1 /*
2 ** 2007 October 14
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains the C functions that implement a memory
13 ** allocation subsystem for use by SQLite.
14 **
15 ** This version of the memory allocation subsystem omits all
16 ** use of malloc(). The application gives SQLite a block of memory
17 ** before calling sqlite3_initialize() from which allocations
18 ** are made and returned by the xMalloc() and xRealloc()
19 ** implementations. Once sqlite3_initialize() has been called,
20 ** the amount of memory available to SQLite is fixed and cannot
21 ** be changed.
22 **
23 ** This version of the memory allocation subsystem is included
24 ** in the build only if SQLITE_ENABLE_MEMSYS5 is defined.
25 **
26 ** This memory allocator uses the following algorithm:
27 **
28 ** 1. All memory allocations sizes are rounded up to a power of 2.
29 **
30 ** 2. If two adjacent free blocks are the halves of a larger block,
31 ** then the two blocks are coalesed into the single larger block.
32 **
33 ** 3. New memory is allocated from the first available free block.
34 **
35 ** This algorithm is described in: J. M. Robson. "Bounds for Some Functions
36 ** Concerning Dynamic Storage Allocation". Journal of the Association for
37 ** Computing Machinery, Volume 21, Number 8, July 1974, pages 491-499.
38 **
39 ** Let n be the size of the largest allocation divided by the minimum
40 ** allocation size (after rounding all sizes up to a power of 2.) Let M
41 ** be the maximum amount of memory ever outstanding at one time. Let
42 ** N be the total amount of memory available for allocation. Robson
43 ** proved that this memory allocator will never breakdown due to
44 ** fragmentation as long as the following constraint holds:
45 **
46 ** N >= M*(1 + log2(n)/2) - n + 1
47 **
48 ** The sqlite3_status() logic tracks the maximum values of n and M so
49 ** that an application can, at any time, verify this constraint.
50 */
51 #include "sqliteInt.h"
52
53 /*
54 ** This version of the memory allocator is used only when
55 ** SQLITE_ENABLE_MEMSYS5 is defined.
56 */
57 #ifdef SQLITE_ENABLE_MEMSYS5
58
59 /*
60 ** A minimum allocation is an instance of the following structure.
61 ** Larger allocations are an array of these structures where the
62 ** size of the array is a power of 2.
63 **
64 ** The size of this object must be a power of two. That fact is
65 ** verified in memsys5Init().
66 */
67 typedef struct Mem5Link Mem5Link;
68 struct Mem5Link {
69 int next; /* Index of next free chunk */
70 int prev; /* Index of previous free chunk */
71 };
72
73 /*
74 ** Maximum size of any allocation is ((1<<LOGMAX)*mem5.szAtom). Since
75 ** mem5.szAtom is always at least 8 and 32-bit integers are used,
76 ** it is not actually possible to reach this limit.
77 */
78 #define LOGMAX 30
79
80 /*
81 ** Masks used for mem5.aCtrl[] elements.
82 */
83 #define CTRL_LOGSIZE 0x1f /* Log2 Size of this block */
84 #define CTRL_FREE 0x20 /* True if not checked out */
85
86 /*
87 ** All of the static variables used by this module are collected
88 ** into a single structure named "mem5". This is to keep the
89 ** static variables organized and to reduce namespace pollution
90 ** when this module is combined with other in the amalgamation.
91 */
92 static SQLITE_WSD struct Mem5Global {
93 /*
94 ** Memory available for allocation
95 */
96 int szAtom; /* Smallest possible allocation in bytes */
97 int nBlock; /* Number of szAtom sized blocks in zPool */
98 u8 *zPool; /* Memory available to be allocated */
99
100 /*
101 ** Mutex to control access to the memory allocation subsystem.
