1 //===--- CGClass.cpp - Emit LLVM Code for C++ classes ---------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code dealing with C++ code generation of classes
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "CGBlocks.h"
15 #include "CGCXXABI.h"
16 #include "CGDebugInfo.h"
17 #include "CGRecordLayout.h"
18 #include "CodeGenFunction.h"
19 #include "clang/AST/CXXInheritance.h"
20 #include "clang/AST/DeclTemplate.h"
21 #include "clang/AST/EvaluatedExprVisitor.h"
22 #include "clang/AST/RecordLayout.h"
23 #include "clang/AST/StmtCXX.h"
24 #include "clang/Basic/TargetBuiltins.h"
25 #include "clang/CodeGen/CGFunctionInfo.h"
26 #include "clang/Frontend/CodeGenOptions.h"
27
28 using namespace clang;
29 using namespace CodeGen;
30
31 static CharUnits
ComputeNonVirtualBaseClassOffset(ASTContext & Context,const CXXRecordDecl * DerivedClass,CastExpr::path_const_iterator Start,CastExpr::path_const_iterator End)32 ComputeNonVirtualBaseClassOffset(ASTContext &Context,
33 const CXXRecordDecl *DerivedClass,
34 CastExpr::path_const_iterator Start,
35 CastExpr::path_const_iterator End) {
36 CharUnits Offset = CharUnits::Zero();
37
38 const CXXRecordDecl *RD = DerivedClass;
39
40 for (CastExpr::path_const_iterator I = Start; I != End; ++I) {
41 const CXXBaseSpecifier *Base = *I;
42 assert(!Base->isVirtual() && "Should not see virtual bases here!");
43
44 // Get the layout.
45 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
46
47 const CXXRecordDecl *BaseDecl =
48 cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
49
50 // Add the offset.
51 Offset += Layout.getBaseClassOffset(BaseDecl);
52
53 RD = BaseDecl;
54 }
55
56 return Offset;
57 }
58
59 llvm::Constant *
GetNonVirtualBaseClassOffset(const CXXRecordDecl * ClassDecl,CastExpr::path_const_iterator PathBegin,CastExpr::path_const_iterator PathEnd)60 CodeGenModule::GetNonVirtualBaseClassOffset(const CXXRecordDecl *ClassDecl,
61 CastExpr::path_const_iterator PathBegin,
62 CastExpr::path_const_iterator PathEnd) {
63 assert(PathBegin != PathEnd && "Base path should not be empty!");
64
65 CharUnits Offset =
66 ComputeNonVirtualBaseClassOffset(getContext(), ClassDecl,
67 PathBegin, PathEnd);
68 if (Offset.isZero())
69 return nullptr;
70
71 llvm::Type *PtrDiffTy =
72 Types.ConvertType(getContext().getPointerDiffType());
73
74 return llvm::ConstantInt::get(PtrDiffTy, Offset.getQuantity());
75 }
76
77 /// Gets the address of a direct base class within a complete object.
78 /// This should only be used for (1) non-virtual bases or (2) virtual bases
79 /// when the type is known to be complete (e.g. in complete destructors).
80 ///
81 /// The object pointed to by 'This' is assumed to be non-null.
82 llvm::Value *
GetAddressOfDirectBaseInCompleteClass(llvm::Value * This,const CXXRecordDecl * Derived,const CXXRecordDecl * Base,bool BaseIsVirtual)83 CodeGenFunction::GetAddressOfDirectBaseInCompleteClass(llvm::Value *This,
84 const CXXRecordDecl *Derived,
85 const CXXRecordDecl *Base,
86 bool BaseIsVirtual) {
87 // 'this' must be a pointer (in some address space) to Derived.
88 assert(This->getType()->isPointerTy() &&
89 cast<llvm::PointerType>(This->getType())->getElementType()
90 == ConvertType(Derived));
91
92 // Compute the offset of the virtual base.
93 CharUnits Offset;
94 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(Derived);
95 if (BaseIsVirtual)
96 Offset = Layout.getVBaseClassOffset(Base);
97 else
98 Offset = Layout.getBaseClassOffset(Base);
99
100 // Shift and cast down to the base type.
101 // TODO: for complete types, this should be possible with a GEP.
102 llvm::Value *V = This;
103 if (Offset.isPositive()) {
104 V = Builder.CreateBitCast(V, Int8PtrTy);
105 V = Builder.CreateConstInBoundsGEP1_64(V, Offset.getQuantity());
106 }
107 V = Builder.CreateBitCast(V, ConvertType(Base)->getPointerTo());
108
109 return V;
110 }
111
112 static llvm::Value *
ApplyNonVirtualAndVirtualOffset(CodeGenFunction & CGF,llvm::Value * ptr,CharUnits nonVirtualOffset,llvm::Value * virtualOffset)113 ApplyNonVirtualAndVirtualOffset(CodeGenFunction &CGF, llvm::Value *ptr,
114 CharUnits nonVirtualOffset,
115 llvm::Value *virtualOffset) {
116 // Assert that we have something to do.
117 assert(!nonVirtualOffset.isZero() || virtualOffset != nullptr);
118
119 // Compute the offset from the static and dynamic components.
120 llvm::Value *baseOffset;
121 if (!nonVirtualOffset.isZero()) {
122 baseOffset = llvm::ConstantInt::get(CGF.PtrDiffTy,
123 nonVirtualOffset.getQuantity());
124 if (virtualOffset) {
125 baseOffset = CGF.Builder.CreateAdd(virtualOffset, baseOffset);
126 }
127 } else {
128 baseOffset = virtualOffset;
129 }
130
131 // Apply the base offset.
132 ptr = CGF.Builder.CreateBitCast(ptr, CGF.Int8PtrTy);
133 ptr = CGF.Builder.CreateInBoundsGEP(ptr, baseOffset, "add.ptr");
134 return ptr;
135 }
136
137 llvm::Value *
GetAddressOfBaseClass(llvm::Value * Value,const CXXRecordDecl * Derived,CastExpr::path_const_iterator PathBegin,CastExpr::path_const_iterator PathEnd,bool NullCheckValue)138 CodeGenFunction::GetAddressOfBaseClass(llvm::Value *Value,
139 const CXXRecordDecl *Derived,
140 CastExpr::path_const_iterator PathBegin,
141 CastExpr::path_const_iterator PathEnd,
142 bool NullCheckValue) {
143 assert(PathBegin != PathEnd && "Base path should not be empty!");
144
145 CastExpr::path_const_iterator Start = PathBegin;
146 const CXXRecordDecl *VBase = nullptr;
147
148 // Sema has done some convenient canonicalization here: if the
149 // access path involved any virtual steps, the conversion path will
150 // *start* with a step down to the correct virtual base subobject,
151 // and hence will not require any further steps.
152 if ((*Start)->isVirtual()) {
153 VBase =
154 cast<CXXRecordDecl>((*Start)->getType()->getAs<RecordType>()->getDecl());
155 ++Start;
156 }
157
158 // Compute the static offset of the ultimate destination within its
159 // allocating subobject (the virtual base, if there is one, or else
160 // the "complete" object that we see).
161 CharUnits NonVirtualOffset =
162 ComputeNonVirtualBaseClassOffset(getContext(), VBase ? VBase : Derived,
163 Start, PathEnd);
164
165 // If there's a virtual step, we can sometimes "devirtualize" it.
166 // For now, that's limited to when the derived type is final.
167 // TODO: "devirtualize" this for accesses to known-complete objects.
168 if (VBase && Derived->hasAttr<FinalAttr>()) {
169 const ASTRecordLayout &layout = getContext().getASTRecordLayout(Derived);
170 CharUnits vBaseOffset = layout.getVBaseClassOffset(VBase);
171 NonVirtualOffset += vBaseOffset;
172 VBase = nullptr; // we no longer have a virtual step
173 }
174
175 // Get the base pointer type.
176 llvm::Type *BasePtrTy =
177 ConvertType((PathEnd[-1])->getType())->getPointerTo();
178
179 // If the static offset is zero and we don't have a virtual step,
180 // just do a bitcast; null checks are unnecessary.
181 if (NonVirtualOffset.isZero() && !VBase) {
182 return Builder.CreateBitCast(Value, BasePtrTy);
183 }
184
185 llvm::BasicBlock *origBB = nullptr;
186 llvm::BasicBlock *endBB = nullptr;
187
188 // Skip over the offset (and the vtable load) if we're supposed to
189 // null-check the pointer.
190 if (NullCheckValue) {
191 origBB = Builder.GetInsertBlock();
192 llvm::BasicBlock *notNullBB = createBasicBlock("cast.notnull");
193 endBB = createBasicBlock("cast.end");
194
195 llvm::Value *isNull = Builder.CreateIsNull(Value);
196 Builder.CreateCondBr(isNull, endBB, notNullBB);
197 EmitBlock(notNullBB);
198 }
199
200 // Compute the virtual offset.
201 llvm::Value *VirtualOffset = nullptr;
202 if (VBase) {
203 VirtualOffset =
204 CGM.getCXXABI().GetVirtualBaseClassOffset(*this, Value, Derived, VBase);
205 }
206
207 // Apply both offsets.
208 Value = ApplyNonVirtualAndVirtualOffset(*this, Value,
209 NonVirtualOffset,
210 VirtualOffset);
211
212 // Cast to the destination type.
213 Value = Builder.CreateBitCast(Value, BasePtrTy);
214
215 // Build a phi if we needed a null check.
216 if (NullCheckValue) {
217 llvm::BasicBlock *notNullBB = Builder.GetInsertBlock();
218 Builder.CreateBr(endBB);
219 EmitBlock(endBB);
220
221 llvm::PHINode *PHI = Builder.CreatePHI(BasePtrTy, 2, "cast.result");
222 PHI->addIncoming(Value, notNullBB);
223 PHI->addIncoming(llvm::Constant::getNullValue(BasePtrTy), origBB);
224 Value = PHI;
225 }
226
227 return Value;
228 }
229
230 llvm::Value *
GetAddressOfDerivedClass(llvm::Value * Value,const CXXRecordDecl * Derived,CastExpr::path_const_iterator PathBegin,CastExpr::path_const_iterator PathEnd,bool NullCheckValue)231 CodeGenFunction::GetAddressOfDerivedClass(llvm::Value *Value,
232 const CXXRecordDecl *Derived,
233 CastExpr::path_const_iterator PathBegin,
234 CastExpr::path_const_iterator PathEnd,
235 bool NullCheckValue) {
236 assert(PathBegin != PathEnd && "Base path should not be empty!");
237
238 QualType DerivedTy =
239 getContext().getCanonicalType(getContext().getTagDeclType(Derived));
240 llvm::Type *DerivedPtrTy = ConvertType(DerivedTy)->getPointerTo();
241
242 llvm::Value *NonVirtualOffset =
243 CGM.GetNonVirtualBaseClassOffset(Derived, PathBegin, PathEnd);
244
245 if (!NonVirtualOffset) {
246 // No offset, we can just cast back.
247 return Builder.CreateBitCast(Value, DerivedPtrTy);
248 }
249
250 llvm::BasicBlock *CastNull = nullptr;
251 llvm::BasicBlock *CastNotNull = nullptr;
252 llvm::BasicBlock *CastEnd = nullptr;
253
254 if (NullCheckValue) {
255 CastNull = createBasicBlock("cast.null");
256 CastNotNull = createBasicBlock("cast.notnull");
257 CastEnd = createBasicBlock("cast.end");
258
259 llvm::Value *IsNull = Builder.CreateIsNull(Value);
260 Builder.CreateCondBr(IsNull, CastNull, CastNotNull);
261 EmitBlock(CastNotNull);
262 }
263
264 // Apply the offset.
265 Value = Builder.CreateBitCast(Value, Int8PtrTy);
266 Value = Builder.CreateGEP(Value, Builder.CreateNeg(NonVirtualOffset),
267 "sub.ptr");
268
269 // Just cast.
270 Value = Builder.CreateBitCast(Value, DerivedPtrTy);
271
272 if (NullCheckValue) {
273 Builder.CreateBr(CastEnd);
274 EmitBlock(CastNull);
275 Builder.CreateBr(CastEnd);
276 EmitBlock(CastEnd);
277
278 llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2);
279 PHI->addIncoming(Value, CastNotNull);
280 PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()),
281 CastNull);
282 Value = PHI;
283 }
284
285 return Value;
286 }
287
GetVTTParameter(GlobalDecl GD,bool ForVirtualBase,bool Delegating)288 llvm::Value *CodeGenFunction::GetVTTParameter(GlobalDecl GD,
289 bool ForVirtualBase,
290 bool Delegating) {
291 if (!CGM.getCXXABI().NeedsVTTParameter(GD)) {
292 // This constructor/destructor does not need a VTT parameter.
