg column in the aggregate so that 1606 ** it can be accessed after all aggregates are computed. 1607 ** 1608 ** If the expression is an unbound variable marker (a question mark 1609 ** character '?' in the original SQL) then the Expr.iTable holds the index 1610 ** number for that variable. 1611 ** 1612 ** If the expression is a subquery then Expr.iColumn holds an integer 1613 ** register number containing the result of the subquery. If the 1614 ** subquery gives a constant result, then iTable is -1. If the subquery 1615 ** gives a different answer at different times during statement processing 1616 ** then iTable is the address of a subroutine that computes the subquery. 1617 ** 1618 ** If the Expr is of type OP_Column, and the table it is selecting from 1619 ** is a disk table or the "old.*" pseudo-table, then pTab points to the 1620 ** corresponding table definition. 1621 ** 1622 ** ALLOCATION NOTES: 1623 ** 1624 ** Expr objects can use a lot of memory space in database schema. To 1625 ** help reduce memory requirements, sometimes an Expr object will be 1626 ** truncated. And to reduce the number of memory allocations, sometimes 1627 ** two or more Expr objects will be stored in a single memory allocation, 1628 ** together with Expr.zToken strings. 1629 ** 1630 ** If the EP_Reduced and EP_TokenOnly flags are set when 1631 ** an Expr object is truncated. When EP_Reduced is set, then all 1632 ** the child Expr objects in the Expr.pLeft and Expr.pRight subtrees 1633 ** are contained within the same memory allocation. Note, however, that 1634 ** the subtrees in Expr.x.pList or Expr.x.pSelect are always separately 1635 ** allocated, regardless of whether or not EP_Reduced is set. 1636 */ 1637 struct Expr { 1638 u8 op; /* Operation performed by this node */ 1639 char affinity; /* The affinity of the column or 0 if not a column */ 1640 u16 flags; /* Various flags. EP_* See below */ 1641 union { 1642 char *zToken; /* Token value. Zero terminated and dequoted */ 1643 int iValue; /* Non-negative integer value if EP_IntValue */ 1644 } u; 1645 1646 /* If the EP_TokenOnly flag is set in the Expr.flags mask, then no 1647 ** space is allocated for the fields below this point. An attempt to 1648 ** access them will result in a segfault or malfunction. 1649 *********************************************************************/ 1650 1651 Expr *pLeft; /* Left subnode */ 1652 Expr *pRight; /* Right subnode */ 1653 union { 1654 ExprList *pList; /* Function arguments or in "<expr> IN (<expr-list)" */ 1655 Select *pSelect; /* Used for sub-selects and "<expr> IN (<select>)" */ 1656 } x; 1657 CollSeq *pColl; /* The collation type of the column or 0 */ 1658 1659 /* If the EP_Reduced flag is set in the Expr.flags mask, then no 1660 ** space is allocated for the fields below this point. An attempt to 1661 ** access them will result in a segfault or malfunction. 1662 *********************************************************************/ 1663 1664 int iTable; /* TK_COLUMN: cursor number of table holding column 1665 ** TK_REGISTER: register number 1666 ** TK_TRIGGER: 1 -> new, 0 -> old */ 1667 ynVar iColumn; /* TK_COLUMN: column index. -1 for rowid. 1668 ** TK_VARIABLE: variable number (always >= 1). */ 1669 i16 iAgg; /* Which entry in pAggInfo->aCol[] or ->aFunc[] */ 1670 i16 iRightJoinTable; /* If EP_FromJoin, the right table of the join */ 1671 u8 flags2; /* Second set of flags. EP2_... */ 1672 u8 op2; /* If a TK_REGISTER, the original value of Expr.op */ 1673 AggInfo *pAggInfo; /* Used by TK_AGG_COLUMN and TK_AGG_FUNCTION */ 1674 Table *pTab; /* Table for TK_COLUMN expressions. */ 1675 #if SQLITE_MAX_EXPR_DEPTH>0 1676 int nHeight; /* Height of the tree headed by this node */ 1677 #endif 1678 }; 1679 1680 /* 1681 ** The following are the meanings of bits in the Expr.flags field. 1682 */ 1683 #define EP_FromJoin 0x0001 /* Originated in ON or USING clause of a join */ 1684 #define EP_Agg 0x0002 /* Contains one or more aggregate functions */ 1685 #define EP_Resolved 0x0004 /* IDs have been resolved to COLUMNs */ 1686 #define EP_Error 0x0008 /* Expression contains one or more errors */ 1687 #define EP_Distinct 0x0010 /* Aggregate function with DISTINCT keyword */ 1688 #define EP_VarSelect 0x0020 /* pSelect is correlated, not constant */ 1689 #define EP_DblQuoted 0x0040 /* token.z was originally in "..." */ 1690 #define EP_InfixFunc 0x0080 /* True for an infix function: LIKE, GLOB, etc */ 1691 #define EP_ExpCollate 0x0100 /* Collating sequence specified explicitly */ 1692 #define EP_FixedDest 0x0200 /* Result needed in a specific register */ 1693 #define EP_IntValue 0x0400 /* Integer value contained in u.iValue */ 1694 #define EP_xIsSelect 0x0800 /* x.pSelect is valid (otherwise x.pList is) */ 1695 1696 #define EP_Reduced 0x1000 /* Expr struct is EXPR_REDUCEDSIZE bytes only */ 1697 #define EP_TokenOnly 0x2000 /* Expr struct is EXPR_TOKENONLYSIZE bytes only */ 1698 #define EP_Static 0x4000 /* Held in memory not obtained from malloc() */ 1699 1700 /* 1701 ** The following are the meanings of bits in the Expr.flags2 field. 1702 */ 1703 #define EP2_MallocedToken 0x0001 /* Need to sqlite3DbFree() Expr.zToken */ 1704 #define EP2_Irreducible 0x0002 /* Cannot EXPRDUP_REDUCE this Expr */ 1705 1706 /* 1707 ** The pseudo-routine sqlite3ExprSetIrreducible sets the EP2_Irreducible 1708 ** flag on an expression structure. This flag is used for VV&A only. The 1709 ** routine is implemented as a macro that only works when in debugging mode, 1710 ** so as not to burden production code. 1711 */ 1712 #ifdef SQLITE_DEBUG 1713 # define ExprSetIrreducible(X) (X)->flags2 |= EP2_Irreducible 1714 #else 1715 # define ExprSetIrreducible(X) 1716 #endif 1717 1718 /* 1719 ** These macros can be used to test, set, or clear bits in the 1720 ** Expr.flags field. 1721 */ 1722 #define ExprHasProperty(E,P) (((E)->flags&(P))==(P)) 1723 #define ExprHasAnyProperty(E,P) (((E)->flags&(P))!=0) 1724 #define ExprSetProperty(E,P) (E)->flags|=(P) 1725 #define ExprClearProperty(E,P) (E)->flags&=~(P) 1726 1727 /* 1728 ** Macros to determine the number of bytes required by a normal Expr 1729 ** struct, an Expr struct with the EP_Reduced flag set in Expr.flags 1730 ** and an Expr struct with the EP_TokenOnly flag set. 1731 */ 1732 #define EXPR_FULLSIZE sizeof(Expr) /* Full size */ 1733 #define EXPR_REDUCEDSIZE offsetof(Expr,iTable) /* Common features */ 1734 #define EXPR_TOKENONLYSIZE offsetof(Expr,pLeft) /* Fewer features */ 1735 1736 /* 1737 ** Flags passed to the sqlite3ExprDup() function. See the header comment 1738 ** above sqlite3ExprDup() for details. 1739 */ 1740 #define EXPRDUP_REDUCE 0x0001 /* Used reduced-size Expr nodes */ 1741 1742 /* 1743 ** A list of expressions. Each expression may optionally have a 1744 ** name. An expr/name combination can be used in several ways, such 1745 ** as the list of "expr AS ID" fields following a "SELECT" or in the 1746 ** list of "ID = expr" items in an UPDATE. A list of expressions can 1747 ** also be used as the argument to a function, in which case the a.zName 1748 ** field is not used. 1749 */ 1750 struct ExprList { 1751 int nExpr; /* Number of expressions on the list */ 1752 int nAlloc; /* Number of entries allocated below */ 1753 int iECursor; /* VDBE Cursor associated with this ExprList */ 1754 struct ExprList_item { 1755 Expr *pExpr; /* The list of expressions */ 1756 char *zName; /* Token associated with this expression */ 1757 char *zSpan; /* Original text of the expression */ 1758 u8 sortOrder; /* 1 for DESC or 0 for ASC */ 1759 u8 done; /* A flag to indicate when processing is finished */ 1760 u16 iCol; /* For ORDER BY, column number in result set */ 1761 u16 iAlias; /* Index into Parse.aAlias[] for zName */ 1762 } *a; /* One entry for each expression */ 1763 }; 1764 1765 /* 1766 ** An instance of this structure is used by the parser to record both 1767 ** the parse tree for an expression and the span of input text for an 1768 ** expression. 1769 */ 1770 struct ExprSpan { 1771 Expr *pExpr; /* The expression parse tree */ 1772 const char *zStart; /* First character of input text */ 1773 const char *zEnd; /* One character past the end of input text */ 1774 }; 1775 1776 /* 1777 ** An instance of this structure can hold a simple list of identifiers, 1778 ** such as the list "a,b,c" in the following statements: 1779 ** 1780 ** INSERT INTO t(a,b,c) VALUES ...; 1781 ** CREATE INDEX idx ON t(a,b,c); 1782 ** CREATE TRIGGER trig BEFORE UPDATE ON t(a,b,c) ...; 1783 ** 1784 ** The IdList.a.idx field is used when the IdList represents the list of 1785 ** column names after a table name in an INSERT statement. In the statement 1786 ** 1787 ** INSERT INTO t(a,b,c) ... 1788 ** 1789 ** If "a" is the k-th column of table "t", then IdList.a[0].idx==k. 1790 */ 1791 struct IdList { 1792 struct IdList_item { 1793 char *zName; /* Name of the identifier */ 1794 int idx; /* Index in some Table.aCol[] of a column named zName */ 1795 } *a; 1796 int nId; /* Number of identifiers on the list */ 1797 int nAlloc; /* Number of entries allocated for a[] below */ 1798 }; 1799 1800 /* 1801 ** The bitmask datatype defined below is used for various optimizations. 1802 ** 1803 ** Changing this from a 64-bit to a 32-bit type limits the number of 1804 ** tables in a join to 32 instead of 64. But it also reduces the size 1805 ** of the library by 738 bytes on ix86. 1806 */ 1807 typedef u64 Bitmask; 1808 1809 /* 1810 ** The number of bits in a Bitmask. "BMS" means "BitMask Size". 