• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 // Platform-specific code for Win32.
6 
7 // Secure API functions are not available using MinGW with msvcrt.dll
8 // on Windows XP. Make sure MINGW_HAS_SECURE_API is not defined to
9 // disable definition of secure API functions in standard headers that
10 // would conflict with our own implementation.
11 #ifdef __MINGW32__
12 #include <_mingw.h>
13 #ifdef MINGW_HAS_SECURE_API
14 #undef MINGW_HAS_SECURE_API
15 #endif  // MINGW_HAS_SECURE_API
16 #endif  // __MINGW32__
17 
18 #include "src/base/win32-headers.h"
19 
20 #include "src/v8.h"
21 
22 #include "src/isolate-inl.h"
23 #include "src/platform.h"
24 
25 #ifdef _MSC_VER
26 
27 // Case-insensitive bounded string comparisons. Use stricmp() on Win32. Usually
28 // defined in strings.h.
strncasecmp(const char * s1,const char * s2,int n)29 int strncasecmp(const char* s1, const char* s2, int n) {
30   return _strnicmp(s1, s2, n);
31 }
32 
33 #endif  // _MSC_VER
34 
35 
36 // Extra functions for MinGW. Most of these are the _s functions which are in
37 // the Microsoft Visual Studio C++ CRT.
38 #ifdef __MINGW32__
39 
40 
41 #ifndef __MINGW64_VERSION_MAJOR
42 
43 #define _TRUNCATE 0
44 #define STRUNCATE 80
45 
MemoryBarrier()46 inline void MemoryBarrier() {
47   int barrier = 0;
48   __asm__ __volatile__("xchgl %%eax,%0 ":"=r" (barrier));
49 }
50 
51 #endif  // __MINGW64_VERSION_MAJOR
52 
53 
localtime_s(tm * out_tm,const time_t * time)54 int localtime_s(tm* out_tm, const time_t* time) {
55   tm* posix_local_time_struct = localtime(time);
56   if (posix_local_time_struct == NULL) return 1;
57   *out_tm = *posix_local_time_struct;
58   return 0;
59 }
60 
61 
fopen_s(FILE ** pFile,const char * filename,const char * mode)62 int fopen_s(FILE** pFile, const char* filename, const char* mode) {
63   *pFile = fopen(filename, mode);
64   return *pFile != NULL ? 0 : 1;
65 }
66 
_vsnprintf_s(char * buffer,size_t sizeOfBuffer,size_t count,const char * format,va_list argptr)67 int _vsnprintf_s(char* buffer, size_t sizeOfBuffer, size_t count,
68                  const char* format, va_list argptr) {
69   ASSERT(count == _TRUNCATE);
70   return _vsnprintf(buffer, sizeOfBuffer, format, argptr);
71 }
72 
73 
strncpy_s(char * dest,size_t dest_size,const char * source,size_t count)74 int strncpy_s(char* dest, size_t dest_size, const char* source, size_t count) {
75   CHECK(source != NULL);
76   CHECK(dest != NULL);
77   CHECK_GT(dest_size, 0);
78 
79   if (count == _TRUNCATE) {
80     while (dest_size > 0 && *source != 0) {
81       *(dest++) = *(source++);
82       --dest_size;
83     }
84     if (dest_size == 0) {
85       *(dest - 1) = 0;
86       return STRUNCATE;
87     }
88   } else {
89     while (dest_size > 0 && count > 0 && *source != 0) {
90       *(dest++) = *(source++);
91       --dest_size;
92       --count;
93     }
94   }
95   CHECK_GT(dest_size, 0);
96   *dest = 0;
97   return 0;
98 }
99 
100 #endif  // __MINGW32__
101 
102 namespace v8 {
103 namespace internal {
104 
MaxVirtualMemory()105 intptr_t OS::MaxVirtualMemory() {
106   return 0;
107 }
108 
109 
110 class TimezoneCache {
111  public:
TimezoneCache()112   TimezoneCache() : initialized_(false) { }
113 
Clear()114   void Clear() {
115     initialized_ = false;
116   }
117 
118   // Initialize timezone information. The timezone information is obtained from
119   // windows. If we cannot get the timezone information we fall back to CET.
InitializeIfNeeded()120   void InitializeIfNeeded() {
121     // Just return if timezone information has already been initialized.
122     if (initialized_) return;
123 
124     // Initialize POSIX time zone data.
125     _tzset();
126     // Obtain timezone information from operating system.
127     memset(&tzinfo_, 0, sizeof(tzinfo_));
128     if (GetTimeZoneInformation(&tzinfo_) == TIME_ZONE_ID_INVALID) {
129       // If we cannot get timezone information we fall back to CET.
130       tzinfo_.Bias = -60;
131       tzinfo_.StandardDate.wMonth = 10;
132       tzinfo_.StandardDate.wDay = 5;
133       tzinfo_.StandardDate.wHour = 3;
134       tzinfo_.StandardBias = 0;
135       tzinfo_.DaylightDate.wMonth = 3;
136       tzinfo_.DaylightDate.wDay = 5;
137       tzinfo_.DaylightDate.wHour = 2;
138       tzinfo_.DaylightBias = -60;
139     }
140 
141     // Make standard and DST timezone names.
142     WideCharToMultiByte(CP_UTF8, 0, tzinfo_.StandardName, -1,
143                         std_tz_name_, kTzNameSize, NULL, NULL);
144     std_tz_name_[kTzNameSize - 1] = '\0';
145     WideCharToMultiByte(CP_UTF8, 0, tzinfo_.DaylightName, -1,
146                         dst_tz_name_, kTzNameSize, NULL, NULL);
147     dst_tz_name_[kTzNameSize - 1] = '\0';
148 
149     // If OS returned empty string or resource id (like "@tzres.dll,-211")
150     // simply guess the name from the UTC bias of the timezone.
151     // To properly resolve the resource identifier requires a library load,
152     // which is not possible in a sandbox.
153     if (std_tz_name_[0] == '\0' || std_tz_name_[0] == '@') {
154       OS::SNPrintF(std_tz_name_, kTzNameSize - 1,
155                    "%s Standard Time",
156                    GuessTimezoneNameFromBias(tzinfo_.Bias));
157     }
158     if (dst_tz_name_[0] == '\0' || dst_tz_name_[0] == '@') {
159       OS::SNPrintF(dst_tz_name_, kTzNameSize - 1,
160                    "%s Daylight Time",
161                    GuessTimezoneNameFromBias(tzinfo_.Bias));
162     }
163     // Timezone information initialized.
164     initialized_ = true;
165   }
166 
167   // Guess the name of the timezone from the bias.
168   // The guess is very biased towards the northern hemisphere.
