1 /* 2 * Copyright (C) 2010 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17 #ifndef ANDROID_GUI_IGRAPHICBUFFERPRODUCER_H 18 #define ANDROID_GUI_IGRAPHICBUFFERPRODUCER_H 19 20 #include <stdint.h> 21 #include <sys/types.h> 22 23 #include <utils/Errors.h> 24 #include <utils/RefBase.h> 25 26 #include <binder/IInterface.h> 27 28 #include <ui/Fence.h> 29 #include <ui/GraphicBuffer.h> 30 #include <ui/Rect.h> 31 32 namespace android { 33 // ---------------------------------------------------------------------------- 34 35 class IProducerListener; 36 class NativeHandle; 37 class Surface; 38 39 /* 40 * This class defines the Binder IPC interface for the producer side of 41 * a queue of graphics buffers. It's used to send graphics data from one 42 * component to another. For example, a class that decodes video for 43 * playback might use this to provide frames. This is typically done 44 * indirectly, through Surface. 45 * 46 * The underlying mechanism is a BufferQueue, which implements 47 * BnGraphicBufferProducer. In normal operation, the producer calls 48 * dequeueBuffer() to get an empty buffer, fills it with data, then 49 * calls queueBuffer() to make it available to the consumer. 50 * 51 * This class was previously called ISurfaceTexture. 52 */ 53 class IGraphicBufferProducer : public IInterface 54 { 55 public: 56 DECLARE_META_INTERFACE(GraphicBufferProducer); 57 58 enum { 59 // A flag returned by dequeueBuffer when the client needs to call 60 // requestBuffer immediately thereafter. 61 BUFFER_NEEDS_REALLOCATION = 0x1, 62 // A flag returned by dequeueBuffer when all mirrored slots should be 63 // released by the client. This flag should always be processed first. 64 RELEASE_ALL_BUFFERS = 0x2, 65 }; 66 67 // requestBuffer requests a new buffer for the given index. The server (i.e. 68 // the IGraphicBufferProducer implementation) assigns the newly created 69 // buffer to the given slot index, and the client is expected to mirror the 70 // slot->buffer mapping so that it's not necessary to transfer a 71 // GraphicBuffer for every dequeue operation. 72 // 73 // The slot must be in the range of [0, NUM_BUFFER_SLOTS). 74 // 75 // Return of a value other than NO_ERROR means an error has occurred: 76 // * NO_INIT - the buffer queue has been abandoned. 77 // * BAD_VALUE - one of the two conditions occurred: 78 // * slot was out of range (see above) 79 // * buffer specified by the slot is not dequeued 80 virtual status_t requestBuffer(int slot, sp<GraphicBuffer>* buf) = 0; 81 82 // setBufferCount sets the number of buffer slots available. Calling this 83 // will also cause all buffer slots to be emptied. The caller should empty 84 // its mirrored copy of the buffer slots when calling this method. 85 // 86 // This function should not be called when there are any dequeued buffer 87 // slots, doing so will result in a BAD_VALUE error returned. 88 // 89 // The buffer count should be at most NUM_BUFFER_SLOTS (inclusive), but at least 90 // the minimum undequeued buffer count (exclusive). The minimum value 91 // can be obtained by calling query(NATIVE_WINDOW_MIN_UNDEQUEUED_BUFFERS). 92 // In particular the range is (minUndequeudBuffers, NUM_BUFFER_SLOTS]. 93 // 94 // The buffer count may also be set to 0 (the default), to indicate that 95 // the producer does not wish to set a value. 96 // 97 // Return of a value other than NO_ERROR means an error has occurred: 98 // * NO_INIT - the buffer queue has been abandoned. 99 // * BAD_VALUE - one of the below conditions occurred: 100 // * bufferCount was out of range (see above) 101 // * client has one or more buffers dequeued 102 virtual status_t setBufferCount(int bufferCount) = 0; 103 104 // dequeueBuffer requests a new buffer slot for the client to use. Ownership 105 // of the slot is transfered to the client, meaning that the server will not 106 // use the contents of the buffer associated with that slot. 107 // 108 // The slot index returned may or may not contain a buffer (client-side). 109 // If the slot is empty the client should call requestBuffer to assign a new 110 // buffer to that slot. 111 // 112 // Once the client is done filling this buffer, it is expected to transfer 113 // buffer ownership back to the server with either cancelBuffer on 114 // the dequeued slot or to fill in the contents of its associated buffer 115 // contents and call queueBuffer. 