1 //===-- X86CodeEmitter.cpp - Convert X86 code to machine code -------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the pass that transforms the X86 machine instructions into
11 // relocatable machine code.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "X86.h"
16 #include "X86InstrInfo.h"
17 #include "X86JITInfo.h"
18 #include "X86Relocations.h"
19 #include "X86Subtarget.h"
20 #include "X86TargetMachine.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/CodeGen/JITCodeEmitter.h"
23 #include "llvm/CodeGen/MachineFunctionPass.h"
24 #include "llvm/CodeGen/MachineInstr.h"
25 #include "llvm/CodeGen/MachineModuleInfo.h"
26 #include "llvm/CodeGen/Passes.h"
27 #include "llvm/IR/LLVMContext.h"
28 #include "llvm/MC/MCCodeEmitter.h"
29 #include "llvm/MC/MCExpr.h"
30 #include "llvm/MC/MCInst.h"
31 #include "llvm/PassManager.h"
32 #include "llvm/Support/Debug.h"
33 #include "llvm/Support/ErrorHandling.h"
34 #include "llvm/Support/raw_ostream.h"
35 #include "llvm/Target/TargetOptions.h"
36 using namespace llvm;
37
38 #define DEBUG_TYPE "x86-emitter"
39
40 STATISTIC(NumEmitted, "Number of machine instructions emitted");
41
42 namespace {
43 template<class CodeEmitter>
44 class Emitter : public MachineFunctionPass {
45 const X86InstrInfo *II;
46 const DataLayout *TD;
47 X86TargetMachine &TM;
48 CodeEmitter &MCE;
49 MachineModuleInfo *MMI;
50 intptr_t PICBaseOffset;
51 bool Is64BitMode;
52 bool IsPIC;
53 public:
54 static char ID;
Emitter(X86TargetMachine & tm,CodeEmitter & mce)55 explicit Emitter(X86TargetMachine &tm, CodeEmitter &mce)
56 : MachineFunctionPass(ID), II(nullptr), TD(nullptr), TM(tm),
57 MCE(mce), PICBaseOffset(0), Is64BitMode(false),
58 IsPIC(TM.getRelocationModel() == Reloc::PIC_) {}
59
60 bool runOnMachineFunction(MachineFunction &MF) override;
61
getPassName() const62 const char *getPassName() const override {
63 return "X86 Machine Code Emitter";
64 }
65
66 void emitOpcodePrefix(uint64_t TSFlags, int MemOperand,
67 const MachineInstr &MI,
68 const MCInstrDesc *Desc) const;
69
70 void emitVEXOpcodePrefix(uint64_t TSFlags, int MemOperand,
71 const MachineInstr &MI,
72 const MCInstrDesc *Desc) const;
73
74 void emitSegmentOverridePrefix(uint64_t TSFlags,
75 int MemOperand,
76 const MachineInstr &MI) const;
77
78 void emitInstruction(MachineInstr &MI, const MCInstrDesc *Desc);
79
getAnalysisUsage(AnalysisUsage & AU) const80 void getAnalysisUsage(AnalysisUsage &AU) const override {
81 AU.setPreservesAll();
82 AU.addRequired<MachineModuleInfo>();
83 MachineFunctionPass::getAnalysisUsage(AU);
84 }
85
86 private:
87 void emitPCRelativeBlockAddress(MachineBasicBlock *MBB);
88 void emitGlobalAddress(const GlobalValue *GV, unsigned Reloc,
89 intptr_t Disp = 0, intptr_t PCAdj = 0,
90 bool Indirect = false);
91 void emitExternalSymbolAddress(const char *ES, unsigned Reloc);
92 void emitConstPoolAddress(unsigned CPI, unsigned Reloc, intptr_t Disp = 0,
93 intptr_t PCAdj = 0);
94 void emitJumpTableAddress(unsigned JTI, unsigned Reloc,
95 intptr_t PCAdj = 0);
96
97 void emitDisplacementField(const MachineOperand *RelocOp, int DispVal,
98 intptr_t Adj = 0, bool IsPCRel = true);
99
100 void emitRegModRMByte(unsigned ModRMReg, unsigned RegOpcodeField);
101 void emitRegModRMByte(unsigned RegOpcodeField);
102 void emitSIBByte(unsigned SS, unsigned Index, unsigned Base);
103 void emitConstant(uint64_t Val, unsigned Size);
104
105 void emitMemModRMByte(const MachineInstr &MI,
106 unsigned Op, unsigned RegOpcodeField,
107 intptr_t PCAdj = 0);
108
getX86RegNum(unsigned RegNo) const109 unsigned getX86RegNum(unsigned RegNo) const {
110 const TargetRegisterInfo *TRI = TM.getRegisterInfo();
111 return TRI->getEncodingValue(RegNo) & 0x7;
112 }
113
114 unsigned char getVEXRegisterEncoding(const MachineInstr &MI,
115 unsigned OpNum) const;
116 };
117
118 template<class CodeEmitter>
119 char Emitter<CodeEmitter>::ID = 0;
120 } // end anonymous namespace.
121
122 /// createX86CodeEmitterPass - Return a pass that emits the collected X86 code
123 /// to the specified JITCodeEmitter object.
createX86JITCodeEmitterPass(X86TargetMachine & TM,JITCodeEmitter & JCE)124 FunctionPass *llvm::createX86JITCodeEmitterPass(X86TargetMachine &TM,
125 JITCodeEmitter &JCE) {
126 return new Emitter<JITCodeEmitter>(TM, JCE);
127 }
128
129 template<class CodeEmitter>
runOnMachineFunction(MachineFunction & MF)130 bool Emitter<CodeEmitter>::runOnMachineFunction(MachineFunction &MF) {
131 MMI = &getAnalysis<MachineModuleInfo>();
132 MCE.setModuleInfo(MMI);
133
134 II = TM.getInstrInfo();
135 TD = TM.getDataLayout();
136 Is64BitMode = TM.getSubtarget<X86Subtarget>().is64Bit();
137 IsPIC = TM.getRelocationModel() == Reloc::PIC_;
138
139 do {
140 DEBUG(dbgs() << "JITTing function '" << MF.getName() << "'\n");
141 MCE.startFunction(MF);
142 for (MachineFunction::iterator MBB = MF.begin(), E = MF.end();
143 MBB != E; ++MBB) {
144 MCE.StartMachineBasicBlock(MBB);
145 for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end();
146 I != E; ++I) {
147 const MCInstrDesc &Desc = I->getDesc();
148 emitInstruction(*I, &Desc);
149 // MOVPC32r is basically a call plus a pop instruction.
150 if (Desc.getOpcode() == X86::MOVPC32r)
151 emitInstruction(*I, &II->get(X86::POP32r));
152 ++NumEmitted; // Keep track of the # of mi's emitted
153 }
154 }
155 } while (MCE.finishFunction(MF));
156
157 return false;
158 }
159
160 /// determineREX - Determine if the MachineInstr has to be encoded with a X86-64
161 /// REX prefix which specifies 1) 64-bit instructions, 2) non-default operand
162 /// size, and 3) use of X86-64 extended registers.
determineREX(const MachineInstr & MI)163 static unsigned determineREX(const MachineInstr &MI) {
164 unsigned REX = 0;
165 const MCInstrDesc &Desc = MI.getDesc();
166
167 // Pseudo instructions do not need REX prefix byte.
168 if ((Desc.TSFlags & X86II::FormMask) == X86II::Pseudo)
169 return 0;
170 if (Desc.TSFlags & X86II::REX_W)
171 REX |= 1 << 3;
172
173 unsigned NumOps = Desc.getNumOperands();
174 if (NumOps) {
175 bool isTwoAddr = NumOps > 1 &&
176 Desc.getOperandConstraint(1, MCOI::TIED_TO) != -1;
177
178 // If it accesses SPL, BPL, SIL, or DIL, then it requires a 0x40 REX prefix.
