1 //===-- StackColoring.cpp -------------------------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass implements the stack-coloring optimization that looks for
11 // lifetime markers machine instructions (LIFESTART_BEGIN and LIFESTART_END),
12 // which represent the possible lifetime of stack slots. It attempts to
13 // merge disjoint stack slots and reduce the used stack space.
14 // NOTE: This pass is not StackSlotColoring, which optimizes spill slots.
15 //
16 // TODO: In the future we plan to improve stack coloring in the following ways:
17 // 1. Allow merging multiple small slots into a single larger slot at different
18 // offsets.
19 // 2. Merge this pass with StackSlotColoring and allow merging of allocas with
20 // spill slots.
21 //
22 //===----------------------------------------------------------------------===//
23
24 #include "llvm/CodeGen/Passes.h"
25 #include "llvm/ADT/BitVector.h"
26 #include "llvm/ADT/DepthFirstIterator.h"
27 #include "llvm/ADT/PostOrderIterator.h"
28 #include "llvm/ADT/SetVector.h"
29 #include "llvm/ADT/SmallPtrSet.h"
30 #include "llvm/ADT/SparseSet.h"
31 #include "llvm/ADT/Statistic.h"
32 #include "llvm/Analysis/ValueTracking.h"
33 #include "llvm/CodeGen/LiveInterval.h"
34 #include "llvm/CodeGen/MachineBasicBlock.h"
35 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
36 #include "llvm/CodeGen/MachineDominators.h"
37 #include "llvm/CodeGen/MachineFrameInfo.h"
38 #include "llvm/CodeGen/MachineFunctionPass.h"
39 #include "llvm/CodeGen/MachineLoopInfo.h"
40 #include "llvm/CodeGen/MachineMemOperand.h"
41 #include "llvm/CodeGen/MachineModuleInfo.h"
42 #include "llvm/CodeGen/MachineRegisterInfo.h"
43 #include "llvm/CodeGen/PseudoSourceValue.h"
44 #include "llvm/CodeGen/SlotIndexes.h"
45 #include "llvm/CodeGen/StackProtector.h"
46 #include "llvm/IR/DebugInfo.h"
47 #include "llvm/IR/Dominators.h"
48 #include "llvm/IR/Function.h"
49 #include "llvm/IR/Instructions.h"
50 #include "llvm/IR/Module.h"
51 #include "llvm/MC/MCInstrItineraries.h"
52 #include "llvm/Support/CommandLine.h"
53 #include "llvm/Support/Debug.h"
54 #include "llvm/Support/raw_ostream.h"
55 #include "llvm/Target/TargetInstrInfo.h"
56 #include "llvm/Target/TargetRegisterInfo.h"
57
58 using namespace llvm;
59
60 #define DEBUG_TYPE "stackcoloring"
61
62 static cl::opt<bool>
63 DisableColoring("no-stack-coloring",
64 cl::init(false), cl::Hidden,
65 cl::desc("Disable stack coloring"));
66
67 /// The user may write code that uses allocas outside of the declared lifetime
68 /// zone. This can happen when the user returns a reference to a local
69 /// data-structure. We can detect these cases and decide not to optimize the
70 /// code. If this flag is enabled, we try to save the user.
71 static cl::opt<bool>
72 ProtectFromEscapedAllocas("protect-from-escaped-allocas",
73 cl::init(false), cl::Hidden,
74 cl::desc("Do not optimize lifetime zones that "
75 "are broken"));
76
77 STATISTIC(NumMarkerSeen, "Number of lifetime markers found.");
78 STATISTIC(StackSpaceSaved, "Number of bytes saved due to merging slots.");
79 STATISTIC(StackSlotMerged, "Number of stack slot merged.");
80 STATISTIC(EscapedAllocas, "Number of allocas that escaped the lifetime region");
81
82 //===----------------------------------------------------------------------===//
83 // StackColoring Pass
84 //===----------------------------------------------------------------------===//
85
86 namespace {
87 /// StackColoring - A machine pass for merging disjoint stack allocations,
88 /// marked by the LIFETIME_START and LIFETIME_END pseudo instructions.
89 class StackColoring : public MachineFunctionPass {
90 MachineFrameInfo *MFI;
91 MachineFunction *MF;
92
93 /// A class representing liveness information for a single basic block.