293 return nullptr;
294 }
295
296 const CXXRecordDecl *RD = cast<CXXMethodDecl>(CurCodeDecl)->getParent();
297 const CXXRecordDecl *Base = cast<CXXMethodDecl>(GD.getDecl())->getParent();
298
299 llvm::Value *VTT;
300
301 uint64_t SubVTTIndex;
302
303 if (Delegating) {
304 // If this is a delegating constructor call, just load the VTT.
305 return LoadCXXVTT();
306 } else if (RD == Base) {
307 // If the record matches the base, this is the complete ctor/dtor
308 // variant calling the base variant in a class with virtual bases.
309 assert(!CGM.getCXXABI().NeedsVTTParameter(CurGD) &&
310 "doing no-op VTT offset in base dtor/ctor?");
311 assert(!ForVirtualBase && "Can't have same class as virtual base!");
312 SubVTTIndex = 0;
313 } else {
314 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
315 CharUnits BaseOffset = ForVirtualBase ?
316 Layout.getVBaseClassOffset(Base) :
317 Layout.getBaseClassOffset(Base);
318
319 SubVTTIndex =
320 CGM.getVTables().getSubVTTIndex(RD, BaseSubobject(Base, BaseOffset));
321 assert(SubVTTIndex != 0 && "Sub-VTT index must be greater than zero!");
322 }
323
324 if (CGM.getCXXABI().NeedsVTTParameter(CurGD)) {
325 // A VTT parameter was passed to the constructor, use it.
326 VTT = LoadCXXVTT();
327 VTT = Builder.CreateConstInBoundsGEP1_64(VTT, SubVTTIndex);
328 } else {
329 // We're the complete constructor, so get the VTT by name.
330 VTT = CGM.getVTables().GetAddrOfVTT(RD);
331 VTT = Builder.CreateConstInBoundsGEP2_64(VTT, 0, SubVTTIndex);
332 }
333
334 return VTT;
335 }
336
337 namespace {
338 /// Call the destructor for a direct base class.
339 struct CallBaseDtor : EHScopeStack::Cleanup {
340 const CXXRecordDecl *BaseClass;
341 bool BaseIsVirtual;
CallBaseDtor__anon7aa462240111::CallBaseDtor342 CallBaseDtor(const CXXRecordDecl *Base, bool BaseIsVirtual)
343 : BaseClass(Base), BaseIsVirtual(BaseIsVirtual) {}
344
Emit__anon7aa462240111::CallBaseDtor345 void Emit(CodeGenFunction &CGF, Flags flags) override {
346 const CXXRecordDecl *DerivedClass =
347 cast<CXXMethodDecl>(CGF.CurCodeDecl)->getParent();
348
349 const CXXDestructorDecl *D = BaseClass->getDestructor();
350 llvm::Value *Addr =
351 CGF.GetAddressOfDirectBaseInCompleteClass(CGF.LoadCXXThis(),
352 DerivedClass, BaseClass,
353 BaseIsVirtual);
354 CGF.EmitCXXDestructorCall(D, Dtor_Base, BaseIsVirtual,
355 /*Delegating=*/false, Addr);
356 }
357 };
358
359 /// A visitor which checks whether an initializer uses 'this' in a
360 /// way which requires the vtable to be properly set.
361 struct DynamicThisUseChecker : EvaluatedExprVisitor<DynamicThisUseChecker> {
362 typedef EvaluatedExprVisitor<DynamicThisUseChecker> super;
363
364 bool UsesThis;
365
DynamicThisUseChecker__anon7aa462240111::DynamicThisUseChecker366 DynamicThisUseChecker(ASTContext &C) : super(C), UsesThis(false) {}
367
368 // Black-list all explicit and implicit references to 'this'.
369 //
370 // Do we need to worry about external references to 'this' derived
371 // from arbitrary code? If so, then anything which runs arbitrary
372 // external code might potentially access the vtable.
VisitCXXThisExpr__anon7aa462240111::DynamicThisUseChecker373 void VisitCXXThisExpr(CXXThisExpr *E) { UsesThis = true; }
374 };
375 }
376
BaseInitializerUsesThis(ASTContext & C,const Expr * Init)377 static bool BaseInitializerUsesThis(ASTContext &C, const Expr *Init) {
378 DynamicThisUseChecker Checker(C);
379 Checker.Visit(const_cast<Expr*>(Init));
380 return Checker.UsesThis;
381 }
382
EmitBaseInitializer(CodeGenFunction & CGF,const CXXRecordDecl * ClassDecl,CXXCtorInitializer * BaseInit,CXXCtorType CtorType)383 static void EmitBaseInitializer(CodeGenFunction &CGF,
384 const CXXRecordDecl *ClassDecl,
385 CXXCtorInitializer *BaseInit,
386 CXXCtorType CtorType) {
387 assert(BaseInit->isBaseInitializer() &&
388 "Must have base initializer!");
389
390 llvm::Value *ThisPtr = CGF.LoadCXXThis();
391
392 const Type *BaseType = BaseInit->getBaseClass();
393 CXXRecordDecl *BaseClassDecl =
394 cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl());
395
396 bool isBaseVirtual = BaseInit->isBaseVirtual();
397
398 // The base constructor doesn't construct virtual bases.
399 if (CtorType == Ctor_Base && isBaseVirtual)
400 return;
401
402 // If the initializer for the base (other than the constructor
403 // itself) accesses 'this' in any way, we need to initialize the
404 // vtables.
405 if (BaseInitializerUsesThis(CGF.getContext(), BaseInit->getInit()))
406 CGF.InitializeVTablePointers(ClassDecl);
407
408 // We can pretend to be a complete class because it only matters for
409 // virtual bases, and we only do virtual bases for complete ctors.
410 llvm::Value *V =
411 CGF.GetAddressOfDirectBaseInCompleteClass(ThisPtr, ClassDecl,
412 BaseClassDecl,
413 isBaseVirtual);
414 CharUnits Alignment = CGF.getContext().getTypeAlignInChars(BaseType);
415 AggValueSlot AggSlot =
416 AggValueSlot::forAddr(V, Alignment, Qualifiers(),
417 AggValueSlot::IsDestructed,
418 AggValueSlot::DoesNotNeedGCBarriers,
419 AggValueSlot::IsNotAliased);
420
421 CGF.EmitAggExpr(BaseInit->getInit(), AggSlot);
422
423 if (CGF.CGM.getLangOpts().Exceptions &&
424 !BaseClassDecl->hasTrivialDestructor())
425 CGF.EHStack.pushCleanup<CallBaseDtor>(EHCleanup, BaseClassDecl,
426 isBaseVirtual);
427 }
428
EmitAggMemberInitializer(CodeGenFunction & CGF,LValue LHS,Expr * Init,llvm::Value * ArrayIndexVar,QualType T,ArrayRef<VarDecl * > ArrayIndexes,unsigned Index)429 static void EmitAggMemberInitializer(CodeGenFunction &CGF,
430 LValue LHS,
431 Expr *Init,
432 llvm::Value *ArrayIndexVar,
433 QualType T,
434 ArrayRef<VarDecl *> ArrayIndexes,
435 unsigned Index) {
436 if (Index == ArrayIndexes.size()) {
437 LValue LV = LHS;
438
439 if (ArrayIndexVar) {
440 // If we have an array index variable, load it and use it as an offset.
441 // Then, increment the value.
442 llvm::Value *Dest = LHS.getAddress();
443 llvm::Value *ArrayIndex = CGF.Builder.CreateLoad(ArrayIndexVar);
444 Dest = CGF.Builder.CreateInBoundsGEP(Dest, ArrayIndex, "destaddress");
445 llvm::Value *Next = llvm::ConstantInt::get(ArrayIndex->getType(), 1);
446 Next = CGF.Builder.CreateAdd(ArrayIndex, Next, "inc");
447 CGF.Builder.CreateStore(Next, ArrayIndexVar);
448
449 // Update the LValue.
450 LV.setAddress(Dest);
451 CharUnits Align = CGF.getContext().getTypeAlignInChars(T);
452 LV.setAlignment(std::min(Align, LV.getAlignment()));
453 }
454
455 switch (CGF.getEvaluationKind(T)) {
456 case TEK_Scalar:
457 CGF.EmitScalarInit(Init, /*decl*/ nullptr, LV, false);
458 break;
459 case TEK_Complex:
460 CGF.EmitComplexExprIntoLValue(Init, LV, /*isInit*/ true);
461 break;
462 case TEK_Aggregate: {
463 AggValueSlot Slot =
464 AggValueSlot::forLValue(LV,
465 AggValueSlot::IsDestructed,
466 AggValueSlot::DoesNotNeedGCBarriers,
467 AggValueSlot::IsNotAliased);
468
469 CGF.EmitAggExpr(Init, Slot);
470 break;
471 }
472 }
473
474 return;
475 }
476
477 const ConstantArrayType *Array = CGF.getContext().getAsConstantArrayType(T);
478 assert(Array && "Array initialization without the array type?");
479 llvm::Value *IndexVar
480 = CGF.GetAddrOfLocalVar(ArrayIndexes[Index]);
481 assert(IndexVar && "Array index variable not loaded");
482
483 // Initialize this index variable to zero.
484 llvm::Value* Zero
485 = llvm::Constant::getNullValue(
486 CGF.ConvertType(CGF.getContext().getSizeType()));
487 CGF.Builder.CreateStore(Zero, IndexVar);
488
489 // Start the loop with a block that tests the condition.
490 llvm::BasicBlock *CondBlock = CGF.createBasicBlock("for.cond");
491 llvm::BasicBlock *AfterFor = CGF.createBasicBlock("for.end");
492
493 CGF.EmitBlock(CondBlock);
494
495 llvm::BasicBlock *ForBody = CGF.createBasicBlock("for.body");
496 // Generate: if (loop-index < number-of-elements) fall to the loop body,
497 // otherwise, go to the block after the for-loop.
498 uint64_t NumElements = Array->getSize().getZExtValue();
499 llvm::Value *Counter = CGF.Builder.CreateLoad(IndexVar);
500 llvm::Value *NumElementsPtr =
501 llvm::ConstantInt::get(Counter->getType(), NumElements);
502 llvm::Value *IsLess = CGF.Builder.CreateICmpULT(Counter, NumElementsPtr,
503 "isless");
504
505 // If the condition is true, execute the body.
506 CGF.Builder.CreateCondBr(IsLess, ForBody, AfterFor);
507
508 CGF.EmitBlock(ForBody);
509 llvm::BasicBlock *ContinueBlock = CGF.createBasicBlock("for.inc");
510
511 // Inside the loop body recurse to emit the inner loop or, eventually, the
512 // constructor call.
513 EmitAggMemberInitializer(CGF, LHS, Init, ArrayIndexVar,
514 Array->getElementType(), ArrayIndexes, Index + 1);
515
516 CGF.EmitBlock(ContinueBlock);
517
518 // Emit the increment of the loop counter.
519 llvm::Value *NextVal = llvm::ConstantInt::get(Counter->getType(), 1);
520 Counter = CGF.Builder.CreateLoad(IndexVar);
521 NextVal = CGF.Builder.CreateAdd(Counter, NextVal, "inc");
522 CGF.Builder.CreateStore(NextVal, IndexVar);
523
524 // Finally, branch back up to the condition for the next iteration.
525 CGF.EmitBranch(CondBlock);
526
527 // Emit the fall-through block.
528 CGF.EmitBlock(AfterFor, true);
529 }
530
EmitMemberInitializer(CodeGenFunction & CGF,const CXXRecordDecl * ClassDecl,CXXCtorInitializer * MemberInit,const CXXConstructorDecl * Constructor,FunctionArgList & Args)531 static void EmitMemberInitializer(CodeGenFunction &CGF,
532 const CXXRecordDecl *ClassDecl,
533 CXXCtorInitializer *MemberInit,
534 const CXXConstructorDecl *Constructor,
535 FunctionArgList &Args) {
536 assert(MemberInit->isAnyMemberInitializer() &&
537 "Must have member initializer!");
538 assert(MemberInit->getInit() && "Must have initializer!");
539
540 // non-static data member initializers.
541 FieldDecl *Field = MemberInit->getAnyMember();
542 QualType FieldType = Field->getType();
543
544 llvm::Value *ThisPtr = CGF.LoadCXXThis();
545 QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl);
546 LValue LHS = CGF.MakeNaturalAlignAddrLValue(ThisPtr, RecordTy);
547
548 if (MemberInit->isIndirectMemberInitializer()) {
549 // If we are initializing an anonymous union field, drill down to
550 // the field.
551 IndirectFieldDecl *IndirectField = MemberInit->getIndirectMember();
552 for (const auto *I : IndirectField->chain())
553 LHS = CGF.EmitLValueForFieldInitialization(LHS, cast<FieldDecl>(I));
554 FieldType = MemberInit->getIndirectMember()->getAnonField()->getType();
555 } else {
556 LHS = CGF.EmitLValueForFieldInitialization(LHS, Field);
557 }
558
559 // Special case: if we are in a copy or move constructor, and we are copying
560 // an array of PODs or classes with trivial copy constructors, ignore the
561 // AST and perform the copy we know is equivalent.