GuessTimezoneNameFromBias(int bias)169   const char* GuessTimezoneNameFromBias(int bias) {
170     static const int kHour = 60;
171     switch (-bias) {
172       case -9*kHour: return "Alaska";
173       case -8*kHour: return "Pacific";
174       case -7*kHour: return "Mountain";
175       case -6*kHour: return "Central";
176       case -5*kHour: return "Eastern";
177       case -4*kHour: return "Atlantic";
178       case  0*kHour: return "GMT";
179       case +1*kHour: return "Central Europe";
180       case +2*kHour: return "Eastern Europe";
181       case +3*kHour: return "Russia";
182       case +5*kHour + 30: return "India";
183       case +8*kHour: return "China";
184       case +9*kHour: return "Japan";
185       case +12*kHour: return "New Zealand";
186       default: return "Local";
187     }
188   }
189 
190 
191  private:
192   static const int kTzNameSize = 128;
193   bool initialized_;
194   char std_tz_name_[kTzNameSize];
195   char dst_tz_name_[kTzNameSize];
196   TIME_ZONE_INFORMATION tzinfo_;
197   friend class Win32Time;
198 };
199 
200 
201 // ----------------------------------------------------------------------------
202 // The Time class represents time on win32. A timestamp is represented as
203 // a 64-bit integer in 100 nanoseconds since January 1, 1601 (UTC). JavaScript
204 // timestamps are represented as a doubles in milliseconds since 00:00:00 UTC,
205 // January 1, 1970.
206 
207 class Win32Time {
208  public:
209   // Constructors.
210   Win32Time();
211   explicit Win32Time(double jstime);
212   Win32Time(int year, int mon, int day, int hour, int min, int sec);
213 
214   // Convert timestamp to JavaScript representation.
215   double ToJSTime();
216 
217   // Set timestamp to current time.
218   void SetToCurrentTime();
219 
220   // Returns the local timezone offset in milliseconds east of UTC. This is
221   // the number of milliseconds you must add to UTC to get local time, i.e.
222   // LocalOffset(CET) = 3600000 and LocalOffset(PST) = -28800000. This
223   // routine also takes into account whether daylight saving is effect
224   // at the time.
225   int64_t LocalOffset(TimezoneCache* cache);
226 
227   // Returns the daylight savings time offset for the time in milliseconds.
228   int64_t DaylightSavingsOffset(TimezoneCache* cache);
229 
230   // Returns a string identifying the current timezone for the
231   // timestamp taking into account daylight saving.
232   char* LocalTimezone(TimezoneCache* cache);
233 
234  private:
235   // Constants for time conversion.
236   static const int64_t kTimeEpoc = 116444736000000000LL;
237   static const int64_t kTimeScaler = 10000;
238   static const int64_t kMsPerMinute = 60000;
239 
240   // Constants for timezone information.
241   static const bool kShortTzNames = false;
242 
243   // Return whether or not daylight savings time is in effect at this time.
244   bool InDST(TimezoneCache* cache);
245 
246   // Accessor for FILETIME representation.
ft()247   FILETIME& ft() { return time_.ft_; }
248 
249   // Accessor for integer representation.
t()250   int64_t& t() { return time_.t_; }
251 
252   // Although win32 uses 64-bit integers for representing timestamps,
253   // these are packed into a FILETIME structure. The FILETIME structure
254   // is just a struct representing a 64-bit integer. The TimeStamp union
255   // allows access to both a FILETIME and an integer representation of
256   // the timestamp.
257   union TimeStamp {
258     FILETIME ft_;
259     int64_t t_;
260   };
261 
262   TimeStamp time_;
263 };
264 
265 
266 // Initialize timestamp to start of epoc.
Win32Time()267 Win32Time::Win32Time() {
268   t() = 0;
269 }
270 
271 
272 // Initialize timestamp from a JavaScript timestamp.
Win32Time(double jstime)273 Win32Time::Win32Time(double jstime) {
274   t() = static_cast<int64_t>(jstime) * kTimeScaler + kTimeEpoc;
275 }
276 
277 
278 // Initialize timestamp from date/time components.
Win32Time(int year,int mon,int day,int hour,int min,int sec)279 Win32Time::Win32Time(int year, int mon, int day, int hour, int min, int sec) {
280   SYSTEMTIME st;
281   st.wYear = year;
282   st.wMonth = mon;
283   st.wDay = day;
284   st.wHour = hour;
285   st.wMinute = min;
286   st.wSecond = sec;
287   st.wMilliseconds = 0;
288   SystemTimeToFileTime(&st, &ft());
289 }
290 
291 
292 // Convert timestamp to JavaScript timestamp.
ToJSTime()293 double Win32Time::ToJSTime() {
294   return static_cast<double>((t() - kTimeEpoc) / kTimeScaler);
295 }
296 
297 
298 // Set timestamp to current time.
SetToCurrentTime()299 void Win32Time::SetToCurrentTime() {
300   // The default GetSystemTimeAsFileTime has a ~15.5ms resolution.
301   // Because we're fast, we like fast timers which have at least a
302   // 1ms resolution.
303   //
304   // timeGetTime() provides 1ms granularity when combined with
305   // timeBeginPeriod().  If the host application for v8 wants fast
306   // timers, it can use timeBeginPeriod to increase the resolution.
307   //
308   // Using timeGetTime() has a drawback because it is a 32bit value
309   // and hence rolls-over every ~49days.
310   //
311   // To use the clock, we use GetSystemTimeAsFileTime as our base;
312   // and then use timeGetTime to extrapolate current time from the
313   // start time.  To deal with rollovers, we resync the clock
314   // any time when more than kMaxClockElapsedTime has passed or
315   // whenever timeGetTime creates a rollover.
316 
317   static bool initialized = false;
318   static TimeStamp init_time;
319   static DWORD init_ticks;
320   static const int64_t kHundredNanosecondsPerSecond = 10000000;
321   static const int64_t kMaxClockElapsedTime =
322       60*kHundredNanosecondsPerSecond;  // 1 minute
323 
324   // If we are uninitialized, we need to resync the clock.
325   bool needs_resync = !initialized;
326 
327   // Get the current time.
328   TimeStamp time_now;
329   GetSystemTimeAsFileTime(&time_now.ft_);
330   DWORD ticks_now = timeGetTime();
331 
332   // Check if we need to resync due to clock rollover.
333   needs_resync |= ticks_now < init_ticks;
334 
335   // Check if we need to resync due to elapsed time.
336   needs_resync |= (time_now.t_ - init_time.t_) > kMaxClockElapsedTime;
337 
338   // Check if we need to resync due to backwards time change.
339   needs_resync |= time_now.t_ < init_time.t_;
340 
341   // Resync the clock if necessary.
342   if (needs_resync) {
343     GetSystemTimeAsFileTime(&init_time.ft_);
344     init_ticks = ticks_now = timeGetTime();
345     initialized = true;
346   }
347 
348   // Finally, compute the actual time.  Why is this so hard.
349   DWORD elapsed = ticks_now - init_ticks;
350   this->time_.t_ = init_time.t_ + (static_cast<int64_t>(elapsed) * 10000);
351 }
352 
353 
354 // Return the local timezone offset in milliseconds east of UTC. This
355 // takes into account whether daylight saving is in effect at the time.
356 // Only times in the 32-bit Unix range may be passed to this function.
357 // Also, adding the time-zone offset to the input must not overflow.
358 // The function EquivalentTime() in date.js guarantees this.
LocalOffset(TimezoneCache * cache)359 int64_t Win32Time::LocalOffset(TimezoneCache* cache) {
360   cache->InitializeIfNeeded();
361 
362   Win32Time rounded_to_second(*this);
363   rounded_to_second.t() = rounded_to_second.t() / 1000 / kTimeScaler *
364       1000 * kTimeScaler;
365   // Convert to local time using POSIX localtime function.
366   // Windows XP Service Pack 3 made SystemTimeToTzSpecificLocalTime()
367   // very slow.  Other browsers use localtime().