94 /// Each bit in the BitVector represents the liveness property
95 /// for a different stack slot.
96 struct BlockLifetimeInfo {
97 /// Which slots BEGINs in each basic block.
98 BitVector Begin;
99 /// Which slots ENDs in each basic block.
100 BitVector End;
101 /// Which slots are marked as LIVE_IN, coming into each basic block.
102 BitVector LiveIn;
103 /// Which slots are marked as LIVE_OUT, coming out of each basic block.
104 BitVector LiveOut;
105 };
106
107 /// Maps active slots (per bit) for each basic block.
108 typedef DenseMap<const MachineBasicBlock*, BlockLifetimeInfo> LivenessMap;
109 LivenessMap BlockLiveness;
110
111 /// Maps serial numbers to basic blocks.
112 DenseMap<const MachineBasicBlock*, int> BasicBlocks;
113 /// Maps basic blocks to a serial number.
114 SmallVector<const MachineBasicBlock*, 8> BasicBlockNumbering;
115
116 /// Maps liveness intervals for each slot.
117 SmallVector<std::unique_ptr<LiveInterval>, 16> Intervals;
118 /// VNInfo is used for the construction of LiveIntervals.
119 VNInfo::Allocator VNInfoAllocator;
120 /// SlotIndex analysis object.
121 SlotIndexes *Indexes;
122 /// The stack protector object.
123 StackProtector *SP;
124
125 /// The list of lifetime markers found. These markers are to be removed
126 /// once the coloring is done.
127 SmallVector<MachineInstr*, 8> Markers;
128
129 public:
130 static char ID;
StackColoring()131 StackColoring() : MachineFunctionPass(ID) {
132 initializeStackColoringPass(*PassRegistry::getPassRegistry());
133 }
134 void getAnalysisUsage(AnalysisUsage &AU) const override;
135 bool runOnMachineFunction(MachineFunction &MF) override;
136
137 private:
138 /// Debug.
139 void dump() const;
140
141 /// Removes all of the lifetime marker instructions from the function.
142 /// \returns true if any markers were removed.
143 bool removeAllMarkers();
144
145 /// Scan the machine function and find all of the lifetime markers.
146 /// Record the findings in the BEGIN and END vectors.
147 /// \returns the number of markers found.
148 unsigned collectMarkers(unsigned NumSlot);
149
150 /// Perform the dataflow calculation and calculate the lifetime for each of
151 /// the slots, based on the BEGIN/END vectors. Set the LifetimeLIVE_IN and
152 /// LifetimeLIVE_OUT maps that represent which stack slots are live coming
153 /// in and out blocks.
154 void calculateLocalLiveness();
155
156 /// Construct the LiveIntervals for the slots.
157 void calculateLiveIntervals(unsigned NumSlots);
158
159 /// Go over the machine function and change instructions which use stack
160 /// slots to use the joint slots.
161 void remapInstructions(DenseMap<int, int> &SlotRemap);
162
163 /// The input program may contain instructions which are not inside lifetime
164 /// markers. This can happen due to a bug in the compiler or due to a bug in
165 /// user code (for example, returning a reference to a local variable).
166 /// This procedure checks all of the instructions in the function and
167 /// invalidates lifetime ranges which do not contain all of the instructions
168 /// which access that frame slot.
169 void removeInvalidSlotRanges();
170
171 /// Map entries which point to other entries to their destination.
172 /// A->B->C becomes A->C.
