1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 // Platform-specific code for Win32.
6
7 // Secure API functions are not available using MinGW with msvcrt.dll
8 // on Windows XP. Make sure MINGW_HAS_SECURE_API is not defined to
9 // disable definition of secure API functions in standard headers that
10 // would conflict with our own implementation.
11 #ifdef __MINGW32__
12 #include <_mingw.h>
13 #ifdef MINGW_HAS_SECURE_API
14 #undef MINGW_HAS_SECURE_API
15 #endif // MINGW_HAS_SECURE_API
16 #endif // __MINGW32__
17
18 #include "src/base/win32-headers.h"
19
20 #include "src/v8.h"
21
22 #include "src/isolate-inl.h"
23 #include "src/platform.h"
24
25 #ifdef _MSC_VER
26
27 // Case-insensitive bounded string comparisons. Use stricmp() on Win32. Usually
28 // defined in strings.h.
strncasecmp(const char * s1,const char * s2,int n)29 int strncasecmp(const char* s1, const char* s2, int n) {
30 return _strnicmp(s1, s2, n);
31 }
32
33 #endif // _MSC_VER
34
35
36 // Extra functions for MinGW. Most of these are the _s functions which are in
37 // the Microsoft Visual Studio C++ CRT.
38 #ifdef __MINGW32__
39
40
41 #ifndef __MINGW64_VERSION_MAJOR
42
43 #define _TRUNCATE 0
44 #define STRUNCATE 80
45
MemoryBarrier()46 inline void MemoryBarrier() {
47 int barrier = 0;
48 __asm__ __volatile__("xchgl %%eax,%0 ":"=r" (barrier));
49 }
50
51 #endif // __MINGW64_VERSION_MAJOR
52
53
localtime_s(tm * out_tm,const time_t * time)54 int localtime_s(tm* out_tm, const time_t* time) {
55 tm* posix_local_time_struct = localtime(time);
56 if (posix_local_time_struct == NULL) return 1;
57 *out_tm = *posix_local_time_struct;
58 return 0;
59 }
60
61
fopen_s(FILE ** pFile,const char * filename,const char * mode)62 int fopen_s(FILE** pFile, const char* filename, const char* mode) {
63 *pFile = fopen(filename, mode);
64 return *pFile != NULL ? 0 : 1;
65 }
66
_vsnprintf_s(char * buffer,size_t sizeOfBuffer,size_t count,const char * format,va_list argptr)67 int _vsnprintf_s(char* buffer, size_t sizeOfBuffer, size_t count,
68 const char* format, va_list argptr) {
69 ASSERT(count == _TRUNCATE);
70 return _vsnprintf(buffer, sizeOfBuffer, format, argptr);
71 }
72
73
strncpy_s(char * dest,size_t dest_size,const char * source,size_t count)74 int strncpy_s(char* dest, size_t dest_size, const char* source, size_t count) {
75 CHECK(source != NULL);
76 CHECK(dest != NULL);
77 CHECK_GT(dest_size, 0);
78
79 if (count == _TRUNCATE) {
80 while (dest_size > 0 && *source != 0) {
81 *(dest++) = *(source++);
82 --dest_size;
83 }
84 if (dest_size == 0) {
85 *(dest - 1) = 0;
86 return STRUNCATE;
87 }
88 } else {
89 while (dest_size > 0 && count > 0 && *source != 0) {
90 *(dest++) = *(source++);
91 --dest_size;
92 --count;
93 }
94 }
95 CHECK_GT(dest_size, 0);
96 *dest = 0;
97 return 0;
98 }
99
100 #endif // __MINGW32__
101
102 namespace v8 {
103 namespace internal {
104
MaxVirtualMemory()105 intptr_t OS::MaxVirtualMemory() {
106 return 0;
107 }
108
109
110 class TimezoneCache {
111 public:
TimezoneCache()112 TimezoneCache() : initialized_(false) { }
113
Clear()114 void Clear() {
115 initialized_ = false;
116 }
117
118 // Initialize timezone information. The timezone information is obtained from
119 // windows. If we cannot get the timezone information we fall back to CET.
InitializeIfNeeded()120 void InitializeIfNeeded() {
121 // Just return if timezone information has already been initialized.
122 if (initialized_) return;
123
124 // Initialize POSIX time zone data.
125 _tzset();
126 // Obtain timezone information from operating system.
127 memset(&tzinfo_, 0, sizeof(tzinfo_));
128 if (GetTimeZoneInformation(&tzinfo_) == TIME_ZONE_ID_INVALID) {
129 // If we cannot get timezone information we fall back to CET.
130 tzinfo_.Bias = -60;
131 tzinfo_.StandardDate.wMonth = 10;
132 tzinfo_.StandardDate.wDay = 5;
133 tzinfo_.StandardDate.wHour = 3;
134 tzinfo_.StandardBias = 0;
135 tzinfo_.DaylightDate.wMonth = 3;
136 tzinfo_.DaylightDate.wDay = 5;
137 tzinfo_.DaylightDate.wHour = 2;
138 tzinfo_.DaylightBias = -60;
139 }
140
141 // Make standard and DST timezone names.
142 WideCharToMultiByte(CP_UTF8, 0, tzinfo_.StandardName, -1,
143 std_tz_name_, kTzNameSize, NULL, NULL);
144 std_tz_name_[kTzNameSize - 1] = '\0';
145 WideCharToMultiByte(CP_UTF8, 0, tzinfo_.DaylightName, -1,
146 dst_tz_name_, kTzNameSize, NULL, NULL);
147 dst_tz_name_[kTzNameSize - 1] = '\0';
148
149 // If OS returned empty string or resource id (like "@tzres.dll,-211")
150 // simply guess the name from the UTC bias of the timezone.
151 // To properly resolve the resource identifier requires a library load,
152 // which is not possible in a sandbox.
153 if (std_tz_name_[0] == '\0' || std_tz_name_[0] == '@') {
154 OS::SNPrintF(std_tz_name_, kTzNameSize - 1,
155 "%s Standard Time",
156 GuessTimezoneNameFromBias(tzinfo_.Bias));
157 }
158 if (dst_tz_name_[0] == '\0' || dst_tz_name_[0] == '@') {
159 OS::SNPrintF(dst_tz_name_, kTzNameSize - 1,
160 "%s Daylight Time",
161 GuessTimezoneNameFromBias(tzinfo_.Bias));
162 }
163 // Timezone information initialized.
164 initialized_ = true;
165 }
166
167 // Guess the name of the timezone from the bias.
168 // The guess is very biased towards the northern hemisphere.
