1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops
11 // and generates target-independent LLVM-IR.
12 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs
13 // of instructions in order to estimate the profitability of vectorization.
14 //
15 // The loop vectorizer combines consecutive loop iterations into a single
16 // 'wide' iteration. After this transformation the index is incremented
17 // by the SIMD vector width, and not by one.
18 //
19 // This pass has three parts:
20 // 1. The main loop pass that drives the different parts.
21 // 2. LoopVectorizationLegality - A unit that checks for the legality
22 // of the vectorization.
23 // 3. InnerLoopVectorizer - A unit that performs the actual
24 // widening of instructions.
25 // 4. LoopVectorizationCostModel - A unit that checks for the profitability
26 // of vectorization. It decides on the optimal vector width, which
27 // can be one, if vectorization is not profitable.
28 //
29 //===----------------------------------------------------------------------===//
30 //
31 // The reduction-variable vectorization is based on the paper:
32 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization.
33 //
34 // Variable uniformity checks are inspired by:
35 // Karrenberg, R. and Hack, S. Whole Function Vectorization.
36 //
37 // Other ideas/concepts are from:
38 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later.
39 //
40 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of
41 // Vectorizing Compilers.
42 //
43 //===----------------------------------------------------------------------===//
44
45 #include "llvm/Transforms/Vectorize.h"
46 #include "llvm/ADT/DenseMap.h"
47 #include "llvm/ADT/EquivalenceClasses.h"
48 #include "llvm/ADT/Hashing.h"
49 #include "llvm/ADT/MapVector.h"
50 #include "llvm/ADT/SetVector.h"
51 #include "llvm/ADT/SmallPtrSet.h"
52 #include "llvm/ADT/SmallSet.h"
53 #include "llvm/ADT/SmallVector.h"
54 #include "llvm/ADT/Statistic.h"
55 #include "llvm/ADT/StringExtras.h"
56 #include "llvm/Analysis/AliasAnalysis.h"
57 #include "llvm/Analysis/BlockFrequencyInfo.h"
58 #include "llvm/Analysis/LoopInfo.h"
59 #include "llvm/Analysis/LoopIterator.h"
60 #include "llvm/Analysis/LoopPass.h"
61 #include "llvm/Analysis/ScalarEvolution.h"
62 #include "llvm/Analysis/ScalarEvolutionExpander.h"
63 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
64 #include "llvm/Analysis/TargetTransformInfo.h"
65 #include "llvm/Analysis/ValueTracking.h"
66 #include "llvm/IR/Constants.h"
67 #include "llvm/IR/DataLayout.h"
68 #include "llvm/IR/DebugInfo.h"
69 #include "llvm/IR/DerivedTypes.h"
70 #include "llvm/IR/DiagnosticInfo.h"
71 #include "llvm/IR/Dominators.h"
72 #include "llvm/IR/Function.h"
73 #include "llvm/IR/IRBuilder.h"
74 #include "llvm/IR/Instructions.h"
75 #include "llvm/IR/IntrinsicInst.h"
76 #include "llvm/IR/LLVMContext.h"
77 #include "llvm/IR/Module.h"
78 #include "llvm/IR/PatternMatch.h"
79 #include "llvm/IR/Type.h"
80 #include "llvm/IR/Value.h"
81 #include "llvm/IR/ValueHandle.h"
82 #include "llvm/IR/Verifier.h"
83 #include "llvm/Pass.h"
84 #include "llvm/Support/BranchProbability.h"
85 #include "llvm/Support/CommandLine.h"
86 #include "llvm/Support/Debug.h"
87 #include "llvm/Support/raw_ostream.h"
88 #include "llvm/Transforms/Scalar.h"
89 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
90 #include "llvm/Transforms/Utils/Local.h"
91 #include "llvm/Transforms/Utils/VectorUtils.h"
92 #include <algorithm>
93 #include <map>
94 #include <tuple>
95
96 using namespace llvm;
97 using namespace llvm::PatternMatch;
98
99 #define LV_NAME "loop-vectorize"
100 #define DEBUG_TYPE LV_NAME
101
102 STATISTIC(LoopsVectorized, "Number of loops vectorized");
103 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization");
104
105 static cl::opt<unsigned>
106 VectorizationFactor("force-vector-width", cl::init(0), cl::Hidden,
107 cl::desc("Sets the SIMD width. Zero is autoselect."));
108
109 static cl::opt<unsigned>
110 VectorizationUnroll("force-vector-unroll", cl::init(0), cl::Hidden,
111 cl::desc("Sets the vectorization unroll count. "
112 "Zero is autoselect."));
113
114 static cl::opt<bool>
115 EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden,
116 cl::desc("Enable if-conversion during vectorization."));
117
118 /// We don't vectorize loops with a known constant trip count below this number.
119 static cl::opt<unsigned>
120 TinyTripCountVectorThreshold("vectorizer-min-trip-count", cl::init(16),
121 cl::Hidden,
122 cl::desc("Don't vectorize loops with a constant "
123 "trip count that is smaller than this "
124 "value."));
125
126 /// This enables versioning on the strides of symbolically striding memory
127 /// accesses in code like the following.
128 /// for (i = 0; i < N; ++i)
129 /// A[i * Stride1] += B[i * Stride2] ...
130 ///
131 /// Will be roughly translated to
132 /// if (Stride1 == 1 && Stride2 == 1) {
133 /// for (i = 0; i < N; i+=4)
134 /// A[i:i+3] += ...
135 /// } else
136 /// ...
137 static cl::opt<bool> EnableMemAccessVersioning(
138 "enable-mem-access-versioning", cl::init(true), cl::Hidden,
139 cl::desc("Enable symblic stride memory access versioning"));
140
141 /// We don't unroll loops with a known constant trip count below this number.
142 static const unsigned TinyTripCountUnrollThreshold = 128;
143
144 /// When performing memory disambiguation checks at runtime do not make more
145 /// than this number of comparisons.
146 static const unsigned RuntimeMemoryCheckThreshold = 8;
147
148 /// Maximum simd width.
149 static const unsigned MaxVectorWidth = 64;
150
151 static cl::opt<unsigned> ForceTargetNumScalarRegs(
152 "force-target-num-scalar-regs", cl::init(0), cl::Hidden,
153 cl::desc("A flag that overrides the target's number of scalar registers."));
154
155 static cl::opt<unsigned> ForceTargetNumVectorRegs(
156 "force-target-num-vector-regs", cl::init(0), cl::Hidden,
157 cl::desc("A flag that overrides the target's number of vector registers."));
158
159 /// Maximum vectorization unroll count.
160 static const unsigned MaxUnrollFactor = 16;
161
162 static cl::opt<unsigned> ForceTargetMaxScalarUnrollFactor(
163 "force-target-max-scalar-unroll", cl::init(0), cl::Hidden,
164 cl::desc("A flag that overrides the target's max unroll factor for scalar "
165 "loops."));
166
167 static cl::opt<unsigned> ForceTargetMaxVectorUnrollFactor(
168 "force-target-max-vector-unroll", cl::init(0), cl::Hidden,
169 cl::desc("A flag that overrides the target's max unroll factor for "
170 "vectorized loops."));
171
172 static cl::opt<unsigned> ForceTargetInstructionCost(
173 "force-target-instruction-cost", cl::init(0), cl::Hidden,
174 cl::desc("A flag that overrides the target's expected cost for "
175 "an instruction to a single constant value. Mostly "
176 "useful for getting consistent testing."));
177
178 static cl::opt<unsigned> SmallLoopCost(
179 "small-loop-cost", cl::init(20), cl::Hidden,
180 cl::desc("The cost of a loop that is considered 'small' by the unroller."));
181
182 static cl::opt<bool> LoopVectorizeWithBlockFrequency(
183 "loop-vectorize-with-block-frequency", cl::init(false), cl::Hidden,
184 cl::desc("Enable the use of the block frequency analysis to access PGO "
185 "heuristics minimizing code growth in cold regions and being more "
186 "aggressive in hot regions."));
187
188 // Runtime unroll loops for load/store throughput.
189 static cl::opt<bool> EnableLoadStoreRuntimeUnroll(
190 "enable-loadstore-runtime-unroll", cl::init(true), cl::Hidden,
191 cl::desc("Enable runtime unrolling until load/store ports are saturated"));
192
193 /// The number of stores in a loop that are allowed to need predication.
194 static cl::opt<unsigned> NumberOfStoresToPredicate(
195 "vectorize-num-stores-pred", cl::init(1), cl::Hidden,
196 cl::desc("Max number of stores to be predicated behind an if."));
197
198 static cl::opt<bool> EnableIndVarRegisterHeur(
199 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden,
200 cl::desc("Count the induction variable only once when unrolling"));
201
202 static cl::opt<bool> EnableCondStoresVectorization(
203 "enable-cond-stores-vec", cl::init(false), cl::Hidden,
204 cl::desc("Enable if predication of stores during vectorization."));
205
206 namespace {
207
208 // Forward declarations.
209 class LoopVectorizationLegality;
210 class LoopVectorizationCostModel;
211
212 /// Optimization analysis message produced during vectorization. Messages inform
213 /// the user why vectorization did not occur.
214 class Report {
215 std::string Message;
216 raw_string_ostream Out;
217 Instruction *Instr;
218
219 public:
Report(Instruction * I=nullptr)220 Report(Instruction *I = nullptr) : Out(Message), Instr(I) {
221 Out << "loop not vectorized: ";
222 }
223
operator <<(const A & Value)224 template <typename A> Report &operator<<(const A &Value) {
225 Out << Value;
226 return *this;
227 }
228
getInstr()229 Instruction *getInstr() { return Instr; }
230
str()231 std::string &str() { return Out.str(); }
operator Twine()232 operator Twine() { return Out.str(); }
233 };
234
235 /// InnerLoopVectorizer vectorizes loops which contain only one basic
236 /// block to a specified vectorization factor (VF).
237 /// This class performs the widening of scalars into vectors, or multiple
238 /// scalars. This class also implements the following features:
239 /// * It inserts an epilogue loop for handling loops that don't have iteration
240 /// counts that are known to be a multiple of the vectorization factor.
241 /// * It handles the code generation for reduction variables.
242 /// * Scalarization (implementation using scalars) of un-vectorizable
243 /// instructions.
244 /// InnerLoopVectorizer does not perform any vectorization-legality
245 /// checks, and relies on the caller to check for the different legality
246 /// aspects. The InnerLoopVectorizer relies on the
247 /// LoopVectorizationLegality class to provide information about the induction
248 /// and reduction variables that were found to a given vectorization factor.
249 class InnerLoopVectorizer {
250 public:
InnerLoopVectorizer(Loop * OrigLoop,ScalarEvolution * SE,LoopInfo * LI,DominatorTree * DT,const DataLayout * DL,const TargetLibraryInfo * TLI,unsigned VecWidth,unsigned UnrollFactor)251 InnerLoopVectorizer(Loop *OrigLoop, ScalarEvolution *SE, LoopInfo *LI,
252 DominatorTree *DT, const DataLayout *DL,
253 const TargetLibraryInfo *TLI, unsigned VecWidth,
254 unsigned UnrollFactor)
255 : OrigLoop(OrigLoop), SE(SE), LI(LI), DT(DT), DL(DL), TLI(TLI),
256 VF(VecWidth), UF(UnrollFactor), Builder(SE->getContext()),
257 Induction(nullptr), OldInduction(nullptr), WidenMap(UnrollFactor),
258 Legal(nullptr) {}
259
260 // Perform the actual loop widening (vectorization).
vectorize(LoopVectorizationLegality * L)261 void vectorize(LoopVectorizationLegality *L) {
262 Legal = L;
263 // Create a new empty loop. Unlink the old loop and connect the new one.
264 createEmptyLoop();
265 // Widen each instruction in the old loop to a new one in the new loop.
266 // Use the Legality module to find the induction and reduction variables.
267 vectorizeLoop();
268 // Register the new loop and update the analysis passes.
269 updateAnalysis();
270 }
271
~InnerLoopVectorizer()272 virtual ~InnerLoopVectorizer() {}
273
274 protected:
275 /// A small list of PHINodes.
276 typedef SmallVector<PHINode*, 4> PhiVector;
277 /// When we unroll loops we have multiple vector values for each scalar.
278 /// This data structure holds the unrolled and vectorized values that
279 /// originated from one scalar instruction.
280 typedef SmallVector<Value*, 2> VectorParts;
281
282 // When we if-convert we need create edge masks. We have to cache values so
283 // that we don't end up with exponential recursion/IR.
284 typedef DenseMap<std::pair<BasicBlock*, BasicBlock*>,
285 VectorParts> EdgeMaskCache;
286
287 /// \brief Add code that checks at runtime if the accessed arrays overlap.
288 ///
289 /// Returns a pair of instructions where the first element is the first
290 /// instruction generated in possibly a sequence of instructions and the
291 /// second value is the final comparator value or NULL if no check is needed.
292 std::pair<Instruction *, Instruction *> addRuntimeCheck(Instruction *Loc);
293
294 /// \brief Add checks for strides that where assumed to be 1.
295 ///
296 /// Returns the last check instruction and the first check instruction in the
297 /// pair as (first, last).
298 std::pair<Instruction *, Instruction *> addStrideCheck(Instruction *Loc);
299
300 /// Create an empty loop, based on the loop ranges of the old loop.
301 void createEmptyLoop();
302 /// Copy and widen the instructions from the old loop.
303 virtual void vectorizeLoop();
304
305 /// \brief The Loop exit block may have single value PHI nodes where the
306 /// incoming value is 'Undef'. While vectorizing we only handled real values
307 /// that were defined inside the loop. Here we fix the 'undef case'.
308 /// See PR14725.
309 void fixLCSSAPHIs();
310
311 /// A helper function that computes the predicate of the block BB, assuming
312 /// that the header block of the loop is set to True. It returns the *entry*
313 /// mask for the block BB.
314 VectorParts createBlockInMask(BasicBlock *BB);
315 /// A helper function that computes the predicate of the edge between SRC
316 /// and DST.
317 VectorParts createEdgeMask(BasicBlock *Src, BasicBlock *Dst);
318
319 /// A helper function to vectorize a single BB within the innermost loop.
320 void vectorizeBlockInLoop(BasicBlock *BB, PhiVector *PV);
321
322 /// Vectorize a single PHINode in a block. This method handles the induction
323 /// variable canonicalization. It supports both VF = 1 for unrolled loops and
324 /// arbitrary length vectors.
325 void widenPHIInstruction(Instruction *PN, VectorParts &Entry,
326 unsigned UF, unsigned VF, PhiVector *PV);
327
328 /// Insert the new loop to the loop hierarchy and pass manager
329 /// and update the analysis passes.
330 void updateAnalysis();
331
332 /// This instruction is un-vectorizable. Implement it as a sequence
333 /// of scalars. If \p IfPredicateStore is true we need to 'hide' each
334 /// scalarized instruction behind an if block predicated on the control
335 /// dependence of the instruction.
336 virtual void scalarizeInstruction(Instruction *Instr,
337 bool IfPredicateStore=false);
338
339 /// Vectorize Load and Store instructions,
340 virtual void vectorizeMemoryInstruction(Instruction *Instr);
341
342 /// Create a broadcast instruction. This method generates a broadcast
343 /// instruction (shuffle) for loop invariant values and for the induction
344 /// value. If this is the induction variable then we extend it to N, N+1, ...
345 /// this is needed because each iteration in the loop corresponds to a SIMD
346 /// element.
347 virtual Value *getBroadcastInstrs(Value *V);
348
349 /// This function adds 0, 1, 2 ... to each vector element, starting at zero.
350 /// If Negate is set then negative numbers are added e.g. (0, -1, -2, ...).
351 /// The sequence starts at StartIndex.
352 virtual Value *getConsecutiveVector(Value* Val, int StartIdx, bool Negate);
353
354 /// When we go over instructions in the basic block we rely on previous
355 /// values within the current basic block or on loop invariant values.
356 /// When we widen (vectorize) values we place them in the map. If the values
357 /// are not within the map, they have to be loop invariant, so we simply
358 /// broadcast them into a vector.
359 VectorParts &getVectorValue(Value *V);
360
361 /// Generate a shuffle sequence that will reverse the vector Vec.
362 virtual Value *reverseVector(Value *Vec);
363
364 /// This is a helper class that holds the vectorizer state. It maps scalar
365 /// instructions to vector instructions. When the code is 'unrolled' then
366 /// then a single scalar value is mapped to multiple vector parts. The parts
367 /// are stored in the VectorPart type.
368 struct ValueMap {
369 /// C'tor. UnrollFactor controls the number of vectors ('parts') that
370 /// are mapped.
ValueMap__anona1c34c530111::InnerLoopVectorizer::ValueMap371 ValueMap(unsigned UnrollFactor) : UF(UnrollFactor) {}
372
373 /// \return True if 'Key' is saved in the Value Map.
has__anona1c34c530111::InnerLoopVectorizer::ValueMap374 bool has(Value *Key) const { return MapStorage.count(Key); }
375
376 /// Initializes a new entry in the map. Sets all of the vector parts to the
377 /// save value in 'Val'.
378 /// \return A reference to a vector with splat values.
splat__anona1c34c530111::InnerLoopVectorizer::ValueMap379 VectorParts &splat(Value *Key, Value *Val) {
380 VectorParts &Entry = MapStorage[Key];
381 Entry.assign(UF, Val);
382 return Entry;
383 }
384
385 ///\return A reference to the value that is stored at 'Key'.
get__anona1c34c530111::InnerLoopVectorizer::ValueMap386 VectorParts &get(Value *Key) {
387 VectorParts &Entry = MapStorage[Key];
388 if (Entry.empty())
389 Entry.resize(UF);
390 assert(Entry.size() == UF);
391 return Entry;
392 }
393
394 private:
395 /// The unroll factor. Each entry in the map stores this number of vector
396 /// elements.
397 unsigned UF;
398
399 /// Map storage. We use std::map and not DenseMap because insertions to a
400 /// dense map invalidates its iterators.
401 std::map<Value *, VectorParts> MapStorage;
402 };
403
404 /// The original loop.
405 Loop *OrigLoop;
406 /// Scev analysis to use.
407 ScalarEvolution *SE;
408 /// Loop Info.
409 LoopInfo *LI;
410 /// Dominator Tree.
411 DominatorTree *DT;
412 /// Data Layout.
413 const DataLayout *DL;
414 /// Target Library Info.
415 const TargetLibraryInfo *TLI;
416
417 /// The vectorization SIMD factor to use. Each vector will have this many
418 /// vector elements.
419 unsigned VF;
420
421 protected:
422 /// The vectorization unroll factor to use. Each scalar is vectorized to this
423 /// many different vector instructions.
424 unsigned UF;
425
426 /// The builder that we use
427 IRBuilder<> Builder;
428
429 // --- Vectorization state ---
430
431 /// The vector-loop preheader.
432 BasicBlock *LoopVectorPreHeader;
433 /// The scalar-loop preheader.
434 BasicBlock *LoopScalarPreHeader;
435 /// Middle Block between the vector and the scalar.
436 BasicBlock *LoopMiddleBlock;
437 ///The ExitBlock of the scalar loop.
438 BasicBlock *LoopExitBlock;
439 ///The vector loop body.
440 SmallVector<BasicBlock *, 4> LoopVectorBody;
441 ///The scalar loop body.
442 BasicBlock *LoopScalarBody;
443 /// A list of all bypass blocks. The first block is the entry of the loop.
444 SmallVector<BasicBlock *, 4> LoopBypassBlocks;
445
446 /// The new Induction variable which was added to the new block.
447 PHINode *Induction;
448 /// The induction variable of the old basic block.
449 PHINode *OldInduction;
450 /// Holds the extended (to the widest induction type) start index.
451 Value *ExtendedIdx;
452 /// Maps scalars to widened vectors.
453 ValueMap WidenMap;
454 EdgeMaskCache MaskCache;
455
456 LoopVectorizationLegality *Legal;
457 };
458
459 class InnerLoopUnroller : public InnerLoopVectorizer {
460 public:
InnerLoopUnroller(Loop * OrigLoop,ScalarEvolution * SE,LoopInfo * LI,DominatorTree * DT,const DataLayout * DL,const TargetLibraryInfo * TLI,unsigned UnrollFactor)461 InnerLoopUnroller(Loop *OrigLoop, ScalarEvolution *SE, LoopInfo *LI,
462 DominatorTree *DT, const DataLayout *DL,
463 const TargetLibraryInfo *TLI, unsigned UnrollFactor) :
464 InnerLoopVectorizer(OrigLoop, SE, LI, DT, DL, TLI, 1, UnrollFactor) { }
465
466 private:
467 void scalarizeInstruction(Instruction *Instr,
468 bool IfPredicateStore = false) override;
469 void vectorizeMemoryInstruction(Instruction *Instr) override;
470 Value *getBroadcastInstrs(Value *V) override;
471 Value *getConsecutiveVector(Value* Val, int StartIdx, bool Negate) override;
472 Value *reverseVector(Value *Vec) override;
473 };
474
475 /// \brief Look for a meaningful debug location on the instruction or it's
476 /// operands.
getDebugLocFromInstOrOperands(Instruction * I)477 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) {
478 if (!I)
479 return I;
480
481 DebugLoc Empty;
482 if (I->getDebugLoc() != Empty)
483 return I;
484
485 for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) {
486 if (Instruction *OpInst = dyn_cast<Instruction>(*OI))
487 if (OpInst->getDebugLoc() != Empty)
488 return OpInst;
489 }
490
491 return I;
492 }
493
494 /// \brief Set the debug location in the builder using the debug location in the
495 /// instruction.
setDebugLocFromInst(IRBuilder<> & B,const Value * Ptr)496 static void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) {
497 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr))
498 B.SetCurrentDebugLocation(Inst->getDebugLoc());
499 else
500 B.SetCurrentDebugLocation(DebugLoc());
501 }
502
503 #ifndef NDEBUG
504 /// \return string containing a file name and a line # for the given loop.
getDebugLocString(const Loop * L)505 static std::string getDebugLocString(const Loop *L) {
506 std::string Result;
507 if (L) {
508 raw_string_ostream OS(Result);
509 const DebugLoc LoopDbgLoc = L->getStartLoc();
510 if (!LoopDbgLoc.isUnknown())
511 LoopDbgLoc.print(L->getHeader()->getContext(), OS);
512 else
513 // Just print the module name.
514 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier();
515 OS.flush();
516 }
517 return Result;
518 }
519 #endif
520
521 /// LoopVectorizationLegality checks if it is legal to vectorize a loop, and
522 /// to what vectorization factor.
523 /// This class does not look at the profitability of vectorization, only the
524 /// legality. This class has two main kinds of checks:
525 /// * Memory checks - The code in canVectorizeMemory checks if vectorization
526 /// will change the order of memory accesses in a way that will change the
527 /// correctness of the program.
528 /// * Scalars checks - The code in canVectorizeInstrs and canVectorizeMemory
529 /// checks for a number of different conditions, such as the availability of a
530 /// single induction variable, that all types are supported and vectorize-able,
531 /// etc. This code reflects the capabilities of InnerLoopVectorizer.
532 /// This class is also used by InnerLoopVectorizer for identifying
533 /// induction variable and the different reduction variables.
534 class LoopVectorizationLegality {
535 public:
536 unsigned NumLoads;
537 unsigned NumStores;
538 unsigned NumPredStores;
539
LoopVectorizationLegality(Loop * L,ScalarEvolution * SE,const DataLayout * DL,DominatorTree * DT,TargetLibraryInfo * TLI,Function * F)540 LoopVectorizationLegality(Loop *L, ScalarEvolution *SE, const DataLayout *DL,
541 DominatorTree *DT, TargetLibraryInfo *TLI,
542 Function *F)
543 : NumLoads(0), NumStores(0), NumPredStores(0), TheLoop(L), SE(SE), DL(DL),
544 DT(DT), TLI(TLI), TheFunction(F), Induction(nullptr),
545 WidestIndTy(nullptr), HasFunNoNaNAttr(false), MaxSafeDepDistBytes(-1U) {
546 }
547
548 /// This enum represents the kinds of reductions that we support.
549 enum ReductionKind {
550 RK_NoReduction, ///< Not a reduction.
551 RK_IntegerAdd, ///< Sum of integers.
552 RK_IntegerMult, ///< Product of integers.
553 RK_IntegerOr, ///< Bitwise or logical OR of numbers.
554 RK_IntegerAnd, ///< Bitwise or logical AND of numbers.
555 RK_IntegerXor, ///< Bitwise or logical XOR of numbers.
556 RK_IntegerMinMax, ///< Min/max implemented in terms of select(cmp()).
557 RK_FloatAdd, ///< Sum of floats.
558 RK_FloatMult, ///< Product of floats.
559 RK_FloatMinMax ///< Min/max implemented in terms of select(cmp()).
560 };
561
562 /// This enum represents the kinds of inductions that we support.
563 enum InductionKind {
564 IK_NoInduction, ///< Not an induction variable.
565 IK_IntInduction, ///< Integer induction variable. Step = 1.
566 IK_ReverseIntInduction, ///< Reverse int induction variable. Step = -1.
567 IK_PtrInduction, ///< Pointer induction var. Step = sizeof(elem).
568 IK_ReversePtrInduction ///< Reverse ptr indvar. Step = - sizeof(elem).
569 };
570
571 // This enum represents the kind of minmax reduction.
572 enum MinMaxReductionKind {
573 MRK_Invalid,
574 MRK_UIntMin,
575 MRK_UIntMax,
576 MRK_SIntMin,
577 MRK_SIntMax,
578 MRK_FloatMin,
579 MRK_FloatMax
580 };
581
582 /// This struct holds information about reduction variables.
583 struct ReductionDescriptor {
ReductionDescriptor__anona1c34c530111::LoopVectorizationLegality::ReductionDescriptor584 ReductionDescriptor() : StartValue(nullptr), LoopExitInstr(nullptr),
585 Kind(RK_NoReduction), MinMaxKind(MRK_Invalid) {}
586
ReductionDescriptor__anona1c34c530111::LoopVectorizationLegality::ReductionDescriptor587 ReductionDescriptor(Value *Start, Instruction *Exit, ReductionKind K,
588 MinMaxReductionKind MK)
589 : StartValue(Start), LoopExitInstr(Exit), Kind(K), MinMaxKind(MK) {}
590
591 // The starting value of the reduction.
592 // It does not have to be zero!
593 TrackingVH<Value> StartValue;
594 // The instruction who's value is used outside the loop.
595 Instruction *LoopExitInstr;
596 // The kind of the reduction.
597 ReductionKind Kind;
598 // If this a min/max reduction the kind of reduction.
599 MinMaxReductionKind MinMaxKind;
600 };
601
602 /// This POD struct holds information about a potential reduction operation.
603 struct ReductionInstDesc {
ReductionInstDesc__anona1c34c530111::LoopVectorizationLegality::ReductionInstDesc604 ReductionInstDesc(bool IsRedux, Instruction *I) :
605 IsReduction(IsRedux), PatternLastInst(I), MinMaxKind(MRK_Invalid) {}
606
ReductionInstDesc__anona1c34c530111::LoopVectorizationLegality::ReductionInstDesc607 ReductionInstDesc(Instruction *I, MinMaxReductionKind K) :
608 IsReduction(true), PatternLastInst(I), MinMaxKind(K) {}
609
610 // Is this instruction a reduction candidate.
611 bool IsReduction;
612 // The last instruction in a min/max pattern (select of the select(icmp())
613 // pattern), or the current reduction instruction otherwise.
614 Instruction *PatternLastInst;
615 // If this is a min/max pattern the comparison predicate.
616 MinMaxReductionKind MinMaxKind;
617 };
618
619 /// This struct holds information about the memory runtime legality
620 /// check that a group of pointers do not overlap.
621 struct RuntimePointerCheck {
RuntimePointerCheck__anona1c34c530111::LoopVectorizationLegality::RuntimePointerCheck622 RuntimePointerCheck() : Need(false) {}
623
624 /// Reset the state of the pointer runtime information.
reset__anona1c34c530111::LoopVectorizationLegality::RuntimePointerCheck625 void reset() {
626 Need = false;
627 Pointers.clear();
628 Starts.clear();
629 Ends.clear();
630 IsWritePtr.clear();
631 DependencySetId.clear();
632 }
633
634 /// Insert a pointer and calculate the start and end SCEVs.
635 void insert(ScalarEvolution *SE, Loop *Lp, Value *Ptr, bool WritePtr,
636 unsigned DepSetId, ValueToValueMap &Strides);
637
638 /// This flag indicates if we need to add the runtime check.
639 bool Need;
640 /// Holds the pointers that we need to check.
641 SmallVector<TrackingVH<Value>, 2> Pointers;
642 /// Holds the pointer value at the beginning of the loop.
643 SmallVector<const SCEV*, 2> Starts;
644 /// Holds the pointer value at the end of the loop.
645 SmallVector<const SCEV*, 2> Ends;
646 /// Holds the information if this pointer is used for writing to memory.
647 SmallVector<bool, 2> IsWritePtr;
648 /// Holds the id of the set of pointers that could be dependent because of a
649 /// shared underlying object.
650 SmallVector<unsigned, 2> DependencySetId;
651 };
652
653 /// A struct for saving information about induction variables.
654 struct InductionInfo {
InductionInfo__anona1c34c530111::LoopVectorizationLegality::InductionInfo655 InductionInfo(Value *Start, InductionKind K) : StartValue(Start), IK(K) {}
InductionInfo__anona1c34c530111::LoopVectorizationLegality::InductionInfo656 InductionInfo() : StartValue(nullptr), IK(IK_NoInduction) {}
657 /// Start value.
658 TrackingVH<Value> StartValue;
659 /// Induction kind.
660 InductionKind IK;
661 };
662
663 /// ReductionList contains the reduction descriptors for all
664 /// of the reductions that were found in the loop.
665 typedef DenseMap<PHINode*, ReductionDescriptor> ReductionList;
666
667 /// InductionList saves induction variables and maps them to the
668 /// induction descriptor.
669 typedef MapVector<PHINode*, InductionInfo> InductionList;
670
671 /// Returns true if it is legal to vectorize this loop.
672 /// This does not mean that it is profitable to vectorize this
673 /// loop, only that it is legal to do so.
674 bool canVectorize();
675
676 /// Returns the Induction variable.
getInduction()677 PHINode *getInduction() { return Induction; }
678
679 /// Returns the reduction variables found in the loop.
getReductionVars()680 ReductionList *getReductionVars() { return &Reductions; }
681
682 /// Returns the induction variables found in the loop.
getInductionVars()683 InductionList *getInductionVars() { return &Inductions; }
684
685 /// Returns the widest induction type.
getWidestInductionType()686 Type *getWidestInductionType() { return WidestIndTy; }
687
688 /// Returns True if V is an induction variable in this loop.
689 bool isInductionVariable(const Value *V);
690
691 /// Return true if the block BB needs to be predicated in order for the loop
692 /// to be vectorized.
693 bool blockNeedsPredication(BasicBlock *BB);
694
695 /// Check if this pointer is consecutive when vectorizing. This happens
696 /// when the last index of the GEP is the induction variable, or that the
697 /// pointer itself is an induction variable.
698 /// This check allows us to vectorize A[idx] into a wide load/store.
699 /// Returns:
700 /// 0 - Stride is unknown or non-consecutive.
701 /// 1 - Address is consecutive.
702 /// -1 - Address is consecutive, and decreasing.
703 int isConsecutivePtr(Value *Ptr);
704
705 /// Returns true if the value V is uniform within the loop.
706 bool isUniform(Value *V);
707
708 /// Returns true if this instruction will remain scalar after vectorization.
isUniformAfterVectorization(Instruction * I)709 bool isUniformAfterVectorization(Instruction* I) { return Uniforms.count(I); }
710
711 /// Returns the information that we collected about runtime memory check.
getRuntimePointerCheck()712 RuntimePointerCheck *getRuntimePointerCheck() { return &PtrRtCheck; }
713
714 /// This function returns the identity element (or neutral element) for
715 /// the operation K.
716 static Constant *getReductionIdentity(ReductionKind K, Type *Tp);
717
getMaxSafeDepDistBytes()718 unsigned getMaxSafeDepDistBytes() { return MaxSafeDepDistBytes; }
719
hasStride(Value * V)720 bool hasStride(Value *V) { return StrideSet.count(V); }
mustCheckStrides()721 bool mustCheckStrides() { return !StrideSet.empty(); }
strides_begin()722 SmallPtrSet<Value *, 8>::iterator strides_begin() {
723 return StrideSet.begin();
724 }
strides_end()725 SmallPtrSet<Value *, 8>::iterator strides_end() { return StrideSet.end(); }
726
727 private:
728 /// Check if a single basic block loop is vectorizable.
729 /// At this point we know that this is a loop with a constant trip count
730 /// and we only need to check individual instructions.
731 bool canVectorizeInstrs();
732
733 /// When we vectorize loops we may change the order in which
734 /// we read and write from memory. This method checks if it is
735 /// legal to vectorize the code, considering only memory constrains.
736 /// Returns true if the loop is vectorizable
737 bool canVectorizeMemory();
738
739 /// Return true if we can vectorize this loop using the IF-conversion
740 /// transformation.
741 bool canVectorizeWithIfConvert();
742
743 /// Collect the variables that need to stay uniform after vectorization.
744 void collectLoopUniforms();
745
746 /// Return true if all of the instructions in the block can be speculatively
747 /// executed. \p SafePtrs is a list of addresses that are known to be legal
748 /// and we know that we can read from them without segfault.
