• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===--- CodeGenTypes.cpp - Type translation for LLVM CodeGen -------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This is the code that handles AST -> LLVM type lowering.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenTypes.h"
15 #include "CGCXXABI.h"
16 #include "CGCall.h"
17 #include "CGOpenCLRuntime.h"
18 #include "CGRecordLayout.h"
19 #include "TargetInfo.h"
20 #include "clang/AST/ASTContext.h"
21 #include "clang/AST/DeclCXX.h"
22 #include "clang/AST/DeclObjC.h"
23 #include "clang/AST/Expr.h"
24 #include "clang/AST/RecordLayout.h"
25 #include "clang/CodeGen/CGFunctionInfo.h"
26 #include "llvm/IR/DataLayout.h"
27 #include "llvm/IR/DerivedTypes.h"
28 #include "llvm/IR/Module.h"
29 using namespace clang;
30 using namespace CodeGen;
31 
CodeGenTypes(CodeGenModule & cgm)32 CodeGenTypes::CodeGenTypes(CodeGenModule &cgm)
33   : CGM(cgm), Context(cgm.getContext()), TheModule(cgm.getModule()),
34     TheDataLayout(cgm.getDataLayout()),
35     Target(cgm.getTarget()), TheCXXABI(cgm.getCXXABI()),
36     TheABIInfo(cgm.getTargetCodeGenInfo().getABIInfo()) {
37   SkippedLayout = false;
38 }
39 
~CodeGenTypes()40 CodeGenTypes::~CodeGenTypes() {
41   llvm::DeleteContainerSeconds(CGRecordLayouts);
42 
43   for (llvm::FoldingSet<CGFunctionInfo>::iterator
44        I = FunctionInfos.begin(), E = FunctionInfos.end(); I != E; )
45     delete &*I++;
46 }
47 
addRecordTypeName(const RecordDecl * RD,llvm::StructType * Ty,StringRef suffix)48 void CodeGenTypes::addRecordTypeName(const RecordDecl *RD,
49                                      llvm::StructType *Ty,
50                                      StringRef suffix) {
51   SmallString<256> TypeName;
52   llvm::raw_svector_ostream OS(TypeName);
53   OS << RD->getKindName() << '.';
54 
55   // Name the codegen type after the typedef name
56   // if there is no tag type name available
57   if (RD->getIdentifier()) {
58     // FIXME: We should not have to check for a null decl context here.
59     // Right now we do it because the implicit Obj-C decls don't have one.
60     if (RD->getDeclContext())
61       RD->printQualifiedName(OS);
62     else
63       RD->printName(OS);
64   } else if (const TypedefNameDecl *TDD = RD->getTypedefNameForAnonDecl()) {
65     // FIXME: We should not have to check for a null decl context here.
66     // Right now we do it because the implicit Obj-C decls don't have one.
67     if (TDD->getDeclContext())
68       TDD->printQualifiedName(OS);
69     else
70       TDD->printName(OS);
71   } else
72     OS << "anon";
73 
74   if (!suffix.empty())
75     OS << suffix;
76 
77   Ty->setName(OS.str());
78 }
79 
80 /// ConvertTypeForMem - Convert type T into a llvm::Type.  This differs from
81 /// ConvertType in that it is used to convert to the memory representation for
82 /// a type.  For example, the scalar representation for _Bool is i1, but the
83 /// memory representation is usually i8 or i32, depending on the target.
ConvertTypeForMem(QualType T)84 llvm::Type *CodeGenTypes::ConvertTypeForMem(QualType T){
85   llvm::Type *R = ConvertType(T);
86 
87   // If this is a non-bool type, don't map it.
88   if (!R->isIntegerTy(1))
89     return R;
90 
91   // Otherwise, return an integer of the target-specified size.