562 // FIXME: This is hacky at best... if we had a bit more explicit information
563 // in the AST, we could generalize it more easily.
564 const ConstantArrayType *Array
565 = CGF.getContext().getAsConstantArrayType(FieldType);
566 if (Array && Constructor->isDefaulted() &&
567 Constructor->isCopyOrMoveConstructor()) {
568 QualType BaseElementTy = CGF.getContext().getBaseElementType(Array);
569 CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(MemberInit->getInit());
570 if (BaseElementTy.isPODType(CGF.getContext()) ||
571 (CE && CE->getConstructor()->isTrivial())) {
572 // Find the source pointer. We know it's the last argument because
573 // we know we're in an implicit copy constructor.
574 unsigned SrcArgIndex = Args.size() - 1;
575 llvm::Value *SrcPtr
576 = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(Args[SrcArgIndex]));
577 LValue ThisRHSLV = CGF.MakeNaturalAlignAddrLValue(SrcPtr, RecordTy);
578 LValue Src = CGF.EmitLValueForFieldInitialization(ThisRHSLV, Field);
579
580 // Copy the aggregate.
581 CGF.EmitAggregateCopy(LHS.getAddress(), Src.getAddress(), FieldType,
582 LHS.isVolatileQualified());
583 return;
584 }
585 }
586
587 ArrayRef<VarDecl *> ArrayIndexes;
588 if (MemberInit->getNumArrayIndices())
589 ArrayIndexes = MemberInit->getArrayIndexes();
590 CGF.EmitInitializerForField(Field, LHS, MemberInit->getInit(), ArrayIndexes);
591 }
592
EmitInitializerForField(FieldDecl * Field,LValue LHS,Expr * Init,ArrayRef<VarDecl * > ArrayIndexes)593 void CodeGenFunction::EmitInitializerForField(FieldDecl *Field,
594 LValue LHS, Expr *Init,
595 ArrayRef<VarDecl *> ArrayIndexes) {
596 QualType FieldType = Field->getType();
597 switch (getEvaluationKind(FieldType)) {
598 case TEK_Scalar:
599 if (LHS.isSimple()) {
600 EmitExprAsInit(Init, Field, LHS, false);
601 } else {
602 RValue RHS = RValue::get(EmitScalarExpr(Init));
603 EmitStoreThroughLValue(RHS, LHS);
604 }
605 break;
606 case TEK_Complex:
607 EmitComplexExprIntoLValue(Init, LHS, /*isInit*/ true);
608 break;
609 case TEK_Aggregate: {
610 llvm::Value *ArrayIndexVar = nullptr;
611 if (ArrayIndexes.size()) {
612 llvm::Type *SizeTy = ConvertType(getContext().getSizeType());
613
614 // The LHS is a pointer to the first object we'll be constructing, as
615 // a flat array.
616 QualType BaseElementTy = getContext().getBaseElementType(FieldType);
617 llvm::Type *BasePtr = ConvertType(BaseElementTy);
618 BasePtr = llvm::PointerType::getUnqual(BasePtr);
619 llvm::Value *BaseAddrPtr = Builder.CreateBitCast(LHS.getAddress(),
620 BasePtr);
621 LHS = MakeAddrLValue(BaseAddrPtr, BaseElementTy);
622
623 // Create an array index that will be used to walk over all of the
624 // objects we're constructing.
625 ArrayIndexVar = CreateTempAlloca(SizeTy, "object.index");
626 llvm::Value *Zero = llvm::Constant::getNullValue(SizeTy);
627 Builder.CreateStore(Zero, ArrayIndexVar);
628
629
630 // Emit the block variables for the array indices, if any.
631 for (unsigned I = 0, N = ArrayIndexes.size(); I != N; ++I)
632 EmitAutoVarDecl(*ArrayIndexes[I]);
633 }
634
635 EmitAggMemberInitializer(*this, LHS, Init, ArrayIndexVar, FieldType,
636 ArrayIndexes, 0);
637 }
638 }
639
640 // Ensure that we destroy this object if an exception is thrown
641 // later in the constructor.
642 QualType::DestructionKind dtorKind = FieldType.isDestructedType();
643 if (needsEHCleanup(dtorKind))
644 pushEHDestroy(dtorKind, LHS.getAddress(), FieldType);
645 }
646
647 /// Checks whether the given constructor is a valid subject for the
648 /// complete-to-base constructor delegation optimization, i.e.
649 /// emitting the complete constructor as a simple call to the base
650 /// constructor.
IsConstructorDelegationValid(const CXXConstructorDecl * Ctor)651 static bool IsConstructorDelegationValid(const CXXConstructorDecl *Ctor) {
652
653 // Currently we disable the optimization for classes with virtual
654 // bases because (1) the addresses of parameter variables need to be
655 // consistent across all initializers but (2) the delegate function
656 // call necessarily creates a second copy of the parameter variable.
657 //
658 // The limiting example (purely theoretical AFAIK):
659 // struct A { A(int &c) { c++; } };
660 // struct B : virtual A {
661 // B(int count) : A(count) { printf("%d\n", count); }
662 // };
663 // ...although even this example could in principle be emitted as a
664 // delegation since the address of the parameter doesn't escape.
665 if (Ctor->getParent()->getNumVBases()) {
666 // TODO: white-list trivial vbase initializers. This case wouldn't
667 // be subject to the restrictions below.
668
669 // TODO: white-list cases where:
670 // - there are no non-reference parameters to the constructor
671 // - the initializers don't access any non-reference parameters
672 // - the initializers don't take the address of non-reference
673 // parameters
674 // - etc.
675 // If we ever add any of the above cases, remember that:
676 // - function-try-blocks will always blacklist this optimization
677 // - we need to perform the constructor prologue and cleanup in
678 // EmitConstructorBody.
679
680 return false;
681 }
682
683 // We also disable the optimization for variadic functions because
684 // it's impossible to "re-pass" varargs.
685 if (Ctor->getType()->getAs<FunctionProtoType>()->isVariadic())
686 return false;
687
688 // FIXME: Decide if we can do a delegation of a delegating constructor.
689 if (Ctor->isDelegatingConstructor())
690 return false;
691
692 return true;
693 }
694
695 /// EmitConstructorBody - Emits the body of the current constructor.
EmitConstructorBody(FunctionArgList & Args)696 void CodeGenFunction::EmitConstructorBody(FunctionArgList &Args) {
697 const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(CurGD.getDecl());
698 CXXCtorType CtorType = CurGD.getCtorType();
699
700 assert((CGM.getTarget().getCXXABI().hasConstructorVariants() ||
701 CtorType == Ctor_Complete) &&
702 "can only generate complete ctor for this ABI");
703
704 // Before we go any further, try the complete->base constructor
705 // delegation optimization.
706 if (CtorType == Ctor_Complete && IsConstructorDelegationValid(Ctor) &&
707 CGM.getTarget().getCXXABI().hasConstructorVariants()) {
708 if (CGDebugInfo *DI = getDebugInfo())
709 DI->EmitLocation(Builder, Ctor->getLocEnd());
710 EmitDelegateCXXConstructorCall(Ctor, Ctor_Base, Args, Ctor->getLocEnd());
711 return;
712 }
713
714 Stmt *Body = Ctor->getBody();
715
716 // Enter the function-try-block before the constructor prologue if
717 // applicable.
718 bool IsTryBody = (Body && isa<CXXTryStmt>(Body));
719 if (IsTryBody)
720 EnterCXXTryStmt(*cast<CXXTryStmt>(Body), true);
721
722 RegionCounter Cnt = getPGORegionCounter(Body);
723 Cnt.beginRegion(Builder);
724
725 RunCleanupsScope RunCleanups(*this);
726
727 // TODO: in restricted cases, we can emit the vbase initializers of
728 // a complete ctor and then delegate to the base ctor.
729
730 // Emit the constructor prologue, i.e. the base and member
731 // initializers.
732 EmitCtorPrologue(Ctor, CtorType, Args);
733
734 // Emit the body of the statement.
735 if (IsTryBody)
736 EmitStmt(cast<CXXTryStmt>(Body)->getTryBlock());
737 else if (Body)
738 EmitStmt(Body);
739
740 // Emit any cleanup blocks associated with the member or base
741 // initializers, which includes (along the exceptional path) the
742 // destructors for those members and bases that were fully
743 // constructed.
744 RunCleanups.ForceCleanup();
745
746 if (IsTryBody)
747 ExitCXXTryStmt(*cast<CXXTryStmt>(Body), true);
748 }
749
750 namespace {
751 /// RAII object to indicate that codegen is copying the value representation
752 /// instead of the object representation. Useful when copying a struct or
753 /// class which has uninitialized members and we're only performing
754 /// lvalue-to-rvalue conversion on the object but not its members.
755 class CopyingValueRepresentation {
756 public:
CopyingValueRepresentation(CodeGenFunction & CGF)757 explicit CopyingValueRepresentation(CodeGenFunction &CGF)
758 : CGF(CGF), SO(*CGF.SanOpts), OldSanOpts(CGF.SanOpts) {
759 SO.Bool = false;
760 SO.Enum = false;
761 CGF.SanOpts = &SO;
762 }
~CopyingValueRepresentation()763 ~CopyingValueRepresentation() {
764 CGF.SanOpts = OldSanOpts;
765 }
766 private:
767 CodeGenFunction &CGF;
768 SanitizerOptions SO;
769 const SanitizerOptions *OldSanOpts;
770 };
771 }
772
773 namespace {
774 class FieldMemcpyizer {
775 public:
FieldMemcpyizer(CodeGenFunction & CGF,const CXXRecordDecl * ClassDecl,const VarDecl * SrcRec)776 FieldMemcpyizer(CodeGenFunction &CGF, const CXXRecordDecl *ClassDecl,
777 const VarDecl *SrcRec)
778 : CGF(CGF), ClassDecl(ClassDecl), SrcRec(SrcRec),
779 RecLayout(CGF.getContext().getASTRecordLayout(ClassDecl)),
780 FirstField(nullptr), LastField(nullptr), FirstFieldOffset(0),
781 LastFieldOffset(0), LastAddedFieldIndex(0) {}
782
isMemcpyableField(FieldDecl * F)783 static bool isMemcpyableField(FieldDecl *F) {
784 Qualifiers Qual = F->getType().getQualifiers();
785 if (Qual.hasVolatile() || Qual.hasObjCLifetime())
786 return false;
787 return true;
788 }
789
addMemcpyableField(FieldDecl * F)790 void addMemcpyableField(FieldDecl *F) {
791 if (!FirstField)
792 addInitialField(F);
793 else
794 addNextField(F);
795 }
796
getMemcpySize() const797 CharUnits getMemcpySize() const {
798 unsigned LastFieldSize =
799 LastField->isBitField() ?
800 LastField->getBitWidthValue(CGF.getContext()) :
801 CGF.getContext().getTypeSize(LastField->getType());
802 uint64_t MemcpySizeBits =
803 LastFieldOffset + LastFieldSize - FirstFieldOffset +
804 CGF.getContext().getCharWidth() - 1;
805 CharUnits MemcpySize =
806 CGF.getContext().toCharUnitsFromBits(MemcpySizeBits);
807 return MemcpySize;
808 }
809
emitMemcpy()810 void emitMemcpy() {
811 // Give the subclass a chance to bail out if it feels the memcpy isn't
812 // worth it (e.g. Hasn't aggregated enough data).