749 bool blockCanBePredicated(BasicBlock *BB, SmallPtrSet<Value *, 8>& SafePtrs);
750
751 /// Returns True, if 'Phi' is the kind of reduction variable for type
752 /// 'Kind'. If this is a reduction variable, it adds it to ReductionList.
753 bool AddReductionVar(PHINode *Phi, ReductionKind Kind);
754 /// Returns a struct describing if the instruction 'I' can be a reduction
755 /// variable of type 'Kind'. If the reduction is a min/max pattern of
756 /// select(icmp()) this function advances the instruction pointer 'I' from the
757 /// compare instruction to the select instruction and stores this pointer in
758 /// 'PatternLastInst' member of the returned struct.
759 ReductionInstDesc isReductionInstr(Instruction *I, ReductionKind Kind,
760 ReductionInstDesc &Desc);
761 /// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction
762 /// pattern corresponding to a min(X, Y) or max(X, Y).
763 static ReductionInstDesc isMinMaxSelectCmpPattern(Instruction *I,
764 ReductionInstDesc &Prev);
765 /// Returns the induction kind of Phi. This function may return NoInduction
766 /// if the PHI is not an induction variable.
767 InductionKind isInductionVariable(PHINode *Phi);
768
769 /// \brief Collect memory access with loop invariant strides.
770 ///
771 /// Looks for accesses like "a[i * StrideA]" where "StrideA" is loop
772 /// invariant.
773 void collectStridedAcccess(Value *LoadOrStoreInst);
774
775 /// Report an analysis message to assist the user in diagnosing loops that are
776 /// not vectorized.
emitAnalysis(Report & Message)777 void emitAnalysis(Report &Message) {
778 DebugLoc DL = TheLoop->getStartLoc();
779 if (Instruction *I = Message.getInstr())
780 DL = I->getDebugLoc();
781 emitOptimizationRemarkAnalysis(TheFunction->getContext(), DEBUG_TYPE,
782 *TheFunction, DL, Message.str());
783 }
784
785 /// The loop that we evaluate.
786 Loop *TheLoop;
787 /// Scev analysis.
788 ScalarEvolution *SE;
789 /// DataLayout analysis.
790 const DataLayout *DL;
791 /// Dominators.
792 DominatorTree *DT;
793 /// Target Library Info.
794 TargetLibraryInfo *TLI;
795 /// Parent function
796 Function *TheFunction;
797
798 // --- vectorization state --- //
799
800 /// Holds the integer induction variable. This is the counter of the
801 /// loop.
802 PHINode *Induction;
803 /// Holds the reduction variables.
804 ReductionList Reductions;
805 /// Holds all of the induction variables that we found in the loop.
806 /// Notice that inductions don't need to start at zero and that induction
807 /// variables can be pointers.
808 InductionList Inductions;
809 /// Holds the widest induction type encountered.
810 Type *WidestIndTy;
811
812 /// Allowed outside users. This holds the reduction
813 /// vars which can be accessed from outside the loop.
814 SmallPtrSet<Value*, 4> AllowedExit;
815 /// This set holds the variables which are known to be uniform after
816 /// vectorization.
817 SmallPtrSet<Instruction*, 4> Uniforms;
818 /// We need to check that all of the pointers in this list are disjoint
819 /// at runtime.
820 RuntimePointerCheck PtrRtCheck;
821 /// Can we assume the absence of NaNs.
822 bool HasFunNoNaNAttr;
823
824 unsigned MaxSafeDepDistBytes;
825
826 ValueToValueMap Strides;
827 SmallPtrSet<Value *, 8> StrideSet;
828 };
829
830 /// LoopVectorizationCostModel - estimates the expected speedups due to
831 /// vectorization.
832 /// In many cases vectorization is not profitable. This can happen because of
833 /// a number of reasons. In this class we mainly attempt to predict the
834 /// expected speedup/slowdowns due to the supported instruction set. We use the
835 /// TargetTransformInfo to query the different backends for the cost of
836 /// different operations.
837 class LoopVectorizationCostModel {
838 public:
LoopVectorizationCostModel(Loop * L,ScalarEvolution * SE,LoopInfo * LI,LoopVectorizationLegality * Legal,const TargetTransformInfo & TTI,const DataLayout * DL,const TargetLibraryInfo * TLI)839 LoopVectorizationCostModel(Loop *L, ScalarEvolution *SE, LoopInfo *LI,
840 LoopVectorizationLegality *Legal,
841 const TargetTransformInfo &TTI,
842 const DataLayout *DL, const TargetLibraryInfo *TLI)
843 : TheLoop(L), SE(SE), LI(LI), Legal(Legal), TTI(TTI), DL(DL), TLI(TLI) {}
844
845 /// Information about vectorization costs
846 struct VectorizationFactor {
847 unsigned Width; // Vector width with best cost
848 unsigned Cost; // Cost of the loop with that width
849 };
850 /// \return The most profitable vectorization factor and the cost of that VF.
851 /// This method checks every power of two up to VF. If UserVF is not ZERO
852 /// then this vectorization factor will be selected if vectorization is
853 /// possible.
854 VectorizationFactor selectVectorizationFactor(bool OptForSize,
855 unsigned UserVF,
856 bool ForceVectorization);
857
858 /// \return The size (in bits) of the widest type in the code that
859 /// needs to be vectorized. We ignore values that remain scalar such as
860 /// 64 bit loop indices.
861 unsigned getWidestType();
862
863 /// \return The most profitable unroll factor.
864 /// If UserUF is non-zero then this method finds the best unroll-factor
865 /// based on register pressure and other parameters.
866 /// VF and LoopCost are the selected vectorization factor and the cost of the
867 /// selected VF.
868 unsigned selectUnrollFactor(bool OptForSize, unsigned UserUF, unsigned VF,
869 unsigned LoopCost);
870
871 /// \brief A struct that represents some properties of the register usage
872 /// of a loop.
873 struct RegisterUsage {
874 /// Holds the number of loop invariant values that are used in the loop.
875 unsigned LoopInvariantRegs;
876 /// Holds the maximum number of concurrent live intervals in the loop.
877 unsigned MaxLocalUsers;
878 /// Holds the number of instructions in the loop.
879 unsigned NumInstructions;
880 };
881
882 /// \return information about the register usage of the loop.
883 RegisterUsage calculateRegisterUsage();
884
885 private:
886 /// Returns the expected execution cost. The unit of the cost does
887 /// not matter because we use the 'cost' units to compare different
888 /// vector widths. The cost that is returned is *not* normalized by
889 /// the factor width.
890 unsigned expectedCost(unsigned VF);
891
892 /// Returns the execution time cost of an instruction for a given vector
893 /// width. Vector width of one means scalar.
894 unsigned getInstructionCost(Instruction *I, unsigned VF);
895
896 /// A helper function for converting Scalar types to vector types.
897 /// If the incoming type is void, we return void. If the VF is 1, we return
898 /// the scalar type.
899 static Type* ToVectorTy(Type *Scalar, unsigned VF);
900
901 /// Returns whether the instruction is a load or store and will be a emitted
902 /// as a vector operation.
903 bool isConsecutiveLoadOrStore(Instruction *I);
904
905 /// The loop that we evaluate.
906 Loop *TheLoop;
907 /// Scev analysis.
908 ScalarEvolution *SE;
909 /// Loop Info analysis.
910 LoopInfo *LI;
911 /// Vectorization legality.
912 LoopVectorizationLegality *Legal;
913 /// Vector target information.
914 const TargetTransformInfo &TTI;
915 /// Target data layout information.
916 const DataLayout *DL;
917 /// Target Library Info.
918 const TargetLibraryInfo *TLI;
919 };
920
921 /// Utility class for getting and setting loop vectorizer hints in the form
922 /// of loop metadata.
923 class LoopVectorizeHints {
924 public:
925 enum ForceKind {
926 FK_Undefined = -1, ///< Not selected.
927 FK_Disabled = 0, ///< Forcing disabled.
928 FK_Enabled = 1, ///< Forcing enabled.
929 };
930
LoopVectorizeHints(const Loop * L,bool DisableUnrolling)931 LoopVectorizeHints(const Loop *L, bool DisableUnrolling)
932 : Width(VectorizationFactor),
933 Unroll(DisableUnrolling),
934 Force(FK_Undefined),
935 LoopID(L->getLoopID()) {
936 getHints(L);
937 // force-vector-unroll overrides DisableUnrolling.
938 if (VectorizationUnroll.getNumOccurrences() > 0)
939 Unroll = VectorizationUnroll;
940
941 DEBUG(if (DisableUnrolling && Unroll == 1) dbgs()
942 << "LV: Unrolling disabled by the pass manager\n");
943 }
944
945 /// Return the loop vectorizer metadata prefix.
Prefix()946 static StringRef Prefix() { return "llvm.loop.vectorize."; }
947
createHint(LLVMContext & Context,StringRef Name,unsigned V) const948 MDNode *createHint(LLVMContext &Context, StringRef Name, unsigned V) const {
949 SmallVector<Value*, 2> Vals;
950 Vals.push_back(MDString::get(Context, Name));
951 Vals.push_back(ConstantInt::get(Type::getInt32Ty(Context), V));
952 return MDNode::get(Context, Vals);
953 }
954
955 /// Mark the loop L as already vectorized by setting the width to 1.
setAlreadyVectorized(Loop * L)956 void setAlreadyVectorized(Loop *L) {
957 LLVMContext &Context = L->getHeader()->getContext();
958
959 Width = 1;
960
961 // Create a new loop id with one more operand for the already_vectorized
962 // hint. If the loop already has a loop id then copy the existing operands.
963 SmallVector<Value*, 4> Vals(1);
964 if (LoopID)
965 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i)
966 Vals.push_back(LoopID->getOperand(i));
967
968 Vals.push_back(createHint(Context, Twine(Prefix(), "width").str(), Width));
969 Vals.push_back(createHint(Context, Twine(Prefix(), "unroll").str(), 1));
970
971 MDNode *NewLoopID = MDNode::get(Context, Vals);
972 // Set operand 0 to refer to the loop id itself.
973 NewLoopID->replaceOperandWith(0, NewLoopID);
974
975 L->setLoopID(NewLoopID);
976 if (LoopID)
977 LoopID->replaceAllUsesWith(NewLoopID);
978
979 LoopID = NewLoopID;
980 }
981
emitRemark() const982 std::string emitRemark() const {
983 Report R;
984 R << "vectorization ";
985 switch (Force) {
986 case LoopVectorizeHints::FK_Disabled:
987 R << "is explicitly disabled";
988 break;
989 case LoopVectorizeHints::FK_Enabled:
990 R << "is explicitly enabled";
991 if (Width != 0 && Unroll != 0)
992 R << " with width " << Width << " and interleave count " << Unroll;
993 else if (Width != 0)
994 R << " with width " << Width;
995 else if (Unroll != 0)
996 R << " with interleave count " << Unroll;
997 break;
998 case LoopVectorizeHints::FK_Undefined:
999 R << "was not specified";
1000 break;
1001 }
1002 return R.str();
1003 }
1004
getWidth() const1005 unsigned getWidth() const { return Width; }
getUnroll() const1006 unsigned getUnroll() const { return Unroll; }
getForce() const1007 enum ForceKind getForce() const { return Force; }
getLoopID() const1008 MDNode *getLoopID() const { return LoopID; }
1009
1010 private:
1011 /// Find hints specified in the loop metadata.
getHints(const Loop * L)1012 void getHints(const Loop *L) {
1013 if (!LoopID)
1014 return;
1015
1016 // First operand should refer to the loop id itself.
1017 assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
1018 assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
1019
1020 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
1021 const MDString *S = nullptr;
1022 SmallVector<Value*, 4> Args;
1023
1024 // The expected hint is either a MDString or a MDNode with the first
1025 // operand a MDString.
1026 if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) {
1027 if (!MD || MD->getNumOperands() == 0)
1028 continue;
1029 S = dyn_cast<MDString>(MD->getOperand(0));
1030 for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i)
1031 Args.push_back(MD->getOperand(i));
1032 } else {
1033 S = dyn_cast<MDString>(LoopID->getOperand(i));
1034 assert(Args.size() == 0 && "too many arguments for MDString");
1035 }
1036
1037 if (!S)
1038 continue;
1039
1040 // Check if the hint starts with the vectorizer prefix.
1041 StringRef Hint = S->getString();
1042 if (!Hint.startswith(Prefix()))
1043 continue;
1044 // Remove the prefix.
1045 Hint = Hint.substr(Prefix().size(), StringRef::npos);
1046
1047 if (Args.size() == 1)
1048 getHint(Hint, Args[0]);
1049 }
1050 }
1051
1052 // Check string hint with one operand.
getHint(StringRef Hint,Value * Arg)1053 void getHint(StringRef Hint, Value *Arg) {
1054 const ConstantInt *C = dyn_cast<ConstantInt>(Arg);
1055 if (!C) return;
1056 unsigned Val = C->getZExtValue();
1057
1058 if (Hint == "width") {
1059 if (isPowerOf2_32(Val) && Val <= MaxVectorWidth)
1060 Width = Val;
1061 else
1062 DEBUG(dbgs() << "LV: ignoring invalid width hint metadata\n");
1063 } else if (Hint == "unroll") {
1064 if (isPowerOf2_32(Val) && Val <= MaxUnrollFactor)
1065 Unroll = Val;
1066 else
1067 DEBUG(dbgs() << "LV: ignoring invalid unroll hint metadata\n");
1068 } else if (Hint == "enable") {
1069 if (C->getBitWidth() == 1)
1070 Force = Val == 1 ? LoopVectorizeHints::FK_Enabled
1071 : LoopVectorizeHints::FK_Disabled;
1072 else
1073 DEBUG(dbgs() << "LV: ignoring invalid enable hint metadata\n");
1074 } else {
1075 DEBUG(dbgs() << "LV: ignoring unknown hint " << Hint << '\n');
1076 }
1077 }
1078
1079 /// Vectorization width.
1080 unsigned Width;
1081 /// Vectorization unroll factor.
1082 unsigned Unroll;
1083 /// Vectorization forced
1084 enum ForceKind Force;
1085
1086 MDNode *LoopID;
1087 };
1088
addInnerLoop(Loop & L,SmallVectorImpl<Loop * > & V)1089 static void addInnerLoop(Loop &L, SmallVectorImpl<Loop *> &V) {
1090 if (L.empty())
1091 return V.push_back(&L);
1092
1093 for (Loop *InnerL : L)
1094 addInnerLoop(*InnerL, V);
1095 }
1096
1097 /// The LoopVectorize Pass.
1098 struct LoopVectorize : public FunctionPass {
1099 /// Pass identification, replacement for typeid
1100 static char ID;
1101
LoopVectorize__anona1c34c530111::LoopVectorize1102 explicit LoopVectorize(bool NoUnrolling = false, bool AlwaysVectorize = true)
1103 : FunctionPass(ID),
1104 DisableUnrolling(NoUnrolling),
1105 AlwaysVectorize(AlwaysVectorize) {
1106 initializeLoopVectorizePass(*PassRegistry::getPassRegistry());
1107 }
1108
1109 ScalarEvolution *SE;
1110 const DataLayout *DL;
1111 LoopInfo *LI;
1112 TargetTransformInfo *TTI;
1113 DominatorTree *DT;
1114 BlockFrequencyInfo *BFI;
1115 TargetLibraryInfo *TLI;
1116 bool DisableUnrolling;
1117 bool AlwaysVectorize;
1118
1119 BlockFrequency ColdEntryFreq;
1120
runOnFunction__anona1c34c530111::LoopVectorize1121 bool runOnFunction(Function &F) override {
1122 SE = &getAnalysis<ScalarEvolution>();
1123 DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
1124 DL = DLP ? &DLP->getDataLayout() : nullptr;
1125 LI = &getAnalysis<LoopInfo>();
1126 TTI = &getAnalysis<TargetTransformInfo>();
1127 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1128 BFI = &getAnalysis<BlockFrequencyInfo>();
1129 TLI = getAnalysisIfAvailable<TargetLibraryInfo>();
1130
1131 // Compute some weights outside of the loop over the loops. Compute this
1132 // using a BranchProbability to re-use its scaling math.
1133 const BranchProbability ColdProb(1, 5); // 20%
1134 ColdEntryFreq = BlockFrequency(BFI->getEntryFreq()) * ColdProb;
1135
1136 // If the target claims to have no vector registers don't attempt
1137 // vectorization.
1138 if (!TTI->getNumberOfRegisters(true))
1139 return false;
1140
1141 if (!DL) {
1142 DEBUG(dbgs() << "\nLV: Not vectorizing " << F.getName()
1143 << ": Missing data layout\n");
1144 return false;
1145 }
1146
1147 // Build up a worklist of inner-loops to vectorize. This is necessary as
1148 // the act of vectorizing or partially unrolling a loop creates new loops
1149 // and can invalidate iterators across the loops.
1150 SmallVector<Loop *, 8> Worklist;
1151
1152 for (Loop *L : *LI)
1153 addInnerLoop(*L, Worklist);
1154
1155 LoopsAnalyzed += Worklist.size();
1156
1157 // Now walk the identified inner loops.
1158 bool Changed = false;
1159 while (!Worklist.empty())
1160 Changed |= processLoop(Worklist.pop_back_val());
1161
1162 // Process each loop nest in the function.
1163 return Changed;
1164 }
1165
processLoop__anona1c34c530111::LoopVectorize1166 bool processLoop(Loop *L) {
1167 assert(L->empty() && "Only process inner loops.");
1168
1169 #ifndef NDEBUG
1170 const std::string DebugLocStr = getDebugLocString(L);
1171 #endif /* NDEBUG */
1172
1173 DEBUG(dbgs() << "\nLV: Checking a loop in \""
1174 << L->getHeader()->getParent()->getName() << "\" from "
1175 << DebugLocStr << "\n");
1176
1177 LoopVectorizeHints Hints(L, DisableUnrolling);
1178
1179 DEBUG(dbgs() << "LV: Loop hints:"
1180 << " force="
1181 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled
1182 ? "disabled"
1183 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled
1184 ? "enabled"
1185 : "?")) << " width=" << Hints.getWidth()
1186 << " unroll=" << Hints.getUnroll() << "\n");
1187
1188 // Function containing loop
1189 Function *F = L->getHeader()->getParent();
1190
1191 // Looking at the diagnostic output is the only way to determine if a loop
1192 // was vectorized (other than looking at the IR or machine code), so it
1193 // is important to generate an optimization remark for each loop. Most of
1194 // these messages are generated by emitOptimizationRemarkAnalysis. Remarks
1195 // generated by emitOptimizationRemark and emitOptimizationRemarkMissed are
1196 // less verbose reporting vectorized loops and unvectorized loops that may
1197 // benefit from vectorization, respectively.
1198
1199 if (Hints.getForce() == LoopVectorizeHints::FK_Disabled) {
1200 DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n");
1201 emitOptimizationRemarkAnalysis(F->getContext(), DEBUG_TYPE, *F,
1202 L->getStartLoc(), Hints.emitRemark());
1203 return false;
1204 }
1205
1206 if (!AlwaysVectorize && Hints.getForce() != LoopVectorizeHints::FK_Enabled) {
1207 DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n");
1208 emitOptimizationRemarkAnalysis(F->getContext(), DEBUG_TYPE, *F,
1209 L->getStartLoc(), Hints.emitRemark());
1210 return false;
1211 }
1212
1213 if (Hints.getWidth() == 1 && Hints.getUnroll() == 1) {
1214 DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n");
1215 emitOptimizationRemarkAnalysis(
1216 F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(),
1217 "loop not vectorized: vector width and interleave count are "
1218 "explicitly set to 1");
1219 return false;
1220 }
1221
1222 // Check the loop for a trip count threshold:
1223 // do not vectorize loops with a tiny trip count.
1224 BasicBlock *Latch = L->getLoopLatch();
1225 const unsigned TC = SE->getSmallConstantTripCount(L, Latch);
1226 if (TC > 0u && TC < TinyTripCountVectorThreshold) {
1227 DEBUG(dbgs() << "LV: Found a loop with a very small trip count. "
1228 << "This loop is not worth vectorizing.");
1229 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled)
1230 DEBUG(dbgs() << " But vectorizing was explicitly forced.\n");
1231 else {
1232 DEBUG(dbgs() << "\n");
1233 emitOptimizationRemarkAnalysis(
1234 F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(),
1235 "vectorization is not beneficial and is not explicitly forced");
1236 return false;
1237 }
1238 }
1239
1240 // Check if it is legal to vectorize the loop.
1241 LoopVectorizationLegality LVL(L, SE, DL, DT, TLI, F);
1242 if (!LVL.canVectorize()) {
1243 DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n");
1244 emitOptimizationRemarkMissed(F->getContext(), DEBUG_TYPE, *F,
1245 L->getStartLoc(), Hints.emitRemark());
1246 return false;
1247 }
1248
1249 // Use the cost model.
1250 LoopVectorizationCostModel CM(L, SE, LI, &LVL, *TTI, DL, TLI);
1251
1252 // Check the function attributes to find out if this function should be
1253 // optimized for size.
1254 bool OptForSize = Hints.getForce() != LoopVectorizeHints::FK_Enabled &&
1255 F->hasFnAttribute(Attribute::OptimizeForSize);
1256
1257 // Compute the weighted frequency of this loop being executed and see if it
1258 // is less than 20% of the function entry baseline frequency. Note that we
1259 // always have a canonical loop here because we think we *can* vectoriez.
1260 // FIXME: This is hidden behind a flag due to pervasive problems with
1261 // exactly what block frequency models.
1262 if (LoopVectorizeWithBlockFrequency) {
1263 BlockFrequency LoopEntryFreq = BFI->getBlockFreq(L->getLoopPreheader());
1264 if (Hints.getForce() != LoopVectorizeHints::FK_Enabled &&
1265 LoopEntryFreq < ColdEntryFreq)
1266 OptForSize = true;
1267 }
1268
1269 // Check the function attributes to see if implicit floats are allowed.a
1270 // FIXME: This check doesn't seem possibly correct -- what if the loop is
1271 // an integer loop and the vector instructions selected are purely integer
1272 // vector instructions?
1273 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) {
1274 DEBUG(dbgs() << "LV: Can't vectorize when the NoImplicitFloat"
1275 "attribute is used.\n");
1276 emitOptimizationRemarkAnalysis(
1277 F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(),
1278 "loop not vectorized due to NoImplicitFloat attribute");
1279 emitOptimizationRemarkMissed(F->getContext(), DEBUG_TYPE, *F,
1280 L->getStartLoc(), Hints.emitRemark());
1281 return false;
1282 }
1283
1284 // Select the optimal vectorization factor.
1285 const LoopVectorizationCostModel::VectorizationFactor VF =
1286 CM.selectVectorizationFactor(OptForSize, Hints.getWidth(),
1287 Hints.getForce() ==
1288 LoopVectorizeHints::FK_Enabled);
1289
1290 // Select the unroll factor.
1291 const unsigned UF =
1292 CM.selectUnrollFactor(OptForSize, Hints.getUnroll(), VF.Width, VF.Cost);
1293
1294 DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in "
1295 << DebugLocStr << '\n');
1296 DEBUG(dbgs() << "LV: Unroll Factor is " << UF << '\n');
1297
1298 if (VF.Width == 1) {
1299 DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial\n");
1300
1301 if (UF == 1) {
1302 emitOptimizationRemarkAnalysis(
1303 F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(),
1304 "not beneficial to vectorize and user disabled interleaving");
1305 return false;
1306 }
1307 DEBUG(dbgs() << "LV: Trying to at least unroll the loops.\n");
1308
1309 // Report the unrolling decision.
1310 emitOptimizationRemark(F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(),
1311 Twine("unrolled with interleaving factor " +
1312 Twine(UF) +
1313 " (vectorization not beneficial)"));
1314
1315 // We decided not to vectorize, but we may want to unroll.
1316
1317 InnerLoopUnroller Unroller(L, SE, LI, DT, DL, TLI, UF);
1318 Unroller.vectorize(&LVL);
1319 } else {
1320 // If we decided that it is *legal* to vectorize the loop then do it.
1321 InnerLoopVectorizer LB(L, SE, LI, DT, DL, TLI, VF.Width, UF);
1322 LB.vectorize(&LVL);
1323 ++LoopsVectorized;
1324
1325 // Report the vectorization decision.
1326 emitOptimizationRemark(
1327 F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(),
1328 Twine("vectorized loop (vectorization factor: ") + Twine(VF.Width) +
1329 ", unrolling interleave factor: " + Twine(UF) + ")");
1330 }
1331
1332 // Mark the loop as already vectorized to avoid vectorizing again.
1333 Hints.setAlreadyVectorized(L);
1334
1335 DEBUG(verifyFunction(*L->getHeader()->getParent()));
1336 return true;
1337 }
1338
getAnalysisUsage__anona1c34c530111::LoopVectorize1339 void getAnalysisUsage(AnalysisUsage &AU) const override {
1340 AU.addRequiredID(LoopSimplifyID);
1341 AU.addRequiredID(LCSSAID);
1342 AU.addRequired<BlockFrequencyInfo>();
1343 AU.addRequired<DominatorTreeWrapperPass>();
1344 AU.addRequired<LoopInfo>();
1345 AU.addRequired<ScalarEvolution>();
1346 AU.addRequired<TargetTransformInfo>();
1347 AU.addPreserved<LoopInfo>();
1348 AU.addPreserved<DominatorTreeWrapperPass>();
1349 }
1350
1351 };
1352
1353 } // end anonymous namespace
1354
1355 //===----------------------------------------------------------------------===//
1356 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and
1357 // LoopVectorizationCostModel.
1358 //===----------------------------------------------------------------------===//
1359
stripIntegerCast(Value * V)1360 static Value *stripIntegerCast(Value *V) {
1361 if (CastInst *CI = dyn_cast<CastInst>(V))
1362 if (CI->getOperand(0)->getType()->isIntegerTy())
1363 return CI->getOperand(0);
1364 return V;
1365 }
1366
1367 ///\brief Replaces the symbolic stride in a pointer SCEV expression by one.
1368 ///
1369 /// If \p OrigPtr is not null, use it to look up the stride value instead of
1370 /// \p Ptr.
replaceSymbolicStrideSCEV(ScalarEvolution * SE,ValueToValueMap & PtrToStride,Value * Ptr,Value * OrigPtr=nullptr)1371 static const SCEV *replaceSymbolicStrideSCEV(ScalarEvolution *SE,
1372 ValueToValueMap &PtrToStride,
1373 Value *Ptr, Value *OrigPtr = nullptr) {
1374
1375 const SCEV *OrigSCEV = SE->getSCEV(Ptr);
1376
1377 // If there is an entry in the map return the SCEV of the pointer with the
1378 // symbolic stride replaced by one.
1379 ValueToValueMap::iterator SI = PtrToStride.find(OrigPtr ? OrigPtr : Ptr);
1380 if (SI != PtrToStride.end()) {
1381 Value *StrideVal = SI->second;
1382
1383 // Strip casts.
1384 StrideVal = stripIntegerCast(StrideVal);
1385
1386 // Replace symbolic stride by one.
1387 Value *One = ConstantInt::get(StrideVal->getType(), 1);
1388 ValueToValueMap RewriteMap;
1389 RewriteMap[StrideVal] = One;
1390
1391 const SCEV *ByOne =
1392 SCEVParameterRewriter::rewrite(OrigSCEV, *SE, RewriteMap, true);
1393 DEBUG(dbgs() << "LV: Replacing SCEV: " << *OrigSCEV << " by: " << *ByOne
1394 << "\n");
1395 return ByOne;
1396 }
1397
1398 // Otherwise, just return the SCEV of the original pointer.
1399 return SE->getSCEV(Ptr);
1400 }
1401
insert(ScalarEvolution * SE,Loop * Lp,Value * Ptr,bool WritePtr,unsigned DepSetId,ValueToValueMap & Strides)1402 void LoopVectorizationLegality::RuntimePointerCheck::insert(
1403 ScalarEvolution *SE, Loop *Lp, Value *Ptr, bool WritePtr, unsigned DepSetId,
1404 ValueToValueMap &Strides) {
1405 // Get the stride replaced scev.
1406 const SCEV *Sc = replaceSymbolicStrideSCEV(SE, Strides, Ptr);
1407 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc);
1408 assert(AR && "Invalid addrec expression");
1409 const SCEV *Ex = SE->getBackedgeTakenCount(Lp);
1410 const SCEV *ScEnd = AR->evaluateAtIteration(Ex, *SE);
1411 Pointers.push_back(Ptr);
1412 Starts.push_back(AR->getStart());
1413 Ends.push_back(ScEnd);
1414 IsWritePtr.push_back(WritePtr);
1415 DependencySetId.push_back(DepSetId);
1416 }
1417
getBroadcastInstrs(Value * V)1418 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) {
1419 // We need to place the broadcast of invariant variables outside the loop.
1420 Instruction *Instr = dyn_cast<Instruction>(V);
1421 bool NewInstr =
1422 (Instr && std::find(LoopVectorBody.begin(), LoopVectorBody.end(),
1423 Instr->getParent()) != LoopVectorBody.end());
1424 bool Invariant = OrigLoop->isLoopInvariant(V) && !NewInstr;
1425
1426 // Place the code for broadcasting invariant variables in the new preheader.
1427 IRBuilder<>::InsertPointGuard Guard(Builder);
1428 if (Invariant)
1429 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
1430
1431 // Broadcast the scalar into all locations in the vector.
1432 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast");
1433
1434 return Shuf;
1435 }
1436
getConsecutiveVector(Value * Val,int StartIdx,bool Negate)1437 Value *InnerLoopVectorizer::getConsecutiveVector(Value* Val, int StartIdx,
1438 bool Negate) {
1439 assert(Val->getType()->isVectorTy() && "Must be a vector");
1440 assert(Val->getType()->getScalarType()->isIntegerTy() &&
1441 "Elem must be an integer");
1442 // Create the types.
1443 Type *ITy = Val->getType()->getScalarType();
1444 VectorType *Ty = cast<VectorType>(Val->getType());
1445 int VLen = Ty->getNumElements();
1446 SmallVector<Constant*, 8> Indices;
1447
1448 // Create a vector of consecutive numbers from zero to VF.
1449 for (int i = 0; i < VLen; ++i) {
1450 int64_t Idx = Negate ? (-i) : i;
1451 Indices.push_back(ConstantInt::get(ITy, StartIdx + Idx, Negate));
1452 }
1453
1454 // Add the consecutive indices to the vector value.
1455 Constant *Cv = ConstantVector::get(Indices);
1456 assert(Cv->getType() == Val->getType() && "Invalid consecutive vec");
1457 return Builder.CreateAdd(Val, Cv, "induction");
1458 }
1459
1460 /// \brief Find the operand of the GEP that should be checked for consecutive
1461 /// stores. This ignores trailing indices that have no effect on the final
1462 /// pointer.
getGEPInductionOperand(const DataLayout * DL,const GetElementPtrInst * Gep)1463 static unsigned getGEPInductionOperand(const DataLayout *DL,
1464 const GetElementPtrInst *Gep) {
1465 unsigned LastOperand = Gep->getNumOperands() - 1;
1466 unsigned GEPAllocSize = DL->getTypeAllocSize(
1467 cast<PointerType>(Gep->getType()->getScalarType())->getElementType());
1468
1469 // Walk backwards and try to peel off zeros.
1470 while (LastOperand > 1 && match(Gep->getOperand(LastOperand), m_Zero())) {
1471 // Find the type we're currently indexing into.
1472 gep_type_iterator GEPTI = gep_type_begin(Gep);
1473 std::advance(GEPTI, LastOperand - 1);
1474
1475 // If it's a type with the same allocation size as the result of the GEP we
1476 // can peel off the zero index.
1477 if (DL->getTypeAllocSize(*GEPTI) != GEPAllocSize)
1478 break;
1479 --LastOperand;
1480 }
1481
1482 return LastOperand;
1483 }
1484
isConsecutivePtr(Value * Ptr)1485 int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) {
1486 assert(Ptr->getType()->isPointerTy() && "Unexpected non-ptr");
1487 // Make sure that the pointer does not point to structs.
1488 if (Ptr->getType()->getPointerElementType()->isAggregateType())
1489 return 0;
1490
1491 // If this value is a pointer induction variable we know it is consecutive.
1492 PHINode *Phi = dyn_cast_or_null<PHINode>(Ptr);
1493 if (Phi && Inductions.count(Phi)) {
1494 InductionInfo II = Inductions[Phi];
1495 if (IK_PtrInduction == II.IK)
1496 return 1;
1497 else if (IK_ReversePtrInduction == II.IK)
1498 return -1;
1499 }
1500
1501 GetElementPtrInst *Gep = dyn_cast_or_null<GetElementPtrInst>(Ptr);
1502 if (!Gep)
1503 return 0;
1504
1505 unsigned NumOperands = Gep->getNumOperands();
1506 Value *GpPtr = Gep->getPointerOperand();
1507 // If this GEP value is a consecutive pointer induction variable and all of
1508 // the indices are constant then we know it is consecutive. We can
1509 Phi = dyn_cast<PHINode>(GpPtr);
1510 if (Phi && Inductions.count(Phi)) {
1511
1512 // Make sure that the pointer does not point to structs.
1513 PointerType *GepPtrType = cast<PointerType>(GpPtr->getType());
1514 if (GepPtrType->getElementType()->isAggregateType())
1515 return 0;
1516
1517 // Make sure that all of the index operands are loop invariant.
