• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2 ** 2007 October 14
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains the C functions that implement a memory
13 ** allocation subsystem for use by SQLite.
14 **
15 ** This version of the memory allocation subsystem omits all
16 ** use of malloc(). The application gives SQLite a block of memory
17 ** before calling sqlite3_initialize() from which allocations
18 ** are made and returned by the xMalloc() and xRealloc()
19 ** implementations. Once sqlite3_initialize() has been called,
20 ** the amount of memory available to SQLite is fixed and cannot
21 ** be changed.
22 **
23 ** This version of the memory allocation subsystem is included
24 ** in the build only if SQLITE_ENABLE_MEMSYS5 is defined.
25 **
26 ** This memory allocator uses the following algorithm:
27 **
28 **   1.  All memory allocations sizes are rounded up to a power of 2.
29 **
30 **   2.  If two adjacent free blocks are the halves of a larger block,
31 **       then the two blocks are coalesed into the single larger block.
32 **
33 **   3.  New memory is allocated from the first available free block.
34 **
35 ** This algorithm is described in: J. M. Robson. "Bounds for Some Functions
36 ** Concerning Dynamic Storage Allocation". Journal of the Association for
37 ** Computing Machinery, Volume 21, Number 8, July 1974, pages 491-499.
38 **
39 ** Let n be the size of the largest allocation divided by the minimum
40 ** allocation size (after rounding all sizes up to a power of 2.)  Let M
41 ** be the maximum amount of memory ever outstanding at one time.  Let
42 ** N be the total amount of memory available for allocation.  Robson
43 ** proved that this memory allocator will never breakdown due to
44 ** fragmentation as long as the following constraint holds:
45 **
46 **      N >=  M*(1 + log2(n)/2) - n + 1
47 **
48 ** The sqlite3_status() logic tracks the maximum values of n and M so
49 ** that an application can, at any time, verify this constraint.
50 */
51 #include "sqliteInt.h"
52 
53 /*
54 ** This version of the memory allocator is used only when
55 ** SQLITE_ENABLE_MEMSYS5 is defined.
56 */
57 #ifdef SQLITE_ENABLE_MEMSYS5
58 
59 /*
60 ** A minimum allocation is an instance of the following structure.
61 ** Larger allocations are an array of these structures where the
62 ** size of the array is a power of 2.
63 **
64 ** The size of this object must be a power of two.  That fact is
65 ** verified in memsys5Init().
66 */
67 typedef struct Mem5Link Mem5Link;
68 struct Mem5Link {
69   int next;       /* Index of next free chunk */
70   int prev;       /* Index of previous free chunk */
71 };
72 
73 /*
74 ** Maximum size of any allocation is ((1<<LOGMAX)*mem5.szAtom). Since
75 ** mem5.szAtom is always at least 8 and 32-bit integers are used,
76 ** it is not actually possible to reach this limit.
77 */
78 #define LOGMAX 30
79 
80 /*
81 ** Masks used for mem5.aCtrl[] elements.
82 */
83 #define CTRL_LOGSIZE  0x1f    /* Log2 Size of this block */
84 #define CTRL_FREE     0x20    /* True if not checked out */
85 
86 /*
87 ** All of the static variables used by this module are collected
88 ** into a single structure named "mem5".  This is to keep the
89 ** static variables organized and to reduce namespace pollution
90 ** when this module is combined with other in the amalgamation.
91 */
92 static SQLITE_WSD struct Mem5Global {
93   /*
94   ** Memory available for allocation
95   */
96   int szAtom;      /* Smallest possible allocation in bytes */
97   int nBlock;      /* Number of szAtom sized blocks in zPool */
98   u8 *zPool;       /* Memory available to be allocated */
99 
100   /*
101   ** Mutex to control access to the memory allocation subsystem.