GuessTimezoneNameFromBias(int bias)169 const char* GuessTimezoneNameFromBias(int bias) {
170 static const int kHour = 60;
171 switch (-bias) {
172 case -9*kHour: return "Alaska";
173 case -8*kHour: return "Pacific";
174 case -7*kHour: return "Mountain";
175 case -6*kHour: return "Central";
176 case -5*kHour: return "Eastern";
177 case -4*kHour: return "Atlantic";
178 case 0*kHour: return "GMT";
179 case +1*kHour: return "Central Europe";
180 case +2*kHour: return "Eastern Europe";
181 case +3*kHour: return "Russia";
182 case +5*kHour + 30: return "India";
183 case +8*kHour: return "China";
184 case +9*kHour: return "Japan";
185 case +12*kHour: return "New Zealand";
186 default: return "Local";
187 }
188 }
189
190
191 private:
192 static const int kTzNameSize = 128;
193 bool initialized_;
194 char std_tz_name_[kTzNameSize];
195 char dst_tz_name_[kTzNameSize];
196 TIME_ZONE_INFORMATION tzinfo_;
197 friend class Win32Time;
198 };
199
200
201 // ----------------------------------------------------------------------------
202 // The Time class represents time on win32. A timestamp is represented as
203 // a 64-bit integer in 100 nanoseconds since January 1, 1601 (UTC). JavaScript
204 // timestamps are represented as a doubles in milliseconds since 00:00:00 UTC,
205 // January 1, 1970.
206
207 class Win32Time {
208 public:
209 // Constructors.
210 Win32Time();
211 explicit Win32Time(double jstime);
212 Win32Time(int year, int mon, int day, int hour, int min, int sec);
213
214 // Convert timestamp to JavaScript representation.
215 double ToJSTime();
216
217 // Set timestamp to current time.
218 void SetToCurrentTime();
219
220 // Returns the local timezone offset in milliseconds east of UTC. This is
221 // the number of milliseconds you must add to UTC to get local time, i.e.
222 // LocalOffset(CET) = 3600000 and LocalOffset(PST) = -28800000. This
223 // routine also takes into account whether daylight saving is effect
224 // at the time.
225 int64_t LocalOffset(TimezoneCache* cache);
226
227 // Returns the daylight savings time offset for the time in milliseconds.
228 int64_t DaylightSavingsOffset(TimezoneCache* cache);
229
230 // Returns a string identifying the current timezone for the
231 // timestamp taking into account daylight saving.
232 char* LocalTimezone(TimezoneCache* cache);
233
234 private:
235 // Constants for time conversion.
236 static const int64_t kTimeEpoc = 116444736000000000LL;
237 static const int64_t kTimeScaler = 10000;
238 static const int64_t kMsPerMinute = 60000;
239
240 // Constants for timezone information.
241 static const bool kShortTzNames = false;
242
243 // Return whether or not daylight savings time is in effect at this time.
244 bool InDST(TimezoneCache* cache);
245
246 // Accessor for FILETIME representation.
ft()247 FILETIME& ft() { return time_.ft_; }
248
249 // Accessor for integer representation.
t()250 int64_t& t() { return time_.t_; }
251
252 // Although win32 uses 64-bit integers for representing timestamps,
253 // these are packed into a FILETIME structure. The FILETIME structure
254 // is just a struct representing a 64-bit integer. The TimeStamp union
255 // allows access to both a FILETIME and an integer representation of
256 // the timestamp.
257 union TimeStamp {
258 FILETIME ft_;
259 int64_t t_;
260 };
261
262 TimeStamp time_;
263 };
264
265
266 // Initialize timestamp to start of epoc.
Win32Time()267 Win32Time::Win32Time() {
268 t() = 0;
269 }
270
271
272 // Initialize timestamp from a JavaScript timestamp.
Win32Time(double jstime)273 Win32Time::Win32Time(double jstime) {
274 t() = static_cast<int64_t>(jstime) * kTimeScaler + kTimeEpoc;
275 }
276
277
278 // Initialize timestamp from date/time components.
Win32Time(int year,int mon,int day,int hour,int min,int sec)279 Win32Time::Win32Time(int year, int mon, int day, int hour, int min, int sec) {
280 SYSTEMTIME st;
281 st.wYear = year;
282 st.wMonth = mon;
283 st.wDay = day;
284 st.wHour = hour;
285 st.wMinute = min;
286 st.wSecond = sec;
287 st.wMilliseconds = 0;
288 SystemTimeToFileTime(&st, &ft());
289 }
290
291
292 // Convert timestamp to JavaScript timestamp.
ToJSTime()293 double Win32Time::ToJSTime() {
294 return static_cast<double>((t() - kTimeEpoc) / kTimeScaler);
295 }
296
297
298 // Set timestamp to current time.
SetToCurrentTime()299 void Win32Time::SetToCurrentTime() {
300 // The default GetSystemTimeAsFileTime has a ~15.5ms resolution.
301 // Because we're fast, we like fast timers which have at least a
302 // 1ms resolution.
303 //
304 // timeGetTime() provides 1ms granularity when combined with
305 // timeBeginPeriod(). If the host application for v8 wants fast
306 // timers, it can use timeBeginPeriod to increase the resolution.
307 //
308 // Using timeGetTime() has a drawback because it is a 32bit value
309 // and hence rolls-over every ~49days.
310 //
311 // To use the clock, we use GetSystemTimeAsFileTime as our base;
312 // and then use timeGetTime to extrapolate current time from the
313 // start time. To deal with rollovers, we resync the clock
314 // any time when more than kMaxClockElapsedTime has passed or
315 // whenever timeGetTime creates a rollover.
316
317 static bool initialized = false;
318 static TimeStamp init_time;
319 static DWORD init_ticks;
320 static const int64_t kHundredNanosecondsPerSecond = 10000000;
321 static const int64_t kMaxClockElapsedTime =
322 60*kHundredNanosecondsPerSecond; // 1 minute
323
324 // If we are uninitialized, we need to resync the clock.
325 bool needs_resync = !initialized;
326
327 // Get the current time.
328 TimeStamp time_now;
329 GetSystemTimeAsFileTime(&time_now.ft_);
330 DWORD ticks_now = timeGetTime();
331
332 // Check if we need to resync due to clock rollover.
333 needs_resync |= ticks_now < init_ticks;
334
335 // Check if we need to resync due to elapsed time.
336 needs_resync |= (time_now.t_ - init_time.t_) > kMaxClockElapsedTime;
337
338 // Check if we need to resync due to backwards time change.
339 needs_resync |= time_now.t_ < init_time.t_;
340
341 // Resync the clock if necessary.
342 if (needs_resync) {
343 GetSystemTimeAsFileTime(&init_time.ft_);
344 init_ticks = ticks_now = timeGetTime();
345 initialized = true;
346 }
347
348 // Finally, compute the actual time. Why is this so hard.
349 DWORD elapsed = ticks_now - init_ticks;
350 this->time_.t_ = init_time.t_ + (static_cast<int64_t>(elapsed) * 10000);
351 }
352
353
354 // Return the local timezone offset in milliseconds east of UTC. This
355 // takes into account whether daylight saving is in effect at the time.
356 // Only times in the 32-bit Unix range may be passed to this function.
357 // Also, adding the time-zone offset to the input must not overflow.
358 // The function EquivalentTime() in date.js guarantees this.
LocalOffset(TimezoneCache * cache)359 int64_t Win32Time::LocalOffset(TimezoneCache* cache) {
360 cache->InitializeIfNeeded();
361
362 Win32Time rounded_to_second(*this);
363 rounded_to_second.t() = rounded_to_second.t() / 1000 / kTimeScaler *
364 1000 * kTimeScaler;
365 // Convert to local time using POSIX localtime function.
366 // Windows XP Service Pack 3 made SystemTimeToTzSpecificLocalTime()
367 // very slow. Other browsers use localtime().