92   return llvm::IntegerType::get(getLLVMContext(),
93                                 (unsigned)Context.getTypeSize(T));
94 }
95 
96 
97 /// isRecordLayoutComplete - Return true if the specified type is already
98 /// completely laid out.
isRecordLayoutComplete(const Type * Ty) const99 bool CodeGenTypes::isRecordLayoutComplete(const Type *Ty) const {
100   llvm::DenseMap<const Type*, llvm::StructType *>::const_iterator I =
101   RecordDeclTypes.find(Ty);
102   return I != RecordDeclTypes.end() && !I->second->isOpaque();
103 }
104 
105 static bool
106 isSafeToConvert(QualType T, CodeGenTypes &CGT,
107                 llvm::SmallPtrSet<const RecordDecl*, 16> &AlreadyChecked);
108 
109 
110 /// isSafeToConvert - Return true if it is safe to convert the specified record
111 /// decl to IR and lay it out, false if doing so would cause us to get into a
112 /// recursive compilation mess.
113 static bool
isSafeToConvert(const RecordDecl * RD,CodeGenTypes & CGT,llvm::SmallPtrSet<const RecordDecl *,16> & AlreadyChecked)114 isSafeToConvert(const RecordDecl *RD, CodeGenTypes &CGT,
115                 llvm::SmallPtrSet<const RecordDecl*, 16> &AlreadyChecked) {
116   // If we have already checked this type (maybe the same type is used by-value
117   // multiple times in multiple structure fields, don't check again.
118   if (!AlreadyChecked.insert(RD)) return true;
119 
120   const Type *Key = CGT.getContext().getTagDeclType(RD).getTypePtr();
121 
122   // If this type is already laid out, converting it is a noop.
123   if (CGT.isRecordLayoutComplete(Key)) return true;
124 
125   // If this type is currently being laid out, we can't recursively compile it.
126   if (CGT.isRecordBeingLaidOut(Key))
127     return false;
128 
129   // If this type would require laying out bases that are currently being laid
130   // out, don't do it.  This includes virtual base classes which get laid out
131   // when a class is translated, even though they aren't embedded by-value into
132   // the class.
133   if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
134     for (const auto &I : CRD->bases())
135       if (!isSafeToConvert(I.getType()->getAs<RecordType>()->getDecl(),
136                            CGT, AlreadyChecked))
137         return false;
138   }
139 
140   // If this type would require laying out members that are currently being laid
141   // out, don't do it.
142   for (const auto *I : RD->fields())
143     if (!isSafeToConvert(I->getType(), CGT, AlreadyChecked))
144       return false;
145 
146   // If there are no problems, lets do it.
147   return true;
148 }
149 
150 /// isSafeToConvert - Return true if it is safe to convert this field type,
151 /// which requires the structure elements contained by-value to all be
152 /// recursively safe to convert.
153 static bool
isSafeToConvert(QualType T,CodeGenTypes & CGT,llvm::SmallPtrSet<const RecordDecl *,16> & AlreadyChecked)154 isSafeToConvert(QualType T, CodeGenTypes &CGT,
155                 llvm::SmallPtrSet<const RecordDecl*, 16> &AlreadyChecked) {
156   T = T.getCanonicalType();
157 
158   // If this is a record, check it.
159   if (const RecordType *RT = dyn_cast<RecordType>(T))
160     return isSafeToConvert(RT->getDecl(), CGT, AlreadyChecked);
161 
162   // If this is an array, check the elements, which are embedded inline.
163   if (const ArrayType *AT = dyn_cast<ArrayType>(T))
164     return isSafeToConvert(AT->getElementType(), CGT, AlreadyChecked);
165 
166   // Otherwise, there is no concern about transforming this.  We only care about
167   // things that are contained by-value in a structure that can have another
168   // structure as a member.
169   return true;
170 }
171 
172 
173 /// isSafeToConvert - Return true if it is safe to convert the specified record
174 /// decl to IR and lay it out, false if doing so would cause us to get into a
175 /// recursive compilation mess.
isSafeToConvert(const RecordDecl * RD,CodeGenTypes & CGT)176 static bool isSafeToConvert(const RecordDecl *RD, CodeGenTypes &CGT) {
177   // If no structs are being laid out, we can certainly do this one.
