1 //===-- X86MCCodeEmitter.cpp - Convert X86 code to machine code -----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the X86MCCodeEmitter class.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "MCTargetDesc/X86MCTargetDesc.h"
15 #include "MCTargetDesc/X86BaseInfo.h"
16 #include "MCTargetDesc/X86FixupKinds.h"
17 #include "llvm/MC/MCCodeEmitter.h"
18 #include "llvm/MC/MCContext.h"
19 #include "llvm/MC/MCExpr.h"
20 #include "llvm/MC/MCInst.h"
21 #include "llvm/MC/MCInstrInfo.h"
22 #include "llvm/MC/MCRegisterInfo.h"
23 #include "llvm/MC/MCSubtargetInfo.h"
24 #include "llvm/MC/MCSymbol.h"
25 #include "llvm/Support/raw_ostream.h"
26
27 using namespace llvm;
28
29 #define DEBUG_TYPE "mccodeemitter"
30
31 namespace {
32 class X86MCCodeEmitter : public MCCodeEmitter {
33 X86MCCodeEmitter(const X86MCCodeEmitter &) LLVM_DELETED_FUNCTION;
34 void operator=(const X86MCCodeEmitter &) LLVM_DELETED_FUNCTION;
35 const MCInstrInfo &MCII;
36 MCContext &Ctx;
37 public:
X86MCCodeEmitter(const MCInstrInfo & mcii,MCContext & ctx)38 X86MCCodeEmitter(const MCInstrInfo &mcii, MCContext &ctx)
39 : MCII(mcii), Ctx(ctx) {
40 }
41
~X86MCCodeEmitter()42 ~X86MCCodeEmitter() {}
43
is64BitMode(const MCSubtargetInfo & STI) const44 bool is64BitMode(const MCSubtargetInfo &STI) const {
45 return (STI.getFeatureBits() & X86::Mode64Bit) != 0;
46 }
47
is32BitMode(const MCSubtargetInfo & STI) const48 bool is32BitMode(const MCSubtargetInfo &STI) const {
49 return (STI.getFeatureBits() & X86::Mode32Bit) != 0;
50 }
51
is16BitMode(const MCSubtargetInfo & STI) const52 bool is16BitMode(const MCSubtargetInfo &STI) const {
53 return (STI.getFeatureBits() & X86::Mode16Bit) != 0;
54 }
55
56 /// Is16BitMemOperand - Return true if the specified instruction has
57 /// a 16-bit memory operand. Op specifies the operand # of the memoperand.
Is16BitMemOperand(const MCInst & MI,unsigned Op,const MCSubtargetInfo & STI) const58 bool Is16BitMemOperand(const MCInst &MI, unsigned Op,
59 const MCSubtargetInfo &STI) const {
60 const MCOperand &BaseReg = MI.getOperand(Op+X86::AddrBaseReg);
61 const MCOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg);
62 const MCOperand &Disp = MI.getOperand(Op+X86::AddrDisp);
63
64 if (is16BitMode(STI) && BaseReg.getReg() == 0 &&
65 Disp.isImm() && Disp.getImm() < 0x10000)
66 return true;
67 if ((BaseReg.getReg() != 0 &&
68 X86MCRegisterClasses[X86::GR16RegClassID].contains(BaseReg.getReg())) ||
69 (IndexReg.getReg() != 0 &&
70 X86MCRegisterClasses[X86::GR16RegClassID].contains(IndexReg.getReg())))
71 return true;
72 return false;
73 }
74
GetX86RegNum(const MCOperand & MO) const75 unsigned GetX86RegNum(const MCOperand &MO) const {
76 return Ctx.getRegisterInfo()->getEncodingValue(MO.getReg()) & 0x7;
77 }
78
79 // On regular x86, both XMM0-XMM7 and XMM8-XMM15 are encoded in the range
80 // 0-7 and the difference between the 2 groups is given by the REX prefix.
81 // In the VEX prefix, registers are seen sequencially from 0-15 and encoded
82 // in 1's complement form, example:
83 //
84 // ModRM field => XMM9 => 1
85 // VEX.VVVV => XMM9 => ~9
86 //
87 // See table 4-35 of Intel AVX Programming Reference for details.
getVEXRegisterEncoding(const MCInst & MI,unsigned OpNum) const88 unsigned char getVEXRegisterEncoding(const MCInst &MI,
89 unsigned OpNum) const {
90 unsigned SrcReg = MI.getOperand(OpNum).getReg();
91 unsigned SrcRegNum = GetX86RegNum(MI.getOperand(OpNum));
92 if (X86II::isX86_64ExtendedReg(SrcReg))
93 SrcRegNum |= 8;
94
95 // The registers represented through VEX_VVVV should
96 // be encoded in 1's complement form.
97 return (~SrcRegNum) & 0xf;
98 }
99
getWriteMaskRegisterEncoding(const MCInst & MI,unsigned OpNum) const100 unsigned char getWriteMaskRegisterEncoding(const MCInst &MI,
101 unsigned OpNum) const {
102 assert(X86::K0 != MI.getOperand(OpNum).getReg() &&
103 "Invalid mask register as write-mask!");
104 unsigned MaskRegNum = GetX86RegNum(MI.getOperand(OpNum));
105 return MaskRegNum;
106 }
107
EmitByte(unsigned char C,unsigned & CurByte,raw_ostream & OS) const108 void EmitByte(unsigned char C, unsigned &CurByte, raw_ostream &OS) const {
109 OS << (char)C;
110 ++CurByte;
111 }
112
EmitConstant(uint64_t Val,unsigned Size,unsigned & CurByte,raw_ostream & OS) const113 void EmitConstant(uint64_t Val, unsigned Size, unsigned &CurByte,
114 raw_ostream &OS) const {
115 // Output the constant in little endian byte order.
116 for (unsigned i = 0; i != Size; ++i) {
117 EmitByte(Val & 255, CurByte, OS);
118 Val >>= 8;
119 }
120 }
121
122 void EmitImmediate(const MCOperand &Disp, SMLoc Loc,
123 unsigned ImmSize, MCFixupKind FixupKind,
124 unsigned &CurByte, raw_ostream &OS,
125 SmallVectorImpl<MCFixup> &Fixups,
126 int ImmOffset = 0) const;
127
ModRMByte(unsigned Mod,unsigned RegOpcode,unsigned RM)128 inline static unsigned char ModRMByte(unsigned Mod, unsigned RegOpcode,
129 unsigned RM) {
130 assert(Mod < 4 && RegOpcode < 8 && RM < 8 && "ModRM Fields out of range!");
131 return RM | (RegOpcode << 3) | (Mod << 6);
132 }
133
EmitRegModRMByte(const MCOperand & ModRMReg,unsigned RegOpcodeFld,unsigned & CurByte,raw_ostream & OS) const134 void EmitRegModRMByte(const MCOperand &ModRMReg, unsigned RegOpcodeFld,
135 unsigned &CurByte, raw_ostream &OS) const {
136 EmitByte(ModRMByte(3, RegOpcodeFld, GetX86RegNum(ModRMReg)), CurByte, OS);
137 }
138
EmitSIBByte(unsigned SS,unsigned Index,unsigned Base,unsigned & CurByte,raw_ostream & OS) const139 void EmitSIBByte(unsigned SS, unsigned Index, unsigned Base,
140 unsigned &CurByte, raw_ostream &OS) const {
141 // SIB byte is in the same format as the ModRMByte.
142 EmitByte(ModRMByte(SS, Index, Base), CurByte, OS);
143 }
144
145
146 void EmitMemModRMByte(const MCInst &MI, unsigned Op,
147 unsigned RegOpcodeField,
148 uint64_t TSFlags, unsigned &CurByte, raw_ostream &OS,
149 SmallVectorImpl<MCFixup> &Fixups,
150 const MCSubtargetInfo &STI) const;
151
152 void EncodeInstruction(const MCInst &MI, raw_ostream &OS,
153 SmallVectorImpl<MCFixup> &Fixups,
154 const MCSubtargetInfo &STI) const override;
155
156 void EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte, int MemOperand,
157 const MCInst &MI, const MCInstrDesc &Desc,
158 raw_ostream &OS) const;
159
160 void EmitSegmentOverridePrefix(unsigned &CurByte, unsigned SegOperand,
161 const MCInst &MI, raw_ostream &OS) const;
162
163 void EmitOpcodePrefix(uint64_t TSFlags, unsigned &CurByte, int MemOperand,
164 const MCInst &MI, const MCInstrDesc &Desc,
165 const MCSubtargetInfo &STI,
166 raw_ostream &OS) const;
167 };
168
169 } // end anonymous namespace
170
171
createX86MCCodeEmitter(const MCInstrInfo & MCII,const MCRegisterInfo & MRI,const MCSubtargetInfo & STI,MCContext & Ctx)172 MCCodeEmitter *llvm::createX86MCCodeEmitter(const MCInstrInfo &MCII,
173 const MCRegisterInfo &MRI,
174 const MCSubtargetInfo &STI,
175 MCContext &Ctx) {
176 return new X86MCCodeEmitter(MCII, Ctx);
177 }
178
179 /// isDisp8 - Return true if this signed displacement fits in a 8-bit
180 /// sign-extended field.
isDisp8(int Value)181 static bool isDisp8(int Value) {
182 return Value == (signed char)Value;
183 }
184
185 /// isCDisp8 - Return true if this signed displacement fits in a 8-bit
186 /// compressed dispacement field.