102 */
103 sqlite3_mutex *mutex;
104
105 /*
106 ** Performance statistics
107 */
108 u64 nAlloc; /* Total number of calls to malloc */
109 u64 totalAlloc; /* Total of all malloc calls - includes internal frag */
110 u64 totalExcess; /* Total internal fragmentation */
111 u32 currentOut; /* Current checkout, including internal fragmentation */
112 u32 currentCount; /* Current number of distinct checkouts */
113 u32 maxOut; /* Maximum instantaneous currentOut */
114 u32 maxCount; /* Maximum instantaneous currentCount */
115 u32 maxRequest; /* Largest allocation (exclusive of internal frag) */
116
117 /*
118 ** Lists of free blocks. aiFreelist[0] is a list of free blocks of
119 ** size mem5.szAtom. aiFreelist[1] holds blocks of size szAtom*2.
120 ** and so forth.
121 */
122 int aiFreelist[LOGMAX+1];
123
124 /*
125 ** Space for tracking which blocks are checked out and the size
126 ** of each block. One byte per block.
127 */
128 u8 *aCtrl;
129
130 } mem5;
131
132 /*
133 ** Access the static variable through a macro for SQLITE_OMIT_WSD
134 */
135 #define mem5 GLOBAL(struct Mem5Global, mem5)
136
137 /*
138 ** Assuming mem5.zPool is divided up into an array of Mem5Link
139 ** structures, return a pointer to the idx-th such lik.
140 */
141 #define MEM5LINK(idx) ((Mem5Link *)(&mem5.zPool[(idx)*mem5.szAtom]))
142
143 /*
144 ** Unlink the chunk at mem5.aPool[i] from list it is currently
145 ** on. It should be found on mem5.aiFreelist[iLogsize].
146 */
memsys5Unlink(int i,int iLogsize)147 static void memsys5Unlink(int i, int iLogsize){
148 int next, prev;
149 assert( i>=0 && i<mem5.nBlock );
150 assert( iLogsize>=0 && iLogsize<=LOGMAX );
151 assert( (mem5.aCtrl[i] & CTRL_LOGSIZE)==iLogsize );
152
153 next = MEM5LINK(i)->next;
154 prev = MEM5LINK(i)->prev;
155 if( prev<0 ){
156 mem5.aiFreelist[iLogsize] = next;
157 }else{
158 MEM5LINK(prev)->next = next;
159 }
160 if( next>=0 ){
161 MEM5LINK(next)->prev = prev;
162 }
163 }
164
165 /*
166 ** Link the chunk at mem5.aPool[i] so that is on the iLogsize
167 ** free list.
168 */
memsys5Link(int i,int iLogsize)169 static void memsys5Link(int i, int iLogsize){
170 int x;
171 assert( sqlite3_mutex_held(mem5.mutex) );
172 assert( i>=0 && i<mem5.nBlock );
173 assert( iLogsize>=0 && iLogsize<=LOGMAX );
174 assert( (mem5.aCtrl[i] & CTRL_LOGSIZE)==iLogsize );
175
176 x = MEM5LINK(i)->next = mem5.aiFreelist[iLogsize];
177 MEM5LINK(i)->prev = -1;
178 if( x>=0 ){
179 assert( x<mem5.nBlock );
180 MEM5LINK(x)->prev = i;
181 }
182 mem5.aiFreelist[iLogsize] = i;
183 }
184
185 /*
186 ** If the STATIC_MEM mutex is not already held, obtain it now. The mutex
187 ** will already be held (obtained by code in malloc.c) if
188 ** sqlite3GlobalConfig.bMemStat is true.
189 */
memsys5Enter(void)190 static void memsys5Enter(void){
191 sqlite3_mutex_enter(mem5.mutex);
192 }
memsys5Leave(void)193 static void memsys5Leave(void){
194 sqlite3_mutex_leave(mem5.mutex);
195 }
196
197 /*
198 ** Return the size of an outstanding allocation, in bytes. The
199 ** size returned omits the 8-byte header overhead. This only
200 ** works for chunks that are currently checked out.