813 if (!FirstField) {
814 return;
815 }
816
817 CharUnits Alignment;
818
819 if (FirstField->isBitField()) {
820 const CGRecordLayout &RL =
821 CGF.getTypes().getCGRecordLayout(FirstField->getParent());
822 const CGBitFieldInfo &BFInfo = RL.getBitFieldInfo(FirstField);
823 Alignment = CharUnits::fromQuantity(BFInfo.StorageAlignment);
824 } else {
825 Alignment = CGF.getContext().getDeclAlign(FirstField);
826 }
827
828 assert((CGF.getContext().toCharUnitsFromBits(FirstFieldOffset) %
829 Alignment) == 0 && "Bad field alignment.");
830
831 CharUnits MemcpySize = getMemcpySize();
832 QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl);
833 llvm::Value *ThisPtr = CGF.LoadCXXThis();
834 LValue DestLV = CGF.MakeNaturalAlignAddrLValue(ThisPtr, RecordTy);
835 LValue Dest = CGF.EmitLValueForFieldInitialization(DestLV, FirstField);
836 llvm::Value *SrcPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(SrcRec));
837 LValue SrcLV = CGF.MakeNaturalAlignAddrLValue(SrcPtr, RecordTy);
838 LValue Src = CGF.EmitLValueForFieldInitialization(SrcLV, FirstField);
839
840 emitMemcpyIR(Dest.isBitField() ? Dest.getBitFieldAddr() : Dest.getAddress(),
841 Src.isBitField() ? Src.getBitFieldAddr() : Src.getAddress(),
842 MemcpySize, Alignment);
843 reset();
844 }
845
reset()846 void reset() {
847 FirstField = nullptr;
848 }
849
850 protected:
851 CodeGenFunction &CGF;
852 const CXXRecordDecl *ClassDecl;
853
854 private:
855
emitMemcpyIR(llvm::Value * DestPtr,llvm::Value * SrcPtr,CharUnits Size,CharUnits Alignment)856 void emitMemcpyIR(llvm::Value *DestPtr, llvm::Value *SrcPtr,
857 CharUnits Size, CharUnits Alignment) {
858 llvm::PointerType *DPT = cast<llvm::PointerType>(DestPtr->getType());
859 llvm::Type *DBP =
860 llvm::Type::getInt8PtrTy(CGF.getLLVMContext(), DPT->getAddressSpace());
861 DestPtr = CGF.Builder.CreateBitCast(DestPtr, DBP);
862
863 llvm::PointerType *SPT = cast<llvm::PointerType>(SrcPtr->getType());
864 llvm::Type *SBP =
865 llvm::Type::getInt8PtrTy(CGF.getLLVMContext(), SPT->getAddressSpace());
866 SrcPtr = CGF.Builder.CreateBitCast(SrcPtr, SBP);
867
868 CGF.Builder.CreateMemCpy(DestPtr, SrcPtr, Size.getQuantity(),
869 Alignment.getQuantity());
870 }
871
addInitialField(FieldDecl * F)872 void addInitialField(FieldDecl *F) {
873 FirstField = F;
874 LastField = F;
875 FirstFieldOffset = RecLayout.getFieldOffset(F->getFieldIndex());
876 LastFieldOffset = FirstFieldOffset;
877 LastAddedFieldIndex = F->getFieldIndex();
878 return;
879 }
880
addNextField(FieldDecl * F)881 void addNextField(FieldDecl *F) {
882 // For the most part, the following invariant will hold:
883 // F->getFieldIndex() == LastAddedFieldIndex + 1
884 // The one exception is that Sema won't add a copy-initializer for an
885 // unnamed bitfield, which will show up here as a gap in the sequence.
886 assert(F->getFieldIndex() >= LastAddedFieldIndex + 1 &&
887 "Cannot aggregate fields out of order.");
888 LastAddedFieldIndex = F->getFieldIndex();
889
890 // The 'first' and 'last' fields are chosen by offset, rather than field
891 // index. This allows the code to support bitfields, as well as regular
892 // fields.
893 uint64_t FOffset = RecLayout.getFieldOffset(F->getFieldIndex());
894 if (FOffset < FirstFieldOffset) {
895 FirstField = F;
896 FirstFieldOffset = FOffset;
897 } else if (FOffset > LastFieldOffset) {
898 LastField = F;
899 LastFieldOffset = FOffset;
900 }
901 }
902
903 const VarDecl *SrcRec;
904 const ASTRecordLayout &RecLayout;
905 FieldDecl *FirstField;
906 FieldDecl *LastField;
907 uint64_t FirstFieldOffset, LastFieldOffset;
908 unsigned LastAddedFieldIndex;
909 };
910
911 class ConstructorMemcpyizer : public FieldMemcpyizer {
912 private:
913
914 /// Get source argument for copy constructor. Returns null if not a copy
915 /// constructor.
getTrivialCopySource(const CXXConstructorDecl * CD,FunctionArgList & Args)916 static const VarDecl* getTrivialCopySource(const CXXConstructorDecl *CD,
917 FunctionArgList &Args) {
918 if (CD->isCopyOrMoveConstructor() && CD->isDefaulted())
919 return Args[Args.size() - 1];
920 return nullptr;
921 }
922
923 // Returns true if a CXXCtorInitializer represents a member initialization
924 // that can be rolled into a memcpy.
isMemberInitMemcpyable(CXXCtorInitializer * MemberInit) const925 bool isMemberInitMemcpyable(CXXCtorInitializer *MemberInit) const {
926 if (!MemcpyableCtor)
927 return false;
928 FieldDecl *Field = MemberInit->getMember();
929 assert(Field && "No field for member init.");
930 QualType FieldType = Field->getType();
931 CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(MemberInit->getInit());
932
933 // Bail out on non-POD, not-trivially-constructable members.
934 if (!(CE && CE->getConstructor()->isTrivial()) &&
935 !(FieldType.isTriviallyCopyableType(CGF.getContext()) ||
936 FieldType->isReferenceType()))
937 return false;
938
939 // Bail out on volatile fields.
940 if (!isMemcpyableField(Field))
941 return false;
942
943 // Otherwise we're good.
944 return true;
945 }
946
947 public:
ConstructorMemcpyizer(CodeGenFunction & CGF,const CXXConstructorDecl * CD,FunctionArgList & Args)948 ConstructorMemcpyizer(CodeGenFunction &CGF, const CXXConstructorDecl *CD,
949 FunctionArgList &Args)
950 : FieldMemcpyizer(CGF, CD->getParent(), getTrivialCopySource(CD, Args)),
951 ConstructorDecl(CD),
952 MemcpyableCtor(CD->isDefaulted() &&
953 CD->isCopyOrMoveConstructor() &&
954 CGF.getLangOpts().getGC() == LangOptions::NonGC),
955 Args(Args) { }
956
addMemberInitializer(CXXCtorInitializer * MemberInit)957 void addMemberInitializer(CXXCtorInitializer *MemberInit) {
958 if (isMemberInitMemcpyable(MemberInit)) {
959 AggregatedInits.push_back(MemberInit);
960 addMemcpyableField(MemberInit->getMember());
961 } else {
962 emitAggregatedInits();
963 EmitMemberInitializer(CGF, ConstructorDecl->getParent(), MemberInit,
964 ConstructorDecl, Args);
965 }
966 }
967
emitAggregatedInits()968 void emitAggregatedInits() {
969 if (AggregatedInits.size() <= 1) {
970 // This memcpy is too small to be worthwhile. Fall back on default
971 // codegen.
972 if (!AggregatedInits.empty()) {
973 CopyingValueRepresentation CVR(CGF);
974 EmitMemberInitializer(CGF, ConstructorDecl->getParent(),
975 AggregatedInits[0], ConstructorDecl, Args);
976 }
977 reset();
978 return;
979 }
980
981 pushEHDestructors();
982 emitMemcpy();
983 AggregatedInits.clear();
984 }
985
pushEHDestructors()986 void pushEHDestructors() {
987 llvm::Value *ThisPtr = CGF.LoadCXXThis();
988 QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl);
989 LValue LHS = CGF.MakeNaturalAlignAddrLValue(ThisPtr, RecordTy);
990
991 for (unsigned i = 0; i < AggregatedInits.size(); ++i) {
992 QualType FieldType = AggregatedInits[i]->getMember()->getType();
993 QualType::DestructionKind dtorKind = FieldType.isDestructedType();
994 if (CGF.needsEHCleanup(dtorKind))
995 CGF.pushEHDestroy(dtorKind, LHS.getAddress(), FieldType);
996 }
997 }
998
finish()999 void finish() {
1000 emitAggregatedInits();
1001 }
1002
1003 private:
1004 const CXXConstructorDecl *ConstructorDecl;
1005 bool MemcpyableCtor;
1006 FunctionArgList &Args;
1007 SmallVector<CXXCtorInitializer*, 16> AggregatedInits;
1008 };
1009
1010 class AssignmentMemcpyizer : public FieldMemcpyizer {
1011 private:
1012
1013 // Returns the memcpyable field copied by the given statement, if one
1014 // exists. Otherwise returns null.
getMemcpyableField(Stmt * S)1015 FieldDecl *getMemcpyableField(Stmt *S) {
1016 if (!AssignmentsMemcpyable)
1017 return nullptr;
1018 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(S)) {
1019 // Recognise trivial assignments.
1020 if (BO->getOpcode() != BO_Assign)
1021 return nullptr;
1022 MemberExpr *ME = dyn_cast<MemberExpr>(BO->getLHS());
1023 if (!ME)
1024 return nullptr;
1025 FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl());
1026 if (!Field || !isMemcpyableField(Field))
1027 return nullptr;
1028 Stmt *RHS = BO->getRHS();
1029 if (ImplicitCastExpr *EC = dyn_cast<ImplicitCastExpr>(RHS))
1030 RHS = EC->getSubExpr();
1031 if (!RHS)
1032 return nullptr;
1033 MemberExpr *ME2 = dyn_cast<MemberExpr>(RHS);
1034 if (dyn_cast<FieldDecl>(ME2->getMemberDecl()) != Field)
1035 return nullptr;
1036 return Field;
1037 } else if (CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(S)) {
1038 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MCE->getCalleeDecl());
1039 if (!(MD && (MD->isCopyAssignmentOperator() ||
1040 MD->isMoveAssignmentOperator()) &&
1041 MD->isTrivial()))
1042 return nullptr;
1043 MemberExpr *IOA = dyn_cast<MemberExpr>(MCE->getImplicitObjectArgument());
1044 if (!IOA)
1045 return nullptr;
1046 FieldDecl *Field = dyn_cast<FieldDecl>(IOA->getMemberDecl());
1047 if (!Field || !isMemcpyableField(Field))
1048 return nullptr;
1049 MemberExpr *Arg0 = dyn_cast<MemberExpr>(MCE->getArg(0));
1050 if (!Arg0 || Field != dyn_cast<FieldDecl>(Arg0->getMemberDecl()))
1051 return nullptr;
1052 return Field;
1053 } else if (CallExpr *CE = dyn_cast<CallExpr>(S)) {
1054 FunctionDecl *FD = dyn_cast<FunctionDecl>(CE->getCalleeDecl());
1055 if (!FD || FD->getBuiltinID() != Builtin::BI__builtin_memcpy)
1056 return nullptr;
1057 Expr *DstPtr = CE->getArg(0);
1058 if (ImplicitCastExpr *DC = dyn_cast<ImplicitCastExpr>(DstPtr))
1059 DstPtr = DC->getSubExpr();
1060 UnaryOperator *DUO = dyn_cast<UnaryOperator>(DstPtr);
1061 if (!DUO || DUO->getOpcode() != UO_AddrOf)
1062 return nullptr;
1063 MemberExpr *ME = dyn_cast<MemberExpr>(DUO->getSubExpr());
1064 if (!ME)
1065 return nullptr;
1066 FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl());
1067 if (!Field || !isMemcpyableField(Field))
1068 return nullptr;
1069 Expr *SrcPtr = CE->getArg(1);
1070 if (ImplicitCastExpr *SC = dyn_cast<ImplicitCastExpr>(SrcPtr))
1071 SrcPtr = SC->getSubExpr();
1072 UnaryOperator *SUO = dyn_cast<UnaryOperator>(SrcPtr);
1073 if (!SUO || SUO->getOpcode() != UO_AddrOf)
1074 return nullptr;
1075 MemberExpr *ME2 = dyn_cast<MemberExpr>(SUO->getSubExpr());
1076 if (!ME2 || Field != dyn_cast<FieldDecl>(ME2->getMemberDecl()))
1077 return nullptr;
1078 return Field;
1079 }
1080
1081 return nullptr;
1082 }
1083
1084 bool AssignmentsMemcpyable;
1085 SmallVector<Stmt*, 16> AggregatedStmts;
1086
1087 public:
1088
AssignmentMemcpyizer(CodeGenFunction & CGF,const CXXMethodDecl * AD,FunctionArgList & Args)1089 AssignmentMemcpyizer(CodeGenFunction &CGF, const CXXMethodDecl *AD,
1090 FunctionArgList &Args)
1091 : FieldMemcpyizer(CGF, AD->getParent(), Args[Args.size() - 1]),
1092 AssignmentsMemcpyable(CGF.getLangOpts().getGC() == LangOptions::NonGC) {
1093 assert(Args.size() == 2);
1094 }
1095
emitAssignment(Stmt * S)1096 void emitAssignment(Stmt *S) {
1097 FieldDecl *F = getMemcpyableField(S);
1098 if (F) {
1099 addMemcpyableField(F);
1100 AggregatedStmts.push_back(S);
1101 } else {
1102 emitAggregatedStmts();
1103 CGF.EmitStmt(S);
1104 }
1105 }
1106
emitAggregatedStmts()1107 void emitAggregatedStmts() {
1108 if (AggregatedStmts.size() <= 1) {
1109 if (!AggregatedStmts.empty()) {
1110 CopyingValueRepresentation CVR(CGF);
1111 CGF.EmitStmt(AggregatedStmts[0]);
1112 }
1113 reset();
1114 }
1115
1116 emitMemcpy();
1117 AggregatedStmts.clear();
1118 }
1119
finish()1120 void finish() {
1121 emitAggregatedStmts();
1122 }
1123 };
1124
1125 }
1126
1127 /// EmitCtorPrologue - This routine generates necessary code to initialize
1128 /// base classes and non-static data members belonging to this constructor.