1811 */ 1812 #define BMS ((int)(sizeof(Bitmask)*8)) 1813 1814 /* 1815 ** The following structure describes the FROM clause of a SELECT statement. 1816 ** Each table or subquery in the FROM clause is a separate element of 1817 ** the SrcList.a[] array. 1818 ** 1819 ** With the addition of multiple database support, the following structure 1820 ** can also be used to describe a particular table such as the table that 1821 ** is modified by an INSERT, DELETE, or UPDATE statement. In standard SQL, 1822 ** such a table must be a simple name: ID. But in SQLite, the table can 1823 ** now be identified by a database name, a dot, then the table name: ID.ID. 1824 ** 1825 ** The jointype starts out showing the join type between the current table 1826 ** and the next table on the list. The parser builds the list this way. 1827 ** But sqlite3SrcListShiftJoinType() later shifts the jointypes so that each 1828 ** jointype expresses the join between the table and the previous table. 1829 ** 1830 ** In the colUsed field, the high-order bit (bit 63) is set if the table 1831 ** contains more than 63 columns and the 64-th or later column is used. 1832 */ 1833 struct SrcList { 1834 i16 nSrc; /* Number of tables or subqueries in the FROM clause */ 1835 i16 nAlloc; /* Number of entries allocated in a[] below */ 1836 struct SrcList_item { 1837 char *zDatabase; /* Name of database holding this table */ 1838 char *zName; /* Name of the table */ 1839 char *zAlias; /* The "B" part of a "A AS B" phrase. zName is the "A" */ 1840 Table *pTab; /* An SQL table corresponding to zName */ 1841 Select *pSelect; /* A SELECT statement used in place of a table name */ 1842 u8 isPopulated; /* Temporary table associated with SELECT is populated */ 1843 u8 jointype; /* Type of join between this able and the previous */ 1844 u8 notIndexed; /* True if there is a NOT INDEXED clause */ 1845 #ifndef SQLITE_OMIT_EXPLAIN 1846 u8 iSelectId; /* If pSelect!=0, the id of the sub-select in EQP */ 1847 #endif 1848 int iCursor; /* The VDBE cursor number used to access this table */ 1849 Expr *pOn; /* The ON clause of a join */ 1850 IdList *pUsing; /* The USING clause of a join */ 1851 Bitmask colUsed; /* Bit N (1<<N) set if column N of pTab is used */ 1852 char *zIndex; /* Identifier from "INDEXED BY <zIndex>" clause */ 1853 Index *pIndex; /* Index structure corresponding to zIndex, if any */ 1854 } a[1]; /* One entry for each identifier on the list */ 1855 }; 1856 1857 /* 1858 ** Permitted values of the SrcList.a.jointype field 1859 */ 1860 #define JT_INNER 0x0001 /* Any kind of inner or cross join */ 1861 #define JT_CROSS 0x0002 /* Explicit use of the CROSS keyword */ 1862 #define JT_NATURAL 0x0004 /* True for a "natural" join */ 1863 #define JT_LEFT 0x0008 /* Left outer join */ 1864 #define JT_RIGHT 0x0010 /* Right outer join */ 1865 #define JT_OUTER 0x0020 /* The "OUTER" keyword is present */ 1866 #define JT_ERROR 0x0040 /* unknown or unsupported join type */ 1867 1868 1869 /* 1870 ** A WherePlan object holds information that describes a lookup 1871 ** strategy. 1872 ** 1873 ** This object is intended to be opaque outside of the where.c module. 1874 ** It is included here only so that that compiler will know how big it 1875 ** is. None of the fields in this object should be used outside of 1876 ** the where.c module. 1877 ** 1878 ** Within the union, pIdx is only used when wsFlags&WHERE_INDEXED is true. 1879 ** pTerm is only used when wsFlags&WHERE_MULTI_OR is true. And pVtabIdx 1880 ** is only used when wsFlags&WHERE_VIRTUALTABLE is true. It is never the 1881 ** case that more than one of these conditions is true. 1882 */ 1883 struct WherePlan { 1884 u32 wsFlags; /* WHERE_* flags that describe the strategy */ 1885 u32 nEq; /* Number of == constraints */ 1886 double nRow; /* Estimated number of rows (for EQP) */ 1887 union { 1888 Index *pIdx; /* Index when WHERE_INDEXED is true */ 1889 struct WhereTerm *pTerm; /* WHERE clause term for OR-search */ 1890 sqlite3_index_info *pVtabIdx; /* Virtual table index to use */ 1891 } u; 1892 }; 1893 1894 /* 1895 ** For each nested loop in a WHERE clause implementation, the WhereInfo 1896 ** structure contains a single instance of this structure. This structure 1897 ** is intended to be private the the where.c module and should not be 1898 ** access or modified by other modules. 1899 ** 1900 ** The pIdxInfo field is used to help pick the best index on a 1901 ** virtual table. The pIdxInfo pointer contains indexing 1902 ** information for the i-th table in the FROM clause before reordering. 1903 ** All the pIdxInfo pointers are freed by whereInfoFree() in where.c. 1904 ** All other information in the i-th WhereLevel object for the i-th table 1905 ** after FROM clause ordering. 1906 */ 1907 struct WhereLevel { 1908 WherePlan plan; /* query plan for this element of the FROM clause */ 1909 int iLeftJoin; /* Memory cell used to implement LEFT OUTER JOIN */ 1910 int iTabCur; /* The VDBE cursor used to access the table */ 1911 int iIdxCur; /* The VDBE cursor used to access pIdx */ 1912 int addrBrk; /* Jump here to break out of the loop */ 1913 int addrNxt; /* Jump here to start the next IN combination */ 1914 int addrCont; /* Jump here to continue with the next loop cycle */ 1915 int addrFirst; /* First instruction of interior of the loop */ 1916 u8 iFrom; /* Which entry in the FROM clause */ 1917 u8 op, p5; /* Opcode and P5 of the opcode that ends the loop */ 1918 int p1, p2; /* Operands of the opcode used to ends the loop */ 1919 union { /* Information that depends on plan.wsFlags */ 1920 struct { 1921 int nIn; /* Number of entries in aInLoop[] */ 1922 struct InLoop { 1923 int iCur; /* The VDBE cursor used by this IN operator */ 1924 int addrInTop; /* Top of the IN loop */ 1925 } *aInLoop; /* Information about each nested IN operator */ 1926 } in; /* Used when plan.wsFlags&WHERE_IN_ABLE */ 1927 } u; 1928 1929 /* The following field is really not part of the current level. But 1930 ** we need a place to cache virtual table index information for each 1931 ** virtual table in the FROM clause and the WhereLevel structure is 1932 ** a convenient place since there is one WhereLevel for each FROM clause 1933 ** element. 1934 */ 1935 sqlite3_index_info *pIdxInfo; /* Index info for n-th source table */ 1936 }; 1937 1938 /* 1939 ** Flags appropriate for the wctrlFlags parameter of sqlite3WhereBegin() 1940 ** and the WhereInfo.wctrlFlags member. 1941 */ 1942 #define WHERE_ORDERBY_NORMAL 0x0000 /* No-op */ 1943 #define WHERE_ORDERBY_MIN 0x0001 /* ORDER BY processing for min() func */ 1944 #define WHERE_ORDERBY_MAX 0x0002 /* ORDER BY processing for max() func */ 1945 #define WHERE_ONEPASS_DESIRED 0x0004 /* Want to do one-pass UPDATE/DELETE */ 1946 #define WHERE_DUPLICATES_OK 0x0008 /* Ok to return a row more than once */ 1947 #define WHERE_OMIT_OPEN 0x0010 /* Table cursors are already open */ 1948 #define WHERE_OMIT_CLOSE 0x0020 /* Omit close of table & index cursors */ 1949 #define WHERE_FORCE_TABLE 0x0040 /* Do not use an index-only search */ 1950 #define WHERE_ONETABLE_ONLY 0x0080 /* Only code the 1st table in pTabList */ 1951 1952 /* 1953 ** The WHERE clause processing routine has two halves. The 1954 ** first part does the start of the WHERE loop and the second 1955 ** half does the tail of the WHERE loop. An instance of 1956 ** this structure is returned by the first half and passed 1957 ** into the second half to give some continuity. 1958 */ 1959 struct WhereInfo { 1960 Parse *pParse; /* Parsing and code generating context */ 1961 u16 wctrlFlags; /* Flags originally passed to sqlite3WhereBegin() */ 1962 u8 okOnePass; /* Ok to use one-pass algorithm for UPDATE or DELETE */ 1963 u8 untestedTerms; /* Not all WHERE terms resolved by outer loop */ 1964 SrcList *pTabList; /* List of tables in the join */ 1965 int iTop; /* The very beginning of the WHERE loop */ 1966 int iContinue; /* Jump here to continue with next record */ 1967 int iBreak; /* Jump here to break out of the loop */ 1968 int nLevel; /* Number of nested loop */ 1969 struct WhereClause *pWC; /* Decomposition of the WHERE clause */ 1970 double savedNQueryLoop; /* pParse->nQueryLoop outside the WHERE loop */ 1971 double nRowOut; /* Estimated number of output rows */ 1972 WhereLevel a[1]; /* Information about each nest loop in WHERE */ 1973 }; 1974 1975 /* 1976 ** A NameContext defines a context in which to resolve table and column 1977 ** names. The context consists of a list of tables (the pSrcList) field and 1978 ** a list of named expression (pEList). The named expression list may 1979 ** be NULL. The pSrc corresponds to the FROM clause of a SELECT or 1980 ** to the table being operated on by INSERT, UPDATE, or DELETE. The 1981 ** pEList corresponds to the result set of a SELECT and is NULL for 1982 ** other statements. 1983 ** 1984 ** NameContexts can be nested. When resolving names, the inner-most 1985 ** context is searched first. If no match is found, the next outer 1986 ** context is checked. If there is still no match, the next context 1987 ** is checked. This process continues until either a match is found 1988 ** or all contexts are check. When a match is found, the nRef member of 1989 ** the context containing the match is incremented. 1990 ** 1991 ** Each subquery gets a new NameContext. The pNext field points to the 1992 ** NameContext in the parent query. Thus the process of scanning the 1993 ** NameContext list corresponds to searching through successively outer 1994 ** subqueries looking for a match. 