368 
369   // Convert from JavaScript milliseconds past 1/1/1970 0:00:00 to
370   // POSIX seconds past 1/1/1970 0:00:00.
371   double unchecked_posix_time = rounded_to_second.ToJSTime() / 1000;
372   if (unchecked_posix_time > INT_MAX || unchecked_posix_time < 0) {
373     return 0;
374   }
375   // Because _USE_32BIT_TIME_T is defined, time_t is a 32-bit int.
376   time_t posix_time = static_cast<time_t>(unchecked_posix_time);
377 
378   // Convert to local time, as struct with fields for day, hour, year, etc.
379   tm posix_local_time_struct;
380   if (localtime_s(&posix_local_time_struct, &posix_time)) return 0;
381 
382   if (posix_local_time_struct.tm_isdst > 0) {
383     return (cache->tzinfo_.Bias + cache->tzinfo_.DaylightBias) * -kMsPerMinute;
384   } else if (posix_local_time_struct.tm_isdst == 0) {
385     return (cache->tzinfo_.Bias + cache->tzinfo_.StandardBias) * -kMsPerMinute;
386   } else {
387     return cache->tzinfo_.Bias * -kMsPerMinute;
388   }
389 }
390 
391 
392 // Return whether or not daylight savings time is in effect at this time.
InDST(TimezoneCache * cache)393 bool Win32Time::InDST(TimezoneCache* cache) {
394   cache->InitializeIfNeeded();
395 
396   // Determine if DST is in effect at the specified time.
397   bool in_dst = false;
398   if (cache->tzinfo_.StandardDate.wMonth != 0 ||
399       cache->tzinfo_.DaylightDate.wMonth != 0) {
400     // Get the local timezone offset for the timestamp in milliseconds.
401     int64_t offset = LocalOffset(cache);
402 
403     // Compute the offset for DST. The bias parameters in the timezone info
404     // are specified in minutes. These must be converted to milliseconds.
405     int64_t dstofs =
406         -(cache->tzinfo_.Bias + cache->tzinfo_.DaylightBias) * kMsPerMinute;
407 
408     // If the local time offset equals the timezone bias plus the daylight
409     // bias then DST is in effect.
410     in_dst = offset == dstofs;
411   }
412 
413   return in_dst;
414 }
415 
416 
417 // Return the daylight savings time offset for this time.
DaylightSavingsOffset(TimezoneCache * cache)418 int64_t Win32Time::DaylightSavingsOffset(TimezoneCache* cache) {
419   return InDST(cache) ? 60 * kMsPerMinute : 0;
420 }
421 
422 
423 // Returns a string identifying the current timezone for the
424 // timestamp taking into account daylight saving.
LocalTimezone(TimezoneCache * cache)425 char* Win32Time::LocalTimezone(TimezoneCache* cache) {
426   // Return the standard or DST time zone name based on whether daylight
427   // saving is in effect at the given time.
428   return InDST(cache) ? cache->dst_tz_name_ : cache->std_tz_name_;
429 }
430 
431 
432 // Returns the accumulated user time for thread.
GetUserTime(uint32_t * secs,uint32_t * usecs)433 int OS::GetUserTime(uint32_t* secs,  uint32_t* usecs) {
434   FILETIME dummy;
435   uint64_t usertime;
436 
437   // Get the amount of time that the thread has executed in user mode.
438   if (!GetThreadTimes(GetCurrentThread(), &dummy, &dummy, &dummy,
439                       reinterpret_cast<FILETIME*>(&usertime))) return -1;
440 
441   // Adjust the resolution to micro-seconds.
442   usertime /= 10;
443 
444   // Convert to seconds and microseconds
445   *secs = static_cast<uint32_t>(usertime / 1000000);
446   *usecs = static_cast<uint32_t>(usertime % 1000000);
447   return 0;
448 }
449 
450 
451 // Returns current time as the number of milliseconds since
452 // 00:00:00 UTC, January 1, 1970.
TimeCurrentMillis()453 double OS::TimeCurrentMillis() {
454   return Time::Now().ToJsTime();
455 }
456 
457 
CreateTimezoneCache()458 TimezoneCache* OS::CreateTimezoneCache() {
459   return new TimezoneCache();
460 }
461 
462 
DisposeTimezoneCache(TimezoneCache * cache)463 void OS::DisposeTimezoneCache(TimezoneCache* cache) {
464   delete cache;
465 }
466 
467 
ClearTimezoneCache(TimezoneCache * cache)468 void OS::ClearTimezoneCache(TimezoneCache* cache) {
469   cache->Clear();
470 }
471 
472 
473 // Returns a string identifying the current timezone taking into
474 // account daylight saving.
LocalTimezone(double time,TimezoneCache * cache)475 const char* OS::LocalTimezone(double time, TimezoneCache* cache) {
476   return Win32Time(time).LocalTimezone(cache);
477 }
478 
479 
480 // Returns the local time offset in milliseconds east of UTC without
481 // taking daylight savings time into account.
LocalTimeOffset(TimezoneCache * cache)482 double OS::LocalTimeOffset(TimezoneCache* cache) {
483   // Use current time, rounded to the millisecond.
484   Win32Time t(TimeCurrentMillis());
485   // Time::LocalOffset inlcudes any daylight savings offset, so subtract it.
486   return static_cast<double>(t.LocalOffset(cache) -
487                              t.DaylightSavingsOffset(cache));
488 }
489 
490 
491 // Returns the daylight savings offset in milliseconds for the given
492 // time.
DaylightSavingsOffset(double time,TimezoneCache * cache)493 double OS::DaylightSavingsOffset(double time, TimezoneCache* cache) {
494   int64_t offset = Win32Time(time).DaylightSavingsOffset(cache);
495   return static_cast<double>(offset);
496 }
497 
498 
GetLastError()499 int OS::GetLastError() {
500   return ::GetLastError();
501 }
502 
503 
GetCurrentProcessId()504 int OS::GetCurrentProcessId() {
505   return static_cast<int>(::GetCurrentProcessId());
506 }
507 
508 
509 // ----------------------------------------------------------------------------
510 // Win32 console output.
511 //
512 // If a Win32 application is linked as a console application it has a normal
513 // standard output and standard error. In this case normal printf works fine
514 // for output. However, if the application is linked as a GUI application,
515 // the process doesn't have a console, and therefore (debugging) output is lost.
516 // This is the case if we are embedded in a windows program (like a browser).
517 // In order to be able to get debug output in this case the the debugging
518 // facility using OutputDebugString. This output goes to the active debugger
519 // for the process (if any). Else the output can be monitored using DBMON.EXE.
520 
521 enum OutputMode {
522   UNKNOWN,  // Output method has not yet been determined.
523   CONSOLE,  // Output is written to stdout.
524   ODS       // Output is written to debug facility.
525 };
526 
527 static OutputMode output_mode = UNKNOWN;  // Current output mode.
528 
529 
530 // Determine if the process has a console for output.
HasConsole()531 static bool HasConsole() {
532   // Only check the first time. Eventual race conditions are not a problem,
533   // because all threads will eventually determine the same mode.
534   if (output_mode == UNKNOWN) {
535     // We cannot just check that the standard output is attached to a console
536     // because this would fail if output is redirected to a file. Therefore we
537     // say that a process does not have an output console if either the
538     // standard output handle is invalid or its file type is unknown.