isCDisp8(uint64_t TSFlags,int Value,int & CValue)187 static bool isCDisp8(uint64_t TSFlags, int Value, int& CValue) {
188 assert((TSFlags & X86II::EncodingMask) >> X86II::EncodingShift == X86II::EVEX &&
189 "Compressed 8-bit displacement is only valid for EVEX inst.");
190
191 unsigned CD8E = (TSFlags >> X86II::EVEX_CD8EShift) & X86II::EVEX_CD8EMask;
192 unsigned CD8V = (TSFlags >> X86II::EVEX_CD8VShift) & X86II::EVEX_CD8VMask;
193
194 if (CD8V == 0 && CD8E == 0) {
195 CValue = Value;
196 return isDisp8(Value);
197 }
198
199 unsigned MemObjSize = 1U << CD8E;
200 if (CD8V & 4) {
201 // Fixed vector length
202 MemObjSize *= 1U << (CD8V & 0x3);
203 } else {
204 // Modified vector length
205 bool EVEX_b = (TSFlags >> X86II::VEXShift) & X86II::EVEX_B;
206 if (!EVEX_b) {
207 unsigned EVEX_LL = ((TSFlags >> X86II::VEXShift) & X86II::VEX_L) ? 1 : 0;
208 EVEX_LL += ((TSFlags >> X86II::VEXShift) & X86II::EVEX_L2) ? 2 : 0;
209 assert(EVEX_LL < 3 && "");
210
211 unsigned NumElems = (1U << (EVEX_LL + 4)) / MemObjSize;
212 NumElems /= 1U << (CD8V & 0x3);
213
214 MemObjSize *= NumElems;
215 }
216 }
217
218 unsigned MemObjMask = MemObjSize - 1;
219 assert((MemObjSize & MemObjMask) == 0 && "Invalid memory object size.");
220
221 if (Value & MemObjMask) // Unaligned offset
222 return false;
223 Value /= (int)MemObjSize;
224 bool Ret = (Value == (signed char)Value);
225
226 if (Ret)
227 CValue = Value;
228 return Ret;
229 }
230
231 /// getImmFixupKind - Return the appropriate fixup kind to use for an immediate
232 /// in an instruction with the specified TSFlags.
getImmFixupKind(uint64_t TSFlags)233 static MCFixupKind getImmFixupKind(uint64_t TSFlags) {
234 unsigned Size = X86II::getSizeOfImm(TSFlags);
235 bool isPCRel = X86II::isImmPCRel(TSFlags);
236
237 if (X86II::isImmSigned(TSFlags)) {
238 switch (Size) {
239 default: llvm_unreachable("Unsupported signed fixup size!");
240 case 4: return MCFixupKind(X86::reloc_signed_4byte);
241 }
242 }
243 return MCFixup::getKindForSize(Size, isPCRel);
244 }
245
246 /// Is32BitMemOperand - Return true if the specified instruction has
247 /// a 32-bit memory operand. Op specifies the operand # of the memoperand.
Is32BitMemOperand(const MCInst & MI,unsigned Op)248 static bool Is32BitMemOperand(const MCInst &MI, unsigned Op) {
249 const MCOperand &BaseReg = MI.getOperand(Op+X86::AddrBaseReg);
250 const MCOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg);
251
252 if ((BaseReg.getReg() != 0 &&
253 X86MCRegisterClasses[X86::GR32RegClassID].contains(BaseReg.getReg())) ||
254 (IndexReg.getReg() != 0 &&
255 X86MCRegisterClasses[X86::GR32RegClassID].contains(IndexReg.getReg())))
256 return true;
257 return false;
258 }
259
260 /// Is64BitMemOperand - Return true if the specified instruction has
261 /// a 64-bit memory operand. Op specifies the operand # of the memoperand.
262 #ifndef NDEBUG
Is64BitMemOperand(const MCInst & MI,unsigned Op)263 static bool Is64BitMemOperand(const MCInst &MI, unsigned Op) {
264 const MCOperand &BaseReg = MI.getOperand(Op+X86::AddrBaseReg);
265 const MCOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg);
266
267 if ((BaseReg.getReg() != 0 &&
268 X86MCRegisterClasses[X86::GR64RegClassID].contains(BaseReg.getReg())) ||
269 (IndexReg.getReg() != 0 &&
270 X86MCRegisterClasses[X86::GR64RegClassID].contains(IndexReg.getReg())))
271 return true;
272 return false;
273 }
274 #endif
275
276 /// StartsWithGlobalOffsetTable - Check if this expression starts with
277 /// _GLOBAL_OFFSET_TABLE_ and if it is of the form
278 /// _GLOBAL_OFFSET_TABLE_-symbol. This is needed to support PIC on ELF
279 /// i386 as _GLOBAL_OFFSET_TABLE_ is magical. We check only simple case that
280 /// are know to be used: _GLOBAL_OFFSET_TABLE_ by itself or at the start
281 /// of a binary expression.
282 enum GlobalOffsetTableExprKind {
283 GOT_None,
284 GOT_Normal,
285 GOT_SymDiff
286 };
287 static GlobalOffsetTableExprKind
StartsWithGlobalOffsetTable(const MCExpr * Expr)288 StartsWithGlobalOffsetTable(const MCExpr *Expr) {
289 const MCExpr *RHS = nullptr;
290 if (Expr->getKind() == MCExpr::Binary) {
291 const MCBinaryExpr *BE = static_cast<const MCBinaryExpr *>(Expr);
292 Expr = BE->getLHS();
293 RHS = BE->getRHS();
294 }
295
296 if (Expr->getKind() != MCExpr::SymbolRef)
297 return GOT_None;
298
299 const MCSymbolRefExpr *Ref = static_cast<const MCSymbolRefExpr*>(Expr);
300 const MCSymbol &S = Ref->getSymbol();
301 if (S.getName() != "_GLOBAL_OFFSET_TABLE_")
302 return GOT_None;
303 if (RHS && RHS->getKind() == MCExpr::SymbolRef)
304 return GOT_SymDiff;
305 return GOT_Normal;
306 }
307
HasSecRelSymbolRef(const MCExpr * Expr)308 static bool HasSecRelSymbolRef(const MCExpr *Expr) {
309 if (Expr->getKind() == MCExpr::SymbolRef) {
310 const MCSymbolRefExpr *Ref = static_cast<const MCSymbolRefExpr*>(Expr);
311 return Ref->getKind() == MCSymbolRefExpr::VK_SECREL;
312 }
313 return false;
314 }
315
316 void X86MCCodeEmitter::
EmitImmediate(const MCOperand & DispOp,SMLoc Loc,unsigned Size,MCFixupKind FixupKind,unsigned & CurByte,raw_ostream & OS,SmallVectorImpl<MCFixup> & Fixups,int ImmOffset) const317 EmitImmediate(const MCOperand &DispOp, SMLoc Loc, unsigned Size,
318 MCFixupKind FixupKind, unsigned &CurByte, raw_ostream &OS,
319 SmallVectorImpl<MCFixup> &Fixups, int ImmOffset) const {
320 const MCExpr *Expr = nullptr;
321 if (DispOp.isImm()) {
322 // If this is a simple integer displacement that doesn't require a
323 // relocation, emit it now.
324 if (FixupKind != FK_PCRel_1 &&
325 FixupKind != FK_PCRel_2 &&
326 FixupKind != FK_PCRel_4) {
327 EmitConstant(DispOp.getImm()+ImmOffset, Size, CurByte, OS);
328 return;
329 }
330 Expr = MCConstantExpr::Create(DispOp.getImm(), Ctx);
331 } else {
332 Expr = DispOp.getExpr();
333 }
334
335 // If we have an immoffset, add it to the expression.
336 if ((FixupKind == FK_Data_4 ||
337 FixupKind == FK_Data_8 ||
338 FixupKind == MCFixupKind(X86::reloc_signed_4byte))) {
339 GlobalOffsetTableExprKind Kind = StartsWithGlobalOffsetTable(Expr);
340 if (Kind != GOT_None) {
341 assert(ImmOffset == 0);
342
343 if (Size == 8) {
344 FixupKind = MCFixupKind(X86::reloc_global_offset_table8);
345 } else {
346 assert(Size == 4);
347 FixupKind = MCFixupKind(X86::reloc_global_offset_table);
348 }
349
350 if (Kind == GOT_Normal)
351 ImmOffset = CurByte;
352 } else if (Expr->getKind() == MCExpr::SymbolRef) {
353 if (HasSecRelSymbolRef(Expr)) {
354 FixupKind = MCFixupKind(FK_SecRel_4);
355 }
356 } else if (Expr->getKind() == MCExpr::Binary) {
357 const MCBinaryExpr *Bin = static_cast<const MCBinaryExpr*>(Expr);
358 if (HasSecRelSymbolRef(Bin->getLHS())
359 || HasSecRelSymbolRef(Bin->getRHS())) {
360 FixupKind = MCFixupKind(FK_SecRel_4);
361 }
362 }
363 }
364
365 // If the fixup is pc-relative, we need to bias the value to be relative to
366 // the start of the field, not the end of the field.
367 if (FixupKind == FK_PCRel_4 ||
368 FixupKind == MCFixupKind(X86::reloc_riprel_4byte) ||
369 FixupKind == MCFixupKind(X86::reloc_riprel_4byte_movq_load))
370 ImmOffset -= 4;
371 if (FixupKind == FK_PCRel_2)
372 ImmOffset -= 2;
373 if (FixupKind == FK_PCRel_1)
374 ImmOffset -= 1;
375
376 if (ImmOffset)
377 Expr = MCBinaryExpr::CreateAdd(Expr, MCConstantExpr::Create(ImmOffset, Ctx),
378 Ctx);
379
380 // Emit a symbolic constant as a fixup and 4 zeros.
