1 //===--- CodeGenTypes.cpp - Type translation for LLVM CodeGen -------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This is the code that handles AST -> LLVM type lowering.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "CodeGenTypes.h"
15 #include "CGCXXABI.h"
16 #include "CGCall.h"
17 #include "CGOpenCLRuntime.h"
18 #include "CGRecordLayout.h"
19 #include "TargetInfo.h"
20 #include "clang/AST/ASTContext.h"
21 #include "clang/AST/DeclCXX.h"
22 #include "clang/AST/DeclObjC.h"
23 #include "clang/AST/Expr.h"
24 #include "clang/AST/RecordLayout.h"
25 #include "clang/CodeGen/CGFunctionInfo.h"
26 #include "llvm/IR/DataLayout.h"
27 #include "llvm/IR/DerivedTypes.h"
28 #include "llvm/IR/Module.h"
29 using namespace clang;
30 using namespace CodeGen;
31
CodeGenTypes(CodeGenModule & cgm)32 CodeGenTypes::CodeGenTypes(CodeGenModule &cgm)
33 : CGM(cgm), Context(cgm.getContext()), TheModule(cgm.getModule()),
34 TheDataLayout(cgm.getDataLayout()),
35 Target(cgm.getTarget()), TheCXXABI(cgm.getCXXABI()),
36 TheABIInfo(cgm.getTargetCodeGenInfo().getABIInfo()) {
37 SkippedLayout = false;
38 }
39
~CodeGenTypes()40 CodeGenTypes::~CodeGenTypes() {
41 llvm::DeleteContainerSeconds(CGRecordLayouts);
42
43 for (llvm::FoldingSet<CGFunctionInfo>::iterator
44 I = FunctionInfos.begin(), E = FunctionInfos.end(); I != E; )
45 delete &*I++;
46 }
47
addRecordTypeName(const RecordDecl * RD,llvm::StructType * Ty,StringRef suffix)48 void CodeGenTypes::addRecordTypeName(const RecordDecl *RD,
49 llvm::StructType *Ty,
50 StringRef suffix) {
51 SmallString<256> TypeName;
52 llvm::raw_svector_ostream OS(TypeName);
53 OS << RD->getKindName() << '.';
54
55 // Name the codegen type after the typedef name
56 // if there is no tag type name available
57 if (RD->getIdentifier()) {
58 // FIXME: We should not have to check for a null decl context here.
59 // Right now we do it because the implicit Obj-C decls don't have one.
60 if (RD->getDeclContext())
61 RD->printQualifiedName(OS);
62 else
63 RD->printName(OS);
64 } else if (const TypedefNameDecl *TDD = RD->getTypedefNameForAnonDecl()) {
65 // FIXME: We should not have to check for a null decl context here.
66 // Right now we do it because the implicit Obj-C decls don't have one.
67 if (TDD->getDeclContext())
68 TDD->printQualifiedName(OS);
69 else
70 TDD->printName(OS);
71 } else
72 OS << "anon";
73
74 if (!suffix.empty())
75 OS << suffix;
76
77 Ty->setName(OS.str());
78 }
79
80 /// ConvertTypeForMem - Convert type T into a llvm::Type. This differs from
81 /// ConvertType in that it is used to convert to the memory representation for
82 /// a type. For example, the scalar representation for _Bool is i1, but the
83 /// memory representation is usually i8 or i32, depending on the target.
ConvertTypeForMem(QualType T)84 llvm::Type *CodeGenTypes::ConvertTypeForMem(QualType T){
85 llvm::Type *R = ConvertType(T);
86
87 // If this is a non-bool type, don't map it.
88 if (!R->isIntegerTy(1))
89 return R;
90
91 // Otherwise, return an integer of the target-specified size.
