1 //===- llvm/ADT/DenseMap.h - Dense probed hash table ------------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the DenseMap class.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #ifndef LLVM_ADT_DENSEMAP_H
15 #define LLVM_ADT_DENSEMAP_H
16
17 #include "llvm/ADT/DenseMapInfo.h"
18 #include "llvm/Support/AlignOf.h"
19 #include "llvm/Support/Compiler.h"
20 #include "llvm/Support/MathExtras.h"
21 #include "llvm/Support/PointerLikeTypeTraits.h"
22 #include "llvm/Support/type_traits.h"
23 #include <algorithm>
24 #include <cassert>
25 #include <climits>
26 #include <cstddef>
27 #include <cstring>
28 #include <iterator>
29 #include <new>
30 #include <utility>
31
32 namespace llvm {
33
34 template<typename KeyT, typename ValueT,
35 typename KeyInfoT = DenseMapInfo<KeyT>,
36 bool IsConst = false>
37 class DenseMapIterator;
38
39 template<typename DerivedT,
40 typename KeyT, typename ValueT, typename KeyInfoT>
41 class DenseMapBase {
42 protected:
43 typedef std::pair<KeyT, ValueT> BucketT;
44
45 public:
46 typedef unsigned size_type;
47 typedef KeyT key_type;
48 typedef ValueT mapped_type;
49 typedef BucketT value_type;
50
51 typedef DenseMapIterator<KeyT, ValueT, KeyInfoT> iterator;
52 typedef DenseMapIterator<KeyT, ValueT,
53 KeyInfoT, true> const_iterator;
begin()54 inline iterator begin() {
55 // When the map is empty, avoid the overhead of AdvancePastEmptyBuckets().
56 return empty() ? end() : iterator(getBuckets(), getBucketsEnd());
57 }
end()58 inline iterator end() {
59 return iterator(getBucketsEnd(), getBucketsEnd(), true);
60 }
begin()61 inline const_iterator begin() const {
62 return empty() ? end() : const_iterator(getBuckets(), getBucketsEnd());
63 }
end()64 inline const_iterator end() const {
65 return const_iterator(getBucketsEnd(), getBucketsEnd(), true);
66 }
67
empty()68 bool LLVM_ATTRIBUTE_UNUSED_RESULT empty() const {
69 return getNumEntries() == 0;
70 }
size()71 unsigned size() const { return getNumEntries(); }
72
73 /// Grow the densemap so that it has at least Size buckets. Does not shrink
resize(size_type Size)74 void resize(size_type Size) {
75 if (Size > getNumBuckets())
76 grow(Size);
77 }
78
clear()79 void clear() {
80 if (getNumEntries() == 0 && getNumTombstones() == 0) return;
81
82 // If the capacity of the array is huge, and the # elements used is small,
83 // shrink the array.
84 if (getNumEntries() * 4 < getNumBuckets() && getNumBuckets() > 64) {
85 shrink_and_clear();
86 return;
87 }
88
89 const KeyT EmptyKey = getEmptyKey(), TombstoneKey = getTombstoneKey();
90 for (BucketT *P = getBuckets(), *E = getBucketsEnd(); P != E; ++P) {
91 if (!KeyInfoT::isEqual(P->first, EmptyKey)) {
92 if (!KeyInfoT::isEqual(P->first, TombstoneKey)) {
93 P->second.~ValueT();
94 decrementNumEntries();
95 }
96 P->first = EmptyKey;
97 }
98 }
99 assert(getNumEntries() == 0 && "Node count imbalance!");
100 setNumTombstones(0);
101 }
102
103 /// Return 1 if the specified key is in the map, 0 otherwise.
count(const KeyT & Val)104 size_type count(const KeyT &Val) const {
105 const BucketT *TheBucket;
106 return LookupBucketFor(Val, TheBucket) ? 1 : 0;
107 }
108
find(const KeyT & Val)109 iterator find(const KeyT &Val) {
110 BucketT *TheBucket;
111 if (LookupBucketFor(Val, TheBucket))
112 return iterator(TheBucket, getBucketsEnd(), true);
113 return end();
114 }
find(const KeyT & Val)115 const_iterator find(const KeyT &Val) const {
116 const BucketT *TheBucket;
117 if (LookupBucketFor(Val, TheBucket))
118 return const_iterator(TheBucket, getBucketsEnd(), true);
119 return end();
120 }
121
122 /// Alternate version of find() which allows a different, and possibly
123 /// less expensive, key type.
124 /// The DenseMapInfo is responsible for supplying methods
125 /// getHashValue(LookupKeyT) and isEqual(LookupKeyT, KeyT) for each key
126 /// type used.
127 template<class LookupKeyT>
find_as(const LookupKeyT & Val)128 iterator find_as(const LookupKeyT &Val) {
129 BucketT *TheBucket;
130 if (LookupBucketFor(Val, TheBucket))
131 return iterator(TheBucket, getBucketsEnd(), true);
132 return end();
133 }
134 template<class LookupKeyT>
find_as(const LookupKeyT & Val)135 const_iterator find_as(const LookupKeyT &Val) const {
136 const BucketT *TheBucket;
137 if (LookupBucketFor(Val, TheBucket))
138 return const_iterator(TheBucket, getBucketsEnd(), true);
139 return end();
140 }
141
142 /// lookup - Return the entry for the specified key, or a default
143 /// constructed value if no such entry exists.
lookup(const KeyT & Val)144 ValueT lookup(const KeyT &Val) const {
145 const BucketT *TheBucket;
146 if (LookupBucketFor(Val, TheBucket))
147 return TheBucket->second;
148 return ValueT();
149 }
150
151 // Inserts key,value pair into the map if the key isn't already in the map.
