• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===--- YAMLParser.cpp - Simple YAML parser ------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file implements a YAML parser.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Support/YAMLParser.h"
15 #include "llvm/ADT/SmallVector.h"
16 #include "llvm/ADT/StringExtras.h"
17 #include "llvm/ADT/Twine.h"
18 #include "llvm/ADT/ilist.h"
19 #include "llvm/ADT/ilist_node.h"
20 #include "llvm/Support/ErrorHandling.h"
21 #include "llvm/Support/MemoryBuffer.h"
22 #include "llvm/Support/SourceMgr.h"
23 #include "llvm/Support/raw_ostream.h"
24 
25 using namespace llvm;
26 using namespace yaml;
27 
28 enum UnicodeEncodingForm {
29   UEF_UTF32_LE, ///< UTF-32 Little Endian
30   UEF_UTF32_BE, ///< UTF-32 Big Endian
31   UEF_UTF16_LE, ///< UTF-16 Little Endian
32   UEF_UTF16_BE, ///< UTF-16 Big Endian
33   UEF_UTF8,     ///< UTF-8 or ascii.
34   UEF_Unknown   ///< Not a valid Unicode encoding.
35 };
36 
37 /// EncodingInfo - Holds the encoding type and length of the byte order mark if
38 ///                it exists. Length is in {0, 2, 3, 4}.
39 typedef std::pair<UnicodeEncodingForm, unsigned> EncodingInfo;
40 
41 /// getUnicodeEncoding - Reads up to the first 4 bytes to determine the Unicode
42 ///                      encoding form of \a Input.
43 ///
44 /// @param Input A string of length 0 or more.
45 /// @returns An EncodingInfo indicating the Unicode encoding form of the input
46 ///          and how long the byte order mark is if one exists.
getUnicodeEncoding(StringRef Input)47 static EncodingInfo getUnicodeEncoding(StringRef Input) {
48   if (Input.size() == 0)
49     return std::make_pair(UEF_Unknown, 0);
50 
51   switch (uint8_t(Input[0])) {
52   case 0x00:
53     if (Input.size() >= 4) {
54       if (  Input[1] == 0
55          && uint8_t(Input[2]) == 0xFE
56          && uint8_t(Input[3]) == 0xFF)
57         return std::make_pair(UEF_UTF32_BE, 4);
58       if (Input[1] == 0 && Input[2] == 0 && Input[3] != 0)
59         return std::make_pair(UEF_UTF32_BE, 0);
60     }
61 
62     if (Input.size() >= 2 && Input[1] != 0)
63       return std::make_pair(UEF_UTF16_BE, 0);
64     return std::make_pair(UEF_Unknown, 0);
65   case 0xFF:
66     if (  Input.size() >= 4
67        && uint8_t(Input[1]) == 0xFE
68        && Input[2] == 0
69        && Input[3] == 0)
70       return std::make_pair(UEF_UTF32_LE, 4);
71 
72     if (Input.size() >= 2 && uint8_t(Input[1]) == 0xFE)
73       return std::make_pair(UEF_UTF16_LE, 2);
74     return std::make_pair(UEF_Unknown, 0);
75   case 0xFE:
76     if (Input.size() >= 2 && uint8_t(Input[1]) == 0xFF)
77       return std::make_pair(UEF_UTF16_BE, 2);
78     return std::make_pair(UEF_Unknown, 0);
79   case 0xEF:
80     if (  Input.size() >= 3
81        && uint8_t(Input[1]) == 0xBB
82        && uint8_t(Input[2]) == 0xBF)
83       return std::make_pair(UEF_UTF8, 3);
84     return std::make_pair(UEF_Unknown, 0);
85   }
86 
87   // It could still be utf-32 or utf-16.
88   if (Input.size() >= 4 && Input[1] == 0 && Input[2] == 0 && Input[3] == 0)
89     return std::make_pair(UEF_UTF32_LE, 0);
90 
91   if (Input.size() >= 2 && Input[1] == 0)
92     return std::make_pair(UEF_UTF16_LE, 0);
93 
94   return std::make_pair(UEF_UTF8, 0);
95 }
96 
97 namespace llvm {
98 namespace yaml {
99 /// Pin the vtables to this file.
anchor()100 void Node::anchor() {}
anchor()101 void NullNode::anchor() {}
anchor()102 void ScalarNode::anchor() {}
anchor()103 void KeyValueNode::anchor() {}
anchor()104 void MappingNode::anchor() {}
anchor()105 void SequenceNode::anchor() {}
anchor()106 void AliasNode::anchor() {}
107 
108 /// Token - A single YAML token.
109 struct Token : ilist_node<Token> {
110   enum TokenKind {
111     TK_Error, // Uninitialized token.
112     TK_StreamStart,
113     TK_StreamEnd,
114     TK_VersionDirective,
115     TK_TagDirective,
116     TK_DocumentStart,
117     TK_DocumentEnd,
118     TK_BlockEntry,
119     TK_BlockEnd,
120     TK_BlockSequenceStart,
121     TK_BlockMappingStart,
122     TK_FlowEntry,
123     TK_FlowSequenceStart,
124     TK_FlowSequenceEnd,
125     TK_FlowMappingStart,
126     TK_FlowMappingEnd,
127     TK_Key,
128     TK_Value,
129     TK_Scalar,
130     TK_Alias,
131     TK_Anchor,
132     TK_Tag
133   } Kind;
134 
135   /// A string of length 0 or more whose begin() points to the logical location
136   /// of the token in the input.
137   StringRef Range;
138 
Tokenllvm::yaml::Token139   Token() : Kind(TK_Error) {}
140 };
141 }
142 }
143 
144 namespace llvm {
145 template<>
146 struct ilist_sentinel_traits<Token> {
createSentinelllvm::ilist_sentinel_traits147   Token *createSentinel() const {
148     return &Sentinel;
149   }
destroySentinelllvm::ilist_sentinel_traits150   static void destroySentinel(Token*) {}
151 
provideInitialHeadllvm::ilist_sentinel_traits152   Token *provideInitialHead() const { return createSentinel(); }
ensureHeadllvm::ilist_sentinel_traits153   Token *ensureHead(Token*) const { return createSentinel(); }
noteHeadllvm::ilist_sentinel_traits154   static void noteHead(Token*, Token*) {}
155 
156 private:
157   mutable Token Sentinel;
158 };
159 
160 template<>
161 struct ilist_node_traits<Token> {
createNodellvm::ilist_node_traits162   Token *createNode(const Token &V) {
163     return new (Alloc.Allocate<Token>()) Token(V);
164   }
deleteNodellvm::ilist_node_traits165   static void deleteNode(Token *V) {}
166 
addNodeToListllvm::ilist_node_traits167   void addNodeToList(Token *) {}
removeNodeFromListllvm::ilist_node_traits168   void removeNodeFromList(Token *) {}
transferNodesFromListllvm::ilist_node_traits169   void transferNodesFromList(ilist_node_traits &    /*SrcTraits*/,
170                              ilist_iterator<Token> /*first*/,
171                              ilist_iterator<Token> /*last*/) {}
172 
173   BumpPtrAllocator Alloc;
174 };
175 }
176 
177 typedef ilist<Token> TokenQueueT;
178 
179 namespace {
180 /// @brief This struct is used to track simple keys.
181 ///
182 /// Simple keys are handled by creating an entry in SimpleKeys for each Token
183 /// which could legally be the start of a simple key. When peekNext is called,
184 /// if the Token To be returned is referenced by a SimpleKey, we continue
185 /// tokenizing until that potential simple key has either been found to not be
186 /// a simple key (we moved on to the next line or went further than 1024 chars).
187 /// Or when we run into a Value, and then insert a Key token (and possibly
188 /// others) before the SimpleKey's Tok.
189 struct SimpleKey {
190   TokenQueueT::iterator Tok;
191   unsigned Column;
192   unsigned Line;
193   unsigned FlowLevel;
194   bool IsRequired;
195 
operator ==__anonfe02cdc20111::SimpleKey196   bool operator ==(const SimpleKey &Other) {
197     return Tok == Other.Tok;
198   }
199 };
200 }
201 
202 /// @brief The Unicode scalar value of a UTF-8 minimal well-formed code unit
203 ///        subsequence and the subsequence's length in code units (uint8_t).
204 ///        A length of 0 represents an error.
205 typedef std::pair<uint32_t, unsigned> UTF8Decoded;
206 
decodeUTF8(StringRef Range)207 static UTF8Decoded decodeUTF8(StringRef Range) {
208   StringRef::iterator Position= Range.begin();
209   StringRef::iterator End = Range.end();
210   // 1 byte: [0x00, 0x7f]
211   // Bit pattern: 0xxxxxxx
212   if ((*Position & 0x80) == 0) {
213      return std::make_pair(*Position, 1);
214   }
215   // 2 bytes: [0x80, 0x7ff]
216   // Bit pattern: 110xxxxx 10xxxxxx
217   if (Position + 1 != End &&
218       ((*Position & 0xE0) == 0xC0) &&
219       ((*(Position + 1) & 0xC0) == 0x80)) {
220     uint32_t codepoint = ((*Position & 0x1F) << 6) |
221                           (*(Position + 1) & 0x3F);
222     if (codepoint >= 0x80)
223       return std::make_pair(codepoint, 2);
224   }
225   // 3 bytes: [0x8000, 0xffff]
226   // Bit pattern: 1110xxxx 10xxxxxx 10xxxxxx
227   if (Position + 2 != End &&
228       ((*Position & 0xF0) == 0xE0) &&
229       ((*(Position + 1) & 0xC0) == 0x80) &&
230       ((*(Position + 2) & 0xC0) == 0x80)) {
231     uint32_t codepoint = ((*Position & 0x0F) << 12) |
232                          ((*(Position + 1) & 0x3F) << 6) |
233                           (*(Position + 2) & 0x3F);
234     // Codepoints between 0xD800 and 0xDFFF are invalid, as
235     // they are high / low surrogate halves used by UTF-16.