539     if (GetStdHandle(STD_OUTPUT_HANDLE) != INVALID_HANDLE_VALUE &&
540         GetFileType(GetStdHandle(STD_OUTPUT_HANDLE)) != FILE_TYPE_UNKNOWN)
541       output_mode = CONSOLE;
542     else
543       output_mode = ODS;
544   }
545   return output_mode == CONSOLE;
546 }
547 
548 
VPrintHelper(FILE * stream,const char * format,va_list args)549 static void VPrintHelper(FILE* stream, const char* format, va_list args) {
550   if ((stream == stdout || stream == stderr) && !HasConsole()) {
551     // It is important to use safe print here in order to avoid
552     // overflowing the buffer. We might truncate the output, but this
553     // does not crash.
554     char buffer[4096];
555     OS::VSNPrintF(buffer, sizeof(buffer), format, args);
556     OutputDebugStringA(buffer);
557   } else {
558     vfprintf(stream, format, args);
559   }
560 }
561 
562 
FOpen(const char * path,const char * mode)563 FILE* OS::FOpen(const char* path, const char* mode) {
564   FILE* result;
565   if (fopen_s(&result, path, mode) == 0) {
566     return result;
567   } else {
568     return NULL;
569   }
570 }
571 
572 
Remove(const char * path)573 bool OS::Remove(const char* path) {
574   return (DeleteFileA(path) != 0);
575 }
576 
577 
OpenTemporaryFile()578 FILE* OS::OpenTemporaryFile() {
579   // tmpfile_s tries to use the root dir, don't use it.
580   char tempPathBuffer[MAX_PATH];
581   DWORD path_result = 0;
582   path_result = GetTempPathA(MAX_PATH, tempPathBuffer);
583   if (path_result > MAX_PATH || path_result == 0) return NULL;
584   UINT name_result = 0;
585   char tempNameBuffer[MAX_PATH];
586   name_result = GetTempFileNameA(tempPathBuffer, "", 0, tempNameBuffer);
587   if (name_result == 0) return NULL;
588   FILE* result = FOpen(tempNameBuffer, "w+");  // Same mode as tmpfile uses.
589   if (result != NULL) {
590     Remove(tempNameBuffer);  // Delete on close.
591   }
592   return result;
593 }
594 
595 
596 // Open log file in binary mode to avoid /n -> /r/n conversion.
597 const char* const OS::LogFileOpenMode = "wb";
598 
599 
600 // Print (debug) message to console.
Print(const char * format,...)601 void OS::Print(const char* format, ...) {
602   va_list args;
603   va_start(args, format);
604   VPrint(format, args);
605   va_end(args);
606 }
607 
608 
VPrint(const char * format,va_list args)609 void OS::VPrint(const char* format, va_list args) {
610   VPrintHelper(stdout, format, args);
611 }
612 
613 
FPrint(FILE * out,const char * format,...)614 void OS::FPrint(FILE* out, const char* format, ...) {
615   va_list args;
616   va_start(args, format);
617   VFPrint(out, format, args);
618   va_end(args);
619 }
620 
621 
VFPrint(FILE * out,const char * format,va_list args)622 void OS::VFPrint(FILE* out, const char* format, va_list args) {
623   VPrintHelper(out, format, args);
624 }
625 
626 
627 // Print error message to console.
PrintError(const char * format,...)628 void OS::PrintError(const char* format, ...) {
629   va_list args;
630   va_start(args, format);
631   VPrintError(format, args);
632   va_end(args);
633 }
634 
635 
VPrintError(const char * format,va_list args)636 void OS::VPrintError(const char* format, va_list args) {
637   VPrintHelper(stderr, format, args);
638 }
639 
640 
SNPrintF(char * str,int length,const char * format,...)641 int OS::SNPrintF(char* str, int length, const char* format, ...) {
642   va_list args;
643   va_start(args, format);
644   int result = VSNPrintF(str, length, format, args);
645   va_end(args);
646   return result;
647 }
648 
649 
VSNPrintF(char * str,int length,const char * format,va_list args)650 int OS::VSNPrintF(char* str, int length, const char* format, va_list args) {
651   int n = _vsnprintf_s(str, length, _TRUNCATE, format, args);
652   // Make sure to zero-terminate the string if the output was
653   // truncated or if there was an error.
654   if (n < 0 || n >= length) {
655     if (length > 0)
656       str[length - 1] = '\0';
657     return -1;
658   } else {
659     return n;
660   }
661 }
662 
663 
StrChr(char * str,int c)664 char* OS::StrChr(char* str, int c) {
665   return const_cast<char*>(strchr(str, c));
666 }
667 
668 
StrNCpy(char * dest,int length,const char * src,size_t n)669 void OS::StrNCpy(char* dest, int length, const char* src, size_t n) {
670   // Use _TRUNCATE or strncpy_s crashes (by design) if buffer is too small.
671   size_t buffer_size = static_cast<size_t>(length);
672   if (n + 1 > buffer_size)  // count for trailing '\0'
673     n = _TRUNCATE;
674   int result = strncpy_s(dest, length, src, n);
675   USE(result);
676   ASSERT(result == 0 || (n == _TRUNCATE && result == STRUNCATE));
677 }
678 
679 
680 #undef _TRUNCATE
681 #undef STRUNCATE
682 
683 
684 // Get the system's page size used by VirtualAlloc() or the next power
685 // of two. The reason for always returning a power of two is that the
686 // rounding up in OS::Allocate expects that.
GetPageSize()687 static size_t GetPageSize() {
688   static size_t page_size = 0;
689   if (page_size == 0) {
690     SYSTEM_INFO info;
691     GetSystemInfo(&info);
692     page_size = RoundUpToPowerOf2(info.dwPageSize);
693   }
694   return page_size;
695 }
696 
697 
698 // The allocation alignment is the guaranteed alignment for
699 // VirtualAlloc'ed blocks of memory.
AllocateAlignment()700 size_t OS::AllocateAlignment() {
701   static size_t allocate_alignment = 0;
702   if (allocate_alignment == 0) {
703     SYSTEM_INFO info;
704     GetSystemInfo(&info);
705     allocate_alignment = info.dwAllocationGranularity;
706   }
707   return allocate_alignment;
708 }
709 
710 
GetRandomMmapAddr()711 void* OS::GetRandomMmapAddr() {
712   Isolate* isolate = Isolate::UncheckedCurrent();
713   // Note that the current isolate isn't set up in a call path via
714   // CpuFeatures::Probe. We don't care about randomization in this case because
715   // the code page is immediately freed.
716   if (isolate != NULL) {
717     // The address range used to randomize RWX allocations in OS::Allocate
718     // Try not to map pages into the default range that windows loads DLLs
719     // Use a multiple of 64k to prevent committing unused memory.
