1 //===- GenericDomTree.h - Generic dominator trees for graphs ----*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 /// \file
10 ///
11 /// This file defines a set of templates that efficiently compute a dominator
12 /// tree over a generic graph. This is used typically in LLVM for fast
13 /// dominance queries on the CFG, but is fully generic w.r.t. the underlying
14 /// graph types.
15 ///
16 //===----------------------------------------------------------------------===//
17
18 #ifndef LLVM_SUPPORT_GENERIC_DOM_TREE_H
19 #define LLVM_SUPPORT_GENERIC_DOM_TREE_H
20
21 #include "llvm/ADT/DenseMap.h"
22 #include "llvm/ADT/DepthFirstIterator.h"
23 #include "llvm/ADT/GraphTraits.h"
24 #include "llvm/ADT/SmallPtrSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/Support/Compiler.h"
27 #include "llvm/Support/raw_ostream.h"
28 #include <algorithm>
29
30 namespace llvm {
31
32 //===----------------------------------------------------------------------===//
33 /// DominatorBase - Base class that other, more interesting dominator analyses
34 /// inherit from.
35 ///
36 template <class NodeT>
37 class DominatorBase {
38 protected:
39 std::vector<NodeT*> Roots;
40 const bool IsPostDominators;
DominatorBase(bool isPostDom)41 inline explicit DominatorBase(bool isPostDom) :
42 Roots(), IsPostDominators(isPostDom) {}
43 public:
44
45 /// getRoots - Return the root blocks of the current CFG. This may include
46 /// multiple blocks if we are computing post dominators. For forward
47 /// dominators, this will always be a single block (the entry node).
48 ///
getRoots()49 inline const std::vector<NodeT*> &getRoots() const { return Roots; }
50
51 /// isPostDominator - Returns true if analysis based of postdoms
52 ///
isPostDominator()53 bool isPostDominator() const { return IsPostDominators; }
54 };
55
56
57 //===----------------------------------------------------------------------===//
58 // DomTreeNodeBase - Dominator Tree Node
59 template<class NodeT> class DominatorTreeBase;
60 struct PostDominatorTree;
61
62 template <class NodeT>
63 class DomTreeNodeBase {
64 NodeT *TheBB;
65 DomTreeNodeBase<NodeT> *IDom;
66 std::vector<DomTreeNodeBase<NodeT> *> Children;
67 mutable int DFSNumIn, DFSNumOut;
68
69 template<class N> friend class DominatorTreeBase;
70 friend struct PostDominatorTree;
71 public:
72 typedef typename std::vector<DomTreeNodeBase<NodeT> *>::iterator iterator;
73 typedef typename std::vector<DomTreeNodeBase<NodeT> *>::const_iterator
74 const_iterator;
75
begin()76 iterator begin() { return Children.begin(); }
end()77 iterator end() { return Children.end(); }
begin()78 const_iterator begin() const { return Children.begin(); }
end()79 const_iterator end() const { return Children.end(); }
80
getBlock()81 NodeT *getBlock() const { return TheBB; }
getIDom()82 DomTreeNodeBase<NodeT> *getIDom() const { return IDom; }
getChildren()83 const std::vector<DomTreeNodeBase<NodeT>*> &getChildren() const {
84 return Children;
85 }
86
DomTreeNodeBase(NodeT * BB,DomTreeNodeBase<NodeT> * iDom)87 DomTreeNodeBase(NodeT *BB, DomTreeNodeBase<NodeT> *iDom)
88 : TheBB(BB), IDom(iDom), DFSNumIn(-1), DFSNumOut(-1) { }
89
addChild(DomTreeNodeBase<NodeT> * C)90 DomTreeNodeBase<NodeT> *addChild(DomTreeNodeBase<NodeT> *C) {
91 Children.push_back(C);
92 return C;
93 }
94
getNumChildren()95 size_t getNumChildren() const {
96 return Children.size();
97 }
98
clearAllChildren()99 void clearAllChildren() {
100 Children.clear();
101 }
102
compare(const DomTreeNodeBase<NodeT> * Other)103 bool compare(const DomTreeNodeBase<NodeT> *Other) const {
