• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===--- CGClass.cpp - Emit LLVM Code for C++ classes ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code dealing with C++ code generation of classes
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CGBlocks.h"
15 #include "CGCXXABI.h"
16 #include "CGDebugInfo.h"
17 #include "CGRecordLayout.h"
18 #include "CodeGenFunction.h"
19 #include "clang/AST/CXXInheritance.h"
20 #include "clang/AST/DeclTemplate.h"
21 #include "clang/AST/EvaluatedExprVisitor.h"
22 #include "clang/AST/RecordLayout.h"
23 #include "clang/AST/StmtCXX.h"
24 #include "clang/Basic/TargetBuiltins.h"
25 #include "clang/CodeGen/CGFunctionInfo.h"
26 #include "clang/Frontend/CodeGenOptions.h"
27 
28 using namespace clang;
29 using namespace CodeGen;
30 
31 static CharUnits
ComputeNonVirtualBaseClassOffset(ASTContext & Context,const CXXRecordDecl * DerivedClass,CastExpr::path_const_iterator Start,CastExpr::path_const_iterator End)32 ComputeNonVirtualBaseClassOffset(ASTContext &Context,
33                                  const CXXRecordDecl *DerivedClass,
34                                  CastExpr::path_const_iterator Start,
35                                  CastExpr::path_const_iterator End) {
36   CharUnits Offset = CharUnits::Zero();
37 
38   const CXXRecordDecl *RD = DerivedClass;
39 
40   for (CastExpr::path_const_iterator I = Start; I != End; ++I) {
41     const CXXBaseSpecifier *Base = *I;
42     assert(!Base->isVirtual() && "Should not see virtual bases here!");
43 
44     // Get the layout.
45     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
46 
47     const CXXRecordDecl *BaseDecl =
48       cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
49 
50     // Add the offset.
51     Offset += Layout.getBaseClassOffset(BaseDecl);
52 
53     RD = BaseDecl;
54   }
55 
56   return Offset;
57 }
58 
59 llvm::Constant *
GetNonVirtualBaseClassOffset(const CXXRecordDecl * ClassDecl,CastExpr::path_const_iterator PathBegin,CastExpr::path_const_iterator PathEnd)60 CodeGenModule::GetNonVirtualBaseClassOffset(const CXXRecordDecl *ClassDecl,
61                                    CastExpr::path_const_iterator PathBegin,
62                                    CastExpr::path_const_iterator PathEnd) {
63   assert(PathBegin != PathEnd && "Base path should not be empty!");
64 
65   CharUnits Offset =
66     ComputeNonVirtualBaseClassOffset(getContext(), ClassDecl,
67                                      PathBegin, PathEnd);
68   if (Offset.isZero())
69     return nullptr;
70 
71   llvm::Type *PtrDiffTy =
72   Types.ConvertType(getContext().getPointerDiffType());
73 
74   return llvm::ConstantInt::get(PtrDiffTy, Offset.getQuantity());
75 }
76 
77 /// Gets the address of a direct base class within a complete object.
78 /// This should only be used for (1) non-virtual bases or (2) virtual bases
79 /// when the type is known to be complete (e.g. in complete destructors).
80 ///
81 /// The object pointed to by 'This' is assumed to be non-null.
82 llvm::Value *
GetAddressOfDirectBaseInCompleteClass(llvm::Value * This,const CXXRecordDecl * Derived,const CXXRecordDecl * Base,bool BaseIsVirtual)83 CodeGenFunction::GetAddressOfDirectBaseInCompleteClass(llvm::Value *This,
84                                                    const CXXRecordDecl *Derived,
85                                                    const CXXRecordDecl *Base,
86                                                    bool BaseIsVirtual) {
87   // 'this' must be a pointer (in some address space) to Derived.
88   assert(This->getType()->isPointerTy() &&
89          cast<llvm::PointerType>(This->getType())->getElementType()
90            == ConvertType(Derived));
91 
92   // Compute the offset of the virtual base.
93   CharUnits Offset;
94   const ASTRecordLayout &Layout = getContext().getASTRecordLayout(Derived);
95   if (BaseIsVirtual)
96     Offset = Layout.getVBaseClassOffset(Base);
97   else
98     Offset = Layout.getBaseClassOffset(Base);
99 
100   // Shift and cast down to the base type.
101   // TODO: for complete types, this should be possible with a GEP.
102   llvm::Value *V = This;
103   if (Offset.isPositive()) {
104     V = Builder.CreateBitCast(V, Int8PtrTy);
105     V = Builder.CreateConstInBoundsGEP1_64(V, Offset.getQuantity());
106   }
107   V = Builder.CreateBitCast(V, ConvertType(Base)->getPointerTo());
108 
109   return V;
110 }
111 
112 static llvm::Value *
ApplyNonVirtualAndVirtualOffset(CodeGenFunction & CGF,llvm::Value * ptr,CharUnits nonVirtualOffset,llvm::Value * virtualOffset)113 ApplyNonVirtualAndVirtualOffset(CodeGenFunction &CGF, llvm::Value *ptr,
114                                 CharUnits nonVirtualOffset,
115                                 llvm::Value *virtualOffset) {
116   // Assert that we have something to do.
117   assert(!nonVirtualOffset.isZero() || virtualOffset != nullptr);
118 
119   // Compute the offset from the static and dynamic components.
120   llvm::Value *baseOffset;
121   if (!nonVirtualOffset.isZero()) {
122     baseOffset = llvm::ConstantInt::get(CGF.PtrDiffTy,
123                                         nonVirtualOffset.getQuantity());
124     if (virtualOffset) {
125       baseOffset = CGF.Builder.CreateAdd(virtualOffset, baseOffset);
126     }
127   } else {
128     baseOffset = virtualOffset;
129   }
130 
131   // Apply the base offset.
132   ptr = CGF.Builder.CreateBitCast(ptr, CGF.Int8PtrTy);
133   ptr = CGF.Builder.CreateInBoundsGEP(ptr, baseOffset, "add.ptr");
134   return ptr;
135 }
136 
137 llvm::Value *
GetAddressOfBaseClass(llvm::Value * Value,const CXXRecordDecl * Derived,CastExpr::path_const_iterator PathBegin,CastExpr::path_const_iterator PathEnd,bool NullCheckValue)138 CodeGenFunction::GetAddressOfBaseClass(llvm::Value *Value,
139                                        const CXXRecordDecl *Derived,
140                                        CastExpr::path_const_iterator PathBegin,
141                                        CastExpr::path_const_iterator PathEnd,
142                                        bool NullCheckValue) {
143   assert(PathBegin != PathEnd && "Base path should not be empty!");
144 
145   CastExpr::path_const_iterator Start = PathBegin;
146   const CXXRecordDecl *VBase = nullptr;
147 
148   // Sema has done some convenient canonicalization here: if the
149   // access path involved any virtual steps, the conversion path will
150   // *start* with a step down to the correct virtual base subobject,
151   // and hence will not require any further steps.
152   if ((*Start)->isVirtual()) {
153     VBase =
154       cast<CXXRecordDecl>((*Start)->getType()->getAs<RecordType>()->getDecl());
155     ++Start;
156   }
157 
158   // Compute the static offset of the ultimate destination within its
159   // allocating subobject (the virtual base, if there is one, or else
160   // the "complete" object that we see).
161   CharUnits NonVirtualOffset =
162     ComputeNonVirtualBaseClassOffset(getContext(), VBase ? VBase : Derived,
163                                      Start, PathEnd);
164 
165   // If there's a virtual step, we can sometimes "devirtualize" it.
166   // For now, that's limited to when the derived type is final.
167   // TODO: "devirtualize" this for accesses to known-complete objects.
168   if (VBase && Derived->hasAttr<FinalAttr>()) {
169     const ASTRecordLayout &layout = getContext().getASTRecordLayout(Derived);
170     CharUnits vBaseOffset = layout.getVBaseClassOffset(VBase);
171     NonVirtualOffset += vBaseOffset;
172     VBase = nullptr; // we no longer have a virtual step
173   }
174 
175   // Get the base pointer type.
176   llvm::Type *BasePtrTy =
177     ConvertType((PathEnd[-1])->getType())->getPointerTo();
178 
179   // If the static offset is zero and we don't have a virtual step,
180   // just do a bitcast; null checks are unnecessary.
181   if (NonVirtualOffset.isZero() && !VBase) {
182     return Builder.CreateBitCast(Value, BasePtrTy);
183   }
184 
185   llvm::BasicBlock *origBB = nullptr;
186   llvm::BasicBlock *endBB = nullptr;
187 
188   // Skip over the offset (and the vtable load) if we're supposed to
189   // null-check the pointer.
190   if (NullCheckValue) {
191     origBB = Builder.GetInsertBlock();
192     llvm::BasicBlock *notNullBB = createBasicBlock("cast.notnull");
193     endBB = createBasicBlock("cast.end");
194 
195     llvm::Value *isNull = Builder.CreateIsNull(Value);
196     Builder.CreateCondBr(isNull, endBB, notNullBB);
197     EmitBlock(notNullBB);
198   }
199 
200   // Compute the virtual offset.
201   llvm::Value *VirtualOffset = nullptr;
202   if (VBase) {
203     VirtualOffset =
204       CGM.getCXXABI().GetVirtualBaseClassOffset(*this, Value, Derived, VBase);
205   }
206 
207   // Apply both offsets.
208   Value = ApplyNonVirtualAndVirtualOffset(*this, Value,
209                                           NonVirtualOffset,
210                                           VirtualOffset);
211 
212   // Cast to the destination type.
213   Value = Builder.CreateBitCast(Value, BasePtrTy);
214 
215   // Build a phi if we needed a null check.
216   if (NullCheckValue) {
217     llvm::BasicBlock *notNullBB = Builder.GetInsertBlock();
218     Builder.CreateBr(endBB);
219     EmitBlock(endBB);
220 
221     llvm::PHINode *PHI = Builder.CreatePHI(BasePtrTy, 2, "cast.result");
222     PHI->addIncoming(Value, notNullBB);
223     PHI->addIncoming(llvm::Constant::getNullValue(BasePtrTy), origBB);
224     Value = PHI;
225   }
226 
227   return Value;
228 }
229 
230 llvm::Value *
GetAddressOfDerivedClass(llvm::Value * Value,const CXXRecordDecl * Derived,CastExpr::path_const_iterator PathBegin,CastExpr::path_const_iterator PathEnd,bool NullCheckValue)231 CodeGenFunction::GetAddressOfDerivedClass(llvm::Value *Value,
232                                           const CXXRecordDecl *Derived,
233                                         CastExpr::path_const_iterator PathBegin,
234                                           CastExpr::path_const_iterator PathEnd,
235                                           bool NullCheckValue) {
236   assert(PathBegin != PathEnd && "Base path should not be empty!");
237 
238   QualType DerivedTy =
239     getContext().getCanonicalType(getContext().getTagDeclType(Derived));
240   llvm::Type *DerivedPtrTy = ConvertType(DerivedTy)->getPointerTo();
241 
242   llvm::Value *NonVirtualOffset =
243     CGM.GetNonVirtualBaseClassOffset(Derived, PathBegin, PathEnd);
244 
245   if (!NonVirtualOffset) {
246     // No offset, we can just cast back.
247     return Builder.CreateBitCast(Value, DerivedPtrTy);
248   }
249 
250   llvm::BasicBlock *CastNull = nullptr;
251   llvm::BasicBlock *CastNotNull = nullptr;
252   llvm::BasicBlock *CastEnd = nullptr;
253 
254   if (NullCheckValue) {
255     CastNull = createBasicBlock("cast.null");
256     CastNotNull = createBasicBlock("cast.notnull");
257     CastEnd = createBasicBlock("cast.end");
258 
259     llvm::Value *IsNull = Builder.CreateIsNull(Value);
260     Builder.CreateCondBr(IsNull, CastNull, CastNotNull);
261     EmitBlock(CastNotNull);
262   }
263 
264   // Apply the offset.
265   Value = Builder.CreateBitCast(Value, Int8PtrTy);
266   Value = Builder.CreateGEP(Value, Builder.CreateNeg(NonVirtualOffset),
267                             "sub.ptr");
268 
269   // Just cast.
270   Value = Builder.CreateBitCast(Value, DerivedPtrTy);
271 
272   if (NullCheckValue) {
273     Builder.CreateBr(CastEnd);
274     EmitBlock(CastNull);
275     Builder.CreateBr(CastEnd);
276     EmitBlock(CastEnd);
277 
278     llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2);
279     PHI->addIncoming(Value, CastNotNull);
280     PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()),
281                      CastNull);
282     Value = PHI;
283   }
284 
285   return Value;
286 }
287 
GetVTTParameter(GlobalDecl GD,bool ForVirtualBase,bool Delegating)288 llvm::Value *CodeGenFunction::GetVTTParameter(GlobalDecl GD,
289                                               bool ForVirtualBase,
290                                               bool Delegating) {
291   if (!CGM.getCXXABI().NeedsVTTParameter(GD)) {
292     // This constructor/destructor does not need a VTT parameter.