173 void expungeSlotMap(DenseMap<int, int> &SlotRemap, unsigned NumSlots);
174 };
175 } // end anonymous namespace
176
177 char StackColoring::ID = 0;
178 char &llvm::StackColoringID = StackColoring::ID;
179
180 INITIALIZE_PASS_BEGIN(StackColoring,
181 "stack-coloring", "Merge disjoint stack slots", false, false)
INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)182 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
183 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
184 INITIALIZE_PASS_DEPENDENCY(StackProtector)
185 INITIALIZE_PASS_END(StackColoring,
186 "stack-coloring", "Merge disjoint stack slots", false, false)
187
188 void StackColoring::getAnalysisUsage(AnalysisUsage &AU) const {
189 AU.addRequired<MachineDominatorTree>();
190 AU.addPreserved<MachineDominatorTree>();
191 AU.addRequired<SlotIndexes>();
192 AU.addRequired<StackProtector>();
193 MachineFunctionPass::getAnalysisUsage(AU);
194 }
195
dump() const196 void StackColoring::dump() const {
197 for (MachineBasicBlock *MBB : depth_first(MF)) {
198 DEBUG(dbgs() << "Inspecting block #" << BasicBlocks.lookup(MBB) << " ["
199 << MBB->getName() << "]\n");
200
201 LivenessMap::const_iterator BI = BlockLiveness.find(MBB);
202 assert(BI != BlockLiveness.end() && "Block not found");
203 const BlockLifetimeInfo &BlockInfo = BI->second;
204
205 DEBUG(dbgs()<<"BEGIN : {");
206 for (unsigned i=0; i < BlockInfo.Begin.size(); ++i)
207 DEBUG(dbgs()<<BlockInfo.Begin.test(i)<<" ");
208 DEBUG(dbgs()<<"}\n");
209
210 DEBUG(dbgs()<<"END : {");
211 for (unsigned i=0; i < BlockInfo.End.size(); ++i)
212 DEBUG(dbgs()<<BlockInfo.End.test(i)<<" ");
213
214 DEBUG(dbgs()<<"}\n");
215
216 DEBUG(dbgs()<<"LIVE_IN: {");
217 for (unsigned i=0; i < BlockInfo.LiveIn.size(); ++i)
218 DEBUG(dbgs()<<BlockInfo.LiveIn.test(i)<<" ");
219
220 DEBUG(dbgs()<<"}\n");
221 DEBUG(dbgs()<<"LIVEOUT: {");
222 for (unsigned i=0; i < BlockInfo.LiveOut.size(); ++i)
223 DEBUG(dbgs()<<BlockInfo.LiveOut.test(i)<<" ");
224 DEBUG(dbgs()<<"}\n");
225 }
226 }
227
collectMarkers(unsigned NumSlot)228 unsigned StackColoring::collectMarkers(unsigned NumSlot) {
229 unsigned MarkersFound = 0;
230 // Scan the function to find all lifetime markers.
231 // NOTE: We use the a reverse-post-order iteration to ensure that we obtain a
232 // deterministic numbering, and because we'll need a post-order iteration
233 // later for solving the liveness dataflow problem.
234 for (MachineBasicBlock *MBB : depth_first(MF)) {
235
236 // Assign a serial number to this basic block.
237 BasicBlocks[MBB] = BasicBlockNumbering.size();
238 BasicBlockNumbering.push_back(MBB);
239
240 // Keep a reference to avoid repeated lookups.
241 BlockLifetimeInfo &BlockInfo = BlockLiveness[MBB];
242
243 BlockInfo.Begin.resize(NumSlot);
244 BlockInfo.End.resize(NumSlot);
245
246 for (MachineInstr &MI : *MBB) {
247 if (MI.getOpcode() != TargetOpcode::LIFETIME_START &&
248 MI.getOpcode() != TargetOpcode::LIFETIME_END)
249 continue;
250
251 Markers.push_back(&MI);
252
253 bool IsStart = MI.getOpcode() == TargetOpcode::LIFETIME_START;
254 const MachineOperand &MO = MI.getOperand(0);
255 unsigned Slot = MO.getIndex();
256
257 MarkersFound++;
258
259 const AllocaInst *Allocation = MFI->getObjectAllocation(Slot);
260 if (Allocation) {
261 DEBUG(dbgs()<<"Found a lifetime marker for slot #"<<Slot<<
262 " with allocation: "<< Allocation->getName()<<"\n");
263 }
264
265 if (IsStart) {
266 BlockInfo.Begin.set(Slot);
267 } else {
268 if (BlockInfo.Begin.test(Slot)) {
269 // Allocas that start and end within a single block are handled
270 // specially when computing the LiveIntervals to avoid pessimizing
271 // the liveness propagation.
272 BlockInfo.Begin.reset(Slot);
273 } else {
274 BlockInfo.End.set(Slot);
275 }
276 }
277 }
278 }
279
280 // Update statistics.
281 NumMarkerSeen += MarkersFound;
282 return MarkersFound;
283 }
284
calculateLocalLiveness()285 void StackColoring::calculateLocalLiveness() {
286 // Perform a standard reverse dataflow computation to solve for
287 // global liveness. The BEGIN set here is equivalent to KILL in the standard
288 // formulation, and END is equivalent to GEN. The result of this computation
289 // is a map from blocks to bitvectors where the bitvectors represent which
290 // allocas are live in/out of that block.