381 Fixups.push_back(MCFixup::Create(CurByte, Expr, FixupKind, Loc));
382 EmitConstant(0, Size, CurByte, OS);
383 }
384
EmitMemModRMByte(const MCInst & MI,unsigned Op,unsigned RegOpcodeField,uint64_t TSFlags,unsigned & CurByte,raw_ostream & OS,SmallVectorImpl<MCFixup> & Fixups,const MCSubtargetInfo & STI) const385 void X86MCCodeEmitter::EmitMemModRMByte(const MCInst &MI, unsigned Op,
386 unsigned RegOpcodeField,
387 uint64_t TSFlags, unsigned &CurByte,
388 raw_ostream &OS,
389 SmallVectorImpl<MCFixup> &Fixups,
390 const MCSubtargetInfo &STI) const{
391 const MCOperand &Disp = MI.getOperand(Op+X86::AddrDisp);
392 const MCOperand &Base = MI.getOperand(Op+X86::AddrBaseReg);
393 const MCOperand &Scale = MI.getOperand(Op+X86::AddrScaleAmt);
394 const MCOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg);
395 unsigned BaseReg = Base.getReg();
396 unsigned char Encoding = (TSFlags & X86II::EncodingMask) >>
397 X86II::EncodingShift;
398 bool HasEVEX = (Encoding == X86II::EVEX);
399
400 // Handle %rip relative addressing.
401 if (BaseReg == X86::RIP) { // [disp32+RIP] in X86-64 mode
402 assert(is64BitMode(STI) && "Rip-relative addressing requires 64-bit mode");
403 assert(IndexReg.getReg() == 0 && "Invalid rip-relative address");
404 EmitByte(ModRMByte(0, RegOpcodeField, 5), CurByte, OS);
405
406 unsigned FixupKind = X86::reloc_riprel_4byte;
407
408 // movq loads are handled with a special relocation form which allows the
409 // linker to eliminate some loads for GOT references which end up in the
410 // same linkage unit.
411 if (MI.getOpcode() == X86::MOV64rm)
412 FixupKind = X86::reloc_riprel_4byte_movq_load;
413
414 // rip-relative addressing is actually relative to the *next* instruction.
415 // Since an immediate can follow the mod/rm byte for an instruction, this
416 // means that we need to bias the immediate field of the instruction with
417 // the size of the immediate field. If we have this case, add it into the
418 // expression to emit.
419 int ImmSize = X86II::hasImm(TSFlags) ? X86II::getSizeOfImm(TSFlags) : 0;
420
421 EmitImmediate(Disp, MI.getLoc(), 4, MCFixupKind(FixupKind),
422 CurByte, OS, Fixups, -ImmSize);
423 return;
424 }
425
426 unsigned BaseRegNo = BaseReg ? GetX86RegNum(Base) : -1U;
427
428 // 16-bit addressing forms of the ModR/M byte have a different encoding for
429 // the R/M field and are far more limited in which registers can be used.
430 if (Is16BitMemOperand(MI, Op, STI)) {
431 if (BaseReg) {
432 // For 32-bit addressing, the row and column values in Table 2-2 are
433 // basically the same. It's AX/CX/DX/BX/SP/BP/SI/DI in that order, with
434 // some special cases. And GetX86RegNum reflects that numbering.
435 // For 16-bit addressing it's more fun, as shown in the SDM Vol 2A,
436 // Table 2-1 "16-Bit Addressing Forms with the ModR/M byte". We can only
437 // use SI/DI/BP/BX, which have "row" values 4-7 in no particular order,
438 // while values 0-3 indicate the allowed combinations (base+index) of
439 // those: 0 for BX+SI, 1 for BX+DI, 2 for BP+SI, 3 for BP+DI.
440 //
441 // R16Table[] is a lookup from the normal RegNo, to the row values from
442 // Table 2-1 for 16-bit addressing modes. Where zero means disallowed.
443 static const unsigned R16Table[] = { 0, 0, 0, 7, 0, 6, 4, 5 };
444 unsigned RMfield = R16Table[BaseRegNo];
445
446 assert(RMfield && "invalid 16-bit base register");
447
448 if (IndexReg.getReg()) {
449 unsigned IndexReg16 = R16Table[GetX86RegNum(IndexReg)];
450
451 assert(IndexReg16 && "invalid 16-bit index register");
452 // We must have one of SI/DI (4,5), and one of BP/BX (6,7).
453 assert(((IndexReg16 ^ RMfield) & 2) &&
454 "invalid 16-bit base/index register combination");
455 assert(Scale.getImm() == 1 &&
456 "invalid scale for 16-bit memory reference");
457
458 // Allow base/index to appear in either order (although GAS doesn't).
459 if (IndexReg16 & 2)
460 RMfield = (RMfield & 1) | ((7 - IndexReg16) << 1);
461 else
462 RMfield = (IndexReg16 & 1) | ((7 - RMfield) << 1);
463 }
464
465 if (Disp.isImm() && isDisp8(Disp.getImm())) {
466 if (Disp.getImm() == 0 && BaseRegNo != N86::EBP) {
467 // There is no displacement; just the register.
468 EmitByte(ModRMByte(0, RegOpcodeField, RMfield), CurByte, OS);
469 return;
470 }
471 // Use the [REG]+disp8 form, including for [BP] which cannot be encoded.
472 EmitByte(ModRMByte(1, RegOpcodeField, RMfield), CurByte, OS);
473 EmitImmediate(Disp, MI.getLoc(), 1, FK_Data_1, CurByte, OS, Fixups);
474 return;
475 }
476 // This is the [REG]+disp16 case.
477 EmitByte(ModRMByte(2, RegOpcodeField, RMfield), CurByte, OS);
478 } else {
479 // There is no BaseReg; this is the plain [disp16] case.
480 EmitByte(ModRMByte(0, RegOpcodeField, 6), CurByte, OS);
481 }
482
483 // Emit 16-bit displacement for plain disp16 or [REG]+disp16 cases.
484 EmitImmediate(Disp, MI.getLoc(), 2, FK_Data_2, CurByte, OS, Fixups);
485 return;
486 }
487
488 // Determine whether a SIB byte is needed.
489 // If no BaseReg, issue a RIP relative instruction only if the MCE can
490 // resolve addresses on-the-fly, otherwise use SIB (Intel Manual 2A, table
491 // 2-7) and absolute references.
492
493 if (// The SIB byte must be used if there is an index register.
494 IndexReg.getReg() == 0 &&
495 // The SIB byte must be used if the base is ESP/RSP/R12, all of which
496 // encode to an R/M value of 4, which indicates that a SIB byte is
497 // present.
498 BaseRegNo != N86::ESP &&
499 // If there is no base register and we're in 64-bit mode, we need a SIB
500 // byte to emit an addr that is just 'disp32' (the non-RIP relative form).
501 (!is64BitMode(STI) || BaseReg != 0)) {
502
503 if (BaseReg == 0) { // [disp32] in X86-32 mode
504 EmitByte(ModRMByte(0, RegOpcodeField, 5), CurByte, OS);
505 EmitImmediate(Disp, MI.getLoc(), 4, FK_Data_4, CurByte, OS, Fixups);
506 return;
507 }
508
509 // If the base is not EBP/ESP and there is no displacement, use simple
510 // indirect register encoding, this handles addresses like [EAX]. The
511 // encoding for [EBP] with no displacement means [disp32] so we handle it
512 // by emitting a displacement of 0 below.
513 if (Disp.isImm() && Disp.getImm() == 0 && BaseRegNo != N86::EBP) {
514 EmitByte(ModRMByte(0, RegOpcodeField, BaseRegNo), CurByte, OS);
515 return;
516 }
517
518 // Otherwise, if the displacement fits in a byte, encode as [REG+disp8].
519 if (Disp.isImm()) {
520 if (!HasEVEX && isDisp8(Disp.getImm())) {
521 EmitByte(ModRMByte(1, RegOpcodeField, BaseRegNo), CurByte, OS);
522 EmitImmediate(Disp, MI.getLoc(), 1, FK_Data_1, CurByte, OS, Fixups);
523 return;
524 }
525 // Try EVEX compressed 8-bit displacement first; if failed, fall back to
526 // 32-bit displacement.
527 int CDisp8 = 0;
528 if (HasEVEX && isCDisp8(TSFlags, Disp.getImm(), CDisp8)) {
529 EmitByte(ModRMByte(1, RegOpcodeField, BaseRegNo), CurByte, OS);
530 EmitImmediate(Disp, MI.getLoc(), 1, FK_Data_1, CurByte, OS, Fixups,
531 CDisp8 - Disp.getImm());
532 return;
533 }
534 }
535
536 // Otherwise, emit the most general non-SIB encoding: [REG+disp32]
537 EmitByte(ModRMByte(2, RegOpcodeField, BaseRegNo), CurByte, OS);
538 EmitImmediate(Disp, MI.getLoc(), 4, MCFixupKind(X86::reloc_signed_4byte), CurByte, OS,
539 Fixups);
540 return;
541 }
542
543 // We need a SIB byte, so start by outputting the ModR/M byte first
544 assert(IndexReg.getReg() != X86::ESP &&
545 IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!");
546
547 bool ForceDisp32 = false;
548 bool ForceDisp8 = false;
549 int CDisp8 = 0;
550 int ImmOffset = 0;
551 if (BaseReg == 0) {
552 // If there is no base register, we emit the special case SIB byte with
553 // MOD=0, BASE=5, to JUST get the index, scale, and displacement.
554 EmitByte(ModRMByte(0, RegOpcodeField, 4), CurByte, OS);
555 ForceDisp32 = true;
556 } else if (!Disp.isImm()) {
557 // Emit the normal disp32 encoding.
558 EmitByte(ModRMByte(2, RegOpcodeField, 4), CurByte, OS);
559 ForceDisp32 = true;
560 } else if (Disp.getImm() == 0 &&
561 // Base reg can't be anything that ends up with '5' as the base
562 // reg, it is the magic [*] nomenclature that indicates no base.
563 BaseRegNo != N86::EBP) {
564 // Emit no displacement ModR/M byte
565 EmitByte(ModRMByte(0, RegOpcodeField, 4), CurByte, OS);
566 } else if (!HasEVEX && isDisp8(Disp.getImm())) {
567 // Emit the disp8 encoding.
568 EmitByte(ModRMByte(1, RegOpcodeField, 4), CurByte, OS);
569 ForceDisp8 = true; // Make sure to force 8 bit disp if Base=EBP
570 } else if (HasEVEX && isCDisp8(TSFlags, Disp.getImm(), CDisp8)) {
571 // Emit the disp8 encoding.