236     if (codepoint >= 0x800 &&
237         (codepoint < 0xD800 || codepoint > 0xDFFF))
238       return std::make_pair(codepoint, 3);
239   }
240   // 4 bytes: [0x10000, 0x10FFFF]
241   // Bit pattern: 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx
242   if (Position + 3 != End &&
243       ((*Position & 0xF8) == 0xF0) &&
244       ((*(Position + 1) & 0xC0) == 0x80) &&
245       ((*(Position + 2) & 0xC0) == 0x80) &&
246       ((*(Position + 3) & 0xC0) == 0x80)) {
247     uint32_t codepoint = ((*Position & 0x07) << 18) |
248                          ((*(Position + 1) & 0x3F) << 12) |
249                          ((*(Position + 2) & 0x3F) << 6) |
250                           (*(Position + 3) & 0x3F);
251     if (codepoint >= 0x10000 && codepoint <= 0x10FFFF)
252       return std::make_pair(codepoint, 4);
253   }
254   return std::make_pair(0, 0);
255 }
256 
257 namespace llvm {
258 namespace yaml {
259 /// @brief Scans YAML tokens from a MemoryBuffer.
260 class Scanner {
261 public:
262   Scanner(const StringRef Input, SourceMgr &SM);
263   Scanner(MemoryBuffer *Buffer, SourceMgr &SM_);
264 
265   /// @brief Parse the next token and return it without popping it.
266   Token &peekNext();
267 
268   /// @brief Parse the next token and pop it from the queue.
269   Token getNext();
270 
printError(SMLoc Loc,SourceMgr::DiagKind Kind,const Twine & Message,ArrayRef<SMRange> Ranges=None)271   void printError(SMLoc Loc, SourceMgr::DiagKind Kind, const Twine &Message,
272                   ArrayRef<SMRange> Ranges = None) {
273     SM.PrintMessage(Loc, Kind, Message, Ranges);
274   }
275 
setError(const Twine & Message,StringRef::iterator Position)276   void setError(const Twine &Message, StringRef::iterator Position) {
277     if (Current >= End)
278       Current = End - 1;
279 
280     // Don't print out more errors after the first one we encounter. The rest
281     // are just the result of the first, and have no meaning.
282     if (!Failed)
283       printError(SMLoc::getFromPointer(Current), SourceMgr::DK_Error, Message);
284     Failed = true;
285   }
286 
setError(const Twine & Message)287   void setError(const Twine &Message) {
288     setError(Message, Current);
289   }
290 
291   /// @brief Returns true if an error occurred while parsing.
failed()292   bool failed() {
293     return Failed;
294   }
295 
296 private:
currentInput()297   StringRef currentInput() {
298     return StringRef(Current, End - Current);
299   }
300 
301   /// @brief Decode a UTF-8 minimal well-formed code unit subsequence starting
302   ///        at \a Position.
303   ///
304   /// If the UTF-8 code units starting at Position do not form a well-formed
305   /// code unit subsequence, then the Unicode scalar value is 0, and the length
306   /// is 0.
decodeUTF8(StringRef::iterator Position)307   UTF8Decoded decodeUTF8(StringRef::iterator Position) {
308     return ::decodeUTF8(StringRef(Position, End - Position));
309   }
310 
311   // The following functions are based on the gramar rules in the YAML spec. The
312   // style of the function names it meant to closely match how they are written
313   // in the spec. The number within the [] is the number of the grammar rule in
314   // the spec.
315   //
316   // See 4.2 [Production Naming Conventions] for the meaning of the prefixes.
317   //
318   // c-
319   //   A production starting and ending with a special character.
320   // b-
321   //   A production matching a single line break.
322   // nb-
323   //   A production starting and ending with a non-break character.
324   // s-
325   //   A production starting and ending with a white space character.
326   // ns-
327   //   A production starting and ending with a non-space character.
328   // l-
329   //   A production matching complete line(s).
330 
331   /// @brief Skip a single nb-char[27] starting at Position.
332   ///
333   /// A nb-char is 0x9 | [0x20-0x7E] | 0x85 | [0xA0-0xD7FF] | [0xE000-0xFEFE]
334   ///                  | [0xFF00-0xFFFD] | [0x10000-0x10FFFF]
335   ///
336   /// @returns The code unit after the nb-char, or Position if it's not an
337   ///          nb-char.
338   StringRef::iterator skip_nb_char(StringRef::iterator Position);
339 
340   /// @brief Skip a single b-break[28] starting at Position.
341   ///
342   /// A b-break is 0xD 0xA | 0xD | 0xA
343   ///
344   /// @returns The code unit after the b-break, or Position if it's not a
345   ///          b-break.
346   StringRef::iterator skip_b_break(StringRef::iterator Position);
347 
348   /// @brief Skip a single s-white[33] starting at Position.
349   ///
350   /// A s-white is 0x20 | 0x9
351   ///
352   /// @returns The code unit after the s-white, or Position if it's not a
353   ///          s-white.
354   StringRef::iterator skip_s_white(StringRef::iterator Position);
355 
356   /// @brief Skip a single ns-char[34] starting at Position.
357   ///
358   /// A ns-char is nb-char - s-white
359   ///
360   /// @returns The code unit after the ns-char, or Position if it's not a
361   ///          ns-char.
362   StringRef::iterator skip_ns_char(StringRef::iterator Position);
363 
364   typedef StringRef::iterator (Scanner::*SkipWhileFunc)(StringRef::iterator);
365   /// @brief Skip minimal well-formed code unit subsequences until Func
366   ///        returns its input.
367   ///
368   /// @returns The code unit after the last minimal well-formed code unit
369   ///          subsequence that Func accepted.
370   StringRef::iterator skip_while( SkipWhileFunc Func
371                                 , StringRef::iterator Position);
372 
373   /// @brief Scan ns-uri-char[39]s starting at Cur.
374   ///
375   /// This updates Cur and Column while scanning.
376   ///
377   /// @returns A StringRef starting at Cur which covers the longest contiguous
378   ///          sequence of ns-uri-char.
379   StringRef scan_ns_uri_char();
380 
381   /// @brief Consume a minimal well-formed code unit subsequence starting at
382   ///        \a Cur. Return false if it is not the same Unicode scalar value as
383   ///        \a Expected. This updates \a Column.
384   bool consume(uint32_t Expected);
385 
386   /// @brief Skip \a Distance UTF-8 code units. Updates \a Cur and \a Column.
387   void skip(uint32_t Distance);
388 
389   /// @brief Return true if the minimal well-formed code unit subsequence at
390   ///        Pos is whitespace or a new line
391   bool isBlankOrBreak(StringRef::iterator Position);
392 
393   /// @brief If IsSimpleKeyAllowed, create and push_back a new SimpleKey.
394   void saveSimpleKeyCandidate( TokenQueueT::iterator Tok
395                              , unsigned AtColumn
396                              , bool IsRequired);
397 
398   /// @brief Remove simple keys that can no longer be valid simple keys.
399   ///
400   /// Invalid simple keys are not on the current line or are further than 1024
401   /// columns back.
402   void removeStaleSimpleKeyCandidates();
403 
404   /// @brief Remove all simple keys on FlowLevel \a Level.
405   void removeSimpleKeyCandidatesOnFlowLevel(unsigned Level);
406 
407   /// @brief Unroll indentation in \a Indents back to \a Col. Creates BlockEnd
408   ///        tokens if needed.
409   bool unrollIndent(int ToColumn);
410 
411   /// @brief Increase indent to \a Col. Creates \a Kind token at \a InsertPoint
412   ///        if needed.
413   bool rollIndent( int ToColumn
414                  , Token::TokenKind Kind
415                  , TokenQueueT::iterator InsertPoint);
416 
417   /// @brief Skip whitespace and comments until the start of the next token.
418   void scanToNextToken();
419 
420   /// @brief Must be the first token generated.
421   bool scanStreamStart();
422 
423   /// @brief Generate tokens needed to close out the stream.
424   bool scanStreamEnd();
425 
426   /// @brief Scan a %BLAH directive.
427   bool scanDirective();
428 
429   /// @brief Scan a ... or ---.
430   bool scanDocumentIndicator(bool IsStart);
431 
432   /// @brief Scan a [ or { and generate the proper flow collection start token.
433   bool scanFlowCollectionStart(bool IsSequence);
434 
435   /// @brief Scan a ] or } and generate the proper flow collection end token.
436   bool scanFlowCollectionEnd(bool IsSequence);
437 
438   /// @brief Scan the , that separates entries in a flow collection.
439   bool scanFlowEntry();
440 
441   /// @brief Scan the - that starts block sequence entries.
442   bool scanBlockEntry();
443 
444   /// @brief Scan an explicit ? indicating a key.
445   bool scanKey();
446 
447   /// @brief Scan an explicit : indicating a value.
448   bool scanValue();
449 
450   /// @brief Scan a quoted scalar.
451   bool scanFlowScalar(bool IsDoubleQuoted);
452 
453   /// @brief Scan an unquoted scalar.
454   bool scanPlainScalar();
455 
456   /// @brief Scan an Alias or Anchor starting with * or &.
457   bool scanAliasOrAnchor(bool IsAlias);
458 
459   /// @brief Scan a block scalar starting with | or >.
460   bool scanBlockScalar(bool IsLiteral);
461 
462   /// @brief Scan a tag of the form !stuff.
463   bool scanTag();
464 
465   /// @brief Dispatch to the next scanning function based on \a *Cur.
466   bool fetchMoreTokens();
467 
468   /// @brief The SourceMgr used for diagnostics and buffer management.
469   SourceMgr &SM;
470 
471   /// @brief The original input.
472   MemoryBuffer *InputBuffer;
473 
474   /// @brief The current position of the scanner.
475   StringRef::iterator Current;
476 
477   /// @brief The end of the input (one past the last character).
478   StringRef::iterator End;
479 
480   /// @brief Current YAML indentation level in spaces.
481   int Indent;
482 
483   /// @brief Current column number in Unicode code points.
484   unsigned Column;
485 
486   /// @brief Current line number.
487   unsigned Line;
488 
489   /// @brief How deep we are in flow style containers. 0 Means at block level.
490   unsigned FlowLevel;
491 
492   /// @brief Are we at the start of the stream?
493   bool IsStartOfStream;
494 
495   /// @brief Can the next token be the start of a simple key?
496   bool IsSimpleKeyAllowed;
497 
498   /// @brief True if an error has occurred.
499   bool Failed;
500 
501   /// @brief Queue of tokens. This is required to queue up tokens while looking
502   ///        for the end of a simple key. And for cases where a single character
503   ///        can produce multiple tokens (e.g. BlockEnd).
504   TokenQueueT TokenQueue;
505 
506   /// @brief Indentation levels.
507   SmallVector<int, 4> Indents;
508 
509   /// @brief Potential simple keys.