1995 */ 1996 struct NameContext { 1997 Parse *pParse; /* The parser */ 1998 SrcList *pSrcList; /* One or more tables used to resolve names */ 1999 ExprList *pEList; /* Optional list of named expressions */ 2000 int nRef; /* Number of names resolved by this context */ 2001 int nErr; /* Number of errors encountered while resolving names */ 2002 u8 allowAgg; /* Aggregate functions allowed here */ 2003 u8 hasAgg; /* True if aggregates are seen */ 2004 u8 isCheck; /* True if resolving names in a CHECK constraint */ 2005 int nDepth; /* Depth of subquery recursion. 1 for no recursion */ 2006 AggInfo *pAggInfo; /* Information about aggregates at this level */ 2007 NameContext *pNext; /* Next outer name context. NULL for outermost */ 2008 }; 2009 2010 /* 2011 ** An instance of the following structure contains all information 2012 ** needed to generate code for a single SELECT statement. 2013 ** 2014 ** nLimit is set to -1 if there is no LIMIT clause. nOffset is set to 0. 2015 ** If there is a LIMIT clause, the parser sets nLimit to the value of the 2016 ** limit and nOffset to the value of the offset (or 0 if there is not 2017 ** offset). But later on, nLimit and nOffset become the memory locations 2018 ** in the VDBE that record the limit and offset counters. 2019 ** 2020 ** addrOpenEphm[] entries contain the address of OP_OpenEphemeral opcodes. 2021 ** These addresses must be stored so that we can go back and fill in 2022 ** the P4_KEYINFO and P2 parameters later. Neither the KeyInfo nor 2023 ** the number of columns in P2 can be computed at the same time 2024 ** as the OP_OpenEphm instruction is coded because not 2025 ** enough information about the compound query is known at that point. 2026 ** The KeyInfo for addrOpenTran[0] and [1] contains collating sequences 2027 ** for the result set. The KeyInfo for addrOpenTran[2] contains collating 2028 ** sequences for the ORDER BY clause. 2029 */ 2030 struct Select { 2031 ExprList *pEList; /* The fields of the result */ 2032 u8 op; /* One of: TK_UNION TK_ALL TK_INTERSECT TK_EXCEPT */ 2033 char affinity; /* MakeRecord with this affinity for SRT_Set */ 2034 u16 selFlags; /* Various SF_* values */ 2035 SrcList *pSrc; /* The FROM clause */ 2036 Expr *pWhere; /* The WHERE clause */ 2037 ExprList *pGroupBy; /* The GROUP BY clause */ 2038 Expr *pHaving; /* The HAVING clause */ 2039 ExprList *pOrderBy; /* The ORDER BY clause */ 2040 Select *pPrior; /* Prior select in a compound select statement */ 2041 Select *pNext; /* Next select to the left in a compound */ 2042 Select *pRightmost; /* Right-most select in a compound select statement */ 2043 Expr *pLimit; /* LIMIT expression. NULL means not used. */ 2044 Expr *pOffset; /* OFFSET expression. NULL means not used. */ 2045 int iLimit, iOffset; /* Memory registers holding LIMIT & OFFSET counters */ 2046 int addrOpenEphm[3]; /* OP_OpenEphem opcodes related to this select */ 2047 double nSelectRow; /* Estimated number of result rows */ 2048 }; 2049 2050 /* 2051 ** Allowed values for Select.selFlags. The "SF" prefix stands for 2052 ** "Select Flag". 2053 */ 2054 #define SF_Distinct 0x0001 /* Output should be DISTINCT */ 2055 #define SF_Resolved 0x0002 /* Identifiers have been resolved */ 2056 #define SF_Aggregate 0x0004 /* Contains aggregate functions */ 2057 #define SF_UsesEphemeral 0x0008 /* Uses the OpenEphemeral opcode */ 2058 #define SF_Expanded 0x0010 /* sqlite3SelectExpand() called on this */ 2059 #define SF_HasTypeInfo 0x0020 /* FROM subqueries have Table metadata */ 2060 2061 2062 /* 2063 ** The results of a select can be distributed in several ways. The 2064 ** "SRT" prefix means "SELECT Result Type". 2065 */ 2066 #define SRT_Union 1 /* Store result as keys in an index */ 2067 #define SRT_Except 2 /* Remove result from a UNION index */ 2068 #define SRT_Exists 3 /* Store 1 if the result is not empty */ 2069 #define SRT_Discard 4 /* Do not save the results anywhere */ 2070 2071 /* The ORDER BY clause is ignored for all of the above */ 2072 #define IgnorableOrderby(X) ((X->eDest)<=SRT_Discard) 2073 2074 #define SRT_Output 5 /* Output each row of result */ 2075 #define SRT_Mem 6 /* Store result in a memory cell */ 2076 #define SRT_Set 7 /* Store results as keys in an index */ 2077 #define SRT_Table 8 /* Store result as data with an automatic rowid */ 2078 #define SRT_EphemTab 9 /* Create transient tab and store like SRT_Table */ 2079 #define SRT_Coroutine 10 /* Generate a single row of result */ 2080 2081 /* 2082 ** A structure used to customize the behavior of sqlite3Select(). See 2083 ** comments above sqlite3Select() for details. 2084 */ 2085 typedef struct SelectDest SelectDest; 2086 struct SelectDest { 2087 u8 eDest; /* How to dispose of the results */ 2088 u8 affinity; /* Affinity used when eDest==SRT_Set */ 2089 int iParm; /* A parameter used by the eDest disposal method */ 2090 int iMem; /* Base register where results are written */ 2091 int nMem; /* Number of registers allocated */ 2092 }; 2093 2094 /* 2095 ** During code generation of statements that do inserts into AUTOINCREMENT 2096 ** tables, the following information is attached to the Table.u.autoInc.p 2097 ** pointer of each autoincrement table to record some side information that 2098 ** the code generator needs. We have to keep per-table autoincrement 2099 ** information in case inserts are down within triggers. Triggers do not 2100 ** normally coordinate their activities, but we do need to coordinate the 2101 ** loading and saving of autoincrement information. 2102 */ 2103 struct AutoincInfo { 2104 AutoincInfo *pNext; /* Next info block in a list of them all */ 2105 Table *pTab; /* Table this info block refers to */ 2106 int iDb; /* Index in sqlite3.aDb[] of database holding pTab */ 2107 int regCtr; /* Memory register holding the rowid counter */ 2108 }; 2109 2110 /* 2111 ** Size of the column cache 2112 */ 2113 #ifndef SQLITE_N_COLCACHE 2114 # define SQLITE_N_COLCACHE 10 2115 #endif 2116 2117 /* 2118 ** At least one instance of the following structure is created for each 2119 ** trigger that may be fired while parsing an INSERT, UPDATE or DELETE 2120 ** statement. All such objects are stored in the linked list headed at 2121 ** Parse.pTriggerPrg and deleted once statement compilation has been 2122 ** completed. 2123 ** 2124 ** A Vdbe sub-program that implements the body and WHEN clause of trigger 2125 ** TriggerPrg.pTrigger, assuming a default ON CONFLICT clause of 2126 ** TriggerPrg.orconf, is stored in the TriggerPrg.pProgram variable. 2127 ** The Parse.pTriggerPrg list never contains two entries with the same 2128 ** values for both pTrigger and orconf. 2129 ** 2130 ** The TriggerPrg.aColmask[0] variable is set to a mask of old.* columns 2131 ** accessed (or set to 0 for triggers fired as a result of INSERT 2132 ** statements). Similarly, the TriggerPrg.aColmask[1] variable is set to 2133 ** a mask of new.* columns used by the program. 2134 */ 2135 struct TriggerPrg { 2136 Trigger *pTrigger; /* Trigger this program was coded from */ 2137 int orconf; /* Default ON CONFLICT policy */ 2138 SubProgram *pProgram; /* Program implementing pTrigger/orconf */ 2139 u32 aColmask[2]; /* Masks of old.*, new.* columns accessed */ 2140 TriggerPrg *pNext; /* Next entry in Parse.pTriggerPrg list */ 2141 }; 2142 2143 /* 2144 ** The yDbMask datatype for the bitmask of all attached databases. 2145 */ 2146 #if SQLITE_MAX_ATTACHED>30 2147 typedef sqlite3_uint64 yDbMask; 2148 #else 2149 typedef unsigned int yDbMask; 2150 #endif 2151 2152 /* 2153 ** An SQL parser context. A copy of this structure is passed through 2154 ** the parser and down into all the parser action routine in order to 2155 ** carry around information that is global to the entire parse. 2156 ** 2157 ** The structure is divided into two parts. When the parser and code 2158 ** generate call themselves recursively, the first part of the structure 2159 ** is constant but the second part is reset at the beginning and end of 2160 ** each recursion. 2161 ** 2162 ** The nTableLock and aTableLock variables are only used if the shared-cache 2163 ** feature is enabled (if sqlite3Tsd()->useSharedData is true). They are 2164 ** used to store the set of table-locks required by the statement being 2165 ** compiled. Function sqlite3TableLock() is used to add entries to the 2166 ** list. 2167 */ 2168 struct Parse { 2169 sqlite3 *db; /* The main database structure */ 2170 int rc; /* Return code from execution */ 2171 char *zErrMsg; /* An error message */ 2172 Vdbe *pVdbe; /* An engine for executing database bytecode */ 2173 u8 colNamesSet; /* TRUE after OP_ColumnName has been issued to pVdbe */ 2174 u8 nameClash; /* A permanent table name clashes with temp table name */ 2175 u8 checkSchema; /* Causes schema cookie check after an error */ 2176 u8 nested; /* Number of nested calls to the parser/code generator */ 2177 u8 parseError; /* True after a parsing error. Ticket #1794 */ 2178 u8 nTempReg; /* Number of temporary registers in aTempReg[] */ 2179 u8 nTempInUse; /* Number of aTempReg[] currently checked out */ 2180 int aTempReg[8]; /* Holding area for temporary registers */ 2181 int nRangeReg; /* Size of the temporary register block */ 2182 int iRangeReg; /* First register in temporary register block */ 2183 int nErr; /* Number of errors seen */ 2184 int nTab; /* Number of previously allocated VDBE cursors */ 2185 int nMem; /* Number of memory cells used so far */ 2186 int nSet; /* Number of sets used so far */ 2187 int ckBase; /* Base register of data during check constraints */ 2188 int iCacheLevel; /* ColCache valid when aColCache[].iLevel<=iCacheLevel */ 2189 int iCacheCnt; /* Counter used to generate aColCache[].lru values */ 2190 u8 nColCache; /* Number of entries in the column cache */ 2191 u8 iColCache; /* Next entry of the cache to replace */ 2192 struct yColCache { 2193 int iTable; /* Table cursor number */ 2194 int iColumn; /* Table column number */ 2195 u8 tempReg; /* iReg is a temp register that needs to be freed */ 2196 int iLevel; /* Nesting level */ 2197 int iReg; /* Reg with value of this column. 