EmitCtorPrologue(const CXXConstructorDecl * CD,CXXCtorType CtorType,FunctionArgList & Args)1129 void CodeGenFunction::EmitCtorPrologue(const CXXConstructorDecl *CD,
1130 CXXCtorType CtorType,
1131 FunctionArgList &Args) {
1132 if (CD->isDelegatingConstructor())
1133 return EmitDelegatingCXXConstructorCall(CD, Args);
1134
1135 const CXXRecordDecl *ClassDecl = CD->getParent();
1136
1137 CXXConstructorDecl::init_const_iterator B = CD->init_begin(),
1138 E = CD->init_end();
1139
1140 llvm::BasicBlock *BaseCtorContinueBB = nullptr;
1141 if (ClassDecl->getNumVBases() &&
1142 !CGM.getTarget().getCXXABI().hasConstructorVariants()) {
1143 // The ABIs that don't have constructor variants need to put a branch
1144 // before the virtual base initialization code.
1145 BaseCtorContinueBB =
1146 CGM.getCXXABI().EmitCtorCompleteObjectHandler(*this, ClassDecl);
1147 assert(BaseCtorContinueBB);
1148 }
1149
1150 // Virtual base initializers first.
1151 for (; B != E && (*B)->isBaseInitializer() && (*B)->isBaseVirtual(); B++) {
1152 EmitBaseInitializer(*this, ClassDecl, *B, CtorType);
1153 }
1154
1155 if (BaseCtorContinueBB) {
1156 // Complete object handler should continue to the remaining initializers.
1157 Builder.CreateBr(BaseCtorContinueBB);
1158 EmitBlock(BaseCtorContinueBB);
1159 }
1160
1161 // Then, non-virtual base initializers.
1162 for (; B != E && (*B)->isBaseInitializer(); B++) {
1163 assert(!(*B)->isBaseVirtual());
1164 EmitBaseInitializer(*this, ClassDecl, *B, CtorType);
1165 }
1166
1167 InitializeVTablePointers(ClassDecl);
1168
1169 // And finally, initialize class members.
1170 FieldConstructionScope FCS(*this, CXXThisValue);
1171 ConstructorMemcpyizer CM(*this, CD, Args);
1172 for (; B != E; B++) {
1173 CXXCtorInitializer *Member = (*B);
1174 assert(!Member->isBaseInitializer());
1175 assert(Member->isAnyMemberInitializer() &&
1176 "Delegating initializer on non-delegating constructor");
1177 CM.addMemberInitializer(Member);
1178 }
1179 CM.finish();
1180 }
1181
1182 static bool
1183 FieldHasTrivialDestructorBody(ASTContext &Context, const FieldDecl *Field);
1184
1185 static bool
HasTrivialDestructorBody(ASTContext & Context,const CXXRecordDecl * BaseClassDecl,const CXXRecordDecl * MostDerivedClassDecl)1186 HasTrivialDestructorBody(ASTContext &Context,
1187 const CXXRecordDecl *BaseClassDecl,
1188 const CXXRecordDecl *MostDerivedClassDecl)
1189 {
1190 // If the destructor is trivial we don't have to check anything else.
1191 if (BaseClassDecl->hasTrivialDestructor())
1192 return true;
1193
1194 if (!BaseClassDecl->getDestructor()->hasTrivialBody())
1195 return false;
1196
1197 // Check fields.
1198 for (const auto *Field : BaseClassDecl->fields())
1199 if (!FieldHasTrivialDestructorBody(Context, Field))
1200 return false;
1201
1202 // Check non-virtual bases.
1203 for (const auto &I : BaseClassDecl->bases()) {
1204 if (I.isVirtual())
1205 continue;
1206
1207 const CXXRecordDecl *NonVirtualBase =
1208 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
1209 if (!HasTrivialDestructorBody(Context, NonVirtualBase,
1210 MostDerivedClassDecl))
1211 return false;
1212 }
1213
1214 if (BaseClassDecl == MostDerivedClassDecl) {
1215 // Check virtual bases.
1216 for (const auto &I : BaseClassDecl->vbases()) {
1217 const CXXRecordDecl *VirtualBase =
1218 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
1219 if (!HasTrivialDestructorBody(Context, VirtualBase,
1220 MostDerivedClassDecl))
1221 return false;
1222 }
1223 }
1224
1225 return true;
1226 }
1227
1228 static bool
FieldHasTrivialDestructorBody(ASTContext & Context,const FieldDecl * Field)1229 FieldHasTrivialDestructorBody(ASTContext &Context,
1230 const FieldDecl *Field)
1231 {
1232 QualType FieldBaseElementType = Context.getBaseElementType(Field->getType());
1233
1234 const RecordType *RT = FieldBaseElementType->getAs<RecordType>();
1235 if (!RT)
1236 return true;
1237
1238 CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
1239 return HasTrivialDestructorBody(Context, FieldClassDecl, FieldClassDecl);
1240 }
1241
1242 /// CanSkipVTablePointerInitialization - Check whether we need to initialize
1243 /// any vtable pointers before calling this destructor.
CanSkipVTablePointerInitialization(ASTContext & Context,const CXXDestructorDecl * Dtor)1244 static bool CanSkipVTablePointerInitialization(ASTContext &Context,
1245 const CXXDestructorDecl *Dtor) {
1246 if (!Dtor->hasTrivialBody())
1247 return false;
1248
1249 // Check the fields.
1250 const CXXRecordDecl *ClassDecl = Dtor->getParent();
1251 for (const auto *Field : ClassDecl->fields())
1252 if (!FieldHasTrivialDestructorBody(Context, Field))
1253 return false;
1254
1255 return true;
1256 }
1257
1258 /// EmitDestructorBody - Emits the body of the current destructor.
EmitDestructorBody(FunctionArgList & Args)1259 void CodeGenFunction::EmitDestructorBody(FunctionArgList &Args) {
1260 const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CurGD.getDecl());
1261 CXXDtorType DtorType = CurGD.getDtorType();
1262
1263 // The call to operator delete in a deleting destructor happens
1264 // outside of the function-try-block, which means it's always
1265 // possible to delegate the destructor body to the complete
1266 // destructor. Do so.
1267 if (DtorType == Dtor_Deleting) {
1268 EnterDtorCleanups(Dtor, Dtor_Deleting);
1269 EmitCXXDestructorCall(Dtor, Dtor_Complete, /*ForVirtualBase=*/false,
1270 /*Delegating=*/false, LoadCXXThis());
1271 PopCleanupBlock();
1272 return;
1273 }
1274
1275 Stmt *Body = Dtor->getBody();
1276
1277 // If the body is a function-try-block, enter the try before
1278 // anything else.
1279 bool isTryBody = (Body && isa<CXXTryStmt>(Body));
1280 if (isTryBody)
1281 EnterCXXTryStmt(*cast<CXXTryStmt>(Body), true);
1282
1283 // Enter the epilogue cleanups.
1284 RunCleanupsScope DtorEpilogue(*this);
1285
1286 // If this is the complete variant, just invoke the base variant;
1287 // the epilogue will destruct the virtual bases. But we can't do
1288 // this optimization if the body is a function-try-block, because
1289 // we'd introduce *two* handler blocks. In the Microsoft ABI, we
1290 // always delegate because we might not have a definition in this TU.
1291 switch (DtorType) {
1292 case Dtor_Deleting: llvm_unreachable("already handled deleting case");
1293
1294 case Dtor_Complete:
1295 assert((Body || getTarget().getCXXABI().isMicrosoft()) &&
1296 "can't emit a dtor without a body for non-Microsoft ABIs");
1297
1298 // Enter the cleanup scopes for virtual bases.
1299 EnterDtorCleanups(Dtor, Dtor_Complete);
1300
1301 if (!isTryBody) {
1302 EmitCXXDestructorCall(Dtor, Dtor_Base, /*ForVirtualBase=*/false,
1303 /*Delegating=*/false, LoadCXXThis());
1304 break;
1305 }
1306 // Fallthrough: act like we're in the base variant.
1307
1308 case Dtor_Base:
1309 assert(Body);
1310
1311 RegionCounter Cnt = getPGORegionCounter(Body);
1312 Cnt.beginRegion(Builder);
1313
1314 // Enter the cleanup scopes for fields and non-virtual bases.
1315 EnterDtorCleanups(Dtor, Dtor_Base);
1316
1317 // Initialize the vtable pointers before entering the body.
1318 if (!CanSkipVTablePointerInitialization(getContext(), Dtor))
1319 InitializeVTablePointers(Dtor->getParent());
1320
1321 if (isTryBody)
1322 EmitStmt(cast<CXXTryStmt>(Body)->getTryBlock());
1323 else if (Body)
1324 EmitStmt(Body);
1325 else {
1326 assert(Dtor->isImplicit() && "bodyless dtor not implicit");
1327 // nothing to do besides what's in the epilogue
1328 }
1329 // -fapple-kext must inline any call to this dtor into
1330 // the caller's body.
1331 if (getLangOpts().AppleKext)
1332 CurFn->addFnAttr(llvm::Attribute::AlwaysInline);
1333 break;
1334 }
1335
1336 // Jump out through the epilogue cleanups.
1337 DtorEpilogue.ForceCleanup();
1338
1339 // Exit the try if applicable.
1340 if (isTryBody)
1341 ExitCXXTryStmt(*cast<CXXTryStmt>(Body), true);
1342 }
1343
emitImplicitAssignmentOperatorBody(FunctionArgList & Args)1344 void CodeGenFunction::emitImplicitAssignmentOperatorBody(FunctionArgList &Args) {
1345 const CXXMethodDecl *AssignOp = cast<CXXMethodDecl>(CurGD.getDecl());
1346 const Stmt *RootS = AssignOp->getBody();
1347 assert(isa<CompoundStmt>(RootS) &&
1348 "Body of an implicit assignment operator should be compound stmt.");
1349 const CompoundStmt *RootCS = cast<CompoundStmt>(RootS);
1350
1351 LexicalScope Scope(*this, RootCS->getSourceRange());
1352
1353 AssignmentMemcpyizer AM(*this, AssignOp, Args);
1354 for (auto *I : RootCS->body())
1355 AM.emitAssignment(I);
1356 AM.finish();
1357 }
1358
1359 namespace {
1360 /// Call the operator delete associated with the current destructor.
1361 struct CallDtorDelete : EHScopeStack::Cleanup {
CallDtorDelete__anon7aa462240411::CallDtorDelete1362 CallDtorDelete() {}
1363
Emit__anon7aa462240411::CallDtorDelete1364 void Emit(CodeGenFunction &CGF, Flags flags) override {
1365 const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CGF.CurCodeDecl);
1366 const CXXRecordDecl *ClassDecl = Dtor->getParent();
1367 CGF.EmitDeleteCall(Dtor->getOperatorDelete(), CGF.LoadCXXThis(),
1368 CGF.getContext().getTagDeclType(ClassDecl));
1369 }
1370 };
1371
1372 struct CallDtorDeleteConditional : EHScopeStack::Cleanup {
1373 llvm::Value *ShouldDeleteCondition;
1374 public:
CallDtorDeleteConditional__anon7aa462240411::CallDtorDeleteConditional1375 CallDtorDeleteConditional(llvm::Value *ShouldDeleteCondition)
1376 : ShouldDeleteCondition(ShouldDeleteCondition) {
1377 assert(ShouldDeleteCondition != nullptr);
1378 }
1379
Emit__anon7aa462240411::CallDtorDeleteConditional1380 void Emit(CodeGenFunction &CGF, Flags flags) override {
1381 llvm::BasicBlock *callDeleteBB = CGF.createBasicBlock("dtor.call_delete");
1382 llvm::BasicBlock *continueBB = CGF.createBasicBlock("dtor.continue");
1383 llvm::Value *ShouldCallDelete
1384 = CGF.Builder.CreateIsNull(ShouldDeleteCondition);
1385 CGF.Builder.CreateCondBr(ShouldCallDelete, continueBB, callDeleteBB);
1386
1387 CGF.EmitBlock(callDeleteBB);
1388 const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CGF.CurCodeDecl);
1389 const CXXRecordDecl *ClassDecl = Dtor->getParent();
1390 CGF.EmitDeleteCall(Dtor->getOperatorDelete(), CGF.LoadCXXThis(),
1391 CGF.getContext().getTagDeclType(ClassDecl));
1392 CGF.Builder.CreateBr(continueBB);
1393
1394 CGF.EmitBlock(continueBB);
1395 }
1396 };
1397
1398 class DestroyField : public EHScopeStack::Cleanup {
1399 const FieldDecl *field;
1400 CodeGenFunction::Destroyer *destroyer;
1401 bool useEHCleanupForArray;
1402
1403 public:
DestroyField(const FieldDecl * field,CodeGenFunction::Destroyer * destroyer,bool useEHCleanupForArray)1404 DestroyField(const FieldDecl *field, CodeGenFunction::Destroyer *destroyer,
1405 bool useEHCleanupForArray)
1406 : field(field), destroyer(destroyer),
1407 useEHCleanupForArray(useEHCleanupForArray) {}
1408
Emit(CodeGenFunction & CGF,Flags flags)1409 void Emit(CodeGenFunction &CGF, Flags flags) override {
1410 // Find the address of the field.