201 */
memsys5Size(void * p)202 static int memsys5Size(void *p){
203 int iSize = 0;
204 if( p ){
205 int i = ((u8 *)p-mem5.zPool)/mem5.szAtom;
206 assert( i>=0 && i<mem5.nBlock );
207 iSize = mem5.szAtom * (1 << (mem5.aCtrl[i]&CTRL_LOGSIZE));
208 }
209 return iSize;
210 }
211
212 /*
213 ** Find the first entry on the freelist iLogsize. Unlink that
214 ** entry and return its index.
215 */
memsys5UnlinkFirst(int iLogsize)216 static int memsys5UnlinkFirst(int iLogsize){
217 int i;
218 int iFirst;
219
220 assert( iLogsize>=0 && iLogsize<=LOGMAX );
221 i = iFirst = mem5.aiFreelist[iLogsize];
222 assert( iFirst>=0 );
223 while( i>0 ){
224 if( i<iFirst ) iFirst = i;
225 i = MEM5LINK(i)->next;
226 }
227 memsys5Unlink(iFirst, iLogsize);
228 return iFirst;
229 }
230
231 /*
232 ** Return a block of memory of at least nBytes in size.
233 ** Return NULL if unable. Return NULL if nBytes==0.
234 **
235 ** The caller guarantees that nByte positive.
236 **
237 ** The caller has obtained a mutex prior to invoking this
238 ** routine so there is never any chance that two or more
239 ** threads can be in this routine at the same time.
240 */
memsys5MallocUnsafe(int nByte)241 static void *memsys5MallocUnsafe(int nByte){
242 int i; /* Index of a mem5.aPool[] slot */
243 int iBin; /* Index into mem5.aiFreelist[] */
244 int iFullSz; /* Size of allocation rounded up to power of 2 */
245 int iLogsize; /* Log2 of iFullSz/POW2_MIN */
246
247 /* nByte must be a positive */
248 assert( nByte>0 );
249
250 /* Keep track of the maximum allocation request. Even unfulfilled
251 ** requests are counted */
252 if( (u32)nByte>mem5.maxRequest ){
253 mem5.maxRequest = nByte;
254 }
255
256 /* Abort if the requested allocation size is larger than the largest
257 ** power of two that we can represent using 32-bit signed integers.
258 */
259 if( nByte > 0x40000000 ){
260 return 0;
261 }
262
263 /* Round nByte up to the next valid power of two */
264 for(iFullSz=mem5.szAtom, iLogsize=0; iFullSz<nByte; iFullSz *= 2, iLogsize++){}
265
266 /* Make sure mem5.aiFreelist[iLogsize] contains at least one free
267 ** block. If not, then split a block of the next larger power of
268 ** two in order to create a new free block of size iLogsize.
269 */
270 for(iBin=iLogsize; mem5.aiFreelist[iBin]<0 && iBin<=LOGMAX; iBin++){}
271 if( iBin>LOGMAX ){
272 testcase( sqlite3GlobalConfig.xLog!=0 );
273 sqlite3_log(SQLITE_NOMEM, "failed to allocate %u bytes", nByte);
274 return 0;
275 }
276 i = memsys5UnlinkFirst(iBin);
277 while( iBin>iLogsize ){
278 int newSize;
279
280 iBin--;
281 newSize = 1 << iBin;
282 mem5.aCtrl[i+newSize] = CTRL_FREE | iBin;
283 memsys5Link(i+newSize, iBin);
284 }
285 mem5.aCtrl[i] = iLogsize;
286
287 /* Update allocator performance statistics. */
288 mem5.nAlloc++;
289 mem5.totalAlloc += iFullSz;
290 mem5.totalExcess += iFullSz - nByte;
291 mem5.currentCount++;
292 mem5.currentOut += iFullSz;
293 if( mem5.maxCount<mem5.currentCount ) mem5.maxCount = mem5.currentCount;
294 if( mem5.maxOut<mem5.currentOut ) mem5.maxOut = mem5.currentOut;
295
296 /* Return a pointer to the allocated memory. */
297 return (void*)&mem5.zPool[i*mem5.szAtom];
298 }
299
300 /*
301 ** Free an outstanding memory allocation.