0 means none. */ 2198 int lru; /* Least recently used entry has the smallest value */ 2199 } aColCache[SQLITE_N_COLCACHE]; /* One for each column cache entry */ 2200 yDbMask writeMask; /* Start a write transaction on these databases */ 2201 yDbMask cookieMask; /* Bitmask of schema verified databases */ 2202 u8 isMultiWrite; /* True if statement may affect/insert multiple rows */ 2203 u8 mayAbort; /* True if statement may throw an ABORT exception */ 2204 int cookieGoto; /* Address of OP_Goto to cookie verifier subroutine */ 2205 int cookieValue[SQLITE_MAX_ATTACHED+2]; /* Values of cookies to verify */ 2206 #ifndef SQLITE_OMIT_SHARED_CACHE 2207 int nTableLock; /* Number of locks in aTableLock */ 2208 TableLock *aTableLock; /* Required table locks for shared-cache mode */ 2209 #endif 2210 int regRowid; /* Register holding rowid of CREATE TABLE entry */ 2211 int regRoot; /* Register holding root page number for new objects */ 2212 AutoincInfo *pAinc; /* Information about AUTOINCREMENT counters */ 2213 int nMaxArg; /* Max args passed to user function by sub-program */ 2214 2215 /* Information used while coding trigger programs. */ 2216 Parse *pToplevel; /* Parse structure for main program (or NULL) */ 2217 Table *pTriggerTab; /* Table triggers are being coded for */ 2218 u32 oldmask; /* Mask of old.* columns referenced */ 2219 u32 newmask; /* Mask of new.* columns referenced */ 2220 u8 eTriggerOp; /* TK_UPDATE, TK_INSERT or TK_DELETE */ 2221 u8 eOrconf; /* Default ON CONFLICT policy for trigger steps */ 2222 u8 disableTriggers; /* True to disable triggers */ 2223 double nQueryLoop; /* Estimated number of iterations of a query */ 2224 2225 /* Above is constant between recursions. Below is reset before and after 2226 ** each recursion */ 2227 2228 int nVar; /* Number of '?' variables seen in the SQL so far */ 2229 int nVarExpr; /* Number of used slots in apVarExpr[] */ 2230 int nVarExprAlloc; /* Number of allocated slots in apVarExpr[] */ 2231 Expr **apVarExpr; /* Pointers to :aaa and $aaaa wildcard expressions */ 2232 Vdbe *pReprepare; /* VM being reprepared (sqlite3Reprepare()) */ 2233 int nAlias; /* Number of aliased result set columns */ 2234 int nAliasAlloc; /* Number of allocated slots for aAlias[] */ 2235 int *aAlias; /* Register used to hold aliased result */ 2236 u8 explain; /* True if the EXPLAIN flag is found on the query */ 2237 Token sNameToken; /* Token with unqualified schema object name */ 2238 Token sLastToken; /* The last token parsed */ 2239 const char *zTail; /* All SQL text past the last semicolon parsed */ 2240 Table *pNewTable; /* A table being constructed by CREATE TABLE */ 2241 Trigger *pNewTrigger; /* Trigger under construct by a CREATE TRIGGER */ 2242 const char *zAuthContext; /* The 6th parameter to db->xAuth callbacks */ 2243 #ifndef SQLITE_OMIT_VIRTUALTABLE 2244 Token sArg; /* Complete text of a module argument */ 2245 u8 declareVtab; /* True if inside sqlite3_declare_vtab() */ 2246 int nVtabLock; /* Number of virtual tables to lock */ 2247 Table **apVtabLock; /* Pointer to virtual tables needing locking */ 2248 #endif 2249 int nHeight; /* Expression tree height of current sub-select */ 2250 Table *pZombieTab; /* List of Table objects to delete after code gen */ 2251 TriggerPrg *pTriggerPrg; /* Linked list of coded triggers */ 2252 2253 #ifndef SQLITE_OMIT_EXPLAIN 2254 int iSelectId; 2255 int iNextSelectId; 2256 #endif 2257 }; 2258 2259 #ifdef SQLITE_OMIT_VIRTUALTABLE 2260 #define IN_DECLARE_VTAB 0 2261 #else 2262 #define IN_DECLARE_VTAB (pParse->declareVtab) 2263 #endif 2264 2265 /* 2266 ** An instance of the following structure can be declared on a stack and used 2267 ** to save the Parse.zAuthContext value so that it can be restored later. 2268 */ 2269 struct AuthContext { 2270 const char *zAuthContext; /* Put saved Parse.zAuthContext here */ 2271 Parse *pParse; /* The Parse structure */ 2272 }; 2273 2274 /* 2275 ** Bitfield flags for P5 value in OP_Insert and OP_Delete 2276 */ 2277 #define OPFLAG_NCHANGE 0x01 /* Set to update db->nChange */ 2278 #define OPFLAG_LASTROWID 0x02 /* Set to update db->lastRowid */ 2279 #define OPFLAG_ISUPDATE 0x04 /* This OP_Insert is an sql UPDATE */ 2280 #define OPFLAG_APPEND 0x08 /* This is likely to be an append */ 2281 #define OPFLAG_USESEEKRESULT 0x10 /* Try to avoid a seek in BtreeInsert() */ 2282 #define OPFLAG_CLEARCACHE 0x20 /* Clear pseudo-table cache in OP_Column */ 2283 2284 /* 2285 * Each trigger present in the database schema is stored as an instance of 2286 * struct Trigger. 2287 * 2288 * Pointers to instances of struct Trigger are stored in two ways. 2289 * 1. In the "trigHash" hash table (part of the sqlite3* that represents the 2290 * database). This allows Trigger structures to be retrieved by name. 2291 * 2. All triggers associated with a single table form a linked list, using the 2292 * pNext member of struct Trigger. A pointer to the first element of the 2293 * linked list is stored as the "pTrigger" member of the associated 2294 * struct Table. 2295 * 2296 * The "step_list" member points to the first element of a linked list 2297 * containing the SQL statements specified as the trigger program. 2298 */ 2299 struct Trigger { 2300 char *zName; /* The name of the trigger */ 2301 char *table; /* The table or view to which the trigger applies */ 2302 u8 op; /* One of TK_DELETE, TK_UPDATE, TK_INSERT */ 2303 u8 tr_tm; /* One of TRIGGER_BEFORE, TRIGGER_AFTER */ 2304 Expr *pWhen; /* The WHEN clause of the expression (may be NULL) */ 2305 IdList *pColumns; /* If this is an UPDATE OF <column-list> trigger, 2306 the <column-list> is stored here */ 2307 Schema *pSchema; /* Schema containing the trigger */ 2308 Schema *pTabSchema; /* Schema containing the table */ 2309 TriggerStep *step_list; /* Link list of trigger program steps */ 2310 Trigger *pNext; /* Next trigger associated with the table */ 2311 }; 2312 2313 /* 2314 ** A trigger is either a BEFORE or an AFTER trigger. The following constants 2315 ** determine which. 2316 ** 2317 ** If there are multiple triggers, you might of some BEFORE and some AFTER. 2318 ** In that cases, the constants below can be ORed together. 2319 */ 2320 #define TRIGGER_BEFORE 1 2321 #define TRIGGER_AFTER 2 2322 2323 /* 2324 * An instance of struct TriggerStep is used to store a single SQL statement 2325 * that is a part of a trigger-program. 2326 * 2327 * Instances of struct TriggerStep are stored in a singly linked list (linked 2328 * using the "pNext" member) referenced by the "step_list" member of the 2329 * associated struct Trigger instance. The first element of the linked list is 2330 * the first step of the trigger-program. 2331 * 2332 * The "op" member indicates whether this is a "DELETE", "INSERT", "UPDATE" or 2333 * "SELECT" statement. The meanings of the other members is determined by the 2334 * value of "op" as follows: 2335 * 2336 * (op == TK_INSERT) 2337 * orconf -> stores the ON CONFLICT algorithm 2338 * pSelect -> If this is an INSERT INTO ... SELECT ... statement, then 2339 * this stores a pointer to the SELECT statement. Otherwise NULL. 2340 * target -> A token holding the quoted name of the table to insert into. 2341 * pExprList -> If this is an INSERT INTO ... VALUES ... statement, then 2342 * this stores values to be inserted. Otherwise NULL. 2343 * pIdList -> If this is an INSERT INTO ... (<column-names>) VALUES ... 2344 * statement, then this stores the column-names to be 2345 * inserted into. 2346 * 2347 * (op == TK_DELETE) 2348 * target -> A token holding the quoted name of the table to delete from. 2349 * pWhere -> The WHERE clause of the DELETE statement if one is specified. 2350 * Otherwise NULL. 2351 * 2352 * (op == TK_UPDATE) 2353 * target -> A token holding the quoted name of the table to update rows of. 2354 * pWhere -> The WHERE clause of the UPDATE statement if one is specified. 2355 * Otherwise NULL. 2356 * pExprList -> A list of the columns to update and the expressions to update 2357 * them to. See sqlite3Update() documentation of "pChanges" 2358 * argument. 2359 * 2360 */ 2361 struct TriggerStep { 2362 u8 op; /* One of TK_DELETE, TK_UPDATE, TK_INSERT, TK_SELECT */ 2363 u8 orconf; /* OE_Rollback etc. */ 2364 Trigger *pTrig; /* The trigger that this step is a part of */ 2365 Select *pSelect; /* SELECT statment or RHS of INSERT INTO .. SELECT ... */ 2366 Token target; /* Target table for DELETE, UPDATE, INSERT */ 2367 Expr *pWhere; /* The WHERE clause for DELETE or UPDATE steps */ 2368 ExprList *pExprList; /* SET clause for UPDATE. VALUES clause for INSERT */ 2369 IdList *pIdList; /* Column names for INSERT */ 2370 TriggerStep *pNext; /* Next in the link-list */ 2371 TriggerStep *pLast; /* Last element in link-list. Valid for 1st elem only */ 2372 }; 2373 2374 /* 2375 ** The following structure contains information used by the sqliteFix... 2376 ** routines as they walk the parse tree to make database references 2377 ** explicit. 