1518 for (unsigned i = 1; i < NumOperands; ++i)
1519 if (!SE->isLoopInvariant(SE->getSCEV(Gep->getOperand(i)), TheLoop))
1520 return 0;
1521
1522 InductionInfo II = Inductions[Phi];
1523 if (IK_PtrInduction == II.IK)
1524 return 1;
1525 else if (IK_ReversePtrInduction == II.IK)
1526 return -1;
1527 }
1528
1529 unsigned InductionOperand = getGEPInductionOperand(DL, Gep);
1530
1531 // Check that all of the gep indices are uniform except for our induction
1532 // operand.
1533 for (unsigned i = 0; i != NumOperands; ++i)
1534 if (i != InductionOperand &&
1535 !SE->isLoopInvariant(SE->getSCEV(Gep->getOperand(i)), TheLoop))
1536 return 0;
1537
1538 // We can emit wide load/stores only if the last non-zero index is the
1539 // induction variable.
1540 const SCEV *Last = nullptr;
1541 if (!Strides.count(Gep))
1542 Last = SE->getSCEV(Gep->getOperand(InductionOperand));
1543 else {
1544 // Because of the multiplication by a stride we can have a s/zext cast.
1545 // We are going to replace this stride by 1 so the cast is safe to ignore.
1546 //
1547 // %indvars.iv = phi i64 [ 0, %entry ], [ %indvars.iv.next, %for.body ]
1548 // %0 = trunc i64 %indvars.iv to i32
1549 // %mul = mul i32 %0, %Stride1
1550 // %idxprom = zext i32 %mul to i64 << Safe cast.
1551 // %arrayidx = getelementptr inbounds i32* %B, i64 %idxprom
1552 //
1553 Last = replaceSymbolicStrideSCEV(SE, Strides,
1554 Gep->getOperand(InductionOperand), Gep);
1555 if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(Last))
1556 Last =
1557 (C->getSCEVType() == scSignExtend || C->getSCEVType() == scZeroExtend)
1558 ? C->getOperand()
1559 : Last;
1560 }
1561 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Last)) {
1562 const SCEV *Step = AR->getStepRecurrence(*SE);
1563
1564 // The memory is consecutive because the last index is consecutive
1565 // and all other indices are loop invariant.
1566 if (Step->isOne())
1567 return 1;
1568 if (Step->isAllOnesValue())
1569 return -1;
1570 }
1571
1572 return 0;
1573 }
1574
isUniform(Value * V)1575 bool LoopVectorizationLegality::isUniform(Value *V) {
1576 return (SE->isLoopInvariant(SE->getSCEV(V), TheLoop));
1577 }
1578
1579 InnerLoopVectorizer::VectorParts&
getVectorValue(Value * V)1580 InnerLoopVectorizer::getVectorValue(Value *V) {
1581 assert(V != Induction && "The new induction variable should not be used.");
1582 assert(!V->getType()->isVectorTy() && "Can't widen a vector");
1583
1584 // If we have a stride that is replaced by one, do it here.
1585 if (Legal->hasStride(V))
1586 V = ConstantInt::get(V->getType(), 1);
1587
1588 // If we have this scalar in the map, return it.
1589 if (WidenMap.has(V))
1590 return WidenMap.get(V);
1591
1592 // If this scalar is unknown, assume that it is a constant or that it is
1593 // loop invariant. Broadcast V and save the value for future uses.
1594 Value *B = getBroadcastInstrs(V);
1595 return WidenMap.splat(V, B);
1596 }
1597
reverseVector(Value * Vec)1598 Value *InnerLoopVectorizer::reverseVector(Value *Vec) {
1599 assert(Vec->getType()->isVectorTy() && "Invalid type");
1600 SmallVector<Constant*, 8> ShuffleMask;
1601 for (unsigned i = 0; i < VF; ++i)
1602 ShuffleMask.push_back(Builder.getInt32(VF - i - 1));
1603
1604 return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()),
1605 ConstantVector::get(ShuffleMask),
1606 "reverse");
1607 }
1608
vectorizeMemoryInstruction(Instruction * Instr)1609 void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr) {
1610 // Attempt to issue a wide load.
1611 LoadInst *LI = dyn_cast<LoadInst>(Instr);
1612 StoreInst *SI = dyn_cast<StoreInst>(Instr);
1613
1614 assert((LI || SI) && "Invalid Load/Store instruction");
1615
1616 Type *ScalarDataTy = LI ? LI->getType() : SI->getValueOperand()->getType();
1617 Type *DataTy = VectorType::get(ScalarDataTy, VF);
1618 Value *Ptr = LI ? LI->getPointerOperand() : SI->getPointerOperand();
1619 unsigned Alignment = LI ? LI->getAlignment() : SI->getAlignment();
1620 // An alignment of 0 means target abi alignment. We need to use the scalar's
1621 // target abi alignment in such a case.
1622 if (!Alignment)
1623 Alignment = DL->getABITypeAlignment(ScalarDataTy);
1624 unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace();
1625 unsigned ScalarAllocatedSize = DL->getTypeAllocSize(ScalarDataTy);
1626 unsigned VectorElementSize = DL->getTypeStoreSize(DataTy)/VF;
1627
1628 if (SI && Legal->blockNeedsPredication(SI->getParent()))
1629 return scalarizeInstruction(Instr, true);
1630
1631 if (ScalarAllocatedSize != VectorElementSize)
1632 return scalarizeInstruction(Instr);
1633
1634 // If the pointer is loop invariant or if it is non-consecutive,
1635 // scalarize the load.
1636 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr);
1637 bool Reverse = ConsecutiveStride < 0;
1638 bool UniformLoad = LI && Legal->isUniform(Ptr);
1639 if (!ConsecutiveStride || UniformLoad)
1640 return scalarizeInstruction(Instr);
1641
1642 Constant *Zero = Builder.getInt32(0);
1643 VectorParts &Entry = WidenMap.get(Instr);
1644
1645 // Handle consecutive loads/stores.
1646 GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr);
1647 if (Gep && Legal->isInductionVariable(Gep->getPointerOperand())) {
1648 setDebugLocFromInst(Builder, Gep);
1649 Value *PtrOperand = Gep->getPointerOperand();
1650 Value *FirstBasePtr = getVectorValue(PtrOperand)[0];
1651 FirstBasePtr = Builder.CreateExtractElement(FirstBasePtr, Zero);
1652
1653 // Create the new GEP with the new induction variable.
1654 GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone());
1655 Gep2->setOperand(0, FirstBasePtr);
1656 Gep2->setName("gep.indvar.base");
1657 Ptr = Builder.Insert(Gep2);
1658 } else if (Gep) {
1659 setDebugLocFromInst(Builder, Gep);
1660 assert(SE->isLoopInvariant(SE->getSCEV(Gep->getPointerOperand()),
1661 OrigLoop) && "Base ptr must be invariant");
1662
1663 // The last index does not have to be the induction. It can be
1664 // consecutive and be a function of the index. For example A[I+1];
1665 unsigned NumOperands = Gep->getNumOperands();
1666 unsigned InductionOperand = getGEPInductionOperand(DL, Gep);
1667 // Create the new GEP with the new induction variable.
1668 GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone());
1669
1670 for (unsigned i = 0; i < NumOperands; ++i) {
1671 Value *GepOperand = Gep->getOperand(i);
1672 Instruction *GepOperandInst = dyn_cast<Instruction>(GepOperand);
1673
1674 // Update last index or loop invariant instruction anchored in loop.
1675 if (i == InductionOperand ||
1676 (GepOperandInst && OrigLoop->contains(GepOperandInst))) {
1677 assert((i == InductionOperand ||
1678 SE->isLoopInvariant(SE->getSCEV(GepOperandInst), OrigLoop)) &&
1679 "Must be last index or loop invariant");
1680
1681 VectorParts &GEPParts = getVectorValue(GepOperand);
1682 Value *Index = GEPParts[0];
1683 Index = Builder.CreateExtractElement(Index, Zero);
1684 Gep2->setOperand(i, Index);
1685 Gep2->setName("gep.indvar.idx");
1686 }
1687 }
1688 Ptr = Builder.Insert(Gep2);
1689 } else {
1690 // Use the induction element ptr.
1691 assert(isa<PHINode>(Ptr) && "Invalid induction ptr");
1692 setDebugLocFromInst(Builder, Ptr);
1693 VectorParts &PtrVal = getVectorValue(Ptr);
1694 Ptr = Builder.CreateExtractElement(PtrVal[0], Zero);
1695 }
1696
1697 // Handle Stores:
1698 if (SI) {
1699 assert(!Legal->isUniform(SI->getPointerOperand()) &&
1700 "We do not allow storing to uniform addresses");
1701 setDebugLocFromInst(Builder, SI);
1702 // We don't want to update the value in the map as it might be used in
1703 // another expression. So don't use a reference type for "StoredVal".
1704 VectorParts StoredVal = getVectorValue(SI->getValueOperand());
1705
1706 for (unsigned Part = 0; Part < UF; ++Part) {
1707 // Calculate the pointer for the specific unroll-part.
1708 Value *PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(Part * VF));
1709
1710 if (Reverse) {
1711 // If we store to reverse consecutive memory locations then we need
1712 // to reverse the order of elements in the stored value.
1713 StoredVal[Part] = reverseVector(StoredVal[Part]);
1714 // If the address is consecutive but reversed, then the
1715 // wide store needs to start at the last vector element.
1716 PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(-Part * VF));
1717 PartPtr = Builder.CreateGEP(PartPtr, Builder.getInt32(1 - VF));
1718 }
1719
1720 Value *VecPtr = Builder.CreateBitCast(PartPtr,
1721 DataTy->getPointerTo(AddressSpace));
1722 Builder.CreateStore(StoredVal[Part], VecPtr)->setAlignment(Alignment);
1723 }
1724 return;
1725 }
1726
1727 // Handle loads.
1728 assert(LI && "Must have a load instruction");
1729 setDebugLocFromInst(Builder, LI);
1730 for (unsigned Part = 0; Part < UF; ++Part) {
1731 // Calculate the pointer for the specific unroll-part.
1732 Value *PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(Part * VF));
1733
1734 if (Reverse) {
1735 // If the address is consecutive but reversed, then the
1736 // wide store needs to start at the last vector element.
1737 PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(-Part * VF));
1738 PartPtr = Builder.CreateGEP(PartPtr, Builder.getInt32(1 - VF));
1739 }
1740
1741 Value *VecPtr = Builder.CreateBitCast(PartPtr,
1742 DataTy->getPointerTo(AddressSpace));
1743 Value *LI = Builder.CreateLoad(VecPtr, "wide.load");
1744 cast<LoadInst>(LI)->setAlignment(Alignment);
1745 Entry[Part] = Reverse ? reverseVector(LI) : LI;
1746 }
1747 }
1748
scalarizeInstruction(Instruction * Instr,bool IfPredicateStore)1749 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, bool IfPredicateStore) {
1750 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors");
1751 // Holds vector parameters or scalars, in case of uniform vals.
1752 SmallVector<VectorParts, 4> Params;
1753
1754 setDebugLocFromInst(Builder, Instr);
1755
1756 // Find all of the vectorized parameters.
1757 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
1758 Value *SrcOp = Instr->getOperand(op);
1759
1760 // If we are accessing the old induction variable, use the new one.
1761 if (SrcOp == OldInduction) {
1762 Params.push_back(getVectorValue(SrcOp));
1763 continue;
1764 }
1765
1766 // Try using previously calculated values.
1767 Instruction *SrcInst = dyn_cast<Instruction>(SrcOp);
1768
1769 // If the src is an instruction that appeared earlier in the basic block
1770 // then it should already be vectorized.
1771 if (SrcInst && OrigLoop->contains(SrcInst)) {
1772 assert(WidenMap.has(SrcInst) && "Source operand is unavailable");
1773 // The parameter is a vector value from earlier.
1774 Params.push_back(WidenMap.get(SrcInst));
1775 } else {
1776 // The parameter is a scalar from outside the loop. Maybe even a constant.
1777 VectorParts Scalars;
1778 Scalars.append(UF, SrcOp);
1779 Params.push_back(Scalars);
1780 }
1781 }
1782
1783 assert(Params.size() == Instr->getNumOperands() &&
1784 "Invalid number of operands");
1785
1786 // Does this instruction return a value ?
1787 bool IsVoidRetTy = Instr->getType()->isVoidTy();
1788
1789 Value *UndefVec = IsVoidRetTy ? nullptr :
1790 UndefValue::get(VectorType::get(Instr->getType(), VF));
1791 // Create a new entry in the WidenMap and initialize it to Undef or Null.
1792 VectorParts &VecResults = WidenMap.splat(Instr, UndefVec);
1793
1794 Instruction *InsertPt = Builder.GetInsertPoint();
1795 BasicBlock *IfBlock = Builder.GetInsertBlock();
1796 BasicBlock *CondBlock = nullptr;
1797
1798 VectorParts Cond;
1799 Loop *VectorLp = nullptr;
1800 if (IfPredicateStore) {
1801 assert(Instr->getParent()->getSinglePredecessor() &&
1802 "Only support single predecessor blocks");
1803 Cond = createEdgeMask(Instr->getParent()->getSinglePredecessor(),
1804 Instr->getParent());
1805 VectorLp = LI->getLoopFor(IfBlock);
1806 assert(VectorLp && "Must have a loop for this block");
1807 }
1808
1809 // For each vector unroll 'part':
1810 for (unsigned Part = 0; Part < UF; ++Part) {
1811 // For each scalar that we create:
1812 for (unsigned Width = 0; Width < VF; ++Width) {
1813
1814 // Start if-block.
1815 Value *Cmp = nullptr;
1816 if (IfPredicateStore) {
1817 Cmp = Builder.CreateExtractElement(Cond[Part], Builder.getInt32(Width));
1818 Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Cmp, ConstantInt::get(Cmp->getType(), 1));
1819 CondBlock = IfBlock->splitBasicBlock(InsertPt, "cond.store");
1820 LoopVectorBody.push_back(CondBlock);
1821 VectorLp->addBasicBlockToLoop(CondBlock, LI->getBase());
1822 // Update Builder with newly created basic block.
1823 Builder.SetInsertPoint(InsertPt);
1824 }
1825
1826 Instruction *Cloned = Instr->clone();
1827 if (!IsVoidRetTy)
1828 Cloned->setName(Instr->getName() + ".cloned");
1829 // Replace the operands of the cloned instructions with extracted scalars.
1830 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
1831 Value *Op = Params[op][Part];
1832 // Param is a vector. Need to extract the right lane.
1833 if (Op->getType()->isVectorTy())
1834 Op = Builder.CreateExtractElement(Op, Builder.getInt32(Width));
1835 Cloned->setOperand(op, Op);
1836 }
1837
1838 // Place the cloned scalar in the new loop.
1839 Builder.Insert(Cloned);
1840
1841 // If the original scalar returns a value we need to place it in a vector
1842 // so that future users will be able to use it.
1843 if (!IsVoidRetTy)
1844 VecResults[Part] = Builder.CreateInsertElement(VecResults[Part], Cloned,
1845 Builder.getInt32(Width));
1846 // End if-block.
1847 if (IfPredicateStore) {
1848 BasicBlock *NewIfBlock = CondBlock->splitBasicBlock(InsertPt, "else");
1849 LoopVectorBody.push_back(NewIfBlock);
1850 VectorLp->addBasicBlockToLoop(NewIfBlock, LI->getBase());
1851 Builder.SetInsertPoint(InsertPt);
1852 Instruction *OldBr = IfBlock->getTerminator();
1853 BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr);
1854 OldBr->eraseFromParent();
1855 IfBlock = NewIfBlock;
1856 }
1857 }
1858 }
1859 }
1860
getFirstInst(Instruction * FirstInst,Value * V,Instruction * Loc)1861 static Instruction *getFirstInst(Instruction *FirstInst, Value *V,
1862 Instruction *Loc) {
1863 if (FirstInst)
1864 return FirstInst;
1865 if (Instruction *I = dyn_cast<Instruction>(V))
1866 return I->getParent() == Loc->getParent() ? I : nullptr;
1867 return nullptr;
1868 }
1869
1870 std::pair<Instruction *, Instruction *>
addStrideCheck(Instruction * Loc)1871 InnerLoopVectorizer::addStrideCheck(Instruction *Loc) {
1872 Instruction *tnullptr = nullptr;
1873 if (!Legal->mustCheckStrides())
1874 return std::pair<Instruction *, Instruction *>(tnullptr, tnullptr);
1875
1876 IRBuilder<> ChkBuilder(Loc);
1877
1878 // Emit checks.
1879 Value *Check = nullptr;
1880 Instruction *FirstInst = nullptr;
1881 for (SmallPtrSet<Value *, 8>::iterator SI = Legal->strides_begin(),
1882 SE = Legal->strides_end();
1883 SI != SE; ++SI) {
1884 Value *Ptr = stripIntegerCast(*SI);
1885 Value *C = ChkBuilder.CreateICmpNE(Ptr, ConstantInt::get(Ptr->getType(), 1),
1886 "stride.chk");
1887 // Store the first instruction we create.
1888 FirstInst = getFirstInst(FirstInst, C, Loc);
1889 if (Check)
1890 Check = ChkBuilder.CreateOr(Check, C);
1891 else
1892 Check = C;
1893 }
1894
1895 // We have to do this trickery because the IRBuilder might fold the check to a
1896 // constant expression in which case there is no Instruction anchored in a
1897 // the block.
1898 LLVMContext &Ctx = Loc->getContext();
1899 Instruction *TheCheck =
1900 BinaryOperator::CreateAnd(Check, ConstantInt::getTrue(Ctx));
1901 ChkBuilder.Insert(TheCheck, "stride.not.one");
1902 FirstInst = getFirstInst(FirstInst, TheCheck, Loc);
1903
1904 return std::make_pair(FirstInst, TheCheck);
1905 }
1906
1907 std::pair<Instruction *, Instruction *>
addRuntimeCheck(Instruction * Loc)1908 InnerLoopVectorizer::addRuntimeCheck(Instruction *Loc) {
1909 LoopVectorizationLegality::RuntimePointerCheck *PtrRtCheck =
1910 Legal->getRuntimePointerCheck();
1911
1912 Instruction *tnullptr = nullptr;
1913 if (!PtrRtCheck->Need)
1914 return std::pair<Instruction *, Instruction *>(tnullptr, tnullptr);
1915
1916 unsigned NumPointers = PtrRtCheck->Pointers.size();
1917 SmallVector<TrackingVH<Value> , 2> Starts;
1918 SmallVector<TrackingVH<Value> , 2> Ends;
1919
1920 LLVMContext &Ctx = Loc->getContext();
1921 SCEVExpander Exp(*SE, "induction");
1922 Instruction *FirstInst = nullptr;
1923
1924 for (unsigned i = 0; i < NumPointers; ++i) {
1925 Value *Ptr = PtrRtCheck->Pointers[i];
1926 const SCEV *Sc = SE->getSCEV(Ptr);
1927
1928 if (SE->isLoopInvariant(Sc, OrigLoop)) {
1929 DEBUG(dbgs() << "LV: Adding RT check for a loop invariant ptr:" <<
1930 *Ptr <<"\n");
1931 Starts.push_back(Ptr);
1932 Ends.push_back(Ptr);
1933 } else {
1934 DEBUG(dbgs() << "LV: Adding RT check for range:" << *Ptr << '\n');
1935 unsigned AS = Ptr->getType()->getPointerAddressSpace();
1936
1937 // Use this type for pointer arithmetic.
1938 Type *PtrArithTy = Type::getInt8PtrTy(Ctx, AS);
1939
1940 Value *Start = Exp.expandCodeFor(PtrRtCheck->Starts[i], PtrArithTy, Loc);
1941 Value *End = Exp.expandCodeFor(PtrRtCheck->Ends[i], PtrArithTy, Loc);
1942 Starts.push_back(Start);
1943 Ends.push_back(End);
1944 }
1945 }
1946
1947 IRBuilder<> ChkBuilder(Loc);
1948 // Our instructions might fold to a constant.
1949 Value *MemoryRuntimeCheck = nullptr;
1950 for (unsigned i = 0; i < NumPointers; ++i) {
1951 for (unsigned j = i+1; j < NumPointers; ++j) {
1952 // No need to check if two readonly pointers intersect.
1953 if (!PtrRtCheck->IsWritePtr[i] && !PtrRtCheck->IsWritePtr[j])
1954 continue;
1955
1956 // Only need to check pointers between two different dependency sets.
1957 if (PtrRtCheck->DependencySetId[i] == PtrRtCheck->DependencySetId[j])
1958 continue;
1959
1960 unsigned AS0 = Starts[i]->getType()->getPointerAddressSpace();
1961 unsigned AS1 = Starts[j]->getType()->getPointerAddressSpace();
1962
1963 assert((AS0 == Ends[j]->getType()->getPointerAddressSpace()) &&
1964 (AS1 == Ends[i]->getType()->getPointerAddressSpace()) &&
1965 "Trying to bounds check pointers with different address spaces");
1966
1967 Type *PtrArithTy0 = Type::getInt8PtrTy(Ctx, AS0);
1968 Type *PtrArithTy1 = Type::getInt8PtrTy(Ctx, AS1);
1969
1970 Value *Start0 = ChkBuilder.CreateBitCast(Starts[i], PtrArithTy0, "bc");
1971 Value *Start1 = ChkBuilder.CreateBitCast(Starts[j], PtrArithTy1, "bc");
1972 Value *End0 = ChkBuilder.CreateBitCast(Ends[i], PtrArithTy1, "bc");
1973 Value *End1 = ChkBuilder.CreateBitCast(Ends[j], PtrArithTy0, "bc");
1974
1975 Value *Cmp0 = ChkBuilder.CreateICmpULE(Start0, End1, "bound0");
1976 FirstInst = getFirstInst(FirstInst, Cmp0, Loc);
1977 Value *Cmp1 = ChkBuilder.CreateICmpULE(Start1, End0, "bound1");
1978 FirstInst = getFirstInst(FirstInst, Cmp1, Loc);
1979 Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict");
1980 FirstInst = getFirstInst(FirstInst, IsConflict, Loc);
1981 if (MemoryRuntimeCheck) {
1982 IsConflict = ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict,
1983 "conflict.rdx");
1984 FirstInst = getFirstInst(FirstInst, IsConflict, Loc);
1985 }
1986 MemoryRuntimeCheck = IsConflict;
1987 }
1988 }
1989
1990 // We have to do this trickery because the IRBuilder might fold the check to a
1991 // constant expression in which case there is no Instruction anchored in a
1992 // the block.
1993 Instruction *Check = BinaryOperator::CreateAnd(MemoryRuntimeCheck,
1994 ConstantInt::getTrue(Ctx));
1995 ChkBuilder.Insert(Check, "memcheck.conflict");
1996 FirstInst = getFirstInst(FirstInst, Check, Loc);
1997 return std::make_pair(FirstInst, Check);
1998 }
1999
createEmptyLoop()2000 void InnerLoopVectorizer::createEmptyLoop() {
2001 /*
2002 In this function we generate a new loop. The new loop will contain
2003 the vectorized instructions while the old loop will continue to run the
2004 scalar remainder.
2005
2006 [ ] <-- Back-edge taken count overflow check.
2007 / |
2008 / v
2009 | [ ] <-- vector loop bypass (may consist of multiple blocks).
2010 | / |
2011 | / v
2012 || [ ] <-- vector pre header.
2013 || |
2014 || v
2015 || [ ] \
2016 || [ ]_| <-- vector loop.
2017 || |
2018 | \ v
2019 | >[ ] <--- middle-block.
2020 | / |
2021 | / v
2022 -|- >[ ] <--- new preheader.
2023 | |
2024 | v
2025 | [ ] \
2026 | [ ]_| <-- old scalar loop to handle remainder.
2027 \ |
2028 \ v
2029 >[ ] <-- exit block.
2030 ...
2031 */
2032
2033 BasicBlock *OldBasicBlock = OrigLoop->getHeader();
2034 BasicBlock *BypassBlock = OrigLoop->getLoopPreheader();
2035 BasicBlock *ExitBlock = OrigLoop->getExitBlock();
2036 assert(BypassBlock && "Invalid loop structure");
2037 assert(ExitBlock && "Must have an exit block");
2038
2039 // Some loops have a single integer induction variable, while other loops
2040 // don't. One example is c++ iterators that often have multiple pointer
2041 // induction variables. In the code below we also support a case where we
2042 // don't have a single induction variable.
2043 OldInduction = Legal->getInduction();
2044 Type *IdxTy = Legal->getWidestInductionType();
2045
2046 // Find the loop boundaries.
2047 const SCEV *ExitCount = SE->getBackedgeTakenCount(OrigLoop);
2048 assert(ExitCount != SE->getCouldNotCompute() && "Invalid loop count");
2049
2050 // The exit count might have the type of i64 while the phi is i32. This can
2051 // happen if we have an induction variable that is sign extended before the
2052 // compare. The only way that we get a backedge taken count is that the
2053 // induction variable was signed and as such will not overflow. In such a case
2054 // truncation is legal.
2055 if (ExitCount->getType()->getPrimitiveSizeInBits() >
2056 IdxTy->getPrimitiveSizeInBits())
2057 ExitCount = SE->getTruncateOrNoop(ExitCount, IdxTy);
2058
2059 const SCEV *BackedgeTakeCount = SE->getNoopOrZeroExtend(ExitCount, IdxTy);
2060 // Get the total trip count from the count by adding 1.
2061 ExitCount = SE->getAddExpr(BackedgeTakeCount,
2062 SE->getConstant(BackedgeTakeCount->getType(), 1));
2063
2064 // Expand the trip count and place the new instructions in the preheader.
2065 // Notice that the pre-header does not change, only the loop body.
2066 SCEVExpander Exp(*SE, "induction");
2067
2068 // We need to test whether the backedge-taken count is uint##_max. Adding one
2069 // to it will cause overflow and an incorrect loop trip count in the vector
2070 // body. In case of overflow we want to directly jump to the scalar remainder
2071 // loop.
2072 Value *BackedgeCount =
2073 Exp.expandCodeFor(BackedgeTakeCount, BackedgeTakeCount->getType(),
2074 BypassBlock->getTerminator());
2075 if (BackedgeCount->getType()->isPointerTy())
2076 BackedgeCount = CastInst::CreatePointerCast(BackedgeCount, IdxTy,
2077 "backedge.ptrcnt.to.int",
2078 BypassBlock->getTerminator());
2079 Instruction *CheckBCOverflow =
2080 CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, BackedgeCount,
2081 Constant::getAllOnesValue(BackedgeCount->getType()),
2082 "backedge.overflow", BypassBlock->getTerminator());
2083
2084 // The loop index does not have to start at Zero. Find the original start
2085 // value from the induction PHI node. If we don't have an induction variable
2086 // then we know that it starts at zero.
2087 Builder.SetInsertPoint(BypassBlock->getTerminator());
2088 Value *StartIdx = ExtendedIdx = OldInduction ?
2089 Builder.CreateZExt(OldInduction->getIncomingValueForBlock(BypassBlock),
2090 IdxTy):
2091 ConstantInt::get(IdxTy, 0);
2092
2093 // We need an instruction to anchor the overflow check on. StartIdx needs to
2094 // be defined before the overflow check branch. Because the scalar preheader
2095 // is going to merge the start index and so the overflow branch block needs to
2096 // contain a definition of the start index.
2097 Instruction *OverflowCheckAnchor = BinaryOperator::CreateAdd(
2098 StartIdx, ConstantInt::get(IdxTy, 0), "overflow.check.anchor",
2099 BypassBlock->getTerminator());
2100
2101 // Count holds the overall loop count (N).
2102 Value *Count = Exp.expandCodeFor(ExitCount, ExitCount->getType(),
2103 BypassBlock->getTerminator());
2104
2105 LoopBypassBlocks.push_back(BypassBlock);
2106
2107 // Split the single block loop into the two loop structure described above.
2108 BasicBlock *VectorPH =
2109 BypassBlock->splitBasicBlock(BypassBlock->getTerminator(), "vector.ph");
2110 BasicBlock *VecBody =
2111 VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body");
2112 BasicBlock *MiddleBlock =
2113 VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block");
2114 BasicBlock *ScalarPH =
2115 MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph");
2116
2117 // Create and register the new vector loop.
2118 Loop* Lp = new Loop();
2119 Loop *ParentLoop = OrigLoop->getParentLoop();
2120
2121 // Insert the new loop into the loop nest and register the new basic blocks
2122 // before calling any utilities such as SCEV that require valid LoopInfo.
2123 if (ParentLoop) {
2124 ParentLoop->addChildLoop(Lp);
2125 ParentLoop->addBasicBlockToLoop(ScalarPH, LI->getBase());
2126 ParentLoop->addBasicBlockToLoop(VectorPH, LI->getBase());
2127 ParentLoop->addBasicBlockToLoop(MiddleBlock, LI->getBase());
2128 } else {
2129 LI->addTopLevelLoop(Lp);
2130 }
2131 Lp->addBasicBlockToLoop(VecBody, LI->getBase());
2132
2133 // Use this IR builder to create the loop instructions (Phi, Br, Cmp)
2134 // inside the loop.
2135 Builder.SetInsertPoint(VecBody->getFirstNonPHI());
2136
2137 // Generate the induction variable.
2138 setDebugLocFromInst(Builder, getDebugLocFromInstOrOperands(OldInduction));
2139 Induction = Builder.CreatePHI(IdxTy, 2, "index");
2140 // The loop step is equal to the vectorization factor (num of SIMD elements)
2141 // times the unroll factor (num of SIMD instructions).
2142 Constant *Step = ConstantInt::get(IdxTy, VF * UF);
2143
2144 // This is the IR builder that we use to add all of the logic for bypassing
2145 // the new vector loop.
2146 IRBuilder<> BypassBuilder(BypassBlock->getTerminator());
2147 setDebugLocFromInst(BypassBuilder,
2148 getDebugLocFromInstOrOperands(OldInduction));
2149
2150 // We may need to extend the index in case there is a type mismatch.
2151 // We know that the count starts at zero and does not overflow.
2152 if (Count->getType() != IdxTy) {
2153 // The exit count can be of pointer type. Convert it to the correct
2154 // integer type.
2155 if (ExitCount->getType()->isPointerTy())
2156 Count = BypassBuilder.CreatePointerCast(Count, IdxTy, "ptrcnt.to.int");
2157 else
2158 Count = BypassBuilder.CreateZExtOrTrunc(Count, IdxTy, "cnt.cast");
2159 }
2160
2161 // Add the start index to the loop count to get the new end index.
2162 Value *IdxEnd = BypassBuilder.CreateAdd(Count, StartIdx, "end.idx");
2163
2164 // Now we need to generate the expression for N - (N % VF), which is
2165 // the part that the vectorized body will execute.
2166 Value *R = BypassBuilder.CreateURem(Count, Step, "n.mod.vf");
2167 Value *CountRoundDown = BypassBuilder.CreateSub(Count, R, "n.vec");
2168 Value *IdxEndRoundDown = BypassBuilder.CreateAdd(CountRoundDown, StartIdx,
2169 "end.idx.rnd.down");
2170
2171 // Now, compare the new count to zero. If it is zero skip the vector loop and
2172 // jump to the scalar loop.
2173 Value *Cmp =
2174 BypassBuilder.CreateICmpEQ(IdxEndRoundDown, StartIdx, "cmp.zero");
2175
2176 BasicBlock *LastBypassBlock = BypassBlock;
2177
2178 // Generate code to check that the loops trip count that we computed by adding
2179 // one to the backedge-taken count will not overflow.
2180 {
2181 auto PastOverflowCheck =
2182 std::next(BasicBlock::iterator(OverflowCheckAnchor));
2183 BasicBlock *CheckBlock =
2184 LastBypassBlock->splitBasicBlock(PastOverflowCheck, "overflow.checked");
2185 if (ParentLoop)
2186 ParentLoop->addBasicBlockToLoop(CheckBlock, LI->getBase());
2187 LoopBypassBlocks.push_back(CheckBlock);
2188 Instruction *OldTerm = LastBypassBlock->getTerminator();
2189 BranchInst::Create(ScalarPH, CheckBlock, CheckBCOverflow, OldTerm);
2190 OldTerm->eraseFromParent();
2191 LastBypassBlock = CheckBlock;
2192 }
2193
2194 // Generate the code to check that the strides we assumed to be one are really
2195 // one. We want the new basic block to start at the first instruction in a
2196 // sequence of instructions that form a check.
2197 Instruction *StrideCheck;
2198 Instruction *FirstCheckInst;
2199 std::tie(FirstCheckInst, StrideCheck) =
2200 addStrideCheck(LastBypassBlock->getTerminator());
2201 if (StrideCheck) {
2202 // Create a new block containing the stride check.
2203 BasicBlock *CheckBlock =
2204 LastBypassBlock->splitBasicBlock(FirstCheckInst, "vector.stridecheck");
2205 if (ParentLoop)
2206 ParentLoop->addBasicBlockToLoop(CheckBlock, LI->getBase());
2207 LoopBypassBlocks.push_back(CheckBlock);
2208
2209 // Replace the branch into the memory check block with a conditional branch
2210 // for the "few elements case".
2211 Instruction *OldTerm = LastBypassBlock->getTerminator();
2212 BranchInst::Create(MiddleBlock, CheckBlock, Cmp, OldTerm);
2213 OldTerm->eraseFromParent();
2214
2215 Cmp = StrideCheck;
2216 LastBypassBlock = CheckBlock;
2217 }
2218
2219 // Generate the code that checks in runtime if arrays overlap. We put the
2220 // checks into a separate block to make the more common case of few elements
2221 // faster.
2222 Instruction *MemRuntimeCheck;
2223 std::tie(FirstCheckInst, MemRuntimeCheck) =
2224 addRuntimeCheck(LastBypassBlock->getTerminator());
2225 if (MemRuntimeCheck) {
2226 // Create a new block containing the memory check.