302 */
memsys5FreeUnsafe(void * pOld)303 static void memsys5FreeUnsafe(void *pOld){
304 u32 size, iLogsize;
305 int iBlock;
306
307 /* Set iBlock to the index of the block pointed to by pOld in
308 ** the array of mem5.szAtom byte blocks pointed to by mem5.zPool.
309 */
310 iBlock = ((u8 *)pOld-mem5.zPool)/mem5.szAtom;
311
312 /* Check that the pointer pOld points to a valid, non-free block. */
313 assert( iBlock>=0 && iBlock<mem5.nBlock );
314 assert( ((u8 *)pOld-mem5.zPool)%mem5.szAtom==0 );
315 assert( (mem5.aCtrl[iBlock] & CTRL_FREE)==0 );
316
317 iLogsize = mem5.aCtrl[iBlock] & CTRL_LOGSIZE;
318 size = 1<<iLogsize;
319 assert( iBlock+size-1<(u32)mem5.nBlock );
320
321 mem5.aCtrl[iBlock] |= CTRL_FREE;
322 mem5.aCtrl[iBlock+size-1] |= CTRL_FREE;
323 assert( mem5.currentCount>0 );
324 assert( mem5.currentOut>=(size*mem5.szAtom) );
325 mem5.currentCount--;
326 mem5.currentOut -= size*mem5.szAtom;
327 assert( mem5.currentOut>0 || mem5.currentCount==0 );
328 assert( mem5.currentCount>0 || mem5.currentOut==0 );
329
330 mem5.aCtrl[iBlock] = CTRL_FREE | iLogsize;
331 while( ALWAYS(iLogsize<LOGMAX) ){
332 int iBuddy;
333 if( (iBlock>>iLogsize) & 1 ){
334 iBuddy = iBlock - size;
335 }else{
336 iBuddy = iBlock + size;
337 }
338 assert( iBuddy>=0 );
339 if( (iBuddy+(1<<iLogsize))>mem5.nBlock ) break;
340 if( mem5.aCtrl[iBuddy]!=(CTRL_FREE | iLogsize) ) break;
341 memsys5Unlink(iBuddy, iLogsize);
342 iLogsize++;
343 if( iBuddy<iBlock ){
344 mem5.aCtrl[iBuddy] = CTRL_FREE | iLogsize;
345 mem5.aCtrl[iBlock] = 0;
346 iBlock = iBuddy;
347 }else{
348 mem5.aCtrl[iBlock] = CTRL_FREE | iLogsize;
349 mem5.aCtrl[iBuddy] = 0;
350 }
351 size *= 2;
352 }
353 memsys5Link(iBlock, iLogsize);
354 }
355
356 /*
357 ** Allocate nBytes of memory
358 */
memsys5Malloc(int nBytes)359 static void *memsys5Malloc(int nBytes){
360 sqlite3_int64 *p = 0;
361 if( nBytes>0 ){
362 memsys5Enter();
363 p = memsys5MallocUnsafe(nBytes);
364 memsys5Leave();
365 }
366 return (void*)p;
367 }
368
369 /*
370 ** Free memory.
371 **
372 ** The outer layer memory allocator prevents this routine from
373 ** being called with pPrior==0.
374 */
memsys5Free(void * pPrior)375 static void memsys5Free(void *pPrior){
376 assert( pPrior!=0 );
377 memsys5Enter();
378 memsys5FreeUnsafe(pPrior);
379 memsys5Leave();
380 }
381
382 /*
383 ** Change the size of an existing memory allocation.
384 **
385 ** The outer layer memory allocator prevents this routine from
386 ** being called with pPrior==0.