152 // If the key is already in the map, it returns false and doesn't update the
153 // value.
insert(const std::pair<KeyT,ValueT> & KV)154 std::pair<iterator, bool> insert(const std::pair<KeyT, ValueT> &KV) {
155 BucketT *TheBucket;
156 if (LookupBucketFor(KV.first, TheBucket))
157 return std::make_pair(iterator(TheBucket, getBucketsEnd(), true),
158 false); // Already in map.
159
160 // Otherwise, insert the new element.
161 TheBucket = InsertIntoBucket(KV.first, KV.second, TheBucket);
162 return std::make_pair(iterator(TheBucket, getBucketsEnd(), true), true);
163 }
164
165 // Inserts key,value pair into the map if the key isn't already in the map.
166 // If the key is already in the map, it returns false and doesn't update the
167 // value.
insert(std::pair<KeyT,ValueT> && KV)168 std::pair<iterator, bool> insert(std::pair<KeyT, ValueT> &&KV) {
169 BucketT *TheBucket;
170 if (LookupBucketFor(KV.first, TheBucket))
171 return std::make_pair(iterator(TheBucket, getBucketsEnd(), true),
172 false); // Already in map.
173
174 // Otherwise, insert the new element.
175 TheBucket = InsertIntoBucket(std::move(KV.first),
176 std::move(KV.second),
177 TheBucket);
178 return std::make_pair(iterator(TheBucket, getBucketsEnd(), true), true);
179 }
180
181 /// insert - Range insertion of pairs.
182 template<typename InputIt>
insert(InputIt I,InputIt E)183 void insert(InputIt I, InputIt E) {
184 for (; I != E; ++I)
185 insert(*I);
186 }
187
188
erase(const KeyT & Val)189 bool erase(const KeyT &Val) {
190 BucketT *TheBucket;
191 if (!LookupBucketFor(Val, TheBucket))
192 return false; // not in map.
193
194 TheBucket->second.~ValueT();
195 TheBucket->first = getTombstoneKey();
196 decrementNumEntries();
197 incrementNumTombstones();
198 return true;
199 }
erase(iterator I)200 void erase(iterator I) {
201 BucketT *TheBucket = &*I;
202 TheBucket->second.~ValueT();
203 TheBucket->first = getTombstoneKey();
204 decrementNumEntries();
205 incrementNumTombstones();
206 }
207
FindAndConstruct(const KeyT & Key)208 value_type& FindAndConstruct(const KeyT &Key) {
209 BucketT *TheBucket;
210 if (LookupBucketFor(Key, TheBucket))
211 return *TheBucket;
212
213 return *InsertIntoBucket(Key, ValueT(), TheBucket);
214 }
215
216 ValueT &operator[](const KeyT &Key) {
217 return FindAndConstruct(Key).second;
218 }
219
FindAndConstruct(KeyT && Key)220 value_type& FindAndConstruct(KeyT &&Key) {
221 BucketT *TheBucket;
222 if (LookupBucketFor(Key, TheBucket))
223 return *TheBucket;
224
225 return *InsertIntoBucket(std::move(Key), ValueT(), TheBucket);
226 }
227
228 ValueT &operator[](KeyT &&Key) {
229 return FindAndConstruct(std::move(Key)).second;
230 }
231
232 /// isPointerIntoBucketsArray - Return true if the specified pointer points
233 /// somewhere into the DenseMap's array of buckets (i.e. either to a key or
234 /// value in the DenseMap).
isPointerIntoBucketsArray(const void * Ptr)235 bool isPointerIntoBucketsArray(const void *Ptr) const {
236 return Ptr >= getBuckets() && Ptr < getBucketsEnd();
237 }
238
239 /// getPointerIntoBucketsArray() - Return an opaque pointer into the buckets
240 /// array. In conjunction with the previous method, this can be used to
241 /// determine whether an insertion caused the DenseMap to reallocate.
getPointerIntoBucketsArray()242 const void *getPointerIntoBucketsArray() const { return getBuckets(); }
243
244 protected:
DenseMapBase()245 DenseMapBase() {}
246
destroyAll()247 void destroyAll() {
248 if (getNumBuckets() == 0) // Nothing to do.
249 return;
250
251 const KeyT EmptyKey = getEmptyKey(), TombstoneKey = getTombstoneKey();
252 for (BucketT *P = getBuckets(), *E = getBucketsEnd(); P != E; ++P) {
253 if (!KeyInfoT::isEqual(P->first, EmptyKey) &&
254 !KeyInfoT::isEqual(P->first, TombstoneKey))
255 P->second.~ValueT();
256 P->first.~KeyT();
257 }
258
259 #ifndef NDEBUG
260 memset((void*)getBuckets(), 0x5a, sizeof(BucketT)*getNumBuckets());
261 #endif
262 }
263
initEmpty()264 void initEmpty() {
265 setNumEntries(0);
266 setNumTombstones(0);
267
268 assert((getNumBuckets() & (getNumBuckets()-1)) == 0 &&
269 "# initial buckets must be a power of two!");
270 const KeyT EmptyKey = getEmptyKey();
271 for (BucketT *B = getBuckets(), *E = getBucketsEnd(); B != E; ++B)
272 new (&B->first) KeyT(EmptyKey);
273 }
274
moveFromOldBuckets(BucketT * OldBucketsBegin,BucketT * OldBucketsEnd)275 void moveFromOldBuckets(BucketT *OldBucketsBegin, BucketT *OldBucketsEnd) {
276 initEmpty();
277
278 // Insert all the old elements.