1411 llvm::Value *thisValue = CGF.LoadCXXThis();
1412 QualType RecordTy = CGF.getContext().getTagDeclType(field->getParent());
1413 LValue ThisLV = CGF.MakeAddrLValue(thisValue, RecordTy);
1414 LValue LV = CGF.EmitLValueForField(ThisLV, field);
1415 assert(LV.isSimple());
1416
1417 CGF.emitDestroy(LV.getAddress(), field->getType(), destroyer,
1418 flags.isForNormalCleanup() && useEHCleanupForArray);
1419 }
1420 };
1421 }
1422
1423 /// \brief Emit all code that comes at the end of class's
1424 /// destructor. This is to call destructors on members and base classes
1425 /// in reverse order of their construction.
EnterDtorCleanups(const CXXDestructorDecl * DD,CXXDtorType DtorType)1426 void CodeGenFunction::EnterDtorCleanups(const CXXDestructorDecl *DD,
1427 CXXDtorType DtorType) {
1428 assert((!DD->isTrivial() || DD->hasAttr<DLLExportAttr>()) &&
1429 "Should not emit dtor epilogue for non-exported trivial dtor!");
1430
1431 // The deleting-destructor phase just needs to call the appropriate
1432 // operator delete that Sema picked up.
1433 if (DtorType == Dtor_Deleting) {
1434 assert(DD->getOperatorDelete() &&
1435 "operator delete missing - EnterDtorCleanups");
1436 if (CXXStructorImplicitParamValue) {
1437 // If there is an implicit param to the deleting dtor, it's a boolean
1438 // telling whether we should call delete at the end of the dtor.
1439 EHStack.pushCleanup<CallDtorDeleteConditional>(
1440 NormalAndEHCleanup, CXXStructorImplicitParamValue);
1441 } else {
1442 EHStack.pushCleanup<CallDtorDelete>(NormalAndEHCleanup);
1443 }
1444 return;
1445 }
1446
1447 const CXXRecordDecl *ClassDecl = DD->getParent();
1448
1449 // Unions have no bases and do not call field destructors.
1450 if (ClassDecl->isUnion())
1451 return;
1452
1453 // The complete-destructor phase just destructs all the virtual bases.
1454 if (DtorType == Dtor_Complete) {
1455
1456 // We push them in the forward order so that they'll be popped in
1457 // the reverse order.
1458 for (const auto &Base : ClassDecl->vbases()) {
1459 CXXRecordDecl *BaseClassDecl
1460 = cast<CXXRecordDecl>(Base.getType()->getAs<RecordType>()->getDecl());
1461
1462 // Ignore trivial destructors.
1463 if (BaseClassDecl->hasTrivialDestructor())
1464 continue;
1465
1466 EHStack.pushCleanup<CallBaseDtor>(NormalAndEHCleanup,
1467 BaseClassDecl,
1468 /*BaseIsVirtual*/ true);
1469 }
1470
1471 return;
1472 }
1473
1474 assert(DtorType == Dtor_Base);
1475
1476 // Destroy non-virtual bases.
1477 for (const auto &Base : ClassDecl->bases()) {
1478 // Ignore virtual bases.
1479 if (Base.isVirtual())
1480 continue;
1481
1482 CXXRecordDecl *BaseClassDecl = Base.getType()->getAsCXXRecordDecl();
1483
1484 // Ignore trivial destructors.
1485 if (BaseClassDecl->hasTrivialDestructor())
1486 continue;
1487
1488 EHStack.pushCleanup<CallBaseDtor>(NormalAndEHCleanup,
1489 BaseClassDecl,
1490 /*BaseIsVirtual*/ false);
1491 }
1492
1493 // Destroy direct fields.
1494 for (const auto *Field : ClassDecl->fields()) {
1495 QualType type = Field->getType();
1496 QualType::DestructionKind dtorKind = type.isDestructedType();
1497 if (!dtorKind) continue;
1498
1499 // Anonymous union members do not have their destructors called.
1500 const RecordType *RT = type->getAsUnionType();
1501 if (RT && RT->getDecl()->isAnonymousStructOrUnion()) continue;
1502
1503 CleanupKind cleanupKind = getCleanupKind(dtorKind);
1504 EHStack.pushCleanup<DestroyField>(cleanupKind, Field,
1505 getDestroyer(dtorKind),
1506 cleanupKind & EHCleanup);
1507 }
1508 }
1509
1510 /// EmitCXXAggrConstructorCall - Emit a loop to call a particular
1511 /// constructor for each of several members of an array.
1512 ///
1513 /// \param ctor the constructor to call for each element
1514 /// \param arrayType the type of the array to initialize
1515 /// \param arrayBegin an arrayType*
1516 /// \param zeroInitialize true if each element should be
1517 /// zero-initialized before it is constructed
1518 void
EmitCXXAggrConstructorCall(const CXXConstructorDecl * ctor,const ConstantArrayType * arrayType,llvm::Value * arrayBegin,CallExpr::const_arg_iterator argBegin,CallExpr::const_arg_iterator argEnd,bool zeroInitialize)1519 CodeGenFunction::EmitCXXAggrConstructorCall(const CXXConstructorDecl *ctor,
1520 const ConstantArrayType *arrayType,
1521 llvm::Value *arrayBegin,
1522 CallExpr::const_arg_iterator argBegin,
1523 CallExpr::const_arg_iterator argEnd,
1524 bool zeroInitialize) {
1525 QualType elementType;
1526 llvm::Value *numElements =
1527 emitArrayLength(arrayType, elementType, arrayBegin);
1528
1529 EmitCXXAggrConstructorCall(ctor, numElements, arrayBegin,
1530 argBegin, argEnd, zeroInitialize);
1531 }
1532
1533 /// EmitCXXAggrConstructorCall - Emit a loop to call a particular
1534 /// constructor for each of several members of an array.
1535 ///
1536 /// \param ctor the constructor to call for each element
1537 /// \param numElements the number of elements in the array;
1538 /// may be zero
1539 /// \param arrayBegin a T*, where T is the type constructed by ctor
1540 /// \param zeroInitialize true if each element should be
1541 /// zero-initialized before it is constructed
1542 void
EmitCXXAggrConstructorCall(const CXXConstructorDecl * ctor,llvm::Value * numElements,llvm::Value * arrayBegin,CallExpr::const_arg_iterator argBegin,CallExpr::const_arg_iterator argEnd,bool zeroInitialize)1543 CodeGenFunction::EmitCXXAggrConstructorCall(const CXXConstructorDecl *ctor,
1544 llvm::Value *numElements,
1545 llvm::Value *arrayBegin,
1546 CallExpr::const_arg_iterator argBegin,
1547 CallExpr::const_arg_iterator argEnd,
1548 bool zeroInitialize) {
1549
1550 // It's legal for numElements to be zero. This can happen both
1551 // dynamically, because x can be zero in 'new A[x]', and statically,
1552 // because of GCC extensions that permit zero-length arrays. There
1553 // are probably legitimate places where we could assume that this
1554 // doesn't happen, but it's not clear that it's worth it.
1555 llvm::BranchInst *zeroCheckBranch = nullptr;
1556
1557 // Optimize for a constant count.
1558 llvm::ConstantInt *constantCount
1559 = dyn_cast<llvm::ConstantInt>(numElements);
1560 if (constantCount) {
1561 // Just skip out if the constant count is zero.
1562 if (constantCount->isZero()) return;
1563
1564 // Otherwise, emit the check.
1565 } else {
1566 llvm::BasicBlock *loopBB = createBasicBlock("new.ctorloop");
1567 llvm::Value *iszero = Builder.CreateIsNull(numElements, "isempty");
1568 zeroCheckBranch = Builder.CreateCondBr(iszero, loopBB, loopBB);
1569 EmitBlock(loopBB);
1570 }
1571
1572 // Find the end of the array.
1573 llvm::Value *arrayEnd = Builder.CreateInBoundsGEP(arrayBegin, numElements,
1574 "arrayctor.end");
1575
1576 // Enter the loop, setting up a phi for the current location to initialize.
1577 llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
1578 llvm::BasicBlock *loopBB = createBasicBlock("arrayctor.loop");
1579 EmitBlock(loopBB);
1580 llvm::PHINode *cur = Builder.CreatePHI(arrayBegin->getType(), 2,
1581 "arrayctor.cur");
1582 cur->addIncoming(arrayBegin, entryBB);
1583
1584 // Inside the loop body, emit the constructor call on the array element.
1585
1586 QualType type = getContext().getTypeDeclType(ctor->getParent());
1587
1588 // Zero initialize the storage, if requested.
1589 if (zeroInitialize)
1590 EmitNullInitialization(cur, type);
1591
1592 // C++ [class.temporary]p4:
1593 // There are two contexts in which temporaries are destroyed at a different
1594 // point than the end of the full-expression. The first context is when a
1595 // default constructor is called to initialize an element of an array.
1596 // If the constructor has one or more default arguments, the destruction of
1597 // every temporary created in a default argument expression is sequenced
1598 // before the construction of the next array element, if any.
1599
1600 {
1601 RunCleanupsScope Scope(*this);
1602
1603 // Evaluate the constructor and its arguments in a regular
1604 // partial-destroy cleanup.
1605 if (getLangOpts().Exceptions &&
1606 !ctor->getParent()->hasTrivialDestructor()) {
1607 Destroyer *destroyer = destroyCXXObject;
1608 pushRegularPartialArrayCleanup(arrayBegin, cur, type, *destroyer);
1609 }
1610
1611 EmitCXXConstructorCall(ctor, Ctor_Complete, /*ForVirtualBase=*/ false,
1612 /*Delegating=*/false, cur, argBegin, argEnd);
1613 }
1614
1615 // Go to the next element.
1616 llvm::Value *next =
1617 Builder.CreateInBoundsGEP(cur, llvm::ConstantInt::get(SizeTy, 1),
1618 "arrayctor.next");
1619 cur->addIncoming(next, Builder.GetInsertBlock());
1620
1621 // Check whether that's the end of the loop.
1622 llvm::Value *done = Builder.CreateICmpEQ(next, arrayEnd, "arrayctor.done");
1623 llvm::BasicBlock *contBB = createBasicBlock("arrayctor.cont");
1624 Builder.CreateCondBr(done, contBB, loopBB);
1625
1626 // Patch the earlier check to skip over the loop.
1627 if (zeroCheckBranch) zeroCheckBranch->setSuccessor(0, contBB);
1628
1629 EmitBlock(contBB);
1630 }
1631
destroyCXXObject(CodeGenFunction & CGF,llvm::Value * addr,QualType type)1632 void CodeGenFunction::destroyCXXObject(CodeGenFunction &CGF,
1633 llvm::Value *addr,
1634 QualType type) {
1635 const RecordType *rtype = type->castAs<RecordType>();
1636 const CXXRecordDecl *record = cast<CXXRecordDecl>(rtype->getDecl());
1637 const CXXDestructorDecl *dtor = record->getDestructor();
1638 assert(!dtor->isTrivial());
1639 CGF.EmitCXXDestructorCall(dtor, Dtor_Complete, /*for vbase*/ false,
1640 /*Delegating=*/false, addr);
1641 }
1642
1643 void
EmitCXXConstructorCall(const CXXConstructorDecl * D,CXXCtorType Type,bool ForVirtualBase,bool Delegating,llvm::Value * This,CallExpr::const_arg_iterator ArgBeg,CallExpr::const_arg_iterator ArgEnd)1644 CodeGenFunction::EmitCXXConstructorCall(const CXXConstructorDecl *D,
1645 CXXCtorType Type, bool ForVirtualBase,
1646 bool Delegating,
1647 llvm::Value *This,
1648 CallExpr::const_arg_iterator ArgBeg,
1649 CallExpr::const_arg_iterator ArgEnd) {
1650 // If this is a trivial constructor, just emit what's needed.
1651 if (D->isTrivial()) {
1652 if (ArgBeg == ArgEnd) {
1653 // Trivial default constructor, no codegen required.
1654 assert(D->isDefaultConstructor() &&
1655 "trivial 0-arg ctor not a default ctor");
1656 return;
1657 }
1658
1659 assert(ArgBeg + 1 == ArgEnd && "unexpected argcount for trivial ctor");
1660 assert(D->isCopyOrMoveConstructor() &&
1661 "trivial 1-arg ctor not a copy/move ctor");
1662
1663 const Expr *E = (*ArgBeg);
1664 QualType Ty = E->getType();
1665 llvm::Value *Src = EmitLValue(E).getAddress();
1666 EmitAggregateCopy(This, Src, Ty);
1667 return;
1668 }
1669
1670 // C++11 [class.mfct.non-static]p2:
1671 // If a non-static member function of a class X is called for an object that
1672 // is not of type X, or of a type derived from X, the behavior is undefined.