572 EmitByte(ModRMByte(1, RegOpcodeField, 4), CurByte, OS);
573 ForceDisp8 = true; // Make sure to force 8 bit disp if Base=EBP
574 ImmOffset = CDisp8 - Disp.getImm();
575 } else {
576 // Emit the normal disp32 encoding.
577 EmitByte(ModRMByte(2, RegOpcodeField, 4), CurByte, OS);
578 }
579
580 // Calculate what the SS field value should be...
581 static const unsigned SSTable[] = { ~0U, 0, 1, ~0U, 2, ~0U, ~0U, ~0U, 3 };
582 unsigned SS = SSTable[Scale.getImm()];
583
584 if (BaseReg == 0) {
585 // Handle the SIB byte for the case where there is no base, see Intel
586 // Manual 2A, table 2-7. The displacement has already been output.
587 unsigned IndexRegNo;
588 if (IndexReg.getReg())
589 IndexRegNo = GetX86RegNum(IndexReg);
590 else // Examples: [ESP+1*<noreg>+4] or [scaled idx]+disp32 (MOD=0,BASE=5)
591 IndexRegNo = 4;
592 EmitSIBByte(SS, IndexRegNo, 5, CurByte, OS);
593 } else {
594 unsigned IndexRegNo;
595 if (IndexReg.getReg())
596 IndexRegNo = GetX86RegNum(IndexReg);
597 else
598 IndexRegNo = 4; // For example [ESP+1*<noreg>+4]
599 EmitSIBByte(SS, IndexRegNo, GetX86RegNum(Base), CurByte, OS);
600 }
601
602 // Do we need to output a displacement?
603 if (ForceDisp8)
604 EmitImmediate(Disp, MI.getLoc(), 1, FK_Data_1, CurByte, OS, Fixups, ImmOffset);
605 else if (ForceDisp32 || Disp.getImm() != 0)
606 EmitImmediate(Disp, MI.getLoc(), 4, MCFixupKind(X86::reloc_signed_4byte),
607 CurByte, OS, Fixups);
608 }
609
610 /// EmitVEXOpcodePrefix - AVX instructions are encoded using a opcode prefix
611 /// called VEX.
EmitVEXOpcodePrefix(uint64_t TSFlags,unsigned & CurByte,int MemOperand,const MCInst & MI,const MCInstrDesc & Desc,raw_ostream & OS) const612 void X86MCCodeEmitter::EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
613 int MemOperand, const MCInst &MI,
614 const MCInstrDesc &Desc,
615 raw_ostream &OS) const {
616 unsigned char Encoding = (TSFlags & X86II::EncodingMask) >>
617 X86II::EncodingShift;
618 bool HasEVEX_K = ((TSFlags >> X86II::VEXShift) & X86II::EVEX_K);
619 bool HasVEX_4V = (TSFlags >> X86II::VEXShift) & X86II::VEX_4V;
620 bool HasVEX_4VOp3 = (TSFlags >> X86II::VEXShift) & X86II::VEX_4VOp3;
621 bool HasMemOp4 = (TSFlags >> X86II::VEXShift) & X86II::MemOp4;
622 bool HasEVEX_RC = (TSFlags >> X86II::VEXShift) & X86II::EVEX_RC;
623
624 // VEX_R: opcode externsion equivalent to REX.R in
625 // 1's complement (inverted) form
626 //
627 // 1: Same as REX_R=0 (must be 1 in 32-bit mode)
628 // 0: Same as REX_R=1 (64 bit mode only)
629 //
630 unsigned char VEX_R = 0x1;
631 unsigned char EVEX_R2 = 0x1;
632
633 // VEX_X: equivalent to REX.X, only used when a
634 // register is used for index in SIB Byte.
635 //
636 // 1: Same as REX.X=0 (must be 1 in 32-bit mode)
637 // 0: Same as REX.X=1 (64-bit mode only)
638 unsigned char VEX_X = 0x1;
639
640 // VEX_B:
641 //
642 // 1: Same as REX_B=0 (ignored in 32-bit mode)
643 // 0: Same as REX_B=1 (64 bit mode only)
644 //
645 unsigned char VEX_B = 0x1;
646
647 // VEX_W: opcode specific (use like REX.W, or used for
648 // opcode extension, or ignored, depending on the opcode byte)
649 unsigned char VEX_W = 0;
650
651 // VEX_5M (VEX m-mmmmm field):
652 //
653 // 0b00000: Reserved for future use
654 // 0b00001: implied 0F leading opcode
655 // 0b00010: implied 0F 38 leading opcode bytes
656 // 0b00011: implied 0F 3A leading opcode bytes
657 // 0b00100-0b11111: Reserved for future use
658 // 0b01000: XOP map select - 08h instructions with imm byte
659 // 0b01001: XOP map select - 09h instructions with no imm byte
660 // 0b01010: XOP map select - 0Ah instructions with imm dword
661 unsigned char VEX_5M = 0;
662
663 // VEX_4V (VEX vvvv field): a register specifier
664 // (in 1's complement form) or 1111 if unused.
665 unsigned char VEX_4V = 0xf;
666 unsigned char EVEX_V2 = 0x1;
667
668 // VEX_L (Vector Length):
669 //
670 // 0: scalar or 128-bit vector
671 // 1: 256-bit vector
672 //
673 unsigned char VEX_L = 0;
674 unsigned char EVEX_L2 = 0;
675
676 // VEX_PP: opcode extension providing equivalent
677 // functionality of a SIMD prefix
678 //
679 // 0b00: None
680 // 0b01: 66
681 // 0b10: F3
682 // 0b11: F2
683 //
684 unsigned char VEX_PP = 0;
685
686 // EVEX_U
687 unsigned char EVEX_U = 1; // Always '1' so far
688
689 // EVEX_z
690 unsigned char EVEX_z = 0;
691
692 // EVEX_b
693 unsigned char EVEX_b = 0;
694
695 // EVEX_rc
696 unsigned char EVEX_rc = 0;
697
698 // EVEX_aaa
699 unsigned char EVEX_aaa = 0;
700
701 bool EncodeRC = false;
702
703 if ((TSFlags >> X86II::VEXShift) & X86II::VEX_W)
704 VEX_W = 1;
705
706 if ((TSFlags >> X86II::VEXShift) & X86II::VEX_L)
707 VEX_L = 1;
708 if (((TSFlags >> X86II::VEXShift) & X86II::EVEX_L2))
709 EVEX_L2 = 1;
710
711 if (HasEVEX_K && ((TSFlags >> X86II::VEXShift) & X86II::EVEX_Z))
712 EVEX_z = 1;
713
714 if (((TSFlags >> X86II::VEXShift) & X86II::EVEX_B))
715 EVEX_b = 1;
716
717 switch (TSFlags & X86II::OpPrefixMask) {
718 default: break; // VEX_PP already correct
719 case X86II::PD: VEX_PP = 0x1; break; // 66
720 case X86II::XS: VEX_PP = 0x2; break; // F3
721 case X86II::XD: VEX_PP = 0x3; break; // F2
722 }
723
724 switch (TSFlags & X86II::OpMapMask) {
725 default: llvm_unreachable("Invalid prefix!");
726 case X86II::TB: VEX_5M = 0x1; break; // 0F
727 case X86II::T8: VEX_5M = 0x2; break; // 0F 38
728 case X86II::TA: VEX_5M = 0x3; break; // 0F 3A
729 case X86II::XOP8: VEX_5M = 0x8; break;
730 case X86II::XOP9: VEX_5M = 0x9; break;
731 case X86II::XOPA: VEX_5M = 0xA; break;
732 }
733
734 // Classify VEX_B, VEX_4V, VEX_R, VEX_X
735 unsigned NumOps = Desc.getNumOperands();
736 unsigned CurOp = X86II::getOperandBias(Desc);
737
738 switch (TSFlags & X86II::FormMask) {
739 default: llvm_unreachable("Unexpected form in EmitVEXOpcodePrefix!");
740 case X86II::RawFrm:
741 break;
742 case X86II::MRMDestMem: {
743 // MRMDestMem instructions forms:
744 // MemAddr, src1(ModR/M)
745 // MemAddr, src1(VEX_4V), src2(ModR/M)
746 // MemAddr, src1(ModR/M), imm8
747 //
748 if (X86II::isX86_64ExtendedReg(MI.getOperand(MemOperand +
749 X86::AddrBaseReg).getReg()))
750 VEX_B = 0x0;
751 if (X86II::isX86_64ExtendedReg(MI.getOperand(MemOperand +
752 X86::AddrIndexReg).getReg()))
753 VEX_X = 0x0;
754 if (X86II::is32ExtendedReg(MI.getOperand(MemOperand +
755 X86::AddrIndexReg).getReg()))
756 EVEX_V2 = 0x0;
757
758 CurOp += X86::AddrNumOperands;
759
760 if (HasEVEX_K)
761 EVEX_aaa = getWriteMaskRegisterEncoding(MI, CurOp++);
762
763 if (HasVEX_4V) {
764 VEX_4V = getVEXRegisterEncoding(MI, CurOp);
765 if (X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
766 EVEX_V2 = 0x0;
767 CurOp++;
768 }
769
770 const MCOperand &MO = MI.getOperand(CurOp);
771 if (MO.isReg()) {
772 if (X86II::isX86_64ExtendedReg(MO.getReg()))
773 VEX_R = 0x0;
774 if (X86II::is32ExtendedReg(MO.getReg()))
775 EVEX_R2 = 0x0;
776 }
777 break;
778 }
779 case X86II::MRMSrcMem:
780 // MRMSrcMem instructions forms:
781 // src1(ModR/M), MemAddr
782 // src1(ModR/M), src2(VEX_4V), MemAddr
783 // src1(ModR/M), MemAddr, imm8
784 // src1(ModR/M), MemAddr, src2(VEX_I8IMM)
785 //
786 // FMA4:
787 // dst(ModR/M.reg), src1(VEX_4V), src2(ModR/M), src3(VEX_I8IMM)
788 // dst(ModR/M.reg), src1(VEX_4V), src2(VEX_I8IMM), src3(ModR/M),
789 if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
790 VEX_R = 0x0;
791 if (X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
792 EVEX_R2 = 0x0;
793 CurOp++;
794
795 if (HasEVEX_K)
796 EVEX_aaa = getWriteMaskRegisterEncoding(MI, CurOp++);
797
798 if (HasVEX_4V) {
799 VEX_4V = getVEXRegisterEncoding(MI, CurOp);
800 if (X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
801 EVEX_V2 = 0x0;
802 CurOp++;
803 }
804
805 if (X86II::isX86_64ExtendedReg(
806 MI.getOperand(MemOperand+X86::AddrBaseReg).getReg()))
807 VEX_B = 0x0;
808 if (X86II::isX86_64ExtendedReg(
809 MI.getOperand(MemOperand+X86::AddrIndexReg).getReg()))
810 VEX_X = 0x0;
811 if (X86II::is32ExtendedReg(MI.getOperand(MemOperand +
812 X86::AddrIndexReg).getReg()))
813 EVEX_V2 = 0x0;
814
815 if (HasVEX_4VOp3)
816 // Instruction format for 4VOp3:
817 // src1(ModR/M), MemAddr, src3(VEX_4V)
818 // CurOp points to start of the MemoryOperand,
819 // it skips TIED_TO operands if exist, then increments past src1.