368
369 // Convert from JavaScript milliseconds past 1/1/1970 0:00:00 to
370 // POSIX seconds past 1/1/1970 0:00:00.
371 double unchecked_posix_time = rounded_to_second.ToJSTime() / 1000;
372 if (unchecked_posix_time > INT_MAX || unchecked_posix_time < 0) {
373 return 0;
374 }
375 // Because _USE_32BIT_TIME_T is defined, time_t is a 32-bit int.
376 time_t posix_time = static_cast<time_t>(unchecked_posix_time);
377
378 // Convert to local time, as struct with fields for day, hour, year, etc.
379 tm posix_local_time_struct;
380 if (localtime_s(&posix_local_time_struct, &posix_time)) return 0;
381
382 if (posix_local_time_struct.tm_isdst > 0) {
383 return (cache->tzinfo_.Bias + cache->tzinfo_.DaylightBias) * -kMsPerMinute;
384 } else if (posix_local_time_struct.tm_isdst == 0) {
385 return (cache->tzinfo_.Bias + cache->tzinfo_.StandardBias) * -kMsPerMinute;
386 } else {
387 return cache->tzinfo_.Bias * -kMsPerMinute;
388 }
389 }
390
391
392 // Return whether or not daylight savings time is in effect at this time.
InDST(TimezoneCache * cache)393 bool Win32Time::InDST(TimezoneCache* cache) {
394 cache->InitializeIfNeeded();
395
396 // Determine if DST is in effect at the specified time.
397 bool in_dst = false;
398 if (cache->tzinfo_.StandardDate.wMonth != 0 ||
399 cache->tzinfo_.DaylightDate.wMonth != 0) {
400 // Get the local timezone offset for the timestamp in milliseconds.
401 int64_t offset = LocalOffset(cache);
402
403 // Compute the offset for DST. The bias parameters in the timezone info
404 // are specified in minutes. These must be converted to milliseconds.
405 int64_t dstofs =
406 -(cache->tzinfo_.Bias + cache->tzinfo_.DaylightBias) * kMsPerMinute;
407
408 // If the local time offset equals the timezone bias plus the daylight
409 // bias then DST is in effect.
410 in_dst = offset == dstofs;
411 }
412
413 return in_dst;
414 }
415
416
417 // Return the daylight savings time offset for this time.
DaylightSavingsOffset(TimezoneCache * cache)418 int64_t Win32Time::DaylightSavingsOffset(TimezoneCache* cache) {
419 return InDST(cache) ? 60 * kMsPerMinute : 0;
420 }
421
422
423 // Returns a string identifying the current timezone for the
424 // timestamp taking into account daylight saving.
LocalTimezone(TimezoneCache * cache)425 char* Win32Time::LocalTimezone(TimezoneCache* cache) {
426 // Return the standard or DST time zone name based on whether daylight
427 // saving is in effect at the given time.
428 return InDST(cache) ? cache->dst_tz_name_ : cache->std_tz_name_;
429 }
430
431
432 // Returns the accumulated user time for thread.
GetUserTime(uint32_t * secs,uint32_t * usecs)433 int OS::GetUserTime(uint32_t* secs, uint32_t* usecs) {
434 FILETIME dummy;
435 uint64_t usertime;
436
437 // Get the amount of time that the thread has executed in user mode.
438 if (!GetThreadTimes(GetCurrentThread(), &dummy, &dummy, &dummy,
439 reinterpret_cast<FILETIME*>(&usertime))) return -1;
440
441 // Adjust the resolution to micro-seconds.
442 usertime /= 10;
443
444 // Convert to seconds and microseconds
445 *secs = static_cast<uint32_t>(usertime / 1000000);
446 *usecs = static_cast<uint32_t>(usertime % 1000000);
447 return 0;
448 }
449
450
451 // Returns current time as the number of milliseconds since
452 // 00:00:00 UTC, January 1, 1970.
TimeCurrentMillis()453 double OS::TimeCurrentMillis() {
454 return Time::Now().ToJsTime();
455 }
456
457
CreateTimezoneCache()458 TimezoneCache* OS::CreateTimezoneCache() {
459 return new TimezoneCache();
460 }
461
462
DisposeTimezoneCache(TimezoneCache * cache)463 void OS::DisposeTimezoneCache(TimezoneCache* cache) {
464 delete cache;
465 }
466
467
ClearTimezoneCache(TimezoneCache * cache)468 void OS::ClearTimezoneCache(TimezoneCache* cache) {
469 cache->Clear();
470 }
471
472
473 // Returns a string identifying the current timezone taking into
474 // account daylight saving.
LocalTimezone(double time,TimezoneCache * cache)475 const char* OS::LocalTimezone(double time, TimezoneCache* cache) {
476 return Win32Time(time).LocalTimezone(cache);
477 }
478
479
480 // Returns the local time offset in milliseconds east of UTC without
481 // taking daylight savings time into account.
LocalTimeOffset(TimezoneCache * cache)482 double OS::LocalTimeOffset(TimezoneCache* cache) {
483 // Use current time, rounded to the millisecond.
484 Win32Time t(TimeCurrentMillis());
485 // Time::LocalOffset inlcudes any daylight savings offset, so subtract it.
486 return static_cast<double>(t.LocalOffset(cache) -
487 t.DaylightSavingsOffset(cache));
488 }
489
490
491 // Returns the daylight savings offset in milliseconds for the given
492 // time.
DaylightSavingsOffset(double time,TimezoneCache * cache)493 double OS::DaylightSavingsOffset(double time, TimezoneCache* cache) {
494 int64_t offset = Win32Time(time).DaylightSavingsOffset(cache);
495 return static_cast<double>(offset);
496 }
497
498
GetLastError()499 int OS::GetLastError() {
500 return ::GetLastError();
501 }
502
503
GetCurrentProcessId()504 int OS::GetCurrentProcessId() {
505 return static_cast<int>(::GetCurrentProcessId());
506 }
507
508
509 // ----------------------------------------------------------------------------
510 // Win32 console output.
511 //
512 // If a Win32 application is linked as a console application it has a normal
513 // standard output and standard error. In this case normal printf works fine
514 // for output. However, if the application is linked as a GUI application,
515 // the process doesn't have a console, and therefore (debugging) output is lost.
516 // This is the case if we are embedded in a windows program (like a browser).
517 // In order to be able to get debug output in this case the the debugging
518 // facility using OutputDebugString. This output goes to the active debugger
519 // for the process (if any). Else the output can be monitored using DBMON.EXE.
520
521 enum OutputMode {
522 UNKNOWN, // Output method has not yet been determined.
523 CONSOLE, // Output is written to stdout.
524 ODS // Output is written to debug facility.
525 };
526
527 static OutputMode output_mode = UNKNOWN; // Current output mode.
528
529
530 // Determine if the process has a console for output.
HasConsole()531 static bool HasConsole() {
532 // Only check the first time. Eventual race conditions are not a problem,
533 // because all threads will eventually determine the same mode.
534 if (output_mode == UNKNOWN) {
535 // We cannot just check that the standard output is attached to a console
536 // because this would fail if output is redirected to a file. Therefore we
537 // say that a process does not have an output console if either the
538 // standard output handle is invalid or its file type is unknown.