291 SmallPtrSet<const MachineBasicBlock*, 8> BBSet(BasicBlockNumbering.begin(),
292 BasicBlockNumbering.end());
293 unsigned NumSSMIters = 0;
294 bool changed = true;
295 while (changed) {
296 changed = false;
297 ++NumSSMIters;
298
299 SmallPtrSet<const MachineBasicBlock*, 8> NextBBSet;
300
301 for (const MachineBasicBlock *BB : BasicBlockNumbering) {
302 if (!BBSet.count(BB)) continue;
303
304 // Use an iterator to avoid repeated lookups.
305 LivenessMap::iterator BI = BlockLiveness.find(BB);
306 assert(BI != BlockLiveness.end() && "Block not found");
307 BlockLifetimeInfo &BlockInfo = BI->second;
308
309 BitVector LocalLiveIn;
310 BitVector LocalLiveOut;
311
312 // Forward propagation from begins to ends.
313 for (MachineBasicBlock::const_pred_iterator PI = BB->pred_begin(),
314 PE = BB->pred_end(); PI != PE; ++PI) {
315 LivenessMap::const_iterator I = BlockLiveness.find(*PI);
316 assert(I != BlockLiveness.end() && "Predecessor not found");
317 LocalLiveIn |= I->second.LiveOut;
318 }
319 LocalLiveIn |= BlockInfo.End;
320 LocalLiveIn.reset(BlockInfo.Begin);
321
322 // Reverse propagation from ends to begins.
323 for (MachineBasicBlock::const_succ_iterator SI = BB->succ_begin(),
324 SE = BB->succ_end(); SI != SE; ++SI) {
325 LivenessMap::const_iterator I = BlockLiveness.find(*SI);
326 assert(I != BlockLiveness.end() && "Successor not found");
327 LocalLiveOut |= I->second.LiveIn;
328 }
329 LocalLiveOut |= BlockInfo.Begin;
330 LocalLiveOut.reset(BlockInfo.End);
331
332 LocalLiveIn |= LocalLiveOut;
333 LocalLiveOut |= LocalLiveIn;
334
335 // After adopting the live bits, we need to turn-off the bits which
336 // are de-activated in this block.
337 LocalLiveOut.reset(BlockInfo.End);
338 LocalLiveIn.reset(BlockInfo.Begin);
339
340 // If we have both BEGIN and END markers in the same basic block then
341 // we know that the BEGIN marker comes after the END, because we already
342 // handle the case where the BEGIN comes before the END when collecting
343 // the markers (and building the BEGIN/END vectore).
344 // Want to enable the LIVE_IN and LIVE_OUT of slots that have both
345 // BEGIN and END because it means that the value lives before and after
346 // this basic block.
347 BitVector LocalEndBegin = BlockInfo.End;
348 LocalEndBegin &= BlockInfo.Begin;
349 LocalLiveIn |= LocalEndBegin;
350 LocalLiveOut |= LocalEndBegin;
351
352 if (LocalLiveIn.test(BlockInfo.LiveIn)) {
353 changed = true;
354 BlockInfo.LiveIn |= LocalLiveIn;
355
356 NextBBSet.insert(BB->pred_begin(), BB->pred_end());
357 }
358
359 if (LocalLiveOut.test(BlockInfo.LiveOut)) {
360 changed = true;
361 BlockInfo.LiveOut |= LocalLiveOut;
362
363 NextBBSet.insert(BB->succ_begin(), BB->succ_end());
364 }
365 }
366
367 BBSet = NextBBSet;
368 }// while changed.
369 }
370
calculateLiveIntervals(unsigned NumSlots)371 void StackColoring::calculateLiveIntervals(unsigned NumSlots) {
372 SmallVector<SlotIndex, 16> Starts;
373 SmallVector<SlotIndex, 16> Finishes;
374
375 // For each block, find which slots are active within this block
376 // and update the live intervals.
377 for (const MachineBasicBlock &MBB : *MF) {
378 Starts.clear();
379 Starts.resize(NumSlots);
380 Finishes.clear();
381 Finishes.resize(NumSlots);
382
383 // Create the interval for the basic blocks with lifetime markers in them.