179 unsigned i = isTwoAddr ? 1 : 0;
180 for (unsigned e = NumOps; i != e; ++i) {
181 const MachineOperand& MO = MI.getOperand(i);
182 if (MO.isReg()) {
183 unsigned Reg = MO.getReg();
184 if (X86II::isX86_64NonExtLowByteReg(Reg))
185 REX |= 0x40;
186 }
187 }
188
189 switch (Desc.TSFlags & X86II::FormMask) {
190 case X86II::MRMSrcReg: {
191 if (X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0)))
192 REX |= 1 << 2;
193 i = isTwoAddr ? 2 : 1;
194 for (unsigned e = NumOps; i != e; ++i) {
195 const MachineOperand& MO = MI.getOperand(i);
196 if (X86InstrInfo::isX86_64ExtendedReg(MO))
197 REX |= 1 << 0;
198 }
199 break;
200 }
201 case X86II::MRMSrcMem: {
202 if (X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0)))
203 REX |= 1 << 2;
204 unsigned Bit = 0;
205 i = isTwoAddr ? 2 : 1;
206 for (; i != NumOps; ++i) {
207 const MachineOperand& MO = MI.getOperand(i);
208 if (MO.isReg()) {
209 if (X86InstrInfo::isX86_64ExtendedReg(MO))
210 REX |= 1 << Bit;
211 Bit++;
212 }
213 }
214 break;
215 }
216 case X86II::MRMXm:
217 case X86II::MRM0m: case X86II::MRM1m:
218 case X86II::MRM2m: case X86II::MRM3m:
219 case X86II::MRM4m: case X86II::MRM5m:
220 case X86II::MRM6m: case X86II::MRM7m:
221 case X86II::MRMDestMem: {
222 unsigned e = (isTwoAddr ? X86::AddrNumOperands+1 : X86::AddrNumOperands);
223 i = isTwoAddr ? 1 : 0;
224 if (NumOps > e && X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(e)))
225 REX |= 1 << 2;
226 unsigned Bit = 0;
227 for (; i != e; ++i) {
228 const MachineOperand& MO = MI.getOperand(i);
229 if (MO.isReg()) {
230 if (X86InstrInfo::isX86_64ExtendedReg(MO))
231 REX |= 1 << Bit;
232 Bit++;
233 }
234 }
235 break;
236 }
237 default: {
238 if (X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0)))
239 REX |= 1 << 0;
240 i = isTwoAddr ? 2 : 1;
241 for (unsigned e = NumOps; i != e; ++i) {
242 const MachineOperand& MO = MI.getOperand(i);
243 if (X86InstrInfo::isX86_64ExtendedReg(MO))
244 REX |= 1 << 2;
245 }
246 break;
247 }
248 }
249 }
250 return REX;
251 }
252
253
254 /// emitPCRelativeBlockAddress - This method keeps track of the information
255 /// necessary to resolve the address of this block later and emits a dummy
256 /// value.
257 ///
258 template<class CodeEmitter>
emitPCRelativeBlockAddress(MachineBasicBlock * MBB)259 void Emitter<CodeEmitter>::emitPCRelativeBlockAddress(MachineBasicBlock *MBB) {
260 // Remember where this reference was and where it is to so we can
261 // deal with it later.
262 MCE.addRelocation(MachineRelocation::getBB(MCE.getCurrentPCOffset(),
263 X86::reloc_pcrel_word, MBB));
264 MCE.emitWordLE(0);
265 }
266
267 /// emitGlobalAddress - Emit the specified address to the code stream assuming
268 /// this is part of a "take the address of a global" instruction.
269 ///
270 template<class CodeEmitter>
emitGlobalAddress(const GlobalValue * GV,unsigned Reloc,intptr_t Disp,intptr_t PCAdj,bool Indirect)271 void Emitter<CodeEmitter>::emitGlobalAddress(const GlobalValue *GV,
272 unsigned Reloc,
273 intptr_t Disp /* = 0 */,
274 intptr_t PCAdj /* = 0 */,
275 bool Indirect /* = false */) {
276 intptr_t RelocCST = Disp;
277 if (Reloc == X86::reloc_picrel_word)
278 RelocCST = PICBaseOffset;
279 else if (Reloc == X86::reloc_pcrel_word)
280 RelocCST = PCAdj;
281 MachineRelocation MR = Indirect
282 ? MachineRelocation::getIndirectSymbol(MCE.getCurrentPCOffset(), Reloc,
283 const_cast<GlobalValue *>(GV),
284 RelocCST, false)
285 : MachineRelocation::getGV(MCE.getCurrentPCOffset(), Reloc,
286 const_cast<GlobalValue *>(GV), RelocCST, false);
287 MCE.addRelocation(MR);
288 // The relocated value will be added to the displacement
289 if (Reloc == X86::reloc_absolute_dword)
290 MCE.emitDWordLE(Disp);
291 else
292 MCE.emitWordLE((int32_t)Disp);
293 }
294
295 /// emitExternalSymbolAddress - Arrange for the address of an external symbol to
296 /// be emitted to the current location in the function, and allow it to be PC
297 /// relative.
298 template<class CodeEmitter>
emitExternalSymbolAddress(const char * ES,unsigned Reloc)299 void Emitter<CodeEmitter>::emitExternalSymbolAddress(const char *ES,
300 unsigned Reloc) {
301 intptr_t RelocCST = (Reloc == X86::reloc_picrel_word) ? PICBaseOffset : 0;
302
303 // X86 never needs stubs because instruction selection will always pick
304 // an instruction sequence that is large enough to hold any address
305 // to a symbol.
306 // (see X86ISelLowering.cpp, near 2039: X86TargetLowering::LowerCall)
307 bool NeedStub = false;
308 MCE.addRelocation(MachineRelocation::getExtSym(MCE.getCurrentPCOffset(),
309 Reloc, ES, RelocCST,
310 0, NeedStub));
311 if (Reloc == X86::reloc_absolute_dword)
312 MCE.emitDWordLE(0);
313 else
314 MCE.emitWordLE(0);
315 }
316
317 /// emitConstPoolAddress - Arrange for the address of an constant pool
318 /// to be emitted to the current location in the function, and allow it to be PC
319 /// relative.
320 template<class CodeEmitter>
emitConstPoolAddress(unsigned CPI,unsigned Reloc,intptr_t Disp,intptr_t PCAdj)321 void Emitter<CodeEmitter>::emitConstPoolAddress(unsigned CPI, unsigned Reloc,
322 intptr_t Disp /* = 0 */,
323 intptr_t PCAdj /* = 0 */) {
324 intptr_t RelocCST = 0;
325 if (Reloc == X86::reloc_picrel_word)
326 RelocCST = PICBaseOffset;
327 else if (Reloc == X86::reloc_pcrel_word)
328 RelocCST = PCAdj;
329 MCE.addRelocation(MachineRelocation::getConstPool(MCE.getCurrentPCOffset(),
330 Reloc, CPI, RelocCST));
331 // The relocated value will be added to the displacement
332 if (Reloc == X86::reloc_absolute_dword)
333 MCE.emitDWordLE(Disp);
334 else
335 MCE.emitWordLE((int32_t)Disp);
336 }
337
338 /// emitJumpTableAddress - Arrange for the address of a jump table to
339 /// be emitted to the current location in the function, and allow it to be PC
340 /// relative.
341 template<class CodeEmitter>
emitJumpTableAddress(unsigned JTI,unsigned Reloc,intptr_t PCAdj)342 void Emitter<CodeEmitter>::emitJumpTableAddress(unsigned JTI, unsigned Reloc,
343 intptr_t PCAdj /* = 0 */) {
344 intptr_t RelocCST = 0;
345 if (Reloc == X86::reloc_picrel_word)
346 RelocCST = PICBaseOffset;
347 else if (Reloc == X86::reloc_pcrel_word)
348 RelocCST = PCAdj;
349 MCE.addRelocation(MachineRelocation::getJumpTable(MCE.getCurrentPCOffset(),
350 Reloc, JTI, RelocCST));
351 // The relocated value will be added to the displacement
352 if (Reloc == X86::reloc_absolute_dword)
353 MCE.emitDWordLE(0);
354 else
355 MCE.emitWordLE(0);
356 }
357
ModRMByte(unsigned Mod,unsigned RegOpcode,unsigned RM)358 inline static unsigned char ModRMByte(unsigned Mod, unsigned RegOpcode,
359 unsigned RM) {
360 assert(Mod < 4 && RegOpcode < 8 && RM < 8 && "ModRM Fields out of range!");
361 return RM | (RegOpcode << 3) | (Mod << 6);
362 }
363
364 template<class CodeEmitter>
emitRegModRMByte(unsigned ModRMReg,unsigned RegOpcodeFld)365 void Emitter<CodeEmitter>::emitRegModRMByte(unsigned ModRMReg,
366 unsigned RegOpcodeFld){
367 MCE.emitByte(ModRMByte(3, RegOpcodeFld, getX86RegNum(ModRMReg)));
368 }
369
370 template<class CodeEmitter>
emitRegModRMByte(unsigned RegOpcodeFld)371 void Emitter<CodeEmitter>::emitRegModRMByte(unsigned RegOpcodeFld) {
372 MCE.emitByte(ModRMByte(3, RegOpcodeFld, 0));
373 }
374
375 template<class CodeEmitter>
emitSIBByte(unsigned SS,unsigned Index,unsigned Base)376 void Emitter<CodeEmitter>::emitSIBByte(unsigned SS,
377 unsigned Index,
378 unsigned Base) {
379 // SIB byte is in the same format as the ModRMByte...
380 MCE.emitByte(ModRMByte(SS, Index, Base));
381 }
382
383 template<class CodeEmitter>
emitConstant(uint64_t Val,unsigned Size)384 void Emitter<CodeEmitter>::emitConstant(uint64_t Val, unsigned Size) {
385 // Output the constant in little endian byte order...
386 for (unsigned i = 0; i != Size; ++i) {
387 MCE.emitByte(Val & 255);
388 Val >>= 8;
389 }
390 }
391
392 /// isDisp8 - Return true if this signed displacement fits in a 8-bit
393 /// sign-extended field.
isDisp8(int Value)394 static bool isDisp8(int Value) {
395 return Value == (signed char)Value;
396 }
397
gvNeedsNonLazyPtr(const MachineOperand & GVOp,const TargetMachine & TM)398 static bool gvNeedsNonLazyPtr(const MachineOperand &GVOp,
399 const TargetMachine &TM) {
400 // For Darwin-64, simulate the linktime GOT by using the same non-lazy-pointer
401 // mechanism as 32-bit mode.