539 if (GetStdHandle(STD_OUTPUT_HANDLE) != INVALID_HANDLE_VALUE &&
540 GetFileType(GetStdHandle(STD_OUTPUT_HANDLE)) != FILE_TYPE_UNKNOWN)
541 output_mode = CONSOLE;
542 else
543 output_mode = ODS;
544 }
545 return output_mode == CONSOLE;
546 }
547
548
VPrintHelper(FILE * stream,const char * format,va_list args)549 static void VPrintHelper(FILE* stream, const char* format, va_list args) {
550 if ((stream == stdout || stream == stderr) && !HasConsole()) {
551 // It is important to use safe print here in order to avoid
552 // overflowing the buffer. We might truncate the output, but this
553 // does not crash.
554 char buffer[4096];
555 OS::VSNPrintF(buffer, sizeof(buffer), format, args);
556 OutputDebugStringA(buffer);
557 } else {
558 vfprintf(stream, format, args);
559 }
560 }
561
562
FOpen(const char * path,const char * mode)563 FILE* OS::FOpen(const char* path, const char* mode) {
564 FILE* result;
565 if (fopen_s(&result, path, mode) == 0) {
566 return result;
567 } else {
568 return NULL;
569 }
570 }
571
572
Remove(const char * path)573 bool OS::Remove(const char* path) {
574 return (DeleteFileA(path) != 0);
575 }
576
577
OpenTemporaryFile()578 FILE* OS::OpenTemporaryFile() {
579 // tmpfile_s tries to use the root dir, don't use it.
580 char tempPathBuffer[MAX_PATH];
581 DWORD path_result = 0;
582 path_result = GetTempPathA(MAX_PATH, tempPathBuffer);
583 if (path_result > MAX_PATH || path_result == 0) return NULL;
584 UINT name_result = 0;
585 char tempNameBuffer[MAX_PATH];
586 name_result = GetTempFileNameA(tempPathBuffer, "", 0, tempNameBuffer);
587 if (name_result == 0) return NULL;
588 FILE* result = FOpen(tempNameBuffer, "w+"); // Same mode as tmpfile uses.
589 if (result != NULL) {
590 Remove(tempNameBuffer); // Delete on close.
591 }
592 return result;
593 }
594
595
596 // Open log file in binary mode to avoid /n -> /r/n conversion.
597 const char* const OS::LogFileOpenMode = "wb";
598
599
600 // Print (debug) message to console.
Print(const char * format,...)601 void OS::Print(const char* format, ...) {
602 va_list args;
603 va_start(args, format);
604 VPrint(format, args);
605 va_end(args);
606 }
607
608
VPrint(const char * format,va_list args)609 void OS::VPrint(const char* format, va_list args) {
610 VPrintHelper(stdout, format, args);
611 }
612
613
FPrint(FILE * out,const char * format,...)614 void OS::FPrint(FILE* out, const char* format, ...) {
615 va_list args;
616 va_start(args, format);
617 VFPrint(out, format, args);
618 va_end(args);
619 }
620
621
VFPrint(FILE * out,const char * format,va_list args)622 void OS::VFPrint(FILE* out, const char* format, va_list args) {
623 VPrintHelper(out, format, args);
624 }
625
626
627 // Print error message to console.
PrintError(const char * format,...)628 void OS::PrintError(const char* format, ...) {
629 va_list args;
630 va_start(args, format);
631 VPrintError(format, args);
632 va_end(args);
633 }
634
635
VPrintError(const char * format,va_list args)636 void OS::VPrintError(const char* format, va_list args) {
637 VPrintHelper(stderr, format, args);
638 }
639
640
SNPrintF(char * str,int length,const char * format,...)641 int OS::SNPrintF(char* str, int length, const char* format, ...) {
642 va_list args;
643 va_start(args, format);
644 int result = VSNPrintF(str, length, format, args);
645 va_end(args);
646 return result;
647 }
648
649
VSNPrintF(char * str,int length,const char * format,va_list args)650 int OS::VSNPrintF(char* str, int length, const char* format, va_list args) {
651 int n = _vsnprintf_s(str, length, _TRUNCATE, format, args);
652 // Make sure to zero-terminate the string if the output was
653 // truncated or if there was an error.
654 if (n < 0 || n >= length) {
655 if (length > 0)
656 str[length - 1] = '\0';
657 return -1;
658 } else {
659 return n;
660 }
661 }
662
663
StrChr(char * str,int c)664 char* OS::StrChr(char* str, int c) {
665 return const_cast<char*>(strchr(str, c));
666 }
667
668
StrNCpy(char * dest,int length,const char * src,size_t n)669 void OS::StrNCpy(char* dest, int length, const char* src, size_t n) {
670 // Use _TRUNCATE or strncpy_s crashes (by design) if buffer is too small.
671 size_t buffer_size = static_cast<size_t>(length);
672 if (n + 1 > buffer_size) // count for trailing '\0'
673 n = _TRUNCATE;
674 int result = strncpy_s(dest, length, src, n);
675 USE(result);
676 ASSERT(result == 0 || (n == _TRUNCATE && result == STRUNCATE));
677 }
678
679
680 #undef _TRUNCATE
681 #undef STRUNCATE
682
683
684 // Get the system's page size used by VirtualAlloc() or the next power
685 // of two. The reason for always returning a power of two is that the
686 // rounding up in OS::Allocate expects that.
GetPageSize()687 static size_t GetPageSize() {
688 static size_t page_size = 0;
689 if (page_size == 0) {
690 SYSTEM_INFO info;
691 GetSystemInfo(&info);
692 page_size = RoundUpToPowerOf2(info.dwPageSize);
693 }
694 return page_size;
695 }
696
697
698 // The allocation alignment is the guaranteed alignment for
699 // VirtualAlloc'ed blocks of memory.
AllocateAlignment()700 size_t OS::AllocateAlignment() {
701 static size_t allocate_alignment = 0;
702 if (allocate_alignment == 0) {
703 SYSTEM_INFO info;
704 GetSystemInfo(&info);
705 allocate_alignment = info.dwAllocationGranularity;
706 }
707 return allocate_alignment;
708 }
709
710
GetRandomMmapAddr()711 void* OS::GetRandomMmapAddr() {
712 Isolate* isolate = Isolate::UncheckedCurrent();
713 // Note that the current isolate isn't set up in a call path via
714 // CpuFeatures::Probe. We don't care about randomization in this case because
715 // the code page is immediately freed.
716 if (isolate != NULL) {
717 // The address range used to randomize RWX allocations in OS::Allocate
718 // Try not to map pages into the default range that windows loads DLLs
719 // Use a multiple of 64k to prevent committing unused memory.