384 for (const MachineInstr *MI : Markers) {
385 if (MI->getParent() != &MBB)
386 continue;
387
388 assert((MI->getOpcode() == TargetOpcode::LIFETIME_START ||
389 MI->getOpcode() == TargetOpcode::LIFETIME_END) &&
390 "Invalid Lifetime marker");
391
392 bool IsStart = MI->getOpcode() == TargetOpcode::LIFETIME_START;
393 const MachineOperand &Mo = MI->getOperand(0);
394 int Slot = Mo.getIndex();
395 assert(Slot >= 0 && "Invalid slot");
396
397 SlotIndex ThisIndex = Indexes->getInstructionIndex(MI);
398
399 if (IsStart) {
400 if (!Starts[Slot].isValid() || Starts[Slot] > ThisIndex)
401 Starts[Slot] = ThisIndex;
402 } else {
403 if (!Finishes[Slot].isValid() || Finishes[Slot] < ThisIndex)
404 Finishes[Slot] = ThisIndex;
405 }
406 }
407
408 // Create the interval of the blocks that we previously found to be 'alive'.
409 BlockLifetimeInfo &MBBLiveness = BlockLiveness[&MBB];
410 for (int pos = MBBLiveness.LiveIn.find_first(); pos != -1;
411 pos = MBBLiveness.LiveIn.find_next(pos)) {
412 Starts[pos] = Indexes->getMBBStartIdx(&MBB);
413 }
414 for (int pos = MBBLiveness.LiveOut.find_first(); pos != -1;
415 pos = MBBLiveness.LiveOut.find_next(pos)) {
416 Finishes[pos] = Indexes->getMBBEndIdx(&MBB);
417 }
418
419 for (unsigned i = 0; i < NumSlots; ++i) {
420 assert(Starts[i].isValid() == Finishes[i].isValid() && "Unmatched range");
421 if (!Starts[i].isValid())
422 continue;
423
424 assert(Starts[i] && Finishes[i] && "Invalid interval");
425 VNInfo *ValNum = Intervals[i]->getValNumInfo(0);
426 SlotIndex S = Starts[i];
427 SlotIndex F = Finishes[i];
428 if (S < F) {
429 // We have a single consecutive region.
430 Intervals[i]->addSegment(LiveInterval::Segment(S, F, ValNum));
431 } else {
432 // We have two non-consecutive regions. This happens when
433 // LIFETIME_START appears after the LIFETIME_END marker.
434 SlotIndex NewStart = Indexes->getMBBStartIdx(&MBB);
435 SlotIndex NewFin = Indexes->getMBBEndIdx(&MBB);
436 Intervals[i]->addSegment(LiveInterval::Segment(NewStart, F, ValNum));
437 Intervals[i]->addSegment(LiveInterval::Segment(S, NewFin, ValNum));
438 }
439 }
440 }
441 }
442
removeAllMarkers()443 bool StackColoring::removeAllMarkers() {
444 unsigned Count = 0;
445 for (MachineInstr *MI : Markers) {
446 MI->eraseFromParent();
447 Count++;
448 }
449 Markers.clear();
450
451 DEBUG(dbgs()<<"Removed "<<Count<<" markers.\n");
452 return Count;
453 }
454
remapInstructions(DenseMap<int,int> & SlotRemap)455 void StackColoring::remapInstructions(DenseMap<int, int> &SlotRemap) {
456 unsigned FixedInstr = 0;
457 unsigned FixedMemOp = 0;
458 unsigned FixedDbg = 0;
459 MachineModuleInfo *MMI = &MF->getMMI();
460
461 // Remap debug information that refers to stack slots.
462 for (auto &VI : MMI->getVariableDbgInfo()) {
463 if (!VI.Var)
464 continue;
465 if (SlotRemap.count(VI.Slot)) {
466 DEBUG(dbgs()<<"Remapping debug info for ["<<VI.Var->getName()<<"].\n");
467 VI.Slot = SlotRemap[VI.Slot];
468 FixedDbg++;
469 }
470 }
471
472 // Keep a list of *allocas* which need to be remapped.
