• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1/*
2 * Copyright (c) 2013 ARM Ltd
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. The name of the company may not be used to endorse or promote
14 *    products derived from this software without specific prior written
15 *    permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY ARM LTD ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
19 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL ARM LTD BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
22 * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
23 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
24 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
25 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
26 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29#include <machine/cpu-features.h>
30#include <private/bionic_asm.h>
31
32#ifdef __ARMEB__
33#define S2LOMEM lsl
34#define S2LOMEMEQ lsleq
35#define S2HIMEM lsr
36#define MSB 0x000000ff
37#define LSB 0xff000000
38#define BYTE0_OFFSET 24
39#define BYTE1_OFFSET 16
40#define BYTE2_OFFSET 8
41#define BYTE3_OFFSET 0
42#else /* not  __ARMEB__ */
43#define S2LOMEM lsr
44#define S2LOMEMEQ lsreq
45#define S2HIMEM lsl
46#define BYTE0_OFFSET 0
47#define BYTE1_OFFSET 8
48#define BYTE2_OFFSET 16
49#define BYTE3_OFFSET 24
50#define MSB 0xff000000
51#define LSB 0x000000ff
52#endif /* not  __ARMEB__ */
53
54.syntax         unified
55
56#if defined (__thumb__)
57        .thumb
58        .thumb_func
59#endif
60
61ENTRY(strcmp)
62      /* Use LDRD whenever possible.  */
63
64/* The main thing to look out for when comparing large blocks is that
65   the loads do not cross a page boundary when loading past the index
66   of the byte with the first difference or the first string-terminator.
67
68   For example, if the strings are identical and the string-terminator
69   is at index k, byte by byte comparison will not load beyond address
70   s1+k and s2+k; word by word comparison may load up to 3 bytes beyond
71   k; double word - up to 7 bytes.  If the load of these bytes crosses
72   a page boundary, it might cause a memory fault (if the page is not mapped)
73   that would not have happened in byte by byte comparison.
74
75   If an address is (double) word aligned, then a load of a (double) word
76   from that address will not cross a page boundary.
77   Therefore, the algorithm below considers word and double-word alignment
78   of strings separately.  */
79
80/* High-level description of the algorithm.
81
82   * The fast path: if both strings are double-word aligned,
83     use LDRD to load two words from each string in every loop iteration.
84   * If the strings have the same offset from a word boundary,
85     use LDRB to load and compare byte by byte until
86     the first string is aligned to a word boundary (at most 3 bytes).
87     This is optimized for quick return on short unaligned strings.
88   * If the strings have the same offset from a double-word boundary,
89     use LDRD to load two words from each string in every loop iteration, as in the fast path.
90   * If the strings do not have the same offset from a double-word boundary,
91     load a word from the second string before the loop to initialize the queue.
92     Use LDRD to load two words from every string in every loop iteration.
93     Inside the loop, load the second word from the second string only after comparing
94     the first word, using the queued value, to guarantee safety across page boundaries.
95   * If the strings do not have the same offset from a word boundary,
96     use LDR and a shift queue. Order of loads and comparisons matters,
97     similarly to the previous case.
98
99   * Use UADD8 and SEL to compare words, and use REV and CLZ to compute the return value.
100   * The only difference between ARM and Thumb modes is the use of CBZ instruction.
101   * The only difference between big and little endian is the use of REV in little endian
102     to compute the return value, instead of MOV.