92 return llvm::IntegerType::get(getLLVMContext(),
93 (unsigned)Context.getTypeSize(T));
94 }
95
96
97 /// isRecordLayoutComplete - Return true if the specified type is already
98 /// completely laid out.
isRecordLayoutComplete(const Type * Ty) const99 bool CodeGenTypes::isRecordLayoutComplete(const Type *Ty) const {
100 llvm::DenseMap<const Type*, llvm::StructType *>::const_iterator I =
101 RecordDeclTypes.find(Ty);
102 return I != RecordDeclTypes.end() && !I->second->isOpaque();
103 }
104
105 static bool
106 isSafeToConvert(QualType T, CodeGenTypes &CGT,
107 llvm::SmallPtrSet<const RecordDecl*, 16> &AlreadyChecked);
108
109
110 /// isSafeToConvert - Return true if it is safe to convert the specified record
111 /// decl to IR and lay it out, false if doing so would cause us to get into a
112 /// recursive compilation mess.
113 static bool
isSafeToConvert(const RecordDecl * RD,CodeGenTypes & CGT,llvm::SmallPtrSet<const RecordDecl *,16> & AlreadyChecked)114 isSafeToConvert(const RecordDecl *RD, CodeGenTypes &CGT,
115 llvm::SmallPtrSet<const RecordDecl*, 16> &AlreadyChecked) {
116 // If we have already checked this type (maybe the same type is used by-value
117 // multiple times in multiple structure fields, don't check again.
118 if (!AlreadyChecked.insert(RD)) return true;
119
120 const Type *Key = CGT.getContext().getTagDeclType(RD).getTypePtr();
121
122 // If this type is already laid out, converting it is a noop.
123 if (CGT.isRecordLayoutComplete(Key)) return true;
124
125 // If this type is currently being laid out, we can't recursively compile it.
126 if (CGT.isRecordBeingLaidOut(Key))
127 return false;
128
129 // If this type would require laying out bases that are currently being laid
130 // out, don't do it. This includes virtual base classes which get laid out
131 // when a class is translated, even though they aren't embedded by-value into
132 // the class.
133 if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
134 for (const auto &I : CRD->bases())
135 if (!isSafeToConvert(I.getType()->getAs<RecordType>()->getDecl(),
136 CGT, AlreadyChecked))
137 return false;
138 }
139
140 // If this type would require laying out members that are currently being laid
141 // out, don't do it.
142 for (const auto *I : RD->fields())
143 if (!isSafeToConvert(I->getType(), CGT, AlreadyChecked))
144 return false;
145
146 // If there are no problems, lets do it.
147 return true;
148 }
149
150 /// isSafeToConvert - Return true if it is safe to convert this field type,
151 /// which requires the structure elements contained by-value to all be
152 /// recursively safe to convert.
153 static bool
isSafeToConvert(QualType T,CodeGenTypes & CGT,llvm::SmallPtrSet<const RecordDecl *,16> & AlreadyChecked)154 isSafeToConvert(QualType T, CodeGenTypes &CGT,
155 llvm::SmallPtrSet<const RecordDecl*, 16> &AlreadyChecked) {
156 T = T.getCanonicalType();
157
158 // If this is a record, check it.
159 if (const RecordType *RT = dyn_cast<RecordType>(T))
160 return isSafeToConvert(RT->getDecl(), CGT, AlreadyChecked);
161
162 // If this is an array, check the elements, which are embedded inline.
163 if (const ArrayType *AT = dyn_cast<ArrayType>(T))
164 return isSafeToConvert(AT->getElementType(), CGT, AlreadyChecked);
165
166 // Otherwise, there is no concern about transforming this. We only care about
167 // things that are contained by-value in a structure that can have another
168 // structure as a member.
169 return true;
170 }
171
172
173 /// isSafeToConvert - Return true if it is safe to convert the specified record
174 /// decl to IR and lay it out, false if doing so would cause us to get into a
175 /// recursive compilation mess.
isSafeToConvert(const RecordDecl * RD,CodeGenTypes & CGT)176 static bool isSafeToConvert(const RecordDecl *RD, CodeGenTypes &CGT) {
177 // If no structs are being laid out, we can certainly do this one.