293     return nullptr;
294   }
295 
296   const CXXRecordDecl *RD = cast<CXXMethodDecl>(CurCodeDecl)->getParent();
297   const CXXRecordDecl *Base = cast<CXXMethodDecl>(GD.getDecl())->getParent();
298 
299   llvm::Value *VTT;
300 
301   uint64_t SubVTTIndex;
302 
303   if (Delegating) {
304     // If this is a delegating constructor call, just load the VTT.
305     return LoadCXXVTT();
306   } else if (RD == Base) {
307     // If the record matches the base, this is the complete ctor/dtor
308     // variant calling the base variant in a class with virtual bases.
309     assert(!CGM.getCXXABI().NeedsVTTParameter(CurGD) &&
310            "doing no-op VTT offset in base dtor/ctor?");
311     assert(!ForVirtualBase && "Can't have same class as virtual base!");
312     SubVTTIndex = 0;
313   } else {
314     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
315     CharUnits BaseOffset = ForVirtualBase ?
316       Layout.getVBaseClassOffset(Base) :
317       Layout.getBaseClassOffset(Base);
318 
319     SubVTTIndex =
320       CGM.getVTables().getSubVTTIndex(RD, BaseSubobject(Base, BaseOffset));
321     assert(SubVTTIndex != 0 && "Sub-VTT index must be greater than zero!");
322   }
323 
324   if (CGM.getCXXABI().NeedsVTTParameter(CurGD)) {
325     // A VTT parameter was passed to the constructor, use it.
326     VTT = LoadCXXVTT();
327     VTT = Builder.CreateConstInBoundsGEP1_64(VTT, SubVTTIndex);
328   } else {
329     // We're the complete constructor, so get the VTT by name.
330     VTT = CGM.getVTables().GetAddrOfVTT(RD);
331     VTT = Builder.CreateConstInBoundsGEP2_64(VTT, 0, SubVTTIndex);
332   }
333 
334   return VTT;
335 }
336 
337 namespace {
338   /// Call the destructor for a direct base class.
339   struct CallBaseDtor : EHScopeStack::Cleanup {
340     const CXXRecordDecl *BaseClass;
341     bool BaseIsVirtual;
CallBaseDtor__anon7aa462240111::CallBaseDtor342     CallBaseDtor(const CXXRecordDecl *Base, bool BaseIsVirtual)
343       : BaseClass(Base), BaseIsVirtual(BaseIsVirtual) {}
344 
Emit__anon7aa462240111::CallBaseDtor345     void Emit(CodeGenFunction &CGF, Flags flags) override {
346       const CXXRecordDecl *DerivedClass =
347         cast<CXXMethodDecl>(CGF.CurCodeDecl)->getParent();
348 
349       const CXXDestructorDecl *D = BaseClass->getDestructor();
350       llvm::Value *Addr =
351         CGF.GetAddressOfDirectBaseInCompleteClass(CGF.LoadCXXThis(),
352                                                   DerivedClass, BaseClass,
353                                                   BaseIsVirtual);
354       CGF.EmitCXXDestructorCall(D, Dtor_Base, BaseIsVirtual,
355                                 /*Delegating=*/false, Addr);
356     }
357   };
358 
359   /// A visitor which checks whether an initializer uses 'this' in a
360   /// way which requires the vtable to be properly set.
361   struct DynamicThisUseChecker : EvaluatedExprVisitor<DynamicThisUseChecker> {
362     typedef EvaluatedExprVisitor<DynamicThisUseChecker> super;
363 
364     bool UsesThis;
365 
DynamicThisUseChecker__anon7aa462240111::DynamicThisUseChecker366     DynamicThisUseChecker(ASTContext &C) : super(C), UsesThis(false) {}
367 
368     // Black-list all explicit and implicit references to 'this'.
369     //
370     // Do we need to worry about external references to 'this' derived
371     // from arbitrary code?  If so, then anything which runs arbitrary
372     // external code might potentially access the vtable.
VisitCXXThisExpr__anon7aa462240111::DynamicThisUseChecker373     void VisitCXXThisExpr(CXXThisExpr *E) { UsesThis = true; }
374   };
375 }
376 
BaseInitializerUsesThis(ASTContext & C,const Expr * Init)377 static bool BaseInitializerUsesThis(ASTContext &C, const Expr *Init) {
378   DynamicThisUseChecker Checker(C);
379   Checker.Visit(const_cast<Expr*>(Init));
380   return Checker.UsesThis;
381 }
382 
EmitBaseInitializer(CodeGenFunction & CGF,const CXXRecordDecl * ClassDecl,CXXCtorInitializer * BaseInit,CXXCtorType CtorType)383 static void EmitBaseInitializer(CodeGenFunction &CGF,
384                                 const CXXRecordDecl *ClassDecl,
385                                 CXXCtorInitializer *BaseInit,
386                                 CXXCtorType CtorType) {
387   assert(BaseInit->isBaseInitializer() &&
388          "Must have base initializer!");
389 
390   llvm::Value *ThisPtr = CGF.LoadCXXThis();
391 
392   const Type *BaseType = BaseInit->getBaseClass();
393   CXXRecordDecl *BaseClassDecl =
394     cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl());
395 
396   bool isBaseVirtual = BaseInit->isBaseVirtual();
397 
398   // The base constructor doesn't construct virtual bases.
399   if (CtorType == Ctor_Base && isBaseVirtual)
400     return;
401 
402   // If the initializer for the base (other than the constructor
403   // itself) accesses 'this' in any way, we need to initialize the
404   // vtables.
405   if (BaseInitializerUsesThis(CGF.getContext(), BaseInit->getInit()))
406     CGF.InitializeVTablePointers(ClassDecl);
407 
408   // We can pretend to be a complete class because it only matters for
409   // virtual bases, and we only do virtual bases for complete ctors.
410   llvm::Value *V =
411     CGF.GetAddressOfDirectBaseInCompleteClass(ThisPtr, ClassDecl,
412                                               BaseClassDecl,
413                                               isBaseVirtual);
414   CharUnits Alignment = CGF.getContext().getTypeAlignInChars(BaseType);
415   AggValueSlot AggSlot =
416     AggValueSlot::forAddr(V, Alignment, Qualifiers(),
417                           AggValueSlot::IsDestructed,
418                           AggValueSlot::DoesNotNeedGCBarriers,
419                           AggValueSlot::IsNotAliased);
420 
421   CGF.EmitAggExpr(BaseInit->getInit(), AggSlot);
422 
423   if (CGF.CGM.getLangOpts().Exceptions &&
424       !BaseClassDecl->hasTrivialDestructor())
425     CGF.EHStack.pushCleanup<CallBaseDtor>(EHCleanup, BaseClassDecl,
426                                           isBaseVirtual);
427 }
428 
EmitAggMemberInitializer(CodeGenFunction & CGF,LValue LHS,Expr * Init,llvm::Value * ArrayIndexVar,QualType T,ArrayRef<VarDecl * > ArrayIndexes,unsigned Index)429 static void EmitAggMemberInitializer(CodeGenFunction &CGF,
430                                      LValue LHS,
431                                      Expr *Init,
432                                      llvm::Value *ArrayIndexVar,
433                                      QualType T,
434                                      ArrayRef<VarDecl *> ArrayIndexes,
435                                      unsigned Index) {
436   if (Index == ArrayIndexes.size()) {
437     LValue LV = LHS;
438 
439     if (ArrayIndexVar) {
440       // If we have an array index variable, load it and use it as an offset.
441       // Then, increment the value.
442       llvm::Value *Dest = LHS.getAddress();
443       llvm::Value *ArrayIndex = CGF.Builder.CreateLoad(ArrayIndexVar);
444       Dest = CGF.Builder.CreateInBoundsGEP(Dest, ArrayIndex, "destaddress");
445       llvm::Value *Next = llvm::ConstantInt::get(ArrayIndex->getType(), 1);
446       Next = CGF.Builder.CreateAdd(ArrayIndex, Next, "inc");
447       CGF.Builder.CreateStore(Next, ArrayIndexVar);
448 
449       // Update the LValue.
450       LV.setAddress(Dest);
451       CharUnits Align = CGF.getContext().getTypeAlignInChars(T);
452       LV.setAlignment(std::min(Align, LV.getAlignment()));
453     }
454 
455     switch (CGF.getEvaluationKind(T)) {
456     case TEK_Scalar:
457       CGF.EmitScalarInit(Init, /*decl*/ nullptr, LV, false);
458       break;
459     case TEK_Complex:
460       CGF.EmitComplexExprIntoLValue(Init, LV, /*isInit*/ true);
461       break;
462     case TEK_Aggregate: {
463       AggValueSlot Slot =
464         AggValueSlot::forLValue(LV,
465                                 AggValueSlot::IsDestructed,
466                                 AggValueSlot::DoesNotNeedGCBarriers,
467                                 AggValueSlot::IsNotAliased);
468 
469       CGF.EmitAggExpr(Init, Slot);
470       break;
471     }
472     }
473 
474     return;
475   }
476 
477   const ConstantArrayType *Array = CGF.getContext().getAsConstantArrayType(T);
478   assert(Array && "Array initialization without the array type?");
479   llvm::Value *IndexVar
480     = CGF.GetAddrOfLocalVar(ArrayIndexes[Index]);
481   assert(IndexVar && "Array index variable not loaded");
482 
483   // Initialize this index variable to zero.
484   llvm::Value* Zero
485     = llvm::Constant::getNullValue(
486                               CGF.ConvertType(CGF.getContext().getSizeType()));
487   CGF.Builder.CreateStore(Zero, IndexVar);
488 
489   // Start the loop with a block that tests the condition.
490   llvm::BasicBlock *CondBlock = CGF.createBasicBlock("for.cond");
491   llvm::BasicBlock *AfterFor = CGF.createBasicBlock("for.end");
492 
493   CGF.EmitBlock(CondBlock);
494 
495   llvm::BasicBlock *ForBody = CGF.createBasicBlock("for.body");
496   // Generate: if (loop-index < number-of-elements) fall to the loop body,
497   // otherwise, go to the block after the for-loop.
498   uint64_t NumElements = Array->getSize().getZExtValue();
499   llvm::Value *Counter = CGF.Builder.CreateLoad(IndexVar);
500   llvm::Value *NumElementsPtr =
501     llvm::ConstantInt::get(Counter->getType(), NumElements);
502   llvm::Value *IsLess = CGF.Builder.CreateICmpULT(Counter, NumElementsPtr,
503                                                   "isless");
504 
505   // If the condition is true, execute the body.
506   CGF.Builder.CreateCondBr(IsLess, ForBody, AfterFor);
507 
508   CGF.EmitBlock(ForBody);
509   llvm::BasicBlock *ContinueBlock = CGF.createBasicBlock("for.inc");
510 
511   // Inside the loop body recurse to emit the inner loop or, eventually, the
512   // constructor call.
513   EmitAggMemberInitializer(CGF, LHS, Init, ArrayIndexVar,
514                            Array->getElementType(), ArrayIndexes, Index + 1);
515 
516   CGF.EmitBlock(ContinueBlock);
517 
518   // Emit the increment of the loop counter.
519   llvm::Value *NextVal = llvm::ConstantInt::get(Counter->getType(), 1);
520   Counter = CGF.Builder.CreateLoad(IndexVar);
521   NextVal = CGF.Builder.CreateAdd(Counter, NextVal, "inc");
522   CGF.Builder.CreateStore(NextVal, IndexVar);
523 
524   // Finally, branch back up to the condition for the next iteration.
525   CGF.EmitBranch(CondBlock);
526 
527   // Emit the fall-through block.
528   CGF.EmitBlock(AfterFor, true);
529 }
530 
EmitMemberInitializer(CodeGenFunction & CGF,const CXXRecordDecl * ClassDecl,CXXCtorInitializer * MemberInit,const CXXConstructorDecl * Constructor,FunctionArgList & Args)531 static void EmitMemberInitializer(CodeGenFunction &CGF,
532                                   const CXXRecordDecl *ClassDecl,
533                                   CXXCtorInitializer *MemberInit,
534                                   const CXXConstructorDecl *Constructor,
535                                   FunctionArgList &Args) {
536   assert(MemberInit->isAnyMemberInitializer() &&
537          "Must have member initializer!");
538   assert(MemberInit->getInit() && "Must have initializer!");
539 
540   // non-static data member initializers.
541   FieldDecl *Field = MemberInit->getAnyMember();
542   QualType FieldType = Field->getType();
543 
544   llvm::Value *ThisPtr = CGF.LoadCXXThis();
545   QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl);
546   LValue LHS = CGF.MakeNaturalAlignAddrLValue(ThisPtr, RecordTy);
547 
548   if (MemberInit->isIndirectMemberInitializer()) {
549     // If we are initializing an anonymous union field, drill down to
550     // the field.
551     IndirectFieldDecl *IndirectField = MemberInit->getIndirectMember();
552     for (const auto *I : IndirectField->chain())
553       LHS = CGF.EmitLValueForFieldInitialization(LHS, cast<FieldDecl>(I));
554     FieldType = MemberInit->getIndirectMember()->getAnonField()->getType();
555   } else {
556     LHS = CGF.EmitLValueForFieldInitialization(LHS, Field);
557   }
558 
559   // Special case: if we are in a copy or move constructor, and we are copying
560   // an array of PODs or classes with trivial copy constructors, ignore the
561   // AST and perform the copy we know is equivalent.