2378 */ 2379 typedef struct DbFixer DbFixer; 2380 struct DbFixer { 2381 Parse *pParse; /* The parsing context. Error messages written here */ 2382 const char *zDb; /* Make sure all objects are contained in this database */ 2383 const char *zType; /* Type of the container - used for error messages */ 2384 const Token *pName; /* Name of the container - used for error messages */ 2385 }; 2386 2387 /* 2388 ** An objected used to accumulate the text of a string where we 2389 ** do not necessarily know how big the string will be in the end. 2390 */ 2391 struct StrAccum { 2392 sqlite3 *db; /* Optional database for lookaside. Can be NULL */ 2393 char *zBase; /* A base allocation. Not from malloc. */ 2394 char *zText; /* The string collected so far */ 2395 int nChar; /* Length of the string so far */ 2396 int nAlloc; /* Amount of space allocated in zText */ 2397 int mxAlloc; /* Maximum allowed string length */ 2398 u8 mallocFailed; /* Becomes true if any memory allocation fails */ 2399 u8 useMalloc; /* 0: none, 1: sqlite3DbMalloc, 2: sqlite3_malloc */ 2400 u8 tooBig; /* Becomes true if string size exceeds limits */ 2401 }; 2402 2403 /* 2404 ** A pointer to this structure is used to communicate information 2405 ** from sqlite3Init and OP_ParseSchema into the sqlite3InitCallback. 2406 */ 2407 typedef struct { 2408 sqlite3 *db; /* The database being initialized */ 2409 int iDb; /* 0 for main database. 1 for TEMP, 2.. for ATTACHed */ 2410 char **pzErrMsg; /* Error message stored here */ 2411 int rc; /* Result code stored here */ 2412 } InitData; 2413 2414 /* 2415 ** Structure containing global configuration data for the SQLite library. 2416 ** 2417 ** This structure also contains some state information. 2418 */ 2419 struct Sqlite3Config { 2420 int bMemstat; /* True to enable memory status */ 2421 int bCoreMutex; /* True to enable core mutexing */ 2422 int bFullMutex; /* True to enable full mutexing */ 2423 int mxStrlen; /* Maximum string length */ 2424 int szLookaside; /* Default lookaside buffer size */ 2425 int nLookaside; /* Default lookaside buffer count */ 2426 sqlite3_mem_methods m; /* Low-level memory allocation interface */ 2427 sqlite3_mutex_methods mutex; /* Low-level mutex interface */ 2428 sqlite3_pcache_methods pcache; /* Low-level page-cache interface */ 2429 void *pHeap; /* Heap storage space */ 2430 int nHeap; /* Size of pHeap[] */ 2431 int mnReq, mxReq; /* Min and max heap requests sizes */ 2432 void *pScratch; /* Scratch memory */ 2433 int szScratch; /* Size of each scratch buffer */ 2434 int nScratch; /* Number of scratch buffers */ 2435 void *pPage; /* Page cache memory */ 2436 int szPage; /* Size of each page in pPage[] */ 2437 int nPage; /* Number of pages in pPage[] */ 2438 int mxParserStack; /* maximum depth of the parser stack */ 2439 int sharedCacheEnabled; /* true if shared-cache mode enabled */ 2440 /* The above might be initialized to non-zero. The following need to always 2441 ** initially be zero, however. */ 2442 int isInit; /* True after initialization has finished */ 2443 int inProgress; /* True while initialization in progress */ 2444 int isMutexInit; /* True after mutexes are initialized */ 2445 int isMallocInit; /* True after malloc is initialized */ 2446 int isPCacheInit; /* True after malloc is initialized */ 2447 sqlite3_mutex *pInitMutex; /* Mutex used by sqlite3_initialize() */ 2448 int nRefInitMutex; /* Number of users of pInitMutex */ 2449 void (*xLog)(void*,int,const char*); /* Function for logging */ 2450 void *pLogArg; /* First argument to xLog() */ 2451 }; 2452 2453 /* 2454 ** Context pointer passed down through the tree-walk. 2455 */ 2456 struct Walker { 2457 int (*xExprCallback)(Walker*, Expr*); /* Callback for expressions */ 2458 int (*xSelectCallback)(Walker*,Select*); /* Callback for SELECTs */ 2459 Parse *pParse; /* Parser context. */ 2460 union { /* Extra data for callback */ 2461 NameContext *pNC; /* Naming context */ 2462 int i; /* Integer value */ 2463 } u; 2464 }; 2465 2466 /* Forward declarations */ 2467 int sqlite3WalkExpr(Walker*, Expr*); 2468 int sqlite3WalkExprList(Walker*, ExprList*); 2469 int sqlite3WalkSelect(Walker*, Select*); 2470 int sqlite3WalkSelectExpr(Walker*, Select*); 2471 int sqlite3WalkSelectFrom(Walker*, Select*); 2472 2473 /* 2474 ** Return code from the parse-tree walking primitives and their 2475 ** callbacks. 2476 */ 2477 #define WRC_Continue 0 /* Continue down into children */ 2478 #define WRC_Prune 1 /* Omit children but continue walking siblings */ 2479 #define WRC_Abort 2 /* Abandon the tree walk */ 2480 2481 /* 2482 ** Assuming zIn points to the first byte of a UTF-8 character, 2483 ** advance zIn to point to the first byte of the next UTF-8 character. 2484 */ 2485 #define SQLITE_SKIP_UTF8(zIn) { \ 2486 if( (*(zIn++))>=0xc0 ){ \ 2487 while( (*zIn & 0xc0)==0x80 ){ zIn++; } \ 2488 } \ 2489 } 2490 2491 /* 2492 ** The SQLITE_*_BKPT macros are substitutes for the error codes with 2493 ** the same name but without the _BKPT suffix. These macros invoke 2494 ** routines that report the line-number on which the error originated 2495 ** using sqlite3_log(). The routines also provide a convenient place 2496 ** to set a debugger breakpoint. 2497 */ 2498 int sqlite3CorruptError(int); 2499 int sqlite3MisuseError(int); 2500 int sqlite3CantopenError(int); 2501 #define SQLITE_CORRUPT_BKPT sqlite3CorruptError(__LINE__) 2502 #define SQLITE_MISUSE_BKPT sqlite3MisuseError(__LINE__) 2503 #define SQLITE_CANTOPEN_BKPT sqlite3CantopenError(__LINE__) 2504 2505 2506 /* 2507 ** FTS4 is really an extension for FTS3. It is enabled using the 2508 ** SQLITE_ENABLE_FTS3 macro. But to avoid confusion we also all 2509 ** the SQLITE_ENABLE_FTS4 macro to serve as an alisse for SQLITE_ENABLE_FTS3. 2510 */ 2511 #if defined(SQLITE_ENABLE_FTS4) && !defined(SQLITE_ENABLE_FTS3) 2512 # define SQLITE_ENABLE_FTS3 2513 #endif 2514 2515 /* 2516 ** The ctype.h header is needed for non-ASCII systems. It is also 2517 ** needed by FTS3 when FTS3 is included in the amalgamation. 2518 */ 2519 #if !defined(SQLITE_ASCII) || \ 2520 (defined(SQLITE_ENABLE_FTS3) && defined(SQLITE_AMALGAMATION)) 2521 # include <ctype.h> 2522 #endif 2523 2524 /* 2525 ** The CoreServices.h and CoreFoundation.h headers are needed for excluding a 2526 ** -journal file from Time Machine backups when its associated database has 2527 ** previously been excluded by the client code. 2528 */ 2529 #if defined(__APPLE__) 2530 #include <CoreServices/CoreServices.h> 2531 #include <CoreFoundation/CoreFoundation.h> 2532 #endif 2533 2534 /* 2535 ** The following macros mimic the standard library functions toupper(), 2536 ** isspace(), isalnum(), isdigit() and isxdigit(), respectively. The 2537 ** sqlite versions only work for ASCII characters, regardless of locale. 2538 */ 2539 #ifdef SQLITE_ASCII 2540 # define sqlite3Toupper(x) ((x)&~(sqlite3CtypeMap[(unsigned char)(x)]&0x20)) 2541 # define sqlite3Isspace(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x01) 2542 # define sqlite3Isalnum(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x06) 2543 # define sqlite3Isalpha(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x02) 2544 # define sqlite3Isdigit(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x04) 2545 # define sqlite3Isxdigit(x) (sqlite3CtypeMap[(unsigned char)(x)]&0x08) 2546 # define sqlite3Tolower(x) (sqlite3UpperToLower[(unsigned char)(x)]) 2547 #else 2548 # define sqlite3Toupper(x) toupper((unsigned char)(x)) 2549 # define sqlite3Isspace(x) isspace((unsigned char)(x)) 2550 # define sqlite3Isalnum(x) isalnum((unsigned char)(x)) 2551 # define sqlite3Isalpha(x) isalpha((unsigned char)(x)) 2552 # define sqlite3Isdigit(x) isdigit((unsigned char)(x)) 2553 # define sqlite3Isxdigit(x) isxdigit((unsigned char)(x)) 2554 # define sqlite3Tolower(x) tolower((unsigned char)(x)) 2555 #endif 2556 2557 /* 2558 ** Internal function prototypes 2559 */ 2560 int sqlite3StrICmp(const char *, const char *); 2561 int sqlite3Strlen30(const char*); 2562 #define sqlite3StrNICmp sqlite3_strnicmp 2563 2564 int sqlite3MallocInit(void); 2565 void sqlite3MallocEnd(void); 2566 void *sqlite3Malloc(int); 2567 void *sqlite3MallocZero(int); 2568 void *sqlite3DbMallocZero(sqlite3*, int); 2569 void *sqlite3DbMallocRaw(sqlite3*, int); 2570 char *sqlite3DbStrDup(sqlite3*,const char*); 2571 char *sqlite3DbStrNDup(sqlite3*,const char*, int); 2572 void *sqlite3Realloc(void*, int); 2573 void *sqlite3DbReallocOrFree(sqlite3 *, void *, int); 2574 void *sqlite3DbRealloc(sqlite3 *, void *, int); 2575 void sqlite3DbFree(sqlite3*, void*); 2576 int sqlite3MallocSize(void*); 2577 int sqlite3DbMallocSize(sqlite3*, void*); 2578 void *sqlite3ScratchMalloc(int); 2579 void sqlite3ScratchFree(void*); 2580 void *sqlite3PageMalloc(int); 2581 void sqlite3PageFree(void*); 2582 void sqlite3MemSetDefault(void); 2583 void sqlite3BenignMallocHooks(void (*)(void), void (*)(void)); 2584 int sqlite3HeapNearlyFull(void); 2585 2586 /* 2587 ** On systems with ample stack space and that support alloca(), make 2588 ** use of alloca() to obtain space for large automatic objects. By default, 2589 ** obtain space from malloc(). 2590 ** 2591 ** The alloca() routine never returns NULL. This will cause code paths 2592 ** that deal with sqlite3StackAlloc() failures to be unreachable. 