178   if (CGT.noRecordsBeingLaidOut()) return true;
179 
180   llvm::SmallPtrSet<const RecordDecl*, 16> AlreadyChecked;
181   return isSafeToConvert(RD, CGT, AlreadyChecked);
182 }
183 
184 /// isFuncParamTypeConvertible - Return true if the specified type in a
185 /// function parameter or result position can be converted to an IR type at this
186 /// point.  This boils down to being whether it is complete, as well as whether
187 /// we've temporarily deferred expanding the type because we're in a recursive
188 /// context.
isFuncParamTypeConvertible(QualType Ty)189 bool CodeGenTypes::isFuncParamTypeConvertible(QualType Ty) {
190   // If this isn't a tagged type, we can convert it!
191   const TagType *TT = Ty->getAs<TagType>();
192   if (!TT) return true;
193 
194   // Incomplete types cannot be converted.
195   if (TT->isIncompleteType())
196     return false;
197 
198   // If this is an enum, then it is always safe to convert.
199   const RecordType *RT = dyn_cast<RecordType>(TT);
200   if (!RT) return true;
201 
202   // Otherwise, we have to be careful.  If it is a struct that we're in the
203   // process of expanding, then we can't convert the function type.  That's ok
204   // though because we must be in a pointer context under the struct, so we can
205   // just convert it to a dummy type.
206   //
207   // We decide this by checking whether ConvertRecordDeclType returns us an
208   // opaque type for a struct that we know is defined.
209   return isSafeToConvert(RT->getDecl(), *this);
210 }
211 
212 
213 /// Code to verify a given function type is complete, i.e. the return type
214 /// and all of the parameter types are complete.  Also check to see if we are in
215 /// a RS_StructPointer context, and if so whether any struct types have been
216 /// pended.  If so, we don't want to ask the ABI lowering code to handle a type
217 /// that cannot be converted to an IR type.
isFuncTypeConvertible(const FunctionType * FT)218 bool CodeGenTypes::isFuncTypeConvertible(const FunctionType *FT) {
219   if (!isFuncParamTypeConvertible(FT->getReturnType()))
220     return false;
221 
222   if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT))
223     for (unsigned i = 0, e = FPT->getNumParams(); i != e; i++)
224       if (!isFuncParamTypeConvertible(FPT->getParamType(i)))
225         return false;
226 
227   return true;
228 }
229 
230 /// UpdateCompletedType - When we find the full definition for a TagDecl,
231 /// replace the 'opaque' type we previously made for it if applicable.
UpdateCompletedType(const TagDecl * TD)232 void CodeGenTypes::UpdateCompletedType(const TagDecl *TD) {
233   // If this is an enum being completed, then we flush all non-struct types from
234   // the cache.  This allows function types and other things that may be derived
235   // from the enum to be recomputed.
236   if (const EnumDecl *ED = dyn_cast<EnumDecl>(TD)) {
237     // Only flush the cache if we've actually already converted this type.
238     if (TypeCache.count(ED->getTypeForDecl())) {
239       // Okay, we formed some types based on this.  We speculated that the enum
240       // would be lowered to i32, so we only need to flush the cache if this
241       // didn't happen.
242       if (!ConvertType(ED->getIntegerType())->isIntegerTy(32))
243         TypeCache.clear();
244     }
245     // If necessary, provide the full definition of a type only used with a
246     // declaration so far.
247     if (CGDebugInfo *DI = CGM.getModuleDebugInfo())
248       DI->completeType(ED);
249     return;
250   }
251 
252   // If we completed a RecordDecl that we previously used and converted to an
253   // anonymous type, then go ahead and complete it now.
254   const RecordDecl *RD = cast<RecordDecl>(TD);
255   if (RD->isDependentType()) return;
256 
257   // Only complete it if we converted it already.  If we haven't converted it
258   // yet, we'll just do it lazily.
259   if (RecordDeclTypes.count(Context.getTagDeclType(RD).getTypePtr()))
260     ConvertRecordDeclType(RD);
261 
262   // If necessary, provide the full definition of a type only used with a
263   // declaration so far.