510   SmallVector<SimpleKey, 4> SimpleKeys;
511 };
512 
513 } // end namespace yaml
514 } // end namespace llvm
515 
516 /// encodeUTF8 - Encode \a UnicodeScalarValue in UTF-8 and append it to result.
encodeUTF8(uint32_t UnicodeScalarValue,SmallVectorImpl<char> & Result)517 static void encodeUTF8( uint32_t UnicodeScalarValue
518                       , SmallVectorImpl<char> &Result) {
519   if (UnicodeScalarValue <= 0x7F) {
520     Result.push_back(UnicodeScalarValue & 0x7F);
521   } else if (UnicodeScalarValue <= 0x7FF) {
522     uint8_t FirstByte = 0xC0 | ((UnicodeScalarValue & 0x7C0) >> 6);
523     uint8_t SecondByte = 0x80 | (UnicodeScalarValue & 0x3F);
524     Result.push_back(FirstByte);
525     Result.push_back(SecondByte);
526   } else if (UnicodeScalarValue <= 0xFFFF) {
527     uint8_t FirstByte = 0xE0 | ((UnicodeScalarValue & 0xF000) >> 12);
528     uint8_t SecondByte = 0x80 | ((UnicodeScalarValue & 0xFC0) >> 6);
529     uint8_t ThirdByte = 0x80 | (UnicodeScalarValue & 0x3F);
530     Result.push_back(FirstByte);
531     Result.push_back(SecondByte);
532     Result.push_back(ThirdByte);
533   } else if (UnicodeScalarValue <= 0x10FFFF) {
534     uint8_t FirstByte = 0xF0 | ((UnicodeScalarValue & 0x1F0000) >> 18);
535     uint8_t SecondByte = 0x80 | ((UnicodeScalarValue & 0x3F000) >> 12);
536     uint8_t ThirdByte = 0x80 | ((UnicodeScalarValue & 0xFC0) >> 6);
537     uint8_t FourthByte = 0x80 | (UnicodeScalarValue & 0x3F);
538     Result.push_back(FirstByte);
539     Result.push_back(SecondByte);
540     Result.push_back(ThirdByte);
541     Result.push_back(FourthByte);
542   }
543 }
544 
dumpTokens(StringRef Input,raw_ostream & OS)545 bool yaml::dumpTokens(StringRef Input, raw_ostream &OS) {
546   SourceMgr SM;
547   Scanner scanner(Input, SM);
548   while (true) {
549     Token T = scanner.getNext();
550     switch (T.Kind) {
551     case Token::TK_StreamStart:
552       OS << "Stream-Start: ";
553       break;
554     case Token::TK_StreamEnd:
555       OS << "Stream-End: ";
556       break;
557     case Token::TK_VersionDirective:
558       OS << "Version-Directive: ";
559       break;
560     case Token::TK_TagDirective:
561       OS << "Tag-Directive: ";
562       break;
563     case Token::TK_DocumentStart:
564       OS << "Document-Start: ";
565       break;
566     case Token::TK_DocumentEnd:
567       OS << "Document-End: ";
568       break;
569     case Token::TK_BlockEntry:
570       OS << "Block-Entry: ";
571       break;
572     case Token::TK_BlockEnd:
573       OS << "Block-End: ";
574       break;
575     case Token::TK_BlockSequenceStart:
576       OS << "Block-Sequence-Start: ";
577       break;
578     case Token::TK_BlockMappingStart:
579       OS << "Block-Mapping-Start: ";
580       break;
581     case Token::TK_FlowEntry:
582       OS << "Flow-Entry: ";
583       break;
584     case Token::TK_FlowSequenceStart:
585       OS << "Flow-Sequence-Start: ";
586       break;
587     case Token::TK_FlowSequenceEnd:
588       OS << "Flow-Sequence-End: ";
589       break;
590     case Token::TK_FlowMappingStart:
591       OS << "Flow-Mapping-Start: ";
592       break;
593     case Token::TK_FlowMappingEnd:
594       OS << "Flow-Mapping-End: ";
595       break;
596     case Token::TK_Key:
597       OS << "Key: ";
598       break;
599     case Token::TK_Value:
600       OS << "Value: ";
601       break;
602     case Token::TK_Scalar:
603       OS << "Scalar: ";
604       break;
605     case Token::TK_Alias:
606       OS << "Alias: ";
607       break;
608     case Token::TK_Anchor:
609       OS << "Anchor: ";
610       break;
611     case Token::TK_Tag:
612       OS << "Tag: ";
613       break;
614     case Token::TK_Error:
615       break;
616     }
617     OS << T.Range << "\n";
618     if (T.Kind == Token::TK_StreamEnd)
619       break;
620     else if (T.Kind == Token::TK_Error)
621       return false;
622   }
623   return true;
624 }
625 
scanTokens(StringRef Input)626 bool yaml::scanTokens(StringRef Input) {
627   llvm::SourceMgr SM;
628   llvm::yaml::Scanner scanner(Input, SM);
629   for (;;) {
630     llvm::yaml::Token T = scanner.getNext();
631     if (T.Kind == Token::TK_StreamEnd)
632       break;
633     else if (T.Kind == Token::TK_Error)
634       return false;
635   }
636   return true;
637 }
638 
escape(StringRef Input)639 std::string yaml::escape(StringRef Input) {
640   std::string EscapedInput;
641   for (StringRef::iterator i = Input.begin(), e = Input.end(); i != e; ++i) {
642     if (*i == '\\')
643       EscapedInput += "\\\\";
644     else if (*i == '"')
645       EscapedInput += "\\\"";
646     else if (*i == 0)
647       EscapedInput += "\\0";
648     else if (*i == 0x07)
649       EscapedInput += "\\a";
650     else if (*i == 0x08)
651       EscapedInput += "\\b";
652     else if (*i == 0x09)
653       EscapedInput += "\\t";
654     else if (*i == 0x0A)
655       EscapedInput += "\\n";
656     else if (*i == 0x0B)
657       EscapedInput += "\\v";
658     else if (*i == 0x0C)
659       EscapedInput += "\\f";
660     else if (*i == 0x0D)
661       EscapedInput += "\\r";
662     else if (*i == 0x1B)
663       EscapedInput += "\\e";
664     else if ((unsigned char)*i < 0x20) { // Control characters not handled above.
665       std::string HexStr = utohexstr(*i);
666       EscapedInput += "\\x" + std::string(2 - HexStr.size(), '0') + HexStr;
667     } else if (*i & 0x80) { // UTF-8 multiple code unit subsequence.
668       UTF8Decoded UnicodeScalarValue
669         = decodeUTF8(StringRef(i, Input.end() - i));
670       if (UnicodeScalarValue.second == 0) {
671         // Found invalid char.
672         SmallString<4> Val;
673         encodeUTF8(0xFFFD, Val);
674         EscapedInput.insert(EscapedInput.end(), Val.begin(), Val.end());
675         // FIXME: Error reporting.
676         return EscapedInput;
677       }
678       if (UnicodeScalarValue.first == 0x85)
679         EscapedInput += "\\N";
680       else if (UnicodeScalarValue.first == 0xA0)
681         EscapedInput += "\\_";
682       else if (UnicodeScalarValue.first == 0x2028)
683         EscapedInput += "\\L";
684       else if (UnicodeScalarValue.first == 0x2029)
685         EscapedInput += "\\P";
686       else {
687         std::string HexStr = utohexstr(UnicodeScalarValue.first);
688         if (HexStr.size() <= 2)
689           EscapedInput += "\\x" + std::string(2 - HexStr.size(), '0') + HexStr;
690         else if (HexStr.size() <= 4)
691           EscapedInput += "\\u" + std::string(4 - HexStr.size(), '0') + HexStr;
692         else if (HexStr.size() <= 8)
693           EscapedInput += "\\U" + std::string(8 - HexStr.size(), '0') + HexStr;
694       }
695       i += UnicodeScalarValue.second - 1;
696     } else
697       EscapedInput.push_back(*i);
698   }
699   return EscapedInput;
700 }
701 
Scanner(StringRef Input,SourceMgr & sm)702 Scanner::Scanner(StringRef Input, SourceMgr &sm)
703   : SM(sm)
704   , Indent(-1)
705   , Column(0)
706   , Line(0)
707   , FlowLevel(0)
708   , IsStartOfStream(true)
709   , IsSimpleKeyAllowed(true)
710   , Failed(false) {
711   InputBuffer = MemoryBuffer::getMemBuffer(Input, "YAML");
712   SM.AddNewSourceBuffer(InputBuffer, SMLoc());
713   Current = InputBuffer->getBufferStart();
714   End = InputBuffer->getBufferEnd();
715 }
716 
Scanner(MemoryBuffer * Buffer,SourceMgr & SM_)717 Scanner::Scanner(MemoryBuffer *Buffer, SourceMgr &SM_)
718   : SM(SM_)
719   , InputBuffer(Buffer)
720   , Current(InputBuffer->getBufferStart())
721   , End(InputBuffer->getBufferEnd())
722   , Indent(-1)
723   , Column(0)
724   , Line(0)
725   , FlowLevel(0)
726   , IsStartOfStream(true)
727   , IsSimpleKeyAllowed(true)
728   , Failed(false) {
729     SM.AddNewSourceBuffer(InputBuffer, SMLoc());
730 }
731 
peekNext()732 Token &Scanner::peekNext() {
733   // If the current token is a possible simple key, keep parsing until we
734   // can confirm.
735   bool NeedMore = false;
736   while (true) {
737     if (TokenQueue.empty() || NeedMore) {
738       if (!fetchMoreTokens()) {
739         TokenQueue.clear();
740         TokenQueue.push_back(Token());
741         return TokenQueue.front();
742       }
743     }
744     assert(!TokenQueue.empty() &&
745             "fetchMoreTokens lied about getting tokens!");
746 
747     removeStaleSimpleKeyCandidates();
748     SimpleKey SK;
749     SK.Tok = TokenQueue.front();
750     if (std::find(SimpleKeys.begin(), SimpleKeys.end(), SK)
751         == SimpleKeys.end())
752       break;
753     else
754       NeedMore = true;
755   }
756   return TokenQueue.front();
757 }
758 
getNext()759 Token Scanner::getNext() {
760   Token Ret = peekNext();
761   // TokenQueue can be empty if there was an error getting the next token.
762   if (!TokenQueue.empty())
763     TokenQueue.pop_front();
764 
765   // There cannot be any referenced Token's if the TokenQueue is empty. So do a
766   // quick deallocation of them all.