2593 */ 2594 #ifdef SQLITE_USE_ALLOCA 2595 # define sqlite3StackAllocRaw(D,N) alloca(N) 2596 # define sqlite3StackAllocZero(D,N) memset(alloca(N), 0, N) 2597 # define sqlite3StackFree(D,P) 2598 #else 2599 # define sqlite3StackAllocRaw(D,N) sqlite3DbMallocRaw(D,N) 2600 # define sqlite3StackAllocZero(D,N) sqlite3DbMallocZero(D,N) 2601 # define sqlite3StackFree(D,P) sqlite3DbFree(D,P) 2602 #endif 2603 2604 #ifdef SQLITE_ENABLE_MEMSYS3 2605 const sqlite3_mem_methods *sqlite3MemGetMemsys3(void); 2606 #endif 2607 #ifdef SQLITE_ENABLE_MEMSYS5 2608 const sqlite3_mem_methods *sqlite3MemGetMemsys5(void); 2609 #endif 2610 2611 2612 #ifndef SQLITE_MUTEX_OMIT 2613 sqlite3_mutex_methods const *sqlite3DefaultMutex(void); 2614 sqlite3_mutex_methods const *sqlite3NoopMutex(void); 2615 sqlite3_mutex *sqlite3MutexAlloc(int); 2616 int sqlite3MutexInit(void); 2617 int sqlite3MutexEnd(void); 2618 #endif 2619 2620 int sqlite3StatusValue(int); 2621 void sqlite3StatusAdd(int, int); 2622 void sqlite3StatusSet(int, int); 2623 2624 #ifndef SQLITE_OMIT_FLOATING_POINT 2625 int sqlite3IsNaN(double); 2626 #else 2627 # define sqlite3IsNaN(X) 0 2628 #endif 2629 2630 void sqlite3VXPrintf(StrAccum*, int, const char*, va_list); 2631 #ifndef SQLITE_OMIT_TRACE 2632 void sqlite3XPrintf(StrAccum*, const char*, ...); 2633 #endif 2634 char *sqlite3MPrintf(sqlite3*,const char*, ...); 2635 char *sqlite3VMPrintf(sqlite3*,const char*, va_list); 2636 char *sqlite3MAppendf(sqlite3*,char*,const char*,...); 2637 #if defined(SQLITE_TEST) || defined(SQLITE_DEBUG) 2638 void sqlite3DebugPrintf(const char*, ...); 2639 #endif 2640 #if defined(SQLITE_TEST) 2641 void *sqlite3TestTextToPtr(const char*); 2642 #endif 2643 void sqlite3SetString(char **, sqlite3*, const char*, ...); 2644 void sqlite3ErrorMsg(Parse*, const char*, ...); 2645 int sqlite3Dequote(char*); 2646 int sqlite3KeywordCode(const unsigned char*, int); 2647 int sqlite3RunParser(Parse*, const char*, char **); 2648 void sqlite3FinishCoding(Parse*); 2649 int sqlite3GetTempReg(Parse*); 2650 void sqlite3ReleaseTempReg(Parse*,int); 2651 int sqlite3GetTempRange(Parse*,int); 2652 void sqlite3ReleaseTempRange(Parse*,int,int); 2653 Expr *sqlite3ExprAlloc(sqlite3*,int,const Token*,int); 2654 Expr *sqlite3Expr(sqlite3*,int,const char*); 2655 void sqlite3ExprAttachSubtrees(sqlite3*,Expr*,Expr*,Expr*); 2656 Expr *sqlite3PExpr(Parse*, int, Expr*, Expr*, const Token*); 2657 Expr *sqlite3ExprAnd(sqlite3*,Expr*, Expr*); 2658 Expr *sqlite3ExprFunction(Parse*,ExprList*, Token*); 2659 void sqlite3ExprAssignVarNumber(Parse*, Expr*); 2660 void sqlite3ExprDelete(sqlite3*, Expr*); 2661 ExprList *sqlite3ExprListAppend(Parse*,ExprList*,Expr*); 2662 void sqlite3ExprListSetName(Parse*,ExprList*,Token*,int); 2663 void sqlite3ExprListSetSpan(Parse*,ExprList*,ExprSpan*); 2664 void sqlite3ExprListDelete(sqlite3*, ExprList*); 2665 int sqlite3Init(sqlite3*, char**); 2666 int sqlite3InitCallback(void*, int, char**, char**); 2667 void sqlite3Pragma(Parse*,Token*,Token*,Token*,int); 2668 void sqlite3ResetInternalSchema(sqlite3*, int); 2669 void sqlite3BeginParse(Parse*,int); 2670 void sqlite3CommitInternalChanges(sqlite3*); 2671 Table *sqlite3ResultSetOfSelect(Parse*,Select*); 2672 void sqlite3OpenMasterTable(Parse *, int); 2673 void sqlite3StartTable(Parse*,Token*,Token*,int,int,int,int); 2674 void sqlite3AddColumn(Parse*,Token*); 2675 void sqlite3AddNotNull(Parse*, int); 2676 void sqlite3AddPrimaryKey(Parse*, ExprList*, int, int, int); 2677 void sqlite3AddCheckConstraint(Parse*, Expr*); 2678 void sqlite3AddColumnType(Parse*,Token*); 2679 void sqlite3AddDefaultValue(Parse*,ExprSpan*); 2680 void sqlite3AddCollateType(Parse*, Token*); 2681 void sqlite3EndTable(Parse*,Token*,Token*,Select*); 2682 2683 Bitvec *sqlite3BitvecCreate(u32); 2684 int sqlite3BitvecTest(Bitvec*, u32); 2685 int sqlite3BitvecSet(Bitvec*, u32); 2686 void sqlite3BitvecClear(Bitvec*, u32, void*); 2687 void sqlite3BitvecDestroy(Bitvec*); 2688 u32 sqlite3BitvecSize(Bitvec*); 2689 int sqlite3BitvecBuiltinTest(int,int*); 2690 2691 RowSet *sqlite3RowSetInit(sqlite3*, void*, unsigned int); 2692 void sqlite3RowSetClear(RowSet*); 2693 void sqlite3RowSetInsert(RowSet*, i64); 2694 int sqlite3RowSetTest(RowSet*, u8 iBatch, i64); 2695 int sqlite3RowSetNext(RowSet*, i64*); 2696 2697 void sqlite3CreateView(Parse*,Token*,Token*,Token*,Select*,int,int); 2698 2699 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 2700 int sqlite3ViewGetColumnNames(Parse*,Table*); 2701 #else 2702 # define sqlite3ViewGetColumnNames(A,B) 0 2703 #endif 2704 2705 void sqlite3DropTable(Parse*, SrcList*, int, int); 2706 void sqlite3DeleteTable(sqlite3*, Table*); 2707 #ifndef SQLITE_OMIT_AUTOINCREMENT 2708 void sqlite3AutoincrementBegin(Parse *pParse); 2709 void sqlite3AutoincrementEnd(Parse *pParse); 2710 #else 2711 # define sqlite3AutoincrementBegin(X) 2712 # define sqlite3AutoincrementEnd(X) 2713 #endif 2714 void sqlite3Insert(Parse*, SrcList*, ExprList*, Select*, IdList*, int); 2715 void *sqlite3ArrayAllocate(sqlite3*,void*,int,int,int*,int*,int*); 2716 IdList *sqlite3IdListAppend(sqlite3*, IdList*, Token*); 2717 int sqlite3IdListIndex(IdList*,const char*); 2718 SrcList *sqlite3SrcListEnlarge(sqlite3*, SrcList*, int, int); 2719 SrcList *sqlite3SrcListAppend(sqlite3*, SrcList*, Token*, Token*); 2720 SrcList *sqlite3SrcListAppendFromTerm(Parse*, SrcList*, Token*, Token*, 2721 Token*, Select*, Expr*, IdList*); 2722 void sqlite3SrcListIndexedBy(Parse *, SrcList *, Token *); 2723 int sqlite3IndexedByLookup(Parse *, struct SrcList_item *); 2724 void sqlite3SrcListShiftJoinType(SrcList*); 2725 void sqlite3SrcListAssignCursors(Parse*, SrcList*); 2726 void sqlite3IdListDelete(sqlite3*, IdList*); 2727 void sqlite3SrcListDelete(sqlite3*, SrcList*); 2728 Index *sqlite3CreateIndex(Parse*,Token*,Token*,SrcList*,ExprList*,int,Token*, 2729 Token*, int, int); 2730 void sqlite3DropIndex(Parse*, SrcList*, int); 2731 int sqlite3Select(Parse*, Select*, SelectDest*); 2732 Select *sqlite3SelectNew(Parse*,ExprList*,SrcList*,Expr*,ExprList*, 2733 Expr*,ExprList*,int,Expr*,Expr*); 2734 void sqlite3SelectDelete(sqlite3*, Select*); 2735 Table *sqlite3SrcListLookup(Parse*, SrcList*); 2736 int sqlite3IsReadOnly(Parse*, Table*, int); 2737 void sqlite3OpenTable(Parse*, int iCur, int iDb, Table*, int); 2738 #if defined(SQLITE_ENABLE_UPDATE_DELETE_LIMIT) && !defined(SQLITE_OMIT_SUBQUERY) 2739 Expr *sqlite3LimitWhere(Parse *, SrcList *, Expr *, ExprList *, Expr *, Expr *, char *); 2740 #endif 2741 void sqlite3DeleteFrom(Parse*, SrcList*, Expr*); 2742 void sqlite3Update(Parse*, SrcList*, ExprList*, Expr*, int); 2743 WhereInfo *sqlite3WhereBegin(Parse*, SrcList*, Expr*, ExprList**, u16); 2744 void sqlite3WhereEnd(WhereInfo*); 2745 int sqlite3ExprCodeGetColumn(Parse*, Table*, int, int, int); 2746 void sqlite3ExprCodeGetColumnOfTable(Vdbe*, Table*, int, int, int); 2747 void sqlite3ExprCodeMove(Parse*, int, int, int); 2748 void sqlite3ExprCodeCopy(Parse*, int, int, int); 2749 void sqlite3ExprCacheStore(Parse*, int, int, int); 2750 void sqlite3ExprCachePush(Parse*); 2751 void sqlite3ExprCachePop(Parse*, int); 2752 void sqlite3ExprCacheRemove(Parse*, int, int); 2753 void sqlite3ExprCacheClear(Parse*); 2754 void sqlite3ExprCacheAffinityChange(Parse*, int, int); 2755 int sqlite3ExprCode(Parse*, Expr*, int); 2756 int sqlite3ExprCodeTemp(Parse*, Expr*, int*); 2757 int sqlite3ExprCodeTarget(Parse*, Expr*, int); 2758 int sqlite3ExprCodeAndCache(Parse*, Expr*, int); 2759 void sqlite3ExprCodeConstants(Parse*, Expr*); 2760 int sqlite3ExprCodeExprList(Parse*, ExprList*, int, int); 2761 void sqlite3ExprIfTrue(Parse*, Expr*, int, int); 2762 void sqlite3ExprIfFalse(Parse*, Expr*, int, int); 2763 Table *sqlite3FindTable(sqlite3*,const char*, const char*); 2764 Table *sqlite3LocateTable(Parse*,int isView,const char*, const char*); 2765 Index *sqlite3FindIndex(sqlite3*,const char*, const char*); 2766 void sqlite3UnlinkAndDeleteTable(sqlite3*,int,const char*); 2767 void sqlite3UnlinkAndDeleteIndex(sqlite3*,int,const char*); 2768 void sqlite3Vacuum(Parse*); 2769 int sqlite3RunVacuum(char**, sqlite3*); 2770 char *sqlite3NameFromToken(sqlite3*, Token*); 2771 int sqlite3ExprCompare(Expr*, Expr*); 2772 int sqlite3ExprListCompare(ExprList*, ExprList*); 2773 void sqlite3ExprAnalyzeAggregates(NameContext*, Expr*); 2774 void sqlite3ExprAnalyzeAggList(NameContext*,ExprList*); 2775 Vdbe *sqlite3GetVdbe(Parse*); 2776 void sqlite3PrngSaveState(void); 2777 void sqlite3PrngRestoreState(void); 2778 void sqlite3PrngResetState(void); 2779 void sqlite3RollbackAll(sqlite3*); 2780 void sqlite3CodeVerifySchema(Parse*, int); 2781 void sqlite3CodeVerifyNamedSchema(Parse*, const char *zDb); 2782 void sqlite3BeginTransaction(Parse*, int); 2783 void sqlite3CommitTransaction(Parse*); 2784 void sqlite3RollbackTransaction(Parse*); 2785 void sqlite3Savepoint(Parse*, int, Token*); 2786 void sqlite3CloseSavepoints(sqlite3 *); 2787 int sqlite3ExprIsConstant(Expr*); 2788 int sqlite3ExprIsConstantNotJoin(Expr*); 2789 int sqlite3ExprIsConstantOrFunction(Expr*); 2790 int sqlite3ExprIsInteger(Expr*, int*); 2791 int sqlite3ExprCanBeNull(const Expr*); 2792 void sqlite3ExprCodeIsNullJump(Vdbe*, const Expr*, int, int); 2793 int sqlite3ExprNeedsNoAffinityChange(const Expr*, char); 2794 int sqlite3IsRowid(const char*); 2795 void sqlite3GenerateRowDelete(Parse*, Table*, int, int, int, Trigger *, int); 2796 void sqlite3GenerateRowIndexDelete(Parse*, Table*, int, int*); 2797 int sqlite3GenerateIndexKey(Parse*, Index*, int, int, int); 2798 void sqlite3GenerateConstraintChecks(Parse*,Table*,int,int, 2799 int*,int,int,int,int,int*); 2800 void sqlite3CompleteInsertion(Parse*, Table*, int, int, int*, int, int, int); 2801 int sqlite3OpenTableAndIndices(Parse*, Table*, int, int); 2802 void sqlite3BeginWriteOperation(Parse*, int, int); 2803 void sqlite3MultiWrite(Parse*); 2804 void sqlite3MayAbort(Parse*); 2805 void sqlite3HaltConstraint(Parse*, int, char*, int); 