279 const KeyT EmptyKey = getEmptyKey();
280 const KeyT TombstoneKey = getTombstoneKey();
281 for (BucketT *B = OldBucketsBegin, *E = OldBucketsEnd; B != E; ++B) {
282 if (!KeyInfoT::isEqual(B->first, EmptyKey) &&
283 !KeyInfoT::isEqual(B->first, TombstoneKey)) {
284 // Insert the key/value into the new table.
285 BucketT *DestBucket;
286 bool FoundVal = LookupBucketFor(B->first, DestBucket);
287 (void)FoundVal; // silence warning.
288 assert(!FoundVal && "Key already in new map?");
289 DestBucket->first = std::move(B->first);
290 new (&DestBucket->second) ValueT(std::move(B->second));
291 incrementNumEntries();
292
293 // Free the value.
294 B->second.~ValueT();
295 }
296 B->first.~KeyT();
297 }
298
299 #ifndef NDEBUG
300 if (OldBucketsBegin != OldBucketsEnd)
301 memset((void*)OldBucketsBegin, 0x5a,
302 sizeof(BucketT) * (OldBucketsEnd - OldBucketsBegin));
303 #endif
304 }
305
306 template <typename OtherBaseT>
copyFrom(const DenseMapBase<OtherBaseT,KeyT,ValueT,KeyInfoT> & other)307 void copyFrom(const DenseMapBase<OtherBaseT, KeyT, ValueT, KeyInfoT>& other) {
308 assert(getNumBuckets() == other.getNumBuckets());
309
310 setNumEntries(other.getNumEntries());
311 setNumTombstones(other.getNumTombstones());
312
313 if (isPodLike<KeyT>::value && isPodLike<ValueT>::value)
314 memcpy(getBuckets(), other.getBuckets(),
315 getNumBuckets() * sizeof(BucketT));
316 else
317 for (size_t i = 0; i < getNumBuckets(); ++i) {
318 new (&getBuckets()[i].first) KeyT(other.getBuckets()[i].first);
319 if (!KeyInfoT::isEqual(getBuckets()[i].first, getEmptyKey()) &&
320 !KeyInfoT::isEqual(getBuckets()[i].first, getTombstoneKey()))
321 new (&getBuckets()[i].second) ValueT(other.getBuckets()[i].second);
322 }
323 }
324
swap(DenseMapBase & RHS)325 void swap(DenseMapBase& RHS) {
326 std::swap(getNumEntries(), RHS.getNumEntries());
327 std::swap(getNumTombstones(), RHS.getNumTombstones());
328 }
329
getHashValue(const KeyT & Val)330 static unsigned getHashValue(const KeyT &Val) {
331 return KeyInfoT::getHashValue(Val);
332 }
333 template<typename LookupKeyT>
getHashValue(const LookupKeyT & Val)334 static unsigned getHashValue(const LookupKeyT &Val) {
335 return KeyInfoT::getHashValue(Val);
336 }
getEmptyKey()337 static const KeyT getEmptyKey() {
338 return KeyInfoT::getEmptyKey();
339 }
getTombstoneKey()340 static const KeyT getTombstoneKey() {
341 return KeyInfoT::getTombstoneKey();
342 }
343
344 private:
getNumEntries()345 unsigned getNumEntries() const {
346 return static_cast<const DerivedT *>(this)->getNumEntries();
347 }
setNumEntries(unsigned Num)348 void setNumEntries(unsigned Num) {
349 static_cast<DerivedT *>(this)->setNumEntries(Num);
350 }
incrementNumEntries()351 void incrementNumEntries() {
352 setNumEntries(getNumEntries() + 1);
353 }
decrementNumEntries()354 void decrementNumEntries() {
355 setNumEntries(getNumEntries() - 1);
356 }
getNumTombstones()357 unsigned getNumTombstones() const {
358 return static_cast<const DerivedT *>(this)->getNumTombstones();
359 }
setNumTombstones(unsigned Num)360 void setNumTombstones(unsigned Num) {
361 static_cast<DerivedT *>(this)->setNumTombstones(Num);
362 }
incrementNumTombstones()363 void incrementNumTombstones() {
364 setNumTombstones(getNumTombstones() + 1);
365 }
decrementNumTombstones()366 void decrementNumTombstones() {
367 setNumTombstones(getNumTombstones() - 1);
368 }
getBuckets()369 const BucketT *getBuckets() const {
370 return static_cast<const DerivedT *>(this)->getBuckets();
371 }
getBuckets()372 BucketT *getBuckets() {
373 return static_cast<DerivedT *>(this)->getBuckets();
374 }
getNumBuckets()375 unsigned getNumBuckets() const {
376 return static_cast<const DerivedT *>(this)->getNumBuckets();
377 }
getBucketsEnd()378 BucketT *getBucketsEnd() {
379 return getBuckets() + getNumBuckets();
380 }
getBucketsEnd()381 const BucketT *getBucketsEnd() const {
382 return getBuckets() + getNumBuckets();
383 }
384
grow(unsigned AtLeast)385 void grow(unsigned AtLeast) {
386 static_cast<DerivedT *>(this)->grow(AtLeast);
387 }
388
shrink_and_clear()389 void shrink_and_clear() {
390 static_cast<DerivedT *>(this)->shrink_and_clear();
391 }
392
393
InsertIntoBucket(const KeyT & Key,const ValueT & Value,BucketT * TheBucket)394 BucketT *InsertIntoBucket(const KeyT &Key, const ValueT &Value,
395 BucketT *TheBucket) {
396 TheBucket = InsertIntoBucketImpl(Key, TheBucket);