387 **
388 ** nBytes is always a value obtained from a prior call to
389 ** memsys5Round(). Hence nBytes is always a non-negative power
390 ** of two. If nBytes==0 that means that an oversize allocation
391 ** (an allocation larger than 0x40000000) was requested and this
392 ** routine should return 0 without freeing pPrior.
393 */
memsys5Realloc(void * pPrior,int nBytes)394 static void *memsys5Realloc(void *pPrior, int nBytes){
395 int nOld;
396 void *p;
397 assert( pPrior!=0 );
398 assert( (nBytes&(nBytes-1))==0 ); /* EV: R-46199-30249 */
399 assert( nBytes>=0 );
400 if( nBytes==0 ){
401 return 0;
402 }
403 nOld = memsys5Size(pPrior);
404 if( nBytes<=nOld ){
405 return pPrior;
406 }
407 memsys5Enter();
408 p = memsys5MallocUnsafe(nBytes);
409 if( p ){
410 memcpy(p, pPrior, nOld);
411 memsys5FreeUnsafe(pPrior);
412 }
413 memsys5Leave();
414 return p;
415 }
416
417 /*
418 ** Round up a request size to the next valid allocation size. If
419 ** the allocation is too large to be handled by this allocation system,
420 ** return 0.
421 **
422 ** All allocations must be a power of two and must be expressed by a
423 ** 32-bit signed integer. Hence the largest allocation is 0x40000000
424 ** or 1073741824 bytes.
425 */
memsys5Roundup(int n)426 static int memsys5Roundup(int n){
427 int iFullSz;
428 if( n > 0x40000000 ) return 0;
429 for(iFullSz=mem5.szAtom; iFullSz<n; iFullSz *= 2);
430 return iFullSz;
431 }
432
433 /*
434 ** Return the ceiling of the logarithm base 2 of iValue.
435 **
436 ** Examples: memsys5Log(1) -> 0
437 ** memsys5Log(2) -> 1
438 ** memsys5Log(4) -> 2
439 ** memsys5Log(5) -> 3
440 ** memsys5Log(8) -> 3
441 ** memsys5Log(9) -> 4
442 */
memsys5Log(int iValue)443 static int memsys5Log(int iValue){
444 int iLog;
445 for(iLog=0; (iLog<(int)((sizeof(int)*8)-1)) && (1<<iLog)<iValue; iLog++);
446 return iLog;
447 }
448
449 /*
450 ** Initialize the memory allocator.
451 **
452 ** This routine is not threadsafe. The caller must be holding a mutex
453 ** to prevent multiple threads from entering at the same time.
454 */
memsys5Init(void * NotUsed)455 static int memsys5Init(void *NotUsed){
456 int ii; /* Loop counter */
457 int nByte; /* Number of bytes of memory available to this allocator */
458 u8 *zByte; /* Memory usable by this allocator */
459 int nMinLog; /* Log base 2 of minimum allocation size in bytes */
460 int iOffset; /* An offset into mem5.aCtrl[] */
461
462 UNUSED_PARAMETER(NotUsed);
463
464 /* For the purposes of this routine, disable the mutex */
465 mem5.mutex = 0;
466
467 /* The size of a Mem5Link object must be a power of two. Verify that
468 ** this is case.