178 if (CGT.noRecordsBeingLaidOut()) return true;
179
180 llvm::SmallPtrSet<const RecordDecl*, 16> AlreadyChecked;
181 return isSafeToConvert(RD, CGT, AlreadyChecked);
182 }
183
184 /// isFuncParamTypeConvertible - Return true if the specified type in a
185 /// function parameter or result position can be converted to an IR type at this
186 /// point. This boils down to being whether it is complete, as well as whether
187 /// we've temporarily deferred expanding the type because we're in a recursive
188 /// context.
isFuncParamTypeConvertible(QualType Ty)189 bool CodeGenTypes::isFuncParamTypeConvertible(QualType Ty) {
190 // If this isn't a tagged type, we can convert it!
191 const TagType *TT = Ty->getAs<TagType>();
192 if (!TT) return true;
193
194 // Incomplete types cannot be converted.
195 if (TT->isIncompleteType())
196 return false;
197
198 // If this is an enum, then it is always safe to convert.
199 const RecordType *RT = dyn_cast<RecordType>(TT);
200 if (!RT) return true;
201
202 // Otherwise, we have to be careful. If it is a struct that we're in the
203 // process of expanding, then we can't convert the function type. That's ok
204 // though because we must be in a pointer context under the struct, so we can
205 // just convert it to a dummy type.
206 //
207 // We decide this by checking whether ConvertRecordDeclType returns us an
208 // opaque type for a struct that we know is defined.
209 return isSafeToConvert(RT->getDecl(), *this);
210 }
211
212
213 /// Code to verify a given function type is complete, i.e. the return type
214 /// and all of the parameter types are complete. Also check to see if we are in
215 /// a RS_StructPointer context, and if so whether any struct types have been
216 /// pended. If so, we don't want to ask the ABI lowering code to handle a type
217 /// that cannot be converted to an IR type.
isFuncTypeConvertible(const FunctionType * FT)218 bool CodeGenTypes::isFuncTypeConvertible(const FunctionType *FT) {
219 if (!isFuncParamTypeConvertible(FT->getReturnType()))
220 return false;
221
222 if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT))
223 for (unsigned i = 0, e = FPT->getNumParams(); i != e; i++)
224 if (!isFuncParamTypeConvertible(FPT->getParamType(i)))
225 return false;
226
227 return true;
228 }
229
230 /// UpdateCompletedType - When we find the full definition for a TagDecl,
231 /// replace the 'opaque' type we previously made for it if applicable.
UpdateCompletedType(const TagDecl * TD)232 void CodeGenTypes::UpdateCompletedType(const TagDecl *TD) {
233 // If this is an enum being completed, then we flush all non-struct types from
234 // the cache. This allows function types and other things that may be derived
235 // from the enum to be recomputed.
236 if (const EnumDecl *ED = dyn_cast<EnumDecl>(TD)) {
237 // Only flush the cache if we've actually already converted this type.
238 if (TypeCache.count(ED->getTypeForDecl())) {
239 // Okay, we formed some types based on this. We speculated that the enum
240 // would be lowered to i32, so we only need to flush the cache if this
241 // didn't happen.
242 if (!ConvertType(ED->getIntegerType())->isIntegerTy(32))
243 TypeCache.clear();
244 }
245 // If necessary, provide the full definition of a type only used with a
246 // declaration so far.
247 if (CGDebugInfo *DI = CGM.getModuleDebugInfo())
248 DI->completeType(ED);
249 return;
250 }
251
252 // If we completed a RecordDecl that we previously used and converted to an
253 // anonymous type, then go ahead and complete it now.
254 const RecordDecl *RD = cast<RecordDecl>(TD);
255 if (RD->isDependentType()) return;
256
257 // Only complete it if we converted it already. If we haven't converted it
258 // yet, we'll just do it lazily.
259 if (RecordDeclTypes.count(Context.getTagDeclType(RD).getTypePtr()))
260 ConvertRecordDeclType(RD);
261
262 // If necessary, provide the full definition of a type only used with a
263 // declaration so far.