102   */
103   sqlite3_mutex *mutex;
104 
105   /*
106   ** Performance statistics
107   */
108   u64 nAlloc;         /* Total number of calls to malloc */
109   u64 totalAlloc;     /* Total of all malloc calls - includes internal frag */
110   u64 totalExcess;    /* Total internal fragmentation */
111   u32 currentOut;     /* Current checkout, including internal fragmentation */
112   u32 currentCount;   /* Current number of distinct checkouts */
113   u32 maxOut;         /* Maximum instantaneous currentOut */
114   u32 maxCount;       /* Maximum instantaneous currentCount */
115   u32 maxRequest;     /* Largest allocation (exclusive of internal frag) */
116 
117   /*
118   ** Lists of free blocks.  aiFreelist[0] is a list of free blocks of
119   ** size mem5.szAtom.  aiFreelist[1] holds blocks of size szAtom*2.
120   ** and so forth.
121   */
122   int aiFreelist[LOGMAX+1];
123 
124   /*
125   ** Space for tracking which blocks are checked out and the size
126   ** of each block.  One byte per block.
127   */
128   u8 *aCtrl;
129 
130 } mem5;
131 
132 /*
133 ** Access the static variable through a macro for SQLITE_OMIT_WSD
134 */
135 #define mem5 GLOBAL(struct Mem5Global, mem5)
136 
137 /*
138 ** Assuming mem5.zPool is divided up into an array of Mem5Link
139 ** structures, return a pointer to the idx-th such lik.
140 */
141 #define MEM5LINK(idx) ((Mem5Link *)(&mem5.zPool[(idx)*mem5.szAtom]))
142 
143 /*
144 ** Unlink the chunk at mem5.aPool[i] from list it is currently
145 ** on.  It should be found on mem5.aiFreelist[iLogsize].
146 */
memsys5Unlink(int i,int iLogsize)147 static void memsys5Unlink(int i, int iLogsize){
148   int next, prev;
149   assert( i>=0 && i<mem5.nBlock );
150   assert( iLogsize>=0 && iLogsize<=LOGMAX );
151   assert( (mem5.aCtrl[i] & CTRL_LOGSIZE)==iLogsize );
152 
153   next = MEM5LINK(i)->next;
154   prev = MEM5LINK(i)->prev;
155   if( prev<0 ){
156     mem5.aiFreelist[iLogsize] = next;
157   }else{
158     MEM5LINK(prev)->next = next;
159   }
160   if( next>=0 ){
161     MEM5LINK(next)->prev = prev;
162   }
163 }
164 
165 /*
166 ** Link the chunk at mem5.aPool[i] so that is on the iLogsize
167 ** free list.
168 */
memsys5Link(int i,int iLogsize)169 static void memsys5Link(int i, int iLogsize){
170   int x;
171   assert( sqlite3_mutex_held(mem5.mutex) );
172   assert( i>=0 && i<mem5.nBlock );
173   assert( iLogsize>=0 && iLogsize<=LOGMAX );
174   assert( (mem5.aCtrl[i] & CTRL_LOGSIZE)==iLogsize );
175 
176   x = MEM5LINK(i)->next = mem5.aiFreelist[iLogsize];
177   MEM5LINK(i)->prev = -1;
178   if( x>=0 ){
179     assert( x<mem5.nBlock );
180     MEM5LINK(x)->prev = i;
181   }
182   mem5.aiFreelist[iLogsize] = i;
183 }
184 
185 /*
186 ** If the STATIC_MEM mutex is not already held, obtain it now. The mutex
187 ** will already be held (obtained by code in malloc.c) if
188 ** sqlite3GlobalConfig.bMemStat is true.
189 */
memsys5Enter(void)190 static void memsys5Enter(void){
191   sqlite3_mutex_enter(mem5.mutex);
192 }
memsys5Leave(void)193 static void memsys5Leave(void){
194   sqlite3_mutex_leave(mem5.mutex);
195 }
196 
197 /*
198 ** Return the size of an outstanding allocation, in bytes.  The
199 ** size returned omits the 8-byte header overhead.  This only
200 ** works for chunks that are currently checked out.