720     // Note: This does not guarantee RWX regions will be within the
721     // range kAllocationRandomAddressMin to kAllocationRandomAddressMax
722 #ifdef V8_HOST_ARCH_64_BIT
723     static const intptr_t kAllocationRandomAddressMin = 0x0000000080000000;
724     static const intptr_t kAllocationRandomAddressMax = 0x000003FFFFFF0000;
725 #else
726     static const intptr_t kAllocationRandomAddressMin = 0x04000000;
727     static const intptr_t kAllocationRandomAddressMax = 0x3FFF0000;
728 #endif
729     uintptr_t address =
730         (isolate->random_number_generator()->NextInt() << kPageSizeBits) |
731         kAllocationRandomAddressMin;
732     address &= kAllocationRandomAddressMax;
733     return reinterpret_cast<void *>(address);
734   }
735   return NULL;
736 }
737 
738 
RandomizedVirtualAlloc(size_t size,int action,int protection)739 static void* RandomizedVirtualAlloc(size_t size, int action, int protection) {
740   LPVOID base = NULL;
741 
742   if (protection == PAGE_EXECUTE_READWRITE || protection == PAGE_NOACCESS) {
743     // For exectutable pages try and randomize the allocation address
744     for (size_t attempts = 0; base == NULL && attempts < 3; ++attempts) {
745       base = VirtualAlloc(OS::GetRandomMmapAddr(), size, action, protection);
746     }
747   }
748 
749   // After three attempts give up and let the OS find an address to use.
750   if (base == NULL) base = VirtualAlloc(NULL, size, action, protection);
751 
752   return base;
753 }
754 
755 
Allocate(const size_t requested,size_t * allocated,bool is_executable)756 void* OS::Allocate(const size_t requested,
757                    size_t* allocated,
758                    bool is_executable) {
759   // VirtualAlloc rounds allocated size to page size automatically.
760   size_t msize = RoundUp(requested, static_cast<int>(GetPageSize()));
761 
762   // Windows XP SP2 allows Data Excution Prevention (DEP).
763   int prot = is_executable ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE;
764 
765   LPVOID mbase = RandomizedVirtualAlloc(msize,
766                                         MEM_COMMIT | MEM_RESERVE,
767                                         prot);
768 
769   if (mbase == NULL) return NULL;
770 
771   ASSERT(IsAligned(reinterpret_cast<size_t>(mbase), OS::AllocateAlignment()));
772 
773   *allocated = msize;
774   return mbase;
775 }
776 
777 
Free(void * address,const size_t size)778 void OS::Free(void* address, const size_t size) {
779   // TODO(1240712): VirtualFree has a return value which is ignored here.
780   VirtualFree(address, 0, MEM_RELEASE);
781   USE(size);
782 }
783 
784 
CommitPageSize()785 intptr_t OS::CommitPageSize() {
786   return 4096;
787 }
788 
789 
ProtectCode(void * address,const size_t size)790 void OS::ProtectCode(void* address, const size_t size) {
791   DWORD old_protect;
792   VirtualProtect(address, size, PAGE_EXECUTE_READ, &old_protect);
793 }
794 
795 
Guard(void * address,const size_t size)796 void OS::Guard(void* address, const size_t size) {
797   DWORD oldprotect;
798   VirtualProtect(address, size, PAGE_NOACCESS, &oldprotect);
799 }
800 
801 
Sleep(int milliseconds)802 void OS::Sleep(int milliseconds) {
803   ::Sleep(milliseconds);
804 }
805 
806 
Abort()807 void OS::Abort() {
808   if (FLAG_hard_abort) {
809     V8_IMMEDIATE_CRASH();
810   }
811   // Make the MSVCRT do a silent abort.
812   raise(SIGABRT);
813 }
814 
815 
DebugBreak()816 void OS::DebugBreak() {
817 #ifdef _MSC_VER
818   // To avoid Visual Studio runtime support the following code can be used
819   // instead
820   // __asm { int 3 }
821   __debugbreak();
822 #else
823   ::DebugBreak();
824 #endif
825 }
826 
827 
828 class Win32MemoryMappedFile : public OS::MemoryMappedFile {
829  public:
Win32MemoryMappedFile(HANDLE file,HANDLE file_mapping,void * memory,int size)830   Win32MemoryMappedFile(HANDLE file,
831                         HANDLE file_mapping,
832                         void* memory,
833                         int size)
834       : file_(file),
835         file_mapping_(file_mapping),
836         memory_(memory),
837         size_(size) { }
838   virtual ~Win32MemoryMappedFile();
memory()839   virtual void* memory() { return memory_; }
size()840   virtual int size() { return size_; }
841  private:
842   HANDLE file_;
843   HANDLE file_mapping_;
844   void* memory_;
845   int size_;
846 };
847 
848 
open(const char * name)849 OS::MemoryMappedFile* OS::MemoryMappedFile::open(const char* name) {
850   // Open a physical file
851   HANDLE file = CreateFileA(name, GENERIC_READ | GENERIC_WRITE,
852       FILE_SHARE_READ | FILE_SHARE_WRITE, NULL, OPEN_EXISTING, 0, NULL);
853   if (file == INVALID_HANDLE_VALUE) return NULL;
854 
855   int size = static_cast<int>(GetFileSize(file, NULL));
856 
857   // Create a file mapping for the physical file
858   HANDLE file_mapping = CreateFileMapping(file, NULL,
859       PAGE_READWRITE, 0, static_cast<DWORD>(size), NULL);
860   if (file_mapping == NULL) return NULL;
861 
862   // Map a view of the file into memory
863   void* memory = MapViewOfFile(file_mapping, FILE_MAP_ALL_ACCESS, 0, 0, size);
864   return new Win32MemoryMappedFile(file, file_mapping, memory, size);
865 }
866 
867 
create(const char * name,int size,void * initial)868 OS::MemoryMappedFile* OS::MemoryMappedFile::create(const char* name, int size,
869     void* initial) {
870   // Open a physical file
871   HANDLE file = CreateFileA(name, GENERIC_READ | GENERIC_WRITE,
872       FILE_SHARE_READ | FILE_SHARE_WRITE, NULL, OPEN_ALWAYS, 0, NULL);
873   if (file == NULL) return NULL;
874   // Create a file mapping for the physical file
875   HANDLE file_mapping = CreateFileMapping(file, NULL,
876       PAGE_READWRITE, 0, static_cast<DWORD>(size), NULL);
877   if (file_mapping == NULL) return NULL;
878   // Map a view of the file into memory
879   void* memory = MapViewOfFile(file_mapping, FILE_MAP_ALL_ACCESS, 0, 0, size);
880   if (memory) MemMove(memory, initial, size);
881   return new Win32MemoryMappedFile(file, file_mapping, memory, size);
882 }
883 
884 
~Win32MemoryMappedFile()885 Win32MemoryMappedFile::~Win32MemoryMappedFile() {
886   if (memory_ != NULL)
887     UnmapViewOfFile(memory_);
888   CloseHandle(file_mapping_);
889   CloseHandle(file_);
890 }
891 
892 
893 // The following code loads functions defined in DbhHelp.h and TlHelp32.h
894 // dynamically. This is to avoid being depending on dbghelp.dll and
895 // tlhelp32.dll when running (the functions in tlhelp32.dll have been moved to
896 // kernel32.dll at some point so loading functions defines in TlHelp32.h
897 // dynamically might not be necessary any more - for some versions of Windows?).
898 
899 // Function pointers to functions dynamically loaded from dbghelp.dll.
900 #define DBGHELP_FUNCTION_LIST(V)  \
901   V(SymInitialize)                \
902   V(SymGetOptions)                \
903   V(SymSetOptions)                \
904   V(SymGetSearchPath)             \
905   V(SymLoadModule64)              \
906   V(StackWalk64)                  \
907   V(SymGetSymFromAddr64)          \
908   V(SymGetLineFromAddr64)         \
909   V(SymFunctionTableAccess64)     \
910   V(SymGetModuleBase64)
911 
912 // Function pointers to functions dynamically loaded from dbghelp.dll.