473 DenseMap<const AllocaInst*, const AllocaInst*> Allocas;
474 for (const std::pair<int, int> &SI : SlotRemap) {
475 const AllocaInst *From = MFI->getObjectAllocation(SI.first);
476 const AllocaInst *To = MFI->getObjectAllocation(SI.second);
477 assert(To && From && "Invalid allocation object");
478 Allocas[From] = To;
479
480 // AA might be used later for instruction scheduling, and we need it to be
481 // able to deduce the correct aliasing releationships between pointers
482 // derived from the alloca being remapped and the target of that remapping.
483 // The only safe way, without directly informing AA about the remapping
484 // somehow, is to directly update the IR to reflect the change being made
485 // here.
486 Instruction *Inst = const_cast<AllocaInst *>(To);
487 if (From->getType() != To->getType()) {
488 BitCastInst *Cast = new BitCastInst(Inst, From->getType());
489 Cast->insertAfter(Inst);
490 Inst = Cast;
491 }
492
493 // Allow the stack protector to adjust its value map to account for the
494 // upcoming replacement.
495 SP->adjustForColoring(From, To);
496
497 // Note that this will not replace uses in MMOs (which we'll update below),
498 // or anywhere else (which is why we won't delete the original
499 // instruction).
500 const_cast<AllocaInst *>(From)->replaceAllUsesWith(Inst);
501 }
502
503 // Remap all instructions to the new stack slots.
504 for (MachineBasicBlock &BB : *MF)
505 for (MachineInstr &I : BB) {
506 // Skip lifetime markers. We'll remove them soon.
507 if (I.getOpcode() == TargetOpcode::LIFETIME_START ||
508 I.getOpcode() == TargetOpcode::LIFETIME_END)
509 continue;
510
511 // Update the MachineMemOperand to use the new alloca.
512 for (MachineMemOperand *MMO : I.memoperands()) {
513 // FIXME: In order to enable the use of TBAA when using AA in CodeGen,
514 // we'll also need to update the TBAA nodes in MMOs with values
515 // derived from the merged allocas. When doing this, we'll need to use
516 // the same variant of GetUnderlyingObjects that is used by the
517 // instruction scheduler (that can look through ptrtoint/inttoptr
518 // pairs).
519
520 // We've replaced IR-level uses of the remapped allocas, so we only
521 // need to replace direct uses here.
522 const AllocaInst *AI = dyn_cast_or_null<AllocaInst>(MMO->getValue());
523 if (!AI)
524 continue;
525
526 if (!Allocas.count(AI))
527 continue;
528
529 MMO->setValue(Allocas[AI]);
530 FixedMemOp++;
531 }
532
533 // Update all of the machine instruction operands.
534 for (MachineOperand &MO : I.operands()) {
535 if (!MO.isFI())
536 continue;
537 int FromSlot = MO.getIndex();
538
539 // Don't touch arguments.
540 if (FromSlot<0)
541 continue;
542
543 // Only look at mapped slots.
544 if (!SlotRemap.count(FromSlot))
545 continue;
546
547 // In a debug build, check that the instruction that we are modifying is
548 // inside the expected live range. If the instruction is not inside
549 // the calculated range then it means that the alloca usage moved
550 // outside of the lifetime markers, or that the user has a bug.
551 // NOTE: Alloca address calculations which happen outside the lifetime
552 // zone are are okay, despite the fact that we don't have a good way
553 // for validating all of the usages of the calculation.
554 #ifndef NDEBUG
555 bool TouchesMemory = I.mayLoad() || I.mayStore();
556 // If we *don't* protect the user from escaped allocas, don't bother
557 // validating the instructions.
558 if (!I.isDebugValue() && TouchesMemory && ProtectFromEscapedAllocas) {
559 SlotIndex Index = Indexes->getInstructionIndex(&I);
560 const LiveInterval *Interval = &*Intervals[FromSlot];
561 assert(Interval->find(Index) != Interval->end() &&
562 "Found instruction usage outside of live range.");
563 }
564 #endif
565
566 // Fix the machine instructions.