402 if (TM.getSubtarget<X86Subtarget>().is64Bit() &&
403 !TM.getSubtarget<X86Subtarget>().isTargetDarwin())
404 return false;
405
406 // Return true if this is a reference to a stub containing the address of the
407 // global, not the global itself.
408 return isGlobalStubReference(GVOp.getTargetFlags());
409 }
410
411 template<class CodeEmitter>
emitDisplacementField(const MachineOperand * RelocOp,int DispVal,intptr_t Adj,bool IsPCRel)412 void Emitter<CodeEmitter>::emitDisplacementField(const MachineOperand *RelocOp,
413 int DispVal,
414 intptr_t Adj /* = 0 */,
415 bool IsPCRel /* = true */) {
416 // If this is a simple integer displacement that doesn't require a relocation,
417 // emit it now.
418 if (!RelocOp) {
419 emitConstant(DispVal, 4);
420 return;
421 }
422
423 // Otherwise, this is something that requires a relocation. Emit it as such
424 // now.
425 unsigned RelocType = Is64BitMode ?
426 (IsPCRel ? X86::reloc_pcrel_word : X86::reloc_absolute_word_sext)
427 : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word);
428 if (RelocOp->isGlobal()) {
429 // In 64-bit static small code model, we could potentially emit absolute.
430 // But it's probably not beneficial. If the MCE supports using RIP directly
431 // do it, otherwise fallback to absolute (this is determined by IsPCRel).
432 // 89 05 00 00 00 00 mov %eax,0(%rip) # PC-relative
433 // 89 04 25 00 00 00 00 mov %eax,0x0 # Absolute
434 bool Indirect = gvNeedsNonLazyPtr(*RelocOp, TM);
435 emitGlobalAddress(RelocOp->getGlobal(), RelocType, RelocOp->getOffset(),
436 Adj, Indirect);
437 } else if (RelocOp->isSymbol()) {
438 emitExternalSymbolAddress(RelocOp->getSymbolName(), RelocType);
439 } else if (RelocOp->isCPI()) {
440 emitConstPoolAddress(RelocOp->getIndex(), RelocType,
441 RelocOp->getOffset(), Adj);
442 } else {
443 assert(RelocOp->isJTI() && "Unexpected machine operand!");
444 emitJumpTableAddress(RelocOp->getIndex(), RelocType, Adj);
445 }
446 }
447
448 template<class CodeEmitter>
emitMemModRMByte(const MachineInstr & MI,unsigned Op,unsigned RegOpcodeField,intptr_t PCAdj)449 void Emitter<CodeEmitter>::emitMemModRMByte(const MachineInstr &MI,
450 unsigned Op,unsigned RegOpcodeField,
451 intptr_t PCAdj) {
452 const MachineOperand &Op3 = MI.getOperand(Op+3);
453 int DispVal = 0;
454 const MachineOperand *DispForReloc = nullptr;
455
456 // Figure out what sort of displacement we have to handle here.
457 if (Op3.isGlobal()) {
458 DispForReloc = &Op3;
459 } else if (Op3.isSymbol()) {
460 DispForReloc = &Op3;
461 } else if (Op3.isCPI()) {
462 if (!MCE.earlyResolveAddresses() || Is64BitMode || IsPIC) {
463 DispForReloc = &Op3;
464 } else {
465 DispVal += MCE.getConstantPoolEntryAddress(Op3.getIndex());
466 DispVal += Op3.getOffset();
467 }
468 } else if (Op3.isJTI()) {
469 if (!MCE.earlyResolveAddresses() || Is64BitMode || IsPIC) {
470 DispForReloc = &Op3;
471 } else {
472 DispVal += MCE.getJumpTableEntryAddress(Op3.getIndex());
473 }
474 } else {
475 DispVal = Op3.getImm();
476 }
477
478 const MachineOperand &Base = MI.getOperand(Op);
479 const MachineOperand &Scale = MI.getOperand(Op+1);
480 const MachineOperand &IndexReg = MI.getOperand(Op+2);
481
482 unsigned BaseReg = Base.getReg();
483
484 // Handle %rip relative addressing.
485 if (BaseReg == X86::RIP ||
486 (Is64BitMode && DispForReloc)) { // [disp32+RIP] in X86-64 mode
487 assert(IndexReg.getReg() == 0 && Is64BitMode &&
488 "Invalid rip-relative address");
489 MCE.emitByte(ModRMByte(0, RegOpcodeField, 5));
490 emitDisplacementField(DispForReloc, DispVal, PCAdj, true);
491 return;
492 }
493
494 // Indicate that the displacement will use an pcrel or absolute reference
495 // by default. MCEs able to resolve addresses on-the-fly use pcrel by default
496 // while others, unless explicit asked to use RIP, use absolute references.
497 bool IsPCRel = MCE.earlyResolveAddresses() ? true : false;
498
499 // Is a SIB byte needed?
500 // If no BaseReg, issue a RIP relative instruction only if the MCE can
501 // resolve addresses on-the-fly, otherwise use SIB (Intel Manual 2A, table
502 // 2-7) and absolute references.
503 unsigned BaseRegNo = -1U;
504 if (BaseReg != 0 && BaseReg != X86::RIP)
505 BaseRegNo = getX86RegNum(BaseReg);
506
507 if (// The SIB byte must be used if there is an index register.
508 IndexReg.getReg() == 0 &&
509 // The SIB byte must be used if the base is ESP/RSP/R12, all of which
510 // encode to an R/M value of 4, which indicates that a SIB byte is
511 // present.
512 BaseRegNo != N86::ESP &&
513 // If there is no base register and we're in 64-bit mode, we need a SIB
514 // byte to emit an addr that is just 'disp32' (the non-RIP relative form).
515 (!Is64BitMode || BaseReg != 0)) {
516 if (BaseReg == 0 || // [disp32] in X86-32 mode
517 BaseReg == X86::RIP) { // [disp32+RIP] in X86-64 mode
518 MCE.emitByte(ModRMByte(0, RegOpcodeField, 5));
519 emitDisplacementField(DispForReloc, DispVal, PCAdj, true);
520 return;
521 }
522
523 // If the base is not EBP/ESP and there is no displacement, use simple
524 // indirect register encoding, this handles addresses like [EAX]. The
525 // encoding for [EBP] with no displacement means [disp32] so we handle it
526 // by emitting a displacement of 0 below.
527 if (!DispForReloc && DispVal == 0 && BaseRegNo != N86::EBP) {
528 MCE.emitByte(ModRMByte(0, RegOpcodeField, BaseRegNo));
529 return;
530 }
531
532 // Otherwise, if the displacement fits in a byte, encode as [REG+disp8].
533 if (!DispForReloc && isDisp8(DispVal)) {
534 MCE.emitByte(ModRMByte(1, RegOpcodeField, BaseRegNo));
535 emitConstant(DispVal, 1);
536 return;
537 }
538
539 // Otherwise, emit the most general non-SIB encoding: [REG+disp32]
540 MCE.emitByte(ModRMByte(2, RegOpcodeField, BaseRegNo));
541 emitDisplacementField(DispForReloc, DispVal, PCAdj, IsPCRel);
542 return;
543 }
544
545 // Otherwise we need a SIB byte, so start by outputting the ModR/M byte first.
546 assert(IndexReg.getReg() != X86::ESP &&
547 IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!");
548
549 bool ForceDisp32 = false;
550 bool ForceDisp8 = false;
551 if (BaseReg == 0) {
552 // If there is no base register, we emit the special case SIB byte with
553 // MOD=0, BASE=4, to JUST get the index, scale, and displacement.
554 MCE.emitByte(ModRMByte(0, RegOpcodeField, 4));
555 ForceDisp32 = true;
556 } else if (DispForReloc) {
557 // Emit the normal disp32 encoding.
558 MCE.emitByte(ModRMByte(2, RegOpcodeField, 4));
559 ForceDisp32 = true;
560 } else if (DispVal == 0 && BaseRegNo != N86::EBP) {
561 // Emit no displacement ModR/M byte
562 MCE.emitByte(ModRMByte(0, RegOpcodeField, 4));
563 } else if (isDisp8(DispVal)) {
564 // Emit the disp8 encoding...
565 MCE.emitByte(ModRMByte(1, RegOpcodeField, 4));
566 ForceDisp8 = true; // Make sure to force 8 bit disp if Base=EBP
567 } else {
568 // Emit the normal disp32 encoding...
569 MCE.emitByte(ModRMByte(2, RegOpcodeField, 4));
570 }
571
572 // Calculate what the SS field value should be...
573 static const unsigned SSTable[] = { ~0U, 0, 1, ~0U, 2, ~0U, ~0U, ~0U, 3 };
574 unsigned SS = SSTable[Scale.getImm()];
575
576 if (BaseReg == 0) {
577 // Handle the SIB byte for the case where there is no base, see Intel
578 // Manual 2A, table 2-7. The displacement has already been output.