913 #define TLHELP32_FUNCTION_LIST(V)  \
914   V(CreateToolhelp32Snapshot)      \
915   V(Module32FirstW)                \
916   V(Module32NextW)
917 
918 // Define the decoration to use for the type and variable name used for
919 // dynamically loaded DLL function..
920 #define DLL_FUNC_TYPE(name) _##name##_
921 #define DLL_FUNC_VAR(name) _##name
922 
923 // Define the type for each dynamically loaded DLL function. The function
924 // definitions are copied from DbgHelp.h and TlHelp32.h. The IN and VOID macros
925 // from the Windows include files are redefined here to have the function
926 // definitions to be as close to the ones in the original .h files as possible.
927 #ifndef IN
928 #define IN
929 #endif
930 #ifndef VOID
931 #define VOID void
932 #endif
933 
934 // DbgHelp isn't supported on MinGW yet
935 #ifndef __MINGW32__
936 // DbgHelp.h functions.
937 typedef BOOL (__stdcall *DLL_FUNC_TYPE(SymInitialize))(IN HANDLE hProcess,
938                                                        IN PSTR UserSearchPath,
939                                                        IN BOOL fInvadeProcess);
940 typedef DWORD (__stdcall *DLL_FUNC_TYPE(SymGetOptions))(VOID);
941 typedef DWORD (__stdcall *DLL_FUNC_TYPE(SymSetOptions))(IN DWORD SymOptions);
942 typedef BOOL (__stdcall *DLL_FUNC_TYPE(SymGetSearchPath))(
943     IN HANDLE hProcess,
944     OUT PSTR SearchPath,
945     IN DWORD SearchPathLength);
946 typedef DWORD64 (__stdcall *DLL_FUNC_TYPE(SymLoadModule64))(
947     IN HANDLE hProcess,
948     IN HANDLE hFile,
949     IN PSTR ImageName,
950     IN PSTR ModuleName,
951     IN DWORD64 BaseOfDll,
952     IN DWORD SizeOfDll);
953 typedef BOOL (__stdcall *DLL_FUNC_TYPE(StackWalk64))(
954     DWORD MachineType,
955     HANDLE hProcess,
956     HANDLE hThread,
957     LPSTACKFRAME64 StackFrame,
958     PVOID ContextRecord,
959     PREAD_PROCESS_MEMORY_ROUTINE64 ReadMemoryRoutine,
960     PFUNCTION_TABLE_ACCESS_ROUTINE64 FunctionTableAccessRoutine,
961     PGET_MODULE_BASE_ROUTINE64 GetModuleBaseRoutine,
962     PTRANSLATE_ADDRESS_ROUTINE64 TranslateAddress);
963 typedef BOOL (__stdcall *DLL_FUNC_TYPE(SymGetSymFromAddr64))(
964     IN HANDLE hProcess,
965     IN DWORD64 qwAddr,
966     OUT PDWORD64 pdwDisplacement,
967     OUT PIMAGEHLP_SYMBOL64 Symbol);
968 typedef BOOL (__stdcall *DLL_FUNC_TYPE(SymGetLineFromAddr64))(
969     IN HANDLE hProcess,
970     IN DWORD64 qwAddr,
971     OUT PDWORD pdwDisplacement,
972     OUT PIMAGEHLP_LINE64 Line64);
973 // DbgHelp.h typedefs. Implementation found in dbghelp.dll.
974 typedef PVOID (__stdcall *DLL_FUNC_TYPE(SymFunctionTableAccess64))(
975     HANDLE hProcess,
976     DWORD64 AddrBase);  // DbgHelp.h typedef PFUNCTION_TABLE_ACCESS_ROUTINE64
977 typedef DWORD64 (__stdcall *DLL_FUNC_TYPE(SymGetModuleBase64))(
978     HANDLE hProcess,
979     DWORD64 AddrBase);  // DbgHelp.h typedef PGET_MODULE_BASE_ROUTINE64
980 
981 // TlHelp32.h functions.
982 typedef HANDLE (__stdcall *DLL_FUNC_TYPE(CreateToolhelp32Snapshot))(
983     DWORD dwFlags,
984     DWORD th32ProcessID);
985 typedef BOOL (__stdcall *DLL_FUNC_TYPE(Module32FirstW))(HANDLE hSnapshot,
986                                                         LPMODULEENTRY32W lpme);
987 typedef BOOL (__stdcall *DLL_FUNC_TYPE(Module32NextW))(HANDLE hSnapshot,
988                                                        LPMODULEENTRY32W lpme);
989 
990 #undef IN
991 #undef VOID
992 
993 // Declare a variable for each dynamically loaded DLL function.
994 #define DEF_DLL_FUNCTION(name) DLL_FUNC_TYPE(name) DLL_FUNC_VAR(name) = NULL;
995 DBGHELP_FUNCTION_LIST(DEF_DLL_FUNCTION)
TLHELP32_FUNCTION_LIST(DEF_DLL_FUNCTION)996 TLHELP32_FUNCTION_LIST(DEF_DLL_FUNCTION)
997 #undef DEF_DLL_FUNCTION
998 
999 // Load the functions. This function has a lot of "ugly" macros in order to
1000 // keep down code duplication.
1001 
1002 static bool LoadDbgHelpAndTlHelp32() {
1003   static bool dbghelp_loaded = false;
1004 
1005   if (dbghelp_loaded) return true;
1006 
1007   HMODULE module;
1008 
1009   // Load functions from the dbghelp.dll module.
1010   module = LoadLibrary(TEXT("dbghelp.dll"));
1011   if (module == NULL) {
1012     return false;
1013   }
1014 
1015 #define LOAD_DLL_FUNC(name)                                                 \
1016   DLL_FUNC_VAR(name) =                                                      \
1017       reinterpret_cast<DLL_FUNC_TYPE(name)>(GetProcAddress(module, #name));
1018 
1019 DBGHELP_FUNCTION_LIST(LOAD_DLL_FUNC)
1020 
1021 #undef LOAD_DLL_FUNC
1022 
1023   // Load functions from the kernel32.dll module (the TlHelp32.h function used
1024   // to be in tlhelp32.dll but are now moved to kernel32.dll).
1025   module = LoadLibrary(TEXT("kernel32.dll"));
1026   if (module == NULL) {
1027     return false;
1028   }
1029 
1030 #define LOAD_DLL_FUNC(name)                                                 \
1031   DLL_FUNC_VAR(name) =                                                      \
1032       reinterpret_cast<DLL_FUNC_TYPE(name)>(GetProcAddress(module, #name));
1033 
1034 TLHELP32_FUNCTION_LIST(LOAD_DLL_FUNC)
1035 
1036 #undef LOAD_DLL_FUNC
1037 
1038   // Check that all functions where loaded.
1039   bool result =
1040 #define DLL_FUNC_LOADED(name) (DLL_FUNC_VAR(name) != NULL) &&
1041 
1042 DBGHELP_FUNCTION_LIST(DLL_FUNC_LOADED)
1043 TLHELP32_FUNCTION_LIST(DLL_FUNC_LOADED)
1044 
1045 #undef DLL_FUNC_LOADED
1046   true;
1047 
1048   dbghelp_loaded = result;
1049   return result;
1050   // NOTE: The modules are never unloaded and will stay around until the
1051   // application is closed.