116 // 117 // If dequeueBuffer returns the BUFFER_NEEDS_REALLOCATION flag, the client is 118 // expected to call requestBuffer immediately. 119 // 120 // If dequeueBuffer returns the RELEASE_ALL_BUFFERS flag, the client is 121 // expected to release all of the mirrored slot->buffer mappings. 122 // 123 // The fence parameter will be updated to hold the fence associated with 124 // the buffer. The contents of the buffer must not be overwritten until the 125 // fence signals. If the fence is Fence::NO_FENCE, the buffer may be written 126 // immediately. 127 // 128 // The async parameter sets whether we're in asynchronous mode for this 129 // dequeueBuffer() call. 130 // 131 // The width and height parameters must be no greater than the minimum of 132 // GL_MAX_VIEWPORT_DIMS and GL_MAX_TEXTURE_SIZE (see: glGetIntegerv). 133 // An error due to invalid dimensions might not be reported until 134 // updateTexImage() is called. If width and height are both zero, the 135 // default values specified by setDefaultBufferSize() are used instead. 136 // 137 // The pixel formats are enumerated in <graphics.h>, e.g. 138 // HAL_PIXEL_FORMAT_RGBA_8888. If the format is 0, the default format 139 // will be used. 140 // 141 // The usage argument specifies gralloc buffer usage flags. The values 142 // are enumerated in <gralloc.h>, e.g. GRALLOC_USAGE_HW_RENDER. These 143 // will be merged with the usage flags specified by 144 // IGraphicBufferConsumer::setConsumerUsageBits. 145 // 146 // This call will block until a buffer is available to be dequeued. If 147 // both the producer and consumer are controlled by the app, then this call 148 // can never block and will return WOULD_BLOCK if no buffer is available. 149 // 150 // A non-negative value with flags set (see above) will be returned upon 151 // success. 152 // 153 // Return of a negative means an error has occurred: 154 // * NO_INIT - the buffer queue has been abandoned. 155 // * BAD_VALUE - both in async mode and buffer count was less than the 156 // max numbers of buffers that can be allocated at once. 157 // * INVALID_OPERATION - cannot attach the buffer because it would cause 158 // too many buffers to be dequeued, either because 159 // the producer already has a single buffer dequeued 160 // and did not set a buffer count, or because a 161 // buffer count was set and this call would cause 162 // it to be exceeded. 163 // * WOULD_BLOCK - no buffer is currently available, and blocking is disabled 164 // since both the producer/consumer are controlled by app 165 // * NO_MEMORY - out of memory, cannot allocate the graphics buffer. 166 // 167 // All other negative values are an unknown error returned downstream 168 // from the graphics allocator (typically errno). 169 virtual status_t dequeueBuffer(int* slot, sp<Fence>* fence, bool async, 170 uint32_t w, uint32_t h, uint32_t format, uint32_t usage) = 0; 171 172 // detachBuffer attempts to remove all ownership of the buffer in the given 173 // slot from the buffer queue. If this call succeeds, the slot will be 174 // freed, and there will be no way to obtain the buffer from this interface. 175 // The freed slot will remain unallocated until either it is selected to 176 // hold a freshly allocated buffer in dequeueBuffer or a buffer is attached 177 // to the slot. The buffer must have already been dequeued, and the caller 178 // must already possesses the sp<GraphicBuffer> (i.e., must have called 179 // requestBuffer). 180 // 181 // Return of a value other than NO_ERROR means an error has occurred: 182 // * NO_INIT - the buffer queue has been abandoned. 183 // * BAD_VALUE - the given slot number is invalid, either because it is 184 // out of the range [0, NUM_BUFFER_SLOTS), or because the slot 185 // it refers to is not currently dequeued and requested. 186 virtual status_t detachBuffer(int slot) = 0; 187 188 // detachNextBuffer is equivalent to calling dequeueBuffer, requestBuffer, 189 // and detachBuffer in sequence, except for two things: 190 // 191 // 1) It is unnecessary to know the dimensions, format, or usage of the 192 // next buffer. 193 // 2) It will not block, since if it cannot find an appropriate buffer to 194 // return, it will return an error instead. 