201 */
memsys5Size(void * p)202 static int memsys5Size(void *p){
203   int iSize = 0;
204   if( p ){
205     int i = ((u8 *)p-mem5.zPool)/mem5.szAtom;
206     assert( i>=0 && i<mem5.nBlock );
207     iSize = mem5.szAtom * (1 << (mem5.aCtrl[i]&CTRL_LOGSIZE));
208   }
209   return iSize;
210 }
211 
212 /*
213 ** Find the first entry on the freelist iLogsize.  Unlink that
214 ** entry and return its index.
215 */
memsys5UnlinkFirst(int iLogsize)216 static int memsys5UnlinkFirst(int iLogsize){
217   int i;
218   int iFirst;
219 
220   assert( iLogsize>=0 && iLogsize<=LOGMAX );
221   i = iFirst = mem5.aiFreelist[iLogsize];
222   assert( iFirst>=0 );
223   while( i>0 ){
224     if( i<iFirst ) iFirst = i;
225     i = MEM5LINK(i)->next;
226   }
227   memsys5Unlink(iFirst, iLogsize);
228   return iFirst;
229 }
230 
231 /*
232 ** Return a block of memory of at least nBytes in size.
233 ** Return NULL if unable.  Return NULL if nBytes==0.
234 **
235 ** The caller guarantees that nByte positive.
236 **
237 ** The caller has obtained a mutex prior to invoking this
238 ** routine so there is never any chance that two or more
239 ** threads can be in this routine at the same time.
240 */
memsys5MallocUnsafe(int nByte)241 static void *memsys5MallocUnsafe(int nByte){
242   int i;           /* Index of a mem5.aPool[] slot */
243   int iBin;        /* Index into mem5.aiFreelist[] */
244   int iFullSz;     /* Size of allocation rounded up to power of 2 */
245   int iLogsize;    /* Log2 of iFullSz/POW2_MIN */
246 
247   /* nByte must be a positive */
248   assert( nByte>0 );
249 
250   /* Keep track of the maximum allocation request.  Even unfulfilled
251   ** requests are counted */
252   if( (u32)nByte>mem5.maxRequest ){
253     mem5.maxRequest = nByte;
254   }
255 
256   /* Abort if the requested allocation size is larger than the largest
257   ** power of two that we can represent using 32-bit signed integers.
258   */
259   if( nByte > 0x40000000 ){
260     return 0;
261   }
262 
263   /* Round nByte up to the next valid power of two */
264   for(iFullSz=mem5.szAtom, iLogsize=0; iFullSz<nByte; iFullSz *= 2, iLogsize++){}
265 
266   /* Make sure mem5.aiFreelist[iLogsize] contains at least one free
267   ** block.  If not, then split a block of the next larger power of
268   ** two in order to create a new free block of size iLogsize.
269   */
270   for(iBin=iLogsize; mem5.aiFreelist[iBin]<0 && iBin<=LOGMAX; iBin++){}
271   if( iBin>LOGMAX ){
272     testcase( sqlite3GlobalConfig.xLog!=0 );
273     sqlite3_log(SQLITE_NOMEM, "failed to allocate %u bytes", nByte);
274     return 0;
275   }
276   i = memsys5UnlinkFirst(iBin);
277   while( iBin>iLogsize ){
278     int newSize;
279 
280     iBin--;
281     newSize = 1 << iBin;
282     mem5.aCtrl[i+newSize] = CTRL_FREE | iBin;
283     memsys5Link(i+newSize, iBin);
284   }
285   mem5.aCtrl[i] = iLogsize;
286 
287   /* Update allocator performance statistics. */
288   mem5.nAlloc++;
289   mem5.totalAlloc += iFullSz;
290   mem5.totalExcess += iFullSz - nByte;
291   mem5.currentCount++;
292   mem5.currentOut += iFullSz;
293   if( mem5.maxCount<mem5.currentCount ) mem5.maxCount = mem5.currentCount;
294   if( mem5.maxOut<mem5.currentOut ) mem5.maxOut = mem5.currentOut;
295 
296   /* Return a pointer to the allocated memory. */
297   return (void*)&mem5.zPool[i*mem5.szAtom];
298 }
299 
300 /*
301 ** Free an outstanding memory allocation.