104 if (getNumChildren() != Other->getNumChildren())
105 return true;
106
107 SmallPtrSet<const NodeT *, 4> OtherChildren;
108 for (const_iterator I = Other->begin(), E = Other->end(); I != E; ++I) {
109 const NodeT *Nd = (*I)->getBlock();
110 OtherChildren.insert(Nd);
111 }
112
113 for (const_iterator I = begin(), E = end(); I != E; ++I) {
114 const NodeT *N = (*I)->getBlock();
115 if (OtherChildren.count(N) == 0)
116 return true;
117 }
118 return false;
119 }
120
setIDom(DomTreeNodeBase<NodeT> * NewIDom)121 void setIDom(DomTreeNodeBase<NodeT> *NewIDom) {
122 assert(IDom && "No immediate dominator?");
123 if (IDom != NewIDom) {
124 typename std::vector<DomTreeNodeBase<NodeT>*>::iterator I =
125 std::find(IDom->Children.begin(), IDom->Children.end(), this);
126 assert(I != IDom->Children.end() &&
127 "Not in immediate dominator children set!");
128 // I am no longer your child...
129 IDom->Children.erase(I);
130
131 // Switch to new dominator
132 IDom = NewIDom;
133 IDom->Children.push_back(this);
134 }
135 }
136
137 /// getDFSNumIn/getDFSNumOut - These are an internal implementation detail, do
138 /// not call them.
getDFSNumIn()139 unsigned getDFSNumIn() const { return DFSNumIn; }
getDFSNumOut()140 unsigned getDFSNumOut() const { return DFSNumOut; }
141 private:
142 // Return true if this node is dominated by other. Use this only if DFS info
143 // is valid.
DominatedBy(const DomTreeNodeBase<NodeT> * other)144 bool DominatedBy(const DomTreeNodeBase<NodeT> *other) const {
145 return this->DFSNumIn >= other->DFSNumIn &&
146 this->DFSNumOut <= other->DFSNumOut;
147 }
148 };
149
150 template<class NodeT>
151 inline raw_ostream &operator<<(raw_ostream &o,
152 const DomTreeNodeBase<NodeT> *Node) {
153 if (Node->getBlock())
154 Node->getBlock()->printAsOperand(o, false);
155 else
156 o << " <<exit node>>";
157
158 o << " {" << Node->getDFSNumIn() << "," << Node->getDFSNumOut() << "}";
159
160 return o << "\n";
161 }
162
163 template<class NodeT>
PrintDomTree(const DomTreeNodeBase<NodeT> * N,raw_ostream & o,unsigned Lev)164 inline void PrintDomTree(const DomTreeNodeBase<NodeT> *N, raw_ostream &o,
165 unsigned Lev) {
166 o.indent(2*Lev) << "[" << Lev << "] " << N;
167 for (typename DomTreeNodeBase<NodeT>::const_iterator I = N->begin(),
168 E = N->end(); I != E; ++I)
169 PrintDomTree<NodeT>(*I, o, Lev+1);
170 }
171
172 //===----------------------------------------------------------------------===//
173 /// DominatorTree - Calculate the immediate dominator tree for a function.
174 ///
175
176 template<class FuncT, class N>
177 void Calculate(DominatorTreeBase<typename GraphTraits<N>::NodeType>& DT,
178 FuncT& F);
179
180 template<class NodeT>
181 class DominatorTreeBase : public DominatorBase<NodeT> {
dominatedBySlowTreeWalk(const DomTreeNodeBase<NodeT> * A,const DomTreeNodeBase<NodeT> * B)182 bool dominatedBySlowTreeWalk(const DomTreeNodeBase<NodeT> *A,
183 const DomTreeNodeBase<NodeT> *B) const {
184 assert(A != B);
185 assert(isReachableFromEntry(B));
186 assert(isReachableFromEntry(A));
187
188 const DomTreeNodeBase<NodeT> *IDom;
189 while ((IDom = B->getIDom()) != nullptr && IDom != A && IDom != B)
190 B = IDom; // Walk up the tree
191 return IDom != nullptr;
192 }
193
194 protected:
195 typedef DenseMap<NodeT*, DomTreeNodeBase<NodeT>*> DomTreeNodeMapType;
196 DomTreeNodeMapType DomTreeNodes;
197 DomTreeNodeBase<NodeT> *RootNode;
198
199 mutable bool DFSInfoValid;
200 mutable unsigned int SlowQueries;
201 // Information record used during immediate dominators computation.