579 unsigned IndexRegNo;
580 if (IndexReg.getReg())
581 IndexRegNo = getX86RegNum(IndexReg.getReg());
582 else // Examples: [ESP+1*<noreg>+4] or [scaled idx]+disp32 (MOD=0,BASE=5)
583 IndexRegNo = 4;
584 emitSIBByte(SS, IndexRegNo, 5);
585 } else {
586 unsigned BaseRegNo = getX86RegNum(BaseReg);
587 unsigned IndexRegNo;
588 if (IndexReg.getReg())
589 IndexRegNo = getX86RegNum(IndexReg.getReg());
590 else
591 IndexRegNo = 4; // For example [ESP+1*<noreg>+4]
592 emitSIBByte(SS, IndexRegNo, BaseRegNo);
593 }
594
595 // Do we need to output a displacement?
596 if (ForceDisp8) {
597 emitConstant(DispVal, 1);
598 } else if (DispVal != 0 || ForceDisp32) {
599 emitDisplacementField(DispForReloc, DispVal, PCAdj, IsPCRel);
600 }
601 }
602
UpdateOp(MachineInstr & MI,const X86InstrInfo * II,unsigned Opcode)603 static const MCInstrDesc *UpdateOp(MachineInstr &MI, const X86InstrInfo *II,
604 unsigned Opcode) {
605 const MCInstrDesc *Desc = &II->get(Opcode);
606 MI.setDesc(*Desc);
607 return Desc;
608 }
609
610 /// Is16BitMemOperand - Return true if the specified instruction has
611 /// a 16-bit memory operand. Op specifies the operand # of the memoperand.
Is16BitMemOperand(const MachineInstr & MI,unsigned Op)612 static bool Is16BitMemOperand(const MachineInstr &MI, unsigned Op) {
613 const MachineOperand &BaseReg = MI.getOperand(Op+X86::AddrBaseReg);
614 const MachineOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg);
615
616 if ((BaseReg.getReg() != 0 &&
617 X86MCRegisterClasses[X86::GR16RegClassID].contains(BaseReg.getReg())) ||
618 (IndexReg.getReg() != 0 &&
619 X86MCRegisterClasses[X86::GR16RegClassID].contains(IndexReg.getReg())))
620 return true;
621 return false;
622 }
623
624 /// Is32BitMemOperand - Return true if the specified instruction has
625 /// a 32-bit memory operand. Op specifies the operand # of the memoperand.
Is32BitMemOperand(const MachineInstr & MI,unsigned Op)626 static bool Is32BitMemOperand(const MachineInstr &MI, unsigned Op) {
627 const MachineOperand &BaseReg = MI.getOperand(Op+X86::AddrBaseReg);
628 const MachineOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg);
629
630 if ((BaseReg.getReg() != 0 &&
631 X86MCRegisterClasses[X86::GR32RegClassID].contains(BaseReg.getReg())) ||
632 (IndexReg.getReg() != 0 &&
633 X86MCRegisterClasses[X86::GR32RegClassID].contains(IndexReg.getReg())))
634 return true;
635 return false;
636 }
637
638 /// Is64BitMemOperand - Return true if the specified instruction has
639 /// a 64-bit memory operand. Op specifies the operand # of the memoperand.
640 #ifndef NDEBUG
Is64BitMemOperand(const MachineInstr & MI,unsigned Op)641 static bool Is64BitMemOperand(const MachineInstr &MI, unsigned Op) {
642 const MachineOperand &BaseReg = MI.getOperand(Op+X86::AddrBaseReg);
643 const MachineOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg);
644
645 if ((BaseReg.getReg() != 0 &&
646 X86MCRegisterClasses[X86::GR64RegClassID].contains(BaseReg.getReg())) ||
647 (IndexReg.getReg() != 0 &&
648 X86MCRegisterClasses[X86::GR64RegClassID].contains(IndexReg.getReg())))
649 return true;
650 return false;
651 }
652 #endif
653
654 template<class CodeEmitter>
emitOpcodePrefix(uint64_t TSFlags,int MemOperand,const MachineInstr & MI,const MCInstrDesc * Desc) const655 void Emitter<CodeEmitter>::emitOpcodePrefix(uint64_t TSFlags,
656 int MemOperand,
657 const MachineInstr &MI,
658 const MCInstrDesc *Desc) const {
659 // Emit the operand size opcode prefix as needed.
660 if (((TSFlags & X86II::OpSizeMask) >> X86II::OpSizeShift) == X86II::OpSize16)
661 MCE.emitByte(0x66);
662
663 switch (Desc->TSFlags & X86II::OpPrefixMask) {
664 case X86II::PD: // 66
665 MCE.emitByte(0x66);
666 break;
667 case X86II::XS: // F3
668 MCE.emitByte(0xF3);
669 break;
670 case X86II::XD: // F2
671 MCE.emitByte(0xF2);
672 break;
673 }
674
675 // Handle REX prefix.
676 if (Is64BitMode) {
677 if (unsigned REX = determineREX(MI))
678 MCE.emitByte(0x40 | REX);
679 }
680
681 // 0x0F escape code must be emitted just before the opcode.
682 switch (Desc->TSFlags & X86II::OpMapMask) {
683 case X86II::TB: // Two-byte opcode map
684 case X86II::T8: // 0F 38
685 case X86II::TA: // 0F 3A
686 MCE.emitByte(0x0F);
687 break;
688 }
689
690 switch (Desc->TSFlags & X86II::OpMapMask) {
691 case X86II::T8: // 0F 38
692 MCE.emitByte(0x38);
693 break;
694 case X86II::TA: // 0F 3A
695 MCE.emitByte(0x3A);
696 break;
697 }
698 }
699
700 // On regular x86, both XMM0-XMM7 and XMM8-XMM15 are encoded in the range
701 // 0-7 and the difference between the 2 groups is given by the REX prefix.
702 // In the VEX prefix, registers are seen sequencially from 0-15 and encoded
703 // in 1's complement form, example:
704 //
705 // ModRM field => XMM9 => 1
706 // VEX.VVVV => XMM9 => ~9
707 //
708 // See table 4-35 of Intel AVX Programming Reference for details.
709 template<class CodeEmitter>
710 unsigned char
getVEXRegisterEncoding(const MachineInstr & MI,unsigned OpNum) const711 Emitter<CodeEmitter>::getVEXRegisterEncoding(const MachineInstr &MI,
712 unsigned OpNum) const {
713 unsigned SrcReg = MI.getOperand(OpNum).getReg();
714 unsigned SrcRegNum = getX86RegNum(MI.getOperand(OpNum).getReg());
715 if (X86II::isX86_64ExtendedReg(SrcReg))
716 SrcRegNum |= 8;
717
718 // The registers represented through VEX_VVVV should
719 // be encoded in 1's complement form.
720 return (~SrcRegNum) & 0xf;
721 }
722
723 /// EmitSegmentOverridePrefix - Emit segment override opcode prefix as needed
724 template<class CodeEmitter>
emitSegmentOverridePrefix(uint64_t TSFlags,int MemOperand,const MachineInstr & MI) const725 void Emitter<CodeEmitter>::emitSegmentOverridePrefix(uint64_t TSFlags,
726 int MemOperand,
727 const MachineInstr &MI) const {
728 if (MemOperand < 0)
729 return; // No memory operand
730
731 // Check for explicit segment override on memory operand.
732 switch (MI.getOperand(MemOperand+X86::AddrSegmentReg).getReg()) {
733 default: llvm_unreachable("Unknown segment register!");
734 case 0: break;
735 case X86::CS: MCE.emitByte(0x2E); break;
736 case X86::SS: MCE.emitByte(0x36); break;
737 case X86::DS: MCE.emitByte(0x3E); break;
738 case X86::ES: MCE.emitByte(0x26); break;
739 case X86::FS: MCE.emitByte(0x64); break;
740 case X86::GS: MCE.emitByte(0x65); break;
741 }
742 }
743
744 template<class CodeEmitter>
emitVEXOpcodePrefix(uint64_t TSFlags,int MemOperand,const MachineInstr & MI,const MCInstrDesc * Desc) const745 void Emitter<CodeEmitter>::emitVEXOpcodePrefix(uint64_t TSFlags,
746 int MemOperand,
747 const MachineInstr &MI,
748 const MCInstrDesc *Desc) const {
749 unsigned char Encoding = (TSFlags & X86II::EncodingMask) >>
750 X86II::EncodingShift;
751 bool HasVEX_4V = (TSFlags >> X86II::VEXShift) & X86II::VEX_4V;
752 bool HasVEX_4VOp3 = (TSFlags >> X86II::VEXShift) & X86II::VEX_4VOp3;
753 bool HasMemOp4 = (TSFlags >> X86II::VEXShift) & X86II::MemOp4;
754
755 // VEX_R: opcode externsion equivalent to REX.R in
756 // 1's complement (inverted) form
757 //
758 // 1: Same as REX_R=0 (must be 1 in 32-bit mode)
759 // 0: Same as REX_R=1 (64 bit mode only)
760 //
761 unsigned char VEX_R = 0x1;
762
763 // VEX_X: equivalent to REX.X, only used when a
764 // register is used for index in SIB Byte.