264   if (CGDebugInfo *DI = CGM.getModuleDebugInfo())
265     DI->completeType(RD);
266 }
267 
getTypeForFormat(llvm::LLVMContext & VMContext,const llvm::fltSemantics & format,bool UseNativeHalf=false)268 static llvm::Type *getTypeForFormat(llvm::LLVMContext &VMContext,
269                                     const llvm::fltSemantics &format,
270                                     bool UseNativeHalf = false) {
271   if (&format == &llvm::APFloat::IEEEhalf) {
272     if (UseNativeHalf)
273       return llvm::Type::getHalfTy(VMContext);
274     else
275       return llvm::Type::getInt16Ty(VMContext);
276   }
277   if (&format == &llvm::APFloat::IEEEsingle)
278     return llvm::Type::getFloatTy(VMContext);
279   if (&format == &llvm::APFloat::IEEEdouble)
280     return llvm::Type::getDoubleTy(VMContext);
281   if (&format == &llvm::APFloat::IEEEquad)
282     return llvm::Type::getFP128Ty(VMContext);
283   if (&format == &llvm::APFloat::PPCDoubleDouble)
284     return llvm::Type::getPPC_FP128Ty(VMContext);
285   if (&format == &llvm::APFloat::x87DoubleExtended)
286     return llvm::Type::getX86_FP80Ty(VMContext);
287   llvm_unreachable("Unknown float format!");
288 }
289 
290 /// ConvertType - Convert the specified type to its LLVM form.
ConvertType(QualType T)291 llvm::Type *CodeGenTypes::ConvertType(QualType T) {
292   T = Context.getCanonicalType(T);
293 
294   const Type *Ty = T.getTypePtr();
295 
296   // RecordTypes are cached and processed specially.
297   if (const RecordType *RT = dyn_cast<RecordType>(Ty))
298     return ConvertRecordDeclType(RT->getDecl());
299 
300   // See if type is already cached.
301   llvm::DenseMap<const Type *, llvm::Type *>::iterator TCI = TypeCache.find(Ty);
302   // If type is found in map then use it. Otherwise, convert type T.
303   if (TCI != TypeCache.end())
304     return TCI->second;
305 
306   // If we don't have it in the cache, convert it now.
307   llvm::Type *ResultType = nullptr;
308   switch (Ty->getTypeClass()) {
309   case Type::Record: // Handled above.
310 #define TYPE(Class, Base)
311 #define ABSTRACT_TYPE(Class, Base)
312 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
313 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
314 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
315 #include "clang/AST/TypeNodes.def"
316     llvm_unreachable("Non-canonical or dependent types aren't possible.");
317 
318   case Type::Builtin: {
319     switch (cast<BuiltinType>(Ty)->getKind()) {
320     case BuiltinType::Void:
321     case BuiltinType::ObjCId:
322     case BuiltinType::ObjCClass:
323     case BuiltinType::ObjCSel:
324       // LLVM void type can only be used as the result of a function call.  Just
325       // map to the same as char.
326       ResultType = llvm::Type::getInt8Ty(getLLVMContext());
327       break;
328 
329     case BuiltinType::Bool:
330       // Note that we always return bool as i1 for use as a scalar type.
331       ResultType = llvm::Type::getInt1Ty(getLLVMContext());
332       break;
333 
334     case BuiltinType::Char_S:
335     case BuiltinType::Char_U:
336     case BuiltinType::SChar:
337     case BuiltinType::UChar:
338     case BuiltinType::Short:
339     case BuiltinType::UShort:
340     case BuiltinType::Int:
341     case BuiltinType::UInt:
342     case BuiltinType::Long:
343     case BuiltinType::ULong:
344     case BuiltinType::LongLong:
345     case BuiltinType::ULongLong:
346     case BuiltinType::WChar_S:
347     case BuiltinType::WChar_U:
348     case BuiltinType::Char16:
349     case BuiltinType::Char32:
350       ResultType = llvm::IntegerType::get(getLLVMContext(),
351                                  static_cast<unsigned>(Context.getTypeSize(T)));
352       break;
353 
354     case BuiltinType::Half:
355       // Half FP can either be storage-only (lowered to i16) or native.