2227 BasicBlock *CheckBlock =
2228 LastBypassBlock->splitBasicBlock(MemRuntimeCheck, "vector.memcheck");
2229 if (ParentLoop)
2230 ParentLoop->addBasicBlockToLoop(CheckBlock, LI->getBase());
2231 LoopBypassBlocks.push_back(CheckBlock);
2232
2233 // Replace the branch into the memory check block with a conditional branch
2234 // for the "few elements case".
2235 Instruction *OldTerm = LastBypassBlock->getTerminator();
2236 BranchInst::Create(MiddleBlock, CheckBlock, Cmp, OldTerm);
2237 OldTerm->eraseFromParent();
2238
2239 Cmp = MemRuntimeCheck;
2240 LastBypassBlock = CheckBlock;
2241 }
2242
2243 LastBypassBlock->getTerminator()->eraseFromParent();
2244 BranchInst::Create(MiddleBlock, VectorPH, Cmp,
2245 LastBypassBlock);
2246
2247 // We are going to resume the execution of the scalar loop.
2248 // Go over all of the induction variables that we found and fix the
2249 // PHIs that are left in the scalar version of the loop.
2250 // The starting values of PHI nodes depend on the counter of the last
2251 // iteration in the vectorized loop.
2252 // If we come from a bypass edge then we need to start from the original
2253 // start value.
2254
2255 // This variable saves the new starting index for the scalar loop.
2256 PHINode *ResumeIndex = nullptr;
2257 LoopVectorizationLegality::InductionList::iterator I, E;
2258 LoopVectorizationLegality::InductionList *List = Legal->getInductionVars();
2259 // Set builder to point to last bypass block.
2260 BypassBuilder.SetInsertPoint(LoopBypassBlocks.back()->getTerminator());
2261 for (I = List->begin(), E = List->end(); I != E; ++I) {
2262 PHINode *OrigPhi = I->first;
2263 LoopVectorizationLegality::InductionInfo II = I->second;
2264
2265 Type *ResumeValTy = (OrigPhi == OldInduction) ? IdxTy : OrigPhi->getType();
2266 PHINode *ResumeVal = PHINode::Create(ResumeValTy, 2, "resume.val",
2267 MiddleBlock->getTerminator());
2268 // We might have extended the type of the induction variable but we need a
2269 // truncated version for the scalar loop.
2270 PHINode *TruncResumeVal = (OrigPhi == OldInduction) ?
2271 PHINode::Create(OrigPhi->getType(), 2, "trunc.resume.val",
2272 MiddleBlock->getTerminator()) : nullptr;
2273
2274 // Create phi nodes to merge from the backedge-taken check block.
2275 PHINode *BCResumeVal = PHINode::Create(ResumeValTy, 3, "bc.resume.val",
2276 ScalarPH->getTerminator());
2277 BCResumeVal->addIncoming(ResumeVal, MiddleBlock);
2278
2279 PHINode *BCTruncResumeVal = nullptr;
2280 if (OrigPhi == OldInduction) {
2281 BCTruncResumeVal =
2282 PHINode::Create(OrigPhi->getType(), 2, "bc.trunc.resume.val",
2283 ScalarPH->getTerminator());
2284 BCTruncResumeVal->addIncoming(TruncResumeVal, MiddleBlock);
2285 }
2286
2287 Value *EndValue = nullptr;
2288 switch (II.IK) {
2289 case LoopVectorizationLegality::IK_NoInduction:
2290 llvm_unreachable("Unknown induction");
2291 case LoopVectorizationLegality::IK_IntInduction: {
2292 // Handle the integer induction counter.
2293 assert(OrigPhi->getType()->isIntegerTy() && "Invalid type");
2294
2295 // We have the canonical induction variable.
2296 if (OrigPhi == OldInduction) {
2297 // Create a truncated version of the resume value for the scalar loop,
2298 // we might have promoted the type to a larger width.
2299 EndValue =
2300 BypassBuilder.CreateTrunc(IdxEndRoundDown, OrigPhi->getType());
2301 // The new PHI merges the original incoming value, in case of a bypass,
2302 // or the value at the end of the vectorized loop.
2303 for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I)
2304 TruncResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[I]);
2305 TruncResumeVal->addIncoming(EndValue, VecBody);
2306
2307 BCTruncResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[0]);
2308
2309 // We know what the end value is.
2310 EndValue = IdxEndRoundDown;
2311 // We also know which PHI node holds it.
2312 ResumeIndex = ResumeVal;
2313 break;
2314 }
2315
2316 // Not the canonical induction variable - add the vector loop count to the
2317 // start value.
2318 Value *CRD = BypassBuilder.CreateSExtOrTrunc(CountRoundDown,
2319 II.StartValue->getType(),
2320 "cast.crd");
2321 EndValue = BypassBuilder.CreateAdd(CRD, II.StartValue , "ind.end");
2322 break;
2323 }
2324 case LoopVectorizationLegality::IK_ReverseIntInduction: {
2325 // Convert the CountRoundDown variable to the PHI size.
2326 Value *CRD = BypassBuilder.CreateSExtOrTrunc(CountRoundDown,
2327 II.StartValue->getType(),
2328 "cast.crd");
2329 // Handle reverse integer induction counter.
2330 EndValue = BypassBuilder.CreateSub(II.StartValue, CRD, "rev.ind.end");
2331 break;
2332 }
2333 case LoopVectorizationLegality::IK_PtrInduction: {
2334 // For pointer induction variables, calculate the offset using
2335 // the end index.
2336 EndValue = BypassBuilder.CreateGEP(II.StartValue, CountRoundDown,
2337 "ptr.ind.end");
2338 break;
2339 }
2340 case LoopVectorizationLegality::IK_ReversePtrInduction: {
2341 // The value at the end of the loop for the reverse pointer is calculated
2342 // by creating a GEP with a negative index starting from the start value.
2343 Value *Zero = ConstantInt::get(CountRoundDown->getType(), 0);
2344 Value *NegIdx = BypassBuilder.CreateSub(Zero, CountRoundDown,
2345 "rev.ind.end");
2346 EndValue = BypassBuilder.CreateGEP(II.StartValue, NegIdx,
2347 "rev.ptr.ind.end");
2348 break;
2349 }
2350 }// end of case
2351
2352 // The new PHI merges the original incoming value, in case of a bypass,
2353 // or the value at the end of the vectorized loop.
2354 for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I) {
2355 if (OrigPhi == OldInduction)
2356 ResumeVal->addIncoming(StartIdx, LoopBypassBlocks[I]);
2357 else
2358 ResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[I]);
2359 }
2360 ResumeVal->addIncoming(EndValue, VecBody);
2361
2362 // Fix the scalar body counter (PHI node).
2363 unsigned BlockIdx = OrigPhi->getBasicBlockIndex(ScalarPH);
2364
2365 // The old induction's phi node in the scalar body needs the truncated
2366 // value.
2367 if (OrigPhi == OldInduction) {
2368 BCResumeVal->addIncoming(StartIdx, LoopBypassBlocks[0]);
2369 OrigPhi->setIncomingValue(BlockIdx, BCTruncResumeVal);
2370 } else {
2371 BCResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[0]);
2372 OrigPhi->setIncomingValue(BlockIdx, BCResumeVal);
2373 }
2374 }
2375
2376 // If we are generating a new induction variable then we also need to
2377 // generate the code that calculates the exit value. This value is not
2378 // simply the end of the counter because we may skip the vectorized body
2379 // in case of a runtime check.
2380 if (!OldInduction){
2381 assert(!ResumeIndex && "Unexpected resume value found");
2382 ResumeIndex = PHINode::Create(IdxTy, 2, "new.indc.resume.val",
2383 MiddleBlock->getTerminator());
2384 for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I)
2385 ResumeIndex->addIncoming(StartIdx, LoopBypassBlocks[I]);
2386 ResumeIndex->addIncoming(IdxEndRoundDown, VecBody);
2387 }
2388
2389 // Make sure that we found the index where scalar loop needs to continue.
2390 assert(ResumeIndex && ResumeIndex->getType()->isIntegerTy() &&
2391 "Invalid resume Index");
2392
2393 // Add a check in the middle block to see if we have completed
2394 // all of the iterations in the first vector loop.
2395 // If (N - N%VF) == N, then we *don't* need to run the remainder.
2396 Value *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, IdxEnd,
2397 ResumeIndex, "cmp.n",
2398 MiddleBlock->getTerminator());
2399
2400 BranchInst::Create(ExitBlock, ScalarPH, CmpN, MiddleBlock->getTerminator());
2401 // Remove the old terminator.
2402 MiddleBlock->getTerminator()->eraseFromParent();
2403
2404 // Create i+1 and fill the PHINode.
2405 Value *NextIdx = Builder.CreateAdd(Induction, Step, "index.next");
2406 Induction->addIncoming(StartIdx, VectorPH);
2407 Induction->addIncoming(NextIdx, VecBody);
2408 // Create the compare.
2409 Value *ICmp = Builder.CreateICmpEQ(NextIdx, IdxEndRoundDown);
2410 Builder.CreateCondBr(ICmp, MiddleBlock, VecBody);
2411
2412 // Now we have two terminators. Remove the old one from the block.
2413 VecBody->getTerminator()->eraseFromParent();
2414
2415 // Get ready to start creating new instructions into the vectorized body.
2416 Builder.SetInsertPoint(VecBody->getFirstInsertionPt());
2417
2418 // Save the state.
2419 LoopVectorPreHeader = VectorPH;
2420 LoopScalarPreHeader = ScalarPH;
2421 LoopMiddleBlock = MiddleBlock;
2422 LoopExitBlock = ExitBlock;
2423 LoopVectorBody.push_back(VecBody);
2424 LoopScalarBody = OldBasicBlock;
2425
2426 LoopVectorizeHints Hints(Lp, true);
2427 Hints.setAlreadyVectorized(Lp);
2428 }
2429
2430 /// This function returns the identity element (or neutral element) for
2431 /// the operation K.
2432 Constant*
getReductionIdentity(ReductionKind K,Type * Tp)2433 LoopVectorizationLegality::getReductionIdentity(ReductionKind K, Type *Tp) {
2434 switch (K) {
2435 case RK_IntegerXor:
2436 case RK_IntegerAdd:
2437 case RK_IntegerOr:
2438 // Adding, Xoring, Oring zero to a number does not change it.
2439 return ConstantInt::get(Tp, 0);
2440 case RK_IntegerMult:
2441 // Multiplying a number by 1 does not change it.
2442 return ConstantInt::get(Tp, 1);
2443 case RK_IntegerAnd:
2444 // AND-ing a number with an all-1 value does not change it.
2445 return ConstantInt::get(Tp, -1, true);
2446 case RK_FloatMult:
2447 // Multiplying a number by 1 does not change it.
2448 return ConstantFP::get(Tp, 1.0L);
2449 case RK_FloatAdd:
2450 // Adding zero to a number does not change it.
2451 return ConstantFP::get(Tp, 0.0L);
2452 default:
2453 llvm_unreachable("Unknown reduction kind");
2454 }
2455 }
2456
2457 /// This function translates the reduction kind to an LLVM binary operator.
2458 static unsigned
getReductionBinOp(LoopVectorizationLegality::ReductionKind Kind)2459 getReductionBinOp(LoopVectorizationLegality::ReductionKind Kind) {
2460 switch (Kind) {
2461 case LoopVectorizationLegality::RK_IntegerAdd:
2462 return Instruction::Add;
2463 case LoopVectorizationLegality::RK_IntegerMult:
2464 return Instruction::Mul;
2465 case LoopVectorizationLegality::RK_IntegerOr:
2466 return Instruction::Or;
2467 case LoopVectorizationLegality::RK_IntegerAnd:
2468 return Instruction::And;
2469 case LoopVectorizationLegality::RK_IntegerXor:
2470 return Instruction::Xor;
2471 case LoopVectorizationLegality::RK_FloatMult:
2472 return Instruction::FMul;
2473 case LoopVectorizationLegality::RK_FloatAdd:
2474 return Instruction::FAdd;
2475 case LoopVectorizationLegality::RK_IntegerMinMax:
2476 return Instruction::ICmp;
2477 case LoopVectorizationLegality::RK_FloatMinMax:
2478 return Instruction::FCmp;
2479 default:
2480 llvm_unreachable("Unknown reduction operation");
2481 }
2482 }
2483
createMinMaxOp(IRBuilder<> & Builder,LoopVectorizationLegality::MinMaxReductionKind RK,Value * Left,Value * Right)2484 Value *createMinMaxOp(IRBuilder<> &Builder,
2485 LoopVectorizationLegality::MinMaxReductionKind RK,
2486 Value *Left,
2487 Value *Right) {
2488 CmpInst::Predicate P = CmpInst::ICMP_NE;
2489 switch (RK) {
2490 default:
2491 llvm_unreachable("Unknown min/max reduction kind");
2492 case LoopVectorizationLegality::MRK_UIntMin:
2493 P = CmpInst::ICMP_ULT;
2494 break;
2495 case LoopVectorizationLegality::MRK_UIntMax:
2496 P = CmpInst::ICMP_UGT;
2497 break;
2498 case LoopVectorizationLegality::MRK_SIntMin:
2499 P = CmpInst::ICMP_SLT;
2500 break;
2501 case LoopVectorizationLegality::MRK_SIntMax:
2502 P = CmpInst::ICMP_SGT;
2503 break;
2504 case LoopVectorizationLegality::MRK_FloatMin:
2505 P = CmpInst::FCMP_OLT;
2506 break;
2507 case LoopVectorizationLegality::MRK_FloatMax:
2508 P = CmpInst::FCMP_OGT;
2509 break;
2510 }
2511
2512 Value *Cmp;
2513 if (RK == LoopVectorizationLegality::MRK_FloatMin ||
2514 RK == LoopVectorizationLegality::MRK_FloatMax)
2515 Cmp = Builder.CreateFCmp(P, Left, Right, "rdx.minmax.cmp");
2516 else
2517 Cmp = Builder.CreateICmp(P, Left, Right, "rdx.minmax.cmp");
2518
2519 Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select");
2520 return Select;
2521 }
2522
2523 namespace {
2524 struct CSEDenseMapInfo {
canHandle__anona1c34c530211::CSEDenseMapInfo2525 static bool canHandle(Instruction *I) {
2526 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
2527 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I);
2528 }
getEmptyKey__anona1c34c530211::CSEDenseMapInfo2529 static inline Instruction *getEmptyKey() {
2530 return DenseMapInfo<Instruction *>::getEmptyKey();
2531 }
getTombstoneKey__anona1c34c530211::CSEDenseMapInfo2532 static inline Instruction *getTombstoneKey() {
2533 return DenseMapInfo<Instruction *>::getTombstoneKey();
2534 }
getHashValue__anona1c34c530211::CSEDenseMapInfo2535 static unsigned getHashValue(Instruction *I) {
2536 assert(canHandle(I) && "Unknown instruction!");
2537 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(),
2538 I->value_op_end()));
2539 }
isEqual__anona1c34c530211::CSEDenseMapInfo2540 static bool isEqual(Instruction *LHS, Instruction *RHS) {
2541 if (LHS == getEmptyKey() || RHS == getEmptyKey() ||
2542 LHS == getTombstoneKey() || RHS == getTombstoneKey())
2543 return LHS == RHS;
2544 return LHS->isIdenticalTo(RHS);
2545 }
2546 };
2547 }
2548
2549 /// \brief Check whether this block is a predicated block.
2550 /// Due to if predication of stores we might create a sequence of "if(pred) a[i]
2551 /// = ...; " blocks. We start with one vectorized basic block. For every
2552 /// conditional block we split this vectorized block. Therefore, every second
2553 /// block will be a predicated one.
isPredicatedBlock(unsigned BlockNum)2554 static bool isPredicatedBlock(unsigned BlockNum) {
2555 return BlockNum % 2;
2556 }
2557
2558 ///\brief Perform cse of induction variable instructions.
cse(SmallVector<BasicBlock *,4> & BBs)2559 static void cse(SmallVector<BasicBlock *, 4> &BBs) {
2560 // Perform simple cse.
2561 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap;
2562 for (unsigned i = 0, e = BBs.size(); i != e; ++i) {
2563 BasicBlock *BB = BBs[i];
2564 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
2565 Instruction *In = I++;
2566
2567 if (!CSEDenseMapInfo::canHandle(In))
2568 continue;
2569
2570 // Check if we can replace this instruction with any of the
2571 // visited instructions.
2572 if (Instruction *V = CSEMap.lookup(In)) {
2573 In->replaceAllUsesWith(V);
2574 In->eraseFromParent();
2575 continue;
2576 }
2577 // Ignore instructions in conditional blocks. We create "if (pred) a[i] =
2578 // ...;" blocks for predicated stores. Every second block is a predicated
2579 // block.
2580 if (isPredicatedBlock(i))
2581 continue;
2582
2583 CSEMap[In] = In;
2584 }
2585 }
2586 }
2587
2588 /// \brief Adds a 'fast' flag to floating point operations.
addFastMathFlag(Value * V)2589 static Value *addFastMathFlag(Value *V) {
2590 if (isa<FPMathOperator>(V)){
2591 FastMathFlags Flags;
2592 Flags.setUnsafeAlgebra();
2593 cast<Instruction>(V)->setFastMathFlags(Flags);
2594 }
2595 return V;
2596 }
2597
vectorizeLoop()2598 void InnerLoopVectorizer::vectorizeLoop() {
2599 //===------------------------------------------------===//
2600 //
2601 // Notice: any optimization or new instruction that go
2602 // into the code below should be also be implemented in
2603 // the cost-model.
2604 //
2605 //===------------------------------------------------===//
2606 Constant *Zero = Builder.getInt32(0);
2607
2608 // In order to support reduction variables we need to be able to vectorize
2609 // Phi nodes. Phi nodes have cycles, so we need to vectorize them in two
2610 // stages. First, we create a new vector PHI node with no incoming edges.
2611 // We use this value when we vectorize all of the instructions that use the
2612 // PHI. Next, after all of the instructions in the block are complete we
2613 // add the new incoming edges to the PHI. At this point all of the
2614 // instructions in the basic block are vectorized, so we can use them to
2615 // construct the PHI.
2616 PhiVector RdxPHIsToFix;
2617
2618 // Scan the loop in a topological order to ensure that defs are vectorized
2619 // before users.
2620 LoopBlocksDFS DFS(OrigLoop);
2621 DFS.perform(LI);
2622
2623 // Vectorize all of the blocks in the original loop.
2624 for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(),
2625 be = DFS.endRPO(); bb != be; ++bb)
2626 vectorizeBlockInLoop(*bb, &RdxPHIsToFix);
2627
2628 // At this point every instruction in the original loop is widened to
2629 // a vector form. We are almost done. Now, we need to fix the PHI nodes
2630 // that we vectorized. The PHI nodes are currently empty because we did
2631 // not want to introduce cycles. Notice that the remaining PHI nodes
2632 // that we need to fix are reduction variables.
2633
2634 // Create the 'reduced' values for each of the induction vars.
2635 // The reduced values are the vector values that we scalarize and combine
2636 // after the loop is finished.
2637 for (PhiVector::iterator it = RdxPHIsToFix.begin(), e = RdxPHIsToFix.end();
2638 it != e; ++it) {
2639 PHINode *RdxPhi = *it;
2640 assert(RdxPhi && "Unable to recover vectorized PHI");
2641
2642 // Find the reduction variable descriptor.
2643 assert(Legal->getReductionVars()->count(RdxPhi) &&
2644 "Unable to find the reduction variable");
2645 LoopVectorizationLegality::ReductionDescriptor RdxDesc =
2646 (*Legal->getReductionVars())[RdxPhi];
2647
2648 setDebugLocFromInst(Builder, RdxDesc.StartValue);
2649
2650 // We need to generate a reduction vector from the incoming scalar.
2651 // To do so, we need to generate the 'identity' vector and override
2652 // one of the elements with the incoming scalar reduction. We need
2653 // to do it in the vector-loop preheader.
2654 Builder.SetInsertPoint(LoopBypassBlocks[1]->getTerminator());
2655
2656 // This is the vector-clone of the value that leaves the loop.
2657 VectorParts &VectorExit = getVectorValue(RdxDesc.LoopExitInstr);
2658 Type *VecTy = VectorExit[0]->getType();
2659
2660 // Find the reduction identity variable. Zero for addition, or, xor,
2661 // one for multiplication, -1 for And.
2662 Value *Identity;
2663 Value *VectorStart;
2664 if (RdxDesc.Kind == LoopVectorizationLegality::RK_IntegerMinMax ||
2665 RdxDesc.Kind == LoopVectorizationLegality::RK_FloatMinMax) {
2666 // MinMax reduction have the start value as their identify.
2667 if (VF == 1) {
2668 VectorStart = Identity = RdxDesc.StartValue;
2669 } else {
2670 VectorStart = Identity = Builder.CreateVectorSplat(VF,
2671 RdxDesc.StartValue,
2672 "minmax.ident");
2673 }
2674 } else {
2675 // Handle other reduction kinds:
2676 Constant *Iden =
2677 LoopVectorizationLegality::getReductionIdentity(RdxDesc.Kind,
2678 VecTy->getScalarType());
2679 if (VF == 1) {
2680 Identity = Iden;
2681 // This vector is the Identity vector where the first element is the
2682 // incoming scalar reduction.
2683 VectorStart = RdxDesc.StartValue;
2684 } else {
2685 Identity = ConstantVector::getSplat(VF, Iden);
2686
2687 // This vector is the Identity vector where the first element is the
2688 // incoming scalar reduction.
2689 VectorStart = Builder.CreateInsertElement(Identity,
2690 RdxDesc.StartValue, Zero);
2691 }
2692 }
2693
2694 // Fix the vector-loop phi.
2695 // We created the induction variable so we know that the
2696 // preheader is the first entry.
2697 BasicBlock *VecPreheader = Induction->getIncomingBlock(0);
2698
2699 // Reductions do not have to start at zero. They can start with
2700 // any loop invariant values.
2701 VectorParts &VecRdxPhi = WidenMap.get(RdxPhi);
2702 BasicBlock *Latch = OrigLoop->getLoopLatch();
2703 Value *LoopVal = RdxPhi->getIncomingValueForBlock(Latch);
2704 VectorParts &Val = getVectorValue(LoopVal);
2705 for (unsigned part = 0; part < UF; ++part) {
2706 // Make sure to add the reduction stat value only to the
2707 // first unroll part.
2708 Value *StartVal = (part == 0) ? VectorStart : Identity;
2709 cast<PHINode>(VecRdxPhi[part])->addIncoming(StartVal, VecPreheader);
2710 cast<PHINode>(VecRdxPhi[part])->addIncoming(Val[part],
2711 LoopVectorBody.back());
2712 }
2713
2714 // Before each round, move the insertion point right between
2715 // the PHIs and the values we are going to write.
2716 // This allows us to write both PHINodes and the extractelement
2717 // instructions.
2718 Builder.SetInsertPoint(LoopMiddleBlock->getFirstInsertionPt());
2719
2720 VectorParts RdxParts;
2721 setDebugLocFromInst(Builder, RdxDesc.LoopExitInstr);
2722 for (unsigned part = 0; part < UF; ++part) {
2723 // This PHINode contains the vectorized reduction variable, or
2724 // the initial value vector, if we bypass the vector loop.
2725 VectorParts &RdxExitVal = getVectorValue(RdxDesc.LoopExitInstr);
2726 PHINode *NewPhi = Builder.CreatePHI(VecTy, 2, "rdx.vec.exit.phi");
2727 Value *StartVal = (part == 0) ? VectorStart : Identity;
2728 for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I)
2729 NewPhi->addIncoming(StartVal, LoopBypassBlocks[I]);
2730 NewPhi->addIncoming(RdxExitVal[part],
2731 LoopVectorBody.back());
2732 RdxParts.push_back(NewPhi);
2733 }
2734
2735 // Reduce all of the unrolled parts into a single vector.
2736 Value *ReducedPartRdx = RdxParts[0];
2737 unsigned Op = getReductionBinOp(RdxDesc.Kind);
2738 setDebugLocFromInst(Builder, ReducedPartRdx);
2739 for (unsigned part = 1; part < UF; ++part) {
2740 if (Op != Instruction::ICmp && Op != Instruction::FCmp)
2741 // Floating point operations had to be 'fast' to enable the reduction.
2742 ReducedPartRdx = addFastMathFlag(
2743 Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxParts[part],
2744 ReducedPartRdx, "bin.rdx"));
2745 else
2746 ReducedPartRdx = createMinMaxOp(Builder, RdxDesc.MinMaxKind,
2747 ReducedPartRdx, RdxParts[part]);
2748 }
2749
2750 if (VF > 1) {
2751 // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles
2752 // and vector ops, reducing the set of values being computed by half each
2753 // round.
2754 assert(isPowerOf2_32(VF) &&
2755 "Reduction emission only supported for pow2 vectors!");
2756 Value *TmpVec = ReducedPartRdx;
2757 SmallVector<Constant*, 32> ShuffleMask(VF, nullptr);
2758 for (unsigned i = VF; i != 1; i >>= 1) {
2759 // Move the upper half of the vector to the lower half.
2760 for (unsigned j = 0; j != i/2; ++j)
2761 ShuffleMask[j] = Builder.getInt32(i/2 + j);
2762
2763 // Fill the rest of the mask with undef.
2764 std::fill(&ShuffleMask[i/2], ShuffleMask.end(),
2765 UndefValue::get(Builder.getInt32Ty()));
2766
2767 Value *Shuf =
2768 Builder.CreateShuffleVector(TmpVec,
2769 UndefValue::get(TmpVec->getType()),
2770 ConstantVector::get(ShuffleMask),
2771 "rdx.shuf");
2772
2773 if (Op != Instruction::ICmp && Op != Instruction::FCmp)
2774 // Floating point operations had to be 'fast' to enable the reduction.
2775 TmpVec = addFastMathFlag(Builder.CreateBinOp(
2776 (Instruction::BinaryOps)Op, TmpVec, Shuf, "bin.rdx"));
2777 else
2778 TmpVec = createMinMaxOp(Builder, RdxDesc.MinMaxKind, TmpVec, Shuf);
2779 }
2780
2781 // The result is in the first element of the vector.
2782 ReducedPartRdx = Builder.CreateExtractElement(TmpVec,
2783 Builder.getInt32(0));
2784 }
2785
2786 // Create a phi node that merges control-flow from the backedge-taken check
2787 // block and the middle block.
2788 PHINode *BCBlockPhi = PHINode::Create(RdxPhi->getType(), 2, "bc.merge.rdx",
2789 LoopScalarPreHeader->getTerminator());
2790 BCBlockPhi->addIncoming(RdxDesc.StartValue, LoopBypassBlocks[0]);
2791 BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock);
2792
2793 // Now, we need to fix the users of the reduction variable
2794 // inside and outside of the scalar remainder loop.
2795 // We know that the loop is in LCSSA form. We need to update the
2796 // PHI nodes in the exit blocks.
2797 for (BasicBlock::iterator LEI = LoopExitBlock->begin(),
2798 LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) {
2799 PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI);
2800 if (!LCSSAPhi) break;
2801
2802 // All PHINodes need to have a single entry edge, or two if
2803 // we already fixed them.
2804 assert(LCSSAPhi->getNumIncomingValues() < 3 && "Invalid LCSSA PHI");
2805
2806 // We found our reduction value exit-PHI. Update it with the
2807 // incoming bypass edge.
2808 if (LCSSAPhi->getIncomingValue(0) == RdxDesc.LoopExitInstr) {
2809 // Add an edge coming from the bypass.
2810 LCSSAPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock);
2811 break;
2812 }
2813 }// end of the LCSSA phi scan.
2814
2815 // Fix the scalar loop reduction variable with the incoming reduction sum
2816 // from the vector body and from the backedge value.
2817 int IncomingEdgeBlockIdx =
2818 (RdxPhi)->getBasicBlockIndex(OrigLoop->getLoopLatch());
2819 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index");
2820 // Pick the other block.
2821 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1);
2822 (RdxPhi)->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi);
2823 (RdxPhi)->setIncomingValue(IncomingEdgeBlockIdx, RdxDesc.LoopExitInstr);
2824 }// end of for each redux variable.
2825
2826 fixLCSSAPHIs();
2827
2828 // Remove redundant induction instructions.
2829 cse(LoopVectorBody);
2830 }
2831
fixLCSSAPHIs()2832 void InnerLoopVectorizer::fixLCSSAPHIs() {
2833 for (BasicBlock::iterator LEI = LoopExitBlock->begin(),
2834 LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) {
2835 PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI);
2836 if (!LCSSAPhi) break;
2837 if (LCSSAPhi->getNumIncomingValues() == 1)
2838 LCSSAPhi->addIncoming(UndefValue::get(LCSSAPhi->getType()),
2839 LoopMiddleBlock);
2840 }
2841 }
2842
2843 InnerLoopVectorizer::VectorParts
createEdgeMask(BasicBlock * Src,BasicBlock * Dst)2844 InnerLoopVectorizer::createEdgeMask(BasicBlock *Src, BasicBlock *Dst) {
2845 assert(std::find(pred_begin(Dst), pred_end(Dst), Src) != pred_end(Dst) &&
2846 "Invalid edge");
2847
2848 // Look for cached value.
2849 std::pair<BasicBlock*, BasicBlock*> Edge(Src, Dst);
2850 EdgeMaskCache::iterator ECEntryIt = MaskCache.find(Edge);
2851 if (ECEntryIt != MaskCache.end())
2852 return ECEntryIt->second;
2853
2854 VectorParts SrcMask = createBlockInMask(Src);
2855
2856 // The terminator has to be a branch inst!
2857 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator());
2858 assert(BI && "Unexpected terminator found");
2859
2860 if (BI->isConditional()) {
2861 VectorParts EdgeMask = getVectorValue(BI->getCondition());
2862
2863 if (BI->getSuccessor(0) != Dst)
2864 for (unsigned part = 0; part < UF; ++part)
2865 EdgeMask[part] = Builder.CreateNot(EdgeMask[part]);
2866
2867 for (unsigned part = 0; part < UF; ++part)
2868 EdgeMask[part] = Builder.CreateAnd(EdgeMask[part], SrcMask[part]);
2869
2870 MaskCache[Edge] = EdgeMask;
2871 return EdgeMask;
2872 }
2873
2874 MaskCache[Edge] = SrcMask;
2875 return SrcMask;
2876 }
2877
2878 InnerLoopVectorizer::VectorParts
createBlockInMask(BasicBlock * BB)2879 InnerLoopVectorizer::createBlockInMask(BasicBlock *BB) {
2880 assert(OrigLoop->contains(BB) && "Block is not a part of a loop");
2881
2882 // Loop incoming mask is all-one.
2883 if (OrigLoop->getHeader() == BB) {
2884 Value *C = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 1);
2885 return getVectorValue(C);
2886 }
2887
2888 // This is the block mask. We OR all incoming edges, and with zero.
2889 Value *Zero = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 0);
2890 VectorParts BlockMask = getVectorValue(Zero);
2891
2892 // For each pred:
2893 for (pred_iterator it = pred_begin(BB), e = pred_end(BB); it != e; ++it) {
2894 VectorParts EM = createEdgeMask(*it, BB);
2895 for (unsigned part = 0; part < UF; ++part)
2896 BlockMask[part] = Builder.CreateOr(BlockMask[part], EM[part]);
2897 }
2898
2899 return BlockMask;
2900 }
2901
widenPHIInstruction(Instruction * PN,InnerLoopVectorizer::VectorParts & Entry,unsigned UF,unsigned VF,PhiVector * PV)2902 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN,
2903 InnerLoopVectorizer::VectorParts &Entry,
2904 unsigned UF, unsigned VF, PhiVector *PV) {
2905 PHINode* P = cast<PHINode>(PN);
2906 // Handle reduction variables:
2907 if (Legal->getReductionVars()->count(P)) {
2908 for (unsigned part = 0; part < UF; ++part) {
2909 // This is phase one of vectorizing PHIs.
2910 Type *VecTy = (VF == 1) ? PN->getType() :
2911 VectorType::get(PN->getType(), VF);
2912 Entry[part] = PHINode::Create(VecTy, 2, "vec.phi",
2913 LoopVectorBody.back()-> getFirstInsertionPt());
2914 }
2915 PV->push_back(P);
2916 return;
2917 }
2918
2919 setDebugLocFromInst(Builder, P);
2920 // Check for PHI nodes that are lowered to vector selects.
2921 if (P->getParent() != OrigLoop->getHeader()) {
2922 // We know that all PHIs in non-header blocks are converted into
2923 // selects, so we don't have to worry about the insertion order and we
2924 // can just use the builder.
2925 // At this point we generate the predication tree. There may be
2926 // duplications since this is a simple recursive scan, but future
2927 // optimizations will clean it up.
2928
2929 unsigned NumIncoming = P->getNumIncomingValues();
2930
2931 // Generate a sequence of selects of the form:
2932 // SELECT(Mask3, In3,
2933 // SELECT(Mask2, In2,
2934 // ( ...)))
2935 for (unsigned In = 0; In < NumIncoming; In++) {
2936 VectorParts Cond = createEdgeMask(P->getIncomingBlock(In),
2937 P->getParent());
2938 VectorParts &In0 = getVectorValue(P->getIncomingValue(In));
2939
2940 for (unsigned part = 0; part < UF; ++part) {
2941 // We might have single edge PHIs (blocks) - use an identity
2942 // 'select' for the first PHI operand.