765 //
766 // 1: Same as REX.X=0 (must be 1 in 32-bit mode)
767 // 0: Same as REX.X=1 (64-bit mode only)
768 unsigned char VEX_X = 0x1;
769
770 // VEX_B:
771 //
772 // 1: Same as REX_B=0 (ignored in 32-bit mode)
773 // 0: Same as REX_B=1 (64 bit mode only)
774 //
775 unsigned char VEX_B = 0x1;
776
777 // VEX_W: opcode specific (use like REX.W, or used for
778 // opcode extension, or ignored, depending on the opcode byte)
779 unsigned char VEX_W = 0;
780
781 // VEX_5M (VEX m-mmmmm field):
782 //
783 // 0b00000: Reserved for future use
784 // 0b00001: implied 0F leading opcode
785 // 0b00010: implied 0F 38 leading opcode bytes
786 // 0b00011: implied 0F 3A leading opcode bytes
787 // 0b00100-0b11111: Reserved for future use
788 // 0b01000: XOP map select - 08h instructions with imm byte
789 // 0b01001: XOP map select - 09h instructions with no imm byte
790 // 0b01010: XOP map select - 0Ah instructions with imm dword
791 unsigned char VEX_5M = 0;
792
793 // VEX_4V (VEX vvvv field): a register specifier
794 // (in 1's complement form) or 1111 if unused.
795 unsigned char VEX_4V = 0xf;
796
797 // VEX_L (Vector Length):
798 //
799 // 0: scalar or 128-bit vector
800 // 1: 256-bit vector
801 //
802 unsigned char VEX_L = 0;
803
804 // VEX_PP: opcode extension providing equivalent
805 // functionality of a SIMD prefix
806 //
807 // 0b00: None
808 // 0b01: 66
809 // 0b10: F3
810 // 0b11: F2
811 //
812 unsigned char VEX_PP = 0;
813
814 if ((TSFlags >> X86II::VEXShift) & X86II::VEX_W)
815 VEX_W = 1;
816
817 if ((TSFlags >> X86II::VEXShift) & X86II::VEX_L)
818 VEX_L = 1;
819
820 switch (TSFlags & X86II::OpPrefixMask) {
821 default: break; // VEX_PP already correct
822 case X86II::PD: VEX_PP = 0x1; break; // 66
823 case X86II::XS: VEX_PP = 0x2; break; // F3
824 case X86II::XD: VEX_PP = 0x3; break; // F2
825 }
826
827 switch (TSFlags & X86II::OpMapMask) {
828 default: llvm_unreachable("Invalid prefix!");
829 case X86II::TB: VEX_5M = 0x1; break; // 0F
830 case X86II::T8: VEX_5M = 0x2; break; // 0F 38
831 case X86II::TA: VEX_5M = 0x3; break; // 0F 3A
832 case X86II::XOP8: VEX_5M = 0x8; break;
833 case X86II::XOP9: VEX_5M = 0x9; break;
834 case X86II::XOPA: VEX_5M = 0xA; break;
835 }
836
837 // Classify VEX_B, VEX_4V, VEX_R, VEX_X
838 unsigned NumOps = Desc->getNumOperands();
839 unsigned CurOp = 0;
840 if (NumOps > 1 && Desc->getOperandConstraint(1, MCOI::TIED_TO) == 0)
841 ++CurOp;
842 else if (NumOps > 3 && Desc->getOperandConstraint(2, MCOI::TIED_TO) == 0) {
843 assert(Desc->getOperandConstraint(NumOps - 1, MCOI::TIED_TO) == 1);
844 // Special case for GATHER with 2 TIED_TO operands
845 // Skip the first 2 operands: dst, mask_wb
846 CurOp += 2;
847 }
848
849 switch (TSFlags & X86II::FormMask) {
850 default: llvm_unreachable("Unexpected form in emitVEXOpcodePrefix!");
851 case X86II::RawFrm:
852 break;
853 case X86II::MRMDestMem: {
854 // MRMDestMem instructions forms:
855 // MemAddr, src1(ModR/M)
856 // MemAddr, src1(VEX_4V), src2(ModR/M)
857 // MemAddr, src1(ModR/M), imm8
858 //
859 if (X86II::isX86_64ExtendedReg(MI.getOperand(X86::AddrBaseReg).getReg()))
860 VEX_B = 0x0;
861 if (X86II::isX86_64ExtendedReg(MI.getOperand(X86::AddrIndexReg).getReg()))
862 VEX_X = 0x0;
863
864 CurOp = X86::AddrNumOperands;
865 if (HasVEX_4V)
866 VEX_4V = getVEXRegisterEncoding(MI, CurOp++);
867
868 const MachineOperand &MO = MI.getOperand(CurOp);
869 if (MO.isReg() && X86II::isX86_64ExtendedReg(MO.getReg()))
870 VEX_R = 0x0;
871 break;
872 }
873 case X86II::MRMSrcMem:
874 // MRMSrcMem instructions forms:
875 // src1(ModR/M), MemAddr
876 // src1(ModR/M), src2(VEX_4V), MemAddr
877 // src1(ModR/M), MemAddr, imm8
878 // src1(ModR/M), MemAddr, src2(VEX_I8IMM)
879 //
880 // FMA4:
881 // dst(ModR/M.reg), src1(VEX_4V), src2(ModR/M), src3(VEX_I8IMM)
882 // dst(ModR/M.reg), src1(VEX_4V), src2(VEX_I8IMM), src3(ModR/M),
883 if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
884 VEX_R = 0x0;
885 CurOp++;
886
887 if (HasVEX_4V) {
888 VEX_4V = getVEXRegisterEncoding(MI, CurOp);
889 CurOp++;
890 }
891
892 if (X86II::isX86_64ExtendedReg(
893 MI.getOperand(MemOperand+X86::AddrBaseReg).getReg()))
894 VEX_B = 0x0;
895 if (X86II::isX86_64ExtendedReg(
896 MI.getOperand(MemOperand+X86::AddrIndexReg).getReg()))
897 VEX_X = 0x0;
898
899 if (HasVEX_4VOp3)
900 VEX_4V = getVEXRegisterEncoding(MI, CurOp+X86::AddrNumOperands);
901 break;
902 case X86II::MRM0m: case X86II::MRM1m:
903 case X86II::MRM2m: case X86II::MRM3m:
904 case X86II::MRM4m: case X86II::MRM5m:
905 case X86II::MRM6m: case X86II::MRM7m: {
906 // MRM[0-9]m instructions forms:
907 // MemAddr
908 // src1(VEX_4V), MemAddr
909 if (HasVEX_4V)
910 VEX_4V = getVEXRegisterEncoding(MI, CurOp++);
911
912 if (X86II::isX86_64ExtendedReg(
913 MI.getOperand(MemOperand+X86::AddrBaseReg).getReg()))
914 VEX_B = 0x0;
915 if (X86II::isX86_64ExtendedReg(
916 MI.getOperand(MemOperand+X86::AddrIndexReg).getReg()))
917 VEX_X = 0x0;
918 break;
919 }
920 case X86II::MRMSrcReg:
921 // MRMSrcReg instructions forms:
922 // dst(ModR/M), src1(VEX_4V), src2(ModR/M), src3(VEX_I8IMM)
923 // dst(ModR/M), src1(ModR/M)
924 // dst(ModR/M), src1(ModR/M), imm8
925 //
926 if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
927 VEX_R = 0x0;
928 CurOp++;
929
930 if (HasVEX_4V)
931 VEX_4V = getVEXRegisterEncoding(MI, CurOp++);
932
933 if (HasMemOp4) // Skip second register source (encoded in I8IMM)
934 CurOp++;
935
936 if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
937 VEX_B = 0x0;
938 CurOp++;
939 if (HasVEX_4VOp3)
940 VEX_4V = getVEXRegisterEncoding(MI, CurOp);
941 break;
942 case X86II::MRMDestReg:
943 // MRMDestReg instructions forms:
944 // dst(ModR/M), src(ModR/M)
945 // dst(ModR/M), src(ModR/M), imm8
946 // dst(ModR/M), src1(VEX_4V), src2(ModR/M)
947 if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
948 VEX_B = 0x0;
949 CurOp++;
950
951 if (HasVEX_4V)
952 VEX_4V = getVEXRegisterEncoding(MI, CurOp++);
953
954 if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
955 VEX_R = 0x0;
956 break;
957 case X86II::MRM0r: case X86II::MRM1r:
958 case X86II::MRM2r: case X86II::MRM3r:
959 case X86II::MRM4r: case X86II::MRM5r:
960 case X86II::MRM6r: case X86II::MRM7r:
961 // MRM0r-MRM7r instructions forms:
962 // dst(VEX_4V), src(ModR/M), imm8
963 VEX_4V = getVEXRegisterEncoding(MI, CurOp);
964 CurOp++;
965
966 if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
967 VEX_B = 0x0;
968 break;
969 }
970
971 // Emit segment override opcode prefix as needed.