562   // FIXME: This is hacky at best... if we had a bit more explicit information
563   // in the AST, we could generalize it more easily.
564   const ConstantArrayType *Array
565     = CGF.getContext().getAsConstantArrayType(FieldType);
566   if (Array && Constructor->isDefaulted() &&
567       Constructor->isCopyOrMoveConstructor()) {
568     QualType BaseElementTy = CGF.getContext().getBaseElementType(Array);
569     CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(MemberInit->getInit());
570     if (BaseElementTy.isPODType(CGF.getContext()) ||
571         (CE && CE->getConstructor()->isTrivial())) {
572       // Find the source pointer. We know it's the last argument because
573       // we know we're in an implicit copy constructor.
574       unsigned SrcArgIndex = Args.size() - 1;
575       llvm::Value *SrcPtr
576         = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(Args[SrcArgIndex]));
577       LValue ThisRHSLV = CGF.MakeNaturalAlignAddrLValue(SrcPtr, RecordTy);
578       LValue Src = CGF.EmitLValueForFieldInitialization(ThisRHSLV, Field);
579 
580       // Copy the aggregate.
581       CGF.EmitAggregateCopy(LHS.getAddress(), Src.getAddress(), FieldType,
582                             LHS.isVolatileQualified());
583       return;
584     }
585   }
586 
587   ArrayRef<VarDecl *> ArrayIndexes;
588   if (MemberInit->getNumArrayIndices())
589     ArrayIndexes = MemberInit->getArrayIndexes();
590   CGF.EmitInitializerForField(Field, LHS, MemberInit->getInit(), ArrayIndexes);
591 }
592 
EmitInitializerForField(FieldDecl * Field,LValue LHS,Expr * Init,ArrayRef<VarDecl * > ArrayIndexes)593 void CodeGenFunction::EmitInitializerForField(FieldDecl *Field,
594                                               LValue LHS, Expr *Init,
595                                              ArrayRef<VarDecl *> ArrayIndexes) {
596   QualType FieldType = Field->getType();
597   switch (getEvaluationKind(FieldType)) {
598   case TEK_Scalar:
599     if (LHS.isSimple()) {
600       EmitExprAsInit(Init, Field, LHS, false);
601     } else {
602       RValue RHS = RValue::get(EmitScalarExpr(Init));
603       EmitStoreThroughLValue(RHS, LHS);
604     }
605     break;
606   case TEK_Complex:
607     EmitComplexExprIntoLValue(Init, LHS, /*isInit*/ true);
608     break;
609   case TEK_Aggregate: {
610     llvm::Value *ArrayIndexVar = nullptr;
611     if (ArrayIndexes.size()) {
612       llvm::Type *SizeTy = ConvertType(getContext().getSizeType());
613 
614       // The LHS is a pointer to the first object we'll be constructing, as
615       // a flat array.
616       QualType BaseElementTy = getContext().getBaseElementType(FieldType);
617       llvm::Type *BasePtr = ConvertType(BaseElementTy);
618       BasePtr = llvm::PointerType::getUnqual(BasePtr);
619       llvm::Value *BaseAddrPtr = Builder.CreateBitCast(LHS.getAddress(),
620                                                        BasePtr);
621       LHS = MakeAddrLValue(BaseAddrPtr, BaseElementTy);
622 
623       // Create an array index that will be used to walk over all of the
624       // objects we're constructing.
625       ArrayIndexVar = CreateTempAlloca(SizeTy, "object.index");
626       llvm::Value *Zero = llvm::Constant::getNullValue(SizeTy);
627       Builder.CreateStore(Zero, ArrayIndexVar);
628 
629 
630       // Emit the block variables for the array indices, if any.
631       for (unsigned I = 0, N = ArrayIndexes.size(); I != N; ++I)
632         EmitAutoVarDecl(*ArrayIndexes[I]);
633     }
634 
635     EmitAggMemberInitializer(*this, LHS, Init, ArrayIndexVar, FieldType,
636                              ArrayIndexes, 0);
637   }
638   }
639 
640   // Ensure that we destroy this object if an exception is thrown
641   // later in the constructor.
642   QualType::DestructionKind dtorKind = FieldType.isDestructedType();
643   if (needsEHCleanup(dtorKind))
644     pushEHDestroy(dtorKind, LHS.getAddress(), FieldType);
645 }
646 
647 /// Checks whether the given constructor is a valid subject for the
648 /// complete-to-base constructor delegation optimization, i.e.
649 /// emitting the complete constructor as a simple call to the base
650 /// constructor.
IsConstructorDelegationValid(const CXXConstructorDecl * Ctor)651 static bool IsConstructorDelegationValid(const CXXConstructorDecl *Ctor) {
652 
653   // Currently we disable the optimization for classes with virtual
654   // bases because (1) the addresses of parameter variables need to be
655   // consistent across all initializers but (2) the delegate function
656   // call necessarily creates a second copy of the parameter variable.
657   //
658   // The limiting example (purely theoretical AFAIK):
659   //   struct A { A(int &c) { c++; } };
660   //   struct B : virtual A {
661   //     B(int count) : A(count) { printf("%d\n", count); }
662   //   };
663   // ...although even this example could in principle be emitted as a
664   // delegation since the address of the parameter doesn't escape.
665   if (Ctor->getParent()->getNumVBases()) {
666     // TODO: white-list trivial vbase initializers.  This case wouldn't
667     // be subject to the restrictions below.
668 
669     // TODO: white-list cases where:
670     //  - there are no non-reference parameters to the constructor
671     //  - the initializers don't access any non-reference parameters
672     //  - the initializers don't take the address of non-reference
673     //    parameters
674     //  - etc.
675     // If we ever add any of the above cases, remember that:
676     //  - function-try-blocks will always blacklist this optimization
677     //  - we need to perform the constructor prologue and cleanup in
678     //    EmitConstructorBody.
679 
680     return false;
681   }
682 
683   // We also disable the optimization for variadic functions because
684   // it's impossible to "re-pass" varargs.
685   if (Ctor->getType()->getAs<FunctionProtoType>()->isVariadic())
686     return false;
687 
688   // FIXME: Decide if we can do a delegation of a delegating constructor.
689   if (Ctor->isDelegatingConstructor())
690     return false;
691 
692   return true;
693 }
694 
695 /// EmitConstructorBody - Emits the body of the current constructor.
EmitConstructorBody(FunctionArgList & Args)696 void CodeGenFunction::EmitConstructorBody(FunctionArgList &Args) {
697   const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(CurGD.getDecl());
698   CXXCtorType CtorType = CurGD.getCtorType();
699 
700   assert((CGM.getTarget().getCXXABI().hasConstructorVariants() ||
701           CtorType == Ctor_Complete) &&
702          "can only generate complete ctor for this ABI");
703 
704   // Before we go any further, try the complete->base constructor
705   // delegation optimization.
706   if (CtorType == Ctor_Complete && IsConstructorDelegationValid(Ctor) &&
707       CGM.getTarget().getCXXABI().hasConstructorVariants()) {
708     if (CGDebugInfo *DI = getDebugInfo())
709       DI->EmitLocation(Builder, Ctor->getLocEnd());
710     EmitDelegateCXXConstructorCall(Ctor, Ctor_Base, Args, Ctor->getLocEnd());
711     return;
712   }
713 
714   Stmt *Body = Ctor->getBody();
715 
716   // Enter the function-try-block before the constructor prologue if
717   // applicable.
718   bool IsTryBody = (Body && isa<CXXTryStmt>(Body));
719   if (IsTryBody)
720     EnterCXXTryStmt(*cast<CXXTryStmt>(Body), true);
721 
722   RegionCounter Cnt = getPGORegionCounter(Body);
723   Cnt.beginRegion(Builder);
724 
725   RunCleanupsScope RunCleanups(*this);
726 
727   // TODO: in restricted cases, we can emit the vbase initializers of
728   // a complete ctor and then delegate to the base ctor.
729 
730   // Emit the constructor prologue, i.e. the base and member
731   // initializers.
732   EmitCtorPrologue(Ctor, CtorType, Args);
733 
734   // Emit the body of the statement.
735   if (IsTryBody)
736     EmitStmt(cast<CXXTryStmt>(Body)->getTryBlock());
737   else if (Body)
738     EmitStmt(Body);
739 
740   // Emit any cleanup blocks associated with the member or base
741   // initializers, which includes (along the exceptional path) the
742   // destructors for those members and bases that were fully
743   // constructed.
744   RunCleanups.ForceCleanup();
745 
746   if (IsTryBody)
747     ExitCXXTryStmt(*cast<CXXTryStmt>(Body), true);
748 }
749 
750 namespace {
751   /// RAII object to indicate that codegen is copying the value representation
752   /// instead of the object representation. Useful when copying a struct or
753   /// class which has uninitialized members and we're only performing
754   /// lvalue-to-rvalue conversion on the object but not its members.
755   class CopyingValueRepresentation {
756   public:
CopyingValueRepresentation(CodeGenFunction & CGF)757     explicit CopyingValueRepresentation(CodeGenFunction &CGF)
758         : CGF(CGF), SO(*CGF.SanOpts), OldSanOpts(CGF.SanOpts) {
759       SO.Bool = false;
760       SO.Enum = false;
761       CGF.SanOpts = &SO;
762     }
~CopyingValueRepresentation()763     ~CopyingValueRepresentation() {
764       CGF.SanOpts = OldSanOpts;
765     }
766   private:
767     CodeGenFunction &CGF;
768     SanitizerOptions SO;
769     const SanitizerOptions *OldSanOpts;
770   };
771 }
772 
773 namespace {
774   class FieldMemcpyizer {
775   public:
FieldMemcpyizer(CodeGenFunction & CGF,const CXXRecordDecl * ClassDecl,const VarDecl * SrcRec)776     FieldMemcpyizer(CodeGenFunction &CGF, const CXXRecordDecl *ClassDecl,
777                     const VarDecl *SrcRec)
778       : CGF(CGF), ClassDecl(ClassDecl), SrcRec(SrcRec),
779         RecLayout(CGF.getContext().getASTRecordLayout(ClassDecl)),
780         FirstField(nullptr), LastField(nullptr), FirstFieldOffset(0),
781         LastFieldOffset(0), LastAddedFieldIndex(0) {}
782 
isMemcpyableField(FieldDecl * F)783     static bool isMemcpyableField(FieldDecl *F) {
784       Qualifiers Qual = F->getType().getQualifiers();
785       if (Qual.hasVolatile() || Qual.hasObjCLifetime())
786         return false;
787       return true;
788     }
789 
addMemcpyableField(FieldDecl * F)790     void addMemcpyableField(FieldDecl *F) {
791       if (!FirstField)
792         addInitialField(F);
793       else
794         addNextField(F);
795     }
796 
getMemcpySize() const797     CharUnits getMemcpySize() const {
798       unsigned LastFieldSize =
799         LastField->isBitField() ?
800           LastField->getBitWidthValue(CGF.getContext()) :
801           CGF.getContext().getTypeSize(LastField->getType());
802       uint64_t MemcpySizeBits =
803         LastFieldOffset + LastFieldSize - FirstFieldOffset +
804         CGF.getContext().getCharWidth() - 1;
805       CharUnits MemcpySize =
806         CGF.getContext().toCharUnitsFromBits(MemcpySizeBits);
807       return MemcpySize;
808     }
809 
emitMemcpy()810     void emitMemcpy() {
811       // Give the subclass a chance to bail out if it feels the memcpy isn't
812       // worth it (e.g. Hasn't aggregated enough data).