469 */
470 assert( (sizeof(Mem5Link)&(sizeof(Mem5Link)-1))==0 );
471
472 nByte = sqlite3GlobalConfig.nHeap;
473 zByte = (u8*)sqlite3GlobalConfig.pHeap;
474 assert( zByte!=0 ); /* sqlite3_config() does not allow otherwise */
475
476 /* boundaries on sqlite3GlobalConfig.mnReq are enforced in sqlite3_config() */
477 nMinLog = memsys5Log(sqlite3GlobalConfig.mnReq);
478 mem5.szAtom = (1<<nMinLog);
479 while( (int)sizeof(Mem5Link)>mem5.szAtom ){
480 mem5.szAtom = mem5.szAtom << 1;
481 }
482
483 mem5.nBlock = (nByte / (mem5.szAtom+sizeof(u8)));
484 mem5.zPool = zByte;
485 mem5.aCtrl = (u8 *)&mem5.zPool[mem5.nBlock*mem5.szAtom];
486
487 for(ii=0; ii<=LOGMAX; ii++){
488 mem5.aiFreelist[ii] = -1;
489 }
490
491 iOffset = 0;
492 for(ii=LOGMAX; ii>=0; ii--){
493 int nAlloc = (1<<ii);
494 if( (iOffset+nAlloc)<=mem5.nBlock ){
495 mem5.aCtrl[iOffset] = ii | CTRL_FREE;
496 memsys5Link(iOffset, ii);
497 iOffset += nAlloc;
498 }
499 assert((iOffset+nAlloc)>mem5.nBlock);
500 }
501
502 /* If a mutex is required for normal operation, allocate one */
503 if( sqlite3GlobalConfig.bMemstat==0 ){
504 mem5.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM);
505 }
506
507 return SQLITE_OK;
508 }
509
510 /*
511 ** Deinitialize this module.
512 */
memsys5Shutdown(void * NotUsed)513 static void memsys5Shutdown(void *NotUsed){
514 UNUSED_PARAMETER(NotUsed);
515 mem5.mutex = 0;
516 return;
517 }
518
519 #ifdef SQLITE_TEST
520 /*
521 ** Open the file indicated and write a log of all unfreed memory
522 ** allocations into that log.
523 */
sqlite3Memsys5Dump(const char * zFilename)524 void sqlite3Memsys5Dump(const char *zFilename){
525 FILE *out;
526 int i, j, n;
527 int nMinLog;
528
529 if( zFilename==0 || zFilename[0]==0 ){
530 out = stdout;
531 }else{
532 out = fopen(zFilename, "w");
533 if( out==0 ){
534 fprintf(stderr, "** Unable to output memory debug output log: %s **\n",
535 zFilename);
536 return;
537 }
538 }
539 memsys5Enter();
540 nMinLog = memsys5Log(mem5.szAtom);
541 for(i=0; i<=LOGMAX && i+nMinLog<32; i++){
542 for(n=0, j=mem5.aiFreelist[i]; j>=0; j = MEM5LINK(j)->next, n++){}
543 fprintf(out, "freelist items of size %d: %d\n", mem5.szAtom << i, n);
544 }
545 fprintf(out, "mem5.nAlloc = %llu\n", mem5.nAlloc);
546 fprintf(out, "mem5.totalAlloc = %llu\n", mem5.totalAlloc);
547 fprintf(out, "mem5.totalExcess = %llu\n", mem5.totalExcess);
548 fprintf(out, "mem5.currentOut = %u\n", mem5.currentOut);
549 fprintf(out, "mem5.currentCount = %u\n", mem5.currentCount);
550 fprintf(out, "mem5.maxOut = %u\n", mem5.maxOut);
551 fprintf(out, "mem5.maxCount = %u\n", mem5.maxCount);
552 fprintf(out, "mem5.maxRequest = %u\n", mem5.maxRequest);
553 memsys5Leave();
554 if( out==stdout ){
555 fflush(stdout);
556 }else{
557 fclose(out);
558 }
559 }
560 #endif
561
562 /*
563 ** This routine is the only routine in this file with external
564 ** linkage. It returns a pointer to a static sqlite3_mem_methods
565 ** struct populated with the memsys5 methods.
566 */
sqlite3MemGetMemsys5(void)567 const sqlite3_mem_methods *sqlite3MemGetMemsys5(void){
568 static const sqlite3_mem_methods memsys5Methods = {
569 memsys5Malloc,
570 memsys5Free,
571 memsys5Realloc,
572 memsys5Size,
573 memsys5Roundup,
574 memsys5Init,
575 memsys5Shutdown,
576 0
577 };
578 return &memsys5Methods;
579 }
580
581 #endif /* SQLITE_ENABLE_MEMSYS5 */
582