767   if (TokenQueue.empty()) {
768     TokenQueue.Alloc.Reset();
769   }
770 
771   return Ret;
772 }
773 
skip_nb_char(StringRef::iterator Position)774 StringRef::iterator Scanner::skip_nb_char(StringRef::iterator Position) {
775   if (Position == End)
776     return Position;
777   // Check 7 bit c-printable - b-char.
778   if (   *Position == 0x09
779       || (*Position >= 0x20 && *Position <= 0x7E))
780     return Position + 1;
781 
782   // Check for valid UTF-8.
783   if (uint8_t(*Position) & 0x80) {
784     UTF8Decoded u8d = decodeUTF8(Position);
785     if (   u8d.second != 0
786         && u8d.first != 0xFEFF
787         && ( u8d.first == 0x85
788           || ( u8d.first >= 0xA0
789             && u8d.first <= 0xD7FF)
790           || ( u8d.first >= 0xE000
791             && u8d.first <= 0xFFFD)
792           || ( u8d.first >= 0x10000
793             && u8d.first <= 0x10FFFF)))
794       return Position + u8d.second;
795   }
796   return Position;
797 }
798 
skip_b_break(StringRef::iterator Position)799 StringRef::iterator Scanner::skip_b_break(StringRef::iterator Position) {
800   if (Position == End)
801     return Position;
802   if (*Position == 0x0D) {
803     if (Position + 1 != End && *(Position + 1) == 0x0A)
804       return Position + 2;
805     return Position + 1;
806   }
807 
808   if (*Position == 0x0A)
809     return Position + 1;
810   return Position;
811 }
812 
813 
skip_s_white(StringRef::iterator Position)814 StringRef::iterator Scanner::skip_s_white(StringRef::iterator Position) {
815   if (Position == End)
816     return Position;
817   if (*Position == ' ' || *Position == '\t')
818     return Position + 1;
819   return Position;
820 }
821 
skip_ns_char(StringRef::iterator Position)822 StringRef::iterator Scanner::skip_ns_char(StringRef::iterator Position) {
823   if (Position == End)
824     return Position;
825   if (*Position == ' ' || *Position == '\t')
826     return Position;
827   return skip_nb_char(Position);
828 }
829 
skip_while(SkipWhileFunc Func,StringRef::iterator Position)830 StringRef::iterator Scanner::skip_while( SkipWhileFunc Func
831                                        , StringRef::iterator Position) {
832   while (true) {
833     StringRef::iterator i = (this->*Func)(Position);
834     if (i == Position)
835       break;
836     Position = i;
837   }
838   return Position;
839 }
840 
is_ns_hex_digit(const char C)841 static bool is_ns_hex_digit(const char C) {
842   return    (C >= '0' && C <= '9')
843          || (C >= 'a' && C <= 'z')
844          || (C >= 'A' && C <= 'Z');
845 }
846 
is_ns_word_char(const char C)847 static bool is_ns_word_char(const char C) {
848   return    C == '-'
849          || (C >= 'a' && C <= 'z')
850          || (C >= 'A' && C <= 'Z');
851 }
852 
scan_ns_uri_char()853 StringRef Scanner::scan_ns_uri_char() {
854   StringRef::iterator Start = Current;
855   while (true) {
856     if (Current == End)
857       break;
858     if ((   *Current == '%'
859           && Current + 2 < End
860           && is_ns_hex_digit(*(Current + 1))
861           && is_ns_hex_digit(*(Current + 2)))
862         || is_ns_word_char(*Current)
863         || StringRef(Current, 1).find_first_of("#;/?:@&=+$,_.!~*'()[]")
864           != StringRef::npos) {
865       ++Current;
866       ++Column;
867     } else
868       break;
869   }
870   return StringRef(Start, Current - Start);
871 }
872 
consume(uint32_t Expected)873 bool Scanner::consume(uint32_t Expected) {
874   if (Expected >= 0x80)
875     report_fatal_error("Not dealing with this yet");
876   if (Current == End)
877     return false;
878   if (uint8_t(*Current) >= 0x80)
879     report_fatal_error("Not dealing with this yet");
880   if (uint8_t(*Current) == Expected) {
881     ++Current;
882     ++Column;
883     return true;
884   }
885   return false;
886 }
887 
skip(uint32_t Distance)888 void Scanner::skip(uint32_t Distance) {
889   Current += Distance;
890   Column += Distance;
891   assert(Current <= End && "Skipped past the end");
892 }
893 
isBlankOrBreak(StringRef::iterator Position)894 bool Scanner::isBlankOrBreak(StringRef::iterator Position) {
895   if (Position == End)
896     return false;
897   if (   *Position == ' ' || *Position == '\t'
898       || *Position == '\r' || *Position == '\n')
899     return true;
900   return false;
901 }
902 
saveSimpleKeyCandidate(TokenQueueT::iterator Tok,unsigned AtColumn,bool IsRequired)903 void Scanner::saveSimpleKeyCandidate( TokenQueueT::iterator Tok
904                                     , unsigned AtColumn
905                                     , bool IsRequired) {
906   if (IsSimpleKeyAllowed) {
907     SimpleKey SK;
908     SK.Tok = Tok;
909     SK.Line = Line;
910     SK.Column = AtColumn;
911     SK.IsRequired = IsRequired;
912     SK.FlowLevel = FlowLevel;
913     SimpleKeys.push_back(SK);
914   }
915 }
916 
removeStaleSimpleKeyCandidates()917 void Scanner::removeStaleSimpleKeyCandidates() {
918   for (SmallVectorImpl<SimpleKey>::iterator i = SimpleKeys.begin();
919                                             i != SimpleKeys.end();) {
920     if (i->Line != Line || i->Column + 1024 < Column) {
921       if (i->IsRequired)
922         setError( "Could not find expected : for simple key"
923                 , i->Tok->Range.begin());
924       i = SimpleKeys.erase(i);
925     } else
926       ++i;
927   }
928 }
929 
removeSimpleKeyCandidatesOnFlowLevel(unsigned Level)930 void Scanner::removeSimpleKeyCandidatesOnFlowLevel(unsigned Level) {
931   if (!SimpleKeys.empty() && (SimpleKeys.end() - 1)->FlowLevel == Level)
932     SimpleKeys.pop_back();
933 }
934 
unrollIndent(int ToColumn)935 bool Scanner::unrollIndent(int ToColumn) {
936   Token T;
937   // Indentation is ignored in flow.
938   if (FlowLevel != 0)
939     return true;
940 
941   while (Indent > ToColumn) {
942     T.Kind = Token::TK_BlockEnd;
943     T.Range = StringRef(Current, 1);
944     TokenQueue.push_back(T);
945     Indent = Indents.pop_back_val();
946   }
947 
948   return true;
949 }
950 
rollIndent(int ToColumn,Token::TokenKind Kind,TokenQueueT::iterator InsertPoint)951 bool Scanner::rollIndent( int ToColumn
952                         , Token::TokenKind Kind
953                         , TokenQueueT::iterator InsertPoint) {
954   if (FlowLevel)
955     return true;
956   if (Indent < ToColumn) {
957     Indents.push_back(Indent);
958     Indent = ToColumn;
959 
960     Token T;
961     T.Kind = Kind;
962     T.Range = StringRef(Current, 0);
963     TokenQueue.insert(InsertPoint, T);
964   }
965   return true;
966 }
967 
scanToNextToken()968 void Scanner::scanToNextToken() {
969   while (true) {
970     while (*Current == ' ' || *Current == '\t') {
971       skip(1);
972     }
973 
974     // Skip comment.
975     if (*Current == '#') {
976       while (true) {
977         // This may skip more than one byte, thus Column is only incremented
978         // for code points.
979         StringRef::iterator i = skip_nb_char(Current);
980         if (i == Current)
981           break;
982         Current = i;
983         ++Column;
984       }
985     }
986 
987     // Skip EOL.
988     StringRef::iterator i = skip_b_break(Current);
989     if (i == Current)
990       break;
991     Current = i;
992     ++Line;
993     Column = 0;
994     // New lines may start a simple key.
995     if (!FlowLevel)
996       IsSimpleKeyAllowed = true;
997   }
998 }
999 
scanStreamStart()1000 bool Scanner::scanStreamStart() {
1001   IsStartOfStream = false;
1002 
1003   EncodingInfo EI = getUnicodeEncoding(currentInput());
1004 
1005   Token T;
1006   T.Kind = Token::TK_StreamStart;
1007   T.Range = StringRef(Current, EI.second);
1008   TokenQueue.push_back(T);
1009   Current += EI.second;
1010   return true;
1011 }
1012 
scanStreamEnd()1013 bool Scanner::scanStreamEnd() {
1014   // Force an ending new line if one isn't present.
1015   if (Column != 0) {
1016     Column = 0;
1017     ++Line;
1018   }
1019 
1020   unrollIndent(-1);
1021   SimpleKeys.clear();
1022   IsSimpleKeyAllowed = false;
1023 
1024   Token T;
1025   T.Kind = Token::TK_StreamEnd;
1026   T.Range = StringRef(Current, 0);
1027   TokenQueue.push_back(T);
1028   return true;
1029 }
1030 
scanDirective()1031 bool Scanner::scanDirective() {
1032   // Reset the indentation level.
1033   unrollIndent(-1);
1034   SimpleKeys.clear();
1035   IsSimpleKeyAllowed = false;
1036 
1037   StringRef::iterator Start = Current;
1038   consume('%');
1039   StringRef::iterator NameStart = Current;
1040   Current = skip_while(&Scanner::skip_ns_char, Current);
1041   StringRef Name(NameStart, Current - NameStart);
1042   Current = skip_while(&Scanner::skip_s_white, Current);
1043 
1044   Token T;
1045   if (Name == "YAML") {
1046     Current = skip_while(&Scanner::skip_ns_char, Current);
1047     T.Kind = Token::TK_VersionDirective;
1048     T.Range = StringRef(Start, Current - Start);
1049     TokenQueue.push_back(T);
1050     return true;
1051   } else if(Name == "TAG") {
1052     Current = skip_while(&Scanner::skip_ns_char, Current);
1053     Current = skip_while(&Scanner::skip_s_white, Current);
1054     Current = skip_while(&Scanner::skip_ns_char, Current);
1055     T.Kind = Token::TK_TagDirective;
1056     T.Range = StringRef(Start, Current - Start);
1057     TokenQueue.push_back(T);
1058     return true;
1059   }
1060   return false;
1061 }
1062 
scanDocumentIndicator(bool IsStart)1063 bool Scanner::scanDocumentIndicator(bool IsStart) {
1064   unrollIndent(-1);
1065   SimpleKeys.clear();
1066   IsSimpleKeyAllowed = false;
1067 
1068   Token T;
1069   T.Kind = IsStart ? Token::TK_DocumentStart : Token::TK_DocumentEnd;
1070   T.Range = StringRef(Current, 3);
1071   skip(3);
1072   TokenQueue.push_back(T);
1073   return true;
1074 }
1075 
scanFlowCollectionStart(bool IsSequence)1076 bool Scanner::scanFlowCollectionStart(bool IsSequence) {
1077   Token T;
1078   T.Kind = IsSequence ? Token::TK_FlowSequenceStart
1079                       : Token::TK_FlowMappingStart;
1080   T.Range = StringRef(Current, 1);
1081   skip(1);
1082   TokenQueue.push_back(T);
1083 
1084   // [ and { may begin a simple key.