720 // Note: This does not guarantee RWX regions will be within the
721 // range kAllocationRandomAddressMin to kAllocationRandomAddressMax
722 #ifdef V8_HOST_ARCH_64_BIT
723 static const intptr_t kAllocationRandomAddressMin = 0x0000000080000000;
724 static const intptr_t kAllocationRandomAddressMax = 0x000003FFFFFF0000;
725 #else
726 static const intptr_t kAllocationRandomAddressMin = 0x04000000;
727 static const intptr_t kAllocationRandomAddressMax = 0x3FFF0000;
728 #endif
729 uintptr_t address =
730 (isolate->random_number_generator()->NextInt() << kPageSizeBits) |
731 kAllocationRandomAddressMin;
732 address &= kAllocationRandomAddressMax;
733 return reinterpret_cast<void *>(address);
734 }
735 return NULL;
736 }
737
738
RandomizedVirtualAlloc(size_t size,int action,int protection)739 static void* RandomizedVirtualAlloc(size_t size, int action, int protection) {
740 LPVOID base = NULL;
741
742 if (protection == PAGE_EXECUTE_READWRITE || protection == PAGE_NOACCESS) {
743 // For exectutable pages try and randomize the allocation address
744 for (size_t attempts = 0; base == NULL && attempts < 3; ++attempts) {
745 base = VirtualAlloc(OS::GetRandomMmapAddr(), size, action, protection);
746 }
747 }
748
749 // After three attempts give up and let the OS find an address to use.
750 if (base == NULL) base = VirtualAlloc(NULL, size, action, protection);
751
752 return base;
753 }
754
755
Allocate(const size_t requested,size_t * allocated,bool is_executable)756 void* OS::Allocate(const size_t requested,
757 size_t* allocated,
758 bool is_executable) {
759 // VirtualAlloc rounds allocated size to page size automatically.
760 size_t msize = RoundUp(requested, static_cast<int>(GetPageSize()));
761
762 // Windows XP SP2 allows Data Excution Prevention (DEP).
763 int prot = is_executable ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE;
764
765 LPVOID mbase = RandomizedVirtualAlloc(msize,
766 MEM_COMMIT | MEM_RESERVE,
767 prot);
768
769 if (mbase == NULL) return NULL;
770
771 ASSERT(IsAligned(reinterpret_cast<size_t>(mbase), OS::AllocateAlignment()));
772
773 *allocated = msize;
774 return mbase;
775 }
776
777
Free(void * address,const size_t size)778 void OS::Free(void* address, const size_t size) {
779 // TODO(1240712): VirtualFree has a return value which is ignored here.
780 VirtualFree(address, 0, MEM_RELEASE);
781 USE(size);
782 }
783
784
CommitPageSize()785 intptr_t OS::CommitPageSize() {
786 return 4096;
787 }
788
789
ProtectCode(void * address,const size_t size)790 void OS::ProtectCode(void* address, const size_t size) {
791 DWORD old_protect;
792 VirtualProtect(address, size, PAGE_EXECUTE_READ, &old_protect);
793 }
794
795
Guard(void * address,const size_t size)796 void OS::Guard(void* address, const size_t size) {
797 DWORD oldprotect;
798 VirtualProtect(address, size, PAGE_NOACCESS, &oldprotect);
799 }
800
801
Sleep(int milliseconds)802 void OS::Sleep(int milliseconds) {
803 ::Sleep(milliseconds);
804 }
805
806
Abort()807 void OS::Abort() {
808 if (FLAG_hard_abort) {
809 V8_IMMEDIATE_CRASH();
810 }
811 // Make the MSVCRT do a silent abort.
812 raise(SIGABRT);
813 }
814
815
DebugBreak()816 void OS::DebugBreak() {
817 #ifdef _MSC_VER
818 // To avoid Visual Studio runtime support the following code can be used
819 // instead
820 // __asm { int 3 }
821 __debugbreak();
822 #else
823 ::DebugBreak();
824 #endif
825 }
826
827
828 class Win32MemoryMappedFile : public OS::MemoryMappedFile {
829 public:
Win32MemoryMappedFile(HANDLE file,HANDLE file_mapping,void * memory,int size)830 Win32MemoryMappedFile(HANDLE file,
831 HANDLE file_mapping,
832 void* memory,
833 int size)
834 : file_(file),
835 file_mapping_(file_mapping),
836 memory_(memory),
837 size_(size) { }
838 virtual ~Win32MemoryMappedFile();
memory()839 virtual void* memory() { return memory_; }
size()840 virtual int size() { return size_; }
841 private:
842 HANDLE file_;
843 HANDLE file_mapping_;
844 void* memory_;
845 int size_;
846 };
847
848
open(const char * name)849 OS::MemoryMappedFile* OS::MemoryMappedFile::open(const char* name) {
850 // Open a physical file
851 HANDLE file = CreateFileA(name, GENERIC_READ | GENERIC_WRITE,
852 FILE_SHARE_READ | FILE_SHARE_WRITE, NULL, OPEN_EXISTING, 0, NULL);
853 if (file == INVALID_HANDLE_VALUE) return NULL;
854
855 int size = static_cast<int>(GetFileSize(file, NULL));
856
857 // Create a file mapping for the physical file
858 HANDLE file_mapping = CreateFileMapping(file, NULL,
859 PAGE_READWRITE, 0, static_cast<DWORD>(size), NULL);
860 if (file_mapping == NULL) return NULL;
861
862 // Map a view of the file into memory
863 void* memory = MapViewOfFile(file_mapping, FILE_MAP_ALL_ACCESS, 0, 0, size);
864 return new Win32MemoryMappedFile(file, file_mapping, memory, size);
865 }
866
867
create(const char * name,int size,void * initial)868 OS::MemoryMappedFile* OS::MemoryMappedFile::create(const char* name, int size,
869 void* initial) {
870 // Open a physical file
871 HANDLE file = CreateFileA(name, GENERIC_READ | GENERIC_WRITE,
872 FILE_SHARE_READ | FILE_SHARE_WRITE, NULL, OPEN_ALWAYS, 0, NULL);
873 if (file == NULL) return NULL;
874 // Create a file mapping for the physical file
875 HANDLE file_mapping = CreateFileMapping(file, NULL,
876 PAGE_READWRITE, 0, static_cast<DWORD>(size), NULL);
877 if (file_mapping == NULL) return NULL;
878 // Map a view of the file into memory
879 void* memory = MapViewOfFile(file_mapping, FILE_MAP_ALL_ACCESS, 0, 0, size);
880 if (memory) MemMove(memory, initial, size);
881 return new Win32MemoryMappedFile(file, file_mapping, memory, size);
882 }
883
884
~Win32MemoryMappedFile()885 Win32MemoryMappedFile::~Win32MemoryMappedFile() {
886 if (memory_ != NULL)
887 UnmapViewOfFile(memory_);
888 CloseHandle(file_mapping_);
889 CloseHandle(file_);
890 }
891
892
893 // The following code loads functions defined in DbhHelp.h and TlHelp32.h
894 // dynamically. This is to avoid being depending on dbghelp.dll and
895 // tlhelp32.dll when running (the functions in tlhelp32.dll have been moved to
896 // kernel32.dll at some point so loading functions defines in TlHelp32.h
897 // dynamically might not be necessary any more - for some versions of Windows?).
898
899 // Function pointers to functions dynamically loaded from dbghelp.dll.
900 #define DBGHELP_FUNCTION_LIST(V) \
901 V(SymInitialize) \
902 V(SymGetOptions) \
903 V(SymSetOptions) \
904 V(SymGetSearchPath) \
905 V(SymLoadModule64) \
906 V(StackWalk64) \
907 V(SymGetSymFromAddr64) \
908 V(SymGetLineFromAddr64) \
909 V(SymFunctionTableAccess64) \
910 V(SymGetModuleBase64)
911
912 // Function pointers to functions dynamically loaded from dbghelp.dll.