397
398 TheBucket->first = Key;
399 new (&TheBucket->second) ValueT(Value);
400 return TheBucket;
401 }
402
InsertIntoBucket(const KeyT & Key,ValueT && Value,BucketT * TheBucket)403 BucketT *InsertIntoBucket(const KeyT &Key, ValueT &&Value,
404 BucketT *TheBucket) {
405 TheBucket = InsertIntoBucketImpl(Key, TheBucket);
406
407 TheBucket->first = Key;
408 new (&TheBucket->second) ValueT(std::move(Value));
409 return TheBucket;
410 }
411
InsertIntoBucket(KeyT && Key,ValueT && Value,BucketT * TheBucket)412 BucketT *InsertIntoBucket(KeyT &&Key, ValueT &&Value, BucketT *TheBucket) {
413 TheBucket = InsertIntoBucketImpl(Key, TheBucket);
414
415 TheBucket->first = std::move(Key);
416 new (&TheBucket->second) ValueT(std::move(Value));
417 return TheBucket;
418 }
419
InsertIntoBucketImpl(const KeyT & Key,BucketT * TheBucket)420 BucketT *InsertIntoBucketImpl(const KeyT &Key, BucketT *TheBucket) {
421 // If the load of the hash table is more than 3/4, or if fewer than 1/8 of
422 // the buckets are empty (meaning that many are filled with tombstones),
423 // grow the table.
424 //
425 // The later case is tricky. For example, if we had one empty bucket with
426 // tons of tombstones, failing lookups (e.g. for insertion) would have to
427 // probe almost the entire table until it found the empty bucket. If the
428 // table completely filled with tombstones, no lookup would ever succeed,
429 // causing infinite loops in lookup.
430 unsigned NewNumEntries = getNumEntries() + 1;
431 unsigned NumBuckets = getNumBuckets();
432 if (NewNumEntries*4 >= NumBuckets*3) {
433 this->grow(NumBuckets * 2);
434 LookupBucketFor(Key, TheBucket);
435 NumBuckets = getNumBuckets();
436 } else if (NumBuckets-(NewNumEntries+getNumTombstones()) <= NumBuckets/8) {
437 this->grow(NumBuckets);
438 LookupBucketFor(Key, TheBucket);
439 }
440 assert(TheBucket);
441
442 // Only update the state after we've grown our bucket space appropriately
443 // so that when growing buckets we have self-consistent entry count.
444 incrementNumEntries();
445
446 // If we are writing over a tombstone, remember this.
447 const KeyT EmptyKey = getEmptyKey();
448 if (!KeyInfoT::isEqual(TheBucket->first, EmptyKey))
449 decrementNumTombstones();
450
451 return TheBucket;
452 }
453
454 /// LookupBucketFor - Lookup the appropriate bucket for Val, returning it in
455 /// FoundBucket. If the bucket contains the key and a value, this returns
456 /// true, otherwise it returns a bucket with an empty marker or tombstone and
457 /// returns false.
458 template<typename LookupKeyT>
LookupBucketFor(const LookupKeyT & Val,const BucketT * & FoundBucket)459 bool LookupBucketFor(const LookupKeyT &Val,
460 const BucketT *&FoundBucket) const {
461 const BucketT *BucketsPtr = getBuckets();
462 const unsigned NumBuckets = getNumBuckets();
463
464 if (NumBuckets == 0) {
465 FoundBucket = nullptr;
466 return false;
467 }
468
469 // FoundTombstone - Keep track of whether we find a tombstone while probing.
470 const BucketT *FoundTombstone = nullptr;
471 const KeyT EmptyKey = getEmptyKey();
472 const KeyT TombstoneKey = getTombstoneKey();
473 assert(!KeyInfoT::isEqual(Val, EmptyKey) &&
474 !KeyInfoT::isEqual(Val, TombstoneKey) &&
475 "Empty/Tombstone value shouldn't be inserted into map!");
476
477 unsigned BucketNo = getHashValue(Val) & (NumBuckets-1);
478 unsigned ProbeAmt = 1;
479 while (1) {
480 const BucketT *ThisBucket = BucketsPtr + BucketNo;
481 // Found Val's bucket? If so, return it.
482 if (KeyInfoT::isEqual(Val, ThisBucket->first)) {
483 FoundBucket = ThisBucket;
484 return true;
485 }
486
487 // If we found an empty bucket, the key doesn't exist in the set.
488 // Insert it and return the default value.
489 if (KeyInfoT::isEqual(ThisBucket->first, EmptyKey)) {
490 // If we've already seen a tombstone while probing, fill it in instead
491 // of the empty bucket we eventually probed to.
492 FoundBucket = FoundTombstone ? FoundTombstone : ThisBucket;
493 return false;
494 }
495
496 // If this is a tombstone, remember it. If Val ends up not in the map, we
497 // prefer to return it than something that would require more probing.
498 if (KeyInfoT::isEqual(ThisBucket->first, TombstoneKey) && !FoundTombstone)
499 FoundTombstone = ThisBucket; // Remember the first tombstone found.
500
501 // Otherwise, it's a hash collision or a tombstone, continue quadratic
502 // probing.