2943 if (In == 0)
2944 Entry[part] = Builder.CreateSelect(Cond[part], In0[part],
2945 In0[part]);
2946 else
2947 // Select between the current value and the previous incoming edge
2948 // based on the incoming mask.
2949 Entry[part] = Builder.CreateSelect(Cond[part], In0[part],
2950 Entry[part], "predphi");
2951 }
2952 }
2953 return;
2954 }
2955
2956 // This PHINode must be an induction variable.
2957 // Make sure that we know about it.
2958 assert(Legal->getInductionVars()->count(P) &&
2959 "Not an induction variable");
2960
2961 LoopVectorizationLegality::InductionInfo II =
2962 Legal->getInductionVars()->lookup(P);
2963
2964 switch (II.IK) {
2965 case LoopVectorizationLegality::IK_NoInduction:
2966 llvm_unreachable("Unknown induction");
2967 case LoopVectorizationLegality::IK_IntInduction: {
2968 assert(P->getType() == II.StartValue->getType() && "Types must match");
2969 Type *PhiTy = P->getType();
2970 Value *Broadcasted;
2971 if (P == OldInduction) {
2972 // Handle the canonical induction variable. We might have had to
2973 // extend the type.
2974 Broadcasted = Builder.CreateTrunc(Induction, PhiTy);
2975 } else {
2976 // Handle other induction variables that are now based on the
2977 // canonical one.
2978 Value *NormalizedIdx = Builder.CreateSub(Induction, ExtendedIdx,
2979 "normalized.idx");
2980 NormalizedIdx = Builder.CreateSExtOrTrunc(NormalizedIdx, PhiTy);
2981 Broadcasted = Builder.CreateAdd(II.StartValue, NormalizedIdx,
2982 "offset.idx");
2983 }
2984 Broadcasted = getBroadcastInstrs(Broadcasted);
2985 // After broadcasting the induction variable we need to make the vector
2986 // consecutive by adding 0, 1, 2, etc.
2987 for (unsigned part = 0; part < UF; ++part)
2988 Entry[part] = getConsecutiveVector(Broadcasted, VF * part, false);
2989 return;
2990 }
2991 case LoopVectorizationLegality::IK_ReverseIntInduction:
2992 case LoopVectorizationLegality::IK_PtrInduction:
2993 case LoopVectorizationLegality::IK_ReversePtrInduction:
2994 // Handle reverse integer and pointer inductions.
2995 Value *StartIdx = ExtendedIdx;
2996 // This is the normalized GEP that starts counting at zero.
2997 Value *NormalizedIdx = Builder.CreateSub(Induction, StartIdx,
2998 "normalized.idx");
2999
3000 // Handle the reverse integer induction variable case.
3001 if (LoopVectorizationLegality::IK_ReverseIntInduction == II.IK) {
3002 IntegerType *DstTy = cast<IntegerType>(II.StartValue->getType());
3003 Value *CNI = Builder.CreateSExtOrTrunc(NormalizedIdx, DstTy,
3004 "resize.norm.idx");
3005 Value *ReverseInd = Builder.CreateSub(II.StartValue, CNI,
3006 "reverse.idx");
3007
3008 // This is a new value so do not hoist it out.
3009 Value *Broadcasted = getBroadcastInstrs(ReverseInd);
3010 // After broadcasting the induction variable we need to make the
3011 // vector consecutive by adding ... -3, -2, -1, 0.
3012 for (unsigned part = 0; part < UF; ++part)
3013 Entry[part] = getConsecutiveVector(Broadcasted, -(int)VF * part,
3014 true);
3015 return;
3016 }
3017
3018 // Handle the pointer induction variable case.
3019 assert(P->getType()->isPointerTy() && "Unexpected type.");
3020
3021 // Is this a reverse induction ptr or a consecutive induction ptr.
3022 bool Reverse = (LoopVectorizationLegality::IK_ReversePtrInduction ==
3023 II.IK);
3024
3025 // This is the vector of results. Notice that we don't generate
3026 // vector geps because scalar geps result in better code.
3027 for (unsigned part = 0; part < UF; ++part) {
3028 if (VF == 1) {
3029 int EltIndex = (part) * (Reverse ? -1 : 1);
3030 Constant *Idx = ConstantInt::get(Induction->getType(), EltIndex);
3031 Value *GlobalIdx;
3032 if (Reverse)
3033 GlobalIdx = Builder.CreateSub(Idx, NormalizedIdx, "gep.ridx");
3034 else
3035 GlobalIdx = Builder.CreateAdd(NormalizedIdx, Idx, "gep.idx");
3036
3037 Value *SclrGep = Builder.CreateGEP(II.StartValue, GlobalIdx,
3038 "next.gep");
3039 Entry[part] = SclrGep;
3040 continue;
3041 }
3042
3043 Value *VecVal = UndefValue::get(VectorType::get(P->getType(), VF));
3044 for (unsigned int i = 0; i < VF; ++i) {
3045 int EltIndex = (i + part * VF) * (Reverse ? -1 : 1);
3046 Constant *Idx = ConstantInt::get(Induction->getType(), EltIndex);
3047 Value *GlobalIdx;
3048 if (!Reverse)
3049 GlobalIdx = Builder.CreateAdd(NormalizedIdx, Idx, "gep.idx");
3050 else
3051 GlobalIdx = Builder.CreateSub(Idx, NormalizedIdx, "gep.ridx");
3052
3053 Value *SclrGep = Builder.CreateGEP(II.StartValue, GlobalIdx,
3054 "next.gep");
3055 VecVal = Builder.CreateInsertElement(VecVal, SclrGep,
3056 Builder.getInt32(i),
3057 "insert.gep");
3058 }
3059 Entry[part] = VecVal;
3060 }
3061 return;
3062 }
3063 }
3064
vectorizeBlockInLoop(BasicBlock * BB,PhiVector * PV)3065 void InnerLoopVectorizer::vectorizeBlockInLoop(BasicBlock *BB, PhiVector *PV) {
3066 // For each instruction in the old loop.
3067 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
3068 VectorParts &Entry = WidenMap.get(it);
3069 switch (it->getOpcode()) {
3070 case Instruction::Br:
3071 // Nothing to do for PHIs and BR, since we already took care of the
3072 // loop control flow instructions.
3073 continue;
3074 case Instruction::PHI:{
3075 // Vectorize PHINodes.
3076 widenPHIInstruction(it, Entry, UF, VF, PV);
3077 continue;
3078 }// End of PHI.
3079
3080 case Instruction::Add:
3081 case Instruction::FAdd:
3082 case Instruction::Sub:
3083 case Instruction::FSub:
3084 case Instruction::Mul:
3085 case Instruction::FMul:
3086 case Instruction::UDiv:
3087 case Instruction::SDiv:
3088 case Instruction::FDiv:
3089 case Instruction::URem:
3090 case Instruction::SRem:
3091 case Instruction::FRem:
3092 case Instruction::Shl:
3093 case Instruction::LShr:
3094 case Instruction::AShr:
3095 case Instruction::And:
3096 case Instruction::Or:
3097 case Instruction::Xor: {
3098 // Just widen binops.
3099 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(it);
3100 setDebugLocFromInst(Builder, BinOp);
3101 VectorParts &A = getVectorValue(it->getOperand(0));
3102 VectorParts &B = getVectorValue(it->getOperand(1));
3103
3104 // Use this vector value for all users of the original instruction.
3105 for (unsigned Part = 0; Part < UF; ++Part) {
3106 Value *V = Builder.CreateBinOp(BinOp->getOpcode(), A[Part], B[Part]);
3107
3108 // Update the NSW, NUW and Exact flags. Notice: V can be an Undef.
3109 BinaryOperator *VecOp = dyn_cast<BinaryOperator>(V);
3110 if (VecOp && isa<OverflowingBinaryOperator>(BinOp)) {
3111 VecOp->setHasNoSignedWrap(BinOp->hasNoSignedWrap());
3112 VecOp->setHasNoUnsignedWrap(BinOp->hasNoUnsignedWrap());
3113 }
3114 if (VecOp && isa<PossiblyExactOperator>(VecOp))
3115 VecOp->setIsExact(BinOp->isExact());
3116
3117 // Copy the fast-math flags.
3118 if (VecOp && isa<FPMathOperator>(V))
3119 VecOp->setFastMathFlags(it->getFastMathFlags());
3120
3121 Entry[Part] = V;
3122 }
3123 break;
3124 }
3125 case Instruction::Select: {
3126 // Widen selects.
3127 // If the selector is loop invariant we can create a select
3128 // instruction with a scalar condition. Otherwise, use vector-select.
3129 bool InvariantCond = SE->isLoopInvariant(SE->getSCEV(it->getOperand(0)),
3130 OrigLoop);
3131 setDebugLocFromInst(Builder, it);
3132
3133 // The condition can be loop invariant but still defined inside the
3134 // loop. This means that we can't just use the original 'cond' value.
3135 // We have to take the 'vectorized' value and pick the first lane.
3136 // Instcombine will make this a no-op.
3137 VectorParts &Cond = getVectorValue(it->getOperand(0));
3138 VectorParts &Op0 = getVectorValue(it->getOperand(1));
3139 VectorParts &Op1 = getVectorValue(it->getOperand(2));
3140
3141 Value *ScalarCond = (VF == 1) ? Cond[0] :
3142 Builder.CreateExtractElement(Cond[0], Builder.getInt32(0));
3143
3144 for (unsigned Part = 0; Part < UF; ++Part) {
3145 Entry[Part] = Builder.CreateSelect(
3146 InvariantCond ? ScalarCond : Cond[Part],
3147 Op0[Part],
3148 Op1[Part]);
3149 }
3150 break;
3151 }
3152
3153 case Instruction::ICmp:
3154 case Instruction::FCmp: {
3155 // Widen compares. Generate vector compares.
3156 bool FCmp = (it->getOpcode() == Instruction::FCmp);
3157 CmpInst *Cmp = dyn_cast<CmpInst>(it);
3158 setDebugLocFromInst(Builder, it);
3159 VectorParts &A = getVectorValue(it->getOperand(0));
3160 VectorParts &B = getVectorValue(it->getOperand(1));
3161 for (unsigned Part = 0; Part < UF; ++Part) {
3162 Value *C = nullptr;
3163 if (FCmp)
3164 C = Builder.CreateFCmp(Cmp->getPredicate(), A[Part], B[Part]);
3165 else
3166 C = Builder.CreateICmp(Cmp->getPredicate(), A[Part], B[Part]);
3167 Entry[Part] = C;
3168 }
3169 break;
3170 }
3171
3172 case Instruction::Store:
3173 case Instruction::Load:
3174 vectorizeMemoryInstruction(it);
3175 break;
3176 case Instruction::ZExt:
3177 case Instruction::SExt:
3178 case Instruction::FPToUI:
3179 case Instruction::FPToSI:
3180 case Instruction::FPExt:
3181 case Instruction::PtrToInt:
3182 case Instruction::IntToPtr:
3183 case Instruction::SIToFP:
3184 case Instruction::UIToFP:
3185 case Instruction::Trunc:
3186 case Instruction::FPTrunc:
3187 case Instruction::BitCast: {
3188 CastInst *CI = dyn_cast<CastInst>(it);
3189 setDebugLocFromInst(Builder, it);
3190 /// Optimize the special case where the source is the induction
3191 /// variable. Notice that we can only optimize the 'trunc' case
3192 /// because: a. FP conversions lose precision, b. sext/zext may wrap,
3193 /// c. other casts depend on pointer size.
3194 if (CI->getOperand(0) == OldInduction &&
3195 it->getOpcode() == Instruction::Trunc) {
3196 Value *ScalarCast = Builder.CreateCast(CI->getOpcode(), Induction,
3197 CI->getType());
3198 Value *Broadcasted = getBroadcastInstrs(ScalarCast);
3199 for (unsigned Part = 0; Part < UF; ++Part)
3200 Entry[Part] = getConsecutiveVector(Broadcasted, VF * Part, false);
3201 break;
3202 }
3203 /// Vectorize casts.
3204 Type *DestTy = (VF == 1) ? CI->getType() :
3205 VectorType::get(CI->getType(), VF);
3206
3207 VectorParts &A = getVectorValue(it->getOperand(0));
3208 for (unsigned Part = 0; Part < UF; ++Part)
3209 Entry[Part] = Builder.CreateCast(CI->getOpcode(), A[Part], DestTy);
3210 break;
3211 }
3212
3213 case Instruction::Call: {
3214 // Ignore dbg intrinsics.
3215 if (isa<DbgInfoIntrinsic>(it))
3216 break;
3217 setDebugLocFromInst(Builder, it);
3218
3219 Module *M = BB->getParent()->getParent();
3220 CallInst *CI = cast<CallInst>(it);
3221 Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI);
3222 assert(ID && "Not an intrinsic call!");
3223 switch (ID) {
3224 case Intrinsic::lifetime_end:
3225 case Intrinsic::lifetime_start:
3226 scalarizeInstruction(it);
3227 break;
3228 default:
3229 bool HasScalarOpd = hasVectorInstrinsicScalarOpd(ID, 1);
3230 for (unsigned Part = 0; Part < UF; ++Part) {
3231 SmallVector<Value *, 4> Args;
3232 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) {
3233 if (HasScalarOpd && i == 1) {
3234 Args.push_back(CI->getArgOperand(i));
3235 continue;
3236 }
3237 VectorParts &Arg = getVectorValue(CI->getArgOperand(i));
3238 Args.push_back(Arg[Part]);
3239 }
3240 Type *Tys[] = {CI->getType()};
3241 if (VF > 1)
3242 Tys[0] = VectorType::get(CI->getType()->getScalarType(), VF);
3243
3244 Function *F = Intrinsic::getDeclaration(M, ID, Tys);
3245 Entry[Part] = Builder.CreateCall(F, Args);
3246 }
3247 break;
3248 }
3249 break;
3250 }
3251
3252 default:
3253 // All other instructions are unsupported. Scalarize them.
3254 scalarizeInstruction(it);
3255 break;
3256 }// end of switch.
3257 }// end of for_each instr.
3258 }
3259
updateAnalysis()3260 void InnerLoopVectorizer::updateAnalysis() {
3261 // Forget the original basic block.
3262 SE->forgetLoop(OrigLoop);
3263
3264 // Update the dominator tree information.
3265 assert(DT->properlyDominates(LoopBypassBlocks.front(), LoopExitBlock) &&
3266 "Entry does not dominate exit.");
3267
3268 for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I)
3269 DT->addNewBlock(LoopBypassBlocks[I], LoopBypassBlocks[I-1]);
3270 DT->addNewBlock(LoopVectorPreHeader, LoopBypassBlocks.back());
3271
3272 // Due to if predication of stores we might create a sequence of "if(pred)
3273 // a[i] = ...; " blocks.
3274 for (unsigned i = 0, e = LoopVectorBody.size(); i != e; ++i) {
3275 if (i == 0)
3276 DT->addNewBlock(LoopVectorBody[0], LoopVectorPreHeader);
3277 else if (isPredicatedBlock(i)) {
3278 DT->addNewBlock(LoopVectorBody[i], LoopVectorBody[i-1]);
3279 } else {
3280 DT->addNewBlock(LoopVectorBody[i], LoopVectorBody[i-2]);
3281 }
3282 }
3283
3284 DT->addNewBlock(LoopMiddleBlock, LoopBypassBlocks[1]);
3285 DT->addNewBlock(LoopScalarPreHeader, LoopBypassBlocks[0]);
3286 DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader);
3287 DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock);
3288
3289 DEBUG(DT->verifyDomTree());
3290 }
3291
3292 /// \brief Check whether it is safe to if-convert this phi node.
3293 ///
3294 /// Phi nodes with constant expressions that can trap are not safe to if
3295 /// convert.
canIfConvertPHINodes(BasicBlock * BB)3296 static bool canIfConvertPHINodes(BasicBlock *BB) {
3297 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
3298 PHINode *Phi = dyn_cast<PHINode>(I);
3299 if (!Phi)
3300 return true;
3301 for (unsigned p = 0, e = Phi->getNumIncomingValues(); p != e; ++p)
3302 if (Constant *C = dyn_cast<Constant>(Phi->getIncomingValue(p)))
3303 if (C->canTrap())
3304 return false;
3305 }
3306 return true;
3307 }
3308
canVectorizeWithIfConvert()3309 bool LoopVectorizationLegality::canVectorizeWithIfConvert() {
3310 if (!EnableIfConversion) {
3311 emitAnalysis(Report() << "if-conversion is disabled");
3312 return false;
3313 }
3314
3315 assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable");
3316
3317 // A list of pointers that we can safely read and write to.
3318 SmallPtrSet<Value *, 8> SafePointes;
3319
3320 // Collect safe addresses.
3321 for (Loop::block_iterator BI = TheLoop->block_begin(),
3322 BE = TheLoop->block_end(); BI != BE; ++BI) {
3323 BasicBlock *BB = *BI;
3324
3325 if (blockNeedsPredication(BB))
3326 continue;
3327
3328 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
3329 if (LoadInst *LI = dyn_cast<LoadInst>(I))
3330 SafePointes.insert(LI->getPointerOperand());
3331 else if (StoreInst *SI = dyn_cast<StoreInst>(I))
3332 SafePointes.insert(SI->getPointerOperand());
3333 }
3334 }
3335
3336 // Collect the blocks that need predication.
3337 BasicBlock *Header = TheLoop->getHeader();
3338 for (Loop::block_iterator BI = TheLoop->block_begin(),
3339 BE = TheLoop->block_end(); BI != BE; ++BI) {
3340 BasicBlock *BB = *BI;
3341
3342 // We don't support switch statements inside loops.
3343 if (!isa<BranchInst>(BB->getTerminator())) {
3344 emitAnalysis(Report(BB->getTerminator())
3345 << "loop contains a switch statement");
3346 return false;
3347 }
3348
3349 // We must be able to predicate all blocks that need to be predicated.
3350 if (blockNeedsPredication(BB)) {
3351 if (!blockCanBePredicated(BB, SafePointes)) {
3352 emitAnalysis(Report(BB->getTerminator())
3353 << "control flow cannot be substituted for a select");
3354 return false;
3355 }
3356 } else if (BB != Header && !canIfConvertPHINodes(BB)) {
3357 emitAnalysis(Report(BB->getTerminator())
3358 << "control flow cannot be substituted for a select");
3359 return false;
3360 }
3361 }
3362
3363 // We can if-convert this loop.
3364 return true;
3365 }
3366
canVectorize()3367 bool LoopVectorizationLegality::canVectorize() {
3368 // We must have a loop in canonical form. Loops with indirectbr in them cannot
3369 // be canonicalized.
3370 if (!TheLoop->getLoopPreheader()) {
3371 emitAnalysis(
3372 Report() << "loop control flow is not understood by vectorizer");
3373 return false;
3374 }
3375
3376 // We can only vectorize innermost loops.
3377 if (TheLoop->getSubLoopsVector().size()) {
3378 emitAnalysis(Report() << "loop is not the innermost loop");
3379 return false;
3380 }
3381
3382 // We must have a single backedge.
3383 if (TheLoop->getNumBackEdges() != 1) {
3384 emitAnalysis(
3385 Report() << "loop control flow is not understood by vectorizer");
3386 return false;
3387 }
3388
3389 // We must have a single exiting block.
3390 if (!TheLoop->getExitingBlock()) {
3391 emitAnalysis(
3392 Report() << "loop control flow is not understood by vectorizer");
3393 return false;
3394 }
3395
3396 // We need to have a loop header.
3397 DEBUG(dbgs() << "LV: Found a loop: " <<
3398 TheLoop->getHeader()->getName() << '\n');
3399
3400 // Check if we can if-convert non-single-bb loops.
3401 unsigned NumBlocks = TheLoop->getNumBlocks();
3402 if (NumBlocks != 1 && !canVectorizeWithIfConvert()) {
3403 DEBUG(dbgs() << "LV: Can't if-convert the loop.\n");
3404 return false;
3405 }
3406
3407 // ScalarEvolution needs to be able to find the exit count.
3408 const SCEV *ExitCount = SE->getBackedgeTakenCount(TheLoop);
3409 if (ExitCount == SE->getCouldNotCompute()) {
3410 emitAnalysis(Report() << "could not determine number of loop iterations");
3411 DEBUG(dbgs() << "LV: SCEV could not compute the loop exit count.\n");
3412 return false;
3413 }
3414
3415 // Check if we can vectorize the instructions and CFG in this loop.
3416 if (!canVectorizeInstrs()) {
3417 DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n");
3418 return false;
3419 }
3420
3421 // Go over each instruction and look at memory deps.
3422 if (!canVectorizeMemory()) {
3423 DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n");
3424 return false;
3425 }
3426
3427 // Collect all of the variables that remain uniform after vectorization.
3428 collectLoopUniforms();
3429
3430 DEBUG(dbgs() << "LV: We can vectorize this loop" <<
3431 (PtrRtCheck.Need ? " (with a runtime bound check)" : "")
3432 <<"!\n");
3433
3434 // Okay! We can vectorize. At this point we don't have any other mem analysis
3435 // which may limit our maximum vectorization factor, so just return true with
3436 // no restrictions.
3437 return true;
3438 }
3439
convertPointerToIntegerType(const DataLayout & DL,Type * Ty)3440 static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) {
3441 if (Ty->isPointerTy())
3442 return DL.getIntPtrType(Ty);
3443
3444 // It is possible that char's or short's overflow when we ask for the loop's
3445 // trip count, work around this by changing the type size.
3446 if (Ty->getScalarSizeInBits() < 32)
3447 return Type::getInt32Ty(Ty->getContext());
3448
3449 return Ty;
3450 }
3451
getWiderType(const DataLayout & DL,Type * Ty0,Type * Ty1)3452 static Type* getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) {
3453 Ty0 = convertPointerToIntegerType(DL, Ty0);
3454 Ty1 = convertPointerToIntegerType(DL, Ty1);
3455 if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits())
3456 return Ty0;
3457 return Ty1;
3458 }
3459
3460 /// \brief Check that the instruction has outside loop users and is not an
3461 /// identified reduction variable.
hasOutsideLoopUser(const Loop * TheLoop,Instruction * Inst,SmallPtrSet<Value *,4> & Reductions)3462 static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst,
3463 SmallPtrSet<Value *, 4> &Reductions) {
3464 // Reduction instructions are allowed to have exit users. All other
3465 // instructions must not have external users.
3466 if (!Reductions.count(Inst))
3467 //Check that all of the users of the loop are inside the BB.
3468 for (User *U : Inst->users()) {
3469 Instruction *UI = cast<Instruction>(U);
3470 // This user may be a reduction exit value.
3471 if (!TheLoop->contains(UI)) {
3472 DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n');
3473 return true;
3474 }
3475 }
3476 return false;
3477 }
3478
canVectorizeInstrs()3479 bool LoopVectorizationLegality::canVectorizeInstrs() {
3480 BasicBlock *PreHeader = TheLoop->getLoopPreheader();
3481 BasicBlock *Header = TheLoop->getHeader();
3482
3483 // Look for the attribute signaling the absence of NaNs.
3484 Function &F = *Header->getParent();
3485 if (F.hasFnAttribute("no-nans-fp-math"))
3486 HasFunNoNaNAttr = F.getAttributes().getAttribute(
3487 AttributeSet::FunctionIndex,
3488 "no-nans-fp-math").getValueAsString() == "true";
3489
3490 // For each block in the loop.
3491 for (Loop::block_iterator bb = TheLoop->block_begin(),
3492 be = TheLoop->block_end(); bb != be; ++bb) {
3493
3494 // Scan the instructions in the block and look for hazards.
3495 for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e;
3496 ++it) {
3497
3498 if (PHINode *Phi = dyn_cast<PHINode>(it)) {
3499 Type *PhiTy = Phi->getType();
3500 // Check that this PHI type is allowed.
3501 if (!PhiTy->isIntegerTy() &&
3502 !PhiTy->isFloatingPointTy() &&
3503 !PhiTy->isPointerTy()) {
3504 emitAnalysis(Report(it)
3505 << "loop control flow is not understood by vectorizer");
3506 DEBUG(dbgs() << "LV: Found an non-int non-pointer PHI.\n");
3507 return false;
3508 }
3509
3510 // If this PHINode is not in the header block, then we know that we
3511 // can convert it to select during if-conversion. No need to check if
3512 // the PHIs in this block are induction or reduction variables.
3513 if (*bb != Header) {
3514 // Check that this instruction has no outside users or is an
3515 // identified reduction value with an outside user.
3516 if (!hasOutsideLoopUser(TheLoop, it, AllowedExit))
3517 continue;
3518 emitAnalysis(Report(it) << "value that could not be identified as "
3519 "reduction is used outside the loop");
3520 return false;
3521 }
3522
3523 // We only allow if-converted PHIs with more than two incoming values.
3524 if (Phi->getNumIncomingValues() != 2) {
3525 emitAnalysis(Report(it)
3526 << "control flow not understood by vectorizer");
3527 DEBUG(dbgs() << "LV: Found an invalid PHI.\n");
3528 return false;
3529 }
3530
3531 // This is the value coming from the preheader.
3532 Value *StartValue = Phi->getIncomingValueForBlock(PreHeader);
3533 // Check if this is an induction variable.
3534 InductionKind IK = isInductionVariable(Phi);
3535
3536 if (IK_NoInduction != IK) {
3537 // Get the widest type.
3538 if (!WidestIndTy)
3539 WidestIndTy = convertPointerToIntegerType(*DL, PhiTy);
3540 else
3541 WidestIndTy = getWiderType(*DL, PhiTy, WidestIndTy);
3542
3543 // Int inductions are special because we only allow one IV.
3544 if (IK == IK_IntInduction) {
3545 // Use the phi node with the widest type as induction. Use the last
3546 // one if there are multiple (no good reason for doing this other
3547 // than it is expedient).
3548 if (!Induction || PhiTy == WidestIndTy)
3549 Induction = Phi;
3550 }
3551
3552 DEBUG(dbgs() << "LV: Found an induction variable.\n");
3553 Inductions[Phi] = InductionInfo(StartValue, IK);
3554
3555 // Until we explicitly handle the case of an induction variable with
3556 // an outside loop user we have to give up vectorizing this loop.
3557 if (hasOutsideLoopUser(TheLoop, it, AllowedExit)) {
3558 emitAnalysis(Report(it) << "use of induction value outside of the "
3559 "loop is not handled by vectorizer");
3560 return false;
3561 }
3562
3563 continue;
3564 }
3565
3566 if (AddReductionVar(Phi, RK_IntegerAdd)) {
3567 DEBUG(dbgs() << "LV: Found an ADD reduction PHI."<< *Phi <<"\n");
3568 continue;
3569 }
3570 if (AddReductionVar(Phi, RK_IntegerMult)) {
3571 DEBUG(dbgs() << "LV: Found a MUL reduction PHI."<< *Phi <<"\n");
3572 continue;
3573 }
3574 if (AddReductionVar(Phi, RK_IntegerOr)) {
3575 DEBUG(dbgs() << "LV: Found an OR reduction PHI."<< *Phi <<"\n");
3576 continue;
3577 }
3578 if (AddReductionVar(Phi, RK_IntegerAnd)) {
3579 DEBUG(dbgs() << "LV: Found an AND reduction PHI."<< *Phi <<"\n");
3580 continue;
3581 }
3582 if (AddReductionVar(Phi, RK_IntegerXor)) {
3583 DEBUG(dbgs() << "LV: Found a XOR reduction PHI."<< *Phi <<"\n");
3584 continue;
3585 }
3586 if (AddReductionVar(Phi, RK_IntegerMinMax)) {
3587 DEBUG(dbgs() << "LV: Found a MINMAX reduction PHI."<< *Phi <<"\n");
3588 continue;
3589 }
3590 if (AddReductionVar(Phi, RK_FloatMult)) {
3591 DEBUG(dbgs() << "LV: Found an FMult reduction PHI."<< *Phi <<"\n");
3592 continue;
3593 }
3594 if (AddReductionVar(Phi, RK_FloatAdd)) {
3595 DEBUG(dbgs() << "LV: Found an FAdd reduction PHI."<< *Phi <<"\n");
3596 continue;
3597 }
3598 if (AddReductionVar(Phi, RK_FloatMinMax)) {
3599 DEBUG(dbgs() << "LV: Found an float MINMAX reduction PHI."<< *Phi <<
3600 "\n");
3601 continue;
3602 }
3603
3604 emitAnalysis(Report(it) << "unvectorizable operation");
3605 DEBUG(dbgs() << "LV: Found an unidentified PHI."<< *Phi <<"\n");
3606 return false;
3607 }// end of PHI handling
3608
3609 // We still don't handle functions. However, we can ignore dbg intrinsic
3610 // calls and we do handle certain intrinsic and libm functions.
3611 CallInst *CI = dyn_cast<CallInst>(it);
3612 if (CI && !getIntrinsicIDForCall(CI, TLI) && !isa<DbgInfoIntrinsic>(CI)) {
3613 emitAnalysis(Report(it) << "call instruction cannot be vectorized");
3614 DEBUG(dbgs() << "LV: Found a call site.\n");
3615 return false;
3616 }
3617
3618 // Intrinsics such as powi,cttz and ctlz are legal to vectorize if the
3619 // second argument is the same (i.e. loop invariant)
3620 if (CI &&
3621 hasVectorInstrinsicScalarOpd(getIntrinsicIDForCall(CI, TLI), 1)) {
3622 if (!SE->isLoopInvariant(SE->getSCEV(CI->getOperand(1)), TheLoop)) {
3623 emitAnalysis(Report(it)
3624 << "intrinsic instruction cannot be vectorized");
3625 DEBUG(dbgs() << "LV: Found unvectorizable intrinsic " << *CI << "\n");
3626 return false;
3627 }
3628 }
3629
3630 // Check that the instruction return type is vectorizable.
3631 // Also, we can't vectorize extractelement instructions.
3632 if ((!VectorType::isValidElementType(it->getType()) &&
3633 !it->getType()->isVoidTy()) || isa<ExtractElementInst>(it)) {
3634 emitAnalysis(Report(it)
3635 << "instruction return type cannot be vectorized");
3636 DEBUG(dbgs() << "LV: Found unvectorizable type.\n");
3637 return false;
3638 }
3639
3640 // Check that the stored type is vectorizable.
3641 if (StoreInst *ST = dyn_cast<StoreInst>(it)) {
3642 Type *T = ST->getValueOperand()->getType();
3643 if (!VectorType::isValidElementType(T)) {
3644 emitAnalysis(Report(ST) << "store instruction cannot be vectorized");
3645 return false;
3646 }
3647 if (EnableMemAccessVersioning)
3648 collectStridedAcccess(ST);
3649 }
3650
3651 if (EnableMemAccessVersioning)
3652 if (LoadInst *LI = dyn_cast<LoadInst>(it))
3653 collectStridedAcccess(LI);
3654
3655 // Reduction instructions are allowed to have exit users.
3656 // All other instructions must not have external users.
3657 if (hasOutsideLoopUser(TheLoop, it, AllowedExit)) {
3658 emitAnalysis(Report(it) << "value cannot be used outside the loop");
3659 return false;
3660 }
3661
3662 } // next instr.
3663
3664 }
3665
3666 if (!Induction) {
3667 DEBUG(dbgs() << "LV: Did not find one integer induction var.\n");
3668 if (Inductions.empty()) {
3669 emitAnalysis(Report()
3670 << "loop induction variable could not be identified");
3671 return false;
3672 }
3673 }
3674
3675 return true;
3676 }
3677
3678 ///\brief Remove GEPs whose indices but the last one are loop invariant and
3679 /// return the induction operand of the gep pointer.
stripGetElementPtr(Value * Ptr,ScalarEvolution * SE,const DataLayout * DL,Loop * Lp)3680 static Value *stripGetElementPtr(Value *Ptr, ScalarEvolution *SE,
3681 const DataLayout *DL, Loop *Lp) {
3682 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
3683 if (!GEP)
3684 return Ptr;
3685
3686 unsigned InductionOperand = getGEPInductionOperand(DL, GEP);
3687
3688 // Check that all of the gep indices are uniform except for our induction
3689 // operand.
3690 for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i)
3691 if (i != InductionOperand &&
3692 !SE->isLoopInvariant(SE->getSCEV(GEP->getOperand(i)), Lp))
3693 return Ptr;
3694 return GEP->getOperand(InductionOperand);
3695 }
3696
3697 ///\brief Look for a cast use of the passed value.
getUniqueCastUse(Value * Ptr,Loop * Lp,Type * Ty)3698 static Value *getUniqueCastUse(Value *Ptr, Loop *Lp, Type *Ty) {
3699 Value *UniqueCast = nullptr;
3700 for (User *U : Ptr->users()) {
3701 CastInst *CI = dyn_cast<CastInst>(U);
3702 if (CI && CI->getType() == Ty) {
3703 if (!UniqueCast)
3704 UniqueCast = CI;
3705 else
3706 return nullptr;
3707 }
3708 }
3709 return UniqueCast;
3710 }
3711
3712 ///\brief Get the stride of a pointer access in a loop.
3713 /// Looks for symbolic strides "a[i*stride]". Returns the symbolic stride as a
3714 /// pointer to the Value, or null otherwise.
getStrideFromPointer(Value * Ptr,ScalarEvolution * SE,const DataLayout * DL,Loop * Lp)3715 static Value *getStrideFromPointer(Value *Ptr, ScalarEvolution *SE,
3716 const DataLayout *DL, Loop *Lp) {
3717 const PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType());
3718 if (!PtrTy || PtrTy->isAggregateType())
3719 return nullptr;
3720
3721 // Try to remove a gep instruction to make the pointer (actually index at this
3722 // point) easier analyzable. If OrigPtr is equal to Ptr we are analzying the
3723 // pointer, otherwise, we are analyzing the index.