202 struct InfoRec {
203 unsigned DFSNum;
204 unsigned Parent;
205 unsigned Semi;
206 NodeT *Label;
207
InfoRecInfoRec208 InfoRec() : DFSNum(0), Parent(0), Semi(0), Label(nullptr) {}
209 };
210
211 DenseMap<NodeT*, NodeT*> IDoms;
212
213 // Vertex - Map the DFS number to the NodeT*
214 std::vector<NodeT*> Vertex;
215
216 // Info - Collection of information used during the computation of idoms.
217 DenseMap<NodeT*, InfoRec> Info;
218
reset()219 void reset() {
220 for (typename DomTreeNodeMapType::iterator I = this->DomTreeNodes.begin(),
221 E = DomTreeNodes.end(); I != E; ++I)
222 delete I->second;
223 DomTreeNodes.clear();
224 IDoms.clear();
225 this->Roots.clear();
226 Vertex.clear();
227 RootNode = nullptr;
228 }
229
230 // NewBB is split and now it has one successor. Update dominator tree to
231 // reflect this change.
232 template<class N, class GraphT>
Split(DominatorTreeBase<typename GraphT::NodeType> & DT,typename GraphT::NodeType * NewBB)233 void Split(DominatorTreeBase<typename GraphT::NodeType>& DT,
234 typename GraphT::NodeType* NewBB) {
235 assert(std::distance(GraphT::child_begin(NewBB),
236 GraphT::child_end(NewBB)) == 1 &&
237 "NewBB should have a single successor!");
238 typename GraphT::NodeType* NewBBSucc = *GraphT::child_begin(NewBB);
239
240 std::vector<typename GraphT::NodeType*> PredBlocks;
241 typedef GraphTraits<Inverse<N> > InvTraits;
242 for (typename InvTraits::ChildIteratorType PI =
243 InvTraits::child_begin(NewBB),
244 PE = InvTraits::child_end(NewBB); PI != PE; ++PI)
245 PredBlocks.push_back(*PI);
246
247 assert(!PredBlocks.empty() && "No predblocks?");
248
249 bool NewBBDominatesNewBBSucc = true;
250 for (typename InvTraits::ChildIteratorType PI =
251 InvTraits::child_begin(NewBBSucc),
252 E = InvTraits::child_end(NewBBSucc); PI != E; ++PI) {
253 typename InvTraits::NodeType *ND = *PI;
254 if (ND != NewBB && !DT.dominates(NewBBSucc, ND) &&
255 DT.isReachableFromEntry(ND)) {
256 NewBBDominatesNewBBSucc = false;
257 break;
258 }
259 }
260
261 // Find NewBB's immediate dominator and create new dominator tree node for
262 // NewBB.
263 NodeT *NewBBIDom = nullptr;
264 unsigned i = 0;
265 for (i = 0; i < PredBlocks.size(); ++i)
266 if (DT.isReachableFromEntry(PredBlocks[i])) {
267 NewBBIDom = PredBlocks[i];
268 break;
269 }
270
271 // It's possible that none of the predecessors of NewBB are reachable;
272 // in that case, NewBB itself is unreachable, so nothing needs to be
273 // changed.
274 if (!NewBBIDom)
275 return;
276
277 for (i = i + 1; i < PredBlocks.size(); ++i) {
278 if (DT.isReachableFromEntry(PredBlocks[i]))
279 NewBBIDom = DT.findNearestCommonDominator(NewBBIDom, PredBlocks[i]);
280 }
281
282 // Create the new dominator tree node... and set the idom of NewBB.