503 BucketNo += ProbeAmt++;
504 BucketNo &= (NumBuckets-1);
505 }
506 }
507
508 template <typename LookupKeyT>
LookupBucketFor(const LookupKeyT & Val,BucketT * & FoundBucket)509 bool LookupBucketFor(const LookupKeyT &Val, BucketT *&FoundBucket) {
510 const BucketT *ConstFoundBucket;
511 bool Result = const_cast<const DenseMapBase *>(this)
512 ->LookupBucketFor(Val, ConstFoundBucket);
513 FoundBucket = const_cast<BucketT *>(ConstFoundBucket);
514 return Result;
515 }
516
517 public:
518 /// Return the approximate size (in bytes) of the actual map.
519 /// This is just the raw memory used by DenseMap.
520 /// If entries are pointers to objects, the size of the referenced objects
521 /// are not included.
getMemorySize()522 size_t getMemorySize() const {
523 return getNumBuckets() * sizeof(BucketT);
524 }
525 };
526
527 template<typename KeyT, typename ValueT,
528 typename KeyInfoT = DenseMapInfo<KeyT> >
529 class DenseMap
530 : public DenseMapBase<DenseMap<KeyT, ValueT, KeyInfoT>,
531 KeyT, ValueT, KeyInfoT> {
532 // Lift some types from the dependent base class into this class for
533 // simplicity of referring to them.
534 typedef DenseMapBase<DenseMap, KeyT, ValueT, KeyInfoT> BaseT;
535 typedef typename BaseT::BucketT BucketT;
536 friend class DenseMapBase<DenseMap, KeyT, ValueT, KeyInfoT>;
537
538 BucketT *Buckets;
539 unsigned NumEntries;
540 unsigned NumTombstones;
541 unsigned NumBuckets;
542
543 public:
544 explicit DenseMap(unsigned NumInitBuckets = 0) {
545 init(NumInitBuckets);
546 }
547
DenseMap(const DenseMap & other)548 DenseMap(const DenseMap &other) : BaseT() {
549 init(0);
550 copyFrom(other);
551 }
552
DenseMap(DenseMap && other)553 DenseMap(DenseMap &&other) : BaseT() {
554 init(0);
555 swap(other);
556 }
557
558 template<typename InputIt>
DenseMap(const InputIt & I,const InputIt & E)559 DenseMap(const InputIt &I, const InputIt &E) {
560 init(NextPowerOf2(std::distance(I, E)));
561 this->insert(I, E);
562 }
563
~DenseMap()564 ~DenseMap() {
565 this->destroyAll();
566 operator delete(Buckets);
567 }
568
swap(DenseMap & RHS)569 void swap(DenseMap& RHS) {
570 std::swap(Buckets, RHS.Buckets);
571 std::swap(NumEntries, RHS.NumEntries);
572 std::swap(NumTombstones, RHS.NumTombstones);
573 std::swap(NumBuckets, RHS.NumBuckets);
574 }
575
576 DenseMap& operator=(const DenseMap& other) {
577 copyFrom(other);
578 return *this;
579 }
580
581 DenseMap& operator=(DenseMap &&other) {
582 this->destroyAll();
583 operator delete(Buckets);
584 init(0);
585 swap(other);
586 return *this;
587 }
588
copyFrom(const DenseMap & other)589 void copyFrom(const DenseMap& other) {
590 this->destroyAll();
591 operator delete(Buckets);
592 if (allocateBuckets(other.NumBuckets)) {
593 this->BaseT::copyFrom(other);
594 } else {
595 NumEntries = 0;
596 NumTombstones = 0;
597 }
598 }
599
init(unsigned InitBuckets)600 void init(unsigned InitBuckets) {
601 if (allocateBuckets(InitBuckets)) {
602 this->BaseT::initEmpty();
603 } else {
604 NumEntries = 0;
605 NumTombstones = 0;
606 }
607 }
608
grow(unsigned AtLeast)609 void grow(unsigned AtLeast) {
610 unsigned OldNumBuckets = NumBuckets;
611 BucketT *OldBuckets = Buckets;
612
613 allocateBuckets(std::max<unsigned>(64, static_cast<unsigned>(NextPowerOf2(AtLeast-1))));
614 assert(Buckets);
615 if (!OldBuckets) {
616 this->BaseT::initEmpty();
617 return;
618 }
619
620 this->moveFromOldBuckets(OldBuckets, OldBuckets+OldNumBuckets);
621
622 // Free the old table.
623 operator delete(OldBuckets);
624 }
625
shrink_and_clear()626 void shrink_and_clear() {
627 unsigned OldNumEntries = NumEntries;
628 this->destroyAll();
629
630 // Reduce the number of buckets.