1085   saveSimpleKeyCandidate(TokenQueue.back(), Column - 1, false);
1086 
1087   // And may also be followed by a simple key.
1088   IsSimpleKeyAllowed = true;
1089   ++FlowLevel;
1090   return true;
1091 }
1092 
scanFlowCollectionEnd(bool IsSequence)1093 bool Scanner::scanFlowCollectionEnd(bool IsSequence) {
1094   removeSimpleKeyCandidatesOnFlowLevel(FlowLevel);
1095   IsSimpleKeyAllowed = false;
1096   Token T;
1097   T.Kind = IsSequence ? Token::TK_FlowSequenceEnd
1098                       : Token::TK_FlowMappingEnd;
1099   T.Range = StringRef(Current, 1);
1100   skip(1);
1101   TokenQueue.push_back(T);
1102   if (FlowLevel)
1103     --FlowLevel;
1104   return true;
1105 }
1106 
scanFlowEntry()1107 bool Scanner::scanFlowEntry() {
1108   removeSimpleKeyCandidatesOnFlowLevel(FlowLevel);
1109   IsSimpleKeyAllowed = true;
1110   Token T;
1111   T.Kind = Token::TK_FlowEntry;
1112   T.Range = StringRef(Current, 1);
1113   skip(1);
1114   TokenQueue.push_back(T);
1115   return true;
1116 }
1117 
scanBlockEntry()1118 bool Scanner::scanBlockEntry() {
1119   rollIndent(Column, Token::TK_BlockSequenceStart, TokenQueue.end());
1120   removeSimpleKeyCandidatesOnFlowLevel(FlowLevel);
1121   IsSimpleKeyAllowed = true;
1122   Token T;
1123   T.Kind = Token::TK_BlockEntry;
1124   T.Range = StringRef(Current, 1);
1125   skip(1);
1126   TokenQueue.push_back(T);
1127   return true;
1128 }
1129 
scanKey()1130 bool Scanner::scanKey() {
1131   if (!FlowLevel)
1132     rollIndent(Column, Token::TK_BlockMappingStart, TokenQueue.end());
1133 
1134   removeSimpleKeyCandidatesOnFlowLevel(FlowLevel);
1135   IsSimpleKeyAllowed = !FlowLevel;
1136 
1137   Token T;
1138   T.Kind = Token::TK_Key;
1139   T.Range = StringRef(Current, 1);
1140   skip(1);
1141   TokenQueue.push_back(T);
1142   return true;
1143 }
1144 
scanValue()1145 bool Scanner::scanValue() {
1146   // If the previous token could have been a simple key, insert the key token
1147   // into the token queue.
1148   if (!SimpleKeys.empty()) {
1149     SimpleKey SK = SimpleKeys.pop_back_val();
1150     Token T;
1151     T.Kind = Token::TK_Key;
1152     T.Range = SK.Tok->Range;
1153     TokenQueueT::iterator i, e;
1154     for (i = TokenQueue.begin(), e = TokenQueue.end(); i != e; ++i) {
1155       if (i == SK.Tok)
1156         break;
1157     }
1158     assert(i != e && "SimpleKey not in token queue!");
1159     i = TokenQueue.insert(i, T);
1160 
1161     // We may also need to add a Block-Mapping-Start token.
1162     rollIndent(SK.Column, Token::TK_BlockMappingStart, i);
1163 
1164     IsSimpleKeyAllowed = false;
1165   } else {
1166     if (!FlowLevel)
1167       rollIndent(Column, Token::TK_BlockMappingStart, TokenQueue.end());
1168     IsSimpleKeyAllowed = !FlowLevel;
1169   }
1170 
1171   Token T;
1172   T.Kind = Token::TK_Value;
1173   T.Range = StringRef(Current, 1);
1174   skip(1);
1175   TokenQueue.push_back(T);
1176   return true;
1177 }
1178 
1179 // Forbidding inlining improves performance by roughly 20%.
1180 // FIXME: Remove once llvm optimizes this to the faster version without hints.
1181 LLVM_ATTRIBUTE_NOINLINE static bool
1182 wasEscaped(StringRef::iterator First, StringRef::iterator Position);
1183 
1184 // Returns whether a character at 'Position' was escaped with a leading '\'.
1185 // 'First' specifies the position of the first character in the string.
wasEscaped(StringRef::iterator First,StringRef::iterator Position)1186 static bool wasEscaped(StringRef::iterator First,
1187                        StringRef::iterator Position) {
1188   assert(Position - 1 >= First);
1189   StringRef::iterator I = Position - 1;
1190   // We calculate the number of consecutive '\'s before the current position
1191   // by iterating backwards through our string.
1192   while (I >= First && *I == '\\') --I;
1193   // (Position - 1 - I) now contains the number of '\'s before the current
1194   // position. If it is odd, the character at 'Position' was escaped.
1195   return (Position - 1 - I) % 2 == 1;
1196 }
1197 
scanFlowScalar(bool IsDoubleQuoted)1198 bool Scanner::scanFlowScalar(bool IsDoubleQuoted) {
1199   StringRef::iterator Start = Current;
1200   unsigned ColStart = Column;
1201   if (IsDoubleQuoted) {
1202     do {
1203       ++Current;
1204       while (Current != End && *Current != '"')
1205         ++Current;
1206       // Repeat until the previous character was not a '\' or was an escaped
1207       // backslash.
1208     } while (   Current != End
1209              && *(Current - 1) == '\\'
1210              && wasEscaped(Start + 1, Current));
1211   } else {
1212     skip(1);
1213     while (true) {
1214       // Skip a ' followed by another '.
1215       if (Current + 1 < End && *Current == '\'' && *(Current + 1) == '\'') {
1216         skip(2);
1217         continue;
1218       } else if (*Current == '\'')
1219         break;
1220       StringRef::iterator i = skip_nb_char(Current);
1221       if (i == Current) {
1222         i = skip_b_break(Current);
1223         if (i == Current)
1224           break;
1225         Current = i;
1226         Column = 0;
1227         ++Line;
1228       } else {
1229         if (i == End)
1230           break;
1231         Current = i;
1232         ++Column;
1233       }
1234     }
1235   }
1236 
1237   if (Current == End) {
1238     setError("Expected quote at end of scalar", Current);
1239     return false;
1240   }
1241 
1242   skip(1); // Skip ending quote.
1243   Token T;
1244   T.Kind = Token::TK_Scalar;
1245   T.Range = StringRef(Start, Current - Start);
1246   TokenQueue.push_back(T);
1247 
1248   saveSimpleKeyCandidate(TokenQueue.back(), ColStart, false);
1249 
1250   IsSimpleKeyAllowed = false;
1251 
1252   return true;
1253 }
1254 
scanPlainScalar()1255 bool Scanner::scanPlainScalar() {
1256   StringRef::iterator Start = Current;
1257   unsigned ColStart = Column;
1258   unsigned LeadingBlanks = 0;
1259   assert(Indent >= -1 && "Indent must be >= -1 !");
1260   unsigned indent = static_cast<unsigned>(Indent + 1);
1261   while (true) {
1262     if (*Current == '#')
1263       break;
1264 
1265     while (!isBlankOrBreak(Current)) {
1266       if (  FlowLevel && *Current == ':'
1267           && !(isBlankOrBreak(Current + 1) || *(Current + 1) == ',')) {
1268         setError("Found unexpected ':' while scanning a plain scalar", Current);
1269         return false;
1270       }
1271 
1272       // Check for the end of the plain scalar.
1273       if (  (*Current == ':' && isBlankOrBreak(Current + 1))
1274           || (  FlowLevel
1275           && (StringRef(Current, 1).find_first_of(",:?[]{}")
1276               != StringRef::npos)))
1277         break;
1278 
1279       StringRef::iterator i = skip_nb_char(Current);
1280       if (i == Current)
1281         break;
1282       Current = i;
1283       ++Column;
1284     }
1285 
1286     // Are we at the end?
1287     if (!isBlankOrBreak(Current))
1288       break;
1289 
1290     // Eat blanks.
1291     StringRef::iterator Tmp = Current;
1292     while (isBlankOrBreak(Tmp)) {
1293       StringRef::iterator i = skip_s_white(Tmp);
1294       if (i != Tmp) {
1295         if (LeadingBlanks && (Column < indent) && *Tmp == '\t') {
1296           setError("Found invalid tab character in indentation", Tmp);
1297           return false;
1298         }
1299         Tmp = i;
1300         ++Column;
1301       } else {
1302         i = skip_b_break(Tmp);
1303         if (!LeadingBlanks)
1304           LeadingBlanks = 1;
1305         Tmp = i;
1306         Column = 0;
1307         ++Line;
1308       }
1309     }
1310 
1311     if (!FlowLevel && Column < indent)
1312       break;
1313 
1314     Current = Tmp;
1315   }
1316   if (Start == Current) {
1317     setError("Got empty plain scalar", Start);
1318     return false;
1319   }
1320   Token T;
1321   T.Kind = Token::TK_Scalar;
1322   T.Range = StringRef(Start, Current - Start);
1323   TokenQueue.push_back(T);
1324 
1325   // Plain scalars can be simple keys.