820 // CurOp + X86::AddrNumOperands will point to src3.
821 VEX_4V = getVEXRegisterEncoding(MI, CurOp+X86::AddrNumOperands);
822 break;
823 case X86II::MRM0m: case X86II::MRM1m:
824 case X86II::MRM2m: case X86II::MRM3m:
825 case X86II::MRM4m: case X86II::MRM5m:
826 case X86II::MRM6m: case X86II::MRM7m: {
827 // MRM[0-9]m instructions forms:
828 // MemAddr
829 // src1(VEX_4V), MemAddr
830 if (HasVEX_4V) {
831 VEX_4V = getVEXRegisterEncoding(MI, CurOp);
832 if (X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
833 EVEX_V2 = 0x0;
834 CurOp++;
835 }
836
837 if (HasEVEX_K)
838 EVEX_aaa = getWriteMaskRegisterEncoding(MI, CurOp++);
839
840 if (X86II::isX86_64ExtendedReg(
841 MI.getOperand(MemOperand+X86::AddrBaseReg).getReg()))
842 VEX_B = 0x0;
843 if (X86II::isX86_64ExtendedReg(
844 MI.getOperand(MemOperand+X86::AddrIndexReg).getReg()))
845 VEX_X = 0x0;
846 break;
847 }
848 case X86II::MRMSrcReg:
849 // MRMSrcReg instructions forms:
850 // dst(ModR/M), src1(VEX_4V), src2(ModR/M), src3(VEX_I8IMM)
851 // dst(ModR/M), src1(ModR/M)
852 // dst(ModR/M), src1(ModR/M), imm8
853 //
854 // FMA4:
855 // dst(ModR/M.reg), src1(VEX_4V), src2(ModR/M), src3(VEX_I8IMM)
856 // dst(ModR/M.reg), src1(VEX_4V), src2(VEX_I8IMM), src3(ModR/M),
857 if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
858 VEX_R = 0x0;
859 if (X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
860 EVEX_R2 = 0x0;
861 CurOp++;
862
863 if (HasEVEX_K)
864 EVEX_aaa = getWriteMaskRegisterEncoding(MI, CurOp++);
865
866 if (HasVEX_4V) {
867 VEX_4V = getVEXRegisterEncoding(MI, CurOp);
868 if (X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
869 EVEX_V2 = 0x0;
870 CurOp++;
871 }
872
873 if (HasMemOp4) // Skip second register source (encoded in I8IMM)
874 CurOp++;
875
876 if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
877 VEX_B = 0x0;
878 if (X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
879 VEX_X = 0x0;
880 CurOp++;
881 if (HasVEX_4VOp3)
882 VEX_4V = getVEXRegisterEncoding(MI, CurOp++);
883 if (EVEX_b) {
884 if (HasEVEX_RC) {
885 unsigned RcOperand = NumOps-1;
886 assert(RcOperand >= CurOp);
887 EVEX_rc = MI.getOperand(RcOperand).getImm() & 0x3;
888 }
889 EncodeRC = true;
890 }
891 break;
892 case X86II::MRMDestReg:
893 // MRMDestReg instructions forms:
894 // dst(ModR/M), src(ModR/M)
895 // dst(ModR/M), src(ModR/M), imm8
896 // dst(ModR/M), src1(VEX_4V), src2(ModR/M)
897 if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
898 VEX_B = 0x0;
899 if (X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
900 VEX_X = 0x0;
901 CurOp++;
902
903 if (HasEVEX_K)
904 EVEX_aaa = getWriteMaskRegisterEncoding(MI, CurOp++);
905
906 if (HasVEX_4V) {
907 VEX_4V = getVEXRegisterEncoding(MI, CurOp);
908 if (X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
909 EVEX_V2 = 0x0;
910 CurOp++;
911 }
912
913 if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
914 VEX_R = 0x0;
915 if (X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
916 EVEX_R2 = 0x0;
917 if (EVEX_b)
918 EncodeRC = true;
919 break;
920 case X86II::MRM0r: case X86II::MRM1r:
921 case X86II::MRM2r: case X86II::MRM3r:
922 case X86II::MRM4r: case X86II::MRM5r:
923 case X86II::MRM6r: case X86II::MRM7r:
924 // MRM0r-MRM7r instructions forms:
925 // dst(VEX_4V), src(ModR/M), imm8
926 if (HasVEX_4V) {
927 VEX_4V = getVEXRegisterEncoding(MI, CurOp);
928 if (X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
929 EVEX_V2 = 0x0;
930 CurOp++;
931 }
932 if (HasEVEX_K)
933 EVEX_aaa = getWriteMaskRegisterEncoding(MI, CurOp++);
934
935 if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
936 VEX_B = 0x0;
937 if (X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
938 VEX_X = 0x0;
939 break;
940 }
941
942 if (Encoding == X86II::VEX || Encoding == X86II::XOP) {
943 // VEX opcode prefix can have 2 or 3 bytes
944 //
945 // 3 bytes:
946 // +-----+ +--------------+ +-------------------+
947 // | C4h | | RXB | m-mmmm | | W | vvvv | L | pp |
948 // +-----+ +--------------+ +-------------------+
949 // 2 bytes:
950 // +-----+ +-------------------+
951 // | C5h | | R | vvvv | L | pp |
952 // +-----+ +-------------------+
953 //
954 // XOP uses a similar prefix:
955 // +-----+ +--------------+ +-------------------+
956 // | 8Fh | | RXB | m-mmmm | | W | vvvv | L | pp |
957 // +-----+ +--------------+ +-------------------+
958 unsigned char LastByte = VEX_PP | (VEX_L << 2) | (VEX_4V << 3);
959
960 // Can we use the 2 byte VEX prefix?
961 if (Encoding == X86II::VEX && VEX_B && VEX_X && !VEX_W && (VEX_5M == 1)) {
962 EmitByte(0xC5, CurByte, OS);
963 EmitByte(LastByte | (VEX_R << 7), CurByte, OS);
964 return;
965 }
966
967 // 3 byte VEX prefix
968 EmitByte(Encoding == X86II::XOP ? 0x8F : 0xC4, CurByte, OS);
969 EmitByte(VEX_R << 7 | VEX_X << 6 | VEX_B << 5 | VEX_5M, CurByte, OS);
970 EmitByte(LastByte | (VEX_W << 7), CurByte, OS);
971 } else {
972 assert(Encoding == X86II::EVEX && "unknown encoding!");
973 // EVEX opcode prefix can have 4 bytes
974 //
975 // +-----+ +--------------+ +-------------------+ +------------------------+
976 // | 62h | | RXBR' | 00mm | | W | vvvv | U | pp | | z | L'L | b | v' | aaa |
977 // +-----+ +--------------+ +-------------------+ +------------------------+
978 assert((VEX_5M & 0x3) == VEX_5M
979 && "More than 2 significant bits in VEX.m-mmmm fields for EVEX!");
980
981 VEX_5M &= 0x3;
982
983 EmitByte(0x62, CurByte, OS);
984 EmitByte((VEX_R << 7) |
985 (VEX_X << 6) |
986 (VEX_B << 5) |
987 (EVEX_R2 << 4) |
988 VEX_5M, CurByte, OS);
989 EmitByte((VEX_W << 7) |
990 (VEX_4V << 3) |
991 (EVEX_U << 2) |
992 VEX_PP, CurByte, OS);
993 if (EncodeRC)
994 EmitByte((EVEX_z << 7) |
995 (EVEX_rc << 5) |
996 (EVEX_b << 4) |
997 (EVEX_V2 << 3) |
998 EVEX_aaa, CurByte, OS);
999 else
1000 EmitByte((EVEX_z << 7) |
1001 (EVEX_L2 << 6) |
1002 (VEX_L << 5) |
1003 (EVEX_b << 4) |
1004 (EVEX_V2 << 3) |
1005 EVEX_aaa, CurByte, OS);
1006 }
1007 }
1008
1009 /// DetermineREXPrefix - Determine if the MCInst has to be encoded with a X86-64
1010 /// REX prefix which specifies 1) 64-bit instructions, 2) non-default operand
1011 /// size, and 3) use of X86-64 extended registers.