264 if (CGDebugInfo *DI = CGM.getModuleDebugInfo())
265 DI->completeType(RD);
266 }
267
getTypeForFormat(llvm::LLVMContext & VMContext,const llvm::fltSemantics & format,bool UseNativeHalf=false)268 static llvm::Type *getTypeForFormat(llvm::LLVMContext &VMContext,
269 const llvm::fltSemantics &format,
270 bool UseNativeHalf = false) {
271 if (&format == &llvm::APFloat::IEEEhalf) {
272 if (UseNativeHalf)
273 return llvm::Type::getHalfTy(VMContext);
274 else
275 return llvm::Type::getInt16Ty(VMContext);
276 }
277 if (&format == &llvm::APFloat::IEEEsingle)
278 return llvm::Type::getFloatTy(VMContext);
279 if (&format == &llvm::APFloat::IEEEdouble)
280 return llvm::Type::getDoubleTy(VMContext);
281 if (&format == &llvm::APFloat::IEEEquad)
282 return llvm::Type::getFP128Ty(VMContext);
283 if (&format == &llvm::APFloat::PPCDoubleDouble)
284 return llvm::Type::getPPC_FP128Ty(VMContext);
285 if (&format == &llvm::APFloat::x87DoubleExtended)
286 return llvm::Type::getX86_FP80Ty(VMContext);
287 llvm_unreachable("Unknown float format!");
288 }
289
290 /// ConvertType - Convert the specified type to its LLVM form.
ConvertType(QualType T)291 llvm::Type *CodeGenTypes::ConvertType(QualType T) {
292 T = Context.getCanonicalType(T);
293
294 const Type *Ty = T.getTypePtr();
295
296 // RecordTypes are cached and processed specially.
297 if (const RecordType *RT = dyn_cast<RecordType>(Ty))
298 return ConvertRecordDeclType(RT->getDecl());
299
300 // See if type is already cached.
301 llvm::DenseMap<const Type *, llvm::Type *>::iterator TCI = TypeCache.find(Ty);
302 // If type is found in map then use it. Otherwise, convert type T.
303 if (TCI != TypeCache.end())
304 return TCI->second;
305
306 // If we don't have it in the cache, convert it now.
307 llvm::Type *ResultType = nullptr;
308 switch (Ty->getTypeClass()) {
309 case Type::Record: // Handled above.
310 #define TYPE(Class, Base)
311 #define ABSTRACT_TYPE(Class, Base)
312 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
313 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
314 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
315 #include "clang/AST/TypeNodes.def"
316 llvm_unreachable("Non-canonical or dependent types aren't possible.");
317
318 case Type::Builtin: {
319 switch (cast<BuiltinType>(Ty)->getKind()) {
320 case BuiltinType::Void:
321 case BuiltinType::ObjCId:
322 case BuiltinType::ObjCClass:
323 case BuiltinType::ObjCSel:
324 // LLVM void type can only be used as the result of a function call. Just
325 // map to the same as char.
326 ResultType = llvm::Type::getInt8Ty(getLLVMContext());
327 break;
328
329 case BuiltinType::Bool:
330 // Note that we always return bool as i1 for use as a scalar type.
331 ResultType = llvm::Type::getInt1Ty(getLLVMContext());
332 break;
333
334 case BuiltinType::Char_S:
335 case BuiltinType::Char_U:
336 case BuiltinType::SChar:
337 case BuiltinType::UChar:
338 case BuiltinType::Short:
339 case BuiltinType::UShort:
340 case BuiltinType::Int:
341 case BuiltinType::UInt:
342 case BuiltinType::Long:
343 case BuiltinType::ULong:
344 case BuiltinType::LongLong:
345 case BuiltinType::ULongLong:
346 case BuiltinType::WChar_S:
347 case BuiltinType::WChar_U:
348 case BuiltinType::Char16:
349 case BuiltinType::Char32:
350 ResultType = llvm::IntegerType::get(getLLVMContext(),
351 static_cast<unsigned>(Context.getTypeSize(T)));
352 break;
353
354 case BuiltinType::Half:
355 // Half FP can either be storage-only (lowered to i16) or native.