913 #define TLHELP32_FUNCTION_LIST(V) \
914 V(CreateToolhelp32Snapshot) \
915 V(Module32FirstW) \
916 V(Module32NextW)
917
918 // Define the decoration to use for the type and variable name used for
919 // dynamically loaded DLL function..
920 #define DLL_FUNC_TYPE(name) _##name##_
921 #define DLL_FUNC_VAR(name) _##name
922
923 // Define the type for each dynamically loaded DLL function. The function
924 // definitions are copied from DbgHelp.h and TlHelp32.h. The IN and VOID macros
925 // from the Windows include files are redefined here to have the function
926 // definitions to be as close to the ones in the original .h files as possible.
927 #ifndef IN
928 #define IN
929 #endif
930 #ifndef VOID
931 #define VOID void
932 #endif
933
934 // DbgHelp isn't supported on MinGW yet
935 #ifndef __MINGW32__
936 // DbgHelp.h functions.
937 typedef BOOL (__stdcall *DLL_FUNC_TYPE(SymInitialize))(IN HANDLE hProcess,
938 IN PSTR UserSearchPath,
939 IN BOOL fInvadeProcess);
940 typedef DWORD (__stdcall *DLL_FUNC_TYPE(SymGetOptions))(VOID);
941 typedef DWORD (__stdcall *DLL_FUNC_TYPE(SymSetOptions))(IN DWORD SymOptions);
942 typedef BOOL (__stdcall *DLL_FUNC_TYPE(SymGetSearchPath))(
943 IN HANDLE hProcess,
944 OUT PSTR SearchPath,
945 IN DWORD SearchPathLength);
946 typedef DWORD64 (__stdcall *DLL_FUNC_TYPE(SymLoadModule64))(
947 IN HANDLE hProcess,
948 IN HANDLE hFile,
949 IN PSTR ImageName,
950 IN PSTR ModuleName,
951 IN DWORD64 BaseOfDll,
952 IN DWORD SizeOfDll);
953 typedef BOOL (__stdcall *DLL_FUNC_TYPE(StackWalk64))(
954 DWORD MachineType,
955 HANDLE hProcess,
956 HANDLE hThread,
957 LPSTACKFRAME64 StackFrame,
958 PVOID ContextRecord,
959 PREAD_PROCESS_MEMORY_ROUTINE64 ReadMemoryRoutine,
960 PFUNCTION_TABLE_ACCESS_ROUTINE64 FunctionTableAccessRoutine,
961 PGET_MODULE_BASE_ROUTINE64 GetModuleBaseRoutine,
962 PTRANSLATE_ADDRESS_ROUTINE64 TranslateAddress);
963 typedef BOOL (__stdcall *DLL_FUNC_TYPE(SymGetSymFromAddr64))(
964 IN HANDLE hProcess,
965 IN DWORD64 qwAddr,
966 OUT PDWORD64 pdwDisplacement,
967 OUT PIMAGEHLP_SYMBOL64 Symbol);
968 typedef BOOL (__stdcall *DLL_FUNC_TYPE(SymGetLineFromAddr64))(
969 IN HANDLE hProcess,
970 IN DWORD64 qwAddr,
971 OUT PDWORD pdwDisplacement,
972 OUT PIMAGEHLP_LINE64 Line64);
973 // DbgHelp.h typedefs. Implementation found in dbghelp.dll.
974 typedef PVOID (__stdcall *DLL_FUNC_TYPE(SymFunctionTableAccess64))(
975 HANDLE hProcess,
976 DWORD64 AddrBase); // DbgHelp.h typedef PFUNCTION_TABLE_ACCESS_ROUTINE64
977 typedef DWORD64 (__stdcall *DLL_FUNC_TYPE(SymGetModuleBase64))(
978 HANDLE hProcess,
979 DWORD64 AddrBase); // DbgHelp.h typedef PGET_MODULE_BASE_ROUTINE64
980
981 // TlHelp32.h functions.
982 typedef HANDLE (__stdcall *DLL_FUNC_TYPE(CreateToolhelp32Snapshot))(
983 DWORD dwFlags,
984 DWORD th32ProcessID);
985 typedef BOOL (__stdcall *DLL_FUNC_TYPE(Module32FirstW))(HANDLE hSnapshot,
986 LPMODULEENTRY32W lpme);
987 typedef BOOL (__stdcall *DLL_FUNC_TYPE(Module32NextW))(HANDLE hSnapshot,
988 LPMODULEENTRY32W lpme);
989
990 #undef IN
991 #undef VOID
992
993 // Declare a variable for each dynamically loaded DLL function.
994 #define DEF_DLL_FUNCTION(name) DLL_FUNC_TYPE(name) DLL_FUNC_VAR(name) = NULL;
995 DBGHELP_FUNCTION_LIST(DEF_DLL_FUNCTION)
TLHELP32_FUNCTION_LIST(DEF_DLL_FUNCTION)996 TLHELP32_FUNCTION_LIST(DEF_DLL_FUNCTION)
997 #undef DEF_DLL_FUNCTION
998
999 // Load the functions. This function has a lot of "ugly" macros in order to
1000 // keep down code duplication.
1001
1002 static bool LoadDbgHelpAndTlHelp32() {
1003 static bool dbghelp_loaded = false;
1004
1005 if (dbghelp_loaded) return true;
1006
1007 HMODULE module;
1008
1009 // Load functions from the dbghelp.dll module.
1010 module = LoadLibrary(TEXT("dbghelp.dll"));
1011 if (module == NULL) {
1012 return false;
1013 }
1014
1015 #define LOAD_DLL_FUNC(name) \
1016 DLL_FUNC_VAR(name) = \
1017 reinterpret_cast<DLL_FUNC_TYPE(name)>(GetProcAddress(module, #name));
1018
1019 DBGHELP_FUNCTION_LIST(LOAD_DLL_FUNC)
1020
1021 #undef LOAD_DLL_FUNC
1022
1023 // Load functions from the kernel32.dll module (the TlHelp32.h function used
1024 // to be in tlhelp32.dll but are now moved to kernel32.dll).
1025 module = LoadLibrary(TEXT("kernel32.dll"));
1026 if (module == NULL) {
1027 return false;
1028 }
1029
1030 #define LOAD_DLL_FUNC(name) \
1031 DLL_FUNC_VAR(name) = \
1032 reinterpret_cast<DLL_FUNC_TYPE(name)>(GetProcAddress(module, #name));
1033
1034 TLHELP32_FUNCTION_LIST(LOAD_DLL_FUNC)
1035
1036 #undef LOAD_DLL_FUNC
1037
1038 // Check that all functions where loaded.
1039 bool result =
1040 #define DLL_FUNC_LOADED(name) (DLL_FUNC_VAR(name) != NULL) &&
1041
1042 DBGHELP_FUNCTION_LIST(DLL_FUNC_LOADED)
1043 TLHELP32_FUNCTION_LIST(DLL_FUNC_LOADED)
1044
1045 #undef DLL_FUNC_LOADED
1046 true;
1047
1048 dbghelp_loaded = result;
1049 return result;
1050 // NOTE: The modules are never unloaded and will stay around until the
1051 // application is closed.