631 unsigned NewNumBuckets = 0;
632 if (OldNumEntries)
633 NewNumBuckets = std::max(64, 1 << (Log2_32_Ceil(OldNumEntries) + 1));
634 if (NewNumBuckets == NumBuckets) {
635 this->BaseT::initEmpty();
636 return;
637 }
638
639 operator delete(Buckets);
640 init(NewNumBuckets);
641 }
642
643 private:
getNumEntries()644 unsigned getNumEntries() const {
645 return NumEntries;
646 }
setNumEntries(unsigned Num)647 void setNumEntries(unsigned Num) {
648 NumEntries = Num;
649 }
650
getNumTombstones()651 unsigned getNumTombstones() const {
652 return NumTombstones;
653 }
setNumTombstones(unsigned Num)654 void setNumTombstones(unsigned Num) {
655 NumTombstones = Num;
656 }
657
getBuckets()658 BucketT *getBuckets() const {
659 return Buckets;
660 }
661
getNumBuckets()662 unsigned getNumBuckets() const {
663 return NumBuckets;
664 }
665
allocateBuckets(unsigned Num)666 bool allocateBuckets(unsigned Num) {
667 NumBuckets = Num;
668 if (NumBuckets == 0) {
669 Buckets = nullptr;
670 return false;
671 }
672
673 Buckets = static_cast<BucketT*>(operator new(sizeof(BucketT) * NumBuckets));
674 return true;
675 }
676 };
677
678 template<typename KeyT, typename ValueT,
679 unsigned InlineBuckets = 4,
680 typename KeyInfoT = DenseMapInfo<KeyT> >
681 class SmallDenseMap
682 : public DenseMapBase<SmallDenseMap<KeyT, ValueT, InlineBuckets, KeyInfoT>,
683 KeyT, ValueT, KeyInfoT> {
684 // Lift some types from the dependent base class into this class for
685 // simplicity of referring to them.
686 typedef DenseMapBase<SmallDenseMap, KeyT, ValueT, KeyInfoT> BaseT;
687 typedef typename BaseT::BucketT BucketT;
688 friend class DenseMapBase<SmallDenseMap, KeyT, ValueT, KeyInfoT>;
689
690 unsigned Small : 1;
691 unsigned NumEntries : 31;
692 unsigned NumTombstones;
693
694 struct LargeRep {
695 BucketT *Buckets;
696 unsigned NumBuckets;
697 };
698
699 /// A "union" of an inline bucket array and the struct representing
700 /// a large bucket. This union will be discriminated by the 'Small' bit.
701 AlignedCharArrayUnion<BucketT[InlineBuckets], LargeRep> storage;
702
703 public:
704 explicit SmallDenseMap(unsigned NumInitBuckets = 0) {
705 init(NumInitBuckets);
706 }
707
SmallDenseMap(const SmallDenseMap & other)708 SmallDenseMap(const SmallDenseMap &other) : BaseT() {
709 init(0);
710 copyFrom(other);
711 }
712
SmallDenseMap(SmallDenseMap && other)713 SmallDenseMap(SmallDenseMap &&other) : BaseT() {
714 init(0);
715 swap(other);
716 }
717
718 template<typename InputIt>
SmallDenseMap(const InputIt & I,const InputIt & E)719 SmallDenseMap(const InputIt &I, const InputIt &E) {
720 init(NextPowerOf2(std::distance(I, E)));
721 this->insert(I, E);
722 }
723
~SmallDenseMap()724 ~SmallDenseMap() {
725 this->destroyAll();
726 deallocateBuckets();
727 }
728
swap(SmallDenseMap & RHS)729 void swap(SmallDenseMap& RHS) {
730 unsigned TmpNumEntries = RHS.NumEntries;
731 RHS.NumEntries = NumEntries;
732 NumEntries = TmpNumEntries;
733 std::swap(NumTombstones, RHS.NumTombstones);
734
735 const KeyT EmptyKey = this->getEmptyKey();
736 const KeyT TombstoneKey = this->getTombstoneKey();
737 if (Small && RHS.Small) {
738 // If we're swapping inline bucket arrays, we have to cope with some of
739 // the tricky bits of DenseMap's storage system: the buckets are not
740 // fully initialized. Thus we swap every key, but we may have
741 // a one-directional move of the value.
742 for (unsigned i = 0, e = InlineBuckets; i != e; ++i) {
743 BucketT *LHSB = &getInlineBuckets()[i],
744 *RHSB = &RHS.getInlineBuckets()[i];
745 bool hasLHSValue = (!KeyInfoT::isEqual(LHSB->first, EmptyKey) &&
746 !KeyInfoT::isEqual(LHSB->first, TombstoneKey));
747 bool hasRHSValue = (!KeyInfoT::isEqual(RHSB->first, EmptyKey) &&
748 !KeyInfoT::isEqual(RHSB->first, TombstoneKey));
749 if (hasLHSValue && hasRHSValue) {
750 // Swap together if we can...
751 std::swap(*LHSB, *RHSB);
752 continue;
753 }
754 // Swap separately and handle any assymetry.
755 std::swap(LHSB->first, RHSB->first);
756 if (hasLHSValue) {
757 new (&RHSB->second) ValueT(std::move(LHSB->second));
758 LHSB->second.~ValueT();
759 } else if (hasRHSValue) {
760 new (&LHSB->second) ValueT(std::move(RHSB->second));
761 RHSB->second.~ValueT();
762 }
763 }
764 return;
765 }
766 if (!Small && !RHS.Small) {
767 std::swap(getLargeRep()->Buckets, RHS.getLargeRep()->Buckets);
768 std::swap(getLargeRep()->NumBuckets, RHS.getLargeRep()->NumBuckets);
769 return;
770 }
771
772 SmallDenseMap &SmallSide = Small ? *this : RHS;
773 SmallDenseMap &LargeSide = Small ? RHS : *this;
774
775 // First stash the large side's rep and move the small side across.
776 LargeRep TmpRep = std::move(*LargeSide.getLargeRep());
777 LargeSide.getLargeRep()->~LargeRep();
778 LargeSide.Small = true;
779 // This is similar to the standard move-from-old-buckets, but the bucket
780 // count hasn't actually rotated in this case. So we have to carefully
781 // move construct the keys and values into their new locations, but there
782 // is no need to re-hash things.