302 */
memsys5FreeUnsafe(void * pOld)303 static void memsys5FreeUnsafe(void *pOld){
304   u32 size, iLogsize;
305   int iBlock;
306 
307   /* Set iBlock to the index of the block pointed to by pOld in
308   ** the array of mem5.szAtom byte blocks pointed to by mem5.zPool.
309   */
310   iBlock = ((u8 *)pOld-mem5.zPool)/mem5.szAtom;
311 
312   /* Check that the pointer pOld points to a valid, non-free block. */
313   assert( iBlock>=0 && iBlock<mem5.nBlock );
314   assert( ((u8 *)pOld-mem5.zPool)%mem5.szAtom==0 );
315   assert( (mem5.aCtrl[iBlock] & CTRL_FREE)==0 );
316 
317   iLogsize = mem5.aCtrl[iBlock] & CTRL_LOGSIZE;
318   size = 1<<iLogsize;
319   assert( iBlock+size-1<(u32)mem5.nBlock );
320 
321   mem5.aCtrl[iBlock] |= CTRL_FREE;
322   mem5.aCtrl[iBlock+size-1] |= CTRL_FREE;
323   assert( mem5.currentCount>0 );
324   assert( mem5.currentOut>=(size*mem5.szAtom) );
325   mem5.currentCount--;
326   mem5.currentOut -= size*mem5.szAtom;
327   assert( mem5.currentOut>0 || mem5.currentCount==0 );
328   assert( mem5.currentCount>0 || mem5.currentOut==0 );
329 
330   mem5.aCtrl[iBlock] = CTRL_FREE | iLogsize;
331   while( ALWAYS(iLogsize<LOGMAX) ){
332     int iBuddy;
333     if( (iBlock>>iLogsize) & 1 ){
334       iBuddy = iBlock - size;
335     }else{
336       iBuddy = iBlock + size;
337     }
338     assert( iBuddy>=0 );
339     if( (iBuddy+(1<<iLogsize))>mem5.nBlock ) break;
340     if( mem5.aCtrl[iBuddy]!=(CTRL_FREE | iLogsize) ) break;
341     memsys5Unlink(iBuddy, iLogsize);
342     iLogsize++;
343     if( iBuddy<iBlock ){
344       mem5.aCtrl[iBuddy] = CTRL_FREE | iLogsize;
345       mem5.aCtrl[iBlock] = 0;
346       iBlock = iBuddy;
347     }else{
348       mem5.aCtrl[iBlock] = CTRL_FREE | iLogsize;
349       mem5.aCtrl[iBuddy] = 0;
350     }
351     size *= 2;
352   }
353   memsys5Link(iBlock, iLogsize);
354 }
355 
356 /*
357 ** Allocate nBytes of memory
358 */
memsys5Malloc(int nBytes)359 static void *memsys5Malloc(int nBytes){
360   sqlite3_int64 *p = 0;
361   if( nBytes>0 ){
362     memsys5Enter();
363     p = memsys5MallocUnsafe(nBytes);
364     memsys5Leave();
365   }
366   return (void*)p;
367 }
368 
369 /*
370 ** Free memory.
371 **
372 ** The outer layer memory allocator prevents this routine from
373 ** being called with pPrior==0.
374 */
memsys5Free(void * pPrior)375 static void memsys5Free(void *pPrior){
376   assert( pPrior!=0 );
377   memsys5Enter();
378   memsys5FreeUnsafe(pPrior);
379   memsys5Leave();
380 }
381 
382 /*
383 ** Change the size of an existing memory allocation.
384 **
385 ** The outer layer memory allocator prevents this routine from
386 ** being called with pPrior==0.