1052 }
1053 
1054 #undef DBGHELP_FUNCTION_LIST
1055 #undef TLHELP32_FUNCTION_LIST
1056 #undef DLL_FUNC_VAR
1057 #undef DLL_FUNC_TYPE
1058 
1059 
1060 // Load the symbols for generating stack traces.
LoadSymbols(HANDLE process_handle)1061 static std::vector<OS::SharedLibraryAddress> LoadSymbols(
1062     HANDLE process_handle) {
1063   static std::vector<OS::SharedLibraryAddress> result;
1064 
1065   static bool symbols_loaded = false;
1066 
1067   if (symbols_loaded) return result;
1068 
1069   BOOL ok;
1070 
1071   // Initialize the symbol engine.
1072   ok = _SymInitialize(process_handle,  // hProcess
1073                       NULL,            // UserSearchPath
1074                       false);          // fInvadeProcess
1075   if (!ok) return result;
1076 
1077   DWORD options = _SymGetOptions();
1078   options |= SYMOPT_LOAD_LINES;
1079   options |= SYMOPT_FAIL_CRITICAL_ERRORS;
1080   options = _SymSetOptions(options);
1081 
1082   char buf[OS::kStackWalkMaxNameLen] = {0};
1083   ok = _SymGetSearchPath(process_handle, buf, OS::kStackWalkMaxNameLen);
1084   if (!ok) {
1085     int err = GetLastError();
1086     PrintF("%d\n", err);
1087     return result;
1088   }
1089 
1090   HANDLE snapshot = _CreateToolhelp32Snapshot(
1091       TH32CS_SNAPMODULE,       // dwFlags
1092       GetCurrentProcessId());  // th32ProcessId
1093   if (snapshot == INVALID_HANDLE_VALUE) return result;
1094   MODULEENTRY32W module_entry;
1095   module_entry.dwSize = sizeof(module_entry);  // Set the size of the structure.
1096   BOOL cont = _Module32FirstW(snapshot, &module_entry);
1097   while (cont) {
1098     DWORD64 base;
1099     // NOTE the SymLoadModule64 function has the peculiarity of accepting a
1100     // both unicode and ASCII strings even though the parameter is PSTR.
1101     base = _SymLoadModule64(
1102         process_handle,                                       // hProcess
1103         0,                                                    // hFile
1104         reinterpret_cast<PSTR>(module_entry.szExePath),       // ImageName
1105         reinterpret_cast<PSTR>(module_entry.szModule),        // ModuleName
1106         reinterpret_cast<DWORD64>(module_entry.modBaseAddr),  // BaseOfDll
1107         module_entry.modBaseSize);                            // SizeOfDll
1108     if (base == 0) {
1109       int err = GetLastError();
1110       if (err != ERROR_MOD_NOT_FOUND &&
1111           err != ERROR_INVALID_HANDLE) {
1112         result.clear();
1113         return result;
1114       }
1115     }
1116     int lib_name_length = WideCharToMultiByte(
1117         CP_UTF8, 0, module_entry.szExePath, -1, NULL, 0, NULL, NULL);
1118     std::string lib_name(lib_name_length, 0);
1119     WideCharToMultiByte(CP_UTF8, 0, module_entry.szExePath, -1, &lib_name[0],
1120                         lib_name_length, NULL, NULL);
1121     result.push_back(OS::SharedLibraryAddress(
1122         lib_name, reinterpret_cast<unsigned int>(module_entry.modBaseAddr),
1123         reinterpret_cast<unsigned int>(module_entry.modBaseAddr +
1124                                        module_entry.modBaseSize)));
1125     cont = _Module32NextW(snapshot, &module_entry);
1126   }
1127   CloseHandle(snapshot);
1128 
1129   symbols_loaded = true;
1130   return result;
1131 }
1132 
1133 
GetSharedLibraryAddresses()1134 std::vector<OS::SharedLibraryAddress> OS::GetSharedLibraryAddresses() {
1135   // SharedLibraryEvents are logged when loading symbol information.
1136   // Only the shared libraries loaded at the time of the call to
1137   // GetSharedLibraryAddresses are logged.  DLLs loaded after
1138   // initialization are not accounted for.
1139   if (!LoadDbgHelpAndTlHelp32()) return std::vector<OS::SharedLibraryAddress>();
1140   HANDLE process_handle = GetCurrentProcess();
1141   return LoadSymbols(process_handle);
1142 }
1143 
1144 
SignalCodeMovingGC()1145 void OS::SignalCodeMovingGC() {
1146 }
1147 
1148 
TotalPhysicalMemory()1149 uint64_t OS::TotalPhysicalMemory() {
1150   MEMORYSTATUSEX memory_info;
1151   memory_info.dwLength = sizeof(memory_info);
1152   if (!GlobalMemoryStatusEx(&memory_info)) {
1153     UNREACHABLE();
1154     return 0;
1155   }
1156 
1157   return static_cast<uint64_t>(memory_info.ullTotalPhys);
1158 }
1159 
1160 
1161 #else  // __MINGW32__
GetSharedLibraryAddresses()1162 std::vector<OS::SharedLibraryAddress> OS::GetSharedLibraryAddresses() {
1163   return std::vector<OS::SharedLibraryAddress>();
1164 }
1165 
1166 
SignalCodeMovingGC()1167 void OS::SignalCodeMovingGC() { }
1168 #endif  // __MINGW32__
1169 
1170 
NumberOfProcessorsOnline()1171 int OS::NumberOfProcessorsOnline() {
1172   SYSTEM_INFO info;
1173   GetSystemInfo(&info);
1174   return info.dwNumberOfProcessors;
1175 }
1176 
1177 
nan_value()1178 double OS::nan_value() {
1179 #ifdef _MSC_VER
1180   // Positive Quiet NaN with no payload (aka. Indeterminate) has all bits
1181   // in mask set, so value equals mask.
1182   static const __int64 nanval = kQuietNaNMask;
1183   return *reinterpret_cast<const double*>(&nanval);
1184 #else  // _MSC_VER
1185   return NAN;
1186 #endif  // _MSC_VER
1187 }
1188 
1189 
ActivationFrameAlignment()1190 int OS::ActivationFrameAlignment() {
1191 #ifdef _WIN64
1192   return 16;  // Windows 64-bit ABI requires the stack to be 16-byte aligned.
1193 #elif defined(__MINGW32__)
1194   // With gcc 4.4 the tree vectorization optimizer can generate code
1195   // that requires 16 byte alignment such as movdqa on x86.
1196   return 16;
1197 #else
1198   return 8;  // Floating-point math runs faster with 8-byte alignment.
1199 #endif
1200 }
1201 
1202 
VirtualMemory()1203 VirtualMemory::VirtualMemory() : address_(NULL), size_(0) { }
1204 
1205 
VirtualMemory(size_t size)1206 VirtualMemory::VirtualMemory(size_t size)
1207     : address_(ReserveRegion(size)), size_(size) { }
1208 
1209 
VirtualMemory(size_t size,size_t alignment)1210 VirtualMemory::VirtualMemory(size_t size, size_t alignment)
1211     : address_(NULL), size_(0) {
1212   ASSERT(IsAligned(alignment, static_cast<intptr_t>(OS::AllocateAlignment())));
1213   size_t request_size = RoundUp(size + alignment,
1214                                 static_cast<intptr_t>(OS::AllocateAlignment()));
1215   void* address = ReserveRegion(request_size);
1216   if (address == NULL) return;
1217   Address base = RoundUp(static_cast<Address>(address), alignment);
1218   // Try reducing the size by freeing and then reallocating a specific area.