813       if (!FirstField) {
814         return;
815       }
816 
817       CharUnits Alignment;
818 
819       if (FirstField->isBitField()) {
820         const CGRecordLayout &RL =
821           CGF.getTypes().getCGRecordLayout(FirstField->getParent());
822         const CGBitFieldInfo &BFInfo = RL.getBitFieldInfo(FirstField);
823         Alignment = CharUnits::fromQuantity(BFInfo.StorageAlignment);
824       } else {
825         Alignment = CGF.getContext().getDeclAlign(FirstField);
826       }
827 
828       assert((CGF.getContext().toCharUnitsFromBits(FirstFieldOffset) %
829               Alignment) == 0 && "Bad field alignment.");
830 
831       CharUnits MemcpySize = getMemcpySize();
832       QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl);
833       llvm::Value *ThisPtr = CGF.LoadCXXThis();
834       LValue DestLV = CGF.MakeNaturalAlignAddrLValue(ThisPtr, RecordTy);
835       LValue Dest = CGF.EmitLValueForFieldInitialization(DestLV, FirstField);
836       llvm::Value *SrcPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(SrcRec));
837       LValue SrcLV = CGF.MakeNaturalAlignAddrLValue(SrcPtr, RecordTy);
838       LValue Src = CGF.EmitLValueForFieldInitialization(SrcLV, FirstField);
839 
840       emitMemcpyIR(Dest.isBitField() ? Dest.getBitFieldAddr() : Dest.getAddress(),
841                    Src.isBitField() ? Src.getBitFieldAddr() : Src.getAddress(),
842                    MemcpySize, Alignment);
843       reset();
844     }
845 
reset()846     void reset() {
847       FirstField = nullptr;
848     }
849 
850   protected:
851     CodeGenFunction &CGF;
852     const CXXRecordDecl *ClassDecl;
853 
854   private:
855 
emitMemcpyIR(llvm::Value * DestPtr,llvm::Value * SrcPtr,CharUnits Size,CharUnits Alignment)856     void emitMemcpyIR(llvm::Value *DestPtr, llvm::Value *SrcPtr,
857                       CharUnits Size, CharUnits Alignment) {
858       llvm::PointerType *DPT = cast<llvm::PointerType>(DestPtr->getType());
859       llvm::Type *DBP =
860         llvm::Type::getInt8PtrTy(CGF.getLLVMContext(), DPT->getAddressSpace());
861       DestPtr = CGF.Builder.CreateBitCast(DestPtr, DBP);
862 
863       llvm::PointerType *SPT = cast<llvm::PointerType>(SrcPtr->getType());
864       llvm::Type *SBP =
865         llvm::Type::getInt8PtrTy(CGF.getLLVMContext(), SPT->getAddressSpace());
866       SrcPtr = CGF.Builder.CreateBitCast(SrcPtr, SBP);
867 
868       CGF.Builder.CreateMemCpy(DestPtr, SrcPtr, Size.getQuantity(),
869                                Alignment.getQuantity());
870     }
871 
addInitialField(FieldDecl * F)872     void addInitialField(FieldDecl *F) {
873         FirstField = F;
874         LastField = F;
875         FirstFieldOffset = RecLayout.getFieldOffset(F->getFieldIndex());
876         LastFieldOffset = FirstFieldOffset;
877         LastAddedFieldIndex = F->getFieldIndex();
878         return;
879       }
880 
addNextField(FieldDecl * F)881     void addNextField(FieldDecl *F) {
882       // For the most part, the following invariant will hold:
883       //   F->getFieldIndex() == LastAddedFieldIndex + 1
884       // The one exception is that Sema won't add a copy-initializer for an
885       // unnamed bitfield, which will show up here as a gap in the sequence.
886       assert(F->getFieldIndex() >= LastAddedFieldIndex + 1 &&
887              "Cannot aggregate fields out of order.");
888       LastAddedFieldIndex = F->getFieldIndex();
889 
890       // The 'first' and 'last' fields are chosen by offset, rather than field
891       // index. This allows the code to support bitfields, as well as regular
892       // fields.
893       uint64_t FOffset = RecLayout.getFieldOffset(F->getFieldIndex());
894       if (FOffset < FirstFieldOffset) {
895         FirstField = F;
896         FirstFieldOffset = FOffset;
897       } else if (FOffset > LastFieldOffset) {
898         LastField = F;
899         LastFieldOffset = FOffset;
900       }
901     }
902 
903     const VarDecl *SrcRec;
904     const ASTRecordLayout &RecLayout;
905     FieldDecl *FirstField;
906     FieldDecl *LastField;
907     uint64_t FirstFieldOffset, LastFieldOffset;
908     unsigned LastAddedFieldIndex;
909   };
910 
911   class ConstructorMemcpyizer : public FieldMemcpyizer {
912   private:
913 
914     /// Get source argument for copy constructor. Returns null if not a copy
915     /// constructor.
getTrivialCopySource(const CXXConstructorDecl * CD,FunctionArgList & Args)916     static const VarDecl* getTrivialCopySource(const CXXConstructorDecl *CD,
917                                                FunctionArgList &Args) {
918       if (CD->isCopyOrMoveConstructor() && CD->isDefaulted())
919         return Args[Args.size() - 1];
920       return nullptr;
921     }
922 
923     // Returns true if a CXXCtorInitializer represents a member initialization
924     // that can be rolled into a memcpy.
isMemberInitMemcpyable(CXXCtorInitializer * MemberInit) const925     bool isMemberInitMemcpyable(CXXCtorInitializer *MemberInit) const {
926       if (!MemcpyableCtor)
927         return false;
928       FieldDecl *Field = MemberInit->getMember();
929       assert(Field && "No field for member init.");
930       QualType FieldType = Field->getType();
931       CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(MemberInit->getInit());
932 
933       // Bail out on non-POD, not-trivially-constructable members.
934       if (!(CE && CE->getConstructor()->isTrivial()) &&
935           !(FieldType.isTriviallyCopyableType(CGF.getContext()) ||
936             FieldType->isReferenceType()))
937         return false;
938 
939       // Bail out on volatile fields.
940       if (!isMemcpyableField(Field))
941         return false;
942 
943       // Otherwise we're good.
944       return true;
945     }
946 
947   public:
ConstructorMemcpyizer(CodeGenFunction & CGF,const CXXConstructorDecl * CD,FunctionArgList & Args)948     ConstructorMemcpyizer(CodeGenFunction &CGF, const CXXConstructorDecl *CD,
949                           FunctionArgList &Args)
950       : FieldMemcpyizer(CGF, CD->getParent(), getTrivialCopySource(CD, Args)),
951         ConstructorDecl(CD),
952         MemcpyableCtor(CD->isDefaulted() &&
953                        CD->isCopyOrMoveConstructor() &&
954                        CGF.getLangOpts().getGC() == LangOptions::NonGC),
955         Args(Args) { }
956 
addMemberInitializer(CXXCtorInitializer * MemberInit)957     void addMemberInitializer(CXXCtorInitializer *MemberInit) {
958       if (isMemberInitMemcpyable(MemberInit)) {
959         AggregatedInits.push_back(MemberInit);
960         addMemcpyableField(MemberInit->getMember());
961       } else {
962         emitAggregatedInits();
963         EmitMemberInitializer(CGF, ConstructorDecl->getParent(), MemberInit,
964                               ConstructorDecl, Args);
965       }
966     }
967 
emitAggregatedInits()968     void emitAggregatedInits() {
969       if (AggregatedInits.size() <= 1) {
970         // This memcpy is too small to be worthwhile. Fall back on default
971         // codegen.
972         if (!AggregatedInits.empty()) {
973           CopyingValueRepresentation CVR(CGF);
974           EmitMemberInitializer(CGF, ConstructorDecl->getParent(),
975                                 AggregatedInits[0], ConstructorDecl, Args);
976         }
977         reset();
978         return;
979       }
980 
981       pushEHDestructors();
982       emitMemcpy();
983       AggregatedInits.clear();
984     }
985 
pushEHDestructors()986     void pushEHDestructors() {
987       llvm::Value *ThisPtr = CGF.LoadCXXThis();
988       QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl);
989       LValue LHS = CGF.MakeNaturalAlignAddrLValue(ThisPtr, RecordTy);
990 
991       for (unsigned i = 0; i < AggregatedInits.size(); ++i) {
992         QualType FieldType = AggregatedInits[i]->getMember()->getType();
993         QualType::DestructionKind dtorKind = FieldType.isDestructedType();
994         if (CGF.needsEHCleanup(dtorKind))
995           CGF.pushEHDestroy(dtorKind, LHS.getAddress(), FieldType);
996       }
997     }
998 
finish()999     void finish() {
1000       emitAggregatedInits();
1001     }
1002 
1003   private:
1004     const CXXConstructorDecl *ConstructorDecl;
1005     bool MemcpyableCtor;
1006     FunctionArgList &Args;
1007     SmallVector<CXXCtorInitializer*, 16> AggregatedInits;
1008   };
1009 
1010   class AssignmentMemcpyizer : public FieldMemcpyizer {
1011   private:
1012 
1013     // Returns the memcpyable field copied by the given statement, if one
1014     // exists. Otherwise returns null.
getMemcpyableField(Stmt * S)1015     FieldDecl *getMemcpyableField(Stmt *S) {
1016       if (!AssignmentsMemcpyable)
1017         return nullptr;
1018       if (BinaryOperator *BO = dyn_cast<BinaryOperator>(S)) {
1019         // Recognise trivial assignments.
1020         if (BO->getOpcode() != BO_Assign)
1021           return nullptr;
1022         MemberExpr *ME = dyn_cast<MemberExpr>(BO->getLHS());
1023         if (!ME)
1024           return nullptr;
1025         FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl());
1026         if (!Field || !isMemcpyableField(Field))
1027           return nullptr;
1028         Stmt *RHS = BO->getRHS();
1029         if (ImplicitCastExpr *EC = dyn_cast<ImplicitCastExpr>(RHS))
1030           RHS = EC->getSubExpr();
1031         if (!RHS)
1032           return nullptr;
1033         MemberExpr *ME2 = dyn_cast<MemberExpr>(RHS);
1034         if (dyn_cast<FieldDecl>(ME2->getMemberDecl()) != Field)
1035           return nullptr;
1036         return Field;
1037       } else if (CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(S)) {
1038         CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MCE->getCalleeDecl());
1039         if (!(MD && (MD->isCopyAssignmentOperator() ||
1040                        MD->isMoveAssignmentOperator()) &&
1041               MD->isTrivial()))
1042           return nullptr;
1043         MemberExpr *IOA = dyn_cast<MemberExpr>(MCE->getImplicitObjectArgument());
1044         if (!IOA)
1045           return nullptr;
1046         FieldDecl *Field = dyn_cast<FieldDecl>(IOA->getMemberDecl());
1047         if (!Field || !isMemcpyableField(Field))
1048           return nullptr;
1049         MemberExpr *Arg0 = dyn_cast<MemberExpr>(MCE->getArg(0));
1050         if (!Arg0 || Field != dyn_cast<FieldDecl>(Arg0->getMemberDecl()))
1051           return nullptr;
1052         return Field;
1053       } else if (CallExpr *CE = dyn_cast<CallExpr>(S)) {
1054         FunctionDecl *FD = dyn_cast<FunctionDecl>(CE->getCalleeDecl());
1055         if (!FD || FD->getBuiltinID() != Builtin::BI__builtin_memcpy)
1056           return nullptr;
1057         Expr *DstPtr = CE->getArg(0);
1058         if (ImplicitCastExpr *DC = dyn_cast<ImplicitCastExpr>(DstPtr))
1059           DstPtr = DC->getSubExpr();
1060         UnaryOperator *DUO = dyn_cast<UnaryOperator>(DstPtr);
1061         if (!DUO || DUO->getOpcode() != UO_AddrOf)
1062           return nullptr;
1063         MemberExpr *ME = dyn_cast<MemberExpr>(DUO->getSubExpr());
1064         if (!ME)
1065           return nullptr;
1066         FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl());
1067         if (!Field || !isMemcpyableField(Field))
1068           return nullptr;
1069         Expr *SrcPtr = CE->getArg(1);
1070         if (ImplicitCastExpr *SC = dyn_cast<ImplicitCastExpr>(SrcPtr))
1071           SrcPtr = SC->getSubExpr();
1072         UnaryOperator *SUO = dyn_cast<UnaryOperator>(SrcPtr);
1073         if (!SUO || SUO->getOpcode() != UO_AddrOf)
1074           return nullptr;
1075         MemberExpr *ME2 = dyn_cast<MemberExpr>(SUO->getSubExpr());
1076         if (!ME2 || Field != dyn_cast<FieldDecl>(ME2->getMemberDecl()))
1077           return nullptr;
1078         return Field;
1079       }
1080 
1081       return nullptr;
1082     }
1083 
1084     bool AssignmentsMemcpyable;
1085     SmallVector<Stmt*, 16> AggregatedStmts;
1086 
1087   public:
1088 
AssignmentMemcpyizer(CodeGenFunction & CGF,const CXXMethodDecl * AD,FunctionArgList & Args)1089     AssignmentMemcpyizer(CodeGenFunction &CGF, const CXXMethodDecl *AD,
1090                          FunctionArgList &Args)
1091       : FieldMemcpyizer(CGF, AD->getParent(), Args[Args.size() - 1]),
1092         AssignmentsMemcpyable(CGF.getLangOpts().getGC() == LangOptions::NonGC) {
1093       assert(Args.size() == 2);
1094     }
1095 
emitAssignment(Stmt * S)1096     void emitAssignment(Stmt *S) {
1097       FieldDecl *F = getMemcpyableField(S);
1098       if (F) {
1099         addMemcpyableField(F);
1100         AggregatedStmts.push_back(S);
1101       } else {
1102         emitAggregatedStmts();
1103         CGF.EmitStmt(S);
1104       }
1105     }
1106 
emitAggregatedStmts()1107     void emitAggregatedStmts() {
1108       if (AggregatedStmts.size() <= 1) {
1109         if (!AggregatedStmts.empty()) {
1110           CopyingValueRepresentation CVR(CGF);
1111           CGF.EmitStmt(AggregatedStmts[0]);
1112         }
1113         reset();
1114       }
1115 
1116       emitMemcpy();
1117       AggregatedStmts.clear();
1118     }
1119 
finish()1120     void finish() {
1121       emitAggregatedStmts();
1122     }
1123   };
1124 
1125 }
1126 
1127 /// EmitCtorPrologue - This routine generates necessary code to initialize
1128 /// base classes and non-static data members belonging to this constructor.