1326   saveSimpleKeyCandidate(TokenQueue.back(), ColStart, false);
1327 
1328   IsSimpleKeyAllowed = false;
1329 
1330   return true;
1331 }
1332 
scanAliasOrAnchor(bool IsAlias)1333 bool Scanner::scanAliasOrAnchor(bool IsAlias) {
1334   StringRef::iterator Start = Current;
1335   unsigned ColStart = Column;
1336   skip(1);
1337   while(true) {
1338     if (   *Current == '[' || *Current == ']'
1339         || *Current == '{' || *Current == '}'
1340         || *Current == ','
1341         || *Current == ':')
1342       break;
1343     StringRef::iterator i = skip_ns_char(Current);
1344     if (i == Current)
1345       break;
1346     Current = i;
1347     ++Column;
1348   }
1349 
1350   if (Start == Current) {
1351     setError("Got empty alias or anchor", Start);
1352     return false;
1353   }
1354 
1355   Token T;
1356   T.Kind = IsAlias ? Token::TK_Alias : Token::TK_Anchor;
1357   T.Range = StringRef(Start, Current - Start);
1358   TokenQueue.push_back(T);
1359 
1360   // Alias and anchors can be simple keys.
1361   saveSimpleKeyCandidate(TokenQueue.back(), ColStart, false);
1362 
1363   IsSimpleKeyAllowed = false;
1364 
1365   return true;
1366 }
1367 
scanBlockScalar(bool IsLiteral)1368 bool Scanner::scanBlockScalar(bool IsLiteral) {
1369   StringRef::iterator Start = Current;
1370   skip(1); // Eat | or >
1371   while(true) {
1372     StringRef::iterator i = skip_nb_char(Current);
1373     if (i == Current) {
1374       if (Column == 0)
1375         break;
1376       i = skip_b_break(Current);
1377       if (i != Current) {
1378         // We got a line break.
1379         Column = 0;
1380         ++Line;
1381         Current = i;
1382         continue;
1383       } else {
1384         // There was an error, which should already have been printed out.
1385         return false;
1386       }
1387     }
1388     Current = i;
1389     ++Column;
1390   }
1391 
1392   if (Start == Current) {
1393     setError("Got empty block scalar", Start);
1394     return false;
1395   }
1396 
1397   Token T;
1398   T.Kind = Token::TK_Scalar;
1399   T.Range = StringRef(Start, Current - Start);
1400   TokenQueue.push_back(T);
1401   return true;
1402 }
1403 
scanTag()1404 bool Scanner::scanTag() {
1405   StringRef::iterator Start = Current;
1406   unsigned ColStart = Column;
1407   skip(1); // Eat !.
1408   if (Current == End || isBlankOrBreak(Current)); // An empty tag.
1409   else if (*Current == '<') {
1410     skip(1);
1411     scan_ns_uri_char();
1412     if (!consume('>'))
1413       return false;
1414   } else {
1415     // FIXME: Actually parse the c-ns-shorthand-tag rule.
1416     Current = skip_while(&Scanner::skip_ns_char, Current);
1417   }
1418 
1419   Token T;
1420   T.Kind = Token::TK_Tag;
1421   T.Range = StringRef(Start, Current - Start);
1422   TokenQueue.push_back(T);
1423 
1424   // Tags can be simple keys.
1425   saveSimpleKeyCandidate(TokenQueue.back(), ColStart, false);
1426 
1427   IsSimpleKeyAllowed = false;
1428 
1429   return true;
1430 }
1431 
fetchMoreTokens()1432 bool Scanner::fetchMoreTokens() {
1433   if (IsStartOfStream)
1434     return scanStreamStart();
1435 
1436   scanToNextToken();
1437 
1438   if (Current == End)
1439     return scanStreamEnd();
1440 
1441   removeStaleSimpleKeyCandidates();
1442 
1443   unrollIndent(Column);
1444 
1445   if (Column == 0 && *Current == '%')
1446     return scanDirective();
1447 
1448   if (Column == 0 && Current + 4 <= End
1449       && *Current == '-'
1450       && *(Current + 1) == '-'
1451       && *(Current + 2) == '-'
1452       && (Current + 3 == End || isBlankOrBreak(Current + 3)))
1453     return scanDocumentIndicator(true);
1454 
1455   if (Column == 0 && Current + 4 <= End
1456       && *Current == '.'
1457       && *(Current + 1) == '.'
1458       && *(Current + 2) == '.'
1459       && (Current + 3 == End || isBlankOrBreak(Current + 3)))
1460     return scanDocumentIndicator(false);
1461 
1462   if (*Current == '[')
1463     return scanFlowCollectionStart(true);
1464 
1465   if (*Current == '{')
1466     return scanFlowCollectionStart(false);
1467 
1468   if (*Current == ']')
1469     return scanFlowCollectionEnd(true);
1470 
1471   if (*Current == '}')
1472     return scanFlowCollectionEnd(false);
1473 
1474   if (*Current == ',')
1475     return scanFlowEntry();
1476 
1477   if (*Current == '-' && isBlankOrBreak(Current + 1))
1478     return scanBlockEntry();
1479 
1480   if (*Current == '?' && (FlowLevel || isBlankOrBreak(Current + 1)))
1481     return scanKey();
1482 
1483   if (*Current == ':' && (FlowLevel || isBlankOrBreak(Current + 1)))
1484     return scanValue();
1485 
1486   if (*Current == '*')
1487     return scanAliasOrAnchor(true);
1488 
1489   if (*Current == '&')
1490     return scanAliasOrAnchor(false);
1491 
1492   if (*Current == '!')
1493     return scanTag();
1494 
1495   if (*Current == '|' && !FlowLevel)
1496     return scanBlockScalar(true);
1497 
1498   if (*Current == '>' && !FlowLevel)
1499     return scanBlockScalar(false);
1500 
1501   if (*Current == '\'')
1502     return scanFlowScalar(false);
1503 
1504   if (*Current == '"')
1505     return scanFlowScalar(true);
1506 
1507   // Get a plain scalar.
1508   StringRef FirstChar(Current, 1);
1509   if (!(isBlankOrBreak(Current)
1510         || FirstChar.find_first_of("-?:,[]{}#&*!|>'\"%@`") != StringRef::npos)
1511       || (*Current == '-' && !isBlankOrBreak(Current + 1))
1512       || (!FlowLevel && (*Current == '?' || *Current == ':')
1513           && isBlankOrBreak(Current + 1))
1514       || (!FlowLevel && *Current == ':'
1515                       && Current + 2 < End
1516                       && *(Current + 1) == ':'
1517                       && !isBlankOrBreak(Current + 2)))
1518     return scanPlainScalar();
1519 
1520   setError("Unrecognized character while tokenizing.");
1521   return false;
1522 }
1523 
Stream(StringRef Input,SourceMgr & SM)1524 Stream::Stream(StringRef Input, SourceMgr &SM)
1525     : scanner(new Scanner(Input, SM)), CurrentDoc() {}
1526 
Stream(MemoryBuffer * InputBuffer,SourceMgr & SM)1527 Stream::Stream(MemoryBuffer *InputBuffer, SourceMgr &SM)
1528     : scanner(new Scanner(InputBuffer, SM)), CurrentDoc() {}
1529 
~Stream()1530 Stream::~Stream() {}
1531 
failed()1532 bool Stream::failed() { return scanner->failed(); }
1533 
printError(Node * N,const Twine & Msg)1534 void Stream::printError(Node *N, const Twine &Msg) {
1535   SmallVector<SMRange, 1> Ranges;
1536   Ranges.push_back(N->getSourceRange());
1537   scanner->printError( N->getSourceRange().Start
1538                      , SourceMgr::DK_Error
1539                      , Msg
1540                      , Ranges);
1541 }
1542 
begin()1543 document_iterator Stream::begin() {
1544   if (CurrentDoc)
1545     report_fatal_error("Can only iterate over the stream once");
1546 
1547   // Skip Stream-Start.
1548   scanner->getNext();
1549 
1550   CurrentDoc.reset(new Document(*this));
1551   return document_iterator(CurrentDoc);
1552 }
1553 
end()1554 document_iterator Stream::end() {
1555   return document_iterator();
1556 }
1557 
skip()1558 void Stream::skip() {
1559   for (document_iterator i = begin(), e = end(); i != e; ++i)
1560     i->skip();
1561 }
1562 
Node(unsigned int Type,std::unique_ptr<Document> & D,StringRef A,StringRef T)1563 Node::Node(unsigned int Type, std::unique_ptr<Document> &D, StringRef A,
1564            StringRef T)
1565     : Doc(D), TypeID(Type), Anchor(A), Tag(T) {
1566   SMLoc Start = SMLoc::getFromPointer(peekNext().Range.begin());
1567   SourceRange = SMRange(Start, Start);
1568 }
1569 
getVerbatimTag() const1570 std::string Node::getVerbatimTag() const {
1571   StringRef Raw = getRawTag();
1572   if (!Raw.empty() && Raw != "!") {
1573     std::string Ret;
1574     if (Raw.find_last_of('!') == 0) {
1575       Ret = Doc->getTagMap().find("!")->second;
1576       Ret += Raw.substr(1);
1577       return std::move(Ret);
1578     } else if (Raw.startswith("!!")) {
1579       Ret = Doc->getTagMap().find("!!")->second;
1580       Ret += Raw.substr(2);
1581       return std::move(Ret);
1582     } else {
1583       StringRef TagHandle = Raw.substr(0, Raw.find_last_of('!') + 1);
1584       std::map<StringRef, StringRef>::const_iterator It =
1585           Doc->getTagMap().find(TagHandle);
1586       if (It != Doc->getTagMap().end())
1587         Ret = It->second;
1588       else {
1589         Token T;
1590         T.Kind = Token::TK_Tag;
1591         T.Range = TagHandle;
1592         setError(Twine("Unknown tag handle ") + TagHandle, T);
1593       }
1594       Ret += Raw.substr(Raw.find_last_of('!') + 1);
1595       return std::move(Ret);
1596     }
1597   }
1598 
1599   switch (getType()) {
1600   case NK_Null:
1601     return "tag:yaml.org,2002:null";
1602   case NK_Scalar:
1603     // TODO: Tag resolution.
1604     return "tag:yaml.org,2002:str";
1605   case NK_Mapping:
1606     return "tag:yaml.org,2002:map";
1607   case NK_Sequence:
1608     return "tag:yaml.org,2002:seq";
1609   }
1610 
1611   return "";
1612 }
1613 
peekNext()1614 Token &Node::peekNext() {
1615   return Doc->peekNext();
1616 }
1617 
getNext()1618 Token Node::getNext() {
1619   return Doc->getNext();
1620 }
1621 
parseBlockNode()1622 Node *Node::parseBlockNode() {
1623   return Doc->parseBlockNode();
1624 }
1625 
getAllocator()1626 BumpPtrAllocator &Node::getAllocator() {
1627   return Doc->NodeAllocator;
1628 }
1629 
setError(const Twine & Msg,Token & Tok) const1630 void Node::setError(const Twine &Msg, Token &Tok) const {
1631   Doc->setError(Msg, Tok);
1632 }
1633 
failed() const1634 bool Node::failed() const {
1635   return Doc->failed();
1636 }
1637 
1638 
1639 
getValue(SmallVectorImpl<char> & Storage) const1640 StringRef ScalarNode::getValue(SmallVectorImpl<char> &Storage) const {
1641   // TODO: Handle newlines properly. We need to remove leading whitespace.