356       ResultType = getTypeForFormat(getLLVMContext(),
357           Context.getFloatTypeSemantics(T),
358           Context.getLangOpts().NativeHalfType);
359       break;
360     case BuiltinType::Float:
361     case BuiltinType::Double:
362     case BuiltinType::LongDouble:
363       ResultType = getTypeForFormat(getLLVMContext(),
364                                     Context.getFloatTypeSemantics(T),
365                                     /* UseNativeHalf = */ false);
366       break;
367 
368     case BuiltinType::NullPtr:
369       // Model std::nullptr_t as i8*
370       ResultType = llvm::Type::getInt8PtrTy(getLLVMContext());
371       break;
372 
373     case BuiltinType::UInt128:
374     case BuiltinType::Int128:
375       ResultType = llvm::IntegerType::get(getLLVMContext(), 128);
376       break;
377 
378     case BuiltinType::OCLImage1d:
379     case BuiltinType::OCLImage1dArray:
380     case BuiltinType::OCLImage1dBuffer:
381     case BuiltinType::OCLImage2d:
382     case BuiltinType::OCLImage2dArray:
383     case BuiltinType::OCLImage3d:
384     case BuiltinType::OCLSampler:
385     case BuiltinType::OCLEvent:
386       ResultType = CGM.getOpenCLRuntime().convertOpenCLSpecificType(Ty);
387       break;
388 
389     case BuiltinType::Dependent:
390 #define BUILTIN_TYPE(Id, SingletonId)
391 #define PLACEHOLDER_TYPE(Id, SingletonId) \
392     case BuiltinType::Id:
393 #include "clang/AST/BuiltinTypes.def"
394       llvm_unreachable("Unexpected placeholder builtin type!");
395     }
396     break;
397   }
398   case Type::Auto:
399     llvm_unreachable("Unexpected undeduced auto type!");
400   case Type::Complex: {
401     llvm::Type *EltTy = ConvertType(cast<ComplexType>(Ty)->getElementType());
402     ResultType = llvm::StructType::get(EltTy, EltTy, NULL);
403     break;
404   }
405   case Type::LValueReference:
406   case Type::RValueReference: {
407     const ReferenceType *RTy = cast<ReferenceType>(Ty);
408     QualType ETy = RTy->getPointeeType();
409     llvm::Type *PointeeType = ConvertTypeForMem(ETy);
410     unsigned AS = Context.getTargetAddressSpace(ETy);
411     ResultType = llvm::PointerType::get(PointeeType, AS);
412     break;
413   }
414   case Type::Pointer: {
415     const PointerType *PTy = cast<PointerType>(Ty);
416     QualType ETy = PTy->getPointeeType();
417     llvm::Type *PointeeType = ConvertTypeForMem(ETy);
418     if (PointeeType->isVoidTy())
419       PointeeType = llvm::Type::getInt8Ty(getLLVMContext());
420     unsigned AS = Context.getTargetAddressSpace(ETy);
421     ResultType = llvm::PointerType::get(PointeeType, AS);
422     break;
423   }
424 
425   case Type::VariableArray: {
426     const VariableArrayType *A = cast<VariableArrayType>(Ty);
427     assert(A->getIndexTypeCVRQualifiers() == 0 &&
428            "FIXME: We only handle trivial array types so far!");
429     // VLAs resolve to the innermost element type; this matches
430     // the return of alloca, and there isn't any obviously better choice.
431     ResultType = ConvertTypeForMem(A->getElementType());
432     break;
433   }
434   case Type::IncompleteArray: {
435     const IncompleteArrayType *A = cast<IncompleteArrayType>(Ty);
436     assert(A->getIndexTypeCVRQualifiers() == 0 &&
437            "FIXME: We only handle trivial array types so far!");
438     // int X[] -> [0 x int], unless the element type is not sized.  If it is
439     // unsized (e.g. an incomplete struct) just use [0 x i8].