3724 Value *OrigPtr = Ptr;
3725
3726 // The size of the pointer access.
3727 int64_t PtrAccessSize = 1;
3728
3729 Ptr = stripGetElementPtr(Ptr, SE, DL, Lp);
3730 const SCEV *V = SE->getSCEV(Ptr);
3731
3732 if (Ptr != OrigPtr)
3733 // Strip off casts.
3734 while (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V))
3735 V = C->getOperand();
3736
3737 const SCEVAddRecExpr *S = dyn_cast<SCEVAddRecExpr>(V);
3738 if (!S)
3739 return nullptr;
3740
3741 V = S->getStepRecurrence(*SE);
3742 if (!V)
3743 return nullptr;
3744
3745 // Strip off the size of access multiplication if we are still analyzing the
3746 // pointer.
3747 if (OrigPtr == Ptr) {
3748 DL->getTypeAllocSize(PtrTy->getElementType());
3749 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(V)) {
3750 if (M->getOperand(0)->getSCEVType() != scConstant)
3751 return nullptr;
3752
3753 const APInt &APStepVal =
3754 cast<SCEVConstant>(M->getOperand(0))->getValue()->getValue();
3755
3756 // Huge step value - give up.
3757 if (APStepVal.getBitWidth() > 64)
3758 return nullptr;
3759
3760 int64_t StepVal = APStepVal.getSExtValue();
3761 if (PtrAccessSize != StepVal)
3762 return nullptr;
3763 V = M->getOperand(1);
3764 }
3765 }
3766
3767 // Strip off casts.
3768 Type *StripedOffRecurrenceCast = nullptr;
3769 if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V)) {
3770 StripedOffRecurrenceCast = C->getType();
3771 V = C->getOperand();
3772 }
3773
3774 // Look for the loop invariant symbolic value.
3775 const SCEVUnknown *U = dyn_cast<SCEVUnknown>(V);
3776 if (!U)
3777 return nullptr;
3778
3779 Value *Stride = U->getValue();
3780 if (!Lp->isLoopInvariant(Stride))
3781 return nullptr;
3782
3783 // If we have stripped off the recurrence cast we have to make sure that we
3784 // return the value that is used in this loop so that we can replace it later.
3785 if (StripedOffRecurrenceCast)
3786 Stride = getUniqueCastUse(Stride, Lp, StripedOffRecurrenceCast);
3787
3788 return Stride;
3789 }
3790
collectStridedAcccess(Value * MemAccess)3791 void LoopVectorizationLegality::collectStridedAcccess(Value *MemAccess) {
3792 Value *Ptr = nullptr;
3793 if (LoadInst *LI = dyn_cast<LoadInst>(MemAccess))
3794 Ptr = LI->getPointerOperand();
3795 else if (StoreInst *SI = dyn_cast<StoreInst>(MemAccess))
3796 Ptr = SI->getPointerOperand();
3797 else
3798 return;
3799
3800 Value *Stride = getStrideFromPointer(Ptr, SE, DL, TheLoop);
3801 if (!Stride)
3802 return;
3803
3804 DEBUG(dbgs() << "LV: Found a strided access that we can version");
3805 DEBUG(dbgs() << " Ptr: " << *Ptr << " Stride: " << *Stride << "\n");
3806 Strides[Ptr] = Stride;
3807 StrideSet.insert(Stride);
3808 }
3809
collectLoopUniforms()3810 void LoopVectorizationLegality::collectLoopUniforms() {
3811 // We now know that the loop is vectorizable!
3812 // Collect variables that will remain uniform after vectorization.
3813 std::vector<Value*> Worklist;
3814 BasicBlock *Latch = TheLoop->getLoopLatch();
3815
3816 // Start with the conditional branch and walk up the block.
3817 Worklist.push_back(Latch->getTerminator()->getOperand(0));
3818
3819 // Also add all consecutive pointer values; these values will be uniform
3820 // after vectorization (and subsequent cleanup) and, until revectorization is
3821 // supported, all dependencies must also be uniform.
3822 for (Loop::block_iterator B = TheLoop->block_begin(),
3823 BE = TheLoop->block_end(); B != BE; ++B)
3824 for (BasicBlock::iterator I = (*B)->begin(), IE = (*B)->end();
3825 I != IE; ++I)
3826 if (I->getType()->isPointerTy() && isConsecutivePtr(I))
3827 Worklist.insert(Worklist.end(), I->op_begin(), I->op_end());
3828
3829 while (Worklist.size()) {
3830 Instruction *I = dyn_cast<Instruction>(Worklist.back());
3831 Worklist.pop_back();
3832
3833 // Look at instructions inside this loop.
3834 // Stop when reaching PHI nodes.
3835 // TODO: we need to follow values all over the loop, not only in this block.
3836 if (!I || !TheLoop->contains(I) || isa<PHINode>(I))
3837 continue;
3838
3839 // This is a known uniform.
3840 Uniforms.insert(I);
3841
3842 // Insert all operands.
3843 Worklist.insert(Worklist.end(), I->op_begin(), I->op_end());
3844 }
3845 }
3846
3847 namespace {
3848 /// \brief Analyses memory accesses in a loop.
3849 ///
3850 /// Checks whether run time pointer checks are needed and builds sets for data
3851 /// dependence checking.
3852 class AccessAnalysis {
3853 public:
3854 /// \brief Read or write access location.
3855 typedef PointerIntPair<Value *, 1, bool> MemAccessInfo;
3856 typedef SmallPtrSet<MemAccessInfo, 8> MemAccessInfoSet;
3857
3858 /// \brief Set of potential dependent memory accesses.
3859 typedef EquivalenceClasses<MemAccessInfo> DepCandidates;
3860
AccessAnalysis(const DataLayout * Dl,DepCandidates & DA)3861 AccessAnalysis(const DataLayout *Dl, DepCandidates &DA) :
3862 DL(Dl), DepCands(DA), AreAllWritesIdentified(true),
3863 AreAllReadsIdentified(true), IsRTCheckNeeded(false) {}
3864
3865 /// \brief Register a load and whether it is only read from.
addLoad(Value * Ptr,bool IsReadOnly)3866 void addLoad(Value *Ptr, bool IsReadOnly) {
3867 Accesses.insert(MemAccessInfo(Ptr, false));
3868 if (IsReadOnly)
3869 ReadOnlyPtr.insert(Ptr);
3870 }
3871
3872 /// \brief Register a store.
addStore(Value * Ptr)3873 void addStore(Value *Ptr) {
3874 Accesses.insert(MemAccessInfo(Ptr, true));
3875 }
3876
3877 /// \brief Check whether we can check the pointers at runtime for
3878 /// non-intersection.
3879 bool canCheckPtrAtRT(LoopVectorizationLegality::RuntimePointerCheck &RtCheck,
3880 unsigned &NumComparisons, ScalarEvolution *SE,
3881 Loop *TheLoop, ValueToValueMap &Strides,
3882 bool ShouldCheckStride = false);
3883
3884 /// \brief Goes over all memory accesses, checks whether a RT check is needed
3885 /// and builds sets of dependent accesses.
buildDependenceSets()3886 void buildDependenceSets() {
3887 // Process read-write pointers first.
3888 processMemAccesses(false);
3889 // Next, process read pointers.
3890 processMemAccesses(true);
3891 }
3892
isRTCheckNeeded()3893 bool isRTCheckNeeded() { return IsRTCheckNeeded; }
3894
isDependencyCheckNeeded()3895 bool isDependencyCheckNeeded() { return !CheckDeps.empty(); }
resetDepChecks()3896 void resetDepChecks() { CheckDeps.clear(); }
3897
getDependenciesToCheck()3898 MemAccessInfoSet &getDependenciesToCheck() { return CheckDeps; }
3899
3900 private:
3901 typedef SetVector<MemAccessInfo> PtrAccessSet;
3902 typedef DenseMap<Value*, MemAccessInfo> UnderlyingObjToAccessMap;
3903
3904 /// \brief Go over all memory access or only the deferred ones if
3905 /// \p UseDeferred is true and check whether runtime pointer checks are needed
3906 /// and build sets of dependency check candidates.
3907 void processMemAccesses(bool UseDeferred);
3908
3909 /// Set of all accesses.
3910 PtrAccessSet Accesses;
3911
3912 /// Set of access to check after all writes have been processed.
3913 PtrAccessSet DeferredAccesses;
3914
3915 /// Map of pointers to last access encountered.
3916 UnderlyingObjToAccessMap ObjToLastAccess;
3917
3918 /// Set of accesses that need a further dependence check.
3919 MemAccessInfoSet CheckDeps;
3920
3921 /// Set of pointers that are read only.
3922 SmallPtrSet<Value*, 16> ReadOnlyPtr;
3923
3924 /// Set of underlying objects already written to.
3925 SmallPtrSet<Value*, 16> WriteObjects;
3926
3927 const DataLayout *DL;
3928
3929 /// Sets of potentially dependent accesses - members of one set share an
3930 /// underlying pointer. The set "CheckDeps" identfies which sets really need a
3931 /// dependence check.
3932 DepCandidates &DepCands;
3933
3934 bool AreAllWritesIdentified;
3935 bool AreAllReadsIdentified;
3936 bool IsRTCheckNeeded;
3937 };
3938
3939 } // end anonymous namespace
3940
3941 /// \brief Check whether a pointer can participate in a runtime bounds check.
hasComputableBounds(ScalarEvolution * SE,ValueToValueMap & Strides,Value * Ptr)3942 static bool hasComputableBounds(ScalarEvolution *SE, ValueToValueMap &Strides,
3943 Value *Ptr) {
3944 const SCEV *PtrScev = replaceSymbolicStrideSCEV(SE, Strides, Ptr);
3945 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
3946 if (!AR)
3947 return false;
3948
3949 return AR->isAffine();
3950 }
3951
3952 /// \brief Check the stride of the pointer and ensure that it does not wrap in
3953 /// the address space.
3954 static int isStridedPtr(ScalarEvolution *SE, const DataLayout *DL, Value *Ptr,
3955 const Loop *Lp, ValueToValueMap &StridesMap);
3956
canCheckPtrAtRT(LoopVectorizationLegality::RuntimePointerCheck & RtCheck,unsigned & NumComparisons,ScalarEvolution * SE,Loop * TheLoop,ValueToValueMap & StridesMap,bool ShouldCheckStride)3957 bool AccessAnalysis::canCheckPtrAtRT(
3958 LoopVectorizationLegality::RuntimePointerCheck &RtCheck,
3959 unsigned &NumComparisons, ScalarEvolution *SE, Loop *TheLoop,
3960 ValueToValueMap &StridesMap, bool ShouldCheckStride) {
3961 // Find pointers with computable bounds. We are going to use this information
3962 // to place a runtime bound check.
3963 unsigned NumReadPtrChecks = 0;
3964 unsigned NumWritePtrChecks = 0;
3965 bool CanDoRT = true;
3966
3967 bool IsDepCheckNeeded = isDependencyCheckNeeded();
3968 // We assign consecutive id to access from different dependence sets.
3969 // Accesses within the same set don't need a runtime check.
3970 unsigned RunningDepId = 1;
3971 DenseMap<Value *, unsigned> DepSetId;
3972
3973 for (PtrAccessSet::iterator AI = Accesses.begin(), AE = Accesses.end();
3974 AI != AE; ++AI) {
3975 const MemAccessInfo &Access = *AI;
3976 Value *Ptr = Access.getPointer();
3977 bool IsWrite = Access.getInt();
3978
3979 // Just add write checks if we have both.
3980 if (!IsWrite && Accesses.count(MemAccessInfo(Ptr, true)))
3981 continue;
3982
3983 if (IsWrite)
3984 ++NumWritePtrChecks;
3985 else
3986 ++NumReadPtrChecks;
3987
3988 if (hasComputableBounds(SE, StridesMap, Ptr) &&
3989 // When we run after a failing dependency check we have to make sure we
3990 // don't have wrapping pointers.
3991 (!ShouldCheckStride ||
3992 isStridedPtr(SE, DL, Ptr, TheLoop, StridesMap) == 1)) {
3993 // The id of the dependence set.
3994 unsigned DepId;
3995
3996 if (IsDepCheckNeeded) {
3997 Value *Leader = DepCands.getLeaderValue(Access).getPointer();
3998 unsigned &LeaderId = DepSetId[Leader];
3999 if (!LeaderId)
4000 LeaderId = RunningDepId++;
4001 DepId = LeaderId;
4002 } else
4003 // Each access has its own dependence set.
4004 DepId = RunningDepId++;
4005
4006 RtCheck.insert(SE, TheLoop, Ptr, IsWrite, DepId, StridesMap);
4007
4008 DEBUG(dbgs() << "LV: Found a runtime check ptr:" << *Ptr << '\n');
4009 } else {
4010 CanDoRT = false;
4011 }
4012 }
4013
4014 if (IsDepCheckNeeded && CanDoRT && RunningDepId == 2)
4015 NumComparisons = 0; // Only one dependence set.
4016 else {
4017 NumComparisons = (NumWritePtrChecks * (NumReadPtrChecks +
4018 NumWritePtrChecks - 1));
4019 }
4020
4021 // If the pointers that we would use for the bounds comparison have different
4022 // address spaces, assume the values aren't directly comparable, so we can't
4023 // use them for the runtime check. We also have to assume they could
4024 // overlap. In the future there should be metadata for whether address spaces
4025 // are disjoint.
4026 unsigned NumPointers = RtCheck.Pointers.size();
4027 for (unsigned i = 0; i < NumPointers; ++i) {
4028 for (unsigned j = i + 1; j < NumPointers; ++j) {
4029 // Only need to check pointers between two different dependency sets.
4030 if (RtCheck.DependencySetId[i] == RtCheck.DependencySetId[j])
4031 continue;
4032
4033 Value *PtrI = RtCheck.Pointers[i];
4034 Value *PtrJ = RtCheck.Pointers[j];
4035
4036 unsigned ASi = PtrI->getType()->getPointerAddressSpace();
4037 unsigned ASj = PtrJ->getType()->getPointerAddressSpace();
4038 if (ASi != ASj) {
4039 DEBUG(dbgs() << "LV: Runtime check would require comparison between"
4040 " different address spaces\n");
4041 return false;
4042 }
4043 }
4044 }
4045
4046 return CanDoRT;
4047 }
4048
isFunctionScopeIdentifiedObject(Value * Ptr)4049 static bool isFunctionScopeIdentifiedObject(Value *Ptr) {
4050 return isNoAliasArgument(Ptr) || isNoAliasCall(Ptr) || isa<AllocaInst>(Ptr);
4051 }
4052
processMemAccesses(bool UseDeferred)4053 void AccessAnalysis::processMemAccesses(bool UseDeferred) {
4054 // We process the set twice: first we process read-write pointers, last we
4055 // process read-only pointers. This allows us to skip dependence tests for
4056 // read-only pointers.
4057
4058 PtrAccessSet &S = UseDeferred ? DeferredAccesses : Accesses;
4059 for (PtrAccessSet::iterator AI = S.begin(), AE = S.end(); AI != AE; ++AI) {
4060 const MemAccessInfo &Access = *AI;
4061 Value *Ptr = Access.getPointer();
4062 bool IsWrite = Access.getInt();
4063
4064 DepCands.insert(Access);
4065
4066 // Memorize read-only pointers for later processing and skip them in the
4067 // first round (they need to be checked after we have seen all write
4068 // pointers). Note: we also mark pointer that are not consecutive as
4069 // "read-only" pointers (so that we check "a[b[i]] +="). Hence, we need the
4070 // second check for "!IsWrite".
4071 bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite;
4072 if (!UseDeferred && IsReadOnlyPtr) {
4073 DeferredAccesses.insert(Access);
4074 continue;
4075 }
4076
4077 bool NeedDepCheck = false;
4078 // Check whether there is the possibility of dependency because of
4079 // underlying objects being the same.
4080 typedef SmallVector<Value*, 16> ValueVector;
4081 ValueVector TempObjects;
4082 GetUnderlyingObjects(Ptr, TempObjects, DL);
4083 for (ValueVector::iterator UI = TempObjects.begin(), UE = TempObjects.end();
4084 UI != UE; ++UI) {
4085 Value *UnderlyingObj = *UI;
4086
4087 // If this is a write then it needs to be an identified object. If this a
4088 // read and all writes (so far) are identified function scope objects we
4089 // don't need an identified underlying object but only an Argument (the
4090 // next write is going to invalidate this assumption if it is
4091 // unidentified).
4092 // This is a micro-optimization for the case where all writes are
4093 // identified and we have one argument pointer.
4094 // Otherwise, we do need a runtime check.
4095 if ((IsWrite && !isFunctionScopeIdentifiedObject(UnderlyingObj)) ||
4096 (!IsWrite && (!AreAllWritesIdentified ||
4097 !isa<Argument>(UnderlyingObj)) &&
4098 !isIdentifiedObject(UnderlyingObj))) {
4099 DEBUG(dbgs() << "LV: Found an unidentified " <<
4100 (IsWrite ? "write" : "read" ) << " ptr: " << *UnderlyingObj <<
4101 "\n");
4102 IsRTCheckNeeded = (IsRTCheckNeeded ||
4103 !isIdentifiedObject(UnderlyingObj) ||
4104 !AreAllReadsIdentified);
4105
4106 if (IsWrite)
4107 AreAllWritesIdentified = false;
4108 if (!IsWrite)
4109 AreAllReadsIdentified = false;
4110 }
4111
4112 // If this is a write - check other reads and writes for conflicts. If
4113 // this is a read only check other writes for conflicts (but only if there
4114 // is no other write to the ptr - this is an optimization to catch "a[i] =
4115 // a[i] + " without having to do a dependence check).
4116 if ((IsWrite || IsReadOnlyPtr) && WriteObjects.count(UnderlyingObj))
4117 NeedDepCheck = true;
4118
4119 if (IsWrite)
4120 WriteObjects.insert(UnderlyingObj);
4121
4122 // Create sets of pointers connected by shared underlying objects.
4123 UnderlyingObjToAccessMap::iterator Prev =
4124 ObjToLastAccess.find(UnderlyingObj);
4125 if (Prev != ObjToLastAccess.end())
4126 DepCands.unionSets(Access, Prev->second);
4127
4128 ObjToLastAccess[UnderlyingObj] = Access;
4129 }
4130
4131 if (NeedDepCheck)
4132 CheckDeps.insert(Access);
4133 }
4134 }
4135
4136 namespace {
4137 /// \brief Checks memory dependences among accesses to the same underlying
4138 /// object to determine whether there vectorization is legal or not (and at
4139 /// which vectorization factor).
4140 ///
4141 /// This class works under the assumption that we already checked that memory
4142 /// locations with different underlying pointers are "must-not alias".
4143 /// We use the ScalarEvolution framework to symbolically evalutate access
4144 /// functions pairs. Since we currently don't restructure the loop we can rely
4145 /// on the program order of memory accesses to determine their safety.
4146 /// At the moment we will only deem accesses as safe for:
4147 /// * A negative constant distance assuming program order.
4148 ///
4149 /// Safe: tmp = a[i + 1]; OR a[i + 1] = x;
4150 /// a[i] = tmp; y = a[i];
4151 ///
4152 /// The latter case is safe because later checks guarantuee that there can't
4153 /// be a cycle through a phi node (that is, we check that "x" and "y" is not
4154 /// the same variable: a header phi can only be an induction or a reduction, a
4155 /// reduction can't have a memory sink, an induction can't have a memory
4156 /// source). This is important and must not be violated (or we have to
4157 /// resort to checking for cycles through memory).
4158 ///
4159 /// * A positive constant distance assuming program order that is bigger
4160 /// than the biggest memory access.
4161 ///
4162 /// tmp = a[i] OR b[i] = x
4163 /// a[i+2] = tmp y = b[i+2];
4164 ///
4165 /// Safe distance: 2 x sizeof(a[0]), and 2 x sizeof(b[0]), respectively.
4166 ///
4167 /// * Zero distances and all accesses have the same size.
4168 ///
4169 class MemoryDepChecker {
4170 public:
4171 typedef PointerIntPair<Value *, 1, bool> MemAccessInfo;
4172 typedef SmallPtrSet<MemAccessInfo, 8> MemAccessInfoSet;
4173
MemoryDepChecker(ScalarEvolution * Se,const DataLayout * Dl,const Loop * L)4174 MemoryDepChecker(ScalarEvolution *Se, const DataLayout *Dl, const Loop *L)
4175 : SE(Se), DL(Dl), InnermostLoop(L), AccessIdx(0),
4176 ShouldRetryWithRuntimeCheck(false) {}
4177
4178 /// \brief Register the location (instructions are given increasing numbers)
4179 /// of a write access.
addAccess(StoreInst * SI)4180 void addAccess(StoreInst *SI) {
4181 Value *Ptr = SI->getPointerOperand();
4182 Accesses[MemAccessInfo(Ptr, true)].push_back(AccessIdx);
4183 InstMap.push_back(SI);
4184 ++AccessIdx;
4185 }
4186
4187 /// \brief Register the location (instructions are given increasing numbers)
4188 /// of a write access.
addAccess(LoadInst * LI)4189 void addAccess(LoadInst *LI) {
4190 Value *Ptr = LI->getPointerOperand();
4191 Accesses[MemAccessInfo(Ptr, false)].push_back(AccessIdx);
4192 InstMap.push_back(LI);
4193 ++AccessIdx;
4194 }
4195
4196 /// \brief Check whether the dependencies between the accesses are safe.
4197 ///
4198 /// Only checks sets with elements in \p CheckDeps.
4199 bool areDepsSafe(AccessAnalysis::DepCandidates &AccessSets,
4200 MemAccessInfoSet &CheckDeps, ValueToValueMap &Strides);
4201
4202 /// \brief The maximum number of bytes of a vector register we can vectorize
4203 /// the accesses safely with.
getMaxSafeDepDistBytes()4204 unsigned getMaxSafeDepDistBytes() { return MaxSafeDepDistBytes; }
4205
4206 /// \brief In same cases when the dependency check fails we can still
4207 /// vectorize the loop with a dynamic array access check.
shouldRetryWithRuntimeCheck()4208 bool shouldRetryWithRuntimeCheck() { return ShouldRetryWithRuntimeCheck; }
4209
4210 private:
4211 ScalarEvolution *SE;
4212 const DataLayout *DL;
4213 const Loop *InnermostLoop;
4214
4215 /// \brief Maps access locations (ptr, read/write) to program order.
4216 DenseMap<MemAccessInfo, std::vector<unsigned> > Accesses;
4217
4218 /// \brief Memory access instructions in program order.
4219 SmallVector<Instruction *, 16> InstMap;
4220
4221 /// \brief The program order index to be used for the next instruction.
4222 unsigned AccessIdx;
4223
4224 // We can access this many bytes in parallel safely.
4225 unsigned MaxSafeDepDistBytes;
4226
4227 /// \brief If we see a non-constant dependence distance we can still try to
4228 /// vectorize this loop with runtime checks.
4229 bool ShouldRetryWithRuntimeCheck;
4230
4231 /// \brief Check whether there is a plausible dependence between the two
4232 /// accesses.
4233 ///
4234 /// Access \p A must happen before \p B in program order. The two indices
4235 /// identify the index into the program order map.
4236 ///
4237 /// This function checks whether there is a plausible dependence (or the
4238 /// absence of such can't be proved) between the two accesses. If there is a
4239 /// plausible dependence but the dependence distance is bigger than one
4240 /// element access it records this distance in \p MaxSafeDepDistBytes (if this
4241 /// distance is smaller than any other distance encountered so far).
4242 /// Otherwise, this function returns true signaling a possible dependence.
4243 bool isDependent(const MemAccessInfo &A, unsigned AIdx,
4244 const MemAccessInfo &B, unsigned BIdx,
4245 ValueToValueMap &Strides);
4246
4247 /// \brief Check whether the data dependence could prevent store-load
4248 /// forwarding.
4249 bool couldPreventStoreLoadForward(unsigned Distance, unsigned TypeByteSize);
4250 };
4251
4252 } // end anonymous namespace
4253
isInBoundsGep(Value * Ptr)4254 static bool isInBoundsGep(Value *Ptr) {
4255 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr))
4256 return GEP->isInBounds();
4257 return false;
4258 }
4259
4260 /// \brief Check whether the access through \p Ptr has a constant stride.
isStridedPtr(ScalarEvolution * SE,const DataLayout * DL,Value * Ptr,const Loop * Lp,ValueToValueMap & StridesMap)4261 static int isStridedPtr(ScalarEvolution *SE, const DataLayout *DL, Value *Ptr,
4262 const Loop *Lp, ValueToValueMap &StridesMap) {
4263 const Type *Ty = Ptr->getType();
4264 assert(Ty->isPointerTy() && "Unexpected non-ptr");
4265
4266 // Make sure that the pointer does not point to aggregate types.
4267 const PointerType *PtrTy = cast<PointerType>(Ty);
4268 if (PtrTy->getElementType()->isAggregateType()) {
4269 DEBUG(dbgs() << "LV: Bad stride - Not a pointer to a scalar type" << *Ptr <<
4270 "\n");
4271 return 0;
4272 }
4273
4274 const SCEV *PtrScev = replaceSymbolicStrideSCEV(SE, StridesMap, Ptr);
4275
4276 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
4277 if (!AR) {
4278 DEBUG(dbgs() << "LV: Bad stride - Not an AddRecExpr pointer "
4279 << *Ptr << " SCEV: " << *PtrScev << "\n");
4280 return 0;
4281 }
4282
4283 // The accesss function must stride over the innermost loop.
4284 if (Lp != AR->getLoop()) {
4285 DEBUG(dbgs() << "LV: Bad stride - Not striding over innermost loop " <<
4286 *Ptr << " SCEV: " << *PtrScev << "\n");
4287 }
4288
4289 // The address calculation must not wrap. Otherwise, a dependence could be
4290 // inverted.
4291 // An inbounds getelementptr that is a AddRec with a unit stride
4292 // cannot wrap per definition. The unit stride requirement is checked later.
4293 // An getelementptr without an inbounds attribute and unit stride would have
4294 // to access the pointer value "0" which is undefined behavior in address
4295 // space 0, therefore we can also vectorize this case.
4296 bool IsInBoundsGEP = isInBoundsGep(Ptr);
4297 bool IsNoWrapAddRec = AR->getNoWrapFlags(SCEV::NoWrapMask);
4298 bool IsInAddressSpaceZero = PtrTy->getAddressSpace() == 0;
4299 if (!IsNoWrapAddRec && !IsInBoundsGEP && !IsInAddressSpaceZero) {
4300 DEBUG(dbgs() << "LV: Bad stride - Pointer may wrap in the address space "
4301 << *Ptr << " SCEV: " << *PtrScev << "\n");
4302 return 0;
4303 }
4304
4305 // Check the step is constant.
4306 const SCEV *Step = AR->getStepRecurrence(*SE);
4307
4308 // Calculate the pointer stride and check if it is consecutive.
4309 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
4310 if (!C) {
4311 DEBUG(dbgs() << "LV: Bad stride - Not a constant strided " << *Ptr <<
4312 " SCEV: " << *PtrScev << "\n");
4313 return 0;
4314 }
4315
4316 int64_t Size = DL->getTypeAllocSize(PtrTy->getElementType());
4317 const APInt &APStepVal = C->getValue()->getValue();
4318
4319 // Huge step value - give up.
4320 if (APStepVal.getBitWidth() > 64)
4321 return 0;
4322
4323 int64_t StepVal = APStepVal.getSExtValue();
4324
4325 // Strided access.
4326 int64_t Stride = StepVal / Size;
4327 int64_t Rem = StepVal % Size;
4328 if (Rem)
4329 return 0;
4330
4331 // If the SCEV could wrap but we have an inbounds gep with a unit stride we
4332 // know we can't "wrap around the address space". In case of address space
4333 // zero we know that this won't happen without triggering undefined behavior.
4334 if (!IsNoWrapAddRec && (IsInBoundsGEP || IsInAddressSpaceZero) &&
4335 Stride != 1 && Stride != -1)
4336 return 0;
4337
4338 return Stride;
4339 }
4340
couldPreventStoreLoadForward(unsigned Distance,unsigned TypeByteSize)4341 bool MemoryDepChecker::couldPreventStoreLoadForward(unsigned Distance,
4342 unsigned TypeByteSize) {
4343 // If loads occur at a distance that is not a multiple of a feasible vector
4344 // factor store-load forwarding does not take place.
4345 // Positive dependences might cause troubles because vectorizing them might
4346 // prevent store-load forwarding making vectorized code run a lot slower.
4347 // a[i] = a[i-3] ^ a[i-8];
4348 // The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and
4349 // hence on your typical architecture store-load forwarding does not take
4350 // place. Vectorizing in such cases does not make sense.
4351 // Store-load forwarding distance.
4352 const unsigned NumCyclesForStoreLoadThroughMemory = 8*TypeByteSize;
4353 // Maximum vector factor.
4354 unsigned MaxVFWithoutSLForwardIssues = MaxVectorWidth*TypeByteSize;
4355 if(MaxSafeDepDistBytes < MaxVFWithoutSLForwardIssues)
4356 MaxVFWithoutSLForwardIssues = MaxSafeDepDistBytes;
4357
4358 for (unsigned vf = 2*TypeByteSize; vf <= MaxVFWithoutSLForwardIssues;
4359 vf *= 2) {
4360 if (Distance % vf && Distance / vf < NumCyclesForStoreLoadThroughMemory) {
4361 MaxVFWithoutSLForwardIssues = (vf >>=1);
4362 break;
4363 }
4364 }
4365
4366 if (MaxVFWithoutSLForwardIssues< 2*TypeByteSize) {
4367 DEBUG(dbgs() << "LV: Distance " << Distance <<
4368 " that could cause a store-load forwarding conflict\n");
4369 return true;
4370 }
4371
4372 if (MaxVFWithoutSLForwardIssues < MaxSafeDepDistBytes &&
4373 MaxVFWithoutSLForwardIssues != MaxVectorWidth*TypeByteSize)
4374 MaxSafeDepDistBytes = MaxVFWithoutSLForwardIssues;
4375 return false;
4376 }
4377
isDependent(const MemAccessInfo & A,unsigned AIdx,const MemAccessInfo & B,unsigned BIdx,ValueToValueMap & Strides)4378 bool MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx,
4379 const MemAccessInfo &B, unsigned BIdx,
4380 ValueToValueMap &Strides) {
4381 assert (AIdx < BIdx && "Must pass arguments in program order");
4382
4383 Value *APtr = A.getPointer();
4384 Value *BPtr = B.getPointer();
4385 bool AIsWrite = A.getInt();
4386 bool BIsWrite = B.getInt();
4387
4388 // Two reads are independent.
4389 if (!AIsWrite && !BIsWrite)
4390 return false;
4391
4392 const SCEV *AScev = replaceSymbolicStrideSCEV(SE, Strides, APtr);
4393 const SCEV *BScev = replaceSymbolicStrideSCEV(SE, Strides, BPtr);
4394
4395 int StrideAPtr = isStridedPtr(SE, DL, APtr, InnermostLoop, Strides);
4396 int StrideBPtr = isStridedPtr(SE, DL, BPtr, InnermostLoop, Strides);
4397
4398 const SCEV *Src = AScev;
4399 const SCEV *Sink = BScev;
4400
4401 // If the induction step is negative we have to invert source and sink of the
4402 // dependence.
4403 if (StrideAPtr < 0) {
4404 //Src = BScev;
4405 //Sink = AScev;
4406 std::swap(APtr, BPtr);
4407 std::swap(Src, Sink);
4408 std::swap(AIsWrite, BIsWrite);
4409 std::swap(AIdx, BIdx);
4410 std::swap(StrideAPtr, StrideBPtr);
4411 }
4412
4413 const SCEV *Dist = SE->getMinusSCEV(Sink, Src);
4414
4415 DEBUG(dbgs() << "LV: Src Scev: " << *Src << "Sink Scev: " << *Sink
4416 << "(Induction step: " << StrideAPtr << ")\n");
4417 DEBUG(dbgs() << "LV: Distance for " << *InstMap[AIdx] << " to "
4418 << *InstMap[BIdx] << ": " << *Dist << "\n");
4419
4420 // Need consecutive accesses. We don't want to vectorize
4421 // "A[B[i]] += ..." and similar code or pointer arithmetic that could wrap in
4422 // the address space.
4423 if (!StrideAPtr || !StrideBPtr || StrideAPtr != StrideBPtr){
4424 DEBUG(dbgs() << "Non-consecutive pointer access\n");
4425 return true;
4426 }
4427
4428 const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist);
4429 if (!C) {
4430 DEBUG(dbgs() << "LV: Dependence because of non-constant distance\n");
4431 ShouldRetryWithRuntimeCheck = true;
4432 return true;
4433 }
4434
4435 Type *ATy = APtr->getType()->getPointerElementType();
4436 Type *BTy = BPtr->getType()->getPointerElementType();
4437 unsigned TypeByteSize = DL->getTypeAllocSize(ATy);
4438
4439 // Negative distances are not plausible dependencies.
4440 const APInt &Val = C->getValue()->getValue();
4441 if (Val.isNegative()) {
4442 bool IsTrueDataDependence = (AIsWrite && !BIsWrite);
4443 if (IsTrueDataDependence &&
4444 (couldPreventStoreLoadForward(Val.abs().getZExtValue(), TypeByteSize) ||
4445 ATy != BTy))
4446 return true;
4447
4448 DEBUG(dbgs() << "LV: Dependence is negative: NoDep\n");
4449 return false;
4450 }
4451
4452 // Write to the same location with the same size.