EmitCtorPrologue(const CXXConstructorDecl * CD,CXXCtorType CtorType,FunctionArgList & Args)1129 void CodeGenFunction::EmitCtorPrologue(const CXXConstructorDecl *CD,
1130                                        CXXCtorType CtorType,
1131                                        FunctionArgList &Args) {
1132   if (CD->isDelegatingConstructor())
1133     return EmitDelegatingCXXConstructorCall(CD, Args);
1134 
1135   const CXXRecordDecl *ClassDecl = CD->getParent();
1136 
1137   CXXConstructorDecl::init_const_iterator B = CD->init_begin(),
1138                                           E = CD->init_end();
1139 
1140   llvm::BasicBlock *BaseCtorContinueBB = nullptr;
1141   if (ClassDecl->getNumVBases() &&
1142       !CGM.getTarget().getCXXABI().hasConstructorVariants()) {
1143     // The ABIs that don't have constructor variants need to put a branch
1144     // before the virtual base initialization code.
1145     BaseCtorContinueBB =
1146       CGM.getCXXABI().EmitCtorCompleteObjectHandler(*this, ClassDecl);
1147     assert(BaseCtorContinueBB);
1148   }
1149 
1150   // Virtual base initializers first.
1151   for (; B != E && (*B)->isBaseInitializer() && (*B)->isBaseVirtual(); B++) {
1152     EmitBaseInitializer(*this, ClassDecl, *B, CtorType);
1153   }
1154 
1155   if (BaseCtorContinueBB) {
1156     // Complete object handler should continue to the remaining initializers.
1157     Builder.CreateBr(BaseCtorContinueBB);
1158     EmitBlock(BaseCtorContinueBB);
1159   }
1160 
1161   // Then, non-virtual base initializers.
1162   for (; B != E && (*B)->isBaseInitializer(); B++) {
1163     assert(!(*B)->isBaseVirtual());
1164     EmitBaseInitializer(*this, ClassDecl, *B, CtorType);
1165   }
1166 
1167   InitializeVTablePointers(ClassDecl);
1168 
1169   // And finally, initialize class members.
1170   FieldConstructionScope FCS(*this, CXXThisValue);
1171   ConstructorMemcpyizer CM(*this, CD, Args);
1172   for (; B != E; B++) {
1173     CXXCtorInitializer *Member = (*B);
1174     assert(!Member->isBaseInitializer());
1175     assert(Member->isAnyMemberInitializer() &&
1176            "Delegating initializer on non-delegating constructor");
1177     CM.addMemberInitializer(Member);
1178   }
1179   CM.finish();
1180 }
1181 
1182 static bool
1183 FieldHasTrivialDestructorBody(ASTContext &Context, const FieldDecl *Field);
1184 
1185 static bool
HasTrivialDestructorBody(ASTContext & Context,const CXXRecordDecl * BaseClassDecl,const CXXRecordDecl * MostDerivedClassDecl)1186 HasTrivialDestructorBody(ASTContext &Context,
1187                          const CXXRecordDecl *BaseClassDecl,
1188                          const CXXRecordDecl *MostDerivedClassDecl)
1189 {
1190   // If the destructor is trivial we don't have to check anything else.
1191   if (BaseClassDecl->hasTrivialDestructor())
1192     return true;
1193 
1194   if (!BaseClassDecl->getDestructor()->hasTrivialBody())
1195     return false;
1196 
1197   // Check fields.
1198   for (const auto *Field : BaseClassDecl->fields())
1199     if (!FieldHasTrivialDestructorBody(Context, Field))
1200       return false;
1201 
1202   // Check non-virtual bases.
1203   for (const auto &I : BaseClassDecl->bases()) {
1204     if (I.isVirtual())
1205       continue;
1206 
1207     const CXXRecordDecl *NonVirtualBase =
1208       cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
1209     if (!HasTrivialDestructorBody(Context, NonVirtualBase,
1210                                   MostDerivedClassDecl))
1211       return false;
1212   }
1213 
1214   if (BaseClassDecl == MostDerivedClassDecl) {
1215     // Check virtual bases.
1216     for (const auto &I : BaseClassDecl->vbases()) {
1217       const CXXRecordDecl *VirtualBase =
1218         cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
1219       if (!HasTrivialDestructorBody(Context, VirtualBase,
1220                                     MostDerivedClassDecl))
1221         return false;
1222     }
1223   }
1224 
1225   return true;
1226 }
1227 
1228 static bool
FieldHasTrivialDestructorBody(ASTContext & Context,const FieldDecl * Field)1229 FieldHasTrivialDestructorBody(ASTContext &Context,
1230                               const FieldDecl *Field)
1231 {
1232   QualType FieldBaseElementType = Context.getBaseElementType(Field->getType());
1233 
1234   const RecordType *RT = FieldBaseElementType->getAs<RecordType>();
1235   if (!RT)
1236     return true;
1237 
1238   CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
1239   return HasTrivialDestructorBody(Context, FieldClassDecl, FieldClassDecl);
1240 }
1241 
1242 /// CanSkipVTablePointerInitialization - Check whether we need to initialize
1243 /// any vtable pointers before calling this destructor.
CanSkipVTablePointerInitialization(ASTContext & Context,const CXXDestructorDecl * Dtor)1244 static bool CanSkipVTablePointerInitialization(ASTContext &Context,
1245                                                const CXXDestructorDecl *Dtor) {
1246   if (!Dtor->hasTrivialBody())
1247     return false;
1248 
1249   // Check the fields.
1250   const CXXRecordDecl *ClassDecl = Dtor->getParent();
1251   for (const auto *Field : ClassDecl->fields())
1252     if (!FieldHasTrivialDestructorBody(Context, Field))
1253       return false;
1254 
1255   return true;
1256 }
1257 
1258 /// EmitDestructorBody - Emits the body of the current destructor.
EmitDestructorBody(FunctionArgList & Args)1259 void CodeGenFunction::EmitDestructorBody(FunctionArgList &Args) {
1260   const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CurGD.getDecl());
1261   CXXDtorType DtorType = CurGD.getDtorType();
1262 
1263   // The call to operator delete in a deleting destructor happens
1264   // outside of the function-try-block, which means it's always
1265   // possible to delegate the destructor body to the complete
1266   // destructor.  Do so.
1267   if (DtorType == Dtor_Deleting) {
1268     EnterDtorCleanups(Dtor, Dtor_Deleting);
1269     EmitCXXDestructorCall(Dtor, Dtor_Complete, /*ForVirtualBase=*/false,
1270                           /*Delegating=*/false, LoadCXXThis());
1271     PopCleanupBlock();
1272     return;
1273   }
1274 
1275   Stmt *Body = Dtor->getBody();
1276 
1277   // If the body is a function-try-block, enter the try before
1278   // anything else.
1279   bool isTryBody = (Body && isa<CXXTryStmt>(Body));
1280   if (isTryBody)
1281     EnterCXXTryStmt(*cast<CXXTryStmt>(Body), true);
1282 
1283   // Enter the epilogue cleanups.
1284   RunCleanupsScope DtorEpilogue(*this);
1285 
1286   // If this is the complete variant, just invoke the base variant;
1287   // the epilogue will destruct the virtual bases.  But we can't do
1288   // this optimization if the body is a function-try-block, because
1289   // we'd introduce *two* handler blocks.  In the Microsoft ABI, we
1290   // always delegate because we might not have a definition in this TU.
1291   switch (DtorType) {
1292   case Dtor_Deleting: llvm_unreachable("already handled deleting case");
1293 
1294   case Dtor_Complete:
1295     assert((Body || getTarget().getCXXABI().isMicrosoft()) &&
1296            "can't emit a dtor without a body for non-Microsoft ABIs");
1297 
1298     // Enter the cleanup scopes for virtual bases.
1299     EnterDtorCleanups(Dtor, Dtor_Complete);
1300 
1301     if (!isTryBody) {
1302       EmitCXXDestructorCall(Dtor, Dtor_Base, /*ForVirtualBase=*/false,
1303                             /*Delegating=*/false, LoadCXXThis());
1304       break;
1305     }
1306     // Fallthrough: act like we're in the base variant.
1307 
1308   case Dtor_Base:
1309     assert(Body);
1310 
1311     RegionCounter Cnt = getPGORegionCounter(Body);
1312     Cnt.beginRegion(Builder);
1313 
1314     // Enter the cleanup scopes for fields and non-virtual bases.
1315     EnterDtorCleanups(Dtor, Dtor_Base);
1316 
1317     // Initialize the vtable pointers before entering the body.
1318     if (!CanSkipVTablePointerInitialization(getContext(), Dtor))
1319         InitializeVTablePointers(Dtor->getParent());
1320 
1321     if (isTryBody)
1322       EmitStmt(cast<CXXTryStmt>(Body)->getTryBlock());
1323     else if (Body)
1324       EmitStmt(Body);
1325     else {
1326       assert(Dtor->isImplicit() && "bodyless dtor not implicit");
1327       // nothing to do besides what's in the epilogue
1328     }
1329     // -fapple-kext must inline any call to this dtor into
1330     // the caller's body.
1331     if (getLangOpts().AppleKext)
1332       CurFn->addFnAttr(llvm::Attribute::AlwaysInline);
1333     break;
1334   }
1335 
1336   // Jump out through the epilogue cleanups.
1337   DtorEpilogue.ForceCleanup();
1338 
1339   // Exit the try if applicable.
1340   if (isTryBody)
1341     ExitCXXTryStmt(*cast<CXXTryStmt>(Body), true);
1342 }
1343 
emitImplicitAssignmentOperatorBody(FunctionArgList & Args)1344 void CodeGenFunction::emitImplicitAssignmentOperatorBody(FunctionArgList &Args) {
1345   const CXXMethodDecl *AssignOp = cast<CXXMethodDecl>(CurGD.getDecl());
1346   const Stmt *RootS = AssignOp->getBody();
1347   assert(isa<CompoundStmt>(RootS) &&
1348          "Body of an implicit assignment operator should be compound stmt.");
1349   const CompoundStmt *RootCS = cast<CompoundStmt>(RootS);
1350 
1351   LexicalScope Scope(*this, RootCS->getSourceRange());
1352 
1353   AssignmentMemcpyizer AM(*this, AssignOp, Args);
1354   for (auto *I : RootCS->body())
1355     AM.emitAssignment(I);
1356   AM.finish();
1357 }
1358 
1359 namespace {
1360   /// Call the operator delete associated with the current destructor.
1361   struct CallDtorDelete : EHScopeStack::Cleanup {
CallDtorDelete__anon7aa462240411::CallDtorDelete1362     CallDtorDelete() {}
1363 
Emit__anon7aa462240411::CallDtorDelete1364     void Emit(CodeGenFunction &CGF, Flags flags) override {
1365       const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CGF.CurCodeDecl);
1366       const CXXRecordDecl *ClassDecl = Dtor->getParent();
1367       CGF.EmitDeleteCall(Dtor->getOperatorDelete(), CGF.LoadCXXThis(),
1368                          CGF.getContext().getTagDeclType(ClassDecl));
1369     }
1370   };
1371 
1372   struct CallDtorDeleteConditional : EHScopeStack::Cleanup {
1373     llvm::Value *ShouldDeleteCondition;
1374   public:
CallDtorDeleteConditional__anon7aa462240411::CallDtorDeleteConditional1375     CallDtorDeleteConditional(llvm::Value *ShouldDeleteCondition)
1376       : ShouldDeleteCondition(ShouldDeleteCondition) {
1377       assert(ShouldDeleteCondition != nullptr);
1378     }
1379 
Emit__anon7aa462240411::CallDtorDeleteConditional1380     void Emit(CodeGenFunction &CGF, Flags flags) override {
1381       llvm::BasicBlock *callDeleteBB = CGF.createBasicBlock("dtor.call_delete");
1382       llvm::BasicBlock *continueBB = CGF.createBasicBlock("dtor.continue");
1383       llvm::Value *ShouldCallDelete
1384         = CGF.Builder.CreateIsNull(ShouldDeleteCondition);
1385       CGF.Builder.CreateCondBr(ShouldCallDelete, continueBB, callDeleteBB);
1386 
1387       CGF.EmitBlock(callDeleteBB);
1388       const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CGF.CurCodeDecl);
1389       const CXXRecordDecl *ClassDecl = Dtor->getParent();
1390       CGF.EmitDeleteCall(Dtor->getOperatorDelete(), CGF.LoadCXXThis(),
1391                          CGF.getContext().getTagDeclType(ClassDecl));
1392       CGF.Builder.CreateBr(continueBB);
1393 
1394       CGF.EmitBlock(continueBB);
1395     }
1396   };
1397 
1398   class DestroyField  : public EHScopeStack::Cleanup {
1399     const FieldDecl *field;
1400     CodeGenFunction::Destroyer *destroyer;
1401     bool useEHCleanupForArray;
1402 
1403   public:
DestroyField(const FieldDecl * field,CodeGenFunction::Destroyer * destroyer,bool useEHCleanupForArray)1404     DestroyField(const FieldDecl *field, CodeGenFunction::Destroyer *destroyer,
1405                  bool useEHCleanupForArray)
1406       : field(field), destroyer(destroyer),
1407         useEHCleanupForArray(useEHCleanupForArray) {}
1408 
Emit(CodeGenFunction & CGF,Flags flags)1409     void Emit(CodeGenFunction &CGF, Flags flags) override {
1410       // Find the address of the field.