103*/
104
105        .macro m_cbz reg label
106#ifdef __thumb2__
107        cbz     \reg, \label
108#else   /* not defined __thumb2__ */
109        cmp     \reg, #0
110        beq     \label
111#endif /* not defined __thumb2__ */
112        .endm /* m_cbz */
113
114        .macro m_cbnz reg label
115#ifdef __thumb2__
116        cbnz    \reg, \label
117#else   /* not defined __thumb2__ */
118        cmp     \reg, #0
119        bne     \label
120#endif /* not defined __thumb2__ */
121        .endm /* m_cbnz */
122
123        .macro  init
124        /* Macro to save temporary registers and prepare magic values.  */
125        subs    sp, sp, #16
126        .cfi_def_cfa_offset 16
127        strd    r4, r5, [sp, #8]
128        .cfi_rel_offset r4, 0
129        .cfi_rel_offset r5, 4
130        strd    r6, r7, [sp]
131        .cfi_rel_offset r6, 8
132        .cfi_rel_offset r7, 12
133        mvn     r6, #0  /* all F */
134        mov     r7, #0  /* all 0 */
135        .endm   /* init */
136
137        .macro  magic_compare_and_branch w1 w2 label
138        /* Macro to compare registers w1 and w2 and conditionally branch to label.  */
139        cmp     \w1, \w2        /* Are w1 and w2 the same?  */
140        magic_find_zero_bytes \w1
141        it      eq
142        cmpeq   ip, #0          /* Is there a zero byte in w1?  */
143        bne     \label
144        .endm /* magic_compare_and_branch */
145
146        .macro  magic_find_zero_bytes w1
147        /* Macro to find all-zero bytes in w1, result is in ip.  */
148        uadd8   ip, \w1, r6
149        sel     ip, r7, r6
150        .endm /* magic_find_zero_bytes */
151
152        .macro  setup_return w1 w2
153#ifdef __ARMEB__
154        mov     r1, \w1
155        mov     r2, \w2
156#else /* not  __ARMEB__ */
157        rev     r1, \w1
158        rev     r2, \w2
159#endif /* not  __ARMEB__ */
160        .endm /* setup_return */
161
162        pld [r0, #0]
163        pld [r1, #0]
164
165        /* Are both strings double-word aligned?  */
166        orr     ip, r0, r1
167        tst     ip, #7
168        bne     .L_do_align
169
170        /* Fast path.  */
171        .save   {r4-r7}
172        init
173
174.L_doubleword_aligned:
175
176        /* Get here when the strings to compare are double-word aligned.  */
177        /* Compare two words in every iteration.  */
178        .p2align        2
1792:
180        pld [r0, #16]
181        pld [r1, #16]
182
183        /* Load the next double-word from each string.  */
184        ldrd    r2, r3, [r0], #8
185        ldrd    r4, r5, [r1], #8
186
187        magic_compare_and_branch w1=r2, w2=r4, label=.L_return_24
188        magic_compare_and_branch w1=r3, w2=r5, label=.L_return_35
189        b       2b
190
191.L_do_align:
192        /* Is the first string word-aligned?  */
193        ands    ip, r0, #3
194        beq     .L_word_aligned_r0
195
196        /* Fast compare byte by byte until the first string is word-aligned.  */
197        /* The offset of r0 from a word boundary is in ip. Thus, the number of bytes
198        to read until the next word boundary is 4-ip.  */
199        bic     r0, r0, #3
200        ldr     r2, [r0], #4
201        lsls    ip, ip, #31
202        beq     .L_byte2
203        bcs     .L_byte3
204
205.L_byte1:
206        ldrb    ip, [r1], #1
207        uxtb    r3, r2, ror #BYTE1_OFFSET
208        subs    ip, r3, ip
209        bne     .L_fast_return
210        m_cbz   reg=r3, label=.L_fast_return
211
212.L_byte2:
213        ldrb    ip, [r1], #1
214        uxtb    r3, r2, ror #BYTE2_OFFSET
215        subs    ip, r3, ip
216        bne     .L_fast_return
217        m_cbz   reg=r3, label=.L_fast_return
218
219.L_byte3:
220        ldrb    ip, [r1], #1
221        uxtb    r3, r2, ror #BYTE3_OFFSET
222        subs    ip, r3, ip
223        bne     .L_fast_return
224        m_cbnz  reg=r3, label=.L_word_aligned_r0
225
226.L_fast_return:
227        mov     r0, ip
228        bx      lr
229
230.L_word_aligned_r0:
231        init
232        /* The first string is word-aligned.  */
233        /* Is the second string word-aligned?  */
234        ands    ip, r1, #3
235        bne     .L_strcmp_unaligned
236
237.L_word_aligned:
238        /* The strings are word-aligned. */
239        /* Is the first string double-word aligned?  */
240        tst     r0, #4
241        beq     .L_doubleword_aligned_r0
242
243        /* If r0 is not double-word aligned yet, align it by loading
244        and comparing the next word from each string.  */
245        ldr     r2, [r0], #4
246        ldr     r4, [r1], #4
247        magic_compare_and_branch w1=r2 w2=r4 label=.L_return_24
248
249.L_doubleword_aligned_r0:
250        /* Get here when r0 is double-word aligned.  */