195 // 196 // Only slots that are free but still contain a GraphicBuffer will be 197 // considered, and the oldest of those will be returned. outBuffer is 198 // equivalent to outBuffer from the requestBuffer call, and outFence is 199 // equivalent to fence from the dequeueBuffer call. 200 // 201 // Return of a value other than NO_ERROR means an error has occurred: 202 // * NO_INIT - the buffer queue has been abandoned. 203 // * BAD_VALUE - either outBuffer or outFence were NULL. 204 // * NO_MEMORY - no slots were found that were both free and contained a 205 // GraphicBuffer. 206 virtual status_t detachNextBuffer(sp<GraphicBuffer>* outBuffer, 207 sp<Fence>* outFence) = 0; 208 209 // attachBuffer attempts to transfer ownership of a buffer to the buffer 210 // queue. If this call succeeds, it will be as if this buffer was dequeued 211 // from the returned slot number. As such, this call will fail if attaching 212 // this buffer would cause too many buffers to be simultaneously dequeued. 213 // 214 // If attachBuffer returns the RELEASE_ALL_BUFFERS flag, the caller is 215 // expected to release all of the mirrored slot->buffer mappings. 216 // 217 // A non-negative value with flags set (see above) will be returned upon 218 // success. 219 // 220 // Return of a negative value means an error has occurred: 221 // * NO_INIT - the buffer queue has been abandoned. 222 // * BAD_VALUE - outSlot or buffer were NULL or invalid combination of 223 // async mode and buffer count override. 224 // * INVALID_OPERATION - cannot attach the buffer because it would cause 225 // too many buffers to be dequeued, either because 226 // the producer already has a single buffer dequeued 227 // and did not set a buffer count, or because a 228 // buffer count was set and this call would cause 229 // it to be exceeded. 230 // * WOULD_BLOCK - no buffer slot is currently available, and blocking is 231 // disabled since both the producer/consumer are 232 // controlled by the app. 233 virtual status_t attachBuffer(int* outSlot, 234 const sp<GraphicBuffer>& buffer) = 0; 235 236 // queueBuffer indicates that the client has finished filling in the 237 // contents of the buffer associated with slot and transfers ownership of 238 // that slot back to the server. 239 // 240 // It is not valid to call queueBuffer on a slot that is not owned 241 // by the client or one for which a buffer associated via requestBuffer 242 // (an attempt to do so will fail with a return value of BAD_VALUE). 243 // 244 // In addition, the input must be described by the client (as documented 245 // below). Any other properties (zero point, etc) 246 // are client-dependent, and should be documented by the client. 247 // 248 // The slot must be in the range of [0, NUM_BUFFER_SLOTS). 249 // 250 // Upon success, the output will be filled with meaningful values 251 // (refer to the documentation below). 252 // 253 // Return of a value other than NO_ERROR means an error has occurred: 254 // * NO_INIT - the buffer queue has been abandoned. 255 // * BAD_VALUE - one of the below conditions occurred: 256 // * fence was NULL 257 // * scaling mode was unknown 258 // * both in async mode and buffer count was less than the 259 // max numbers of buffers that can be allocated at once 260 // * slot index was out of range (see above). 261 // * the slot was not in the dequeued state 262 // * the slot was enqueued without requesting a buffer 263 // * crop rect is out of bounds of the buffer dimensions 264 265 struct QueueBufferInput : public Flattenable<QueueBufferInput> { 266 friend class Flattenable<QueueBufferInput>; 267 inline QueueBufferInput(const Parcel& parcel); 268 // timestamp - a monotonically increasing value in nanoseconds 269 // isAutoTimestamp - if the timestamp was synthesized at queue time 270 // crop - a crop rectangle that's used as a hint to the consumer 271 // scalingMode - a set of flags from NATIVE_WINDOW_SCALING_* in <window.h> 272 // transform - a set of flags from NATIVE_WINDOW_TRANSFORM_* in <window.h> 273 // async - if the buffer is queued in asynchronous mode 274 // fence - a fence that the consumer must wait on before reading the buffer, 275 // set this to Fence::NO_FENCE if the buffer is ready immediately 276 // sticky - the sticky transform set in Surface (only used by the LEGACY 277 // camera mode). 