• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2 ** 2007 August 28
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains the C functions that implement mutexes for pthreads
13 */
14 #include "sqliteInt.h"
15 
16 /*
17 ** The code in this file is only used if we are compiling threadsafe
18 ** under unix with pthreads.
19 **
20 ** Note that this implementation requires a version of pthreads that
21 ** supports recursive mutexes.
22 */
23 #ifdef SQLITE_MUTEX_PTHREADS
24 
25 #include <pthread.h>
26 
27 /*
28 ** The sqlite3_mutex.id, sqlite3_mutex.nRef, and sqlite3_mutex.owner fields
29 ** are necessary under two condidtions:  (1) Debug builds and (2) using
30 ** home-grown mutexes.  Encapsulate these conditions into a single #define.
31 */
32 #if defined(SQLITE_DEBUG) || defined(SQLITE_HOMEGROWN_RECURSIVE_MUTEX)
33 # define SQLITE_MUTEX_NREF 1
34 #else
35 # define SQLITE_MUTEX_NREF 0
36 #endif
37 
38 /*
39 ** Each recursive mutex is an instance of the following structure.
40 */
41 struct sqlite3_mutex {
42   pthread_mutex_t mutex;     /* Mutex controlling the lock */
43 #if SQLITE_MUTEX_NREF
44   int id;                    /* Mutex type */
45   volatile int nRef;         /* Number of entrances */
46   volatile pthread_t owner;  /* Thread that is within this mutex */
47   int trace;                 /* True to trace changes */
48 #endif
49 };
50 #if SQLITE_MUTEX_NREF
51 #define SQLITE3_MUTEX_INITIALIZER { PTHREAD_MUTEX_INITIALIZER, 0, 0, (pthread_t)0, 0 }
52 #else
53 #define SQLITE3_MUTEX_INITIALIZER { PTHREAD_MUTEX_INITIALIZER }
54 #endif
55 
56 /*
57 ** The sqlite3_mutex_held() and sqlite3_mutex_notheld() routine are
58 ** intended for use only inside assert() statements.  On some platforms,
59 ** there might be race conditions that can cause these routines to
60 ** deliver incorrect results.  In particular, if pthread_equal() is
61 ** not an atomic operation, then these routines might delivery
62 ** incorrect results.  On most platforms, pthread_equal() is a
63 ** comparison of two integers and is therefore atomic.  But we are
64 ** told that HPUX is not such a platform.  If so, then these routines
65 ** will not always work correctly on HPUX.
66 **
67 ** On those platforms where pthread_equal() is not atomic, SQLite
68 ** should be compiled without -DSQLITE_DEBUG and with -DNDEBUG to
69 ** make sure no assert() statements are evaluated and hence these
70 ** routines are never called.
71 */
72 #if !defined(NDEBUG) || defined(SQLITE_DEBUG)
pthreadMutexHeld(sqlite3_mutex * p)73 static int pthreadMutexHeld(sqlite3_mutex *p){
74   return (p->nRef!=0 && pthread_equal(p->owner, pthread_self()));
75 }
pthreadMutexNotheld(sqlite3_mutex * p)76 static int pthreadMutexNotheld(sqlite3_mutex *p){
77   return p->nRef==0 || pthread_equal(p->owner, pthread_self())==0;
78 }
79 #endif
80 
81 /*
82 ** Initialize and deinitialize the mutex subsystem.
83 */
pthreadMutexInit(void)84 static int pthreadMutexInit(void){ return SQLITE_OK; }
pthreadMutexEnd(void)85 static int pthreadMutexEnd(void){ return SQLITE_OK; }
86 
87 /*
88 ** The sqlite3_mutex_alloc() routine allocates a new
89 ** mutex and returns a pointer to it.  If it returns NULL
90 ** that means that a mutex could not be allocated.  SQLite
91 ** will unwind its stack and return an error.  The argument
92 ** to sqlite3_mutex_alloc() is one of these integer constants:
93 **
94 ** <ul>
95 ** <li>  SQLITE_MUTEX_FAST
96 ** <li>  SQLITE_MUTEX_RECURSIVE
97 ** <li>  SQLITE_MUTEX_STATIC_MASTER
98 ** <li>  SQLITE_MUTEX_STATIC_MEM
99 ** <li>  SQLITE_MUTEX_STATIC_MEM2
100 ** <li>  SQLITE_MUTEX_STATIC_PRNG
101 ** <li>  SQLITE_MUTEX_STATIC_LRU
102 ** <li>  SQLITE_MUTEX_STATIC_PMEM
103 ** </ul>
104 **
105 ** The first two constants cause sqlite3_mutex_alloc() to create
106 ** a new mutex.  The new mutex is recursive when SQLITE_MUTEX_RECURSIVE
107 ** is used but not necessarily so when SQLITE_MUTEX_FAST is used.
108 ** The mutex implementation does not need to make a distinction
109 ** between SQLITE_MUTEX_RECURSIVE and SQLITE_MUTEX_FAST if it does
110 ** not want to.  But SQLite will only request a recursive mutex in
111 ** cases where it really needs one.  If a faster non-recursive mutex
112 ** implementation is available on the host platform, the mutex subsystem
113 ** might return such a mutex in response to SQLITE_MUTEX_FAST.