1411       llvm::Value *thisValue = CGF.LoadCXXThis();
1412       QualType RecordTy = CGF.getContext().getTagDeclType(field->getParent());
1413       LValue ThisLV = CGF.MakeAddrLValue(thisValue, RecordTy);
1414       LValue LV = CGF.EmitLValueForField(ThisLV, field);
1415       assert(LV.isSimple());
1416 
1417       CGF.emitDestroy(LV.getAddress(), field->getType(), destroyer,
1418                       flags.isForNormalCleanup() && useEHCleanupForArray);
1419     }
1420   };
1421 }
1422 
1423 /// \brief Emit all code that comes at the end of class's
1424 /// destructor. This is to call destructors on members and base classes
1425 /// in reverse order of their construction.
EnterDtorCleanups(const CXXDestructorDecl * DD,CXXDtorType DtorType)1426 void CodeGenFunction::EnterDtorCleanups(const CXXDestructorDecl *DD,
1427                                         CXXDtorType DtorType) {
1428   assert((!DD->isTrivial() || DD->hasAttr<DLLExportAttr>()) &&
1429          "Should not emit dtor epilogue for non-exported trivial dtor!");
1430 
1431   // The deleting-destructor phase just needs to call the appropriate
1432   // operator delete that Sema picked up.
1433   if (DtorType == Dtor_Deleting) {
1434     assert(DD->getOperatorDelete() &&
1435            "operator delete missing - EnterDtorCleanups");
1436     if (CXXStructorImplicitParamValue) {
1437       // If there is an implicit param to the deleting dtor, it's a boolean
1438       // telling whether we should call delete at the end of the dtor.
1439       EHStack.pushCleanup<CallDtorDeleteConditional>(
1440           NormalAndEHCleanup, CXXStructorImplicitParamValue);
1441     } else {
1442       EHStack.pushCleanup<CallDtorDelete>(NormalAndEHCleanup);
1443     }
1444     return;
1445   }
1446 
1447   const CXXRecordDecl *ClassDecl = DD->getParent();
1448 
1449   // Unions have no bases and do not call field destructors.
1450   if (ClassDecl->isUnion())
1451     return;
1452 
1453   // The complete-destructor phase just destructs all the virtual bases.
1454   if (DtorType == Dtor_Complete) {
1455 
1456     // We push them in the forward order so that they'll be popped in
1457     // the reverse order.
1458     for (const auto &Base : ClassDecl->vbases()) {
1459       CXXRecordDecl *BaseClassDecl
1460         = cast<CXXRecordDecl>(Base.getType()->getAs<RecordType>()->getDecl());
1461 
1462       // Ignore trivial destructors.
1463       if (BaseClassDecl->hasTrivialDestructor())
1464         continue;
1465 
1466       EHStack.pushCleanup<CallBaseDtor>(NormalAndEHCleanup,
1467                                         BaseClassDecl,
1468                                         /*BaseIsVirtual*/ true);
1469     }
1470 
1471     return;
1472   }
1473 
1474   assert(DtorType == Dtor_Base);
1475 
1476   // Destroy non-virtual bases.
1477   for (const auto &Base : ClassDecl->bases()) {
1478     // Ignore virtual bases.
1479     if (Base.isVirtual())
1480       continue;
1481 
1482     CXXRecordDecl *BaseClassDecl = Base.getType()->getAsCXXRecordDecl();
1483 
1484     // Ignore trivial destructors.
1485     if (BaseClassDecl->hasTrivialDestructor())
1486       continue;
1487 
1488     EHStack.pushCleanup<CallBaseDtor>(NormalAndEHCleanup,
1489                                       BaseClassDecl,
1490                                       /*BaseIsVirtual*/ false);
1491   }
1492 
1493   // Destroy direct fields.
1494   for (const auto *Field : ClassDecl->fields()) {
1495     QualType type = Field->getType();
1496     QualType::DestructionKind dtorKind = type.isDestructedType();
1497     if (!dtorKind) continue;
1498 
1499     // Anonymous union members do not have their destructors called.
1500     const RecordType *RT = type->getAsUnionType();
1501     if (RT && RT->getDecl()->isAnonymousStructOrUnion()) continue;
1502 
1503     CleanupKind cleanupKind = getCleanupKind(dtorKind);
1504     EHStack.pushCleanup<DestroyField>(cleanupKind, Field,
1505                                       getDestroyer(dtorKind),
1506                                       cleanupKind & EHCleanup);
1507   }
1508 }
1509 
1510 /// EmitCXXAggrConstructorCall - Emit a loop to call a particular
1511 /// constructor for each of several members of an array.
1512 ///
1513 /// \param ctor the constructor to call for each element
1514 /// \param arrayType the type of the array to initialize
1515 /// \param arrayBegin an arrayType*
1516 /// \param zeroInitialize true if each element should be
1517 ///   zero-initialized before it is constructed
1518 void
EmitCXXAggrConstructorCall(const CXXConstructorDecl * ctor,const ConstantArrayType * arrayType,llvm::Value * arrayBegin,CallExpr::const_arg_iterator argBegin,CallExpr::const_arg_iterator argEnd,bool zeroInitialize)1519 CodeGenFunction::EmitCXXAggrConstructorCall(const CXXConstructorDecl *ctor,
1520                                             const ConstantArrayType *arrayType,
1521                                             llvm::Value *arrayBegin,
1522                                           CallExpr::const_arg_iterator argBegin,
1523                                             CallExpr::const_arg_iterator argEnd,
1524                                             bool zeroInitialize) {
1525   QualType elementType;
1526   llvm::Value *numElements =
1527     emitArrayLength(arrayType, elementType, arrayBegin);
1528 
1529   EmitCXXAggrConstructorCall(ctor, numElements, arrayBegin,
1530                              argBegin, argEnd, zeroInitialize);
1531 }
1532 
1533 /// EmitCXXAggrConstructorCall - Emit a loop to call a particular
1534 /// constructor for each of several members of an array.
1535 ///
1536 /// \param ctor the constructor to call for each element
1537 /// \param numElements the number of elements in the array;
1538 ///   may be zero
1539 /// \param arrayBegin a T*, where T is the type constructed by ctor
1540 /// \param zeroInitialize true if each element should be
1541 ///   zero-initialized before it is constructed
1542 void
EmitCXXAggrConstructorCall(const CXXConstructorDecl * ctor,llvm::Value * numElements,llvm::Value * arrayBegin,CallExpr::const_arg_iterator argBegin,CallExpr::const_arg_iterator argEnd,bool zeroInitialize)1543 CodeGenFunction::EmitCXXAggrConstructorCall(const CXXConstructorDecl *ctor,
1544                                             llvm::Value *numElements,
1545                                             llvm::Value *arrayBegin,
1546                                          CallExpr::const_arg_iterator argBegin,
1547                                            CallExpr::const_arg_iterator argEnd,
1548                                             bool zeroInitialize) {
1549 
1550   // It's legal for numElements to be zero.  This can happen both
1551   // dynamically, because x can be zero in 'new A[x]', and statically,
1552   // because of GCC extensions that permit zero-length arrays.  There
1553   // are probably legitimate places where we could assume that this
1554   // doesn't happen, but it's not clear that it's worth it.
1555   llvm::BranchInst *zeroCheckBranch = nullptr;
1556 
1557   // Optimize for a constant count.
1558   llvm::ConstantInt *constantCount
1559     = dyn_cast<llvm::ConstantInt>(numElements);
1560   if (constantCount) {
1561     // Just skip out if the constant count is zero.
1562     if (constantCount->isZero()) return;
1563 
1564   // Otherwise, emit the check.
1565   } else {
1566     llvm::BasicBlock *loopBB = createBasicBlock("new.ctorloop");
1567     llvm::Value *iszero = Builder.CreateIsNull(numElements, "isempty");
1568     zeroCheckBranch = Builder.CreateCondBr(iszero, loopBB, loopBB);
1569     EmitBlock(loopBB);
1570   }
1571 
1572   // Find the end of the array.
1573   llvm::Value *arrayEnd = Builder.CreateInBoundsGEP(arrayBegin, numElements,
1574                                                     "arrayctor.end");
1575 
1576   // Enter the loop, setting up a phi for the current location to initialize.
1577   llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
1578   llvm::BasicBlock *loopBB = createBasicBlock("arrayctor.loop");
1579   EmitBlock(loopBB);
1580   llvm::PHINode *cur = Builder.CreatePHI(arrayBegin->getType(), 2,
1581                                          "arrayctor.cur");
1582   cur->addIncoming(arrayBegin, entryBB);
1583 
1584   // Inside the loop body, emit the constructor call on the array element.
1585 
1586   QualType type = getContext().getTypeDeclType(ctor->getParent());
1587 
1588   // Zero initialize the storage, if requested.
1589   if (zeroInitialize)
1590     EmitNullInitialization(cur, type);
1591 
1592   // C++ [class.temporary]p4:
1593   // There are two contexts in which temporaries are destroyed at a different
1594   // point than the end of the full-expression. The first context is when a
1595   // default constructor is called to initialize an element of an array.
1596   // If the constructor has one or more default arguments, the destruction of
1597   // every temporary created in a default argument expression is sequenced
1598   // before the construction of the next array element, if any.
1599 
1600   {
1601     RunCleanupsScope Scope(*this);
1602 
1603     // Evaluate the constructor and its arguments in a regular
1604     // partial-destroy cleanup.
1605     if (getLangOpts().Exceptions &&
1606         !ctor->getParent()->hasTrivialDestructor()) {
1607       Destroyer *destroyer = destroyCXXObject;
1608       pushRegularPartialArrayCleanup(arrayBegin, cur, type, *destroyer);
1609     }
1610 
1611     EmitCXXConstructorCall(ctor, Ctor_Complete, /*ForVirtualBase=*/ false,
1612                            /*Delegating=*/false, cur, argBegin, argEnd);
1613   }
1614 
1615   // Go to the next element.
1616   llvm::Value *next =
1617     Builder.CreateInBoundsGEP(cur, llvm::ConstantInt::get(SizeTy, 1),
1618                               "arrayctor.next");
1619   cur->addIncoming(next, Builder.GetInsertBlock());
1620 
1621   // Check whether that's the end of the loop.
1622   llvm::Value *done = Builder.CreateICmpEQ(next, arrayEnd, "arrayctor.done");
1623   llvm::BasicBlock *contBB = createBasicBlock("arrayctor.cont");
1624   Builder.CreateCondBr(done, contBB, loopBB);
1625 
1626   // Patch the earlier check to skip over the loop.
1627   if (zeroCheckBranch) zeroCheckBranch->setSuccessor(0, contBB);
1628 
1629   EmitBlock(contBB);
1630 }
1631 
destroyCXXObject(CodeGenFunction & CGF,llvm::Value * addr,QualType type)1632 void CodeGenFunction::destroyCXXObject(CodeGenFunction &CGF,
1633                                        llvm::Value *addr,
1634                                        QualType type) {
1635   const RecordType *rtype = type->castAs<RecordType>();
1636   const CXXRecordDecl *record = cast<CXXRecordDecl>(rtype->getDecl());
1637   const CXXDestructorDecl *dtor = record->getDestructor();
1638   assert(!dtor->isTrivial());
1639   CGF.EmitCXXDestructorCall(dtor, Dtor_Complete, /*for vbase*/ false,
1640                             /*Delegating=*/false, addr);
1641 }
1642 
1643 void
EmitCXXConstructorCall(const CXXConstructorDecl * D,CXXCtorType Type,bool ForVirtualBase,bool Delegating,llvm::Value * This,CallExpr::const_arg_iterator ArgBeg,CallExpr::const_arg_iterator ArgEnd)1644 CodeGenFunction::EmitCXXConstructorCall(const CXXConstructorDecl *D,
1645                                         CXXCtorType Type, bool ForVirtualBase,
1646                                         bool Delegating,
1647                                         llvm::Value *This,
1648                                         CallExpr::const_arg_iterator ArgBeg,
1649                                         CallExpr::const_arg_iterator ArgEnd) {
1650   // If this is a trivial constructor, just emit what's needed.
1651   if (D->isTrivial()) {
1652     if (ArgBeg == ArgEnd) {
1653       // Trivial default constructor, no codegen required.
1654       assert(D->isDefaultConstructor() &&
1655              "trivial 0-arg ctor not a default ctor");
1656       return;
1657     }
1658 
1659     assert(ArgBeg + 1 == ArgEnd && "unexpected argcount for trivial ctor");
1660     assert(D->isCopyOrMoveConstructor() &&
1661            "trivial 1-arg ctor not a copy/move ctor");
1662 
1663     const Expr *E = (*ArgBeg);
1664     QualType Ty = E->getType();
1665     llvm::Value *Src = EmitLValue(E).getAddress();
1666     EmitAggregateCopy(This, Src, Ty);
1667     return;
1668   }
1669 
1670   // C++11 [class.mfct.non-static]p2:
1671   //   If a non-static member function of a class X is called for an object that
1672   //   is not of type X, or of a type derived from X, the behavior is undefined.