972 emitSegmentOverridePrefix(TSFlags, MemOperand, MI);
973
974 // VEX opcode prefix can have 2 or 3 bytes
975 //
976 // 3 bytes:
977 // +-----+ +--------------+ +-------------------+
978 // | C4h | | RXB | m-mmmm | | W | vvvv | L | pp |
979 // +-----+ +--------------+ +-------------------+
980 // 2 bytes:
981 // +-----+ +-------------------+
982 // | C5h | | R | vvvv | L | pp |
983 // +-----+ +-------------------+
984 //
985 // XOP uses a similar prefix:
986 // +-----+ +--------------+ +-------------------+
987 // | 8Fh | | RXB | m-mmmm | | W | vvvv | L | pp |
988 // +-----+ +--------------+ +-------------------+
989 unsigned char LastByte = VEX_PP | (VEX_L << 2) | (VEX_4V << 3);
990
991 // Can this use the 2 byte VEX prefix?
992 if (Encoding == X86II::VEX && VEX_B && VEX_X && !VEX_W && (VEX_5M == 1)) {
993 MCE.emitByte(0xC5);
994 MCE.emitByte(LastByte | (VEX_R << 7));
995 return;
996 }
997
998 // 3 byte VEX prefix
999 MCE.emitByte(Encoding == X86II::XOP ? 0x8F : 0xC4);
1000 MCE.emitByte(VEX_R << 7 | VEX_X << 6 | VEX_B << 5 | VEX_5M);
1001 MCE.emitByte(LastByte | (VEX_W << 7));
1002 }
1003
1004 template<class CodeEmitter>
emitInstruction(MachineInstr & MI,const MCInstrDesc * Desc)1005 void Emitter<CodeEmitter>::emitInstruction(MachineInstr &MI,
1006 const MCInstrDesc *Desc) {
1007 DEBUG(dbgs() << MI);
1008
1009 // If this is a pseudo instruction, lower it.
1010 switch (Desc->getOpcode()) {
1011 case X86::ADD16rr_DB: Desc = UpdateOp(MI, II, X86::OR16rr); break;
1012 case X86::ADD32rr_DB: Desc = UpdateOp(MI, II, X86::OR32rr); break;
1013 case X86::ADD64rr_DB: Desc = UpdateOp(MI, II, X86::OR64rr); break;
1014 case X86::ADD16ri_DB: Desc = UpdateOp(MI, II, X86::OR16ri); break;
1015 case X86::ADD32ri_DB: Desc = UpdateOp(MI, II, X86::OR32ri); break;
1016 case X86::ADD64ri32_DB: Desc = UpdateOp(MI, II, X86::OR64ri32); break;
1017 case X86::ADD16ri8_DB: Desc = UpdateOp(MI, II, X86::OR16ri8); break;
1018 case X86::ADD32ri8_DB: Desc = UpdateOp(MI, II, X86::OR32ri8); break;
1019 case X86::ADD64ri8_DB: Desc = UpdateOp(MI, II, X86::OR64ri8); break;
1020 case X86::ACQUIRE_MOV8rm: Desc = UpdateOp(MI, II, X86::MOV8rm); break;
1021 case X86::ACQUIRE_MOV16rm: Desc = UpdateOp(MI, II, X86::MOV16rm); break;
1022 case X86::ACQUIRE_MOV32rm: Desc = UpdateOp(MI, II, X86::MOV32rm); break;
1023 case X86::ACQUIRE_MOV64rm: Desc = UpdateOp(MI, II, X86::MOV64rm); break;
1024 case X86::RELEASE_MOV8mr: Desc = UpdateOp(MI, II, X86::MOV8mr); break;
1025 case X86::RELEASE_MOV16mr: Desc = UpdateOp(MI, II, X86::MOV16mr); break;
1026 case X86::RELEASE_MOV32mr: Desc = UpdateOp(MI, II, X86::MOV32mr); break;
1027 case X86::RELEASE_MOV64mr: Desc = UpdateOp(MI, II, X86::MOV64mr); break;
1028 }
1029
1030
1031 MCE.processDebugLoc(MI.getDebugLoc(), true);
1032
1033 unsigned Opcode = Desc->Opcode;
1034
1035 // If this is a two-address instruction, skip one of the register operands.
1036 unsigned NumOps = Desc->getNumOperands();
1037 unsigned CurOp = 0;
1038 if (NumOps > 1 && Desc->getOperandConstraint(1, MCOI::TIED_TO) == 0)
1039 ++CurOp;
1040 else if (NumOps > 3 && Desc->getOperandConstraint(2, MCOI::TIED_TO) == 0) {
1041 assert(Desc->getOperandConstraint(NumOps - 1, MCOI::TIED_TO) == 1);
1042 // Special case for GATHER with 2 TIED_TO operands
1043 // Skip the first 2 operands: dst, mask_wb
1044 CurOp += 2;
1045 }
1046
1047 uint64_t TSFlags = Desc->TSFlags;
1048
1049 // Encoding type for this instruction.
1050 unsigned char Encoding = (TSFlags & X86II::EncodingMask) >>
1051 X86II::EncodingShift;
1052
1053 // It uses the VEX.VVVV field?
1054 bool HasVEX_4V = (TSFlags >> X86II::VEXShift) & X86II::VEX_4V;
1055 bool HasVEX_4VOp3 = (TSFlags >> X86II::VEXShift) & X86II::VEX_4VOp3;
1056 bool HasMemOp4 = (TSFlags >> X86II::VEXShift) & X86II::MemOp4;
1057 const unsigned MemOp4_I8IMMOperand = 2;
1058
1059 // Determine where the memory operand starts, if present.
1060 int MemoryOperand = X86II::getMemoryOperandNo(TSFlags, Opcode);
1061 if (MemoryOperand != -1) MemoryOperand += CurOp;
1062
1063 // Emit the lock opcode prefix as needed.
1064 if (Desc->TSFlags & X86II::LOCK)
1065 MCE.emitByte(0xF0);
1066
1067 // Emit segment override opcode prefix as needed.
1068 emitSegmentOverridePrefix(TSFlags, MemoryOperand, MI);
1069
1070 // Emit the repeat opcode prefix as needed.
1071 if (Desc->TSFlags & X86II::REP)
1072 MCE.emitByte(0xF3);
1073
1074 // Emit the address size opcode prefix as needed.
1075 bool need_address_override;
1076 if (TSFlags & X86II::AdSize) {
1077 need_address_override = true;
1078 } else if (MemoryOperand < 0) {
1079 need_address_override = false;
1080 } else if (Is64BitMode) {
1081 assert(!Is16BitMemOperand(MI, MemoryOperand));
1082 need_address_override = Is32BitMemOperand(MI, MemoryOperand);
1083 } else {
1084 assert(!Is64BitMemOperand(MI, MemoryOperand));
1085 need_address_override = Is16BitMemOperand(MI, MemoryOperand);
1086 }
1087
1088 if (need_address_override)
1089 MCE.emitByte(0x67);
1090
1091 if (Encoding == 0)
1092 emitOpcodePrefix(TSFlags, MemoryOperand, MI, Desc);
1093 else
1094 emitVEXOpcodePrefix(TSFlags, MemoryOperand, MI, Desc);
1095
1096 unsigned char BaseOpcode = X86II::getBaseOpcodeFor(Desc->TSFlags);
1097 switch (TSFlags & X86II::FormMask) {
1098 default:
1099 llvm_unreachable("Unknown FormMask value in X86 MachineCodeEmitter!");
1100 case X86II::Pseudo:
1101 // Remember the current PC offset, this is the PIC relocation
1102 // base address.
1103 switch (Opcode) {
1104 default:
1105 llvm_unreachable("pseudo instructions should be removed before code"
1106 " emission");
1107 // Do nothing for Int_MemBarrier - it's just a comment. Add a debug
1108 // to make it slightly easier to see.
1109 case X86::Int_MemBarrier:
1110 DEBUG(dbgs() << "#MEMBARRIER\n");
1111 break;
1112
1113 case TargetOpcode::INLINEASM:
1114 // We allow inline assembler nodes with empty bodies - they can
1115 // implicitly define registers, which is ok for JIT.
1116 if (MI.getOperand(0).getSymbolName()[0]) {
1117 DebugLoc DL = MI.getDebugLoc();
1118 DL.print(MI.getParent()->getParent()->getFunction()->getContext(),
1119 llvm::errs());
1120 report_fatal_error("JIT does not support inline asm!");
1121 }
1122 break;
1123 case TargetOpcode::DBG_VALUE:
1124 case TargetOpcode::CFI_INSTRUCTION:
1125 break;
1126 case TargetOpcode::GC_LABEL:
1127 case TargetOpcode::EH_LABEL:
1128 MCE.emitLabel(MI.getOperand(0).getMCSymbol());
1129 break;
1130
1131 case TargetOpcode::IMPLICIT_DEF:
1132 case TargetOpcode::KILL:
1133 break;
1134
1135 case X86::SEH_PushReg:
1136 case X86::SEH_SaveReg:
1137 case X86::SEH_SaveXMM:
1138 case X86::SEH_StackAlloc:
1139 case X86::SEH_SetFrame:
1140 case X86::SEH_PushFrame:
1141 case X86::SEH_EndPrologue:
1142 break;
1143
1144 case X86::MOVPC32r: {
1145 // This emits the "call" portion of this pseudo instruction.