1642   if (Value[0] == '"') { // Double quoted.
1643     // Pull off the leading and trailing "s.
1644     StringRef UnquotedValue = Value.substr(1, Value.size() - 2);
1645     // Search for characters that would require unescaping the value.
1646     StringRef::size_type i = UnquotedValue.find_first_of("\\\r\n");
1647     if (i != StringRef::npos)
1648       return unescapeDoubleQuoted(UnquotedValue, i, Storage);
1649     return UnquotedValue;
1650   } else if (Value[0] == '\'') { // Single quoted.
1651     // Pull off the leading and trailing 's.
1652     StringRef UnquotedValue = Value.substr(1, Value.size() - 2);
1653     StringRef::size_type i = UnquotedValue.find('\'');
1654     if (i != StringRef::npos) {
1655       // We're going to need Storage.
1656       Storage.clear();
1657       Storage.reserve(UnquotedValue.size());
1658       for (; i != StringRef::npos; i = UnquotedValue.find('\'')) {
1659         StringRef Valid(UnquotedValue.begin(), i);
1660         Storage.insert(Storage.end(), Valid.begin(), Valid.end());
1661         Storage.push_back('\'');
1662         UnquotedValue = UnquotedValue.substr(i + 2);
1663       }
1664       Storage.insert(Storage.end(), UnquotedValue.begin(), UnquotedValue.end());
1665       return StringRef(Storage.begin(), Storage.size());
1666     }
1667     return UnquotedValue;
1668   }
1669   // Plain or block.
1670   return Value.rtrim(" ");
1671 }
1672 
unescapeDoubleQuoted(StringRef UnquotedValue,StringRef::size_type i,SmallVectorImpl<char> & Storage) const1673 StringRef ScalarNode::unescapeDoubleQuoted( StringRef UnquotedValue
1674                                           , StringRef::size_type i
1675                                           , SmallVectorImpl<char> &Storage)
1676                                           const {
1677   // Use Storage to build proper value.
1678   Storage.clear();
1679   Storage.reserve(UnquotedValue.size());
1680   for (; i != StringRef::npos; i = UnquotedValue.find_first_of("\\\r\n")) {
1681     // Insert all previous chars into Storage.
1682     StringRef Valid(UnquotedValue.begin(), i);
1683     Storage.insert(Storage.end(), Valid.begin(), Valid.end());
1684     // Chop off inserted chars.
1685     UnquotedValue = UnquotedValue.substr(i);
1686 
1687     assert(!UnquotedValue.empty() && "Can't be empty!");
1688 
1689     // Parse escape or line break.
1690     switch (UnquotedValue[0]) {
1691     case '\r':
1692     case '\n':
1693       Storage.push_back('\n');
1694       if (   UnquotedValue.size() > 1
1695           && (UnquotedValue[1] == '\r' || UnquotedValue[1] == '\n'))
1696         UnquotedValue = UnquotedValue.substr(1);
1697       UnquotedValue = UnquotedValue.substr(1);
1698       break;
1699     default:
1700       if (UnquotedValue.size() == 1)
1701         // TODO: Report error.
1702         break;
1703       UnquotedValue = UnquotedValue.substr(1);
1704       switch (UnquotedValue[0]) {
1705       default: {
1706           Token T;
1707           T.Range = StringRef(UnquotedValue.begin(), 1);
1708           setError("Unrecognized escape code!", T);
1709           return "";
1710         }
1711       case '\r':
1712       case '\n':
1713         // Remove the new line.
1714         if (   UnquotedValue.size() > 1
1715             && (UnquotedValue[1] == '\r' || UnquotedValue[1] == '\n'))
1716           UnquotedValue = UnquotedValue.substr(1);
1717         // If this was just a single byte newline, it will get skipped
1718         // below.
1719         break;
1720       case '0':
1721         Storage.push_back(0x00);
1722         break;
1723       case 'a':
1724         Storage.push_back(0x07);
1725         break;
1726       case 'b':
1727         Storage.push_back(0x08);
1728         break;
1729       case 't':
1730       case 0x09:
1731         Storage.push_back(0x09);
1732         break;
1733       case 'n':
1734         Storage.push_back(0x0A);
1735         break;
1736       case 'v':
1737         Storage.push_back(0x0B);
1738         break;
1739       case 'f':
1740         Storage.push_back(0x0C);
1741         break;
1742       case 'r':
1743         Storage.push_back(0x0D);
1744         break;
1745       case 'e':
1746         Storage.push_back(0x1B);
1747         break;
1748       case ' ':
1749         Storage.push_back(0x20);
1750         break;
1751       case '"':
1752         Storage.push_back(0x22);
1753         break;
1754       case '/':
1755         Storage.push_back(0x2F);
1756         break;
1757       case '\\':
1758         Storage.push_back(0x5C);
1759         break;
1760       case 'N':
1761         encodeUTF8(0x85, Storage);
1762         break;
1763       case '_':
1764         encodeUTF8(0xA0, Storage);
1765         break;
1766       case 'L':
1767         encodeUTF8(0x2028, Storage);
1768         break;
1769       case 'P':
1770         encodeUTF8(0x2029, Storage);
1771         break;
1772       case 'x': {
1773           if (UnquotedValue.size() < 3)
1774             // TODO: Report error.
1775             break;
1776           unsigned int UnicodeScalarValue;
1777           if (UnquotedValue.substr(1, 2).getAsInteger(16, UnicodeScalarValue))
1778             // TODO: Report error.
1779             UnicodeScalarValue = 0xFFFD;
1780           encodeUTF8(UnicodeScalarValue, Storage);
1781           UnquotedValue = UnquotedValue.substr(2);
1782           break;
1783         }
1784       case 'u': {
1785           if (UnquotedValue.size() < 5)
1786             // TODO: Report error.
1787             break;
1788           unsigned int UnicodeScalarValue;
1789           if (UnquotedValue.substr(1, 4).getAsInteger(16, UnicodeScalarValue))
1790             // TODO: Report error.
1791             UnicodeScalarValue = 0xFFFD;
1792           encodeUTF8(UnicodeScalarValue, Storage);
1793           UnquotedValue = UnquotedValue.substr(4);
1794           break;
1795         }
1796       case 'U': {
1797           if (UnquotedValue.size() < 9)
1798             // TODO: Report error.
1799             break;
1800           unsigned int UnicodeScalarValue;
1801           if (UnquotedValue.substr(1, 8).getAsInteger(16, UnicodeScalarValue))
1802             // TODO: Report error.
1803             UnicodeScalarValue = 0xFFFD;
1804           encodeUTF8(UnicodeScalarValue, Storage);
1805           UnquotedValue = UnquotedValue.substr(8);
1806           break;
1807         }
1808       }
1809       UnquotedValue = UnquotedValue.substr(1);
1810     }
1811   }
1812   Storage.insert(Storage.end(), UnquotedValue.begin(), UnquotedValue.end());
1813   return StringRef(Storage.begin(), Storage.size());
1814 }
1815 
getKey()1816 Node *KeyValueNode::getKey() {
1817   if (Key)
1818     return Key;
1819   // Handle implicit null keys.
1820   {
1821     Token &t = peekNext();
1822     if (   t.Kind == Token::TK_BlockEnd
1823         || t.Kind == Token::TK_Value
1824         || t.Kind == Token::TK_Error) {
1825       return Key = new (getAllocator()) NullNode(Doc);
1826     }
1827     if (t.Kind == Token::TK_Key)
1828       getNext(); // skip TK_Key.
1829   }
1830 
1831   // Handle explicit null keys.
1832   Token &t = peekNext();
1833   if (t.Kind == Token::TK_BlockEnd || t.Kind == Token::TK_Value) {
1834     return Key = new (getAllocator()) NullNode(Doc);
1835   }
1836 
1837   // We've got a normal key.
1838   return Key = parseBlockNode();
1839 }
1840 
getValue()1841 Node *KeyValueNode::getValue() {
1842   if (Value)
1843     return Value;
1844   getKey()->skip();
1845   if (failed())
1846     return Value = new (getAllocator()) NullNode(Doc);
1847 
1848   // Handle implicit null values.
1849   {
1850     Token &t = peekNext();
1851     if (   t.Kind == Token::TK_BlockEnd
1852         || t.Kind == Token::TK_FlowMappingEnd
1853         || t.Kind == Token::TK_Key
1854         || t.Kind == Token::TK_FlowEntry
1855         || t.Kind == Token::TK_Error) {
1856       return Value = new (getAllocator()) NullNode(Doc);
1857     }
1858 
1859     if (t.Kind != Token::TK_Value) {
1860       setError("Unexpected token in Key Value.", t);
1861       return Value = new (getAllocator()) NullNode(Doc);
1862     }
1863     getNext(); // skip TK_Value.
1864   }
1865 
1866   // Handle explicit null values.
1867   Token &t = peekNext();
1868   if (t.Kind == Token::TK_BlockEnd || t.Kind == Token::TK_Key) {
1869     return Value = new (getAllocator()) NullNode(Doc);
1870   }
1871 
1872   // We got a normal value.
1873   return Value = parseBlockNode();
1874 }
1875 
increment()1876 void MappingNode::increment() {
1877   if (failed()) {
1878     IsAtEnd = true;
1879     CurrentEntry = nullptr;
1880     return;
1881   }
1882   if (CurrentEntry) {
1883     CurrentEntry->skip();
1884     if (Type == MT_Inline) {
1885       IsAtEnd = true;
1886       CurrentEntry = nullptr;
1887       return;
1888     }
1889   }
1890   Token T = peekNext();
1891   if (T.Kind == Token::TK_Key || T.Kind == Token::TK_Scalar) {
1892     // KeyValueNode eats the TK_Key. That way it can detect null keys.
1893     CurrentEntry = new (getAllocator()) KeyValueNode(Doc);
1894   } else if (Type == MT_Block) {
1895     switch (T.Kind) {
1896     case Token::TK_BlockEnd:
1897       getNext();
1898       IsAtEnd = true;
1899       CurrentEntry = nullptr;
1900       break;
1901     default:
1902       setError("Unexpected token. Expected Key or Block End", T);
1903     case Token::TK_Error:
1904       IsAtEnd = true;
1905       CurrentEntry = nullptr;
1906     }
1907   } else {
1908     switch (T.Kind) {
1909     case Token::TK_FlowEntry:
1910       // Eat the flow entry and recurse.