1673   // FIXME: Provide a source location here.
1674   EmitTypeCheck(CodeGenFunction::TCK_ConstructorCall, SourceLocation(), This,
1675                 getContext().getRecordType(D->getParent()));
1676 
1677   CallArgList Args;
1678 
1679   // Push the this ptr.
1680   Args.add(RValue::get(This), D->getThisType(getContext()));
1681 
1682   // Add the rest of the user-supplied arguments.
1683   const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>();
1684   EmitCallArgs(Args, FPT, ArgBeg, ArgEnd);
1685 
1686   // Insert any ABI-specific implicit constructor arguments.
1687   unsigned ExtraArgs = CGM.getCXXABI().addImplicitConstructorArgs(
1688       *this, D, Type, ForVirtualBase, Delegating, Args);
1689 
1690   // Emit the call.
1691   llvm::Value *Callee = CGM.GetAddrOfCXXConstructor(D, Type);
1692   const CGFunctionInfo &Info =
1693       CGM.getTypes().arrangeCXXConstructorCall(Args, D, Type, ExtraArgs);
1694   EmitCall(Info, Callee, ReturnValueSlot(), Args, D);
1695 }
1696 
1697 void
EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl * D,llvm::Value * This,llvm::Value * Src,CallExpr::const_arg_iterator ArgBeg,CallExpr::const_arg_iterator ArgEnd)1698 CodeGenFunction::EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
1699                                         llvm::Value *This, llvm::Value *Src,
1700                                         CallExpr::const_arg_iterator ArgBeg,
1701                                         CallExpr::const_arg_iterator ArgEnd) {
1702   if (D->isTrivial()) {
1703     assert(ArgBeg + 1 == ArgEnd && "unexpected argcount for trivial ctor");
1704     assert(D->isCopyOrMoveConstructor() &&
1705            "trivial 1-arg ctor not a copy/move ctor");
1706     EmitAggregateCopy(This, Src, (*ArgBeg)->getType());
1707     return;
1708   }
1709   llvm::Value *Callee = CGM.GetAddrOfCXXConstructor(D, clang::Ctor_Complete);
1710   assert(D->isInstance() &&
1711          "Trying to emit a member call expr on a static method!");
1712 
1713   const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>();
1714 
1715   CallArgList Args;
1716 
1717   // Push the this ptr.
1718   Args.add(RValue::get(This), D->getThisType(getContext()));
1719 
1720   // Push the src ptr.
1721   QualType QT = *(FPT->param_type_begin());
1722   llvm::Type *t = CGM.getTypes().ConvertType(QT);
1723   Src = Builder.CreateBitCast(Src, t);
1724   Args.add(RValue::get(Src), QT);
1725 
1726   // Skip over first argument (Src).
1727   EmitCallArgs(Args, FPT->isVariadic(), FPT->param_type_begin() + 1,
1728                FPT->param_type_end(), ArgBeg + 1, ArgEnd);
1729 
1730   EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, RequiredArgs::All),
1731            Callee, ReturnValueSlot(), Args, D);
1732 }
1733 
1734 void
EmitDelegateCXXConstructorCall(const CXXConstructorDecl * Ctor,CXXCtorType CtorType,const FunctionArgList & Args,SourceLocation Loc)1735 CodeGenFunction::EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
1736                                                 CXXCtorType CtorType,
1737                                                 const FunctionArgList &Args,
1738                                                 SourceLocation Loc) {
1739   CallArgList DelegateArgs;
1740 
1741   FunctionArgList::const_iterator I = Args.begin(), E = Args.end();
1742   assert(I != E && "no parameters to constructor");
1743 
1744   // this
1745   DelegateArgs.add(RValue::get(LoadCXXThis()), (*I)->getType());
1746   ++I;
1747 
1748   // vtt
1749   if (llvm::Value *VTT = GetVTTParameter(GlobalDecl(Ctor, CtorType),
1750                                          /*ForVirtualBase=*/false,
1751                                          /*Delegating=*/true)) {
1752     QualType VoidPP = getContext().getPointerType(getContext().VoidPtrTy);
1753     DelegateArgs.add(RValue::get(VTT), VoidPP);
1754 
1755     if (CGM.getCXXABI().NeedsVTTParameter(CurGD)) {
1756       assert(I != E && "cannot skip vtt parameter, already done with args");
1757       assert((*I)->getType() == VoidPP && "skipping parameter not of vtt type");
1758       ++I;
1759     }
1760   }
1761 
1762   // Explicit arguments.
1763   for (; I != E; ++I) {
1764     const VarDecl *param = *I;
1765     // FIXME: per-argument source location
1766     EmitDelegateCallArg(DelegateArgs, param, Loc);
1767   }
1768 
1769   llvm::Value *Callee = CGM.GetAddrOfCXXConstructor(Ctor, CtorType);
1770   EmitCall(CGM.getTypes().arrangeCXXConstructorDeclaration(Ctor, CtorType),
1771            Callee, ReturnValueSlot(), DelegateArgs, Ctor);
1772 }
1773 
1774 namespace {
1775   struct CallDelegatingCtorDtor : EHScopeStack::Cleanup {
1776     const CXXDestructorDecl *Dtor;
1777     llvm::Value *Addr;
1778     CXXDtorType Type;
1779 
CallDelegatingCtorDtor__anon7aa462240511::CallDelegatingCtorDtor1780     CallDelegatingCtorDtor(const CXXDestructorDecl *D, llvm::Value *Addr,
1781                            CXXDtorType Type)
1782       : Dtor(D), Addr(Addr), Type(Type) {}
1783 
Emit__anon7aa462240511::CallDelegatingCtorDtor1784     void Emit(CodeGenFunction &CGF, Flags flags) override {
1785       CGF.EmitCXXDestructorCall(Dtor, Type, /*ForVirtualBase=*/false,
1786                                 /*Delegating=*/true, Addr);
1787     }
1788   };
1789 }
1790 
1791 void
EmitDelegatingCXXConstructorCall(const CXXConstructorDecl * Ctor,const FunctionArgList & Args)1792 CodeGenFunction::EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
1793                                                   const FunctionArgList &Args) {
1794   assert(Ctor->isDelegatingConstructor());
1795 
1796   llvm::Value *ThisPtr = LoadCXXThis();
1797 
1798   QualType Ty = getContext().getTagDeclType(Ctor->getParent());
1799   CharUnits Alignment = getContext().getTypeAlignInChars(Ty);
1800   AggValueSlot AggSlot =
1801     AggValueSlot::forAddr(ThisPtr, Alignment, Qualifiers(),
1802                           AggValueSlot::IsDestructed,
1803                           AggValueSlot::DoesNotNeedGCBarriers,
1804                           AggValueSlot::IsNotAliased);
1805 
1806   EmitAggExpr(Ctor->init_begin()[0]->getInit(), AggSlot);
1807 
1808   const CXXRecordDecl *ClassDecl = Ctor->getParent();
1809   if (CGM.getLangOpts().Exceptions && !ClassDecl->hasTrivialDestructor()) {
1810     CXXDtorType Type =
1811       CurGD.getCtorType() == Ctor_Complete ? Dtor_Complete : Dtor_Base;
1812 
1813     EHStack.pushCleanup<CallDelegatingCtorDtor>(EHCleanup,
1814                                                 ClassDecl->getDestructor(),
1815                                                 ThisPtr, Type);
1816   }
1817 }
1818 
EmitCXXDestructorCall(const CXXDestructorDecl * DD,CXXDtorType Type,bool ForVirtualBase,bool Delegating,llvm::Value * This)1819 void CodeGenFunction::EmitCXXDestructorCall(const CXXDestructorDecl *DD,
1820                                             CXXDtorType Type,
1821                                             bool ForVirtualBase,
1822                                             bool Delegating,
1823                                             llvm::Value *This) {
1824   CGM.getCXXABI().EmitDestructorCall(*this, DD, Type, ForVirtualBase,
1825                                      Delegating, This);
1826 }
1827 
1828 namespace {
1829   struct CallLocalDtor : EHScopeStack::Cleanup {
1830     const CXXDestructorDecl *Dtor;
1831     llvm::Value *Addr;
1832 
CallLocalDtor__anon7aa462240611::CallLocalDtor1833     CallLocalDtor(const CXXDestructorDecl *D, llvm::Value *Addr)
1834       : Dtor(D), Addr(Addr) {}
1835 
Emit__anon7aa462240611::CallLocalDtor1836     void Emit(CodeGenFunction &CGF, Flags flags) override {
1837       CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
1838                                 /*ForVirtualBase=*/false,
1839                                 /*Delegating=*/false, Addr);
1840     }
1841   };
1842 }
1843 
PushDestructorCleanup(const CXXDestructorDecl * D,llvm::Value * Addr)1844 void CodeGenFunction::PushDestructorCleanup(const CXXDestructorDecl *D,
1845                                             llvm::Value *Addr) {
1846   EHStack.pushCleanup<CallLocalDtor>(NormalAndEHCleanup, D, Addr);
1847 }
1848 
PushDestructorCleanup(QualType T,llvm::Value * Addr)1849 void CodeGenFunction::PushDestructorCleanup(QualType T, llvm::Value *Addr) {
1850   CXXRecordDecl *ClassDecl = T->getAsCXXRecordDecl();
1851   if (!ClassDecl) return;
1852   if (ClassDecl->hasTrivialDestructor()) return;
1853 
1854   const CXXDestructorDecl *D = ClassDecl->getDestructor();
1855   assert(D && D->isUsed() && "destructor not marked as used!");
1856   PushDestructorCleanup(D, Addr);
1857 }
1858 
1859 void
InitializeVTablePointer(BaseSubobject Base,const CXXRecordDecl * NearestVBase,CharUnits OffsetFromNearestVBase,const CXXRecordDecl * VTableClass)1860 CodeGenFunction::InitializeVTablePointer(BaseSubobject Base,
1861                                          const CXXRecordDecl *NearestVBase,
1862                                          CharUnits OffsetFromNearestVBase,
1863                                          const CXXRecordDecl *VTableClass) {
1864   // Compute the address point.
1865   bool NeedsVirtualOffset;
1866   llvm::Value *VTableAddressPoint =
1867       CGM.getCXXABI().getVTableAddressPointInStructor(
1868           *this, VTableClass, Base, NearestVBase, NeedsVirtualOffset);
1869   if (!VTableAddressPoint)
1870     return;
1871 
1872   // Compute where to store the address point.
1873   llvm::Value *VirtualOffset = nullptr;
1874   CharUnits NonVirtualOffset = CharUnits::Zero();
1875 
1876   if (NeedsVirtualOffset) {
1877     // We need to use the virtual base offset offset because the virtual base
1878     // might have a different offset in the most derived class.
1879     VirtualOffset = CGM.getCXXABI().GetVirtualBaseClassOffset(*this,
1880                                                               LoadCXXThis(),
1881                                                               VTableClass,
1882                                                               NearestVBase);
1883     NonVirtualOffset = OffsetFromNearestVBase;
1884   } else {
1885     // We can just use the base offset in the complete class.
1886     NonVirtualOffset = Base.getBaseOffset();
1887   }
1888 
1889   // Apply the offsets.
1890   llvm::Value *VTableField = LoadCXXThis();
1891 
1892   if (!NonVirtualOffset.isZero() || VirtualOffset)
1893     VTableField = ApplyNonVirtualAndVirtualOffset(*this, VTableField,
1894                                                   NonVirtualOffset,
1895                                                   VirtualOffset);
1896 
1897   // Finally, store the address point.
1898   llvm::Type *AddressPointPtrTy =
1899     VTableAddressPoint->getType()->getPointerTo();
1900   VTableField = Builder.CreateBitCast(VTableField, AddressPointPtrTy);
1901   llvm::StoreInst *Store = Builder.CreateStore(VTableAddressPoint, VTableField);
1902   CGM.DecorateInstruction(Store, CGM.getTBAAInfoForVTablePtr());
1903 }
1904 
1905 void
InitializeVTablePointers(BaseSubobject Base,const CXXRecordDecl * NearestVBase,CharUnits OffsetFromNearestVBase,bool BaseIsNonVirtualPrimaryBase,const CXXRecordDecl * VTableClass,VisitedVirtualBasesSetTy & VBases)1906 CodeGenFunction::InitializeVTablePointers(BaseSubobject Base,
1907                                           const CXXRecordDecl *NearestVBase,
1908                                           CharUnits OffsetFromNearestVBase,
1909                                           bool BaseIsNonVirtualPrimaryBase,
1910                                           const CXXRecordDecl *VTableClass,
1911                                           VisitedVirtualBasesSetTy& VBases) {
1912   // If this base is a non-virtual primary base the address point has already
1913   // been set.
1914   if (!BaseIsNonVirtualPrimaryBase) {
1915     // Initialize the vtable pointer for this base.
1916     InitializeVTablePointer(Base, NearestVBase, OffsetFromNearestVBase,
1917                             VTableClass);
1918   }
1919 
1920   const CXXRecordDecl *RD = Base.getBase();
1921 
1922   // Traverse bases.
1923   for (const auto &I : RD->bases()) {
1924     CXXRecordDecl *BaseDecl
1925       = cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl());
1926 
1927     // Ignore classes without a vtable.