DetermineREXPrefix(const MCInst & MI,uint64_t TSFlags,const MCInstrDesc & Desc)1012 static unsigned DetermineREXPrefix(const MCInst &MI, uint64_t TSFlags,
1013 const MCInstrDesc &Desc) {
1014 unsigned REX = 0;
1015 if (TSFlags & X86II::REX_W)
1016 REX |= 1 << 3; // set REX.W
1017
1018 if (MI.getNumOperands() == 0) return REX;
1019
1020 unsigned NumOps = MI.getNumOperands();
1021 // FIXME: MCInst should explicitize the two-addrness.
1022 bool isTwoAddr = NumOps > 1 &&
1023 Desc.getOperandConstraint(1, MCOI::TIED_TO) != -1;
1024
1025 // If it accesses SPL, BPL, SIL, or DIL, then it requires a 0x40 REX prefix.
1026 unsigned i = isTwoAddr ? 1 : 0;
1027 for (; i != NumOps; ++i) {
1028 const MCOperand &MO = MI.getOperand(i);
1029 if (!MO.isReg()) continue;
1030 unsigned Reg = MO.getReg();
1031 if (!X86II::isX86_64NonExtLowByteReg(Reg)) continue;
1032 // FIXME: The caller of DetermineREXPrefix slaps this prefix onto anything
1033 // that returns non-zero.
1034 REX |= 0x40; // REX fixed encoding prefix
1035 break;
1036 }
1037
1038 switch (TSFlags & X86II::FormMask) {
1039 case X86II::MRMSrcReg:
1040 if (MI.getOperand(0).isReg() &&
1041 X86II::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
1042 REX |= 1 << 2; // set REX.R
1043 i = isTwoAddr ? 2 : 1;
1044 for (; i != NumOps; ++i) {
1045 const MCOperand &MO = MI.getOperand(i);
1046 if (MO.isReg() && X86II::isX86_64ExtendedReg(MO.getReg()))
1047 REX |= 1 << 0; // set REX.B
1048 }
1049 break;
1050 case X86II::MRMSrcMem: {
1051 if (MI.getOperand(0).isReg() &&
1052 X86II::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
1053 REX |= 1 << 2; // set REX.R
1054 unsigned Bit = 0;
1055 i = isTwoAddr ? 2 : 1;
1056 for (; i != NumOps; ++i) {
1057 const MCOperand &MO = MI.getOperand(i);
1058 if (MO.isReg()) {
1059 if (X86II::isX86_64ExtendedReg(MO.getReg()))
1060 REX |= 1 << Bit; // set REX.B (Bit=0) and REX.X (Bit=1)
1061 Bit++;
1062 }
1063 }
1064 break;
1065 }
1066 case X86II::MRMXm:
1067 case X86II::MRM0m: case X86II::MRM1m:
1068 case X86II::MRM2m: case X86II::MRM3m:
1069 case X86II::MRM4m: case X86II::MRM5m:
1070 case X86II::MRM6m: case X86II::MRM7m:
1071 case X86II::MRMDestMem: {
1072 unsigned e = (isTwoAddr ? X86::AddrNumOperands+1 : X86::AddrNumOperands);
1073 i = isTwoAddr ? 1 : 0;
1074 if (NumOps > e && MI.getOperand(e).isReg() &&
1075 X86II::isX86_64ExtendedReg(MI.getOperand(e).getReg()))
1076 REX |= 1 << 2; // set REX.R
1077 unsigned Bit = 0;
1078 for (; i != e; ++i) {
1079 const MCOperand &MO = MI.getOperand(i);
1080 if (MO.isReg()) {
1081 if (X86II::isX86_64ExtendedReg(MO.getReg()))
1082 REX |= 1 << Bit; // REX.B (Bit=0) and REX.X (Bit=1)
1083 Bit++;
1084 }
1085 }
1086 break;
1087 }
1088 default:
1089 if (MI.getOperand(0).isReg() &&
1090 X86II::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
1091 REX |= 1 << 0; // set REX.B
1092 i = isTwoAddr ? 2 : 1;
1093 for (unsigned e = NumOps; i != e; ++i) {
1094 const MCOperand &MO = MI.getOperand(i);
1095 if (MO.isReg() && X86II::isX86_64ExtendedReg(MO.getReg()))
1096 REX |= 1 << 2; // set REX.R
1097 }
1098 break;
1099 }
1100 return REX;
1101 }
1102
1103 /// EmitSegmentOverridePrefix - Emit segment override opcode prefix as needed
EmitSegmentOverridePrefix(unsigned & CurByte,unsigned SegOperand,const MCInst & MI,raw_ostream & OS) const1104 void X86MCCodeEmitter::EmitSegmentOverridePrefix(unsigned &CurByte,
1105 unsigned SegOperand,
1106 const MCInst &MI,
1107 raw_ostream &OS) const {
1108 // Check for explicit segment override on memory operand.
1109 switch (MI.getOperand(SegOperand).getReg()) {
1110 default: llvm_unreachable("Unknown segment register!");
1111 case 0: break;
1112 case X86::CS: EmitByte(0x2E, CurByte, OS); break;
1113 case X86::SS: EmitByte(0x36, CurByte, OS); break;
1114 case X86::DS: EmitByte(0x3E, CurByte, OS); break;
1115 case X86::ES: EmitByte(0x26, CurByte, OS); break;
1116 case X86::FS: EmitByte(0x64, CurByte, OS); break;
1117 case X86::GS: EmitByte(0x65, CurByte, OS); break;
1118 }
1119 }
1120
1121 /// EmitOpcodePrefix - Emit all instruction prefixes prior to the opcode.
1122 ///
1123 /// MemOperand is the operand # of the start of a memory operand if present. If
1124 /// Not present, it is -1.
EmitOpcodePrefix(uint64_t TSFlags,unsigned & CurByte,int MemOperand,const MCInst & MI,const MCInstrDesc & Desc,const MCSubtargetInfo & STI,raw_ostream & OS) const1125 void X86MCCodeEmitter::EmitOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
1126 int MemOperand, const MCInst &MI,
1127 const MCInstrDesc &Desc,
1128 const MCSubtargetInfo &STI,
1129 raw_ostream &OS) const {
1130
1131 // Emit the operand size opcode prefix as needed.
1132 unsigned char OpSize = (TSFlags & X86II::OpSizeMask) >> X86II::OpSizeShift;
1133 if (OpSize == (is16BitMode(STI) ? X86II::OpSize32 : X86II::OpSize16))
1134 EmitByte(0x66, CurByte, OS);
1135
1136 switch (TSFlags & X86II::OpPrefixMask) {
1137 case X86II::PD: // 66
1138 EmitByte(0x66, CurByte, OS);
1139 break;
1140 case X86II::XS: // F3
1141 EmitByte(0xF3, CurByte, OS);
1142 break;
1143 case X86II::XD: // F2
1144 EmitByte(0xF2, CurByte, OS);
1145 break;
1146 }
1147
1148 // Handle REX prefix.
1149 // FIXME: Can this come before F2 etc to simplify emission?
1150 if (is64BitMode(STI)) {
1151 if (unsigned REX = DetermineREXPrefix(MI, TSFlags, Desc))
1152 EmitByte(0x40 | REX, CurByte, OS);
1153 }
1154
1155 // 0x0F escape code must be emitted just before the opcode.
1156 switch (TSFlags & X86II::OpMapMask) {
1157 case X86II::TB: // Two-byte opcode map
1158 case X86II::T8: // 0F 38
1159 case X86II::TA: // 0F 3A
1160 EmitByte(0x0F, CurByte, OS);
1161 break;
1162 }
1163
1164 switch (TSFlags & X86II::OpMapMask) {
1165 case X86II::T8: // 0F 38
1166 EmitByte(0x38, CurByte, OS);
1167 break;
1168 case X86II::TA: // 0F 3A
1169 EmitByte(0x3A, CurByte, OS);
1170 break;
1171 }
1172 }
1173
1174 void X86MCCodeEmitter::
EncodeInstruction(const MCInst & MI,raw_ostream & OS,SmallVectorImpl<MCFixup> & Fixups,const MCSubtargetInfo & STI) const1175 EncodeInstruction(const MCInst &MI, raw_ostream &OS,
1176 SmallVectorImpl<MCFixup> &Fixups,
1177 const MCSubtargetInfo &STI) const {
1178 unsigned Opcode = MI.getOpcode();
1179 const MCInstrDesc &Desc = MCII.get(Opcode);
1180 uint64_t TSFlags = Desc.TSFlags;
1181
1182 // Pseudo instructions don't get encoded.
1183 if ((TSFlags & X86II::FormMask) == X86II::Pseudo)
1184 return;
1185
1186 unsigned NumOps = Desc.getNumOperands();
1187 unsigned CurOp = X86II::getOperandBias(Desc);
1188
1189 // Keep track of the current byte being emitted.
1190 unsigned CurByte = 0;
1191
1192 // Encoding type for this instruction.
1193 unsigned char Encoding = (TSFlags & X86II::EncodingMask) >>
1194 X86II::EncodingShift;
1195
1196 // It uses the VEX.VVVV field?
1197 bool HasVEX_4V = (TSFlags >> X86II::VEXShift) & X86II::VEX_4V;
1198 bool HasVEX_4VOp3 = (TSFlags >> X86II::VEXShift) & X86II::VEX_4VOp3;
1199 bool HasMemOp4 = (TSFlags >> X86II::VEXShift) & X86II::MemOp4;
1200 const unsigned MemOp4_I8IMMOperand = 2;
1201
1202 // It uses the EVEX.aaa field?
1203 bool HasEVEX_K = ((TSFlags >> X86II::VEXShift) & X86II::EVEX_K);
1204 bool HasEVEX_RC = ((TSFlags >> X86II::VEXShift) & X86II::EVEX_RC);
1205
1206 // Determine where the memory operand starts, if present.
1207 int MemoryOperand = X86II::getMemoryOperandNo(TSFlags, Opcode);
1208 if (MemoryOperand != -1) MemoryOperand += CurOp;
1209
1210 // Emit the lock opcode prefix as needed.