283 DomTreeNodeBase<NodeT> *NewBBNode = DT.addNewBlock(NewBB, NewBBIDom);
284
285 // If NewBB strictly dominates other blocks, then it is now the immediate
286 // dominator of NewBBSucc. Update the dominator tree as appropriate.
287 if (NewBBDominatesNewBBSucc) {
288 DomTreeNodeBase<NodeT> *NewBBSuccNode = DT.getNode(NewBBSucc);
289 DT.changeImmediateDominator(NewBBSuccNode, NewBBNode);
290 }
291 }
292
293 public:
DominatorTreeBase(bool isPostDom)294 explicit DominatorTreeBase(bool isPostDom)
295 : DominatorBase<NodeT>(isPostDom), DFSInfoValid(false), SlowQueries(0) {}
~DominatorTreeBase()296 virtual ~DominatorTreeBase() { reset(); }
297
298 /// compare - Return false if the other dominator tree base matches this
299 /// dominator tree base. Otherwise return true.
compare(const DominatorTreeBase & Other)300 bool compare(const DominatorTreeBase &Other) const {
301
302 const DomTreeNodeMapType &OtherDomTreeNodes = Other.DomTreeNodes;
303 if (DomTreeNodes.size() != OtherDomTreeNodes.size())
304 return true;
305
306 for (typename DomTreeNodeMapType::const_iterator
307 I = this->DomTreeNodes.begin(),
308 E = this->DomTreeNodes.end(); I != E; ++I) {
309 NodeT *BB = I->first;
310 typename DomTreeNodeMapType::const_iterator OI = OtherDomTreeNodes.find(BB);
311 if (OI == OtherDomTreeNodes.end())
312 return true;
313
314 DomTreeNodeBase<NodeT>* MyNd = I->second;
315 DomTreeNodeBase<NodeT>* OtherNd = OI->second;
316
317 if (MyNd->compare(OtherNd))
318 return true;
319 }
320
321 return false;
322 }
323
releaseMemory()324 virtual void releaseMemory() { reset(); }
325
326 /// getNode - return the (Post)DominatorTree node for the specified basic
327 /// block. This is the same as using operator[] on this class.
328 ///
getNode(NodeT * BB)329 inline DomTreeNodeBase<NodeT> *getNode(NodeT *BB) const {
330 return DomTreeNodes.lookup(BB);
331 }
332
333 inline DomTreeNodeBase<NodeT> *operator[](NodeT *BB) const {
334 return getNode(BB);
335 }
336
337 /// getRootNode - This returns the entry node for the CFG of the function. If
338 /// this tree represents the post-dominance relations for a function, however,
339 /// this root may be a node with the block == NULL. This is the case when
340 /// there are multiple exit nodes from a particular function. Consumers of
341 /// post-dominance information must be capable of dealing with this
342 /// possibility.
343 ///
getRootNode()344 DomTreeNodeBase<NodeT> *getRootNode() { return RootNode; }
getRootNode()345 const DomTreeNodeBase<NodeT> *getRootNode() const { return RootNode; }
346
347 /// Get all nodes dominated by R, including R itself.
getDescendants(NodeT * R,SmallVectorImpl<NodeT * > & Result)348 void getDescendants(NodeT *R, SmallVectorImpl<NodeT *> &Result) const {
349 Result.clear();
350 const DomTreeNodeBase<NodeT> *RN = getNode(R);
351 if (!RN)
352 return; // If R is unreachable, it will not be present in the DOM tree.
353 SmallVector<const DomTreeNodeBase<NodeT> *, 8> WL;
354 WL.push_back(RN);
355
356 while (!WL.empty()) {
357 const DomTreeNodeBase<NodeT> *N = WL.pop_back_val();
358 Result.push_back(N->getBlock());
359 WL.append(N->begin(), N->end());
360 }
361 }
362
363 /// properlyDominates - Returns true iff A dominates B and A != B.