1673 // FIXME: Provide a source location here.
1674 EmitTypeCheck(CodeGenFunction::TCK_ConstructorCall, SourceLocation(), This,
1675 getContext().getRecordType(D->getParent()));
1676
1677 CallArgList Args;
1678
1679 // Push the this ptr.
1680 Args.add(RValue::get(This), D->getThisType(getContext()));
1681
1682 // Add the rest of the user-supplied arguments.
1683 const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>();
1684 EmitCallArgs(Args, FPT, ArgBeg, ArgEnd);
1685
1686 // Insert any ABI-specific implicit constructor arguments.
1687 unsigned ExtraArgs = CGM.getCXXABI().addImplicitConstructorArgs(
1688 *this, D, Type, ForVirtualBase, Delegating, Args);
1689
1690 // Emit the call.
1691 llvm::Value *Callee = CGM.GetAddrOfCXXConstructor(D, Type);
1692 const CGFunctionInfo &Info =
1693 CGM.getTypes().arrangeCXXConstructorCall(Args, D, Type, ExtraArgs);
1694 EmitCall(Info, Callee, ReturnValueSlot(), Args, D);
1695 }
1696
1697 void
EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl * D,llvm::Value * This,llvm::Value * Src,CallExpr::const_arg_iterator ArgBeg,CallExpr::const_arg_iterator ArgEnd)1698 CodeGenFunction::EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
1699 llvm::Value *This, llvm::Value *Src,
1700 CallExpr::const_arg_iterator ArgBeg,
1701 CallExpr::const_arg_iterator ArgEnd) {
1702 if (D->isTrivial()) {
1703 assert(ArgBeg + 1 == ArgEnd && "unexpected argcount for trivial ctor");
1704 assert(D->isCopyOrMoveConstructor() &&
1705 "trivial 1-arg ctor not a copy/move ctor");
1706 EmitAggregateCopy(This, Src, (*ArgBeg)->getType());
1707 return;
1708 }
1709 llvm::Value *Callee = CGM.GetAddrOfCXXConstructor(D, clang::Ctor_Complete);
1710 assert(D->isInstance() &&
1711 "Trying to emit a member call expr on a static method!");
1712
1713 const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>();
1714
1715 CallArgList Args;
1716
1717 // Push the this ptr.
1718 Args.add(RValue::get(This), D->getThisType(getContext()));
1719
1720 // Push the src ptr.
1721 QualType QT = *(FPT->param_type_begin());
1722 llvm::Type *t = CGM.getTypes().ConvertType(QT);
1723 Src = Builder.CreateBitCast(Src, t);
1724 Args.add(RValue::get(Src), QT);
1725
1726 // Skip over first argument (Src).
1727 EmitCallArgs(Args, FPT->isVariadic(), FPT->param_type_begin() + 1,
1728 FPT->param_type_end(), ArgBeg + 1, ArgEnd);
1729
1730 EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, RequiredArgs::All),
1731 Callee, ReturnValueSlot(), Args, D);
1732 }
1733
1734 void
EmitDelegateCXXConstructorCall(const CXXConstructorDecl * Ctor,CXXCtorType CtorType,const FunctionArgList & Args,SourceLocation Loc)1735 CodeGenFunction::EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
1736 CXXCtorType CtorType,
1737 const FunctionArgList &Args,
1738 SourceLocation Loc) {
1739 CallArgList DelegateArgs;
1740
1741 FunctionArgList::const_iterator I = Args.begin(), E = Args.end();
1742 assert(I != E && "no parameters to constructor");
1743
1744 // this
1745 DelegateArgs.add(RValue::get(LoadCXXThis()), (*I)->getType());
1746 ++I;
1747
1748 // vtt
1749 if (llvm::Value *VTT = GetVTTParameter(GlobalDecl(Ctor, CtorType),
1750 /*ForVirtualBase=*/false,
1751 /*Delegating=*/true)) {
1752 QualType VoidPP = getContext().getPointerType(getContext().VoidPtrTy);
1753 DelegateArgs.add(RValue::get(VTT), VoidPP);
1754
1755 if (CGM.getCXXABI().NeedsVTTParameter(CurGD)) {
1756 assert(I != E && "cannot skip vtt parameter, already done with args");
1757 assert((*I)->getType() == VoidPP && "skipping parameter not of vtt type");
1758 ++I;
1759 }
1760 }
1761
1762 // Explicit arguments.
1763 for (; I != E; ++I) {
1764 const VarDecl *param = *I;
1765 // FIXME: per-argument source location
1766 EmitDelegateCallArg(DelegateArgs, param, Loc);
1767 }
1768
1769 llvm::Value *Callee = CGM.GetAddrOfCXXConstructor(Ctor, CtorType);
1770 EmitCall(CGM.getTypes().arrangeCXXConstructorDeclaration(Ctor, CtorType),
1771 Callee, ReturnValueSlot(), DelegateArgs, Ctor);
1772 }
1773
1774 namespace {
1775 struct CallDelegatingCtorDtor : EHScopeStack::Cleanup {
1776 const CXXDestructorDecl *Dtor;
1777 llvm::Value *Addr;
1778 CXXDtorType Type;
1779
CallDelegatingCtorDtor__anon7aa462240511::CallDelegatingCtorDtor1780 CallDelegatingCtorDtor(const CXXDestructorDecl *D, llvm::Value *Addr,
1781 CXXDtorType Type)
1782 : Dtor(D), Addr(Addr), Type(Type) {}
1783
Emit__anon7aa462240511::CallDelegatingCtorDtor1784 void Emit(CodeGenFunction &CGF, Flags flags) override {
1785 CGF.EmitCXXDestructorCall(Dtor, Type, /*ForVirtualBase=*/false,
1786 /*Delegating=*/true, Addr);
1787 }
1788 };
1789 }
1790
1791 void
EmitDelegatingCXXConstructorCall(const CXXConstructorDecl * Ctor,const FunctionArgList & Args)1792 CodeGenFunction::EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
1793 const FunctionArgList &Args) {
1794 assert(Ctor->isDelegatingConstructor());
1795
1796 llvm::Value *ThisPtr = LoadCXXThis();
1797
1798 QualType Ty = getContext().getTagDeclType(Ctor->getParent());
1799 CharUnits Alignment = getContext().getTypeAlignInChars(Ty);
1800 AggValueSlot AggSlot =
1801 AggValueSlot::forAddr(ThisPtr, Alignment, Qualifiers(),
1802 AggValueSlot::IsDestructed,
1803 AggValueSlot::DoesNotNeedGCBarriers,
1804 AggValueSlot::IsNotAliased);
1805
1806 EmitAggExpr(Ctor->init_begin()[0]->getInit(), AggSlot);
1807
1808 const CXXRecordDecl *ClassDecl = Ctor->getParent();
1809 if (CGM.getLangOpts().Exceptions && !ClassDecl->hasTrivialDestructor()) {
1810 CXXDtorType Type =
1811 CurGD.getCtorType() == Ctor_Complete ? Dtor_Complete : Dtor_Base;
1812
1813 EHStack.pushCleanup<CallDelegatingCtorDtor>(EHCleanup,
1814 ClassDecl->getDestructor(),
1815 ThisPtr, Type);
1816 }
1817 }
1818
EmitCXXDestructorCall(const CXXDestructorDecl * DD,CXXDtorType Type,bool ForVirtualBase,bool Delegating,llvm::Value * This)1819 void CodeGenFunction::EmitCXXDestructorCall(const CXXDestructorDecl *DD,
1820 CXXDtorType Type,
1821 bool ForVirtualBase,
1822 bool Delegating,
1823 llvm::Value *This) {
1824 CGM.getCXXABI().EmitDestructorCall(*this, DD, Type, ForVirtualBase,
1825 Delegating, This);
1826 }
1827
1828 namespace {
1829 struct CallLocalDtor : EHScopeStack::Cleanup {
1830 const CXXDestructorDecl *Dtor;
1831 llvm::Value *Addr;
1832
CallLocalDtor__anon7aa462240611::CallLocalDtor1833 CallLocalDtor(const CXXDestructorDecl *D, llvm::Value *Addr)
1834 : Dtor(D), Addr(Addr) {}
1835
Emit__anon7aa462240611::CallLocalDtor1836 void Emit(CodeGenFunction &CGF, Flags flags) override {
1837 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
1838 /*ForVirtualBase=*/false,
1839 /*Delegating=*/false, Addr);
1840 }
1841 };
1842 }
1843
PushDestructorCleanup(const CXXDestructorDecl * D,llvm::Value * Addr)1844 void CodeGenFunction::PushDestructorCleanup(const CXXDestructorDecl *D,
1845 llvm::Value *Addr) {
1846 EHStack.pushCleanup<CallLocalDtor>(NormalAndEHCleanup, D, Addr);
1847 }
1848
PushDestructorCleanup(QualType T,llvm::Value * Addr)1849 void CodeGenFunction::PushDestructorCleanup(QualType T, llvm::Value *Addr) {
1850 CXXRecordDecl *ClassDecl = T->getAsCXXRecordDecl();
1851 if (!ClassDecl) return;
1852 if (ClassDecl->hasTrivialDestructor()) return;
1853
1854 const CXXDestructorDecl *D = ClassDecl->getDestructor();
1855 assert(D && D->isUsed() && "destructor not marked as used!");
1856 PushDestructorCleanup(D, Addr);
1857 }
1858
1859 void
InitializeVTablePointer(BaseSubobject Base,const CXXRecordDecl * NearestVBase,CharUnits OffsetFromNearestVBase,const CXXRecordDecl * VTableClass)1860 CodeGenFunction::InitializeVTablePointer(BaseSubobject Base,
1861 const CXXRecordDecl *NearestVBase,
1862 CharUnits OffsetFromNearestVBase,
1863 const CXXRecordDecl *VTableClass) {
1864 // Compute the address point.
1865 bool NeedsVirtualOffset;
1866 llvm::Value *VTableAddressPoint =
1867 CGM.getCXXABI().getVTableAddressPointInStructor(
1868 *this, VTableClass, Base, NearestVBase, NeedsVirtualOffset);
1869 if (!VTableAddressPoint)
1870 return;
1871
1872 // Compute where to store the address point.
1873 llvm::Value *VirtualOffset = nullptr;
1874 CharUnits NonVirtualOffset = CharUnits::Zero();
1875
1876 if (NeedsVirtualOffset) {
1877 // We need to use the virtual base offset offset because the virtual base
1878 // might have a different offset in the most derived class.
1879 VirtualOffset = CGM.getCXXABI().GetVirtualBaseClassOffset(*this,
1880 LoadCXXThis(),
1881 VTableClass,
1882 NearestVBase);
1883 NonVirtualOffset = OffsetFromNearestVBase;
1884 } else {
1885 // We can just use the base offset in the complete class.
1886 NonVirtualOffset = Base.getBaseOffset();
1887 }
1888
1889 // Apply the offsets.
1890 llvm::Value *VTableField = LoadCXXThis();
1891
1892 if (!NonVirtualOffset.isZero() || VirtualOffset)
1893 VTableField = ApplyNonVirtualAndVirtualOffset(*this, VTableField,
1894 NonVirtualOffset,
1895 VirtualOffset);
1896
1897 // Finally, store the address point.
1898 llvm::Type *AddressPointPtrTy =
1899 VTableAddressPoint->getType()->getPointerTo();
1900 VTableField = Builder.CreateBitCast(VTableField, AddressPointPtrTy);
1901 llvm::StoreInst *Store = Builder.CreateStore(VTableAddressPoint, VTableField);
1902 CGM.DecorateInstruction(Store, CGM.getTBAAInfoForVTablePtr());
1903 }
1904
1905 void
InitializeVTablePointers(BaseSubobject Base,const CXXRecordDecl * NearestVBase,CharUnits OffsetFromNearestVBase,bool BaseIsNonVirtualPrimaryBase,const CXXRecordDecl * VTableClass,VisitedVirtualBasesSetTy & VBases)1906 CodeGenFunction::InitializeVTablePointers(BaseSubobject Base,
1907 const CXXRecordDecl *NearestVBase,
1908 CharUnits OffsetFromNearestVBase,
1909 bool BaseIsNonVirtualPrimaryBase,
1910 const CXXRecordDecl *VTableClass,
1911 VisitedVirtualBasesSetTy& VBases) {
1912 // If this base is a non-virtual primary base the address point has already
1913 // been set.
1914 if (!BaseIsNonVirtualPrimaryBase) {
1915 // Initialize the vtable pointer for this base.
1916 InitializeVTablePointer(Base, NearestVBase, OffsetFromNearestVBase,
1917 VTableClass);
1918 }
1919
1920 const CXXRecordDecl *RD = Base.getBase();
1921
1922 // Traverse bases.
1923 for (const auto &I : RD->bases()) {
1924 CXXRecordDecl *BaseDecl
1925 = cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl());
1926
1927 // Ignore classes without a vtable.