783 for (unsigned i = 0, e = InlineBuckets; i != e; ++i) {
784 BucketT *NewB = &LargeSide.getInlineBuckets()[i],
785 *OldB = &SmallSide.getInlineBuckets()[i];
786 new (&NewB->first) KeyT(std::move(OldB->first));
787 OldB->first.~KeyT();
788 if (!KeyInfoT::isEqual(NewB->first, EmptyKey) &&
789 !KeyInfoT::isEqual(NewB->first, TombstoneKey)) {
790 new (&NewB->second) ValueT(std::move(OldB->second));
791 OldB->second.~ValueT();
792 }
793 }
794
795 // The hard part of moving the small buckets across is done, just move
796 // the TmpRep into its new home.
797 SmallSide.Small = false;
798 new (SmallSide.getLargeRep()) LargeRep(std::move(TmpRep));
799 }
800
801 SmallDenseMap& operator=(const SmallDenseMap& other) {
802 copyFrom(other);
803 return *this;
804 }
805
806 SmallDenseMap& operator=(SmallDenseMap &&other) {
807 this->destroyAll();
808 deallocateBuckets();
809 init(0);
810 swap(other);
811 return *this;
812 }
813
copyFrom(const SmallDenseMap & other)814 void copyFrom(const SmallDenseMap& other) {
815 this->destroyAll();
816 deallocateBuckets();
817 Small = true;
818 if (other.getNumBuckets() > InlineBuckets) {
819 Small = false;
820 new (getLargeRep()) LargeRep(allocateBuckets(other.getNumBuckets()));
821 }
822 this->BaseT::copyFrom(other);
823 }
824
init(unsigned InitBuckets)825 void init(unsigned InitBuckets) {
826 Small = true;
827 if (InitBuckets > InlineBuckets) {
828 Small = false;
829 new (getLargeRep()) LargeRep(allocateBuckets(InitBuckets));
830 }
831 this->BaseT::initEmpty();
832 }
833
grow(unsigned AtLeast)834 void grow(unsigned AtLeast) {
835 if (AtLeast >= InlineBuckets)
836 AtLeast = std::max<unsigned>(64, NextPowerOf2(AtLeast-1));
837
838 if (Small) {
839 if (AtLeast < InlineBuckets)
840 return; // Nothing to do.
841
842 // First move the inline buckets into a temporary storage.
843 AlignedCharArrayUnion<BucketT[InlineBuckets]> TmpStorage;
844 BucketT *TmpBegin = reinterpret_cast<BucketT *>(TmpStorage.buffer);
845 BucketT *TmpEnd = TmpBegin;
846
847 // Loop over the buckets, moving non-empty, non-tombstones into the
848 // temporary storage. Have the loop move the TmpEnd forward as it goes.
849 const KeyT EmptyKey = this->getEmptyKey();
850 const KeyT TombstoneKey = this->getTombstoneKey();
851 for (BucketT *P = getBuckets(), *E = P + InlineBuckets; P != E; ++P) {
852 if (!KeyInfoT::isEqual(P->first, EmptyKey) &&
853 !KeyInfoT::isEqual(P->first, TombstoneKey)) {
854 assert(size_t(TmpEnd - TmpBegin) < InlineBuckets &&
855 "Too many inline buckets!");
856 new (&TmpEnd->first) KeyT(std::move(P->first));
857 new (&TmpEnd->second) ValueT(std::move(P->second));
858 ++TmpEnd;
859 P->second.~ValueT();
860 }
861 P->first.~KeyT();
862 }
863
864 // Now make this map use the large rep, and move all the entries back
865 // into it.
866 Small = false;
867 new (getLargeRep()) LargeRep(allocateBuckets(AtLeast));
868 this->moveFromOldBuckets(TmpBegin, TmpEnd);
869 return;
870 }
871
872 LargeRep OldRep = std::move(*getLargeRep());
873 getLargeRep()->~LargeRep();
874 if (AtLeast <= InlineBuckets) {
875 Small = true;
876 } else {
877 new (getLargeRep()) LargeRep(allocateBuckets(AtLeast));
878 }
879
880 this->moveFromOldBuckets(OldRep.Buckets, OldRep.Buckets+OldRep.NumBuckets);
881
882 // Free the old table.
883 operator delete(OldRep.Buckets);
884 }
885
shrink_and_clear()886 void shrink_and_clear() {
887 unsigned OldSize = this->size();
888 this->destroyAll();
889
890 // Reduce the number of buckets.
891 unsigned NewNumBuckets = 0;
892 if (OldSize) {
893 NewNumBuckets = 1 << (Log2_32_Ceil(OldSize) + 1);
894 if (NewNumBuckets > InlineBuckets && NewNumBuckets < 64u)
895 NewNumBuckets = 64;
896 }
897 if ((Small && NewNumBuckets <= InlineBuckets) ||
898 (!Small && NewNumBuckets == getLargeRep()->NumBuckets)) {
899 this->BaseT::initEmpty();
900 return;
901 }
902
903 deallocateBuckets();
904 init(NewNumBuckets);
905 }
906
907 private:
getNumEntries()908 unsigned getNumEntries() const {
909 return NumEntries;
910 }
setNumEntries(unsigned Num)911 void setNumEntries(unsigned Num) {
912 assert(Num < INT_MAX && "Cannot support more than INT_MAX entries");
913 NumEntries = Num;
914 }
915
getNumTombstones()916 unsigned getNumTombstones() const {
917 return NumTombstones;
918 }
setNumTombstones(unsigned Num)919 void setNumTombstones(unsigned Num) {
920 NumTombstones = Num;
921 }
922
getInlineBuckets()923 const BucketT *getInlineBuckets() const {
924 assert(Small);
925 // Note that this cast does not violate aliasing rules as we assert that
926 // the memory's dynamic type is the small, inline bucket buffer, and the
927 // 'storage.buffer' static type is 'char *'.