114 **
115 ** The other allowed parameters to sqlite3_mutex_alloc() each return
116 ** a pointer to a static preexisting mutex.  Six static mutexes are
117 ** used by the current version of SQLite.  Future versions of SQLite
118 ** may add additional static mutexes.  Static mutexes are for internal
119 ** use by SQLite only.  Applications that use SQLite mutexes should
120 ** use only the dynamic mutexes returned by SQLITE_MUTEX_FAST or
121 ** SQLITE_MUTEX_RECURSIVE.
122 **
123 ** Note that if one of the dynamic mutex parameters (SQLITE_MUTEX_FAST
124 ** or SQLITE_MUTEX_RECURSIVE) is used then sqlite3_mutex_alloc()
125 ** returns a different mutex on every call.  But for the static
126 ** mutex types, the same mutex is returned on every call that has
127 ** the same type number.
128 */
pthreadMutexAlloc(int iType)129 static sqlite3_mutex *pthreadMutexAlloc(int iType){
130   static sqlite3_mutex staticMutexes[] = {
131     SQLITE3_MUTEX_INITIALIZER,
132     SQLITE3_MUTEX_INITIALIZER,
133     SQLITE3_MUTEX_INITIALIZER,
134     SQLITE3_MUTEX_INITIALIZER,
135     SQLITE3_MUTEX_INITIALIZER,
136     SQLITE3_MUTEX_INITIALIZER
137   };
138   sqlite3_mutex *p;
139   switch( iType ){
140     case SQLITE_MUTEX_RECURSIVE: {
141       p = sqlite3MallocZero( sizeof(*p) );
142       if( p ){
143 #ifdef SQLITE_HOMEGROWN_RECURSIVE_MUTEX
144         /* If recursive mutexes are not available, we will have to
145         ** build our own.  See below. */
146         pthread_mutex_init(&p->mutex, 0);
147 #else
148         /* Use a recursive mutex if it is available */
149         pthread_mutexattr_t recursiveAttr;
150         pthread_mutexattr_init(&recursiveAttr);
151         pthread_mutexattr_settype(&recursiveAttr, PTHREAD_MUTEX_RECURSIVE);
152         pthread_mutex_init(&p->mutex, &recursiveAttr);
153         pthread_mutexattr_destroy(&recursiveAttr);
154 #endif
155 #if SQLITE_MUTEX_NREF
156         p->id = iType;
157 #endif
158       }
159       break;
160     }
161     case SQLITE_MUTEX_FAST: {
162       p = sqlite3MallocZero( sizeof(*p) );
163       if( p ){
164 #if SQLITE_MUTEX_NREF
165         p->id = iType;
166 #endif
167         pthread_mutex_init(&p->mutex, 0);
168       }
169       break;
170     }
171     default: {
172       assert( iType-2 >= 0 );
173       assert( iType-2 < ArraySize(staticMutexes) );
174       p = &staticMutexes[iType-2];
175 #if SQLITE_MUTEX_NREF
176       p->id = iType;
177 #endif
178       break;
179     }
180   }
181   return p;
182 }
183 
184 
185 /*
186 ** This routine deallocates a previously
187 ** allocated mutex.  SQLite is careful to deallocate every
188 ** mutex that it allocates.
189 */
pthreadMutexFree(sqlite3_mutex * p)190 static void pthreadMutexFree(sqlite3_mutex *p){
191   assert( p->nRef==0 );
192   assert( p->id==SQLITE_MUTEX_FAST || p->id==SQLITE_MUTEX_RECURSIVE );
193   pthread_mutex_destroy(&p->mutex);
194   sqlite3_free(p);
195 }
196 
197 /*
198 ** The sqlite3_mutex_enter() and sqlite3_mutex_try() routines attempt
199 ** to enter a mutex.  If another thread is already within the mutex,
200 ** sqlite3_mutex_enter() will block and sqlite3_mutex_try() will return
201 ** SQLITE_BUSY.  The sqlite3_mutex_try() interface returns SQLITE_OK
202 ** upon successful entry.  Mutexes created using SQLITE_MUTEX_RECURSIVE can
203 ** be entered multiple times by the same thread.  In such cases the,
204 ** mutex must be exited an equal number of times before another thread
205 ** can enter.  If the same thread tries to enter any other kind of mutex
206 ** more than once, the behavior is undefined.
207 */
pthreadMutexEnter(sqlite3_mutex * p)208 static void pthreadMutexEnter(sqlite3_mutex *p){
209   assert( p->id==SQLITE_MUTEX_RECURSIVE || pthreadMutexNotheld(p) );
210 
211 #ifdef SQLITE_HOMEGROWN_RECURSIVE_MUTEX
212   /* If recursive mutexes are not available, then we have to grow
213   ** our own.  This implementation assumes that pthread_equal()
214   ** is atomic - that it cannot be deceived into thinking self
215   ** and p->owner are equal if p->owner changes between two values
216   ** that are not equal to self while the comparison is taking place.