251        /* Is r1 doubleword_aligned?  */
252        tst     r1, #4
253        beq     .L_doubleword_aligned
254
255        /* Get here when the strings to compare are word-aligned,
256        r0 is double-word aligned, but r1 is not double-word aligned.  */
257
258        /* Initialize the queue.  */
259        ldr     r5, [r1], #4
260
261        /* Compare two words in every iteration.  */
262        .p2align        2
2633:
264        pld [r0, #16]
265        pld [r1, #16]
266
267        /* Load the next double-word from each string and compare.  */
268        ldrd    r2, r3, [r0], #8
269        magic_compare_and_branch w1=r2 w2=r5 label=.L_return_25
270        ldrd    r4, r5, [r1], #8
271        magic_compare_and_branch w1=r3 w2=r4 label=.L_return_34
272        b       3b
273
274        .macro miscmp_word offsetlo offsethi
275        /* Macro to compare misaligned strings.  */
276        /* r0, r1 are word-aligned, and at least one of the strings
277        is not double-word aligned.  */
278        /* Compare one word in every loop iteration.  */
279        /* OFFSETLO is the original bit-offset of r1 from a word-boundary,
280        OFFSETHI is 32 - OFFSETLO (i.e., offset from the next word).  */
281
282        /* Initialize the shift queue.  */
283        ldr     r5, [r1], #4
284
285        /* Compare one word from each string in every loop iteration.  */
286        .p2align        2
2877:
288        ldr     r3, [r0], #4
289        S2LOMEM r5, r5, #\offsetlo
290        magic_find_zero_bytes w1=r3
291        cmp     r7, ip, S2HIMEM #\offsetlo
292        and     r2, r3, r6, S2LOMEM #\offsetlo
293        it      eq
294        cmpeq   r2, r5
295        bne     .L_return_25
296        ldr     r5, [r1], #4
297        cmp     ip, #0
298        eor r3, r2, r3
299        S2HIMEM r2, r5, #\offsethi
300        it      eq
301        cmpeq   r3, r2
302        bne     .L_return_32
303        b       7b
304        .endm /* miscmp_word */
305
306.L_strcmp_unaligned:
307        /* r0 is word-aligned, r1 is at offset ip from a word.  */
308        /* Align r1 to the (previous) word-boundary.  */
309        bic     r1, r1, #3
310
311        /* Unaligned comparison word by word using LDRs. */
312        cmp     ip, #2
313        beq     .L_miscmp_word_16                 /* If ip == 2.  */
314        bge     .L_miscmp_word_24                 /* If ip == 3.  */
315        miscmp_word offsetlo=8 offsethi=24        /* If ip == 1.  */
316.L_miscmp_word_16:  miscmp_word offsetlo=16 offsethi=16
317.L_miscmp_word_24:  miscmp_word offsetlo=24 offsethi=8
318
319
320.L_return_32:
321        setup_return w1=r3, w2=r2
322        b       .L_do_return
323.L_return_34:
324        setup_return w1=r3, w2=r4
325        b       .L_do_return
326.L_return_25:
327        setup_return w1=r2, w2=r5
328        b       .L_do_return
329.L_return_35:
330        setup_return w1=r3, w2=r5
331        b       .L_do_return
332.L_return_24:
333        setup_return w1=r2, w2=r4
334
335.L_do_return:
336
337#ifdef __ARMEB__
338        mov     r0, ip
339#else /* not  __ARMEB__ */
340        rev     r0, ip
341#endif /* not  __ARMEB__ */
342
343        /* Restore temporaries early, before computing the return value.  */
344        ldrd    r6, r7, [sp]
345        ldrd    r4, r5, [sp, #8]
346        adds    sp, sp, #16
347        .cfi_def_cfa_offset 0
348        .cfi_restore r4
349        .cfi_restore r5
350        .cfi_restore r6
351        .cfi_restore r7
352
353        /* There is a zero or a different byte between r1 and r2.  */
354        /* r0 contains a mask of all-zero bytes in r1.  */
355        /* Using r0 and not ip here because cbz requires low register.  */
356        m_cbz   reg=r0, label=.L_compute_return_value
357        clz     r0, r0
358        /* r0 contains the number of bits on the left of the first all-zero byte in r1.  */
359        rsb     r0, r0, #24
360        /* Here, r0 contains the number of bits on the right of the first all-zero byte in r1.  */
361        lsr     r1, r1, r0
362        lsr     r2, r2, r0
363
364.L_compute_return_value:
365        movs    r0, #1
366        cmp     r1, r2
367        /* The return value is computed as follows.
368        If r1>r2 then (C==1 and Z==0) and LS doesn't hold and r0 is #1 at return.
369        If r1<r2 then (C==0 and Z==0) and we execute SBC with carry_in=0,
370        which means r0:=r0-r0-1 and r0 is #-1 at return.
371        If r1=r2 then (C==1 and Z==1) and we execute SBC with carry_in=1,
372        which means r0:=r0-r0 and r0 is #0 at return.
373        (C==0 and Z==1) cannot happen because the carry bit is "not borrow".  */
374        it      ls
375        sbcls   r0, r0, r0
376        bx      lr
377END(strcmp)
378