364 /// Note that this is not a constant time operation!
365 ///
properlyDominates(const DomTreeNodeBase<NodeT> * A,const DomTreeNodeBase<NodeT> * B)366 bool properlyDominates(const DomTreeNodeBase<NodeT> *A,
367 const DomTreeNodeBase<NodeT> *B) const {
368 if (!A || !B)
369 return false;
370 if (A == B)
371 return false;
372 return dominates(A, B);
373 }
374
375 bool properlyDominates(const NodeT *A, const NodeT *B) const;
376
377 /// isReachableFromEntry - Return true if A is dominated by the entry
378 /// block of the function containing it.
isReachableFromEntry(const NodeT * A)379 bool isReachableFromEntry(const NodeT* A) const {
380 assert(!this->isPostDominator() &&
381 "This is not implemented for post dominators");
382 return isReachableFromEntry(getNode(const_cast<NodeT *>(A)));
383 }
384
isReachableFromEntry(const DomTreeNodeBase<NodeT> * A)385 inline bool isReachableFromEntry(const DomTreeNodeBase<NodeT> *A) const {
386 return A;
387 }
388
389 /// dominates - Returns true iff A dominates B. Note that this is not a
390 /// constant time operation!
391 ///
dominates(const DomTreeNodeBase<NodeT> * A,const DomTreeNodeBase<NodeT> * B)392 inline bool dominates(const DomTreeNodeBase<NodeT> *A,
393 const DomTreeNodeBase<NodeT> *B) const {
394 // A node trivially dominates itself.
395 if (B == A)
396 return true;
397
398 // An unreachable node is dominated by anything.
399 if (!isReachableFromEntry(B))
400 return true;
401
402 // And dominates nothing.
403 if (!isReachableFromEntry(A))
404 return false;
405
406 // Compare the result of the tree walk and the dfs numbers, if expensive
407 // checks are enabled.
408 #ifdef XDEBUG
409 assert((!DFSInfoValid ||
410 (dominatedBySlowTreeWalk(A, B) == B->DominatedBy(A))) &&
411 "Tree walk disagrees with dfs numbers!");
412 #endif
413
414 if (DFSInfoValid)
415 return B->DominatedBy(A);
416
417 // If we end up with too many slow queries, just update the
418 // DFS numbers on the theory that we are going to keep querying.
419 SlowQueries++;
420 if (SlowQueries > 32) {
421 updateDFSNumbers();
422 return B->DominatedBy(A);
423 }
424
425 return dominatedBySlowTreeWalk(A, B);
426 }
427
428 bool dominates(const NodeT *A, const NodeT *B) const;
429
getRoot()430 NodeT *getRoot() const {
431 assert(this->Roots.size() == 1 && "Should always have entry node!");
432 return this->Roots[0];
433 }
434
435 /// findNearestCommonDominator - Find nearest common dominator basic block
436 /// for basic block A and B. If there is no such block then return NULL.
findNearestCommonDominator(NodeT * A,NodeT * B)437 NodeT *findNearestCommonDominator(NodeT *A, NodeT *B) {
438 assert(A->getParent() == B->getParent() &&
439 "Two blocks are not in same function");
440
441 // If either A or B is a entry block then it is nearest common dominator
442 // (for forward-dominators).
443 if (!this->isPostDominator()) {
444 NodeT &Entry = A->getParent()->front();
445 if (A == &Entry || B == &Entry)
446 return &Entry;
447 }
448
449 // If B dominates A then B is nearest common dominator.
450 if (dominates(B, A))
451 return B;
452
453 // If A dominates B then A is nearest common dominator.
454 if (dominates(A, B))
455 return A;
456
457 DomTreeNodeBase<NodeT> *NodeA = getNode(A);
458 DomTreeNodeBase<NodeT> *NodeB = getNode(B);
459
460 // If we have DFS info, then we can avoid all allocations by just querying
461 // it from each IDom. Note that because we call 'dominates' twice above, we
462 // expect to call through this code at most 16 times in a row without
463 // building valid DFS information. This is important as below is a *very*
464 // slow tree walk.