440     ResultType = ConvertTypeForMem(A->getElementType());
441     if (!ResultType->isSized()) {
442       SkippedLayout = true;
443       ResultType = llvm::Type::getInt8Ty(getLLVMContext());
444     }
445     ResultType = llvm::ArrayType::get(ResultType, 0);
446     break;
447   }
448   case Type::ConstantArray: {
449     const ConstantArrayType *A = cast<ConstantArrayType>(Ty);
450     llvm::Type *EltTy = ConvertTypeForMem(A->getElementType());
451 
452     // Lower arrays of undefined struct type to arrays of i8 just to have a
453     // concrete type.
454     if (!EltTy->isSized()) {
455       SkippedLayout = true;
456       EltTy = llvm::Type::getInt8Ty(getLLVMContext());
457     }
458 
459     ResultType = llvm::ArrayType::get(EltTy, A->getSize().getZExtValue());
460     break;
461   }
462   case Type::ExtVector:
463   case Type::Vector: {
464     const VectorType *VT = cast<VectorType>(Ty);
465     ResultType = llvm::VectorType::get(ConvertType(VT->getElementType()),
466                                        VT->getNumElements());
467     break;
468   }
469   case Type::FunctionNoProto:
470   case Type::FunctionProto: {
471     const FunctionType *FT = cast<FunctionType>(Ty);
472     // First, check whether we can build the full function type.  If the
473     // function type depends on an incomplete type (e.g. a struct or enum), we
474     // cannot lower the function type.
475     if (!isFuncTypeConvertible(FT)) {
476       // This function's type depends on an incomplete tag type.
477 
478       // Force conversion of all the relevant record types, to make sure
479       // we re-convert the FunctionType when appropriate.
480       if (const RecordType *RT = FT->getReturnType()->getAs<RecordType>())
481         ConvertRecordDeclType(RT->getDecl());
482       if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT))
483         for (unsigned i = 0, e = FPT->getNumParams(); i != e; i++)
484           if (const RecordType *RT = FPT->getParamType(i)->getAs<RecordType>())
485             ConvertRecordDeclType(RT->getDecl());
486 
487       // Return a placeholder type.
488       ResultType = llvm::StructType::get(getLLVMContext());
489 
490       SkippedLayout = true;
491       break;
492     }
493 
494     // While we're converting the parameter types for a function, we don't want
495     // to recursively convert any pointed-to structs.  Converting directly-used
496     // structs is ok though.
497     if (!RecordsBeingLaidOut.insert(Ty)) {
498       ResultType = llvm::StructType::get(getLLVMContext());
499 
500       SkippedLayout = true;
501       break;
502     }
503 
504     // The function type can be built; call the appropriate routines to
505     // build it.
506     const CGFunctionInfo *FI;
507     if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT)) {
508       FI = &arrangeFreeFunctionType(
509                    CanQual<FunctionProtoType>::CreateUnsafe(QualType(FPT, 0)));
510     } else {
511       const FunctionNoProtoType *FNPT = cast<FunctionNoProtoType>(FT);
512       FI = &arrangeFreeFunctionType(
513                 CanQual<FunctionNoProtoType>::CreateUnsafe(QualType(FNPT, 0)));
514     }
515 
516     // If there is something higher level prodding our CGFunctionInfo, then
517     // don't recurse into it again.
518     if (FunctionsBeingProcessed.count(FI)) {
519 
520       ResultType = llvm::StructType::get(getLLVMContext());
521       SkippedLayout = true;
522     } else {
523 
524       // Otherwise, we're good to go, go ahead and convert it.