1211 if (TSFlags & X86II::LOCK)
1212 EmitByte(0xF0, CurByte, OS);
1213
1214 // Emit segment override opcode prefix as needed.
1215 if (MemoryOperand >= 0)
1216 EmitSegmentOverridePrefix(CurByte, MemoryOperand+X86::AddrSegmentReg,
1217 MI, OS);
1218
1219 // Emit the repeat opcode prefix as needed.
1220 if (TSFlags & X86II::REP)
1221 EmitByte(0xF3, CurByte, OS);
1222
1223 // Emit the address size opcode prefix as needed.
1224 bool need_address_override;
1225 // The AdSize prefix is only for 32-bit and 64-bit modes. Hm, perhaps we
1226 // should introduce an AdSize16 bit instead of having seven special cases?
1227 if ((!is16BitMode(STI) && TSFlags & X86II::AdSize) ||
1228 (is16BitMode(STI) && (MI.getOpcode() == X86::JECXZ_32 ||
1229 MI.getOpcode() == X86::MOV8o8a ||
1230 MI.getOpcode() == X86::MOV16o16a ||
1231 MI.getOpcode() == X86::MOV32o32a ||
1232 MI.getOpcode() == X86::MOV8ao8 ||
1233 MI.getOpcode() == X86::MOV16ao16 ||
1234 MI.getOpcode() == X86::MOV32ao32))) {
1235 need_address_override = true;
1236 } else if (MemoryOperand < 0) {
1237 need_address_override = false;
1238 } else if (is64BitMode(STI)) {
1239 assert(!Is16BitMemOperand(MI, MemoryOperand, STI));
1240 need_address_override = Is32BitMemOperand(MI, MemoryOperand);
1241 } else if (is32BitMode(STI)) {
1242 assert(!Is64BitMemOperand(MI, MemoryOperand));
1243 need_address_override = Is16BitMemOperand(MI, MemoryOperand, STI);
1244 } else {
1245 assert(is16BitMode(STI));
1246 assert(!Is64BitMemOperand(MI, MemoryOperand));
1247 need_address_override = !Is16BitMemOperand(MI, MemoryOperand, STI);
1248 }
1249
1250 if (need_address_override)
1251 EmitByte(0x67, CurByte, OS);
1252
1253 if (Encoding == 0)
1254 EmitOpcodePrefix(TSFlags, CurByte, MemoryOperand, MI, Desc, STI, OS);
1255 else
1256 EmitVEXOpcodePrefix(TSFlags, CurByte, MemoryOperand, MI, Desc, OS);
1257
1258 unsigned char BaseOpcode = X86II::getBaseOpcodeFor(TSFlags);
1259
1260 if ((TSFlags >> X86II::VEXShift) & X86II::Has3DNow0F0FOpcode)
1261 BaseOpcode = 0x0F; // Weird 3DNow! encoding.
1262
1263 unsigned SrcRegNum = 0;
1264 switch (TSFlags & X86II::FormMask) {
1265 default: errs() << "FORM: " << (TSFlags & X86II::FormMask) << "\n";
1266 llvm_unreachable("Unknown FormMask value in X86MCCodeEmitter!");
1267 case X86II::Pseudo:
1268 llvm_unreachable("Pseudo instruction shouldn't be emitted");
1269 case X86II::RawFrmDstSrc: {
1270 unsigned siReg = MI.getOperand(1).getReg();
1271 assert(((siReg == X86::SI && MI.getOperand(0).getReg() == X86::DI) ||
1272 (siReg == X86::ESI && MI.getOperand(0).getReg() == X86::EDI) ||
1273 (siReg == X86::RSI && MI.getOperand(0).getReg() == X86::RDI)) &&
1274 "SI and DI register sizes do not match");
1275 // Emit segment override opcode prefix as needed (not for %ds).
1276 if (MI.getOperand(2).getReg() != X86::DS)
1277 EmitSegmentOverridePrefix(CurByte, 2, MI, OS);
1278 // Emit AdSize prefix as needed.
1279 if ((!is32BitMode(STI) && siReg == X86::ESI) ||
1280 (is32BitMode(STI) && siReg == X86::SI))
1281 EmitByte(0x67, CurByte, OS);
1282 CurOp += 3; // Consume operands.
1283 EmitByte(BaseOpcode, CurByte, OS);
1284 break;
1285 }
1286 case X86II::RawFrmSrc: {
1287 unsigned siReg = MI.getOperand(0).getReg();
1288 // Emit segment override opcode prefix as needed (not for %ds).
1289 if (MI.getOperand(1).getReg() != X86::DS)
1290 EmitSegmentOverridePrefix(CurByte, 1, MI, OS);
1291 // Emit AdSize prefix as needed.
1292 if ((!is32BitMode(STI) && siReg == X86::ESI) ||
1293 (is32BitMode(STI) && siReg == X86::SI))
1294 EmitByte(0x67, CurByte, OS);
1295 CurOp += 2; // Consume operands.
1296 EmitByte(BaseOpcode, CurByte, OS);
1297 break;
1298 }
1299 case X86II::RawFrmDst: {
1300 unsigned siReg = MI.getOperand(0).getReg();
1301 // Emit AdSize prefix as needed.
1302 if ((!is32BitMode(STI) && siReg == X86::EDI) ||
1303 (is32BitMode(STI) && siReg == X86::DI))
1304 EmitByte(0x67, CurByte, OS);
1305 ++CurOp; // Consume operand.
1306 EmitByte(BaseOpcode, CurByte, OS);
1307 break;
1308 }
1309 case X86II::RawFrm:
1310 EmitByte(BaseOpcode, CurByte, OS);
1311 break;
1312 case X86II::RawFrmMemOffs:
1313 // Emit segment override opcode prefix as needed.
1314 EmitSegmentOverridePrefix(CurByte, 1, MI, OS);
1315 EmitByte(BaseOpcode, CurByte, OS);
1316 EmitImmediate(MI.getOperand(CurOp++), MI.getLoc(),
1317 X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
1318 CurByte, OS, Fixups);
1319 ++CurOp; // skip segment operand
1320 break;
1321 case X86II::RawFrmImm8:
1322 EmitByte(BaseOpcode, CurByte, OS);
1323 EmitImmediate(MI.getOperand(CurOp++), MI.getLoc(),
1324 X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
1325 CurByte, OS, Fixups);
1326 EmitImmediate(MI.getOperand(CurOp++), MI.getLoc(), 1, FK_Data_1, CurByte,
1327 OS, Fixups);
1328 break;
1329 case X86II::RawFrmImm16:
1330 EmitByte(BaseOpcode, CurByte, OS);
1331 EmitImmediate(MI.getOperand(CurOp++), MI.getLoc(),
1332 X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
1333 CurByte, OS, Fixups);
1334 EmitImmediate(MI.getOperand(CurOp++), MI.getLoc(), 2, FK_Data_2, CurByte,
1335 OS, Fixups);
1336 break;
1337
1338 case X86II::AddRegFrm:
1339 EmitByte(BaseOpcode + GetX86RegNum(MI.getOperand(CurOp++)), CurByte, OS);
1340 break;
1341
1342 case X86II::MRMDestReg:
1343 EmitByte(BaseOpcode, CurByte, OS);
1344 SrcRegNum = CurOp + 1;
1345
1346 if (HasEVEX_K) // Skip writemask
1347 SrcRegNum++;
1348
1349 if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
1350 ++SrcRegNum;
1351
1352 EmitRegModRMByte(MI.getOperand(CurOp),
1353 GetX86RegNum(MI.getOperand(SrcRegNum)), CurByte, OS);
1354 CurOp = SrcRegNum + 1;
1355 break;
1356
1357 case X86II::MRMDestMem:
1358 EmitByte(BaseOpcode, CurByte, OS);
1359 SrcRegNum = CurOp + X86::AddrNumOperands;
1360
1361 if (HasEVEX_K) // Skip writemask
1362 SrcRegNum++;
1363
1364 if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
1365 ++SrcRegNum;
1366
1367 EmitMemModRMByte(MI, CurOp,
1368 GetX86RegNum(MI.getOperand(SrcRegNum)),
1369 TSFlags, CurByte, OS, Fixups, STI);
1370 CurOp = SrcRegNum + 1;
1371 break;
1372
1373 case X86II::MRMSrcReg:
1374 EmitByte(BaseOpcode, CurByte, OS);
1375 SrcRegNum = CurOp + 1;
1376
1377 if (HasEVEX_K) // Skip writemask
1378 SrcRegNum++;
1379
1380 if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
1381 ++SrcRegNum;
1382
1383 if (HasMemOp4) // Skip 2nd src (which is encoded in I8IMM)
1384 ++SrcRegNum;
1385
1386 EmitRegModRMByte(MI.getOperand(SrcRegNum),
1387 GetX86RegNum(MI.getOperand(CurOp)), CurByte, OS);
1388
1389 // 2 operands skipped with HasMemOp4, compensate accordingly
1390 CurOp = HasMemOp4 ? SrcRegNum : SrcRegNum + 1;
1391 if (HasVEX_4VOp3)
1392 ++CurOp;
1393 // do not count the rounding control operand
1394 if (HasEVEX_RC)
1395 NumOps--;
1396 break;
1397
1398 case X86II::MRMSrcMem: {
1399 int AddrOperands = X86::AddrNumOperands;
1400 unsigned FirstMemOp = CurOp+1;
1401
1402 if (HasEVEX_K) { // Skip writemask
1403 ++AddrOperands;
1404 ++FirstMemOp;
1405 }
1406
1407 if (HasVEX_4V) {
1408 ++AddrOperands;
1409 ++FirstMemOp; // Skip the register source (which is encoded in VEX_VVVV).
