• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2012 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #ifndef ANDROID_DISPSYNC_H
18 #define ANDROID_DISPSYNC_H
19 
20 #include <stddef.h>
21 
22 #include <utils/Mutex.h>
23 #include <utils/Timers.h>
24 #include <utils/RefBase.h>
25 
26 namespace android {
27 
28 // Ignore present (retire) fences if the device doesn't have support for the
29 // sync framework, or if all phase offsets are zero.  The latter is useful
30 // because it allows us to avoid resync bursts on devices that don't need
31 // phase-offset VSYNC events.
32 #if defined(RUNNING_WITHOUT_SYNC_FRAMEWORK) || \
33         (VSYNC_EVENT_PHASE_OFFSET_NS == 0 && SF_VSYNC_EVENT_PHASE_OFFSET_NS == 0)
34 static const bool kIgnorePresentFences = true;
35 #else
36 static const bool kIgnorePresentFences = false;
37 #endif
38 
39 
40 class String8;
41 class Fence;
42 class DispSyncThread;
43 
44 // DispSync maintains a model of the periodic hardware-based vsync events of a
45 // display and uses that model to execute period callbacks at specific phase
46 // offsets from the hardware vsync events.  The model is constructed by
47 // feeding consecutive hardware event timestamps to the DispSync object via
48 // the addResyncSample method.
49 //
50 // The model is validated using timestamps from Fence objects that are passed
51 // to the DispSync object via the addPresentFence method.  These fence
52 // timestamps should correspond to a hardware vsync event, but they need not
53 // be consecutive hardware vsync times.  If this method determines that the
54 // current model accurately represents the hardware event times it will return
55 // false to indicate that a resynchronization (via addResyncSample) is not
56 // needed.
57 class DispSync {
58 
59 public:
60 
61     class Callback: public virtual RefBase {
62     public:
~Callback()63         virtual ~Callback() {};
64         virtual void onDispSyncEvent(nsecs_t when) = 0;
65     };
66 
67     DispSync();
68     ~DispSync();
69 
70     // reset clears the resync samples and error value.
71     void reset();
72 
73     // addPresentFence adds a fence for use in validating the current vsync
74     // event model.  The fence need not be signaled at the time
75     // addPresentFence is called.  When the fence does signal, its timestamp
76     // should correspond to a hardware vsync event.  Unlike the
77     // addResyncSample method, the timestamps of consecutive fences need not
78     // correspond to consecutive hardware vsync events.
79     //
80     // This method should be called with the retire fence from each HWComposer
81     // set call that affects the display.
82     bool addPresentFence(const sp<Fence>& fence);
83 
84     // The beginResync, addResyncSample, and endResync methods are used to re-
85     // synchronize the DispSync's model to the hardware vsync events.  The re-
86     // synchronization process involves first calling beginResync, then
87     // calling addResyncSample with a sequence of consecutive hardware vsync
88     // event timestamps, and finally calling endResync when addResyncSample
89     // indicates that no more samples are needed by returning false.
90     //
91     // This resynchronization process should be performed whenever the display
92     // is turned on (i.e. once immediately after it's turned on) and whenever
93     // addPresentFence returns true indicating that the model has drifted away
94     // from the hardware vsync events.
95     void beginResync();
96     bool addResyncSample(nsecs_t timestamp);
97     void endResync();
98 
99     // The setPeriod method sets the vsync event model's period to a specific
100     // value.  This should be used to prime the model when a display is first
101     // turned on.  It should NOT be used after that.
102     void setPeriod(nsecs_t period);
103 
104     // The getPeriod method returns the current vsync period.
105     nsecs_t getPeriod();
106 
107     // setRefreshSkipCount specifies an additional number of refresh
108     // cycles to skip.  For example, on a 60Hz display, a skip count of 1
109     // will result in events happening at 30Hz.  Default is zero.  The idea
110     // is to sacrifice smoothness for battery life.
111     void setRefreshSkipCount(int count);
112 
113     // addEventListener registers a callback to be called repeatedly at the
114     // given phase offset from the hardware vsync events.  The callback is
115     // called from a separate thread and it should return reasonably quickly
116     // (i.e. within a few hundred microseconds).
117     status_t addEventListener(nsecs_t phase, const sp<Callback>& callback);
118 
119     // removeEventListener removes an already-registered event callback.  Once
120     // this method returns that callback will no longer be called by the
121     // DispSync object.
122     status_t removeEventListener(const sp<Callback>& callback);
123 
124     // computeNextRefresh computes when the next refresh is expected to begin.
125     // The periodOffset value can be used to move forward or backward; an
126     // offset of zero is the next refresh, -1 is the previous refresh, 1 is
127     // the refresh after next. etc.
128     nsecs_t computeNextRefresh(int periodOffset) const;
129 
130     // dump appends human-readable debug info to the result string.
131     void dump(String8& result) const;
132 
133 private:
134 
135     void updateModelLocked();
136     void updateErrorLocked();
137     void resetErrorLocked();
138 
139     enum { MAX_RESYNC_SAMPLES = 32 };
140     enum { MIN_RESYNC_SAMPLES_FOR_UPDATE = 3 };
141     enum { NUM_PRESENT_SAMPLES = 8 };
142     enum { MAX_RESYNC_SAMPLES_WITHOUT_PRESENT = 12 };
143 
144     // mPeriod is the computed period of the modeled vsync events in
145     // nanoseconds.
146     nsecs_t mPeriod;
147 
148     // mPhase is the phase offset of the modeled vsync events.  It is the
149     // number of nanoseconds from time 0 to the first vsync event.
150     nsecs_t mPhase;
151 
152     // mError is the computed model error.  It is based on the difference
153     // between the estimated vsync event times and those observed in the
154     // mPresentTimes array.
155     nsecs_t mError;
156 
157     // These member variables are the state used during the resynchronization
158     // process to store information about the hardware vsync event times used
159     // to compute the model.
160     nsecs_t mResyncSamples[MAX_RESYNC_SAMPLES];
161     size_t mFirstResyncSample;
162     size_t mNumResyncSamples;
163     int mNumResyncSamplesSincePresent;
164 
165     // These member variables store information about the present fences used
166     // to validate the currently computed model.
167     sp<Fence> mPresentFences[NUM_PRESENT_SAMPLES];
168     nsecs_t mPresentTimes[NUM_PRESENT_SAMPLES];
169     size_t mPresentSampleOffset;
170 
171     int mRefreshSkipCount;
172 
173     // mThread is the thread from which all the callbacks are called.
174     sp<DispSyncThread> mThread;
175 
176     // mMutex is used to protect access to all member variables.
177     mutable Mutex mMutex;
178 };
179 
180 }
181 
182 #endif // ANDROID_DISPSYNC_H
183