465 if (DFSInfoValid) {
466 DomTreeNodeBase<NodeT> *IDomA = NodeA->getIDom();
467 while (IDomA) {
468 if (NodeB->DominatedBy(IDomA))
469 return IDomA->getBlock();
470 IDomA = IDomA->getIDom();
471 }
472 return nullptr;
473 }
474
475 // Collect NodeA dominators set.
476 SmallPtrSet<DomTreeNodeBase<NodeT>*, 16> NodeADoms;
477 NodeADoms.insert(NodeA);
478 DomTreeNodeBase<NodeT> *IDomA = NodeA->getIDom();
479 while (IDomA) {
480 NodeADoms.insert(IDomA);
481 IDomA = IDomA->getIDom();
482 }
483
484 // Walk NodeB immediate dominators chain and find common dominator node.
485 DomTreeNodeBase<NodeT> *IDomB = NodeB->getIDom();
486 while (IDomB) {
487 if (NodeADoms.count(IDomB) != 0)
488 return IDomB->getBlock();
489
490 IDomB = IDomB->getIDom();
491 }
492
493 return nullptr;
494 }
495
findNearestCommonDominator(const NodeT * A,const NodeT * B)496 const NodeT *findNearestCommonDominator(const NodeT *A, const NodeT *B) {
497 // Cast away the const qualifiers here. This is ok since
498 // const is re-introduced on the return type.
499 return findNearestCommonDominator(const_cast<NodeT *>(A),
500 const_cast<NodeT *>(B));
501 }
502
503 //===--------------------------------------------------------------------===//
504 // API to update (Post)DominatorTree information based on modifications to
505 // the CFG...
506
507 /// addNewBlock - Add a new node to the dominator tree information. This
508 /// creates a new node as a child of DomBB dominator node,linking it into
509 /// the children list of the immediate dominator.
addNewBlock(NodeT * BB,NodeT * DomBB)510 DomTreeNodeBase<NodeT> *addNewBlock(NodeT *BB, NodeT *DomBB) {
511 assert(getNode(BB) == nullptr && "Block already in dominator tree!");
512 DomTreeNodeBase<NodeT> *IDomNode = getNode(DomBB);
513 assert(IDomNode && "Not immediate dominator specified for block!");
514 DFSInfoValid = false;
515 return DomTreeNodes[BB] =
516 IDomNode->addChild(new DomTreeNodeBase<NodeT>(BB, IDomNode));
517 }
518
519 /// changeImmediateDominator - This method is used to update the dominator
520 /// tree information when a node's immediate dominator changes.
521 ///
changeImmediateDominator(DomTreeNodeBase<NodeT> * N,DomTreeNodeBase<NodeT> * NewIDom)522 void changeImmediateDominator(DomTreeNodeBase<NodeT> *N,
523 DomTreeNodeBase<NodeT> *NewIDom) {
524 assert(N && NewIDom && "Cannot change null node pointers!");
525 DFSInfoValid = false;
526 N->setIDom(NewIDom);
527 }
528
changeImmediateDominator(NodeT * BB,NodeT * NewBB)529 void changeImmediateDominator(NodeT *BB, NodeT *NewBB) {
530 changeImmediateDominator(getNode(BB), getNode(NewBB));
531 }
532
533 /// eraseNode - Removes a node from the dominator tree. Block must not
534 /// dominate any other blocks. Removes node from its immediate dominator's
535 /// children list. Deletes dominator node associated with basic block BB.
eraseNode(NodeT * BB)536 void eraseNode(NodeT *BB) {
537 DomTreeNodeBase<NodeT> *Node = getNode(BB);
538 assert(Node && "Removing node that isn't in dominator tree.");
539 assert(Node->getChildren().empty() && "Node is not a leaf node.");
540
541 // Remove node from immediate dominator's children list.