525       ResultType = GetFunctionType(*FI);
526     }
527 
528     RecordsBeingLaidOut.erase(Ty);
529 
530     if (SkippedLayout)
531       TypeCache.clear();
532 
533     if (RecordsBeingLaidOut.empty())
534       while (!DeferredRecords.empty())
535         ConvertRecordDeclType(DeferredRecords.pop_back_val());
536     break;
537   }
538 
539   case Type::ObjCObject:
540     ResultType = ConvertType(cast<ObjCObjectType>(Ty)->getBaseType());
541     break;
542 
543   case Type::ObjCInterface: {
544     // Objective-C interfaces are always opaque (outside of the
545     // runtime, which can do whatever it likes); we never refine
546     // these.
547     llvm::Type *&T = InterfaceTypes[cast<ObjCInterfaceType>(Ty)];
548     if (!T)
549       T = llvm::StructType::create(getLLVMContext());
550     ResultType = T;
551     break;
552   }
553 
554   case Type::ObjCObjectPointer: {
555     // Protocol qualifications do not influence the LLVM type, we just return a
556     // pointer to the underlying interface type. We don't need to worry about
557     // recursive conversion.
558     llvm::Type *T =
559       ConvertTypeForMem(cast<ObjCObjectPointerType>(Ty)->getPointeeType());
560     ResultType = T->getPointerTo();
561     break;
562   }
563 
564   case Type::Enum: {
565     const EnumDecl *ED = cast<EnumType>(Ty)->getDecl();
566     if (ED->isCompleteDefinition() || ED->isFixed())
567       return ConvertType(ED->getIntegerType());
568     // Return a placeholder 'i32' type.  This can be changed later when the
569     // type is defined (see UpdateCompletedType), but is likely to be the
570     // "right" answer.
571     ResultType = llvm::Type::getInt32Ty(getLLVMContext());
572     break;
573   }
574 
575   case Type::BlockPointer: {
576     const QualType FTy = cast<BlockPointerType>(Ty)->getPointeeType();
577     llvm::Type *PointeeType = ConvertTypeForMem(FTy);
578     unsigned AS = Context.getTargetAddressSpace(FTy);
579     ResultType = llvm::PointerType::get(PointeeType, AS);
580     break;
581   }
582 
583   case Type::MemberPointer: {
584     ResultType =
585       getCXXABI().ConvertMemberPointerType(cast<MemberPointerType>(Ty));
586     break;
587   }
588 
589   case Type::Atomic: {
590     QualType valueType = cast<AtomicType>(Ty)->getValueType();
591     ResultType = ConvertTypeForMem(valueType);
592 
593     // Pad out to the inflated size if necessary.
594     uint64_t valueSize = Context.getTypeSize(valueType);
595     uint64_t atomicSize = Context.getTypeSize(Ty);
596     if (valueSize != atomicSize) {
597       assert(valueSize < atomicSize);
598       llvm::Type *elts[] = {
599         ResultType,
600         llvm::ArrayType::get(CGM.Int8Ty, (atomicSize - valueSize) / 8)
601       };
602       ResultType = llvm::StructType::get(getLLVMContext(),
603                                          llvm::makeArrayRef(elts));
604     }
605     break;
606   }
607   }
608 
609   assert(ResultType && "Didn't convert a type?");
610 
611   TypeCache[Ty] = ResultType;
612   return ResultType;
613 }
614 
isPaddedAtomicType(QualType type)615 bool CodeGenModule::isPaddedAtomicType(QualType type) {
616   return isPaddedAtomicType(type->castAs<AtomicType>());
617 }
618 
isPaddedAtomicType(const AtomicType * type)619 bool CodeGenModule::isPaddedAtomicType(const AtomicType *type) {
620   return Context.getTypeSize(type) != Context.getTypeSize(type->getValueType());
621 }
622 
623 /// ConvertRecordDeclType - Lay out a tagged decl type like struct or union.
ConvertRecordDeclType(const RecordDecl * RD)624 llvm::StructType *CodeGenTypes::ConvertRecordDeclType(const RecordDecl *RD) {
625   // TagDecl's are not necessarily unique, instead use the (clang)
626   // type connected to the decl.