387 **
388 ** nBytes is always a value obtained from a prior call to
389 ** memsys5Round().  Hence nBytes is always a non-negative power
390 ** of two.  If nBytes==0 that means that an oversize allocation
391 ** (an allocation larger than 0x40000000) was requested and this
392 ** routine should return 0 without freeing pPrior.
393 */
memsys5Realloc(void * pPrior,int nBytes)394 static void *memsys5Realloc(void *pPrior, int nBytes){
395   int nOld;
396   void *p;
397   assert( pPrior!=0 );
398   assert( (nBytes&(nBytes-1))==0 );  /* EV: R-46199-30249 */
399   assert( nBytes>=0 );
400   if( nBytes==0 ){
401     return 0;
402   }
403   nOld = memsys5Size(pPrior);
404   if( nBytes<=nOld ){
405     return pPrior;
406   }
407   memsys5Enter();
408   p = memsys5MallocUnsafe(nBytes);
409   if( p ){
410     memcpy(p, pPrior, nOld);
411     memsys5FreeUnsafe(pPrior);
412   }
413   memsys5Leave();
414   return p;
415 }
416 
417 /*
418 ** Round up a request size to the next valid allocation size.  If
419 ** the allocation is too large to be handled by this allocation system,
420 ** return 0.
421 **
422 ** All allocations must be a power of two and must be expressed by a
423 ** 32-bit signed integer.  Hence the largest allocation is 0x40000000
424 ** or 1073741824 bytes.
425 */
memsys5Roundup(int n)426 static int memsys5Roundup(int n){
427   int iFullSz;
428   if( n > 0x40000000 ) return 0;
429   for(iFullSz=mem5.szAtom; iFullSz<n; iFullSz *= 2);
430   return iFullSz;
431 }
432 
433 /*
434 ** Return the ceiling of the logarithm base 2 of iValue.
435 **
436 ** Examples:   memsys5Log(1) -> 0
437 **             memsys5Log(2) -> 1
438 **             memsys5Log(4) -> 2
439 **             memsys5Log(5) -> 3
440 **             memsys5Log(8) -> 3
441 **             memsys5Log(9) -> 4
442 */
memsys5Log(int iValue)443 static int memsys5Log(int iValue){
444   int iLog;
445   for(iLog=0; (iLog<(int)((sizeof(int)*8)-1)) && (1<<iLog)<iValue; iLog++);
446   return iLog;
447 }
448 
449 /*
450 ** Initialize the memory allocator.
451 **
452 ** This routine is not threadsafe.  The caller must be holding a mutex
453 ** to prevent multiple threads from entering at the same time.
454 */
memsys5Init(void * NotUsed)455 static int memsys5Init(void *NotUsed){
456   int ii;            /* Loop counter */
457   int nByte;         /* Number of bytes of memory available to this allocator */
458   u8 *zByte;         /* Memory usable by this allocator */
459   int nMinLog;       /* Log base 2 of minimum allocation size in bytes */
460   int iOffset;       /* An offset into mem5.aCtrl[] */
461 
462   UNUSED_PARAMETER(NotUsed);
463 
464   /* For the purposes of this routine, disable the mutex */
465   mem5.mutex = 0;
466 
467   /* The size of a Mem5Link object must be a power of two.  Verify that
468   ** this is case.