4453 // Could be improved to assert type sizes are the same (i32 == float, etc).
4454 if (Val == 0) {
4455 if (ATy == BTy)
4456 return false;
4457 DEBUG(dbgs() << "LV: Zero dependence difference but different types\n");
4458 return true;
4459 }
4460
4461 assert(Val.isStrictlyPositive() && "Expect a positive value");
4462
4463 // Positive distance bigger than max vectorization factor.
4464 if (ATy != BTy) {
4465 DEBUG(dbgs() <<
4466 "LV: ReadWrite-Write positive dependency with different types\n");
4467 return false;
4468 }
4469
4470 unsigned Distance = (unsigned) Val.getZExtValue();
4471
4472 // Bail out early if passed-in parameters make vectorization not feasible.
4473 unsigned ForcedFactor = VectorizationFactor ? VectorizationFactor : 1;
4474 unsigned ForcedUnroll = VectorizationUnroll ? VectorizationUnroll : 1;
4475
4476 // The distance must be bigger than the size needed for a vectorized version
4477 // of the operation and the size of the vectorized operation must not be
4478 // bigger than the currrent maximum size.
4479 if (Distance < 2*TypeByteSize ||
4480 2*TypeByteSize > MaxSafeDepDistBytes ||
4481 Distance < TypeByteSize * ForcedUnroll * ForcedFactor) {
4482 DEBUG(dbgs() << "LV: Failure because of Positive distance "
4483 << Val.getSExtValue() << '\n');
4484 return true;
4485 }
4486
4487 MaxSafeDepDistBytes = Distance < MaxSafeDepDistBytes ?
4488 Distance : MaxSafeDepDistBytes;
4489
4490 bool IsTrueDataDependence = (!AIsWrite && BIsWrite);
4491 if (IsTrueDataDependence &&
4492 couldPreventStoreLoadForward(Distance, TypeByteSize))
4493 return true;
4494
4495 DEBUG(dbgs() << "LV: Positive distance " << Val.getSExtValue() <<
4496 " with max VF = " << MaxSafeDepDistBytes / TypeByteSize << '\n');
4497
4498 return false;
4499 }
4500
areDepsSafe(AccessAnalysis::DepCandidates & AccessSets,MemAccessInfoSet & CheckDeps,ValueToValueMap & Strides)4501 bool MemoryDepChecker::areDepsSafe(AccessAnalysis::DepCandidates &AccessSets,
4502 MemAccessInfoSet &CheckDeps,
4503 ValueToValueMap &Strides) {
4504
4505 MaxSafeDepDistBytes = -1U;
4506 while (!CheckDeps.empty()) {
4507 MemAccessInfo CurAccess = *CheckDeps.begin();
4508
4509 // Get the relevant memory access set.
4510 EquivalenceClasses<MemAccessInfo>::iterator I =
4511 AccessSets.findValue(AccessSets.getLeaderValue(CurAccess));
4512
4513 // Check accesses within this set.
4514 EquivalenceClasses<MemAccessInfo>::member_iterator AI, AE;
4515 AI = AccessSets.member_begin(I), AE = AccessSets.member_end();
4516
4517 // Check every access pair.
4518 while (AI != AE) {
4519 CheckDeps.erase(*AI);
4520 EquivalenceClasses<MemAccessInfo>::member_iterator OI = std::next(AI);
4521 while (OI != AE) {
4522 // Check every accessing instruction pair in program order.
4523 for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(),
4524 I1E = Accesses[*AI].end(); I1 != I1E; ++I1)
4525 for (std::vector<unsigned>::iterator I2 = Accesses[*OI].begin(),
4526 I2E = Accesses[*OI].end(); I2 != I2E; ++I2) {
4527 if (*I1 < *I2 && isDependent(*AI, *I1, *OI, *I2, Strides))
4528 return false;
4529 if (*I2 < *I1 && isDependent(*OI, *I2, *AI, *I1, Strides))
4530 return false;
4531 }
4532 ++OI;
4533 }
4534 AI++;
4535 }
4536 }
4537 return true;
4538 }
4539
canVectorizeMemory()4540 bool LoopVectorizationLegality::canVectorizeMemory() {
4541
4542 typedef SmallVector<Value*, 16> ValueVector;
4543 typedef SmallPtrSet<Value*, 16> ValueSet;
4544
4545 // Holds the Load and Store *instructions*.
4546 ValueVector Loads;
4547 ValueVector Stores;
4548
4549 // Holds all the different accesses in the loop.
4550 unsigned NumReads = 0;
4551 unsigned NumReadWrites = 0;
4552
4553 PtrRtCheck.Pointers.clear();
4554 PtrRtCheck.Need = false;
4555
4556 const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel();
4557 MemoryDepChecker DepChecker(SE, DL, TheLoop);
4558
4559 // For each block.
4560 for (Loop::block_iterator bb = TheLoop->block_begin(),
4561 be = TheLoop->block_end(); bb != be; ++bb) {
4562
4563 // Scan the BB and collect legal loads and stores.
4564 for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e;
4565 ++it) {
4566
4567 // If this is a load, save it. If this instruction can read from memory
4568 // but is not a load, then we quit. Notice that we don't handle function
4569 // calls that read or write.
4570 if (it->mayReadFromMemory()) {
4571 // Many math library functions read the rounding mode. We will only
4572 // vectorize a loop if it contains known function calls that don't set
4573 // the flag. Therefore, it is safe to ignore this read from memory.
4574 CallInst *Call = dyn_cast<CallInst>(it);
4575 if (Call && getIntrinsicIDForCall(Call, TLI))
4576 continue;
4577
4578 LoadInst *Ld = dyn_cast<LoadInst>(it);
4579 if (!Ld || (!Ld->isSimple() && !IsAnnotatedParallel)) {
4580 emitAnalysis(Report(Ld)
4581 << "read with atomic ordering or volatile read");
4582 DEBUG(dbgs() << "LV: Found a non-simple load.\n");
4583 return false;
4584 }
4585 NumLoads++;
4586 Loads.push_back(Ld);
4587 DepChecker.addAccess(Ld);
4588 continue;
4589 }
4590
4591 // Save 'store' instructions. Abort if other instructions write to memory.
4592 if (it->mayWriteToMemory()) {
4593 StoreInst *St = dyn_cast<StoreInst>(it);
4594 if (!St) {
4595 emitAnalysis(Report(it) << "instruction cannot be vectorized");
4596 return false;
4597 }
4598 if (!St->isSimple() && !IsAnnotatedParallel) {
4599 emitAnalysis(Report(St)
4600 << "write with atomic ordering or volatile write");
4601 DEBUG(dbgs() << "LV: Found a non-simple store.\n");
4602 return false;
4603 }
4604 NumStores++;
4605 Stores.push_back(St);
4606 DepChecker.addAccess(St);
4607 }
4608 } // Next instr.
4609 } // Next block.
4610
4611 // Now we have two lists that hold the loads and the stores.
4612 // Next, we find the pointers that they use.
4613
4614 // Check if we see any stores. If there are no stores, then we don't
4615 // care if the pointers are *restrict*.
4616 if (!Stores.size()) {
4617 DEBUG(dbgs() << "LV: Found a read-only loop!\n");
4618 return true;
4619 }
4620
4621 AccessAnalysis::DepCandidates DependentAccesses;
4622 AccessAnalysis Accesses(DL, DependentAccesses);
4623
4624 // Holds the analyzed pointers. We don't want to call GetUnderlyingObjects
4625 // multiple times on the same object. If the ptr is accessed twice, once
4626 // for read and once for write, it will only appear once (on the write
4627 // list). This is okay, since we are going to check for conflicts between
4628 // writes and between reads and writes, but not between reads and reads.
4629 ValueSet Seen;
4630
4631 ValueVector::iterator I, IE;
4632 for (I = Stores.begin(), IE = Stores.end(); I != IE; ++I) {
4633 StoreInst *ST = cast<StoreInst>(*I);
4634 Value* Ptr = ST->getPointerOperand();
4635
4636 if (isUniform(Ptr)) {
4637 emitAnalysis(
4638 Report(ST)
4639 << "write to a loop invariant address could not be vectorized");
4640 DEBUG(dbgs() << "LV: We don't allow storing to uniform addresses\n");
4641 return false;
4642 }
4643
4644 // If we did *not* see this pointer before, insert it to the read-write
4645 // list. At this phase it is only a 'write' list.
4646 if (Seen.insert(Ptr)) {
4647 ++NumReadWrites;
4648 Accesses.addStore(Ptr);
4649 }
4650 }
4651
4652 if (IsAnnotatedParallel) {
4653 DEBUG(dbgs()
4654 << "LV: A loop annotated parallel, ignore memory dependency "
4655 << "checks.\n");
4656 return true;
4657 }
4658
4659 for (I = Loads.begin(), IE = Loads.end(); I != IE; ++I) {
4660 LoadInst *LD = cast<LoadInst>(*I);
4661 Value* Ptr = LD->getPointerOperand();
4662 // If we did *not* see this pointer before, insert it to the
4663 // read list. If we *did* see it before, then it is already in
4664 // the read-write list. This allows us to vectorize expressions
4665 // such as A[i] += x; Because the address of A[i] is a read-write
4666 // pointer. This only works if the index of A[i] is consecutive.
4667 // If the address of i is unknown (for example A[B[i]]) then we may
4668 // read a few words, modify, and write a few words, and some of the
4669 // words may be written to the same address.
4670 bool IsReadOnlyPtr = false;
4671 if (Seen.insert(Ptr) || !isStridedPtr(SE, DL, Ptr, TheLoop, Strides)) {
4672 ++NumReads;
4673 IsReadOnlyPtr = true;
4674 }
4675 Accesses.addLoad(Ptr, IsReadOnlyPtr);
4676 }
4677
4678 // If we write (or read-write) to a single destination and there are no
4679 // other reads in this loop then is it safe to vectorize.
4680 if (NumReadWrites == 1 && NumReads == 0) {
4681 DEBUG(dbgs() << "LV: Found a write-only loop!\n");
4682 return true;
4683 }
4684
4685 // Build dependence sets and check whether we need a runtime pointer bounds
4686 // check.
4687 Accesses.buildDependenceSets();
4688 bool NeedRTCheck = Accesses.isRTCheckNeeded();
4689
4690 // Find pointers with computable bounds. We are going to use this information
4691 // to place a runtime bound check.
4692 unsigned NumComparisons = 0;
4693 bool CanDoRT = false;
4694 if (NeedRTCheck)
4695 CanDoRT = Accesses.canCheckPtrAtRT(PtrRtCheck, NumComparisons, SE, TheLoop,
4696 Strides);
4697
4698 DEBUG(dbgs() << "LV: We need to do " << NumComparisons <<
4699 " pointer comparisons.\n");
4700
4701 // If we only have one set of dependences to check pointers among we don't
4702 // need a runtime check.
4703 if (NumComparisons == 0 && NeedRTCheck)
4704 NeedRTCheck = false;
4705
4706 // Check that we did not collect too many pointers or found an unsizeable
4707 // pointer.
4708 if (!CanDoRT || NumComparisons > RuntimeMemoryCheckThreshold) {
4709 PtrRtCheck.reset();
4710 CanDoRT = false;
4711 }
4712
4713 if (CanDoRT) {
4714 DEBUG(dbgs() << "LV: We can perform a memory runtime check if needed.\n");
4715 }
4716
4717 if (NeedRTCheck && !CanDoRT) {
4718 emitAnalysis(Report() << "cannot identify array bounds");
4719 DEBUG(dbgs() << "LV: We can't vectorize because we can't find " <<
4720 "the array bounds.\n");
4721 PtrRtCheck.reset();
4722 return false;
4723 }
4724
4725 PtrRtCheck.Need = NeedRTCheck;
4726
4727 bool CanVecMem = true;
4728 if (Accesses.isDependencyCheckNeeded()) {
4729 DEBUG(dbgs() << "LV: Checking memory dependencies\n");
4730 CanVecMem = DepChecker.areDepsSafe(
4731 DependentAccesses, Accesses.getDependenciesToCheck(), Strides);
4732 MaxSafeDepDistBytes = DepChecker.getMaxSafeDepDistBytes();
4733
4734 if (!CanVecMem && DepChecker.shouldRetryWithRuntimeCheck()) {
4735 DEBUG(dbgs() << "LV: Retrying with memory checks\n");
4736 NeedRTCheck = true;
4737
4738 // Clear the dependency checks. We assume they are not needed.
4739 Accesses.resetDepChecks();
4740
4741 PtrRtCheck.reset();
4742 PtrRtCheck.Need = true;
4743
4744 CanDoRT = Accesses.canCheckPtrAtRT(PtrRtCheck, NumComparisons, SE,
4745 TheLoop, Strides, true);
4746 // Check that we did not collect too many pointers or found an unsizeable
4747 // pointer.
4748 if (!CanDoRT || NumComparisons > RuntimeMemoryCheckThreshold) {
4749 if (!CanDoRT && NumComparisons > 0)
4750 emitAnalysis(Report()
4751 << "cannot check memory dependencies at runtime");
4752 else
4753 emitAnalysis(Report()
4754 << NumComparisons << " exceeds limit of "
4755 << RuntimeMemoryCheckThreshold
4756 << " dependent memory operations checked at runtime");
4757 DEBUG(dbgs() << "LV: Can't vectorize with memory checks\n");
4758 PtrRtCheck.reset();
4759 return false;
4760 }
4761
4762 CanVecMem = true;
4763 }
4764 }
4765
4766 if (!CanVecMem)
4767 emitAnalysis(Report() << "unsafe dependent memory operations in loop");
4768
4769 DEBUG(dbgs() << "LV: We" << (NeedRTCheck ? "" : " don't") <<
4770 " need a runtime memory check.\n");
4771
4772 return CanVecMem;
4773 }
4774
hasMultipleUsesOf(Instruction * I,SmallPtrSet<Instruction *,8> & Insts)4775 static bool hasMultipleUsesOf(Instruction *I,
4776 SmallPtrSet<Instruction *, 8> &Insts) {
4777 unsigned NumUses = 0;
4778 for(User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use) {
4779 if (Insts.count(dyn_cast<Instruction>(*Use)))
4780 ++NumUses;
4781 if (NumUses > 1)
4782 return true;
4783 }
4784
4785 return false;
4786 }
4787
areAllUsesIn(Instruction * I,SmallPtrSet<Instruction *,8> & Set)4788 static bool areAllUsesIn(Instruction *I, SmallPtrSet<Instruction *, 8> &Set) {
4789 for(User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use)
4790 if (!Set.count(dyn_cast<Instruction>(*Use)))
4791 return false;
4792 return true;
4793 }
4794
AddReductionVar(PHINode * Phi,ReductionKind Kind)4795 bool LoopVectorizationLegality::AddReductionVar(PHINode *Phi,
4796 ReductionKind Kind) {
4797 if (Phi->getNumIncomingValues() != 2)
4798 return false;
4799
4800 // Reduction variables are only found in the loop header block.
4801 if (Phi->getParent() != TheLoop->getHeader())
4802 return false;
4803
4804 // Obtain the reduction start value from the value that comes from the loop
4805 // preheader.
4806 Value *RdxStart = Phi->getIncomingValueForBlock(TheLoop->getLoopPreheader());
4807
4808 // ExitInstruction is the single value which is used outside the loop.
4809 // We only allow for a single reduction value to be used outside the loop.
4810 // This includes users of the reduction, variables (which form a cycle
4811 // which ends in the phi node).
4812 Instruction *ExitInstruction = nullptr;
4813 // Indicates that we found a reduction operation in our scan.
4814 bool FoundReduxOp = false;
4815
4816 // We start with the PHI node and scan for all of the users of this
4817 // instruction. All users must be instructions that can be used as reduction
4818 // variables (such as ADD). We must have a single out-of-block user. The cycle
4819 // must include the original PHI.
4820 bool FoundStartPHI = false;
4821
4822 // To recognize min/max patterns formed by a icmp select sequence, we store
4823 // the number of instruction we saw from the recognized min/max pattern,
4824 // to make sure we only see exactly the two instructions.
4825 unsigned NumCmpSelectPatternInst = 0;
4826 ReductionInstDesc ReduxDesc(false, nullptr);
4827
4828 SmallPtrSet<Instruction *, 8> VisitedInsts;
4829 SmallVector<Instruction *, 8> Worklist;
4830 Worklist.push_back(Phi);
4831 VisitedInsts.insert(Phi);
4832
4833 // A value in the reduction can be used:
4834 // - By the reduction:
4835 // - Reduction operation:
4836 // - One use of reduction value (safe).
4837 // - Multiple use of reduction value (not safe).
4838 // - PHI:
4839 // - All uses of the PHI must be the reduction (safe).
4840 // - Otherwise, not safe.
4841 // - By one instruction outside of the loop (safe).
4842 // - By further instructions outside of the loop (not safe).
4843 // - By an instruction that is not part of the reduction (not safe).
4844 // This is either:
4845 // * An instruction type other than PHI or the reduction operation.
4846 // * A PHI in the header other than the initial PHI.
4847 while (!Worklist.empty()) {
4848 Instruction *Cur = Worklist.back();
4849 Worklist.pop_back();
4850
4851 // No Users.
4852 // If the instruction has no users then this is a broken chain and can't be
4853 // a reduction variable.
4854 if (Cur->use_empty())
4855 return false;
4856
4857 bool IsAPhi = isa<PHINode>(Cur);
4858
4859 // A header PHI use other than the original PHI.
4860 if (Cur != Phi && IsAPhi && Cur->getParent() == Phi->getParent())
4861 return false;
4862
4863 // Reductions of instructions such as Div, and Sub is only possible if the
4864 // LHS is the reduction variable.
4865 if (!Cur->isCommutative() && !IsAPhi && !isa<SelectInst>(Cur) &&
4866 !isa<ICmpInst>(Cur) && !isa<FCmpInst>(Cur) &&
4867 !VisitedInsts.count(dyn_cast<Instruction>(Cur->getOperand(0))))
4868 return false;
4869
4870 // Any reduction instruction must be of one of the allowed kinds.
4871 ReduxDesc = isReductionInstr(Cur, Kind, ReduxDesc);
4872 if (!ReduxDesc.IsReduction)
4873 return false;
4874
4875 // A reduction operation must only have one use of the reduction value.
4876 if (!IsAPhi && Kind != RK_IntegerMinMax && Kind != RK_FloatMinMax &&
4877 hasMultipleUsesOf(Cur, VisitedInsts))
4878 return false;
4879
4880 // All inputs to a PHI node must be a reduction value.
4881 if(IsAPhi && Cur != Phi && !areAllUsesIn(Cur, VisitedInsts))
4882 return false;
4883
4884 if (Kind == RK_IntegerMinMax && (isa<ICmpInst>(Cur) ||
4885 isa<SelectInst>(Cur)))
4886 ++NumCmpSelectPatternInst;
4887 if (Kind == RK_FloatMinMax && (isa<FCmpInst>(Cur) ||
4888 isa<SelectInst>(Cur)))
4889 ++NumCmpSelectPatternInst;
4890
4891 // Check whether we found a reduction operator.
4892 FoundReduxOp |= !IsAPhi;
4893
4894 // Process users of current instruction. Push non-PHI nodes after PHI nodes
4895 // onto the stack. This way we are going to have seen all inputs to PHI
4896 // nodes once we get to them.
4897 SmallVector<Instruction *, 8> NonPHIs;
4898 SmallVector<Instruction *, 8> PHIs;
4899 for (User *U : Cur->users()) {
4900 Instruction *UI = cast<Instruction>(U);
4901
4902 // Check if we found the exit user.
4903 BasicBlock *Parent = UI->getParent();
4904 if (!TheLoop->contains(Parent)) {
4905 // Exit if you find multiple outside users or if the header phi node is
4906 // being used. In this case the user uses the value of the previous
4907 // iteration, in which case we would loose "VF-1" iterations of the
4908 // reduction operation if we vectorize.
4909 if (ExitInstruction != nullptr || Cur == Phi)
4910 return false;
4911
4912 // The instruction used by an outside user must be the last instruction
4913 // before we feed back to the reduction phi. Otherwise, we loose VF-1
4914 // operations on the value.
4915 if (std::find(Phi->op_begin(), Phi->op_end(), Cur) == Phi->op_end())
4916 return false;
4917
4918 ExitInstruction = Cur;
4919 continue;
4920 }
4921
4922 // Process instructions only once (termination). Each reduction cycle
4923 // value must only be used once, except by phi nodes and min/max
4924 // reductions which are represented as a cmp followed by a select.
4925 ReductionInstDesc IgnoredVal(false, nullptr);
4926 if (VisitedInsts.insert(UI)) {
4927 if (isa<PHINode>(UI))
4928 PHIs.push_back(UI);
4929 else
4930 NonPHIs.push_back(UI);
4931 } else if (!isa<PHINode>(UI) &&
4932 ((!isa<FCmpInst>(UI) &&
4933 !isa<ICmpInst>(UI) &&
4934 !isa<SelectInst>(UI)) ||
4935 !isMinMaxSelectCmpPattern(UI, IgnoredVal).IsReduction))
4936 return false;
4937
4938 // Remember that we completed the cycle.
4939 if (UI == Phi)
4940 FoundStartPHI = true;
4941 }
4942 Worklist.append(PHIs.begin(), PHIs.end());
4943 Worklist.append(NonPHIs.begin(), NonPHIs.end());
4944 }
4945
4946 // This means we have seen one but not the other instruction of the
4947 // pattern or more than just a select and cmp.
4948 if ((Kind == RK_IntegerMinMax || Kind == RK_FloatMinMax) &&
4949 NumCmpSelectPatternInst != 2)
4950 return false;
4951
4952 if (!FoundStartPHI || !FoundReduxOp || !ExitInstruction)
4953 return false;
4954
4955 // We found a reduction var if we have reached the original phi node and we
4956 // only have a single instruction with out-of-loop users.
4957
4958 // This instruction is allowed to have out-of-loop users.
4959 AllowedExit.insert(ExitInstruction);
4960
4961 // Save the description of this reduction variable.
4962 ReductionDescriptor RD(RdxStart, ExitInstruction, Kind,
4963 ReduxDesc.MinMaxKind);
4964 Reductions[Phi] = RD;
4965 // We've ended the cycle. This is a reduction variable if we have an
4966 // outside user and it has a binary op.
4967
4968 return true;
4969 }
4970
4971 /// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction
4972 /// pattern corresponding to a min(X, Y) or max(X, Y).
4973 LoopVectorizationLegality::ReductionInstDesc
isMinMaxSelectCmpPattern(Instruction * I,ReductionInstDesc & Prev)4974 LoopVectorizationLegality::isMinMaxSelectCmpPattern(Instruction *I,
4975 ReductionInstDesc &Prev) {
4976
4977 assert((isa<ICmpInst>(I) || isa<FCmpInst>(I) || isa<SelectInst>(I)) &&
4978 "Expect a select instruction");
4979 Instruction *Cmp = nullptr;
4980 SelectInst *Select = nullptr;
4981
4982 // We must handle the select(cmp()) as a single instruction. Advance to the
4983 // select.
4984 if ((Cmp = dyn_cast<ICmpInst>(I)) || (Cmp = dyn_cast<FCmpInst>(I))) {
4985 if (!Cmp->hasOneUse() || !(Select = dyn_cast<SelectInst>(*I->user_begin())))
4986 return ReductionInstDesc(false, I);
4987 return ReductionInstDesc(Select, Prev.MinMaxKind);
4988 }
4989
4990 // Only handle single use cases for now.
4991 if (!(Select = dyn_cast<SelectInst>(I)))
4992 return ReductionInstDesc(false, I);
4993 if (!(Cmp = dyn_cast<ICmpInst>(I->getOperand(0))) &&
4994 !(Cmp = dyn_cast<FCmpInst>(I->getOperand(0))))
4995 return ReductionInstDesc(false, I);
4996 if (!Cmp->hasOneUse())
4997 return ReductionInstDesc(false, I);
4998
4999 Value *CmpLeft;
5000 Value *CmpRight;
5001
5002 // Look for a min/max pattern.
5003 if (m_UMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
5004 return ReductionInstDesc(Select, MRK_UIntMin);
5005 else if (m_UMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
5006 return ReductionInstDesc(Select, MRK_UIntMax);
5007 else if (m_SMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
5008 return ReductionInstDesc(Select, MRK_SIntMax);
5009 else if (m_SMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
5010 return ReductionInstDesc(Select, MRK_SIntMin);
5011 else if (m_OrdFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
5012 return ReductionInstDesc(Select, MRK_FloatMin);
5013 else if (m_OrdFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
5014 return ReductionInstDesc(Select, MRK_FloatMax);
5015 else if (m_UnordFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
5016 return ReductionInstDesc(Select, MRK_FloatMin);
5017 else if (m_UnordFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
5018 return ReductionInstDesc(Select, MRK_FloatMax);
5019
5020 return ReductionInstDesc(false, I);
5021 }
5022
5023 LoopVectorizationLegality::ReductionInstDesc
isReductionInstr(Instruction * I,ReductionKind Kind,ReductionInstDesc & Prev)5024 LoopVectorizationLegality::isReductionInstr(Instruction *I,
5025 ReductionKind Kind,
5026 ReductionInstDesc &Prev) {
5027 bool FP = I->getType()->isFloatingPointTy();
5028 bool FastMath = (FP && I->isCommutative() && I->isAssociative());
5029 switch (I->getOpcode()) {
5030 default:
5031 return ReductionInstDesc(false, I);
5032 case Instruction::PHI:
5033 if (FP && (Kind != RK_FloatMult && Kind != RK_FloatAdd &&
5034 Kind != RK_FloatMinMax))
5035 return ReductionInstDesc(false, I);
5036 return ReductionInstDesc(I, Prev.MinMaxKind);
5037 case Instruction::Sub:
5038 case Instruction::Add:
5039 return ReductionInstDesc(Kind == RK_IntegerAdd, I);
5040 case Instruction::Mul:
5041 return ReductionInstDesc(Kind == RK_IntegerMult, I);
5042 case Instruction::And:
5043 return ReductionInstDesc(Kind == RK_IntegerAnd, I);
5044 case Instruction::Or:
5045 return ReductionInstDesc(Kind == RK_IntegerOr, I);
5046 case Instruction::Xor:
5047 return ReductionInstDesc(Kind == RK_IntegerXor, I);
5048 case Instruction::FMul:
5049 return ReductionInstDesc(Kind == RK_FloatMult && FastMath, I);
5050 case Instruction::FAdd:
5051 return ReductionInstDesc(Kind == RK_FloatAdd && FastMath, I);
5052 case Instruction::FCmp:
5053 case Instruction::ICmp:
5054 case Instruction::Select:
5055 if (Kind != RK_IntegerMinMax &&
5056 (!HasFunNoNaNAttr || Kind != RK_FloatMinMax))
5057 return ReductionInstDesc(false, I);
5058 return isMinMaxSelectCmpPattern(I, Prev);
5059 }
5060 }
5061
5062 LoopVectorizationLegality::InductionKind
isInductionVariable(PHINode * Phi)5063 LoopVectorizationLegality::isInductionVariable(PHINode *Phi) {
5064 Type *PhiTy = Phi->getType();
5065 // We only handle integer and pointer inductions variables.
5066 if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy())
5067 return IK_NoInduction;
5068
5069 // Check that the PHI is consecutive.
5070 const SCEV *PhiScev = SE->getSCEV(Phi);
5071 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);
5072 if (!AR) {
5073 DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n");
5074 return IK_NoInduction;
5075 }
5076 const SCEV *Step = AR->getStepRecurrence(*SE);
5077
5078 // Integer inductions need to have a stride of one.
5079 if (PhiTy->isIntegerTy()) {
5080 if (Step->isOne())
5081 return IK_IntInduction;
5082 if (Step->isAllOnesValue())
5083 return IK_ReverseIntInduction;
5084 return IK_NoInduction;
5085 }
5086
5087 // Calculate the pointer stride and check if it is consecutive.
5088 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
5089 if (!C)
5090 return IK_NoInduction;
5091
5092 assert(PhiTy->isPointerTy() && "The PHI must be a pointer");
5093 uint64_t Size = DL->getTypeAllocSize(PhiTy->getPointerElementType());
5094 if (C->getValue()->equalsInt(Size))
5095 return IK_PtrInduction;
5096 else if (C->getValue()->equalsInt(0 - Size))
5097 return IK_ReversePtrInduction;
5098
5099 return IK_NoInduction;
5100 }
5101
isInductionVariable(const Value * V)5102 bool LoopVectorizationLegality::isInductionVariable(const Value *V) {
5103 Value *In0 = const_cast<Value*>(V);
5104 PHINode *PN = dyn_cast_or_null<PHINode>(In0);
5105 if (!PN)
5106 return false;
5107
5108 return Inductions.count(PN);
5109 }
5110
blockNeedsPredication(BasicBlock * BB)5111 bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) {
5112 assert(TheLoop->contains(BB) && "Unknown block used");
5113
5114 // Blocks that do not dominate the latch need predication.
5115 BasicBlock* Latch = TheLoop->getLoopLatch();
5116 return !DT->dominates(BB, Latch);
5117 }
5118
blockCanBePredicated(BasicBlock * BB,SmallPtrSet<Value *,8> & SafePtrs)5119 bool LoopVectorizationLegality::blockCanBePredicated(BasicBlock *BB,
5120 SmallPtrSet<Value *, 8>& SafePtrs) {
5121 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
5122 // We might be able to hoist the load.
5123 if (it->mayReadFromMemory()) {
5124 LoadInst *LI = dyn_cast<LoadInst>(it);
5125 if (!LI || !SafePtrs.count(LI->getPointerOperand()))
5126 return false;
5127 }
5128
5129 // We don't predicate stores at the moment.
5130 if (it->mayWriteToMemory()) {
5131 StoreInst *SI = dyn_cast<StoreInst>(it);
5132 // We only support predication of stores in basic blocks with one
5133 // predecessor.
5134 if (!SI || ++NumPredStores > NumberOfStoresToPredicate ||
5135 !SafePtrs.count(SI->getPointerOperand()) ||
5136 !SI->getParent()->getSinglePredecessor())
5137 return false;
5138 }
5139 if (it->mayThrow())
5140 return false;
5141
5142 // Check that we don't have a constant expression that can trap as operand.
5143 for (Instruction::op_iterator OI = it->op_begin(), OE = it->op_end();
5144 OI != OE; ++OI) {
5145 if (Constant *C = dyn_cast<Constant>(*OI))
5146 if (C->canTrap())
5147 return false;
5148 }
5149
5150 // The instructions below can trap.
5151 switch (it->getOpcode()) {
5152 default: continue;
5153 case Instruction::UDiv:
5154 case Instruction::SDiv:
5155 case Instruction::URem:
5156 case Instruction::SRem:
5157 return false;
5158 }
5159 }
5160
5161 return true;
5162 }
5163
5164 LoopVectorizationCostModel::VectorizationFactor
selectVectorizationFactor(bool OptForSize,unsigned UserVF,bool ForceVectorization)5165 LoopVectorizationCostModel::selectVectorizationFactor(bool OptForSize,
5166 unsigned UserVF,
5167 bool ForceVectorization) {
5168 // Width 1 means no vectorize
5169 VectorizationFactor Factor = { 1U, 0U };
5170 if (OptForSize && Legal->getRuntimePointerCheck()->Need) {
5171 DEBUG(dbgs() << "LV: Aborting. Runtime ptr check is required in Os.\n");
5172 return Factor;
5173 }
5174
5175 if (!EnableCondStoresVectorization && Legal->NumPredStores) {
5176 DEBUG(dbgs() << "LV: No vectorization. There are conditional stores.\n");
5177 return Factor;
5178 }
5179
5180 // Find the trip count.
5181 unsigned TC = SE->getSmallConstantTripCount(TheLoop, TheLoop->getLoopLatch());
5182 DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n');
5183
5184 unsigned WidestType = getWidestType();
5185 unsigned WidestRegister = TTI.getRegisterBitWidth(true);
5186 unsigned MaxSafeDepDist = -1U;
5187 if (Legal->getMaxSafeDepDistBytes() != -1U)
5188 MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8;
5189 WidestRegister = ((WidestRegister < MaxSafeDepDist) ?
5190 WidestRegister : MaxSafeDepDist);
5191 unsigned MaxVectorSize = WidestRegister / WidestType;
5192 DEBUG(dbgs() << "LV: The Widest type: " << WidestType << " bits.\n");
5193 DEBUG(dbgs() << "LV: The Widest register is: "
5194 << WidestRegister << " bits.\n");
5195
5196 if (MaxVectorSize == 0) {
5197 DEBUG(dbgs() << "LV: The target has no vector registers.\n");
5198 MaxVectorSize = 1;
5199 }
5200
5201 assert(MaxVectorSize <= 32 && "Did not expect to pack so many elements"
5202 " into one vector!");
5203
5204 unsigned VF = MaxVectorSize;
5205
5206 // If we optimize the program for size, avoid creating the tail loop.
5207 if (OptForSize) {
5208 // If we are unable to calculate the trip count then don't try to vectorize.
5209 if (TC < 2) {
5210 DEBUG(dbgs() << "LV: Aborting. A tail loop is required in Os.\n");
5211 return Factor;
5212 }
5213
5214 // Find the maximum SIMD width that can fit within the trip count.
5215 VF = TC % MaxVectorSize;
5216
5217 if (VF == 0)
5218 VF = MaxVectorSize;
5219
5220 // If the trip count that we found modulo the vectorization factor is not
5221 // zero then we require a tail.