356 ResultType = getTypeForFormat(getLLVMContext(),
357 Context.getFloatTypeSemantics(T),
358 Context.getLangOpts().NativeHalfType);
359 break;
360 case BuiltinType::Float:
361 case BuiltinType::Double:
362 case BuiltinType::LongDouble:
363 ResultType = getTypeForFormat(getLLVMContext(),
364 Context.getFloatTypeSemantics(T),
365 /* UseNativeHalf = */ false);
366 break;
367
368 case BuiltinType::NullPtr:
369 // Model std::nullptr_t as i8*
370 ResultType = llvm::Type::getInt8PtrTy(getLLVMContext());
371 break;
372
373 case BuiltinType::UInt128:
374 case BuiltinType::Int128:
375 ResultType = llvm::IntegerType::get(getLLVMContext(), 128);
376 break;
377
378 case BuiltinType::OCLImage1d:
379 case BuiltinType::OCLImage1dArray:
380 case BuiltinType::OCLImage1dBuffer:
381 case BuiltinType::OCLImage2d:
382 case BuiltinType::OCLImage2dArray:
383 case BuiltinType::OCLImage3d:
384 case BuiltinType::OCLSampler:
385 case BuiltinType::OCLEvent:
386 ResultType = CGM.getOpenCLRuntime().convertOpenCLSpecificType(Ty);
387 break;
388
389 case BuiltinType::Dependent:
390 #define BUILTIN_TYPE(Id, SingletonId)
391 #define PLACEHOLDER_TYPE(Id, SingletonId) \
392 case BuiltinType::Id:
393 #include "clang/AST/BuiltinTypes.def"
394 llvm_unreachable("Unexpected placeholder builtin type!");
395 }
396 break;
397 }
398 case Type::Auto:
399 llvm_unreachable("Unexpected undeduced auto type!");
400 case Type::Complex: {
401 llvm::Type *EltTy = ConvertType(cast<ComplexType>(Ty)->getElementType());
402 ResultType = llvm::StructType::get(EltTy, EltTy, NULL);
403 break;
404 }
405 case Type::LValueReference:
406 case Type::RValueReference: {
407 const ReferenceType *RTy = cast<ReferenceType>(Ty);
408 QualType ETy = RTy->getPointeeType();
409 llvm::Type *PointeeType = ConvertTypeForMem(ETy);
410 unsigned AS = Context.getTargetAddressSpace(ETy);
411 ResultType = llvm::PointerType::get(PointeeType, AS);
412 break;
413 }
414 case Type::Pointer: {
415 const PointerType *PTy = cast<PointerType>(Ty);
416 QualType ETy = PTy->getPointeeType();
417 llvm::Type *PointeeType = ConvertTypeForMem(ETy);
418 if (PointeeType->isVoidTy())
419 PointeeType = llvm::Type::getInt8Ty(getLLVMContext());
420 unsigned AS = Context.getTargetAddressSpace(ETy);
421 ResultType = llvm::PointerType::get(PointeeType, AS);
422 break;
423 }
424
425 case Type::VariableArray: {
426 const VariableArrayType *A = cast<VariableArrayType>(Ty);
427 assert(A->getIndexTypeCVRQualifiers() == 0 &&
428 "FIXME: We only handle trivial array types so far!");
429 // VLAs resolve to the innermost element type; this matches
430 // the return of alloca, and there isn't any obviously better choice.
431 ResultType = ConvertTypeForMem(A->getElementType());
432 break;
433 }
434 case Type::IncompleteArray: {
435 const IncompleteArrayType *A = cast<IncompleteArrayType>(Ty);
436 assert(A->getIndexTypeCVRQualifiers() == 0 &&
437 "FIXME: We only handle trivial array types so far!");
438 // int X[] -> [0 x int], unless the element type is not sized. If it is
439 // unsized (e.g. an incomplete struct) just use [0 x i8].