1928 if (!BaseDecl->isDynamicClass())
1929 continue;
1930
1931 CharUnits BaseOffset;
1932 CharUnits BaseOffsetFromNearestVBase;
1933 bool BaseDeclIsNonVirtualPrimaryBase;
1934
1935 if (I.isVirtual()) {
1936 // Check if we've visited this virtual base before.
1937 if (!VBases.insert(BaseDecl))
1938 continue;
1939
1940 const ASTRecordLayout &Layout =
1941 getContext().getASTRecordLayout(VTableClass);
1942
1943 BaseOffset = Layout.getVBaseClassOffset(BaseDecl);
1944 BaseOffsetFromNearestVBase = CharUnits::Zero();
1945 BaseDeclIsNonVirtualPrimaryBase = false;
1946 } else {
1947 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
1948
1949 BaseOffset = Base.getBaseOffset() + Layout.getBaseClassOffset(BaseDecl);
1950 BaseOffsetFromNearestVBase =
1951 OffsetFromNearestVBase + Layout.getBaseClassOffset(BaseDecl);
1952 BaseDeclIsNonVirtualPrimaryBase = Layout.getPrimaryBase() == BaseDecl;
1953 }
1954
1955 InitializeVTablePointers(BaseSubobject(BaseDecl, BaseOffset),
1956 I.isVirtual() ? BaseDecl : NearestVBase,
1957 BaseOffsetFromNearestVBase,
1958 BaseDeclIsNonVirtualPrimaryBase,
1959 VTableClass, VBases);
1960 }
1961 }
1962
InitializeVTablePointers(const CXXRecordDecl * RD)1963 void CodeGenFunction::InitializeVTablePointers(const CXXRecordDecl *RD) {
1964 // Ignore classes without a vtable.
1965 if (!RD->isDynamicClass())
1966 return;
1967
1968 // Initialize the vtable pointers for this class and all of its bases.
1969 VisitedVirtualBasesSetTy VBases;
1970 InitializeVTablePointers(BaseSubobject(RD, CharUnits::Zero()),
1971 /*NearestVBase=*/nullptr,
1972 /*OffsetFromNearestVBase=*/CharUnits::Zero(),
1973 /*BaseIsNonVirtualPrimaryBase=*/false, RD, VBases);
1974
1975 if (RD->getNumVBases())
1976 CGM.getCXXABI().initializeHiddenVirtualInheritanceMembers(*this, RD);
1977 }
1978
GetVTablePtr(llvm::Value * This,llvm::Type * Ty)1979 llvm::Value *CodeGenFunction::GetVTablePtr(llvm::Value *This,
1980 llvm::Type *Ty) {
1981 llvm::Value *VTablePtrSrc = Builder.CreateBitCast(This, Ty->getPointerTo());
1982 llvm::Instruction *VTable = Builder.CreateLoad(VTablePtrSrc, "vtable");
1983 CGM.DecorateInstruction(VTable, CGM.getTBAAInfoForVTablePtr());
1984 return VTable;
1985 }
1986
1987
1988 // FIXME: Ideally Expr::IgnoreParenNoopCasts should do this, but it doesn't do
1989 // quite what we want.
skipNoOpCastsAndParens(const Expr * E)1990 static const Expr *skipNoOpCastsAndParens(const Expr *E) {
1991 while (true) {
1992 if (const ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
1993 E = PE->getSubExpr();
1994 continue;
1995 }
1996
1997 if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
1998 if (CE->getCastKind() == CK_NoOp) {
1999 E = CE->getSubExpr();
2000 continue;
2001 }
2002 }
2003 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
2004 if (UO->getOpcode() == UO_Extension) {
2005 E = UO->getSubExpr();
2006 continue;
2007 }
2008 }
2009 return E;
2010 }
2011 }
2012
2013 bool
CanDevirtualizeMemberFunctionCall(const Expr * Base,const CXXMethodDecl * MD)2014 CodeGenFunction::CanDevirtualizeMemberFunctionCall(const Expr *Base,
2015 const CXXMethodDecl *MD) {
2016 // When building with -fapple-kext, all calls must go through the vtable since
2017 // the kernel linker can do runtime patching of vtables.
2018 if (getLangOpts().AppleKext)
2019 return false;
2020
2021 // If the most derived class is marked final, we know that no subclass can
2022 // override this member function and so we can devirtualize it. For example:
2023 //
2024 // struct A { virtual void f(); }
2025 // struct B final : A { };
2026 //
2027 // void f(B *b) {
2028 // b->f();
2029 // }
2030 //
2031 const CXXRecordDecl *MostDerivedClassDecl = Base->getBestDynamicClassType();
2032 if (MostDerivedClassDecl->hasAttr<FinalAttr>())
2033 return true;
2034
2035 // If the member function is marked 'final', we know that it can't be
2036 // overridden and can therefore devirtualize it.
2037 if (MD->hasAttr<FinalAttr>())
2038 return true;
2039
2040 // Similarly, if the class itself is marked 'final' it can't be overridden
2041 // and we can therefore devirtualize the member function call.
2042 if (MD->getParent()->hasAttr<FinalAttr>())
2043 return true;
2044
2045 Base = skipNoOpCastsAndParens(Base);
2046 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) {
2047 if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl())) {
2048 // This is a record decl. We know the type and can devirtualize it.
2049 return VD->getType()->isRecordType();
2050 }
2051
2052 return false;
2053 }
2054
2055 // We can devirtualize calls on an object accessed by a class member access
2056 // expression, since by C++11 [basic.life]p6 we know that it can't refer to
2057 // a derived class object constructed in the same location.
2058 if (const MemberExpr *ME = dyn_cast<MemberExpr>(Base))
2059 if (const ValueDecl *VD = dyn_cast<ValueDecl>(ME->getMemberDecl()))
2060 return VD->getType()->isRecordType();
2061
2062 // We can always devirtualize calls on temporary object expressions.
2063 if (isa<CXXConstructExpr>(Base))
2064 return true;
2065
2066 // And calls on bound temporaries.
2067 if (isa<CXXBindTemporaryExpr>(Base))
2068 return true;
2069
2070 // Check if this is a call expr that returns a record type.
2071 if (const CallExpr *CE = dyn_cast<CallExpr>(Base))
2072 return CE->getCallReturnType()->isRecordType();
2073
2074 // We can't devirtualize the call.
2075 return false;
2076 }
2077
2078 llvm::Value *
EmitCXXOperatorMemberCallee(const CXXOperatorCallExpr * E,const CXXMethodDecl * MD,llvm::Value * This)2079 CodeGenFunction::EmitCXXOperatorMemberCallee(const CXXOperatorCallExpr *E,
2080 const CXXMethodDecl *MD,
2081 llvm::Value *This) {
2082 llvm::FunctionType *fnType =
2083 CGM.getTypes().GetFunctionType(
2084 CGM.getTypes().arrangeCXXMethodDeclaration(MD));
2085
2086 if (MD->isVirtual() && !CanDevirtualizeMemberFunctionCall(E->getArg(0), MD))
2087 return CGM.getCXXABI().getVirtualFunctionPointer(*this, MD, This, fnType);
2088
2089 return CGM.GetAddrOfFunction(MD, fnType);
2090 }
2091
EmitForwardingCallToLambda(const CXXMethodDecl * callOperator,CallArgList & callArgs)2092 void CodeGenFunction::EmitForwardingCallToLambda(
2093 const CXXMethodDecl *callOperator,
2094 CallArgList &callArgs) {
2095 // Get the address of the call operator.
2096 const CGFunctionInfo &calleeFnInfo =
2097 CGM.getTypes().arrangeCXXMethodDeclaration(callOperator);
2098 llvm::Value *callee =
2099 CGM.GetAddrOfFunction(GlobalDecl(callOperator),
2100 CGM.getTypes().GetFunctionType(calleeFnInfo));
2101
2102 // Prepare the return slot.
2103 const FunctionProtoType *FPT =
2104 callOperator->getType()->castAs<FunctionProtoType>();
2105 QualType resultType = FPT->getReturnType();
2106 ReturnValueSlot returnSlot;
2107 if (!resultType->isVoidType() &&
2108 calleeFnInfo.getReturnInfo().getKind() == ABIArgInfo::Indirect &&
2109 !hasScalarEvaluationKind(calleeFnInfo.getReturnType()))
2110 returnSlot = ReturnValueSlot(ReturnValue, resultType.isVolatileQualified());
2111
2112 // We don't need to separately arrange the call arguments because
2113 // the call can't be variadic anyway --- it's impossible to forward
2114 // variadic arguments.
2115
2116 // Now emit our call.
2117 RValue RV = EmitCall(calleeFnInfo, callee, returnSlot,
2118 callArgs, callOperator);
2119
2120 // If necessary, copy the returned value into the slot.
2121 if (!resultType->isVoidType() && returnSlot.isNull())
2122 EmitReturnOfRValue(RV, resultType);
2123 else
2124 EmitBranchThroughCleanup(ReturnBlock);
2125 }
2126
EmitLambdaBlockInvokeBody()2127 void CodeGenFunction::EmitLambdaBlockInvokeBody() {
2128 const BlockDecl *BD = BlockInfo->getBlockDecl();
2129 const VarDecl *variable = BD->capture_begin()->getVariable();
2130 const CXXRecordDecl *Lambda = variable->getType()->getAsCXXRecordDecl();
2131
2132 // Start building arguments for forwarding call
2133 CallArgList CallArgs;
2134
2135 QualType ThisType = getContext().getPointerType(getContext().getRecordType(Lambda));
2136 llvm::Value *ThisPtr = GetAddrOfBlockDecl(variable, false);
2137 CallArgs.add(RValue::get(ThisPtr), ThisType);
2138
2139 // Add the rest of the parameters.
2140 for (auto param : BD->params())
2141 EmitDelegateCallArg(CallArgs, param, param->getLocStart());
2142
2143 assert(!Lambda->isGenericLambda() &&
2144 "generic lambda interconversion to block not implemented");
2145 EmitForwardingCallToLambda(Lambda->getLambdaCallOperator(), CallArgs);
2146 }
2147
EmitLambdaToBlockPointerBody(FunctionArgList & Args)2148 void CodeGenFunction::EmitLambdaToBlockPointerBody(FunctionArgList &Args) {
2149 if (cast<CXXMethodDecl>(CurCodeDecl)->isVariadic()) {
2150 // FIXME: Making this work correctly is nasty because it requires either
2151 // cloning the body of the call operator or making the call operator forward.
2152 CGM.ErrorUnsupported(CurCodeDecl, "lambda conversion to variadic function");
2153 return;
2154 }
2155
2156 EmitFunctionBody(Args, cast<FunctionDecl>(CurGD.getDecl())->getBody());
2157 }
2158
EmitLambdaDelegatingInvokeBody(const CXXMethodDecl * MD)2159 void CodeGenFunction::EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD) {
2160 const CXXRecordDecl *Lambda = MD->getParent();
2161
2162 // Start building arguments for forwarding call
2163 CallArgList CallArgs;
2164
2165 QualType ThisType = getContext().getPointerType(getContext().getRecordType(Lambda));
2166 llvm::Value *ThisPtr = llvm::UndefValue::get(getTypes().ConvertType(ThisType));
2167 CallArgs.add(RValue::get(ThisPtr), ThisType);
2168
2169 // Add the rest of the parameters.
2170 for (auto Param : MD->params())
2171 EmitDelegateCallArg(CallArgs, Param, Param->getLocStart());
2172
2173 const CXXMethodDecl *CallOp = Lambda->getLambdaCallOperator();
2174 // For a generic lambda, find the corresponding call operator specialization
2175 // to which the call to the static-invoker shall be forwarded.
2176 if (Lambda->isGenericLambda()) {
2177 assert(MD->isFunctionTemplateSpecialization());
2178 const TemplateArgumentList *TAL = MD->getTemplateSpecializationArgs();
2179 FunctionTemplateDecl *CallOpTemplate = CallOp->getDescribedFunctionTemplate();
2180 void *InsertPos = nullptr;
2181 FunctionDecl *CorrespondingCallOpSpecialization =
2182 CallOpTemplate->findSpecialization(TAL->asArray(), InsertPos);
2183 assert(CorrespondingCallOpSpecialization);
2184 CallOp = cast<CXXMethodDecl>(CorrespondingCallOpSpecialization);
2185 }
2186 EmitForwardingCallToLambda(CallOp, CallArgs);
2187 }
2188
EmitLambdaStaticInvokeFunction(const CXXMethodDecl * MD)2189 void CodeGenFunction::EmitLambdaStaticInvokeFunction(const CXXMethodDecl *MD) {
2190 if (MD->isVariadic()) {
2191 // FIXME: Making this work correctly is nasty because it requires either
2192 // cloning the body of the call operator or making the call operator forward.
2193 CGM.ErrorUnsupported(MD, "lambda conversion to variadic function");
2194 return;
2195 }
2196
2197 EmitLambdaDelegatingInvokeBody(MD);
2198 }
2199