1911       getNext();
1912       return increment();
1913     case Token::TK_FlowMappingEnd:
1914       getNext();
1915     case Token::TK_Error:
1916       // Set this to end iterator.
1917       IsAtEnd = true;
1918       CurrentEntry = nullptr;
1919       break;
1920     default:
1921       setError( "Unexpected token. Expected Key, Flow Entry, or Flow "
1922                 "Mapping End."
1923               , T);
1924       IsAtEnd = true;
1925       CurrentEntry = nullptr;
1926     }
1927   }
1928 }
1929 
increment()1930 void SequenceNode::increment() {
1931   if (failed()) {
1932     IsAtEnd = true;
1933     CurrentEntry = nullptr;
1934     return;
1935   }
1936   if (CurrentEntry)
1937     CurrentEntry->skip();
1938   Token T = peekNext();
1939   if (SeqType == ST_Block) {
1940     switch (T.Kind) {
1941     case Token::TK_BlockEntry:
1942       getNext();
1943       CurrentEntry = parseBlockNode();
1944       if (!CurrentEntry) { // An error occurred.
1945         IsAtEnd = true;
1946         CurrentEntry = nullptr;
1947       }
1948       break;
1949     case Token::TK_BlockEnd:
1950       getNext();
1951       IsAtEnd = true;
1952       CurrentEntry = nullptr;
1953       break;
1954     default:
1955       setError( "Unexpected token. Expected Block Entry or Block End."
1956               , T);
1957     case Token::TK_Error:
1958       IsAtEnd = true;
1959       CurrentEntry = nullptr;
1960     }
1961   } else if (SeqType == ST_Indentless) {
1962     switch (T.Kind) {
1963     case Token::TK_BlockEntry:
1964       getNext();
1965       CurrentEntry = parseBlockNode();
1966       if (!CurrentEntry) { // An error occurred.
1967         IsAtEnd = true;
1968         CurrentEntry = nullptr;
1969       }
1970       break;
1971     default:
1972     case Token::TK_Error:
1973       IsAtEnd = true;
1974       CurrentEntry = nullptr;
1975     }
1976   } else if (SeqType == ST_Flow) {
1977     switch (T.Kind) {
1978     case Token::TK_FlowEntry:
1979       // Eat the flow entry and recurse.
1980       getNext();
1981       WasPreviousTokenFlowEntry = true;
1982       return increment();
1983     case Token::TK_FlowSequenceEnd:
1984       getNext();
1985     case Token::TK_Error:
1986       // Set this to end iterator.
1987       IsAtEnd = true;
1988       CurrentEntry = nullptr;
1989       break;
1990     case Token::TK_StreamEnd:
1991     case Token::TK_DocumentEnd:
1992     case Token::TK_DocumentStart:
1993       setError("Could not find closing ]!", T);
1994       // Set this to end iterator.
1995       IsAtEnd = true;
1996       CurrentEntry = nullptr;
1997       break;
1998     default:
1999       if (!WasPreviousTokenFlowEntry) {
2000         setError("Expected , between entries!", T);
2001         IsAtEnd = true;
2002         CurrentEntry = nullptr;
2003         break;
2004       }
2005       // Otherwise it must be a flow entry.
2006       CurrentEntry = parseBlockNode();
2007       if (!CurrentEntry) {
2008         IsAtEnd = true;
2009       }
2010       WasPreviousTokenFlowEntry = false;
2011       break;
2012     }
2013   }
2014 }
2015 
Document(Stream & S)2016 Document::Document(Stream &S) : stream(S), Root(nullptr) {
2017   // Tag maps starts with two default mappings.
2018   TagMap["!"] = "!";
2019   TagMap["!!"] = "tag:yaml.org,2002:";
2020 
2021   if (parseDirectives())
2022     expectToken(Token::TK_DocumentStart);
2023   Token &T = peekNext();
2024   if (T.Kind == Token::TK_DocumentStart)
2025     getNext();
2026 }
2027 
skip()2028 bool Document::skip()  {
2029   if (stream.scanner->failed())
2030     return false;
2031   if (!Root)
2032     getRoot();
2033   Root->skip();
2034   Token &T = peekNext();
2035   if (T.Kind == Token::TK_StreamEnd)
2036     return false;
2037   if (T.Kind == Token::TK_DocumentEnd) {
2038     getNext();
2039     return skip();
2040   }
2041   return true;
2042 }
2043 
peekNext()2044 Token &Document::peekNext() {
2045   return stream.scanner->peekNext();
2046 }
2047 
getNext()2048 Token Document::getNext() {
2049   return stream.scanner->getNext();
2050 }
2051 
setError(const Twine & Message,Token & Location) const2052 void Document::setError(const Twine &Message, Token &Location) const {
2053   stream.scanner->setError(Message, Location.Range.begin());
2054 }
2055 
failed() const2056 bool Document::failed() const {
2057   return stream.scanner->failed();
2058 }
2059 
parseBlockNode()2060 Node *Document::parseBlockNode() {
2061   Token T = peekNext();
2062   // Handle properties.
2063   Token AnchorInfo;
2064   Token TagInfo;
2065 parse_property:
2066   switch (T.Kind) {
2067   case Token::TK_Alias:
2068     getNext();
2069     return new (NodeAllocator) AliasNode(stream.CurrentDoc, T.Range.substr(1));
2070   case Token::TK_Anchor:
2071     if (AnchorInfo.Kind == Token::TK_Anchor) {
2072       setError("Already encountered an anchor for this node!", T);
2073       return nullptr;
2074     }
2075     AnchorInfo = getNext(); // Consume TK_Anchor.
2076     T = peekNext();
2077     goto parse_property;
2078   case Token::TK_Tag:
2079     if (TagInfo.Kind == Token::TK_Tag) {
2080       setError("Already encountered a tag for this node!", T);
2081       return nullptr;
2082     }
2083     TagInfo = getNext(); // Consume TK_Tag.
2084     T = peekNext();
2085     goto parse_property;
2086   default:
2087     break;
2088   }
2089 
2090   switch (T.Kind) {
2091   case Token::TK_BlockEntry:
2092     // We got an unindented BlockEntry sequence. This is not terminated with
2093     // a BlockEnd.
2094     // Don't eat the TK_BlockEntry, SequenceNode needs it.
2095     return new (NodeAllocator) SequenceNode( stream.CurrentDoc
2096                                            , AnchorInfo.Range.substr(1)
2097                                            , TagInfo.Range
2098                                            , SequenceNode::ST_Indentless);
2099   case Token::TK_BlockSequenceStart:
2100     getNext();
2101     return new (NodeAllocator)
2102       SequenceNode( stream.CurrentDoc
2103                   , AnchorInfo.Range.substr(1)
2104                   , TagInfo.Range
2105                   , SequenceNode::ST_Block);
2106   case Token::TK_BlockMappingStart:
2107     getNext();
2108     return new (NodeAllocator)
2109       MappingNode( stream.CurrentDoc
2110                  , AnchorInfo.Range.substr(1)
2111                  , TagInfo.Range
2112                  , MappingNode::MT_Block);
2113   case Token::TK_FlowSequenceStart:
2114     getNext();
2115     return new (NodeAllocator)
2116       SequenceNode( stream.CurrentDoc
2117                   , AnchorInfo.Range.substr(1)
2118                   , TagInfo.Range
2119                   , SequenceNode::ST_Flow);
2120   case Token::TK_FlowMappingStart:
2121     getNext();
2122     return new (NodeAllocator)
2123       MappingNode( stream.CurrentDoc
2124                  , AnchorInfo.Range.substr(1)
2125                  , TagInfo.Range
2126                  , MappingNode::MT_Flow);
2127   case Token::TK_Scalar:
2128     getNext();
2129     return new (NodeAllocator)
2130       ScalarNode( stream.CurrentDoc
2131                 , AnchorInfo.Range.substr(1)
2132                 , TagInfo.Range
2133                 , T.Range);
2134   case Token::TK_Key:
2135     // Don't eat the TK_Key, KeyValueNode expects it.
2136     return new (NodeAllocator)
2137       MappingNode( stream.CurrentDoc
2138                  , AnchorInfo.Range.substr(1)
2139                  , TagInfo.Range
2140                  , MappingNode::MT_Inline);
2141   case Token::TK_DocumentStart:
2142   case Token::TK_DocumentEnd:
2143   case Token::TK_StreamEnd:
2144   default:
2145     // TODO: Properly handle tags. "[!!str ]" should resolve to !!str "", not
2146     //       !!null null.
2147     return new (NodeAllocator) NullNode(stream.CurrentDoc);
2148   case Token::TK_Error:
2149     return nullptr;
2150   }
2151   llvm_unreachable("Control flow shouldn't reach here.");
2152   return nullptr;
2153 }
2154 
parseDirectives()2155 bool Document::parseDirectives() {
2156   bool isDirective = false;
2157   while (true) {
2158     Token T = peekNext();
2159     if (T.Kind == Token::TK_TagDirective) {
2160       parseTAGDirective();
2161       isDirective = true;
2162     } else if (T.Kind == Token::TK_VersionDirective) {
2163       parseYAMLDirective();
2164       isDirective = true;
2165     } else
2166       break;
2167   }
2168   return isDirective;
2169 }
2170 
parseYAMLDirective()2171 void Document::parseYAMLDirective() {
2172   getNext(); // Eat %YAML <version>
2173 }
2174 
parseTAGDirective()2175 void Document::parseTAGDirective() {
2176   Token Tag = getNext(); // %TAG <handle> <prefix>
2177   StringRef T = Tag.Range;
2178   // Strip %TAG
2179   T = T.substr(T.find_first_of(" \t")).ltrim(" \t");
2180   std::size_t HandleEnd = T.find_first_of(" \t");
2181   StringRef TagHandle = T.substr(0, HandleEnd);
2182   StringRef TagPrefix = T.substr(HandleEnd).ltrim(" \t");
2183   TagMap[TagHandle] = TagPrefix;
2184 }
2185 
expectToken(int TK)2186 bool Document::expectToken(int TK) {
2187   Token T = getNext();
2188   if (T.Kind != TK) {
2189     setError("Unexpected token", T);
2190     return false;
2191   }
2192   return true;
2193 }
2194