627   const Type *Key = Context.getTagDeclType(RD).getTypePtr();
628 
629   llvm::StructType *&Entry = RecordDeclTypes[Key];
630 
631   // If we don't have a StructType at all yet, create the forward declaration.
632   if (!Entry) {
633     Entry = llvm::StructType::create(getLLVMContext());
634     addRecordTypeName(RD, Entry, "");
635   }
636   llvm::StructType *Ty = Entry;
637 
638   // If this is still a forward declaration, or the LLVM type is already
639   // complete, there's nothing more to do.
640   RD = RD->getDefinition();
641   if (!RD || !RD->isCompleteDefinition() || !Ty->isOpaque())
642     return Ty;
643 
644   // If converting this type would cause us to infinitely loop, don't do it!
645   if (!isSafeToConvert(RD, *this)) {
646     DeferredRecords.push_back(RD);
647     return Ty;
648   }
649 
650   // Okay, this is a definition of a type.  Compile the implementation now.
651   bool InsertResult = RecordsBeingLaidOut.insert(Key); (void)InsertResult;
652   assert(InsertResult && "Recursively compiling a struct?");
653 
654   // Force conversion of non-virtual base classes recursively.
655   if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
656     for (const auto &I : CRD->bases()) {
657       if (I.isVirtual()) continue;
658 
659       ConvertRecordDeclType(I.getType()->getAs<RecordType>()->getDecl());
660     }
661   }
662 
663   // Layout fields.
664   CGRecordLayout *Layout = ComputeRecordLayout(RD, Ty);
665   CGRecordLayouts[Key] = Layout;
666 
667   // We're done laying out this struct.
668   bool EraseResult = RecordsBeingLaidOut.erase(Key); (void)EraseResult;
669   assert(EraseResult && "struct not in RecordsBeingLaidOut set?");
670 
671   // If this struct blocked a FunctionType conversion, then recompute whatever
672   // was derived from that.
673   // FIXME: This is hugely overconservative.
674   if (SkippedLayout)
675     TypeCache.clear();
676 
677   // If we're done converting the outer-most record, then convert any deferred
678   // structs as well.
679   if (RecordsBeingLaidOut.empty())
680     while (!DeferredRecords.empty())
681       ConvertRecordDeclType(DeferredRecords.pop_back_val());
682 
683   return Ty;
684 }
685 
686 /// getCGRecordLayout - Return record layout info for the given record decl.
687 const CGRecordLayout &
getCGRecordLayout(const RecordDecl * RD)688 CodeGenTypes::getCGRecordLayout(const RecordDecl *RD) {
689   const Type *Key = Context.getTagDeclType(RD).getTypePtr();
690 
691   const CGRecordLayout *Layout = CGRecordLayouts.lookup(Key);
692   if (!Layout) {
693     // Compute the type information.
694     ConvertRecordDeclType(RD);
695 
696     // Now try again.
697     Layout = CGRecordLayouts.lookup(Key);
698   }
699 
700   assert(Layout && "Unable to find record layout information for type");
701   return *Layout;
702 }
703 
isZeroInitializable(QualType T)704 bool CodeGenTypes::isZeroInitializable(QualType T) {
705   // No need to check for member pointers when not compiling C++.
706   if (!Context.getLangOpts().CPlusPlus)
707     return true;
708 
709   T = Context.getBaseElementType(T);
710 
711   // Records are non-zero-initializable if they contain any
712   // non-zero-initializable subobjects.
713   if (const RecordType *RT = T->getAs<RecordType>()) {
714     const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
715     return isZeroInitializable(RD);
716   }
717 
718   // We have to ask the ABI about member pointers.
719   if (const MemberPointerType *MPT = T->getAs<MemberPointerType>())
720     return getCXXABI().isZeroInitializable(MPT);
721 
722   // Everything else is okay.
723   return true;
724 }
725 
isZeroInitializable(const CXXRecordDecl * RD)726 bool CodeGenTypes::isZeroInitializable(const CXXRecordDecl *RD) {
727   return getCGRecordLayout(RD).isZeroInitializable();
728 }
729