928 return reinterpret_cast<const BucketT *>(storage.buffer);
929 }
getInlineBuckets()930 BucketT *getInlineBuckets() {
931 return const_cast<BucketT *>(
932 const_cast<const SmallDenseMap *>(this)->getInlineBuckets());
933 }
getLargeRep()934 const LargeRep *getLargeRep() const {
935 assert(!Small);
936 // Note, same rule about aliasing as with getInlineBuckets.
937 return reinterpret_cast<const LargeRep *>(storage.buffer);
938 }
getLargeRep()939 LargeRep *getLargeRep() {
940 return const_cast<LargeRep *>(
941 const_cast<const SmallDenseMap *>(this)->getLargeRep());
942 }
943
getBuckets()944 const BucketT *getBuckets() const {
945 return Small ? getInlineBuckets() : getLargeRep()->Buckets;
946 }
getBuckets()947 BucketT *getBuckets() {
948 return const_cast<BucketT *>(
949 const_cast<const SmallDenseMap *>(this)->getBuckets());
950 }
getNumBuckets()951 unsigned getNumBuckets() const {
952 return Small ? InlineBuckets : getLargeRep()->NumBuckets;
953 }
954
deallocateBuckets()955 void deallocateBuckets() {
956 if (Small)
957 return;
958
959 operator delete(getLargeRep()->Buckets);
960 getLargeRep()->~LargeRep();
961 }
962
allocateBuckets(unsigned Num)963 LargeRep allocateBuckets(unsigned Num) {
964 assert(Num > InlineBuckets && "Must allocate more buckets than are inline");
965 LargeRep Rep = {
966 static_cast<BucketT*>(operator new(sizeof(BucketT) * Num)), Num
967 };
968 return Rep;
969 }
970 };
971
972 template<typename KeyT, typename ValueT,
973 typename KeyInfoT, bool IsConst>
974 class DenseMapIterator {
975 typedef std::pair<KeyT, ValueT> Bucket;
976 typedef DenseMapIterator<KeyT, ValueT,
977 KeyInfoT, true> ConstIterator;
978 friend class DenseMapIterator<KeyT, ValueT, KeyInfoT, true>;
979 public:
980 typedef ptrdiff_t difference_type;
981 typedef typename std::conditional<IsConst, const Bucket, Bucket>::type
982 value_type;
983 typedef value_type *pointer;
984 typedef value_type &reference;
985 typedef std::forward_iterator_tag iterator_category;
986 private:
987 pointer Ptr, End;
988 public:
DenseMapIterator()989 DenseMapIterator() : Ptr(nullptr), End(nullptr) {}
990
991 DenseMapIterator(pointer Pos, pointer E, bool NoAdvance = false)
Ptr(Pos)992 : Ptr(Pos), End(E) {
993 if (!NoAdvance) AdvancePastEmptyBuckets();
994 }
995
996 // If IsConst is true this is a converting constructor from iterator to
997 // const_iterator and the default copy constructor is used.
998 // Otherwise this is a copy constructor for iterator.
DenseMapIterator(const DenseMapIterator<KeyT,ValueT,KeyInfoT,false> & I)999 DenseMapIterator(const DenseMapIterator<KeyT, ValueT,
1000 KeyInfoT, false>& I)
1001 : Ptr(I.Ptr), End(I.End) {}
1002
1003 reference operator*() const {
1004 return *Ptr;
1005 }
1006 pointer operator->() const {
1007 return Ptr;
1008 }
1009
1010 bool operator==(const ConstIterator &RHS) const {
1011 return Ptr == RHS.operator->();
1012 }
1013 bool operator!=(const ConstIterator &RHS) const {
1014 return Ptr != RHS.operator->();
1015 }
1016
1017 inline DenseMapIterator& operator++() { // Preincrement
1018 ++Ptr;
1019 AdvancePastEmptyBuckets();
1020 return *this;
1021 }
1022 DenseMapIterator operator++(int) { // Postincrement
1023 DenseMapIterator tmp = *this; ++*this; return tmp;
1024 }
1025
1026 private:
AdvancePastEmptyBuckets()1027 void AdvancePastEmptyBuckets() {
1028 const KeyT Empty = KeyInfoT::getEmptyKey();
1029 const KeyT Tombstone = KeyInfoT::getTombstoneKey();
1030
1031 while (Ptr != End &&
1032 (KeyInfoT::isEqual(Ptr->first, Empty) ||
1033 KeyInfoT::isEqual(Ptr->first, Tombstone)))
1034 ++Ptr;
1035 }
1036 };
1037
1038 template<typename KeyT, typename ValueT, typename KeyInfoT>
1039 static inline size_t
capacity_in_bytes(const DenseMap<KeyT,ValueT,KeyInfoT> & X)1040 capacity_in_bytes(const DenseMap<KeyT, ValueT, KeyInfoT> &X) {
1041 return X.getMemorySize();
1042 }
1043
1044 } // end namespace llvm
1045
1046 #endif
1047