440 ResultType = ConvertTypeForMem(A->getElementType());
441 if (!ResultType->isSized()) {
442 SkippedLayout = true;
443 ResultType = llvm::Type::getInt8Ty(getLLVMContext());
444 }
445 ResultType = llvm::ArrayType::get(ResultType, 0);
446 break;
447 }
448 case Type::ConstantArray: {
449 const ConstantArrayType *A = cast<ConstantArrayType>(Ty);
450 llvm::Type *EltTy = ConvertTypeForMem(A->getElementType());
451
452 // Lower arrays of undefined struct type to arrays of i8 just to have a
453 // concrete type.
454 if (!EltTy->isSized()) {
455 SkippedLayout = true;
456 EltTy = llvm::Type::getInt8Ty(getLLVMContext());
457 }
458
459 ResultType = llvm::ArrayType::get(EltTy, A->getSize().getZExtValue());
460 break;
461 }
462 case Type::ExtVector:
463 case Type::Vector: {
464 const VectorType *VT = cast<VectorType>(Ty);
465 ResultType = llvm::VectorType::get(ConvertType(VT->getElementType()),
466 VT->getNumElements());
467 break;
468 }
469 case Type::FunctionNoProto:
470 case Type::FunctionProto: {
471 const FunctionType *FT = cast<FunctionType>(Ty);
472 // First, check whether we can build the full function type. If the
473 // function type depends on an incomplete type (e.g. a struct or enum), we
474 // cannot lower the function type.
475 if (!isFuncTypeConvertible(FT)) {
476 // This function's type depends on an incomplete tag type.
477
478 // Force conversion of all the relevant record types, to make sure
479 // we re-convert the FunctionType when appropriate.
480 if (const RecordType *RT = FT->getReturnType()->getAs<RecordType>())
481 ConvertRecordDeclType(RT->getDecl());
482 if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT))
483 for (unsigned i = 0, e = FPT->getNumParams(); i != e; i++)
484 if (const RecordType *RT = FPT->getParamType(i)->getAs<RecordType>())
485 ConvertRecordDeclType(RT->getDecl());
486
487 // Return a placeholder type.
488 ResultType = llvm::StructType::get(getLLVMContext());
489
490 SkippedLayout = true;
491 break;
492 }
493
494 // While we're converting the parameter types for a function, we don't want
495 // to recursively convert any pointed-to structs. Converting directly-used
496 // structs is ok though.
497 if (!RecordsBeingLaidOut.insert(Ty)) {
498 ResultType = llvm::StructType::get(getLLVMContext());
499
500 SkippedLayout = true;
501 break;
502 }
503
504 // The function type can be built; call the appropriate routines to
505 // build it.
506 const CGFunctionInfo *FI;
507 if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT)) {
508 FI = &arrangeFreeFunctionType(
509 CanQual<FunctionProtoType>::CreateUnsafe(QualType(FPT, 0)));
510 } else {
511 const FunctionNoProtoType *FNPT = cast<FunctionNoProtoType>(FT);
512 FI = &arrangeFreeFunctionType(
513 CanQual<FunctionNoProtoType>::CreateUnsafe(QualType(FNPT, 0)));
514 }
515
516 // If there is something higher level prodding our CGFunctionInfo, then
517 // don't recurse into it again.
518 if (FunctionsBeingProcessed.count(FI)) {
519
520 ResultType = llvm::StructType::get(getLLVMContext());
521 SkippedLayout = true;
522 } else {
523
524 // Otherwise, we're good to go, go ahead and convert it.