217   ** This implementation also assumes a coherent cache - that
218   ** separate processes cannot read different values from the same
219   ** address at the same time.  If either of these two conditions
220   ** are not met, then the mutexes will fail and problems will result.
221   */
222   {
223     pthread_t self = pthread_self();
224     if( p->nRef>0 && pthread_equal(p->owner, self) ){
225       p->nRef++;
226     }else{
227       pthread_mutex_lock(&p->mutex);
228       assert( p->nRef==0 );
229       p->owner = self;
230       p->nRef = 1;
231     }
232   }
233 #else
234   /* Use the built-in recursive mutexes if they are available.
235   */
236   pthread_mutex_lock(&p->mutex);
237 #if SQLITE_MUTEX_NREF
238   assert( p->nRef>0 || p->owner==0 );
239   p->owner = pthread_self();
240   p->nRef++;
241 #endif
242 #endif
243 
244 #ifdef SQLITE_DEBUG
245   if( p->trace ){
246     printf("enter mutex %p (%d) with nRef=%d\n", p, p->trace, p->nRef);
247   }
248 #endif
249 }
pthreadMutexTry(sqlite3_mutex * p)250 static int pthreadMutexTry(sqlite3_mutex *p){
251   int rc;
252   assert( p->id==SQLITE_MUTEX_RECURSIVE || pthreadMutexNotheld(p) );
253 
254 #ifdef SQLITE_HOMEGROWN_RECURSIVE_MUTEX
255   /* If recursive mutexes are not available, then we have to grow
256   ** our own.  This implementation assumes that pthread_equal()
257   ** is atomic - that it cannot be deceived into thinking self
258   ** and p->owner are equal if p->owner changes between two values
259   ** that are not equal to self while the comparison is taking place.
260   ** This implementation also assumes a coherent cache - that
261   ** separate processes cannot read different values from the same
262   ** address at the same time.  If either of these two conditions
263   ** are not met, then the mutexes will fail and problems will result.
264   */
265   {
266     pthread_t self = pthread_self();
267     if( p->nRef>0 && pthread_equal(p->owner, self) ){
268       p->nRef++;
269       rc = SQLITE_OK;
270     }else if( pthread_mutex_trylock(&p->mutex)==0 ){
271       assert( p->nRef==0 );
272       p->owner = self;
273       p->nRef = 1;
274       rc = SQLITE_OK;
275     }else{
276       rc = SQLITE_BUSY;
277     }
278   }
279 #else
280   /* Use the built-in recursive mutexes if they are available.
281   */
282   if( pthread_mutex_trylock(&p->mutex)==0 ){
283 #if SQLITE_MUTEX_NREF
284     p->owner = pthread_self();
285     p->nRef++;
286 #endif
287     rc = SQLITE_OK;
288   }else{
289     rc = SQLITE_BUSY;
290   }
291 #endif
292 
293 #ifdef SQLITE_DEBUG
294   if( rc==SQLITE_OK && p->trace ){
295     printf("enter mutex %p (%d) with nRef=%d\n", p, p->trace, p->nRef);
296   }
297 #endif
298   return rc;
299 }
300 
301 /*
302 ** The sqlite3_mutex_leave() routine exits a mutex that was
303 ** previously entered by the same thread.  The behavior
304 ** is undefined if the mutex is not currently entered or
305 ** is not currently allocated.  SQLite will never do either.
306 */
pthreadMutexLeave(sqlite3_mutex * p)307 static void pthreadMutexLeave(sqlite3_mutex *p){
308   assert( pthreadMutexHeld(p) );
309 #if SQLITE_MUTEX_NREF
310   p->nRef--;
311   if( p->nRef==0 ) p->owner = 0;
312 #endif
313   assert( p->nRef==0 || p->id==SQLITE_MUTEX_RECURSIVE );
314 
315 #ifdef SQLITE_HOMEGROWN_RECURSIVE_MUTEX
316   if( p->nRef==0 ){
317     pthread_mutex_unlock(&p->mutex);
318   }
319 #else
320   pthread_mutex_unlock(&p->mutex);
321 #endif
322 
323 #ifdef SQLITE_DEBUG
324   if( p->trace ){
325     printf("leave mutex %p (%d) with nRef=%d\n", p, p->trace, p->nRef);
326   }
327 #endif
328 }
329 
sqlite3DefaultMutex(void)330 sqlite3_mutex_methods const *sqlite3DefaultMutex(void){
331   static const sqlite3_mutex_methods sMutex = {
332     pthreadMutexInit,
333     pthreadMutexEnd,
334     pthreadMutexAlloc,
335     pthreadMutexFree,
336     pthreadMutexEnter,
337     pthreadMutexTry,
338     pthreadMutexLeave,
339 #ifdef SQLITE_DEBUG
340     pthreadMutexHeld,
341     pthreadMutexNotheld
342 #else
343     0,
344     0
345 #endif
346   };
347 
348   return &sMutex;
349 }
350 
351 #endif /* SQLITE_MUTEX_PTHREAD */
352