1219   bool result = ReleaseRegion(address, request_size);
1220   USE(result);
1221   ASSERT(result);
1222   address = VirtualAlloc(base, size, MEM_RESERVE, PAGE_NOACCESS);
1223   if (address != NULL) {
1224     request_size = size;
1225     ASSERT(base == static_cast<Address>(address));
1226   } else {
1227     // Resizing failed, just go with a bigger area.
1228     address = ReserveRegion(request_size);
1229     if (address == NULL) return;
1230   }
1231   address_ = address;
1232   size_ = request_size;
1233 }
1234 
1235 
~VirtualMemory()1236 VirtualMemory::~VirtualMemory() {
1237   if (IsReserved()) {
1238     bool result = ReleaseRegion(address(), size());
1239     ASSERT(result);
1240     USE(result);
1241   }
1242 }
1243 
1244 
IsReserved()1245 bool VirtualMemory::IsReserved() {
1246   return address_ != NULL;
1247 }
1248 
1249 
Reset()1250 void VirtualMemory::Reset() {
1251   address_ = NULL;
1252   size_ = 0;
1253 }
1254 
1255 
Commit(void * address,size_t size,bool is_executable)1256 bool VirtualMemory::Commit(void* address, size_t size, bool is_executable) {
1257   return CommitRegion(address, size, is_executable);
1258 }
1259 
1260 
Uncommit(void * address,size_t size)1261 bool VirtualMemory::Uncommit(void* address, size_t size) {
1262   ASSERT(IsReserved());
1263   return UncommitRegion(address, size);
1264 }
1265 
1266 
Guard(void * address)1267 bool VirtualMemory::Guard(void* address) {
1268   if (NULL == VirtualAlloc(address,
1269                            OS::CommitPageSize(),
1270                            MEM_COMMIT,
1271                            PAGE_NOACCESS)) {
1272     return false;
1273   }
1274   return true;
1275 }
1276 
1277 
ReserveRegion(size_t size)1278 void* VirtualMemory::ReserveRegion(size_t size) {
1279   return RandomizedVirtualAlloc(size, MEM_RESERVE, PAGE_NOACCESS);
1280 }
1281 
1282 
CommitRegion(void * base,size_t size,bool is_executable)1283 bool VirtualMemory::CommitRegion(void* base, size_t size, bool is_executable) {
1284   int prot = is_executable ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE;
1285   if (NULL == VirtualAlloc(base, size, MEM_COMMIT, prot)) {
1286     return false;
1287   }
1288   return true;
1289 }
1290 
1291 
UncommitRegion(void * base,size_t size)1292 bool VirtualMemory::UncommitRegion(void* base, size_t size) {
1293   return VirtualFree(base, size, MEM_DECOMMIT) != 0;
1294 }
1295 
1296 
ReleaseRegion(void * base,size_t size)1297 bool VirtualMemory::ReleaseRegion(void* base, size_t size) {
1298   return VirtualFree(base, 0, MEM_RELEASE) != 0;
1299 }
1300 
1301 
HasLazyCommits()1302 bool VirtualMemory::HasLazyCommits() {
1303   // TODO(alph): implement for the platform.
1304   return false;
1305 }
1306 
1307 
1308 // ----------------------------------------------------------------------------
1309 // Win32 thread support.
1310 
1311 // Definition of invalid thread handle and id.
1312 static const HANDLE kNoThread = INVALID_HANDLE_VALUE;
1313 
1314 // Entry point for threads. The supplied argument is a pointer to the thread
1315 // object. The entry function dispatches to the run method in the thread
1316 // object. It is important that this function has __stdcall calling
1317 // convention.
ThreadEntry(void * arg)1318 static unsigned int __stdcall ThreadEntry(void* arg) {
1319   Thread* thread = reinterpret_cast<Thread*>(arg);
1320   thread->NotifyStartedAndRun();
1321   return 0;
1322 }
1323 
1324 
1325 class Thread::PlatformData : public Malloced {
1326  public:
PlatformData(HANDLE thread)1327   explicit PlatformData(HANDLE thread) : thread_(thread) {}
1328   HANDLE thread_;
1329   unsigned thread_id_;
1330 };
1331 
1332 
1333 // Initialize a Win32 thread object. The thread has an invalid thread
1334 // handle until it is started.
1335 
Thread(const Options & options)1336 Thread::Thread(const Options& options)
1337     : stack_size_(options.stack_size()),
1338       start_semaphore_(NULL) {
1339   data_ = new PlatformData(kNoThread);
1340   set_name(options.name());
1341 }
1342 
1343 
set_name(const char * name)1344 void Thread::set_name(const char* name) {
1345   OS::StrNCpy(name_, sizeof(name_), name, strlen(name));
1346   name_[sizeof(name_) - 1] = '\0';
1347 }
1348 
1349 
1350 // Close our own handle for the thread.
~Thread()1351 Thread::~Thread() {
1352   if (data_->thread_ != kNoThread) CloseHandle(data_->thread_);
1353   delete data_;
1354 }
1355 
1356 
1357 // Create a new thread. It is important to use _beginthreadex() instead of
1358 // the Win32 function CreateThread(), because the CreateThread() does not
1359 // initialize thread specific structures in the C runtime library.
Start()1360 void Thread::Start() {
1361   data_->thread_ = reinterpret_cast<HANDLE>(
1362       _beginthreadex(NULL,
1363                      static_cast<unsigned>(stack_size_),
1364                      ThreadEntry,
1365                      this,
1366                      0,
1367                      &data_->thread_id_));
1368 }
1369 
1370 
1371 // Wait for thread to terminate.
Join()1372 void Thread::Join() {
1373   if (data_->thread_id_ != GetCurrentThreadId()) {
1374     WaitForSingleObject(data_->thread_, INFINITE);
1375   }
1376 }
1377 
1378 
CreateThreadLocalKey()1379 Thread::LocalStorageKey Thread::CreateThreadLocalKey() {
1380   DWORD result = TlsAlloc();
1381   ASSERT(result != TLS_OUT_OF_INDEXES);
1382   return static_cast<LocalStorageKey>(result);
1383 }
1384 
1385 
DeleteThreadLocalKey(LocalStorageKey key)1386 void Thread::DeleteThreadLocalKey(LocalStorageKey key) {
1387   BOOL result = TlsFree(static_cast<DWORD>(key));
1388   USE(result);
1389   ASSERT(result);
1390 }
1391 
1392 
GetThreadLocal(LocalStorageKey key)1393 void* Thread::GetThreadLocal(LocalStorageKey key) {
1394   return TlsGetValue(static_cast<DWORD>(key));
1395 }
1396 
1397 
SetThreadLocal(LocalStorageKey key,void * value)1398 void Thread::SetThreadLocal(LocalStorageKey key, void* value) {
1399   BOOL result = TlsSetValue(static_cast<DWORD>(key), value);
1400   USE(result);
1401   ASSERT(result);
1402 }
1403 
1404 
1405 
YieldCPU()1406 void Thread::YieldCPU() {
1407   Sleep(0);
1408 }
1409 
1410 } }  // namespace v8::internal
1411