525 ResultType = GetFunctionType(*FI);
526 }
527
528 RecordsBeingLaidOut.erase(Ty);
529
530 if (SkippedLayout)
531 TypeCache.clear();
532
533 if (RecordsBeingLaidOut.empty())
534 while (!DeferredRecords.empty())
535 ConvertRecordDeclType(DeferredRecords.pop_back_val());
536 break;
537 }
538
539 case Type::ObjCObject:
540 ResultType = ConvertType(cast<ObjCObjectType>(Ty)->getBaseType());
541 break;
542
543 case Type::ObjCInterface: {
544 // Objective-C interfaces are always opaque (outside of the
545 // runtime, which can do whatever it likes); we never refine
546 // these.
547 llvm::Type *&T = InterfaceTypes[cast<ObjCInterfaceType>(Ty)];
548 if (!T)
549 T = llvm::StructType::create(getLLVMContext());
550 ResultType = T;
551 break;
552 }
553
554 case Type::ObjCObjectPointer: {
555 // Protocol qualifications do not influence the LLVM type, we just return a
556 // pointer to the underlying interface type. We don't need to worry about
557 // recursive conversion.
558 llvm::Type *T =
559 ConvertTypeForMem(cast<ObjCObjectPointerType>(Ty)->getPointeeType());
560 ResultType = T->getPointerTo();
561 break;
562 }
563
564 case Type::Enum: {
565 const EnumDecl *ED = cast<EnumType>(Ty)->getDecl();
566 if (ED->isCompleteDefinition() || ED->isFixed())
567 return ConvertType(ED->getIntegerType());
568 // Return a placeholder 'i32' type. This can be changed later when the
569 // type is defined (see UpdateCompletedType), but is likely to be the
570 // "right" answer.
571 ResultType = llvm::Type::getInt32Ty(getLLVMContext());
572 break;
573 }
574
575 case Type::BlockPointer: {
576 const QualType FTy = cast<BlockPointerType>(Ty)->getPointeeType();
577 llvm::Type *PointeeType = ConvertTypeForMem(FTy);
578 unsigned AS = Context.getTargetAddressSpace(FTy);
579 ResultType = llvm::PointerType::get(PointeeType, AS);
580 break;
581 }
582
583 case Type::MemberPointer: {
584 ResultType =
585 getCXXABI().ConvertMemberPointerType(cast<MemberPointerType>(Ty));
586 break;
587 }
588
589 case Type::Atomic: {
590 QualType valueType = cast<AtomicType>(Ty)->getValueType();
591 ResultType = ConvertTypeForMem(valueType);
592
593 // Pad out to the inflated size if necessary.
594 uint64_t valueSize = Context.getTypeSize(valueType);
595 uint64_t atomicSize = Context.getTypeSize(Ty);
596 if (valueSize != atomicSize) {
597 assert(valueSize < atomicSize);
598 llvm::Type *elts[] = {
599 ResultType,
600 llvm::ArrayType::get(CGM.Int8Ty, (atomicSize - valueSize) / 8)
601 };
602 ResultType = llvm::StructType::get(getLLVMContext(),
603 llvm::makeArrayRef(elts));
604 }
605 break;
606 }
607 }
608
609 assert(ResultType && "Didn't convert a type?");
610
611 TypeCache[Ty] = ResultType;
612 return ResultType;
613 }
614
isPaddedAtomicType(QualType type)615 bool CodeGenModule::isPaddedAtomicType(QualType type) {
616 return isPaddedAtomicType(type->castAs<AtomicType>());
617 }
618
isPaddedAtomicType(const AtomicType * type)619 bool CodeGenModule::isPaddedAtomicType(const AtomicType *type) {
620 return Context.getTypeSize(type) != Context.getTypeSize(type->getValueType());
621 }
622
623 /// ConvertRecordDeclType - Lay out a tagged decl type like struct or union.
ConvertRecordDeclType(const RecordDecl * RD)624 llvm::StructType *CodeGenTypes::ConvertRecordDeclType(const RecordDecl *RD) {
625 // TagDecl's are not necessarily unique, instead use the (clang)
626 // type connected to the decl.