2806 Expr *sqlite3ExprDup(sqlite3*,Expr*,int); 2807 ExprList *sqlite3ExprListDup(sqlite3*,ExprList*,int); 2808 SrcList *sqlite3SrcListDup(sqlite3*,SrcList*,int); 2809 IdList *sqlite3IdListDup(sqlite3*,IdList*); 2810 Select *sqlite3SelectDup(sqlite3*,Select*,int); 2811 void sqlite3FuncDefInsert(FuncDefHash*, FuncDef*); 2812 FuncDef *sqlite3FindFunction(sqlite3*,const char*,int,int,u8,int); 2813 void sqlite3RegisterBuiltinFunctions(sqlite3*); 2814 void sqlite3RegisterDateTimeFunctions(void); 2815 void sqlite3RegisterGlobalFunctions(void); 2816 int sqlite3SafetyCheckOk(sqlite3*); 2817 int sqlite3SafetyCheckSickOrOk(sqlite3*); 2818 void sqlite3ChangeCookie(Parse*, int); 2819 2820 #if !defined(SQLITE_OMIT_VIEW) && !defined(SQLITE_OMIT_TRIGGER) 2821 void sqlite3MaterializeView(Parse*, Table*, Expr*, int); 2822 #endif 2823 2824 #ifndef SQLITE_OMIT_TRIGGER 2825 void sqlite3BeginTrigger(Parse*, Token*,Token*,int,int,IdList*,SrcList*, 2826 Expr*,int, int); 2827 void sqlite3FinishTrigger(Parse*, TriggerStep*, Token*); 2828 void sqlite3DropTrigger(Parse*, SrcList*, int); 2829 void sqlite3DropTriggerPtr(Parse*, Trigger*); 2830 Trigger *sqlite3TriggersExist(Parse *, Table*, int, ExprList*, int *pMask); 2831 Trigger *sqlite3TriggerList(Parse *, Table *); 2832 void sqlite3CodeRowTrigger(Parse*, Trigger *, int, ExprList*, int, Table *, 2833 int, int, int); 2834 void sqlite3CodeRowTriggerDirect(Parse *, Trigger *, Table *, int, int, int); 2835 void sqliteViewTriggers(Parse*, Table*, Expr*, int, ExprList*); 2836 void sqlite3DeleteTriggerStep(sqlite3*, TriggerStep*); 2837 TriggerStep *sqlite3TriggerSelectStep(sqlite3*,Select*); 2838 TriggerStep *sqlite3TriggerInsertStep(sqlite3*,Token*, IdList*, 2839 ExprList*,Select*,u8); 2840 TriggerStep *sqlite3TriggerUpdateStep(sqlite3*,Token*,ExprList*, Expr*, u8); 2841 TriggerStep *sqlite3TriggerDeleteStep(sqlite3*,Token*, Expr*); 2842 void sqlite3DeleteTrigger(sqlite3*, Trigger*); 2843 void sqlite3UnlinkAndDeleteTrigger(sqlite3*,int,const char*); 2844 u32 sqlite3TriggerColmask(Parse*,Trigger*,ExprList*,int,int,Table*,int); 2845 # define sqlite3ParseToplevel(p) ((p)->pToplevel ? (p)->pToplevel : (p)) 2846 #else 2847 # define sqlite3TriggersExist(B,C,D,E,F) 0 2848 # define sqlite3DeleteTrigger(A,B) 2849 # define sqlite3DropTriggerPtr(A,B) 2850 # define sqlite3UnlinkAndDeleteTrigger(A,B,C) 2851 # define sqlite3CodeRowTrigger(A,B,C,D,E,F,G,H,I) 2852 # define sqlite3CodeRowTriggerDirect(A,B,C,D,E,F) 2853 # define sqlite3TriggerList(X, Y) 0 2854 # define sqlite3ParseToplevel(p) p 2855 # define sqlite3TriggerColmask(A,B,C,D,E,F,G) 0 2856 #endif 2857 2858 int sqlite3JoinType(Parse*, Token*, Token*, Token*); 2859 void sqlite3CreateForeignKey(Parse*, ExprList*, Token*, ExprList*, int); 2860 void sqlite3DeferForeignKey(Parse*, int); 2861 #ifndef SQLITE_OMIT_AUTHORIZATION 2862 void sqlite3AuthRead(Parse*,Expr*,Schema*,SrcList*); 2863 int sqlite3AuthCheck(Parse*,int, const char*, const char*, const char*); 2864 void sqlite3AuthContextPush(Parse*, AuthContext*, const char*); 2865 void sqlite3AuthContextPop(AuthContext*); 2866 int sqlite3AuthReadCol(Parse*, const char *, const char *, int); 2867 #else 2868 # define sqlite3AuthRead(a,b,c,d) 2869 # define sqlite3AuthCheck(a,b,c,d,e) SQLITE_OK 2870 # define sqlite3AuthContextPush(a,b,c) 2871 # define sqlite3AuthContextPop(a) ((void)(a)) 2872 #endif 2873 void sqlite3Attach(Parse*, Expr*, Expr*, Expr*); 2874 void sqlite3Detach(Parse*, Expr*); 2875 int sqlite3FixInit(DbFixer*, Parse*, int, const char*, const Token*); 2876 int sqlite3FixSrcList(DbFixer*, SrcList*); 2877 int sqlite3FixSelect(DbFixer*, Select*); 2878 int sqlite3FixExpr(DbFixer*, Expr*); 2879 int sqlite3FixExprList(DbFixer*, ExprList*); 2880 int sqlite3FixTriggerStep(DbFixer*, TriggerStep*); 2881 int sqlite3AtoF(const char *z, double*, int, u8); 2882 int sqlite3GetInt32(const char *, int*); 2883 int sqlite3Atoi(const char*); 2884 int sqlite3Utf16ByteLen(const void *pData, int nChar); 2885 int sqlite3Utf8CharLen(const char *pData, int nByte); 2886 int sqlite3Utf8Read(const u8*, const u8**); 2887 2888 /* 2889 ** Routines to read and write variable-length integers. These used to 2890 ** be defined locally, but now we use the varint routines in the util.c 2891 ** file. Code should use the MACRO forms below, as the Varint32 versions 2892 ** are coded to assume the single byte case is already handled (which 2893 ** the MACRO form does). 2894 */ 2895 int sqlite3PutVarint(unsigned char*, u64); 2896 int sqlite3PutVarint32(unsigned char*, u32); 2897 u8 sqlite3GetVarint(const unsigned char *, u64 *); 2898 u8 sqlite3GetVarint32(const unsigned char *, u32 *); 2899 int sqlite3VarintLen(u64 v); 2900 2901 /* 2902 ** The header of a record consists of a sequence variable-length integers. 2903 ** These integers are almost always small and are encoded as a single byte. 2904 ** The following macros take advantage this fact to provide a fast encode 2905 ** and decode of the integers in a record header. It is faster for the common 2906 ** case where the integer is a single byte. It is a little slower when the 2907 ** integer is two or more bytes. But overall it is faster. 2908 ** 2909 ** The following expressions are equivalent: 2910 ** 2911 ** x = sqlite3GetVarint32( A, &B ); 2912 ** x = sqlite3PutVarint32( A, B ); 2913 ** 2914 ** x = getVarint32( A, B ); 2915 ** x = putVarint32( A, B ); 2916 ** 2917 */ 2918 #define getVarint32(A,B) (u8)((*(A)<(u8)0x80) ? ((B) = (u32)*(A)),1 : sqlite3GetVarint32((A), (u32 *)&(B))) 2919 #define putVarint32(A,B) (u8)(((u32)(B)<(u32)0x80) ? (*(A) = (unsigned char)(B)),1 : sqlite3PutVarint32((A), (B))) 2920 #define getVarint sqlite3GetVarint 2921 #define putVarint sqlite3PutVarint 2922 2923 2924 const char *sqlite3IndexAffinityStr(Vdbe *, Index *); 2925 void sqlite3TableAffinityStr(Vdbe *, Table *); 2926 char sqlite3CompareAffinity(Expr *pExpr, char aff2); 2927 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity); 2928 char sqlite3ExprAffinity(Expr *pExpr); 2929 int sqlite3Atoi64(const char*, i64*, int, u8); 2930 void sqlite3Error(sqlite3*, int, const char*,...); 2931 void *sqlite3HexToBlob(sqlite3*, const char *z, int n); 2932 int sqlite3TwoPartName(Parse *, Token *, Token *, Token **); 2933 const char *sqlite3ErrStr(int); 2934 int sqlite3ReadSchema(Parse *pParse); 2935 CollSeq *sqlite3FindCollSeq(sqlite3*,u8 enc, const char*,int); 2936 CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char*zName); 2937 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr); 2938 Expr *sqlite3ExprSetColl(Expr*, CollSeq*); 2939 Expr *sqlite3ExprSetCollByToken(Parse *pParse, Expr*, Token*); 2940 int sqlite3CheckCollSeq(Parse *, CollSeq *); 2941 int sqlite3CheckObjectName(Parse *, const char *); 2942 void sqlite3VdbeSetChanges(sqlite3 *, int); 2943 int sqlite3AddInt64(i64*,i64); 2944 int sqlite3SubInt64(i64*,i64); 2945 int sqlite3MulInt64(i64*,i64); 2946 int sqlite3AbsInt32(int); 2947 2948 const void *sqlite3ValueText(sqlite3_value*, u8); 2949 int sqlite3ValueBytes(sqlite3_value*, u8); 2950 void sqlite3ValueSetStr(sqlite3_value*, int, const void *,u8, 2951 void(*)(void*)); 2952 void sqlite3ValueFree(sqlite3_value*); 2953 sqlite3_value *sqlite3ValueNew(sqlite3 *); 2954 char *sqlite3Utf16to8(sqlite3 *, const void*, int, u8); 2955 #ifdef SQLITE_ENABLE_STAT2 2956 char *sqlite3Utf8to16(sqlite3 *, u8, char *, int, int *); 2957 #endif 2958 int sqlite3ValueFromExpr(sqlite3 *, Expr *, u8, u8, sqlite3_value **); 2959 void sqlite3ValueApplyAffinity(sqlite3_value *, u8, u8); 2960 #ifndef SQLITE_AMALGAMATION 2961 extern const unsigned char sqlite3OpcodeProperty[]; 2962 extern const unsigned char sqlite3UpperToLower[]; 2963 extern const unsigned char sqlite3CtypeMap[]; 2964 extern const Token sqlite3IntTokens[]; 2965 extern SQLITE_WSD struct Sqlite3Config sqlite3Config; 2966 extern SQLITE_WSD FuncDefHash sqlite3GlobalFunctions; 2967 #ifndef SQLITE_OMIT_WSD 2968 extern int sqlite3PendingByte; 2969 #endif 2970 #endif 2971 void sqlite3RootPageMoved(sqlite3*, int, int, int); 2972 void sqlite3Reindex(Parse*, Token*, Token*); 2973 void sqlite3AlterFunctions(void); 2974 void sqlite3AlterRenameTable(Parse*, SrcList*, Token*); 2975 int sqlite3GetToken(const unsigned char *, int *); 2976 void sqlite3NestedParse(Parse*, const char*, ...); 2977 void sqlite3ExpirePreparedStatements(sqlite3*); 2978 int sqlite3CodeSubselect(Parse *, Expr *, int, int); 2979 void sqlite3SelectPrep(Parse*, Select*, NameContext*); 2980 int sqlite3ResolveExprNames(NameContext*, Expr*); 2981 void sqlite3ResolveSelectNames(Parse*, Select*, NameContext*); 2982 int sqlite3ResolveOrderGroupBy(Parse*, Select*, ExprList*, const char*); 2983 void sqlite3ColumnDefault(Vdbe *, Table *, int, int); 2984 void sqlite3AlterFinishAddColumn(Parse *, Token *); 2985 void sqlite3AlterBeginAddColumn(Parse *, SrcList *); 2986 CollSeq *sqlite3GetCollSeq(sqlite3*, u8, CollSeq *, const char*); 2987 char sqlite3AffinityType(const char*); 2988 void sqlite3Analyze(Parse*, Token*, Token*); 2989 int sqlite3InvokeBusyHandler(BusyHandler*); 2990 int sqlite3FindDb(sqlite3*, Token*); 2991 int sqlite3FindDbName(sqlite3 *, const char *); 2992 int sqlite3AnalysisLoad(sqlite3*,int iDB); 2993 void sqlite3DeleteIndexSamples(sqlite3*,Index*); 2994 void sqlite3DefaultRowEst(Index*); 2995 void sqlite3RegisterLikeFunctions(sqlite3*, int); 2996 int sqlite3IsLikeFunction(sqlite3*,Expr*,int*,char*); 2997 void sqlite3MinimumFileFormat(Parse*, int, int); 2998 void sqlite3SchemaClear(void *); 2999 Schema *sqlite3SchemaGet(sqlite3 *, Btree *); 3000 