469   */
470   assert( (sizeof(Mem5Link)&(sizeof(Mem5Link)-1))==0 );
471 
472   nByte = sqlite3GlobalConfig.nHeap;
473   zByte = (u8*)sqlite3GlobalConfig.pHeap;
474   assert( zByte!=0 );  /* sqlite3_config() does not allow otherwise */
475 
476   /* boundaries on sqlite3GlobalConfig.mnReq are enforced in sqlite3_config() */
477   nMinLog = memsys5Log(sqlite3GlobalConfig.mnReq);
478   mem5.szAtom = (1<<nMinLog);
479   while( (int)sizeof(Mem5Link)>mem5.szAtom ){
480     mem5.szAtom = mem5.szAtom << 1;
481   }
482 
483   mem5.nBlock = (nByte / (mem5.szAtom+sizeof(u8)));
484   mem5.zPool = zByte;
485   mem5.aCtrl = (u8 *)&mem5.zPool[mem5.nBlock*mem5.szAtom];
486 
487   for(ii=0; ii<=LOGMAX; ii++){
488     mem5.aiFreelist[ii] = -1;
489   }
490 
491   iOffset = 0;
492   for(ii=LOGMAX; ii>=0; ii--){
493     int nAlloc = (1<<ii);
494     if( (iOffset+nAlloc)<=mem5.nBlock ){
495       mem5.aCtrl[iOffset] = ii | CTRL_FREE;
496       memsys5Link(iOffset, ii);
497       iOffset += nAlloc;
498     }
499     assert((iOffset+nAlloc)>mem5.nBlock);
500   }
501 
502   /* If a mutex is required for normal operation, allocate one */
503   if( sqlite3GlobalConfig.bMemstat==0 ){
504     mem5.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM);
505   }
506 
507   return SQLITE_OK;
508 }
509 
510 /*
511 ** Deinitialize this module.
512 */
memsys5Shutdown(void * NotUsed)513 static void memsys5Shutdown(void *NotUsed){
514   UNUSED_PARAMETER(NotUsed);
515   mem5.mutex = 0;
516   return;
517 }
518 
519 #ifdef SQLITE_TEST
520 /*
521 ** Open the file indicated and write a log of all unfreed memory
522 ** allocations into that log.
523 */
sqlite3Memsys5Dump(const char * zFilename)524 void sqlite3Memsys5Dump(const char *zFilename){
525   FILE *out;
526   int i, j, n;
527   int nMinLog;
528 
529   if( zFilename==0 || zFilename[0]==0 ){
530     out = stdout;
531   }else{
532     out = fopen(zFilename, "w");
533     if( out==0 ){
534       fprintf(stderr, "** Unable to output memory debug output log: %s **\n",
535                       zFilename);
536       return;
537     }
538   }
539   memsys5Enter();
540   nMinLog = memsys5Log(mem5.szAtom);
541   for(i=0; i<=LOGMAX && i+nMinLog<32; i++){
542     for(n=0, j=mem5.aiFreelist[i]; j>=0; j = MEM5LINK(j)->next, n++){}
543     fprintf(out, "freelist items of size %d: %d\n", mem5.szAtom << i, n);
544   }
545   fprintf(out, "mem5.nAlloc       = %llu\n", mem5.nAlloc);
546   fprintf(out, "mem5.totalAlloc   = %llu\n", mem5.totalAlloc);
547   fprintf(out, "mem5.totalExcess  = %llu\n", mem5.totalExcess);
548   fprintf(out, "mem5.currentOut   = %u\n", mem5.currentOut);
549   fprintf(out, "mem5.currentCount = %u\n", mem5.currentCount);
550   fprintf(out, "mem5.maxOut       = %u\n", mem5.maxOut);
551   fprintf(out, "mem5.maxCount     = %u\n", mem5.maxCount);
552   fprintf(out, "mem5.maxRequest   = %u\n", mem5.maxRequest);
553   memsys5Leave();
554   if( out==stdout ){
555     fflush(stdout);
556   }else{
557     fclose(out);
558   }
559 }
560 #endif
561 
562 /*
563 ** This routine is the only routine in this file with external
564 ** linkage. It returns a pointer to a static sqlite3_mem_methods
565 ** struct populated with the memsys5 methods.
566 */
sqlite3MemGetMemsys5(void)567 const sqlite3_mem_methods *sqlite3MemGetMemsys5(void){
568   static const sqlite3_mem_methods memsys5Methods = {
569      memsys5Malloc,
570      memsys5Free,
571      memsys5Realloc,
572      memsys5Size,
573      memsys5Roundup,
574      memsys5Init,
575      memsys5Shutdown,
576      0
577   };
578   return &memsys5Methods;
579 }
580 
581 #endif /* SQLITE_ENABLE_MEMSYS5 */
582