1146 MCE.emitByte(BaseOpcode);
1147 emitConstant(0, X86II::getSizeOfImm(Desc->TSFlags));
1148 // Remember PIC base.
1149 PICBaseOffset = (intptr_t) MCE.getCurrentPCOffset();
1150 X86JITInfo *JTI = TM.getJITInfo();
1151 JTI->setPICBase(MCE.getCurrentPCValue());
1152 break;
1153 }
1154 }
1155 CurOp = NumOps;
1156 break;
1157 case X86II::RawFrm: {
1158 MCE.emitByte(BaseOpcode);
1159
1160 if (CurOp == NumOps)
1161 break;
1162
1163 const MachineOperand &MO = MI.getOperand(CurOp++);
1164
1165 DEBUG(dbgs() << "RawFrm CurOp " << CurOp << "\n");
1166 DEBUG(dbgs() << "isMBB " << MO.isMBB() << "\n");
1167 DEBUG(dbgs() << "isGlobal " << MO.isGlobal() << "\n");
1168 DEBUG(dbgs() << "isSymbol " << MO.isSymbol() << "\n");
1169 DEBUG(dbgs() << "isImm " << MO.isImm() << "\n");
1170
1171 if (MO.isMBB()) {
1172 emitPCRelativeBlockAddress(MO.getMBB());
1173 break;
1174 }
1175
1176 if (MO.isGlobal()) {
1177 emitGlobalAddress(MO.getGlobal(), X86::reloc_pcrel_word,
1178 MO.getOffset(), 0);
1179 break;
1180 }
1181
1182 if (MO.isSymbol()) {
1183 emitExternalSymbolAddress(MO.getSymbolName(), X86::reloc_pcrel_word);
1184 break;
1185 }
1186
1187 // FIXME: Only used by hackish MCCodeEmitter, remove when dead.
1188 if (MO.isJTI()) {
1189 emitJumpTableAddress(MO.getIndex(), X86::reloc_pcrel_word);
1190 break;
1191 }
1192
1193 assert(MO.isImm() && "Unknown RawFrm operand!");
1194 if (Opcode == X86::CALLpcrel32 || Opcode == X86::CALL64pcrel32) {
1195 // Fix up immediate operand for pc relative calls.
1196 intptr_t Imm = (intptr_t)MO.getImm();
1197 Imm = Imm - MCE.getCurrentPCValue() - 4;
1198 emitConstant(Imm, X86II::getSizeOfImm(Desc->TSFlags));
1199 } else
1200 emitConstant(MO.getImm(), X86II::getSizeOfImm(Desc->TSFlags));
1201 break;
1202 }
1203
1204 case X86II::AddRegFrm: {
1205 MCE.emitByte(BaseOpcode +
1206 getX86RegNum(MI.getOperand(CurOp++).getReg()));
1207
1208 if (CurOp == NumOps)
1209 break;
1210
1211 const MachineOperand &MO1 = MI.getOperand(CurOp++);
1212 unsigned Size = X86II::getSizeOfImm(Desc->TSFlags);
1213 if (MO1.isImm()) {
1214 emitConstant(MO1.getImm(), Size);
1215 break;
1216 }
1217
1218 unsigned rt = Is64BitMode ? X86::reloc_pcrel_word
1219 : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word);
1220 if (Opcode == X86::MOV32ri64)
1221 rt = X86::reloc_absolute_word; // FIXME: add X86II flag?
1222 // This should not occur on Darwin for relocatable objects.
1223 if (Opcode == X86::MOV64ri)
1224 rt = X86::reloc_absolute_dword; // FIXME: add X86II flag?
1225 if (MO1.isGlobal()) {
1226 bool Indirect = gvNeedsNonLazyPtr(MO1, TM);
1227 emitGlobalAddress(MO1.getGlobal(), rt, MO1.getOffset(), 0,
1228 Indirect);
1229 } else if (MO1.isSymbol())
1230 emitExternalSymbolAddress(MO1.getSymbolName(), rt);
1231 else if (MO1.isCPI())
1232 emitConstPoolAddress(MO1.getIndex(), rt);
1233 else if (MO1.isJTI())
1234 emitJumpTableAddress(MO1.getIndex(), rt);
1235 break;
1236 }
1237
1238 case X86II::MRMDestReg: {
1239 MCE.emitByte(BaseOpcode);
1240
1241 unsigned SrcRegNum = CurOp+1;
1242 if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
1243 SrcRegNum++;
1244
1245 emitRegModRMByte(MI.getOperand(CurOp).getReg(),
1246 getX86RegNum(MI.getOperand(SrcRegNum).getReg()));
1247 CurOp = SrcRegNum + 1;
1248 break;
1249 }
1250 case X86II::MRMDestMem: {
1251 MCE.emitByte(BaseOpcode);
1252
1253 unsigned SrcRegNum = CurOp + X86::AddrNumOperands;
1254 if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
1255 SrcRegNum++;
1256 emitMemModRMByte(MI, CurOp,
1257 getX86RegNum(MI.getOperand(SrcRegNum).getReg()));
1258 CurOp = SrcRegNum + 1;
1259 break;
1260 }
1261
1262 case X86II::MRMSrcReg: {
1263 MCE.emitByte(BaseOpcode);
1264
1265 unsigned SrcRegNum = CurOp+1;
1266 if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
1267 ++SrcRegNum;
1268
1269 if (HasMemOp4) // Skip 2nd src (which is encoded in I8IMM)
1270 ++SrcRegNum;
1271
1272 emitRegModRMByte(MI.getOperand(SrcRegNum).getReg(),
1273 getX86RegNum(MI.getOperand(CurOp).getReg()));
1274 // 2 operands skipped with HasMemOp4, compensate accordingly
1275 CurOp = HasMemOp4 ? SrcRegNum : SrcRegNum + 1;
1276 if (HasVEX_4VOp3)
1277 ++CurOp;
1278 break;
1279 }
1280 case X86II::MRMSrcMem: {
1281 int AddrOperands = X86::AddrNumOperands;
1282 unsigned FirstMemOp = CurOp+1;
1283 if (HasVEX_4V) {
1284 ++AddrOperands;
1285 ++FirstMemOp; // Skip the register source (which is encoded in VEX_VVVV).
1286 }
1287 if (HasMemOp4) // Skip second register source (encoded in I8IMM)
1288 ++FirstMemOp;
1289
1290 MCE.emitByte(BaseOpcode);
1291
1292 intptr_t PCAdj = (CurOp + AddrOperands + 1 != NumOps) ?
1293 X86II::getSizeOfImm(Desc->TSFlags) : 0;
1294 emitMemModRMByte(MI, FirstMemOp,
1295 getX86RegNum(MI.getOperand(CurOp).getReg()),PCAdj);
1296 CurOp += AddrOperands + 1;
1297 if (HasVEX_4VOp3)
1298 ++CurOp;
1299 break;
1300 }
1301
1302 case X86II::MRMXr:
1303 case X86II::MRM0r: case X86II::MRM1r:
1304 case X86II::MRM2r: case X86II::MRM3r:
1305 case X86II::MRM4r: case X86II::MRM5r:
1306 case X86II::MRM6r: case X86II::MRM7r: {
1307 if (HasVEX_4V) // Skip the register dst (which is encoded in VEX_VVVV).
1308 ++CurOp;
1309 MCE.emitByte(BaseOpcode);
1310 uint64_t Form = (Desc->TSFlags & X86II::FormMask);
1311 emitRegModRMByte(MI.getOperand(CurOp++).getReg(),
1312 (Form == X86II::MRMXr) ? 0 : Form-X86II::MRM0r);
1313
1314 if (CurOp == NumOps)
1315 break;
1316
1317 const MachineOperand &MO1 = MI.getOperand(CurOp++);
1318 unsigned Size = X86II::getSizeOfImm(Desc->TSFlags);
1319 if (MO1.isImm()) {
1320 emitConstant(MO1.getImm(), Size);
1321 break;
1322 }
1323
1324 unsigned rt = Is64BitMode ? X86::reloc_pcrel_word
1325 : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word);
1326 if (Opcode == X86::MOV64ri32)
1327 rt = X86::reloc_absolute_word_sext; // FIXME: add X86II flag?
1328 if (MO1.isGlobal()) {
1329 bool Indirect = gvNeedsNonLazyPtr(MO1, TM);
1330 emitGlobalAddress(MO1.getGlobal(), rt, MO1.getOffset(), 0,
1331 Indirect);
1332 } else if (MO1.isSymbol())
1333 emitExternalSymbolAddress(MO1.getSymbolName(), rt);
1334 else if (MO1.isCPI())
1335 emitConstPoolAddress(MO1.getIndex(), rt);
1336 else if (MO1.isJTI())
1337 emitJumpTableAddress(MO1.getIndex(), rt);
1338 break;
1339 }
1340
1341 case X86II::MRMXm:
1342 case X86II::MRM0m: case X86II::MRM1m:
1343 case X86II::MRM2m: case X86II::MRM3m:
1344 case X86II::MRM4m: case X86II::MRM5m:
1345 case X86II::MRM6m: case X86II::MRM7m: {
1346 if (HasVEX_4V) // Skip the register dst (which is encoded in VEX_VVVV).