int sqlite3SchemaToIndex(sqlite3 *db, Schema *); 3001 KeyInfo *sqlite3IndexKeyinfo(Parse *, Index *); 3002 int sqlite3CreateFunc(sqlite3 *, const char *, int, int, void *, 3003 void (*)(sqlite3_context*,int,sqlite3_value **), 3004 void (*)(sqlite3_context*,int,sqlite3_value **), void (*)(sqlite3_context*), 3005 FuncDestructor *pDestructor 3006 ); 3007 int sqlite3ApiExit(sqlite3 *db, int); 3008 int sqlite3OpenTempDatabase(Parse *); 3009 3010 void sqlite3StrAccumInit(StrAccum*, char*, int, int); 3011 void sqlite3StrAccumAppend(StrAccum*,const char*,int); 3012 char *sqlite3StrAccumFinish(StrAccum*); 3013 void sqlite3StrAccumReset(StrAccum*); 3014 void sqlite3SelectDestInit(SelectDest*,int,int); 3015 Expr *sqlite3CreateColumnExpr(sqlite3 *, SrcList *, int, int); 3016 3017 void sqlite3BackupRestart(sqlite3_backup *); 3018 void sqlite3BackupUpdate(sqlite3_backup *, Pgno, const u8 *); 3019 3020 /* 3021 ** The interface to the LEMON-generated parser 3022 */ 3023 void *sqlite3ParserAlloc(void*(*)(size_t)); 3024 void sqlite3ParserFree(void*, void(*)(void*)); 3025 void sqlite3Parser(void*, int, Token, Parse*); 3026 #ifdef YYTRACKMAXSTACKDEPTH 3027 int sqlite3ParserStackPeak(void*); 3028 #endif 3029 3030 void sqlite3AutoLoadExtensions(sqlite3*); 3031 #ifndef SQLITE_OMIT_LOAD_EXTENSION 3032 void sqlite3CloseExtensions(sqlite3*); 3033 #else 3034 # define sqlite3CloseExtensions(X) 3035 #endif 3036 3037 #ifndef SQLITE_OMIT_SHARED_CACHE 3038 void sqlite3TableLock(Parse *, int, int, u8, const char *); 3039 #else 3040 #define sqlite3TableLock(v,w,x,y,z) 3041 #endif 3042 3043 #ifdef SQLITE_TEST 3044 int sqlite3Utf8To8(unsigned char*); 3045 #endif 3046 3047 #ifdef SQLITE_OMIT_VIRTUALTABLE 3048 # define sqlite3VtabClear(Y) 3049 # define sqlite3VtabSync(X,Y) SQLITE_OK 3050 # define sqlite3VtabRollback(X) 3051 # define sqlite3VtabCommit(X) 3052 # define sqlite3VtabInSync(db) 0 3053 # define sqlite3VtabLock(X) 3054 # define sqlite3VtabUnlock(X) 3055 # define sqlite3VtabUnlockList(X) 3056 #else 3057 void sqlite3VtabClear(sqlite3 *db, Table*); 3058 int sqlite3VtabSync(sqlite3 *db, char **); 3059 int sqlite3VtabRollback(sqlite3 *db); 3060 int sqlite3VtabCommit(sqlite3 *db); 3061 void sqlite3VtabLock(VTable *); 3062 void sqlite3VtabUnlock(VTable *); 3063 void sqlite3VtabUnlockList(sqlite3*); 3064 # define sqlite3VtabInSync(db) ((db)->nVTrans>0 && (db)->aVTrans==0) 3065 #endif 3066 void sqlite3VtabMakeWritable(Parse*,Table*); 3067 void sqlite3VtabBeginParse(Parse*, Token*, Token*, Token*); 3068 void sqlite3VtabFinishParse(Parse*, Token*); 3069 void sqlite3VtabArgInit(Parse*); 3070 void sqlite3VtabArgExtend(Parse*, Token*); 3071 int sqlite3VtabCallCreate(sqlite3*, int, const char *, char **); 3072 int sqlite3VtabCallConnect(Parse*, Table*); 3073 int sqlite3VtabCallDestroy(sqlite3*, int, const char *); 3074 int sqlite3VtabBegin(sqlite3 *, VTable *); 3075 FuncDef *sqlite3VtabOverloadFunction(sqlite3 *,FuncDef*, int nArg, Expr*); 3076 void sqlite3InvalidFunction(sqlite3_context*,int,sqlite3_value**); 3077 int sqlite3VdbeParameterIndex(Vdbe*, const char*, int); 3078 int sqlite3TransferBindings(sqlite3_stmt *, sqlite3_stmt *); 3079 int sqlite3Reprepare(Vdbe*); 3080 void sqlite3ExprListCheckLength(Parse*, ExprList*, const char*); 3081 CollSeq *sqlite3BinaryCompareCollSeq(Parse *, Expr *, Expr *); 3082 int sqlite3TempInMemory(const sqlite3*); 3083 VTable *sqlite3GetVTable(sqlite3*, Table*); 3084 const char *sqlite3JournalModename(int); 3085 int sqlite3Checkpoint(sqlite3*, int, int, int*, int*); 3086 int sqlite3WalDefaultHook(void*,sqlite3*,const char*,int); 3087 3088 /* Declarations for functions in fkey.c. All of these are replaced by 3089 ** no-op macros if OMIT_FOREIGN_KEY is defined. In this case no foreign 3090 ** key functionality is available. If OMIT_TRIGGER is defined but 3091 ** OMIT_FOREIGN_KEY is not, only some of the functions are no-oped. In 3092 ** this case foreign keys are parsed, but no other functionality is 3093 ** provided (enforcement of FK constraints requires the triggers sub-system). 3094 */ 3095 #if !defined(SQLITE_OMIT_FOREIGN_KEY) && !defined(SQLITE_OMIT_TRIGGER) 3096 void sqlite3FkCheck(Parse*, Table*, int, int); 3097 void sqlite3FkDropTable(Parse*, SrcList *, Table*); 3098 void sqlite3FkActions(Parse*, Table*, ExprList*, int); 3099 int sqlite3FkRequired(Parse*, Table*, int*, int); 3100 u32 sqlite3FkOldmask(Parse*, Table*); 3101 FKey *sqlite3FkReferences(Table *); 3102 #else 3103 #define sqlite3FkActions(a,b,c,d) 3104 #define sqlite3FkCheck(a,b,c,d) 3105 #define sqlite3FkDropTable(a,b,c) 3106 #define sqlite3FkOldmask(a,b) 0 3107 #define sqlite3FkRequired(a,b,c,d) 0 3108 #endif 3109 #ifndef SQLITE_OMIT_FOREIGN_KEY 3110 void sqlite3FkDelete(sqlite3 *, Table*); 3111 #else 3112 #define sqlite3FkDelete(a,b) 3113 #endif 3114 3115 3116 /* 3117 ** Available fault injectors. Should be numbered beginning with 0. 3118 */ 3119 #define SQLITE_FAULTINJECTOR_MALLOC 0 3120 #define SQLITE_FAULTINJECTOR_COUNT 1 3121 3122 /* 3123 ** The interface to the code in fault.c used for identifying "benign" 3124 ** malloc failures. This is only present if SQLITE_OMIT_BUILTIN_TEST 3125 ** is not defined. 3126 */ 3127 #ifndef SQLITE_OMIT_BUILTIN_TEST 3128 void sqlite3BeginBenignMalloc(void); 3129 void sqlite3EndBenignMalloc(void); 3130 #else 3131 #define sqlite3BeginBenignMalloc() 3132 #define sqlite3EndBenignMalloc() 3133 #endif 3134 3135 #define IN_INDEX_ROWID 1 3136 #define IN_INDEX_EPH 2 3137 #define IN_INDEX_INDEX 3 3138 int sqlite3FindInIndex(Parse *, Expr *, int*); 3139 3140 #ifdef SQLITE_ENABLE_ATOMIC_WRITE 3141 int sqlite3JournalOpen(sqlite3_vfs *, const char *, sqlite3_file *, int, int); 3142 int sqlite3JournalSize(sqlite3_vfs *); 3143 int sqlite3JournalCreate(sqlite3_file *); 3144 #else 3145 #define sqlite3JournalSize(pVfs) ((pVfs)->szOsFile) 3146 #endif 3147 3148 void sqlite3MemJournalOpen(sqlite3_file *); 3149 int sqlite3MemJournalSize(void); 3150 int sqlite3IsMemJournal(sqlite3_file *); 3151 3152 #if SQLITE_MAX_EXPR_DEPTH>0 3153 void sqlite3ExprSetHeight(Parse *pParse, Expr *p); 3154 int sqlite3SelectExprHeight(Select *); 3155 int sqlite3ExprCheckHeight(Parse*, int); 3156 #else 3157 #define sqlite3ExprSetHeight(x,y) 3158 #define sqlite3SelectExprHeight(x) 0 3159 #define sqlite3ExprCheckHeight(x,y) 3160 #endif 3161 3162 u32 sqlite3Get4byte(const u8*); 3163 void sqlite3Put4byte(u8*, u32); 3164 3165 #ifdef SQLITE_ENABLE_UNLOCK_NOTIFY 3166 void sqlite3ConnectionBlocked(sqlite3 *, sqlite3 *); 3167 void sqlite3ConnectionUnlocked(sqlite3 *db); 3168 void sqlite3ConnectionClosed(sqlite3 *db); 3169 #else 3170 #define sqlite3ConnectionBlocked(x,y) 3171 #define sqlite3ConnectionUnlocked(x) 3172 #define sqlite3ConnectionClosed(x) 3173 #endif 3174 3175 #ifdef SQLITE_DEBUG 3176 void sqlite3ParserTrace(FILE*, char *); 3177 #endif 3178 3179 /* 3180 ** If the SQLITE_ENABLE IOTRACE exists then the global variable 3181 ** sqlite3IoTrace is a pointer to a printf-like routine used to 3182 ** print I/O tracing messages. 3183 */ 3184 #ifdef SQLITE_ENABLE_IOTRACE 3185 # define IOTRACE(A) if( sqlite3IoTrace ){ sqlite3IoTrace A; } 3186 void sqlite3VdbeIOTraceSql(Vdbe*); 3187 SQLITE_EXTERN void (*sqlite3IoTrace)(const char*,...); 3188 #else 3189 # define IOTRACE(A) 3190 # define sqlite3VdbeIOTraceSql(X) 3191 #endif 3192 3193 /* 3194 ** These routines are available for the mem2.c debugging memory allocator 3195 ** only. They are used to verify that different "types" of memory 3196 ** allocations are properly tracked by the system. 3197 ** 3198 ** sqlite3MemdebugSetType() sets the "type" of an allocation to one of 3199 ** the MEMTYPE_* macros defined below. The type must be a bitmask with 3200 ** a single bit set. 3201 ** 3202 ** sqlite3MemdebugHasType() returns true if any of the bits in its second 3203 ** argument match the type set by the previous sqlite3MemdebugSetType(). 3204 ** sqlite3MemdebugHasType() is intended for use inside assert() statements. 3205 ** 3206 ** sqlite3MemdebugNoType() returns true if none of the bits in its second 3207 ** argument match the type set by the previous sqlite3MemdebugSetType(). 3208 ** 3209 ** Perhaps the most important point is the difference between MEMTYPE_HEAP 3210 ** and MEMTYPE_LOOKASIDE. If an allocation is MEMTYPE_LOOKASIDE, that means 3211 ** it might have been allocated by lookaside, except the allocation was 3212 ** too large or lookaside was already full. It is important to verify 3213 ** that allocations that might have been satisfied by lookaside are not 3214 ** passed back to non-lookaside free() routines. Asserts such as the 3215 ** example above are placed on the non-lookaside free() routines to verify 3216 ** this constraint. 3217 ** 3218 ** All of this is no-op for a production build. It only comes into 3219 ** play when the SQLITE_MEMDEBUG compile-time option is used. 3220 */ 3221 #ifdef SQLITE_MEMDEBUG 3222 void sqlite3MemdebugSetType(void*,u8); 3223 int sqlite3MemdebugHasType(void*,u8); 3224 int sqlite3MemdebugNoType(void*,u8); 3225 #else 3226 # define sqlite3MemdebugSetType(X,Y) /* no-op */ 3227 # define sqlite3MemdebugHasType(X,Y) 1 3228 # define sqlite3MemdebugNoType(X,Y) 1 3229 #endif 3230 #define MEMTYPE_HEAP 0x01 /* General heap allocations */ 3231 #define MEMTYPE_LOOKASIDE 0x02 /* Might have been lookaside memory */ 3232 #define MEMTYPE_SCRATCH 0x04 /* Scratch allocations */ 3233 #define MEMTYPE_PCACHE 0x08 /* Page cache allocations */ 3234 #define MEMTYPE_DB 0x10 /* Uses sqlite3DbMalloc, not sqlite_malloc */ 3235 3236 #endif /* _SQLITEINT_H_ */ 3237