542 DomTreeNodeBase<NodeT> *IDom = Node->getIDom();
543 if (IDom) {
544 typename std::vector<DomTreeNodeBase<NodeT>*>::iterator I =
545 std::find(IDom->Children.begin(), IDom->Children.end(), Node);
546 assert(I != IDom->Children.end() &&
547 "Not in immediate dominator children set!");
548 // I am no longer your child...
549 IDom->Children.erase(I);
550 }
551
552 DomTreeNodes.erase(BB);
553 delete Node;
554 }
555
556 /// removeNode - Removes a node from the dominator tree. Block must not
557 /// dominate any other blocks. Invalidates any node pointing to removed
558 /// block.
removeNode(NodeT * BB)559 void removeNode(NodeT *BB) {
560 assert(getNode(BB) && "Removing node that isn't in dominator tree.");
561 DomTreeNodes.erase(BB);
562 }
563
564 /// splitBlock - BB is split and now it has one successor. Update dominator
565 /// tree to reflect this change.
splitBlock(NodeT * NewBB)566 void splitBlock(NodeT* NewBB) {
567 if (this->IsPostDominators)
568 this->Split<Inverse<NodeT*>, GraphTraits<Inverse<NodeT*> > >(*this, NewBB);
569 else
570 this->Split<NodeT*, GraphTraits<NodeT*> >(*this, NewBB);
571 }
572
573 /// print - Convert to human readable form
574 ///
print(raw_ostream & o)575 void print(raw_ostream &o) const {
576 o << "=============================--------------------------------\n";
577 if (this->isPostDominator())
578 o << "Inorder PostDominator Tree: ";
579 else
580 o << "Inorder Dominator Tree: ";
581 if (!this->DFSInfoValid)
582 o << "DFSNumbers invalid: " << SlowQueries << " slow queries.";
583 o << "\n";
584
585 // The postdom tree can have a null root if there are no returns.
586 if (getRootNode())
587 PrintDomTree<NodeT>(getRootNode(), o, 1);
588 }
589
590 protected:
591 template<class GraphT>
592 friend typename GraphT::NodeType* Eval(
593 DominatorTreeBase<typename GraphT::NodeType>& DT,
594 typename GraphT::NodeType* V,
595 unsigned LastLinked);
596
597 template<class GraphT>
598 friend unsigned DFSPass(DominatorTreeBase<typename GraphT::NodeType>& DT,
599 typename GraphT::NodeType* V,
600 unsigned N);
601
602 template<class FuncT, class N>
603 friend void Calculate(DominatorTreeBase<typename GraphTraits<N>::NodeType>& DT,
604 FuncT& F);
605
606 /// updateDFSNumbers - Assign In and Out numbers to the nodes while walking
607 /// dominator tree in dfs order.
updateDFSNumbers()608 void updateDFSNumbers() const {
609 unsigned DFSNum = 0;
610
611 SmallVector<std::pair<const DomTreeNodeBase<NodeT>*,
612 typename DomTreeNodeBase<NodeT>::const_iterator>, 32> WorkStack;
613
614 const DomTreeNodeBase<NodeT> *ThisRoot = getRootNode();
615
616 if (!ThisRoot)
617 return;
618
619 // Even in the case of multiple exits that form the post dominator root
620 // nodes, do not iterate over all exits, but start from the virtual root
621 // node. Otherwise bbs, that are not post dominated by any exit but by the
622 // virtual root node, will never be assigned a DFS number.
623 WorkStack.push_back(std::make_pair(ThisRoot, ThisRoot->begin()));
624 ThisRoot->DFSNumIn = DFSNum++;
625
626 while (!WorkStack.empty()) {
627 const DomTreeNodeBase<NodeT> *Node = WorkStack.back().first;
628 typename DomTreeNodeBase<NodeT>::const_iterator ChildIt =
629 WorkStack.back().second;
630
631 // If we visited all of the children of this node, "recurse" back up the
632 // stack setting the DFOutNum.
633 if (ChildIt == Node->end()) {
634 Node->DFSNumOut = DFSNum++;
635 WorkStack.pop_back();
636 } else {
637 // Otherwise, recursively visit this child.