1928     if (!BaseDecl->isDynamicClass())
1929       continue;
1930 
1931     CharUnits BaseOffset;
1932     CharUnits BaseOffsetFromNearestVBase;
1933     bool BaseDeclIsNonVirtualPrimaryBase;
1934 
1935     if (I.isVirtual()) {
1936       // Check if we've visited this virtual base before.
1937       if (!VBases.insert(BaseDecl))
1938         continue;
1939 
1940       const ASTRecordLayout &Layout =
1941         getContext().getASTRecordLayout(VTableClass);
1942 
1943       BaseOffset = Layout.getVBaseClassOffset(BaseDecl);
1944       BaseOffsetFromNearestVBase = CharUnits::Zero();
1945       BaseDeclIsNonVirtualPrimaryBase = false;
1946     } else {
1947       const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
1948 
1949       BaseOffset = Base.getBaseOffset() + Layout.getBaseClassOffset(BaseDecl);
1950       BaseOffsetFromNearestVBase =
1951         OffsetFromNearestVBase + Layout.getBaseClassOffset(BaseDecl);
1952       BaseDeclIsNonVirtualPrimaryBase = Layout.getPrimaryBase() == BaseDecl;
1953     }
1954 
1955     InitializeVTablePointers(BaseSubobject(BaseDecl, BaseOffset),
1956                              I.isVirtual() ? BaseDecl : NearestVBase,
1957                              BaseOffsetFromNearestVBase,
1958                              BaseDeclIsNonVirtualPrimaryBase,
1959                              VTableClass, VBases);
1960   }
1961 }
1962 
InitializeVTablePointers(const CXXRecordDecl * RD)1963 void CodeGenFunction::InitializeVTablePointers(const CXXRecordDecl *RD) {
1964   // Ignore classes without a vtable.
1965   if (!RD->isDynamicClass())
1966     return;
1967 
1968   // Initialize the vtable pointers for this class and all of its bases.
1969   VisitedVirtualBasesSetTy VBases;
1970   InitializeVTablePointers(BaseSubobject(RD, CharUnits::Zero()),
1971                            /*NearestVBase=*/nullptr,
1972                            /*OffsetFromNearestVBase=*/CharUnits::Zero(),
1973                            /*BaseIsNonVirtualPrimaryBase=*/false, RD, VBases);
1974 
1975   if (RD->getNumVBases())
1976     CGM.getCXXABI().initializeHiddenVirtualInheritanceMembers(*this, RD);
1977 }
1978 
GetVTablePtr(llvm::Value * This,llvm::Type * Ty)1979 llvm::Value *CodeGenFunction::GetVTablePtr(llvm::Value *This,
1980                                            llvm::Type *Ty) {
1981   llvm::Value *VTablePtrSrc = Builder.CreateBitCast(This, Ty->getPointerTo());
1982   llvm::Instruction *VTable = Builder.CreateLoad(VTablePtrSrc, "vtable");
1983   CGM.DecorateInstruction(VTable, CGM.getTBAAInfoForVTablePtr());
1984   return VTable;
1985 }
1986 
1987 
1988 // FIXME: Ideally Expr::IgnoreParenNoopCasts should do this, but it doesn't do
1989 // quite what we want.
skipNoOpCastsAndParens(const Expr * E)1990 static const Expr *skipNoOpCastsAndParens(const Expr *E) {
1991   while (true) {
1992     if (const ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
1993       E = PE->getSubExpr();
1994       continue;
1995     }
1996 
1997     if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
1998       if (CE->getCastKind() == CK_NoOp) {
1999         E = CE->getSubExpr();
2000         continue;
2001       }
2002     }
2003     if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
2004       if (UO->getOpcode() == UO_Extension) {
2005         E = UO->getSubExpr();
2006         continue;
2007       }
2008     }
2009     return E;
2010   }
2011 }
2012 
2013 bool
CanDevirtualizeMemberFunctionCall(const Expr * Base,const CXXMethodDecl * MD)2014 CodeGenFunction::CanDevirtualizeMemberFunctionCall(const Expr *Base,
2015                                                    const CXXMethodDecl *MD) {
2016   // When building with -fapple-kext, all calls must go through the vtable since
2017   // the kernel linker can do runtime patching of vtables.
2018   if (getLangOpts().AppleKext)
2019     return false;
2020 
2021   // If the most derived class is marked final, we know that no subclass can
2022   // override this member function and so we can devirtualize it. For example:
2023   //
2024   // struct A { virtual void f(); }
2025   // struct B final : A { };
2026   //
2027   // void f(B *b) {
2028   //   b->f();
2029   // }
2030   //
2031   const CXXRecordDecl *MostDerivedClassDecl = Base->getBestDynamicClassType();
2032   if (MostDerivedClassDecl->hasAttr<FinalAttr>())
2033     return true;
2034 
2035   // If the member function is marked 'final', we know that it can't be
2036   // overridden and can therefore devirtualize it.
2037   if (MD->hasAttr<FinalAttr>())
2038     return true;
2039 
2040   // Similarly, if the class itself is marked 'final' it can't be overridden
2041   // and we can therefore devirtualize the member function call.
2042   if (MD->getParent()->hasAttr<FinalAttr>())
2043     return true;
2044 
2045   Base = skipNoOpCastsAndParens(Base);
2046   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) {
2047     if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl())) {
2048       // This is a record decl. We know the type and can devirtualize it.
2049       return VD->getType()->isRecordType();
2050     }
2051 
2052     return false;
2053   }
2054 
2055   // We can devirtualize calls on an object accessed by a class member access
2056   // expression, since by C++11 [basic.life]p6 we know that it can't refer to
2057   // a derived class object constructed in the same location.
2058   if (const MemberExpr *ME = dyn_cast<MemberExpr>(Base))
2059     if (const ValueDecl *VD = dyn_cast<ValueDecl>(ME->getMemberDecl()))
2060       return VD->getType()->isRecordType();
2061 
2062   // We can always devirtualize calls on temporary object expressions.
2063   if (isa<CXXConstructExpr>(Base))
2064     return true;
2065 
2066   // And calls on bound temporaries.
2067   if (isa<CXXBindTemporaryExpr>(Base))
2068     return true;
2069 
2070   // Check if this is a call expr that returns a record type.
2071   if (const CallExpr *CE = dyn_cast<CallExpr>(Base))
2072     return CE->getCallReturnType()->isRecordType();
2073 
2074   // We can't devirtualize the call.
2075   return false;
2076 }
2077 
2078 llvm::Value *
EmitCXXOperatorMemberCallee(const CXXOperatorCallExpr * E,const CXXMethodDecl * MD,llvm::Value * This)2079 CodeGenFunction::EmitCXXOperatorMemberCallee(const CXXOperatorCallExpr *E,
2080                                              const CXXMethodDecl *MD,
2081                                              llvm::Value *This) {
2082   llvm::FunctionType *fnType =
2083     CGM.getTypes().GetFunctionType(
2084                              CGM.getTypes().arrangeCXXMethodDeclaration(MD));
2085 
2086   if (MD->isVirtual() && !CanDevirtualizeMemberFunctionCall(E->getArg(0), MD))
2087     return CGM.getCXXABI().getVirtualFunctionPointer(*this, MD, This, fnType);
2088 
2089   return CGM.GetAddrOfFunction(MD, fnType);
2090 }
2091 
EmitForwardingCallToLambda(const CXXMethodDecl * callOperator,CallArgList & callArgs)2092 void CodeGenFunction::EmitForwardingCallToLambda(
2093                                       const CXXMethodDecl *callOperator,
2094                                       CallArgList &callArgs) {
2095   // Get the address of the call operator.
2096   const CGFunctionInfo &calleeFnInfo =
2097     CGM.getTypes().arrangeCXXMethodDeclaration(callOperator);
2098   llvm::Value *callee =
2099     CGM.GetAddrOfFunction(GlobalDecl(callOperator),
2100                           CGM.getTypes().GetFunctionType(calleeFnInfo));
2101 
2102   // Prepare the return slot.
2103   const FunctionProtoType *FPT =
2104     callOperator->getType()->castAs<FunctionProtoType>();
2105   QualType resultType = FPT->getReturnType();
2106   ReturnValueSlot returnSlot;
2107   if (!resultType->isVoidType() &&
2108       calleeFnInfo.getReturnInfo().getKind() == ABIArgInfo::Indirect &&
2109       !hasScalarEvaluationKind(calleeFnInfo.getReturnType()))
2110     returnSlot = ReturnValueSlot(ReturnValue, resultType.isVolatileQualified());
2111 
2112   // We don't need to separately arrange the call arguments because
2113   // the call can't be variadic anyway --- it's impossible to forward
2114   // variadic arguments.
2115 
2116   // Now emit our call.
2117   RValue RV = EmitCall(calleeFnInfo, callee, returnSlot,
2118                        callArgs, callOperator);
2119 
2120   // If necessary, copy the returned value into the slot.
2121   if (!resultType->isVoidType() && returnSlot.isNull())
2122     EmitReturnOfRValue(RV, resultType);
2123   else
2124     EmitBranchThroughCleanup(ReturnBlock);
2125 }
2126 
EmitLambdaBlockInvokeBody()2127 void CodeGenFunction::EmitLambdaBlockInvokeBody() {
2128   const BlockDecl *BD = BlockInfo->getBlockDecl();
2129   const VarDecl *variable = BD->capture_begin()->getVariable();
2130   const CXXRecordDecl *Lambda = variable->getType()->getAsCXXRecordDecl();
2131 
2132   // Start building arguments for forwarding call
2133   CallArgList CallArgs;
2134 
2135   QualType ThisType = getContext().getPointerType(getContext().getRecordType(Lambda));
2136   llvm::Value *ThisPtr = GetAddrOfBlockDecl(variable, false);
2137   CallArgs.add(RValue::get(ThisPtr), ThisType);
2138 
2139   // Add the rest of the parameters.
2140   for (auto param : BD->params())
2141     EmitDelegateCallArg(CallArgs, param, param->getLocStart());
2142 
2143   assert(!Lambda->isGenericLambda() &&
2144             "generic lambda interconversion to block not implemented");
2145   EmitForwardingCallToLambda(Lambda->getLambdaCallOperator(), CallArgs);
2146 }
2147 
EmitLambdaToBlockPointerBody(FunctionArgList & Args)2148 void CodeGenFunction::EmitLambdaToBlockPointerBody(FunctionArgList &Args) {
2149   if (cast<CXXMethodDecl>(CurCodeDecl)->isVariadic()) {
2150     // FIXME: Making this work correctly is nasty because it requires either
2151     // cloning the body of the call operator or making the call operator forward.
2152     CGM.ErrorUnsupported(CurCodeDecl, "lambda conversion to variadic function");
2153     return;
2154   }
2155 
2156   EmitFunctionBody(Args, cast<FunctionDecl>(CurGD.getDecl())->getBody());
2157 }
2158 
EmitLambdaDelegatingInvokeBody(const CXXMethodDecl * MD)2159 void CodeGenFunction::EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD) {
2160   const CXXRecordDecl *Lambda = MD->getParent();
2161 
2162   // Start building arguments for forwarding call
2163   CallArgList CallArgs;
2164 
2165   QualType ThisType = getContext().getPointerType(getContext().getRecordType(Lambda));
2166   llvm::Value *ThisPtr = llvm::UndefValue::get(getTypes().ConvertType(ThisType));
2167   CallArgs.add(RValue::get(ThisPtr), ThisType);
2168 
2169   // Add the rest of the parameters.
2170   for (auto Param : MD->params())
2171     EmitDelegateCallArg(CallArgs, Param, Param->getLocStart());
2172 
2173   const CXXMethodDecl *CallOp = Lambda->getLambdaCallOperator();
2174   // For a generic lambda, find the corresponding call operator specialization
2175   // to which the call to the static-invoker shall be forwarded.
2176   if (Lambda->isGenericLambda()) {
2177     assert(MD->isFunctionTemplateSpecialization());
2178     const TemplateArgumentList *TAL = MD->getTemplateSpecializationArgs();
2179     FunctionTemplateDecl *CallOpTemplate = CallOp->getDescribedFunctionTemplate();
2180     void *InsertPos = nullptr;
2181     FunctionDecl *CorrespondingCallOpSpecialization =
2182         CallOpTemplate->findSpecialization(TAL->asArray(), InsertPos);
2183     assert(CorrespondingCallOpSpecialization);
2184     CallOp = cast<CXXMethodDecl>(CorrespondingCallOpSpecialization);
2185   }
2186   EmitForwardingCallToLambda(CallOp, CallArgs);
2187 }
2188 
EmitLambdaStaticInvokeFunction(const CXXMethodDecl * MD)2189 void CodeGenFunction::EmitLambdaStaticInvokeFunction(const CXXMethodDecl *MD) {
2190   if (MD->isVariadic()) {
2191     // FIXME: Making this work correctly is nasty because it requires either
2192     // cloning the body of the call operator or making the call operator forward.
2193     CGM.ErrorUnsupported(MD, "lambda conversion to variadic function");
2194     return;
2195   }
2196 
2197   EmitLambdaDelegatingInvokeBody(MD);
2198 }
2199