5222 if (VF < 2) {
5223 DEBUG(dbgs() << "LV: Aborting. A tail loop is required in Os.\n");
5224 return Factor;
5225 }
5226 }
5227
5228 if (UserVF != 0) {
5229 assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two");
5230 DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n");
5231
5232 Factor.Width = UserVF;
5233 return Factor;
5234 }
5235
5236 float Cost = expectedCost(1);
5237 #ifndef NDEBUG
5238 const float ScalarCost = Cost;
5239 #endif /* NDEBUG */
5240 unsigned Width = 1;
5241 DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n");
5242
5243 // Ignore scalar width, because the user explicitly wants vectorization.
5244 if (ForceVectorization && VF > 1) {
5245 Width = 2;
5246 Cost = expectedCost(Width) / (float)Width;
5247 }
5248
5249 for (unsigned i=2; i <= VF; i*=2) {
5250 // Notice that the vector loop needs to be executed less times, so
5251 // we need to divide the cost of the vector loops by the width of
5252 // the vector elements.
5253 float VectorCost = expectedCost(i) / (float)i;
5254 DEBUG(dbgs() << "LV: Vector loop of width " << i << " costs: " <<
5255 (int)VectorCost << ".\n");
5256 if (VectorCost < Cost) {
5257 Cost = VectorCost;
5258 Width = i;
5259 }
5260 }
5261
5262 DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs()
5263 << "LV: Vectorization seems to be not beneficial, "
5264 << "but was forced by a user.\n");
5265 DEBUG(dbgs() << "LV: Selecting VF: "<< Width << ".\n");
5266 Factor.Width = Width;
5267 Factor.Cost = Width * Cost;
5268 return Factor;
5269 }
5270
getWidestType()5271 unsigned LoopVectorizationCostModel::getWidestType() {
5272 unsigned MaxWidth = 8;
5273
5274 // For each block.
5275 for (Loop::block_iterator bb = TheLoop->block_begin(),
5276 be = TheLoop->block_end(); bb != be; ++bb) {
5277 BasicBlock *BB = *bb;
5278
5279 // For each instruction in the loop.
5280 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
5281 Type *T = it->getType();
5282
5283 // Only examine Loads, Stores and PHINodes.
5284 if (!isa<LoadInst>(it) && !isa<StoreInst>(it) && !isa<PHINode>(it))
5285 continue;
5286
5287 // Examine PHI nodes that are reduction variables.
5288 if (PHINode *PN = dyn_cast<PHINode>(it))
5289 if (!Legal->getReductionVars()->count(PN))
5290 continue;
5291
5292 // Examine the stored values.
5293 if (StoreInst *ST = dyn_cast<StoreInst>(it))
5294 T = ST->getValueOperand()->getType();
5295
5296 // Ignore loaded pointer types and stored pointer types that are not
5297 // consecutive. However, we do want to take consecutive stores/loads of
5298 // pointer vectors into account.
5299 if (T->isPointerTy() && !isConsecutiveLoadOrStore(it))
5300 continue;
5301
5302 MaxWidth = std::max(MaxWidth,
5303 (unsigned)DL->getTypeSizeInBits(T->getScalarType()));
5304 }
5305 }
5306
5307 return MaxWidth;
5308 }
5309
5310 unsigned
selectUnrollFactor(bool OptForSize,unsigned UserUF,unsigned VF,unsigned LoopCost)5311 LoopVectorizationCostModel::selectUnrollFactor(bool OptForSize,
5312 unsigned UserUF,
5313 unsigned VF,
5314 unsigned LoopCost) {
5315
5316 // -- The unroll heuristics --
5317 // We unroll the loop in order to expose ILP and reduce the loop overhead.
5318 // There are many micro-architectural considerations that we can't predict
5319 // at this level. For example frontend pressure (on decode or fetch) due to
5320 // code size, or the number and capabilities of the execution ports.
5321 //
5322 // We use the following heuristics to select the unroll factor:
5323 // 1. If the code has reductions the we unroll in order to break the cross
5324 // iteration dependency.
5325 // 2. If the loop is really small then we unroll in order to reduce the loop
5326 // overhead.
5327 // 3. We don't unroll if we think that we will spill registers to memory due
5328 // to the increased register pressure.
5329
5330 // Use the user preference, unless 'auto' is selected.
5331 if (UserUF != 0)
5332 return UserUF;
5333
5334 // When we optimize for size we don't unroll.
5335 if (OptForSize)
5336 return 1;
5337
5338 // We used the distance for the unroll factor.
5339 if (Legal->getMaxSafeDepDistBytes() != -1U)
5340 return 1;
5341
5342 // Do not unroll loops with a relatively small trip count.
5343 unsigned TC = SE->getSmallConstantTripCount(TheLoop,
5344 TheLoop->getLoopLatch());
5345 if (TC > 1 && TC < TinyTripCountUnrollThreshold)
5346 return 1;
5347
5348 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(VF > 1);
5349 DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters <<
5350 " registers\n");
5351
5352 if (VF == 1) {
5353 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0)
5354 TargetNumRegisters = ForceTargetNumScalarRegs;
5355 } else {
5356 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0)
5357 TargetNumRegisters = ForceTargetNumVectorRegs;
5358 }
5359
5360 LoopVectorizationCostModel::RegisterUsage R = calculateRegisterUsage();
5361 // We divide by these constants so assume that we have at least one
5362 // instruction that uses at least one register.
5363 R.MaxLocalUsers = std::max(R.MaxLocalUsers, 1U);
5364 R.NumInstructions = std::max(R.NumInstructions, 1U);
5365
5366 // We calculate the unroll factor using the following formula.
5367 // Subtract the number of loop invariants from the number of available
5368 // registers. These registers are used by all of the unrolled instances.
5369 // Next, divide the remaining registers by the number of registers that is
5370 // required by the loop, in order to estimate how many parallel instances
5371 // fit without causing spills. All of this is rounded down if necessary to be
5372 // a power of two. We want power of two unroll factors to simplify any
5373 // addressing operations or alignment considerations.
5374 unsigned UF = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs) /
5375 R.MaxLocalUsers);
5376
5377 // Don't count the induction variable as unrolled.
5378 if (EnableIndVarRegisterHeur)
5379 UF = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs - 1) /
5380 std::max(1U, (R.MaxLocalUsers - 1)));
5381
5382 // Clamp the unroll factor ranges to reasonable factors.
5383 unsigned MaxUnrollSize = TTI.getMaximumUnrollFactor();
5384
5385 // Check if the user has overridden the unroll max.
5386 if (VF == 1) {
5387 if (ForceTargetMaxScalarUnrollFactor.getNumOccurrences() > 0)
5388 MaxUnrollSize = ForceTargetMaxScalarUnrollFactor;
5389 } else {
5390 if (ForceTargetMaxVectorUnrollFactor.getNumOccurrences() > 0)
5391 MaxUnrollSize = ForceTargetMaxVectorUnrollFactor;
5392 }
5393
5394 // If we did not calculate the cost for VF (because the user selected the VF)
5395 // then we calculate the cost of VF here.
5396 if (LoopCost == 0)
5397 LoopCost = expectedCost(VF);
5398
5399 // Clamp the calculated UF to be between the 1 and the max unroll factor
5400 // that the target allows.
5401 if (UF > MaxUnrollSize)
5402 UF = MaxUnrollSize;
5403 else if (UF < 1)
5404 UF = 1;
5405
5406 // Unroll if we vectorized this loop and there is a reduction that could
5407 // benefit from unrolling.
5408 if (VF > 1 && Legal->getReductionVars()->size()) {
5409 DEBUG(dbgs() << "LV: Unrolling because of reductions.\n");
5410 return UF;
5411 }
5412
5413 // Note that if we've already vectorized the loop we will have done the
5414 // runtime check and so unrolling won't require further checks.
5415 bool UnrollingRequiresRuntimePointerCheck =
5416 (VF == 1 && Legal->getRuntimePointerCheck()->Need);
5417
5418 // We want to unroll small loops in order to reduce the loop overhead and
5419 // potentially expose ILP opportunities.
5420 DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n');
5421 if (!UnrollingRequiresRuntimePointerCheck &&
5422 LoopCost < SmallLoopCost) {
5423 // We assume that the cost overhead is 1 and we use the cost model
5424 // to estimate the cost of the loop and unroll until the cost of the
5425 // loop overhead is about 5% of the cost of the loop.
5426 unsigned SmallUF = std::min(UF, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost));
5427
5428 // Unroll until store/load ports (estimated by max unroll factor) are
5429 // saturated.
5430 unsigned StoresUF = UF / (Legal->NumStores ? Legal->NumStores : 1);
5431 unsigned LoadsUF = UF / (Legal->NumLoads ? Legal->NumLoads : 1);
5432
5433 if (EnableLoadStoreRuntimeUnroll && std::max(StoresUF, LoadsUF) > SmallUF) {
5434 DEBUG(dbgs() << "LV: Unrolling to saturate store or load ports.\n");
5435 return std::max(StoresUF, LoadsUF);
5436 }
5437
5438 DEBUG(dbgs() << "LV: Unrolling to reduce branch cost.\n");
5439 return SmallUF;
5440 }
5441
5442 DEBUG(dbgs() << "LV: Not Unrolling.\n");
5443 return 1;
5444 }
5445
5446 LoopVectorizationCostModel::RegisterUsage
calculateRegisterUsage()5447 LoopVectorizationCostModel::calculateRegisterUsage() {
5448 // This function calculates the register usage by measuring the highest number
5449 // of values that are alive at a single location. Obviously, this is a very
5450 // rough estimation. We scan the loop in a topological order in order and
5451 // assign a number to each instruction. We use RPO to ensure that defs are
5452 // met before their users. We assume that each instruction that has in-loop
5453 // users starts an interval. We record every time that an in-loop value is
5454 // used, so we have a list of the first and last occurrences of each
5455 // instruction. Next, we transpose this data structure into a multi map that
5456 // holds the list of intervals that *end* at a specific location. This multi
5457 // map allows us to perform a linear search. We scan the instructions linearly
5458 // and record each time that a new interval starts, by placing it in a set.
5459 // If we find this value in the multi-map then we remove it from the set.
5460 // The max register usage is the maximum size of the set.
5461 // We also search for instructions that are defined outside the loop, but are
5462 // used inside the loop. We need this number separately from the max-interval
5463 // usage number because when we unroll, loop-invariant values do not take
5464 // more register.
5465 LoopBlocksDFS DFS(TheLoop);
5466 DFS.perform(LI);
5467
5468 RegisterUsage R;
5469 R.NumInstructions = 0;
5470
5471 // Each 'key' in the map opens a new interval. The values
5472 // of the map are the index of the 'last seen' usage of the
5473 // instruction that is the key.
5474 typedef DenseMap<Instruction*, unsigned> IntervalMap;
5475 // Maps instruction to its index.
5476 DenseMap<unsigned, Instruction*> IdxToInstr;
5477 // Marks the end of each interval.
5478 IntervalMap EndPoint;
5479 // Saves the list of instruction indices that are used in the loop.
5480 SmallSet<Instruction*, 8> Ends;
5481 // Saves the list of values that are used in the loop but are
5482 // defined outside the loop, such as arguments and constants.
5483 SmallPtrSet<Value*, 8> LoopInvariants;
5484
5485 unsigned Index = 0;
5486 for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(),
5487 be = DFS.endRPO(); bb != be; ++bb) {
5488 R.NumInstructions += (*bb)->size();
5489 for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e;
5490 ++it) {
5491 Instruction *I = it;
5492 IdxToInstr[Index++] = I;
5493
5494 // Save the end location of each USE.
5495 for (unsigned i = 0; i < I->getNumOperands(); ++i) {
5496 Value *U = I->getOperand(i);
5497 Instruction *Instr = dyn_cast<Instruction>(U);
5498
5499 // Ignore non-instruction values such as arguments, constants, etc.
5500 if (!Instr) continue;
5501
5502 // If this instruction is outside the loop then record it and continue.
5503 if (!TheLoop->contains(Instr)) {
5504 LoopInvariants.insert(Instr);
5505 continue;
5506 }
5507
5508 // Overwrite previous end points.
5509 EndPoint[Instr] = Index;
5510 Ends.insert(Instr);
5511 }
5512 }
5513 }
5514
5515 // Saves the list of intervals that end with the index in 'key'.
5516 typedef SmallVector<Instruction*, 2> InstrList;
5517 DenseMap<unsigned, InstrList> TransposeEnds;
5518
5519 // Transpose the EndPoints to a list of values that end at each index.
5520 for (IntervalMap::iterator it = EndPoint.begin(), e = EndPoint.end();
5521 it != e; ++it)
5522 TransposeEnds[it->second].push_back(it->first);
5523
5524 SmallSet<Instruction*, 8> OpenIntervals;
5525 unsigned MaxUsage = 0;
5526
5527
5528 DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n");
5529 for (unsigned int i = 0; i < Index; ++i) {
5530 Instruction *I = IdxToInstr[i];
5531 // Ignore instructions that are never used within the loop.
5532 if (!Ends.count(I)) continue;
5533
5534 // Remove all of the instructions that end at this location.
5535 InstrList &List = TransposeEnds[i];
5536 for (unsigned int j=0, e = List.size(); j < e; ++j)
5537 OpenIntervals.erase(List[j]);
5538
5539 // Count the number of live interals.
5540 MaxUsage = std::max(MaxUsage, OpenIntervals.size());
5541
5542 DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " <<
5543 OpenIntervals.size() << '\n');
5544
5545 // Add the current instruction to the list of open intervals.
5546 OpenIntervals.insert(I);
5547 }
5548
5549 unsigned Invariant = LoopInvariants.size();
5550 DEBUG(dbgs() << "LV(REG): Found max usage: " << MaxUsage << '\n');
5551 DEBUG(dbgs() << "LV(REG): Found invariant usage: " << Invariant << '\n');
5552 DEBUG(dbgs() << "LV(REG): LoopSize: " << R.NumInstructions << '\n');
5553
5554 R.LoopInvariantRegs = Invariant;
5555 R.MaxLocalUsers = MaxUsage;
5556 return R;
5557 }
5558
expectedCost(unsigned VF)5559 unsigned LoopVectorizationCostModel::expectedCost(unsigned VF) {
5560 unsigned Cost = 0;
5561
5562 // For each block.
5563 for (Loop::block_iterator bb = TheLoop->block_begin(),
5564 be = TheLoop->block_end(); bb != be; ++bb) {
5565 unsigned BlockCost = 0;
5566 BasicBlock *BB = *bb;
5567
5568 // For each instruction in the old loop.
5569 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
5570 // Skip dbg intrinsics.
5571 if (isa<DbgInfoIntrinsic>(it))
5572 continue;
5573
5574 unsigned C = getInstructionCost(it, VF);
5575
5576 // Check if we should override the cost.
5577 if (ForceTargetInstructionCost.getNumOccurrences() > 0)
5578 C = ForceTargetInstructionCost;
5579
5580 BlockCost += C;
5581 DEBUG(dbgs() << "LV: Found an estimated cost of " << C << " for VF " <<
5582 VF << " For instruction: " << *it << '\n');
5583 }
5584
5585 // We assume that if-converted blocks have a 50% chance of being executed.
5586 // When the code is scalar then some of the blocks are avoided due to CF.
5587 // When the code is vectorized we execute all code paths.
5588 if (VF == 1 && Legal->blockNeedsPredication(*bb))
5589 BlockCost /= 2;
5590
5591 Cost += BlockCost;
5592 }
5593
5594 return Cost;
5595 }
5596
5597 /// \brief Check whether the address computation for a non-consecutive memory
5598 /// access looks like an unlikely candidate for being merged into the indexing
5599 /// mode.
5600 ///
5601 /// We look for a GEP which has one index that is an induction variable and all
5602 /// other indices are loop invariant. If the stride of this access is also
5603 /// within a small bound we decide that this address computation can likely be
5604 /// merged into the addressing mode.
5605 /// In all other cases, we identify the address computation as complex.
isLikelyComplexAddressComputation(Value * Ptr,LoopVectorizationLegality * Legal,ScalarEvolution * SE,const Loop * TheLoop)5606 static bool isLikelyComplexAddressComputation(Value *Ptr,
5607 LoopVectorizationLegality *Legal,
5608 ScalarEvolution *SE,
5609 const Loop *TheLoop) {
5610 GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr);
5611 if (!Gep)
5612 return true;
5613
5614 // We are looking for a gep with all loop invariant indices except for one
5615 // which should be an induction variable.
5616 unsigned NumOperands = Gep->getNumOperands();
5617 for (unsigned i = 1; i < NumOperands; ++i) {
5618 Value *Opd = Gep->getOperand(i);
5619 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) &&
5620 !Legal->isInductionVariable(Opd))
5621 return true;
5622 }
5623
5624 // Now we know we have a GEP ptr, %inv, %ind, %inv. Make sure that the step
5625 // can likely be merged into the address computation.
5626 unsigned MaxMergeDistance = 64;
5627
5628 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Ptr));
5629 if (!AddRec)
5630 return true;
5631
5632 // Check the step is constant.
5633 const SCEV *Step = AddRec->getStepRecurrence(*SE);
5634 // Calculate the pointer stride and check if it is consecutive.
5635 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
5636 if (!C)
5637 return true;
5638
5639 const APInt &APStepVal = C->getValue()->getValue();
5640
5641 // Huge step value - give up.
5642 if (APStepVal.getBitWidth() > 64)
5643 return true;
5644
5645 int64_t StepVal = APStepVal.getSExtValue();
5646
5647 return StepVal > MaxMergeDistance;
5648 }
5649
isStrideMul(Instruction * I,LoopVectorizationLegality * Legal)5650 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) {
5651 if (Legal->hasStride(I->getOperand(0)) || Legal->hasStride(I->getOperand(1)))
5652 return true;
5653 return false;
5654 }
5655
5656 unsigned
getInstructionCost(Instruction * I,unsigned VF)5657 LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) {
5658 // If we know that this instruction will remain uniform, check the cost of
5659 // the scalar version.
5660 if (Legal->isUniformAfterVectorization(I))
5661 VF = 1;
5662
5663 Type *RetTy = I->getType();
5664 Type *VectorTy = ToVectorTy(RetTy, VF);
5665
5666 // TODO: We need to estimate the cost of intrinsic calls.
5667 switch (I->getOpcode()) {
5668 case Instruction::GetElementPtr:
5669 // We mark this instruction as zero-cost because the cost of GEPs in
5670 // vectorized code depends on whether the corresponding memory instruction
5671 // is scalarized or not. Therefore, we handle GEPs with the memory
5672 // instruction cost.
5673 return 0;
5674 case Instruction::Br: {
5675 return TTI.getCFInstrCost(I->getOpcode());
5676 }
5677 case Instruction::PHI:
5678 //TODO: IF-converted IFs become selects.
5679 return 0;
5680 case Instruction::Add:
5681 case Instruction::FAdd:
5682 case Instruction::Sub:
5683 case Instruction::FSub:
5684 case Instruction::Mul:
5685 case Instruction::FMul:
5686 case Instruction::UDiv:
5687 case Instruction::SDiv:
5688 case Instruction::FDiv:
5689 case Instruction::URem:
5690 case Instruction::SRem:
5691 case Instruction::FRem:
5692 case Instruction::Shl:
5693 case Instruction::LShr:
5694 case Instruction::AShr:
5695 case Instruction::And:
5696 case Instruction::Or:
5697 case Instruction::Xor: {
5698 // Since we will replace the stride by 1 the multiplication should go away.
5699 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal))
5700 return 0;
5701 // Certain instructions can be cheaper to vectorize if they have a constant
5702 // second vector operand. One example of this are shifts on x86.
5703 TargetTransformInfo::OperandValueKind Op1VK =
5704 TargetTransformInfo::OK_AnyValue;
5705 TargetTransformInfo::OperandValueKind Op2VK =
5706 TargetTransformInfo::OK_AnyValue;
5707 Value *Op2 = I->getOperand(1);
5708
5709 // Check for a splat of a constant or for a non uniform vector of constants.
5710 if (isa<ConstantInt>(Op2))
5711 Op2VK = TargetTransformInfo::OK_UniformConstantValue;
5712 else if (isa<ConstantVector>(Op2) || isa<ConstantDataVector>(Op2)) {
5713 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue;
5714 if (cast<Constant>(Op2)->getSplatValue() != nullptr)
5715 Op2VK = TargetTransformInfo::OK_UniformConstantValue;
5716 }
5717
5718 return TTI.getArithmeticInstrCost(I->getOpcode(), VectorTy, Op1VK, Op2VK);
5719 }
5720 case Instruction::Select: {
5721 SelectInst *SI = cast<SelectInst>(I);
5722 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition());
5723 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop));
5724 Type *CondTy = SI->getCondition()->getType();
5725 if (!ScalarCond)
5726 CondTy = VectorType::get(CondTy, VF);
5727
5728 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy);
5729 }
5730 case Instruction::ICmp:
5731 case Instruction::FCmp: {
5732 Type *ValTy = I->getOperand(0)->getType();
5733 VectorTy = ToVectorTy(ValTy, VF);
5734 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy);
5735 }
5736 case Instruction::Store:
5737 case Instruction::Load: {
5738 StoreInst *SI = dyn_cast<StoreInst>(I);
5739 LoadInst *LI = dyn_cast<LoadInst>(I);
5740 Type *ValTy = (SI ? SI->getValueOperand()->getType() :
5741 LI->getType());
5742 VectorTy = ToVectorTy(ValTy, VF);
5743
5744 unsigned Alignment = SI ? SI->getAlignment() : LI->getAlignment();
5745 unsigned AS = SI ? SI->getPointerAddressSpace() :
5746 LI->getPointerAddressSpace();
5747 Value *Ptr = SI ? SI->getPointerOperand() : LI->getPointerOperand();
5748 // We add the cost of address computation here instead of with the gep
5749 // instruction because only here we know whether the operation is
5750 // scalarized.
5751 if (VF == 1)
5752 return TTI.getAddressComputationCost(VectorTy) +
5753 TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS);
5754
5755 // Scalarized loads/stores.
5756 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr);
5757 bool Reverse = ConsecutiveStride < 0;
5758 unsigned ScalarAllocatedSize = DL->getTypeAllocSize(ValTy);
5759 unsigned VectorElementSize = DL->getTypeStoreSize(VectorTy)/VF;
5760 if (!ConsecutiveStride || ScalarAllocatedSize != VectorElementSize) {
5761 bool IsComplexComputation =
5762 isLikelyComplexAddressComputation(Ptr, Legal, SE, TheLoop);
5763 unsigned Cost = 0;
5764 // The cost of extracting from the value vector and pointer vector.
5765 Type *PtrTy = ToVectorTy(Ptr->getType(), VF);
5766 for (unsigned i = 0; i < VF; ++i) {
5767 // The cost of extracting the pointer operand.
5768 Cost += TTI.getVectorInstrCost(Instruction::ExtractElement, PtrTy, i);
5769 // In case of STORE, the cost of ExtractElement from the vector.
5770 // In case of LOAD, the cost of InsertElement into the returned
5771 // vector.
5772 Cost += TTI.getVectorInstrCost(SI ? Instruction::ExtractElement :
5773 Instruction::InsertElement,
5774 VectorTy, i);
5775 }
5776
5777 // The cost of the scalar loads/stores.
5778 Cost += VF * TTI.getAddressComputationCost(PtrTy, IsComplexComputation);
5779 Cost += VF * TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(),
5780 Alignment, AS);
5781 return Cost;
5782 }
5783
5784 // Wide load/stores.
5785 unsigned Cost = TTI.getAddressComputationCost(VectorTy);
5786 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS);
5787
5788 if (Reverse)
5789 Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse,
5790 VectorTy, 0);
5791 return Cost;
5792 }
5793 case Instruction::ZExt:
5794 case Instruction::SExt:
5795 case Instruction::FPToUI:
5796 case Instruction::FPToSI:
5797 case Instruction::FPExt:
5798 case Instruction::PtrToInt:
5799 case Instruction::IntToPtr:
5800 case Instruction::SIToFP:
5801 case Instruction::UIToFP:
5802 case Instruction::Trunc:
5803 case Instruction::FPTrunc:
5804 case Instruction::BitCast: {
5805 // We optimize the truncation of induction variable.
5806 // The cost of these is the same as the scalar operation.
5807 if (I->getOpcode() == Instruction::Trunc &&
5808 Legal->isInductionVariable(I->getOperand(0)))
5809 return TTI.getCastInstrCost(I->getOpcode(), I->getType(),
5810 I->getOperand(0)->getType());
5811
5812 Type *SrcVecTy = ToVectorTy(I->getOperand(0)->getType(), VF);
5813 return TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy);
5814 }
5815 case Instruction::Call: {
5816 CallInst *CI = cast<CallInst>(I);
5817 Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI);
5818 assert(ID && "Not an intrinsic call!");
5819 Type *RetTy = ToVectorTy(CI->getType(), VF);
5820 SmallVector<Type*, 4> Tys;
5821 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i)
5822 Tys.push_back(ToVectorTy(CI->getArgOperand(i)->getType(), VF));
5823 return TTI.getIntrinsicInstrCost(ID, RetTy, Tys);
5824 }
5825 default: {
5826 // We are scalarizing the instruction. Return the cost of the scalar
5827 // instruction, plus the cost of insert and extract into vector
5828 // elements, times the vector width.
5829 unsigned Cost = 0;
5830
5831 if (!RetTy->isVoidTy() && VF != 1) {
5832 unsigned InsCost = TTI.getVectorInstrCost(Instruction::InsertElement,
5833 VectorTy);
5834 unsigned ExtCost = TTI.getVectorInstrCost(Instruction::ExtractElement,
5835 VectorTy);
5836
5837 // The cost of inserting the results plus extracting each one of the
5838 // operands.
5839 Cost += VF * (InsCost + ExtCost * I->getNumOperands());
5840 }
5841
5842 // The cost of executing VF copies of the scalar instruction. This opcode
5843 // is unknown. Assume that it is the same as 'mul'.
5844 Cost += VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy);
5845 return Cost;
5846 }
5847 }// end of switch.
5848 }
5849
ToVectorTy(Type * Scalar,unsigned VF)5850 Type* LoopVectorizationCostModel::ToVectorTy(Type *Scalar, unsigned VF) {
5851 if (Scalar->isVoidTy() || VF == 1)
5852 return Scalar;
5853 return VectorType::get(Scalar, VF);
5854 }
5855
5856 char LoopVectorize::ID = 0;
5857 static const char lv_name[] = "Loop Vectorization";
5858 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false)
5859 INITIALIZE_AG_DEPENDENCY(TargetTransformInfo)
5860 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfo)
5861 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
5862 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
5863 INITIALIZE_PASS_DEPENDENCY(LCSSA)
5864 INITIALIZE_PASS_DEPENDENCY(LoopInfo)
5865 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
5866 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false)
5867
5868 namespace llvm {
createLoopVectorizePass(bool NoUnrolling,bool AlwaysVectorize)5869 Pass *createLoopVectorizePass(bool NoUnrolling, bool AlwaysVectorize) {
5870 return new LoopVectorize(NoUnrolling, AlwaysVectorize);
5871 }
5872 }
5873
isConsecutiveLoadOrStore(Instruction * Inst)5874 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) {
5875 // Check for a store.
5876 if (StoreInst *ST = dyn_cast<StoreInst>(Inst))
5877 return Legal->isConsecutivePtr(ST->getPointerOperand()) != 0;
5878
5879 // Check for a load.
5880 if (LoadInst *LI = dyn_cast<LoadInst>(Inst))
5881 return Legal->isConsecutivePtr(LI->getPointerOperand()) != 0;
5882
5883 return false;
5884 }
5885
5886
scalarizeInstruction(Instruction * Instr,bool IfPredicateStore)5887 void InnerLoopUnroller::scalarizeInstruction(Instruction *Instr,
5888 bool IfPredicateStore) {
5889 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors");
5890 // Holds vector parameters or scalars, in case of uniform vals.
5891 SmallVector<VectorParts, 4> Params;
5892
5893 setDebugLocFromInst(Builder, Instr);
5894
5895 // Find all of the vectorized parameters.
5896 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
5897 Value *SrcOp = Instr->getOperand(op);
5898
5899 // If we are accessing the old induction variable, use the new one.
5900 if (SrcOp == OldInduction) {
5901 Params.push_back(getVectorValue(SrcOp));
5902 continue;
5903 }
5904
5905 // Try using previously calculated values.
5906 Instruction *SrcInst = dyn_cast<Instruction>(SrcOp);
5907
5908 // If the src is an instruction that appeared earlier in the basic block
5909 // then it should already be vectorized.
5910 if (SrcInst && OrigLoop->contains(SrcInst)) {
5911 assert(WidenMap.has(SrcInst) && "Source operand is unavailable");
5912 // The parameter is a vector value from earlier.
5913 Params.push_back(WidenMap.get(SrcInst));
5914 } else {
5915 // The parameter is a scalar from outside the loop. Maybe even a constant.
5916 VectorParts Scalars;
5917 Scalars.append(UF, SrcOp);
5918 Params.push_back(Scalars);
5919 }
5920 }
5921
5922 assert(Params.size() == Instr->getNumOperands() &&
5923 "Invalid number of operands");
5924
5925 // Does this instruction return a value ?
5926 bool IsVoidRetTy = Instr->getType()->isVoidTy();
5927
5928 Value *UndefVec = IsVoidRetTy ? nullptr :
5929 UndefValue::get(Instr->getType());
5930 // Create a new entry in the WidenMap and initialize it to Undef or Null.
5931 VectorParts &VecResults = WidenMap.splat(Instr, UndefVec);
5932
5933 Instruction *InsertPt = Builder.GetInsertPoint();
5934 BasicBlock *IfBlock = Builder.GetInsertBlock();
5935 BasicBlock *CondBlock = nullptr;
5936
5937 VectorParts Cond;
5938 Loop *VectorLp = nullptr;
5939 if (IfPredicateStore) {
5940 assert(Instr->getParent()->getSinglePredecessor() &&
5941 "Only support single predecessor blocks");
5942 Cond = createEdgeMask(Instr->getParent()->getSinglePredecessor(),
5943 Instr->getParent());
5944 VectorLp = LI->getLoopFor(IfBlock);
5945 assert(VectorLp && "Must have a loop for this block");
5946 }
5947
5948 // For each vector unroll 'part':
5949 for (unsigned Part = 0; Part < UF; ++Part) {
5950 // For each scalar that we create:
5951
5952 // Start an "if (pred) a[i] = ..." block.
5953 Value *Cmp = nullptr;
5954 if (IfPredicateStore) {
5955 if (Cond[Part]->getType()->isVectorTy())
5956 Cond[Part] =
5957 Builder.CreateExtractElement(Cond[Part], Builder.getInt32(0));
5958 Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Cond[Part],
5959 ConstantInt::get(Cond[Part]->getType(), 1));
5960 CondBlock = IfBlock->splitBasicBlock(InsertPt, "cond.store");
5961 LoopVectorBody.push_back(CondBlock);
5962 VectorLp->addBasicBlockToLoop(CondBlock, LI->getBase());
5963 // Update Builder with newly created basic block.
5964 Builder.SetInsertPoint(InsertPt);
5965 }
5966
5967 Instruction *Cloned = Instr->clone();
5968 if (!IsVoidRetTy)
5969 Cloned->setName(Instr->getName() + ".cloned");
5970 // Replace the operands of the cloned instructions with extracted scalars.
5971 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
5972 Value *Op = Params[op][Part];
5973 Cloned->setOperand(op, Op);
5974 }
5975
5976 // Place the cloned scalar in the new loop.
5977 Builder.Insert(Cloned);
5978
5979 // If the original scalar returns a value we need to place it in a vector
5980 // so that future users will be able to use it.
5981 if (!IsVoidRetTy)
5982 VecResults[Part] = Cloned;
5983
5984 // End if-block.
5985 if (IfPredicateStore) {
5986 BasicBlock *NewIfBlock = CondBlock->splitBasicBlock(InsertPt, "else");
5987 LoopVectorBody.push_back(NewIfBlock);
5988 VectorLp->addBasicBlockToLoop(NewIfBlock, LI->getBase());
5989 Builder.SetInsertPoint(InsertPt);
5990 Instruction *OldBr = IfBlock->getTerminator();
5991 BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr);
5992 OldBr->eraseFromParent();
5993 IfBlock = NewIfBlock;
5994 }
5995 }
5996 }
5997
vectorizeMemoryInstruction(Instruction * Instr)5998 void InnerLoopUnroller::vectorizeMemoryInstruction(Instruction *Instr) {
5999 StoreInst *SI = dyn_cast<StoreInst>(Instr);
6000 bool IfPredicateStore = (SI && Legal->blockNeedsPredication(SI->getParent()));
6001
6002 return scalarizeInstruction(Instr, IfPredicateStore);
6003 }
6004
reverseVector(Value * Vec)6005 Value *InnerLoopUnroller::reverseVector(Value *Vec) {
6006 return Vec;
6007 }
6008
getBroadcastInstrs(Value * V)6009 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) {
6010 return V;
6011 }
6012
getConsecutiveVector(Value * Val,int StartIdx,bool Negate)6013 Value *InnerLoopUnroller::getConsecutiveVector(Value* Val, int StartIdx,
6014 bool Negate) {
6015 // When unrolling and the VF is 1, we only need to add a simple scalar.
6016 Type *ITy = Val->getType();
6017 assert(!ITy->isVectorTy() && "Val must be a scalar");
6018 Constant *C = ConstantInt::get(ITy, StartIdx, Negate);
6019 return Builder.CreateAdd(Val, C, "induction");
6020 }
6021