638 const DomTreeNodeBase<NodeT> *Child = *ChildIt;
639 ++WorkStack.back().second;
640
641 WorkStack.push_back(std::make_pair(Child, Child->begin()));
642 Child->DFSNumIn = DFSNum++;
643 }
644 }
645
646 SlowQueries = 0;
647 DFSInfoValid = true;
648 }
649
getNodeForBlock(NodeT * BB)650 DomTreeNodeBase<NodeT> *getNodeForBlock(NodeT *BB) {
651 if (DomTreeNodeBase<NodeT> *Node = getNode(BB))
652 return Node;
653
654 // Haven't calculated this node yet? Get or calculate the node for the
655 // immediate dominator.
656 NodeT *IDom = getIDom(BB);
657
658 assert(IDom || this->DomTreeNodes[nullptr]);
659 DomTreeNodeBase<NodeT> *IDomNode = getNodeForBlock(IDom);
660
661 // Add a new tree node for this NodeT, and link it as a child of
662 // IDomNode
663 DomTreeNodeBase<NodeT> *C = new DomTreeNodeBase<NodeT>(BB, IDomNode);
664 return this->DomTreeNodes[BB] = IDomNode->addChild(C);
665 }
666
getIDom(NodeT * BB)667 inline NodeT *getIDom(NodeT *BB) const {
668 return IDoms.lookup(BB);
669 }
670
addRoot(NodeT * BB)671 inline void addRoot(NodeT* BB) {
672 this->Roots.push_back(BB);
673 }
674
675 public:
676 /// recalculate - compute a dominator tree for the given function
677 template<class FT>
recalculate(FT & F)678 void recalculate(FT& F) {
679 typedef GraphTraits<FT*> TraitsTy;
680 reset();
681 this->Vertex.push_back(nullptr);
682
683 if (!this->IsPostDominators) {
684 // Initialize root
685 NodeT *entry = TraitsTy::getEntryNode(&F);
686 this->Roots.push_back(entry);
687 this->IDoms[entry] = nullptr;
688 this->DomTreeNodes[entry] = nullptr;
689
690 Calculate<FT, NodeT*>(*this, F);
691 } else {
692 // Initialize the roots list
693 for (typename TraitsTy::nodes_iterator I = TraitsTy::nodes_begin(&F),
694 E = TraitsTy::nodes_end(&F); I != E; ++I) {
695 if (TraitsTy::child_begin(I) == TraitsTy::child_end(I))
696 addRoot(I);
697
698 // Prepopulate maps so that we don't get iterator invalidation issues later.
699 this->IDoms[I] = nullptr;
700 this->DomTreeNodes[I] = nullptr;
701 }
702
703 Calculate<FT, Inverse<NodeT*> >(*this, F);
704 }
705 }
706 };
707
708 // These two functions are declared out of line as a workaround for building
709 // with old (< r147295) versions of clang because of pr11642.
710 template<class NodeT>
dominates(const NodeT * A,const NodeT * B)711 bool DominatorTreeBase<NodeT>::dominates(const NodeT *A, const NodeT *B) const {
712 if (A == B)
713 return true;
714
715 // Cast away the const qualifiers here. This is ok since
716 // this function doesn't actually return the values returned
717 // from getNode.
718 return dominates(getNode(const_cast<NodeT *>(A)),
719 getNode(const_cast<NodeT *>(B)));
720 }
721 template<class NodeT>
722 bool
properlyDominates(const NodeT * A,const NodeT * B)723 DominatorTreeBase<NodeT>::properlyDominates(const NodeT *A, const NodeT *B) const {
724 if (A == B)
725 return false;
726
727 // Cast away the const qualifiers here. This is ok since
728 // this function doesn't actually return the values returned
729 // from getNode.
730 return dominates(getNode(const_cast<NodeT *>(A)),
731 getNode(const_cast<NodeT *>(B)));
732 }
733
734 }
735
736 #endif
737