1052 }
1053
1054 #undef DBGHELP_FUNCTION_LIST
1055 #undef TLHELP32_FUNCTION_LIST
1056 #undef DLL_FUNC_VAR
1057 #undef DLL_FUNC_TYPE
1058
1059
1060 // Load the symbols for generating stack traces.
LoadSymbols(HANDLE process_handle)1061 static std::vector<OS::SharedLibraryAddress> LoadSymbols(
1062 HANDLE process_handle) {
1063 static std::vector<OS::SharedLibraryAddress> result;
1064
1065 static bool symbols_loaded = false;
1066
1067 if (symbols_loaded) return result;
1068
1069 BOOL ok;
1070
1071 // Initialize the symbol engine.
1072 ok = _SymInitialize(process_handle, // hProcess
1073 NULL, // UserSearchPath
1074 false); // fInvadeProcess
1075 if (!ok) return result;
1076
1077 DWORD options = _SymGetOptions();
1078 options |= SYMOPT_LOAD_LINES;
1079 options |= SYMOPT_FAIL_CRITICAL_ERRORS;
1080 options = _SymSetOptions(options);
1081
1082 char buf[OS::kStackWalkMaxNameLen] = {0};
1083 ok = _SymGetSearchPath(process_handle, buf, OS::kStackWalkMaxNameLen);
1084 if (!ok) {
1085 int err = GetLastError();
1086 PrintF("%d\n", err);
1087 return result;
1088 }
1089
1090 HANDLE snapshot = _CreateToolhelp32Snapshot(
1091 TH32CS_SNAPMODULE, // dwFlags
1092 GetCurrentProcessId()); // th32ProcessId
1093 if (snapshot == INVALID_HANDLE_VALUE) return result;
1094 MODULEENTRY32W module_entry;
1095 module_entry.dwSize = sizeof(module_entry); // Set the size of the structure.
1096 BOOL cont = _Module32FirstW(snapshot, &module_entry);
1097 while (cont) {
1098 DWORD64 base;
1099 // NOTE the SymLoadModule64 function has the peculiarity of accepting a
1100 // both unicode and ASCII strings even though the parameter is PSTR.
1101 base = _SymLoadModule64(
1102 process_handle, // hProcess
1103 0, // hFile
1104 reinterpret_cast<PSTR>(module_entry.szExePath), // ImageName
1105 reinterpret_cast<PSTR>(module_entry.szModule), // ModuleName
1106 reinterpret_cast<DWORD64>(module_entry.modBaseAddr), // BaseOfDll
1107 module_entry.modBaseSize); // SizeOfDll
1108 if (base == 0) {
1109 int err = GetLastError();
1110 if (err != ERROR_MOD_NOT_FOUND &&
1111 err != ERROR_INVALID_HANDLE) {
1112 result.clear();
1113 return result;
1114 }
1115 }
1116 int lib_name_length = WideCharToMultiByte(
1117 CP_UTF8, 0, module_entry.szExePath, -1, NULL, 0, NULL, NULL);
1118 std::string lib_name(lib_name_length, 0);
1119 WideCharToMultiByte(CP_UTF8, 0, module_entry.szExePath, -1, &lib_name[0],
1120 lib_name_length, NULL, NULL);
1121 result.push_back(OS::SharedLibraryAddress(
1122 lib_name, reinterpret_cast<unsigned int>(module_entry.modBaseAddr),
1123 reinterpret_cast<unsigned int>(module_entry.modBaseAddr +
1124 module_entry.modBaseSize)));
1125 cont = _Module32NextW(snapshot, &module_entry);
1126 }
1127 CloseHandle(snapshot);
1128
1129 symbols_loaded = true;
1130 return result;
1131 }
1132
1133
GetSharedLibraryAddresses()1134 std::vector<OS::SharedLibraryAddress> OS::GetSharedLibraryAddresses() {
1135 // SharedLibraryEvents are logged when loading symbol information.
1136 // Only the shared libraries loaded at the time of the call to
1137 // GetSharedLibraryAddresses are logged. DLLs loaded after
1138 // initialization are not accounted for.
1139 if (!LoadDbgHelpAndTlHelp32()) return std::vector<OS::SharedLibraryAddress>();
1140 HANDLE process_handle = GetCurrentProcess();
1141 return LoadSymbols(process_handle);
1142 }
1143
1144
SignalCodeMovingGC()1145 void OS::SignalCodeMovingGC() {
1146 }
1147
1148
TotalPhysicalMemory()1149 uint64_t OS::TotalPhysicalMemory() {
1150 MEMORYSTATUSEX memory_info;
1151 memory_info.dwLength = sizeof(memory_info);
1152 if (!GlobalMemoryStatusEx(&memory_info)) {
1153 UNREACHABLE();
1154 return 0;
1155 }
1156
1157 return static_cast<uint64_t>(memory_info.ullTotalPhys);
1158 }
1159
1160
1161 #else // __MINGW32__
GetSharedLibraryAddresses()1162 std::vector<OS::SharedLibraryAddress> OS::GetSharedLibraryAddresses() {
1163 return std::vector<OS::SharedLibraryAddress>();
1164 }
1165
1166
SignalCodeMovingGC()1167 void OS::SignalCodeMovingGC() { }
1168 #endif // __MINGW32__
1169
1170
NumberOfProcessorsOnline()1171 int OS::NumberOfProcessorsOnline() {
1172 SYSTEM_INFO info;
1173 GetSystemInfo(&info);
1174 return info.dwNumberOfProcessors;
1175 }
1176
1177
nan_value()1178 double OS::nan_value() {
1179 #ifdef _MSC_VER
1180 // Positive Quiet NaN with no payload (aka. Indeterminate) has all bits
1181 // in mask set, so value equals mask.
1182 static const __int64 nanval = kQuietNaNMask;
1183 return *reinterpret_cast<const double*>(&nanval);
1184 #else // _MSC_VER
1185 return NAN;
1186 #endif // _MSC_VER
1187 }
1188
1189
ActivationFrameAlignment()1190 int OS::ActivationFrameAlignment() {
1191 #ifdef _WIN64
1192 return 16; // Windows 64-bit ABI requires the stack to be 16-byte aligned.
1193 #elif defined(__MINGW32__)
1194 // With gcc 4.4 the tree vectorization optimizer can generate code
1195 // that requires 16 byte alignment such as movdqa on x86.
1196 return 16;
1197 #else
1198 return 8; // Floating-point math runs faster with 8-byte alignment.
1199 #endif
1200 }
1201
1202
VirtualMemory()1203 VirtualMemory::VirtualMemory() : address_(NULL), size_(0) { }
1204
1205
VirtualMemory(size_t size)1206 VirtualMemory::VirtualMemory(size_t size)
1207 : address_(ReserveRegion(size)), size_(size) { }
1208
1209
VirtualMemory(size_t size,size_t alignment)1210 VirtualMemory::VirtualMemory(size_t size, size_t alignment)
1211 : address_(NULL), size_(0) {
1212 ASSERT(IsAligned(alignment, static_cast<intptr_t>(OS::AllocateAlignment())));
1213 size_t request_size = RoundUp(size + alignment,
1214 static_cast<intptr_t>(OS::AllocateAlignment()));
1215 void* address = ReserveRegion(request_size);
1216 if (address == NULL) return;
1217 Address base = RoundUp(static_cast<Address>(address), alignment);
1218 // Try reducing the size by freeing and then reallocating a specific area.