278 inline QueueBufferInput(int64_t timestamp, bool isAutoTimestamp, 279 const Rect& crop, int scalingMode, uint32_t transform, bool async, 280 const sp<Fence>& fence, uint32_t sticky = 0) timestampQueueBufferInput281 : timestamp(timestamp), isAutoTimestamp(isAutoTimestamp), crop(crop), 282 scalingMode(scalingMode), transform(transform), stickyTransform(sticky), 283 async(async), fence(fence) { } 284 inline void deflate(int64_t* outTimestamp, bool* outIsAutoTimestamp, 285 Rect* outCrop, int* outScalingMode, uint32_t* outTransform, 286 bool* outAsync, sp<Fence>* outFence, 287 uint32_t* outStickyTransform = NULL) const { 288 *outTimestamp = timestamp; 289 *outIsAutoTimestamp = bool(isAutoTimestamp); 290 *outCrop = crop; 291 *outScalingMode = scalingMode; 292 *outTransform = transform; 293 *outAsync = bool(async); 294 *outFence = fence; 295 if (outStickyTransform != NULL) { 296 *outStickyTransform = stickyTransform; 297 } 298 } 299 300 // Flattenable protocol 301 size_t getFlattenedSize() const; 302 size_t getFdCount() const; 303 status_t flatten(void*& buffer, size_t& size, int*& fds, size_t& count) const; 304 status_t unflatten(void const*& buffer, size_t& size, int const*& fds, size_t& count); 305 306 private: 307 int64_t timestamp; 308 int isAutoTimestamp; 309 Rect crop; 310 int scalingMode; 311 uint32_t transform; 312 uint32_t stickyTransform; 313 int async; 314 sp<Fence> fence; 315 }; 316 317 // QueueBufferOutput must be a POD structure 318 struct __attribute__ ((__packed__)) QueueBufferOutput { QueueBufferOutputQueueBufferOutput319 inline QueueBufferOutput() { } 320 // outWidth - filled with default width applied to the buffer 321 // outHeight - filled with default height applied to the buffer 322 // outTransformHint - filled with default transform applied to the buffer 323 // outNumPendingBuffers - num buffers queued that haven't yet been acquired 324 // (counting the currently queued buffer) deflateQueueBufferOutput325 inline void deflate(uint32_t* outWidth, 326 uint32_t* outHeight, 327 uint32_t* outTransformHint, 328 uint32_t* outNumPendingBuffers) const { 329 *outWidth = width; 330 *outHeight = height; 331 *outTransformHint = transformHint; 332 *outNumPendingBuffers = numPendingBuffers; 333 } inflateQueueBufferOutput334 inline void inflate(uint32_t inWidth, uint32_t inHeight, 335 uint32_t inTransformHint, uint32_t inNumPendingBuffers) { 336 width = inWidth; 337 height = inHeight; 338 transformHint = inTransformHint; 339 numPendingBuffers = inNumPendingBuffers; 340 } 341 private: 342 uint32_t width; 343 uint32_t height; 344 uint32_t transformHint; 345 uint32_t numPendingBuffers; 346 }; 347 348 virtual status_t queueBuffer(int slot, 349 const QueueBufferInput& input, QueueBufferOutput* output) = 0; 350 351 // cancelBuffer indicates that the client does not wish to fill in the 352 // buffer associated with slot and transfers ownership of the slot back to 353 // the server. 354 // 355 // The buffer is not queued for use by the consumer. 356 // 357 // The buffer will not be overwritten until the fence signals. The fence 358 // will usually be the one obtained from dequeueBuffer. 359 virtual void cancelBuffer(int slot, const sp<Fence>& fence) = 0; 360 361 // query retrieves some information for this surface 362 // 'what' tokens allowed are that of NATIVE_WINDOW_* in <window.h> 363 // 364 // Return of a value other than NO_ERROR means an error has occurred: 365 // * NO_INIT - the buffer queue has been abandoned. 366 // * BAD_VALUE - what was out of range 367 virtual int query(int what, int* value) = 0; 368 369 // connect attempts to connect a client API to the IGraphicBufferProducer. 370 // This must be called before any other IGraphicBufferProducer methods are 371 // called except for getAllocator. A consumer must be already connected. 