1410 }
1411 if (HasMemOp4) // Skip second register source (encoded in I8IMM)
1412 ++FirstMemOp;
1413
1414 EmitByte(BaseOpcode, CurByte, OS);
1415
1416 EmitMemModRMByte(MI, FirstMemOp, GetX86RegNum(MI.getOperand(CurOp)),
1417 TSFlags, CurByte, OS, Fixups, STI);
1418 CurOp += AddrOperands + 1;
1419 if (HasVEX_4VOp3)
1420 ++CurOp;
1421 break;
1422 }
1423
1424 case X86II::MRMXr:
1425 case X86II::MRM0r: case X86II::MRM1r:
1426 case X86II::MRM2r: case X86II::MRM3r:
1427 case X86II::MRM4r: case X86II::MRM5r:
1428 case X86II::MRM6r: case X86II::MRM7r: {
1429 if (HasVEX_4V) // Skip the register dst (which is encoded in VEX_VVVV).
1430 ++CurOp;
1431 if (HasEVEX_K) // Skip writemask
1432 ++CurOp;
1433 EmitByte(BaseOpcode, CurByte, OS);
1434 uint64_t Form = TSFlags & X86II::FormMask;
1435 EmitRegModRMByte(MI.getOperand(CurOp++),
1436 (Form == X86II::MRMXr) ? 0 : Form-X86II::MRM0r,
1437 CurByte, OS);
1438 break;
1439 }
1440
1441 case X86II::MRMXm:
1442 case X86II::MRM0m: case X86II::MRM1m:
1443 case X86II::MRM2m: case X86II::MRM3m:
1444 case X86II::MRM4m: case X86II::MRM5m:
1445 case X86II::MRM6m: case X86II::MRM7m: {
1446 if (HasVEX_4V) // Skip the register dst (which is encoded in VEX_VVVV).
1447 ++CurOp;
1448 if (HasEVEX_K) // Skip writemask
1449 ++CurOp;
1450 EmitByte(BaseOpcode, CurByte, OS);
1451 uint64_t Form = TSFlags & X86II::FormMask;
1452 EmitMemModRMByte(MI, CurOp, (Form == X86II::MRMXm) ? 0 : Form-X86II::MRM0m,
1453 TSFlags, CurByte, OS, Fixups, STI);
1454 CurOp += X86::AddrNumOperands;
1455 break;
1456 }
1457 case X86II::MRM_C0: case X86II::MRM_C1: case X86II::MRM_C2:
1458 case X86II::MRM_C3: case X86II::MRM_C4: case X86II::MRM_C8:
1459 case X86II::MRM_C9: case X86II::MRM_CA: case X86II::MRM_CB:
1460 case X86II::MRM_D0: case X86II::MRM_D1: case X86II::MRM_D4:
1461 case X86II::MRM_D5: case X86II::MRM_D6: case X86II::MRM_D8:
1462 case X86II::MRM_D9: case X86II::MRM_DA: case X86II::MRM_DB:
1463 case X86II::MRM_DC: case X86II::MRM_DD: case X86II::MRM_DE:
1464 case X86II::MRM_DF: case X86II::MRM_E0: case X86II::MRM_E1:
1465 case X86II::MRM_E2: case X86II::MRM_E3: case X86II::MRM_E4:
1466 case X86II::MRM_E5: case X86II::MRM_E8: case X86II::MRM_E9:
1467 case X86II::MRM_EA: case X86II::MRM_EB: case X86II::MRM_EC:
1468 case X86II::MRM_ED: case X86II::MRM_EE: case X86II::MRM_F0:
1469 case X86II::MRM_F1: case X86II::MRM_F2: case X86II::MRM_F3:
1470 case X86II::MRM_F4: case X86II::MRM_F5: case X86II::MRM_F6:
1471 case X86II::MRM_F7: case X86II::MRM_F8: case X86II::MRM_F9:
1472 case X86II::MRM_FA: case X86II::MRM_FB: case X86II::MRM_FC:
1473 case X86II::MRM_FD: case X86II::MRM_FE: case X86II::MRM_FF:
1474 EmitByte(BaseOpcode, CurByte, OS);
1475
1476 unsigned char MRM;
1477 switch (TSFlags & X86II::FormMask) {
1478 default: llvm_unreachable("Invalid Form");
1479 case X86II::MRM_C0: MRM = 0xC0; break;
1480 case X86II::MRM_C1: MRM = 0xC1; break;
1481 case X86II::MRM_C2: MRM = 0xC2; break;
1482 case X86II::MRM_C3: MRM = 0xC3; break;
1483 case X86II::MRM_C4: MRM = 0xC4; break;
1484 case X86II::MRM_C8: MRM = 0xC8; break;
1485 case X86II::MRM_C9: MRM = 0xC9; break;
1486 case X86II::MRM_CA: MRM = 0xCA; break;
1487 case X86II::MRM_CB: MRM = 0xCB; break;
1488 case X86II::MRM_D0: MRM = 0xD0; break;
1489 case X86II::MRM_D1: MRM = 0xD1; break;
1490 case X86II::MRM_D4: MRM = 0xD4; break;
1491 case X86II::MRM_D5: MRM = 0xD5; break;
1492 case X86II::MRM_D6: MRM = 0xD6; break;
1493 case X86II::MRM_D8: MRM = 0xD8; break;
1494 case X86II::MRM_D9: MRM = 0xD9; break;
1495 case X86II::MRM_DA: MRM = 0xDA; break;
1496 case X86II::MRM_DB: MRM = 0xDB; break;
1497 case X86II::MRM_DC: MRM = 0xDC; break;
1498 case X86II::MRM_DD: MRM = 0xDD; break;
1499 case X86II::MRM_DE: MRM = 0xDE; break;
1500 case X86II::MRM_DF: MRM = 0xDF; break;
1501 case X86II::MRM_E0: MRM = 0xE0; break;
1502 case X86II::MRM_E1: MRM = 0xE1; break;
1503 case X86II::MRM_E2: MRM = 0xE2; break;
1504 case X86II::MRM_E3: MRM = 0xE3; break;
1505 case X86II::MRM_E4: MRM = 0xE4; break;
1506 case X86II::MRM_E5: MRM = 0xE5; break;
1507 case X86II::MRM_E8: MRM = 0xE8; break;
1508 case X86II::MRM_E9: MRM = 0xE9; break;
1509 case X86II::MRM_EA: MRM = 0xEA; break;
1510 case X86II::MRM_EB: MRM = 0xEB; break;
1511 case X86II::MRM_EC: MRM = 0xEC; break;
1512 case X86II::MRM_ED: MRM = 0xED; break;
1513 case X86II::MRM_EE: MRM = 0xEE; break;
1514 case X86II::MRM_F0: MRM = 0xF0; break;
1515 case X86II::MRM_F1: MRM = 0xF1; break;
1516 case X86II::MRM_F2: MRM = 0xF2; break;
1517 case X86II::MRM_F3: MRM = 0xF3; break;
1518 case X86II::MRM_F4: MRM = 0xF4; break;
1519 case X86II::MRM_F5: MRM = 0xF5; break;
1520 case X86II::MRM_F6: MRM = 0xF6; break;
1521 case X86II::MRM_F7: MRM = 0xF7; break;
1522 case X86II::MRM_F8: MRM = 0xF8; break;
1523 case X86II::MRM_F9: MRM = 0xF9; break;
1524 case X86II::MRM_FA: MRM = 0xFA; break;
1525 case X86II::MRM_FB: MRM = 0xFB; break;
1526 case X86II::MRM_FC: MRM = 0xFC; break;
1527 case X86II::MRM_FD: MRM = 0xFD; break;
1528 case X86II::MRM_FE: MRM = 0xFE; break;
1529 case X86II::MRM_FF: MRM = 0xFF; break;
1530 }
1531 EmitByte(MRM, CurByte, OS);
1532 break;
1533 }
1534
1535 // If there is a remaining operand, it must be a trailing immediate. Emit it
1536 // according to the right size for the instruction. Some instructions
1537 // (SSE4a extrq and insertq) have two trailing immediates.
1538 while (CurOp != NumOps && NumOps - CurOp <= 2) {
1539 // The last source register of a 4 operand instruction in AVX is encoded
1540 // in bits[7:4] of a immediate byte.
1541 if ((TSFlags >> X86II::VEXShift) & X86II::VEX_I8IMM) {
1542 const MCOperand &MO = MI.getOperand(HasMemOp4 ? MemOp4_I8IMMOperand
1543 : CurOp);
1544 ++CurOp;
1545 unsigned RegNum = GetX86RegNum(MO) << 4;
1546 if (X86II::isX86_64ExtendedReg(MO.getReg()))
1547 RegNum |= 1 << 7;
1548 // If there is an additional 5th operand it must be an immediate, which
1549 // is encoded in bits[3:0]
1550 if (CurOp != NumOps) {
1551 const MCOperand &MIMM = MI.getOperand(CurOp++);
1552 if (MIMM.isImm()) {
1553 unsigned Val = MIMM.getImm();
1554 assert(Val < 16 && "Immediate operand value out of range");
1555 RegNum |= Val;
1556 }
1557 }
1558 EmitImmediate(MCOperand::CreateImm(RegNum), MI.getLoc(), 1, FK_Data_1,
1559 CurByte, OS, Fixups);
1560 } else {
1561 EmitImmediate(MI.getOperand(CurOp++), MI.getLoc(),
1562 X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
1563 CurByte, OS, Fixups);
1564 }
1565 }
1566
1567 if ((TSFlags >> X86II::VEXShift) & X86II::Has3DNow0F0FOpcode)
1568 EmitByte(X86II::getBaseOpcodeFor(TSFlags), CurByte, OS);
1569
1570 #ifndef NDEBUG
1571 // FIXME: Verify.
1572 if (/*!Desc.isVariadic() &&*/ CurOp != NumOps) {
1573 errs() << "Cannot encode all operands of: ";
1574 MI.dump();
1575 errs() << '\n';
1576 abort();
1577 }
1578 #endif
1579 }
1580