627 const Type *Key = Context.getTagDeclType(RD).getTypePtr();
628
629 llvm::StructType *&Entry = RecordDeclTypes[Key];
630
631 // If we don't have a StructType at all yet, create the forward declaration.
632 if (!Entry) {
633 Entry = llvm::StructType::create(getLLVMContext());
634 addRecordTypeName(RD, Entry, "");
635 }
636 llvm::StructType *Ty = Entry;
637
638 // If this is still a forward declaration, or the LLVM type is already
639 // complete, there's nothing more to do.
640 RD = RD->getDefinition();
641 if (!RD || !RD->isCompleteDefinition() || !Ty->isOpaque())
642 return Ty;
643
644 // If converting this type would cause us to infinitely loop, don't do it!
645 if (!isSafeToConvert(RD, *this)) {
646 DeferredRecords.push_back(RD);
647 return Ty;
648 }
649
650 // Okay, this is a definition of a type. Compile the implementation now.
651 bool InsertResult = RecordsBeingLaidOut.insert(Key); (void)InsertResult;
652 assert(InsertResult && "Recursively compiling a struct?");
653
654 // Force conversion of non-virtual base classes recursively.
655 if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
656 for (const auto &I : CRD->bases()) {
657 if (I.isVirtual()) continue;
658
659 ConvertRecordDeclType(I.getType()->getAs<RecordType>()->getDecl());
660 }
661 }
662
663 // Layout fields.
664 CGRecordLayout *Layout = ComputeRecordLayout(RD, Ty);
665 CGRecordLayouts[Key] = Layout;
666
667 // We're done laying out this struct.
668 bool EraseResult = RecordsBeingLaidOut.erase(Key); (void)EraseResult;
669 assert(EraseResult && "struct not in RecordsBeingLaidOut set?");
670
671 // If this struct blocked a FunctionType conversion, then recompute whatever
672 // was derived from that.
673 // FIXME: This is hugely overconservative.
674 if (SkippedLayout)
675 TypeCache.clear();
676
677 // If we're done converting the outer-most record, then convert any deferred
678 // structs as well.
679 if (RecordsBeingLaidOut.empty())
680 while (!DeferredRecords.empty())
681 ConvertRecordDeclType(DeferredRecords.pop_back_val());
682
683 return Ty;
684 }
685
686 /// getCGRecordLayout - Return record layout info for the given record decl.
687 const CGRecordLayout &
getCGRecordLayout(const RecordDecl * RD)688 CodeGenTypes::getCGRecordLayout(const RecordDecl *RD) {
689 const Type *Key = Context.getTagDeclType(RD).getTypePtr();
690
691 const CGRecordLayout *Layout = CGRecordLayouts.lookup(Key);
692 if (!Layout) {
693 // Compute the type information.
694 ConvertRecordDeclType(RD);
695
696 // Now try again.
697 Layout = CGRecordLayouts.lookup(Key);
698 }
699
700 assert(Layout && "Unable to find record layout information for type");
701 return *Layout;
702 }
703
isZeroInitializable(QualType T)704 bool CodeGenTypes::isZeroInitializable(QualType T) {
705 // No need to check for member pointers when not compiling C++.
706 if (!Context.getLangOpts().CPlusPlus)
707 return true;
708
709 T = Context.getBaseElementType(T);
710
711 // Records are non-zero-initializable if they contain any
712 // non-zero-initializable subobjects.
713 if (const RecordType *RT = T->getAs<RecordType>()) {
714 const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
715 return isZeroInitializable(RD);
716 }
717
718 // We have to ask the ABI about member pointers.
719 if (const MemberPointerType *MPT = T->getAs<MemberPointerType>())
720 return getCXXABI().isZeroInitializable(MPT);
721
722 // Everything else is okay.
723 return true;
724 }
725
isZeroInitializable(const CXXRecordDecl * RD)726 bool CodeGenTypes::isZeroInitializable(const CXXRecordDecl *RD) {
727 return getCGRecordLayout(RD).isZeroInitializable();
728 }
729