372 // 373 // This method will fail if the connect was previously called on the 374 // IGraphicBufferProducer and no corresponding disconnect call was made. 375 // 376 // The listener is an optional binder callback object that can be used if 377 // the producer wants to be notified when the consumer releases a buffer 378 // back to the BufferQueue. It is also used to detect the death of the 379 // producer. If only the latter functionality is desired, there is a 380 // DummyProducerListener class in IProducerListener.h that can be used. 381 // 382 // The api should be one of the NATIVE_WINDOW_API_* values in <window.h> 383 // 384 // The producerControlledByApp should be set to true if the producer is hosted 385 // by an untrusted process (typically app_process-forked processes). If both 386 // the producer and the consumer are app-controlled then all buffer queues 387 // will operate in async mode regardless of the async flag. 388 // 389 // Upon success, the output will be filled with meaningful data 390 // (refer to QueueBufferOutput documentation above). 391 // 392 // Return of a value other than NO_ERROR means an error has occurred: 393 // * NO_INIT - one of the following occurred: 394 // * the buffer queue was abandoned 395 // * no consumer has yet connected 396 // * BAD_VALUE - one of the following has occurred: 397 // * the producer is already connected 398 // * api was out of range (see above). 399 // * output was NULL. 400 // * DEAD_OBJECT - the token is hosted by an already-dead process 401 // 402 // Additional negative errors may be returned by the internals, they 403 // should be treated as opaque fatal unrecoverable errors. 404 virtual status_t connect(const sp<IProducerListener>& listener, 405 int api, bool producerControlledByApp, QueueBufferOutput* output) = 0; 406 407 // disconnect attempts to disconnect a client API from the 408 // IGraphicBufferProducer. Calling this method will cause any subsequent 409 // calls to other IGraphicBufferProducer methods to fail except for 410 // getAllocator and connect. Successfully calling connect after this will 411 // allow the other methods to succeed again. 412 // 413 // This method will fail if the the IGraphicBufferProducer is not currently 414 // connected to the specified client API. 415 // 416 // The api should be one of the NATIVE_WINDOW_API_* values in <window.h> 417 // 418 // Disconnecting from an abandoned IGraphicBufferProducer is legal and 419 // is considered a no-op. 420 // 421 // Return of a value other than NO_ERROR means an error has occurred: 422 // * BAD_VALUE - one of the following has occurred: 423 // * the api specified does not match the one that was connected 424 // * api was out of range (see above). 425 // * DEAD_OBJECT - the token is hosted by an already-dead process 426 virtual status_t disconnect(int api) = 0; 427 428 // Attaches a sideband buffer stream to the IGraphicBufferProducer. 429 // 430 // A sideband stream is a device-specific mechanism for passing buffers 431 // from the producer to the consumer without using dequeueBuffer/ 432 // queueBuffer. If a sideband stream is present, the consumer can choose 433 // whether to acquire buffers from the sideband stream or from the queued 434 // buffers. 435 // 436 // Passing NULL or a different stream handle will detach the previous 437 // handle if any. 438 virtual status_t setSidebandStream(const sp<NativeHandle>& stream) = 0; 439 440 // Allocates buffers based on the given dimensions/format. 441 // 442 // This function will allocate up to the maximum number of buffers 443 // permitted by the current BufferQueue configuration. It will use the 444 // given format, dimensions, and usage bits, which are interpreted in the 445 // same way as for dequeueBuffer, and the async flag must be set the same 446 // way as for dequeueBuffer to ensure that the correct number of buffers are 447 // allocated. This is most useful to avoid an allocation delay during 448 // dequeueBuffer. If there are already the maximum number of buffers 449 // allocated, this function has no effect. 450 virtual void allocateBuffers(bool async, uint32_t width, uint32_t height, 451 uint32_t format, uint32_t usage) = 0; 452 }; 453 454 // ---------------------------------------------------------------------------- 455 456 class BnGraphicBufferProducer : public BnInterface<IGraphicBufferProducer> 457 { 458 public: 459 virtual status_t onTransact( uint32_t code, 460 const Parcel& data, 461 Parcel* reply, 462 uint32_t flags = 0); 463 }; 464 465 // ---------------------------------------------------------------------------- 466 }; // namespace android 467 468 #endif // ANDROID_GUI_IGRAPHICBUFFERPRODUCER_H 469