1219 bool result = ReleaseRegion(address, request_size);
1220 USE(result);
1221 ASSERT(result);
1222 address = VirtualAlloc(base, size, MEM_RESERVE, PAGE_NOACCESS);
1223 if (address != NULL) {
1224 request_size = size;
1225 ASSERT(base == static_cast<Address>(address));
1226 } else {
1227 // Resizing failed, just go with a bigger area.
1228 address = ReserveRegion(request_size);
1229 if (address == NULL) return;
1230 }
1231 address_ = address;
1232 size_ = request_size;
1233 }
1234
1235
~VirtualMemory()1236 VirtualMemory::~VirtualMemory() {
1237 if (IsReserved()) {
1238 bool result = ReleaseRegion(address(), size());
1239 ASSERT(result);
1240 USE(result);
1241 }
1242 }
1243
1244
IsReserved()1245 bool VirtualMemory::IsReserved() {
1246 return address_ != NULL;
1247 }
1248
1249
Reset()1250 void VirtualMemory::Reset() {
1251 address_ = NULL;
1252 size_ = 0;
1253 }
1254
1255
Commit(void * address,size_t size,bool is_executable)1256 bool VirtualMemory::Commit(void* address, size_t size, bool is_executable) {
1257 return CommitRegion(address, size, is_executable);
1258 }
1259
1260
Uncommit(void * address,size_t size)1261 bool VirtualMemory::Uncommit(void* address, size_t size) {
1262 ASSERT(IsReserved());
1263 return UncommitRegion(address, size);
1264 }
1265
1266
Guard(void * address)1267 bool VirtualMemory::Guard(void* address) {
1268 if (NULL == VirtualAlloc(address,
1269 OS::CommitPageSize(),
1270 MEM_COMMIT,
1271 PAGE_NOACCESS)) {
1272 return false;
1273 }
1274 return true;
1275 }
1276
1277
ReserveRegion(size_t size)1278 void* VirtualMemory::ReserveRegion(size_t size) {
1279 return RandomizedVirtualAlloc(size, MEM_RESERVE, PAGE_NOACCESS);
1280 }
1281
1282
CommitRegion(void * base,size_t size,bool is_executable)1283 bool VirtualMemory::CommitRegion(void* base, size_t size, bool is_executable) {
1284 int prot = is_executable ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE;
1285 if (NULL == VirtualAlloc(base, size, MEM_COMMIT, prot)) {
1286 return false;
1287 }
1288 return true;
1289 }
1290
1291
UncommitRegion(void * base,size_t size)1292 bool VirtualMemory::UncommitRegion(void* base, size_t size) {
1293 return VirtualFree(base, size, MEM_DECOMMIT) != 0;
1294 }
1295
1296
ReleaseRegion(void * base,size_t size)1297 bool VirtualMemory::ReleaseRegion(void* base, size_t size) {
1298 return VirtualFree(base, 0, MEM_RELEASE) != 0;
1299 }
1300
1301
HasLazyCommits()1302 bool VirtualMemory::HasLazyCommits() {
1303 // TODO(alph): implement for the platform.
1304 return false;
1305 }
1306
1307
1308 // ----------------------------------------------------------------------------
1309 // Win32 thread support.
1310
1311 // Definition of invalid thread handle and id.
1312 static const HANDLE kNoThread = INVALID_HANDLE_VALUE;
1313
1314 // Entry point for threads. The supplied argument is a pointer to the thread
1315 // object. The entry function dispatches to the run method in the thread
1316 // object. It is important that this function has __stdcall calling
1317 // convention.
ThreadEntry(void * arg)1318 static unsigned int __stdcall ThreadEntry(void* arg) {
1319 Thread* thread = reinterpret_cast<Thread*>(arg);
1320 thread->NotifyStartedAndRun();
1321 return 0;
1322 }
1323
1324
1325 class Thread::PlatformData : public Malloced {
1326 public:
PlatformData(HANDLE thread)1327 explicit PlatformData(HANDLE thread) : thread_(thread) {}
1328 HANDLE thread_;
1329 unsigned thread_id_;
1330 };
1331
1332
1333 // Initialize a Win32 thread object. The thread has an invalid thread
1334 // handle until it is started.
1335
Thread(const Options & options)1336 Thread::Thread(const Options& options)
1337 : stack_size_(options.stack_size()),
1338 start_semaphore_(NULL) {
1339 data_ = new PlatformData(kNoThread);
1340 set_name(options.name());
1341 }
1342
1343
set_name(const char * name)1344 void Thread::set_name(const char* name) {
1345 OS::StrNCpy(name_, sizeof(name_), name, strlen(name));
1346 name_[sizeof(name_) - 1] = '\0';
1347 }
1348
1349
1350 // Close our own handle for the thread.
~Thread()1351 Thread::~Thread() {
1352 if (data_->thread_ != kNoThread) CloseHandle(data_->thread_);
1353 delete data_;
1354 }
1355
1356
1357 // Create a new thread. It is important to use _beginthreadex() instead of
1358 // the Win32 function CreateThread(), because the CreateThread() does not
1359 // initialize thread specific structures in the C runtime library.
Start()1360 void Thread::Start() {
1361 data_->thread_ = reinterpret_cast<HANDLE>(
1362 _beginthreadex(NULL,
1363 static_cast<unsigned>(stack_size_),
1364 ThreadEntry,
1365 this,
1366 0,
1367 &data_->thread_id_));
1368 }
1369
1370
1371 // Wait for thread to terminate.
Join()1372 void Thread::Join() {
1373 if (data_->thread_id_ != GetCurrentThreadId()) {
1374 WaitForSingleObject(data_->thread_, INFINITE);
1375 }
1376 }
1377
1378
CreateThreadLocalKey()1379 Thread::LocalStorageKey Thread::CreateThreadLocalKey() {
1380 DWORD result = TlsAlloc();
1381 ASSERT(result != TLS_OUT_OF_INDEXES);
1382 return static_cast<LocalStorageKey>(result);
1383 }
1384
1385
DeleteThreadLocalKey(LocalStorageKey key)1386 void Thread::DeleteThreadLocalKey(LocalStorageKey key) {
1387 BOOL result = TlsFree(static_cast<DWORD>(key));
1388 USE(result);
1389 ASSERT(result);
1390 }
1391
1392
GetThreadLocal(LocalStorageKey key)1393 void* Thread::GetThreadLocal(LocalStorageKey key) {
1394 return TlsGetValue(static_cast<DWORD>(key));
1395 }
1396
1397
SetThreadLocal(LocalStorageKey key,void * value)1398 void Thread::SetThreadLocal(LocalStorageKey key, void* value) {
1399 BOOL result = TlsSetValue(static_cast<DWORD>(key), value);
1400 USE(result);
1401 ASSERT(result);
1402 }
1403
1404
1405
YieldCPU()1406 void Thread::YieldCPU() {
1407 Sleep(0);
1408 }
1409
1410 } } // namespace v8::internal
1411