567 int ToSlot = SlotRemap[FromSlot];
568 MO.setIndex(ToSlot);
569 FixedInstr++;
570 }
571 }
572
573 DEBUG(dbgs()<<"Fixed "<<FixedMemOp<<" machine memory operands.\n");
574 DEBUG(dbgs()<<"Fixed "<<FixedDbg<<" debug locations.\n");
575 DEBUG(dbgs()<<"Fixed "<<FixedInstr<<" machine instructions.\n");
576 }
577
removeInvalidSlotRanges()578 void StackColoring::removeInvalidSlotRanges() {
579 for (MachineBasicBlock &BB : *MF)
580 for (MachineInstr &I : BB) {
581 if (I.getOpcode() == TargetOpcode::LIFETIME_START ||
582 I.getOpcode() == TargetOpcode::LIFETIME_END || I.isDebugValue())
583 continue;
584
585 // Some intervals are suspicious! In some cases we find address
586 // calculations outside of the lifetime zone, but not actual memory
587 // read or write. Memory accesses outside of the lifetime zone are a clear
588 // violation, but address calculations are okay. This can happen when
589 // GEPs are hoisted outside of the lifetime zone.
590 // So, in here we only check instructions which can read or write memory.
591 if (!I.mayLoad() && !I.mayStore())
592 continue;
593
594 // Check all of the machine operands.
595 for (const MachineOperand &MO : I.operands()) {
596 if (!MO.isFI())
597 continue;
598
599 int Slot = MO.getIndex();
600
601 if (Slot<0)
602 continue;
603
604 if (Intervals[Slot]->empty())
605 continue;
606
607 // Check that the used slot is inside the calculated lifetime range.
608 // If it is not, warn about it and invalidate the range.
609 LiveInterval *Interval = &*Intervals[Slot];
610 SlotIndex Index = Indexes->getInstructionIndex(&I);
611 if (Interval->find(Index) == Interval->end()) {
612 Interval->clear();
613 DEBUG(dbgs()<<"Invalidating range #"<<Slot<<"\n");
614 EscapedAllocas++;
615 }
616 }
617 }
618 }
619
expungeSlotMap(DenseMap<int,int> & SlotRemap,unsigned NumSlots)620 void StackColoring::expungeSlotMap(DenseMap<int, int> &SlotRemap,
621 unsigned NumSlots) {
622 // Expunge slot remap map.
623 for (unsigned i=0; i < NumSlots; ++i) {
624 // If we are remapping i
625 if (SlotRemap.count(i)) {
626 int Target = SlotRemap[i];
627 // As long as our target is mapped to something else, follow it.
628 while (SlotRemap.count(Target)) {
629 Target = SlotRemap[Target];
630 SlotRemap[i] = Target;
631 }
632 }
633 }
634 }
635
runOnMachineFunction(MachineFunction & Func)636 bool StackColoring::runOnMachineFunction(MachineFunction &Func) {
637 if (skipOptnoneFunction(*Func.getFunction()))
638 return false;
639
640 DEBUG(dbgs() << "********** Stack Coloring **********\n"
641 << "********** Function: "
642 << ((const Value*)Func.getFunction())->getName() << '\n');
643 MF = &Func;
644 MFI = MF->getFrameInfo();
645 Indexes = &getAnalysis<SlotIndexes>();
646 SP = &getAnalysis<StackProtector>();
647 BlockLiveness.clear();
648 BasicBlocks.clear();
649 BasicBlockNumbering.clear();
650 Markers.clear();
651 Intervals.clear();
652 VNInfoAllocator.Reset();
653
654 unsigned NumSlots = MFI->getObjectIndexEnd();
655
656 // If there are no stack slots then there are no markers to remove.
657 if (!NumSlots)
658 return false;
659
660 SmallVector<int, 8> SortedSlots;
661
662 SortedSlots.reserve(NumSlots);
663 Intervals.reserve(NumSlots);
664
665 unsigned NumMarkers = collectMarkers(NumSlots);
666
667 unsigned TotalSize = 0;
668 DEBUG(dbgs()<<"Found "<<NumMarkers<<" markers and "<<NumSlots<<" slots\n");
669 DEBUG(dbgs()<<"Slot structure:\n");
670
671 for (int i=0; i < MFI->getObjectIndexEnd(); ++i) {
672 DEBUG(dbgs()<<"Slot #"<<i<<" - "<<MFI->getObjectSize(i)<<" bytes.\n");
673 TotalSize += MFI->getObjectSize(i);
674 }
675
676 DEBUG(dbgs()<<"Total Stack size: "<<TotalSize<<" bytes\n\n");
677
678 // Don't continue because there are not enough lifetime markers, or the
679 // stack is too small, or we are told not to optimize the slots.