1347 ++CurOp;
1348 intptr_t PCAdj = (CurOp + X86::AddrNumOperands != NumOps) ?
1349 (MI.getOperand(CurOp+X86::AddrNumOperands).isImm() ?
1350 X86II::getSizeOfImm(Desc->TSFlags) : 4) : 0;
1351
1352 MCE.emitByte(BaseOpcode);
1353 uint64_t Form = (Desc->TSFlags & X86II::FormMask);
1354 emitMemModRMByte(MI, CurOp, (Form==X86II::MRMXm) ? 0 : Form - X86II::MRM0m,
1355 PCAdj);
1356 CurOp += X86::AddrNumOperands;
1357
1358 if (CurOp == NumOps)
1359 break;
1360
1361 const MachineOperand &MO = MI.getOperand(CurOp++);
1362 unsigned Size = X86II::getSizeOfImm(Desc->TSFlags);
1363 if (MO.isImm()) {
1364 emitConstant(MO.getImm(), Size);
1365 break;
1366 }
1367
1368 unsigned rt = Is64BitMode ? X86::reloc_pcrel_word
1369 : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word);
1370 if (Opcode == X86::MOV64mi32)
1371 rt = X86::reloc_absolute_word_sext; // FIXME: add X86II flag?
1372 if (MO.isGlobal()) {
1373 bool Indirect = gvNeedsNonLazyPtr(MO, TM);
1374 emitGlobalAddress(MO.getGlobal(), rt, MO.getOffset(), 0,
1375 Indirect);
1376 } else if (MO.isSymbol())
1377 emitExternalSymbolAddress(MO.getSymbolName(), rt);
1378 else if (MO.isCPI())
1379 emitConstPoolAddress(MO.getIndex(), rt);
1380 else if (MO.isJTI())
1381 emitJumpTableAddress(MO.getIndex(), rt);
1382 break;
1383 }
1384
1385 case X86II::MRM_C0: case X86II::MRM_C1: case X86II::MRM_C2:
1386 case X86II::MRM_C3: case X86II::MRM_C4: case X86II::MRM_C8:
1387 case X86II::MRM_C9: case X86II::MRM_CA: case X86II::MRM_CB:
1388 case X86II::MRM_D0: case X86II::MRM_D1: case X86II::MRM_D4:
1389 case X86II::MRM_D5: case X86II::MRM_D6: case X86II::MRM_D8:
1390 case X86II::MRM_D9: case X86II::MRM_DA: case X86II::MRM_DB:
1391 case X86II::MRM_DC: case X86II::MRM_DD: case X86II::MRM_DE:
1392 case X86II::MRM_DF: case X86II::MRM_E0: case X86II::MRM_E1:
1393 case X86II::MRM_E2: case X86II::MRM_E3: case X86II::MRM_E4:
1394 case X86II::MRM_E5: case X86II::MRM_E8: case X86II::MRM_E9:
1395 case X86II::MRM_EA: case X86II::MRM_EB: case X86II::MRM_EC:
1396 case X86II::MRM_ED: case X86II::MRM_EE: case X86II::MRM_F0:
1397 case X86II::MRM_F1: case X86II::MRM_F2: case X86II::MRM_F3:
1398 case X86II::MRM_F4: case X86II::MRM_F5: case X86II::MRM_F6:
1399 case X86II::MRM_F7: case X86II::MRM_F8: case X86II::MRM_F9:
1400 case X86II::MRM_FA: case X86II::MRM_FB: case X86II::MRM_FC:
1401 case X86II::MRM_FD: case X86II::MRM_FE: case X86II::MRM_FF:
1402 MCE.emitByte(BaseOpcode);
1403
1404 unsigned char MRM;
1405 switch (TSFlags & X86II::FormMask) {
1406 default: llvm_unreachable("Invalid Form");
1407 case X86II::MRM_C0: MRM = 0xC0; break;
1408 case X86II::MRM_C1: MRM = 0xC1; break;
1409 case X86II::MRM_C2: MRM = 0xC2; break;
1410 case X86II::MRM_C3: MRM = 0xC3; break;
1411 case X86II::MRM_C4: MRM = 0xC4; break;
1412 case X86II::MRM_C8: MRM = 0xC8; break;
1413 case X86II::MRM_C9: MRM = 0xC9; break;
1414 case X86II::MRM_CA: MRM = 0xCA; break;
1415 case X86II::MRM_CB: MRM = 0xCB; break;
1416 case X86II::MRM_D0: MRM = 0xD0; break;
1417 case X86II::MRM_D1: MRM = 0xD1; break;
1418 case X86II::MRM_D4: MRM = 0xD4; break;
1419 case X86II::MRM_D5: MRM = 0xD5; break;
1420 case X86II::MRM_D6: MRM = 0xD6; break;
1421 case X86II::MRM_D8: MRM = 0xD8; break;
1422 case X86II::MRM_D9: MRM = 0xD9; break;
1423 case X86II::MRM_DA: MRM = 0xDA; break;
1424 case X86II::MRM_DB: MRM = 0xDB; break;
1425 case X86II::MRM_DC: MRM = 0xDC; break;
1426 case X86II::MRM_DD: MRM = 0xDD; break;
1427 case X86II::MRM_DE: MRM = 0xDE; break;
1428 case X86II::MRM_DF: MRM = 0xDF; break;
1429 case X86II::MRM_E0: MRM = 0xE0; break;
1430 case X86II::MRM_E1: MRM = 0xE1; break;
1431 case X86II::MRM_E2: MRM = 0xE2; break;
1432 case X86II::MRM_E3: MRM = 0xE3; break;
1433 case X86II::MRM_E4: MRM = 0xE4; break;
1434 case X86II::MRM_E5: MRM = 0xE5; break;
1435 case X86II::MRM_E8: MRM = 0xE8; break;
1436 case X86II::MRM_E9: MRM = 0xE9; break;
1437 case X86II::MRM_EA: MRM = 0xEA; break;
1438 case X86II::MRM_EB: MRM = 0xEB; break;
1439 case X86II::MRM_EC: MRM = 0xEC; break;
1440 case X86II::MRM_ED: MRM = 0xED; break;
1441 case X86II::MRM_EE: MRM = 0xEE; break;
1442 case X86II::MRM_F0: MRM = 0xF0; break;
1443 case X86II::MRM_F1: MRM = 0xF1; break;
1444 case X86II::MRM_F2: MRM = 0xF2; break;
1445 case X86II::MRM_F3: MRM = 0xF3; break;
1446 case X86II::MRM_F4: MRM = 0xF4; break;
1447 case X86II::MRM_F5: MRM = 0xF5; break;
1448 case X86II::MRM_F6: MRM = 0xF6; break;
1449 case X86II::MRM_F7: MRM = 0xF7; break;
1450 case X86II::MRM_F8: MRM = 0xF8; break;
1451 case X86II::MRM_F9: MRM = 0xF9; break;
1452 case X86II::MRM_FA: MRM = 0xFA; break;
1453 case X86II::MRM_FB: MRM = 0xFB; break;
1454 case X86II::MRM_FC: MRM = 0xFC; break;
1455 case X86II::MRM_FD: MRM = 0xFD; break;
1456 case X86II::MRM_FE: MRM = 0xFE; break;
1457 case X86II::MRM_FF: MRM = 0xFF; break;
1458 }
1459 MCE.emitByte(MRM);
1460 break;
1461 }
1462
1463 while (CurOp != NumOps && NumOps - CurOp <= 2) {
1464 // The last source register of a 4 operand instruction in AVX is encoded
1465 // in bits[7:4] of a immediate byte.
1466 if ((TSFlags >> X86II::VEXShift) & X86II::VEX_I8IMM) {
1467 const MachineOperand &MO = MI.getOperand(HasMemOp4 ? MemOp4_I8IMMOperand
1468 : CurOp);
1469 ++CurOp;
1470 unsigned RegNum = getX86RegNum(MO.getReg()) << 4;
1471 if (X86II::isX86_64ExtendedReg(MO.getReg()))
1472 RegNum |= 1 << 7;
1473 // If there is an additional 5th operand it must be an immediate, which
1474 // is encoded in bits[3:0]
1475 if (CurOp != NumOps) {
1476 const MachineOperand &MIMM = MI.getOperand(CurOp++);
1477 if (MIMM.isImm()) {
1478 unsigned Val = MIMM.getImm();
1479 assert(Val < 16 && "Immediate operand value out of range");
1480 RegNum |= Val;
1481 }
1482 }
1483 emitConstant(RegNum, 1);
1484 } else {
1485 emitConstant(MI.getOperand(CurOp++).getImm(),
1486 X86II::getSizeOfImm(Desc->TSFlags));
1487 }
1488 }
1489
1490 if (!MI.isVariadic() && CurOp != NumOps) {
1491 #ifndef NDEBUG
1492 dbgs() << "Cannot encode all operands of: " << MI << "\n";
1493 #endif
1494 llvm_unreachable(nullptr);
1495 }
1496
1497 MCE.processDebugLoc(MI.getDebugLoc(), false);
1498 }
1499