680 if (NumMarkers < 2 || TotalSize < 16 || DisableColoring) {
681 DEBUG(dbgs()<<"Will not try to merge slots.\n");
682 return removeAllMarkers();
683 }
684
685 for (unsigned i=0; i < NumSlots; ++i) {
686 std::unique_ptr<LiveInterval> LI(new LiveInterval(i, 0));
687 LI->getNextValue(Indexes->getZeroIndex(), VNInfoAllocator);
688 Intervals.push_back(std::move(LI));
689 SortedSlots.push_back(i);
690 }
691
692 // Calculate the liveness of each block.
693 calculateLocalLiveness();
694
695 // Propagate the liveness information.
696 calculateLiveIntervals(NumSlots);
697
698 // Search for allocas which are used outside of the declared lifetime
699 // markers.
700 if (ProtectFromEscapedAllocas)
701 removeInvalidSlotRanges();
702
703 // Maps old slots to new slots.
704 DenseMap<int, int> SlotRemap;
705 unsigned RemovedSlots = 0;
706 unsigned ReducedSize = 0;
707
708 // Do not bother looking at empty intervals.
709 for (unsigned I = 0; I < NumSlots; ++I) {
710 if (Intervals[SortedSlots[I]]->empty())
711 SortedSlots[I] = -1;
712 }
713
714 // This is a simple greedy algorithm for merging allocas. First, sort the
715 // slots, placing the largest slots first. Next, perform an n^2 scan and look
716 // for disjoint slots. When you find disjoint slots, merge the samller one
717 // into the bigger one and update the live interval. Remove the small alloca
718 // and continue.
719
720 // Sort the slots according to their size. Place unused slots at the end.
721 // Use stable sort to guarantee deterministic code generation.
722 std::stable_sort(SortedSlots.begin(), SortedSlots.end(),
723 [this](int LHS, int RHS) {
724 // We use -1 to denote a uninteresting slot. Place these slots at the end.
725 if (LHS == -1) return false;
726 if (RHS == -1) return true;
727 // Sort according to size.
728 return MFI->getObjectSize(LHS) > MFI->getObjectSize(RHS);
729 });
730
731 bool Changed = true;
732 while (Changed) {
733 Changed = false;
734 for (unsigned I = 0; I < NumSlots; ++I) {
735 if (SortedSlots[I] == -1)
736 continue;
737
738 for (unsigned J=I+1; J < NumSlots; ++J) {
739 if (SortedSlots[J] == -1)
740 continue;
741
742 int FirstSlot = SortedSlots[I];
743 int SecondSlot = SortedSlots[J];
744 LiveInterval *First = &*Intervals[FirstSlot];
745 LiveInterval *Second = &*Intervals[SecondSlot];
746 assert (!First->empty() && !Second->empty() && "Found an empty range");
747
748 // Merge disjoint slots.
749 if (!First->overlaps(*Second)) {
750 Changed = true;
751 First->MergeSegmentsInAsValue(*Second, First->getValNumInfo(0));
752 SlotRemap[SecondSlot] = FirstSlot;
753 SortedSlots[J] = -1;
754 DEBUG(dbgs()<<"Merging #"<<FirstSlot<<" and slots #"<<
755 SecondSlot<<" together.\n");
756 unsigned MaxAlignment = std::max(MFI->getObjectAlignment(FirstSlot),
757 MFI->getObjectAlignment(SecondSlot));
758
759 assert(MFI->getObjectSize(FirstSlot) >=
760 MFI->getObjectSize(SecondSlot) &&
761 "Merging a small object into a larger one");
762
763 RemovedSlots+=1;
764 ReducedSize += MFI->getObjectSize(SecondSlot);
765 MFI->setObjectAlignment(FirstSlot, MaxAlignment);
766 MFI->RemoveStackObject(SecondSlot);
767 }
768 }
769 }
770 }// While changed.
771
772 // Record statistics.
773 StackSpaceSaved += ReducedSize;
774 StackSlotMerged += RemovedSlots;
775 DEBUG(dbgs()<<"Merge "<<RemovedSlots<<" slots. Saved "<<
776 ReducedSize<<" bytes\n");
777
778 // Scan the entire function and update all machine operands that use frame
779 // indices to use the remapped frame index.
780 expungeSlotMap(SlotRemap, NumSlots);
781 remapInstructions(SlotRemap);
782
783 return removeAllMarkers();
784 }
785