• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2014 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #include <sched.h>
6 #include <stdio.h>
7 #include <string.h>
8 #include <sys/socket.h>
9 #include <sys/syscall.h>
10 #include <sys/wait.h>
11 #include <unistd.h>
12 
13 #include <vector>
14 
15 #include "base/files/scoped_file.h"
16 #include "base/logging.h"
17 #include "base/memory/scoped_vector.h"
18 #include "base/posix/eintr_wrapper.h"
19 #include "base/posix/unix_domain_socket_linux.h"
20 #include "base/process/process_handle.h"
21 #include "sandbox/linux/tests/unit_tests.h"
22 
23 // Additional tests for base's UnixDomainSocket to make sure it behaves
24 // correctly in the presence of sandboxing functionality (e.g., receiving
25 // PIDs across namespaces).
26 
27 namespace sandbox {
28 
29 namespace {
30 
31 const char kHello[] = "hello";
32 
33 // If the calling process isn't root, then try using unshare(CLONE_NEWUSER)
34 // to fake it.
FakeRoot()35 void FakeRoot() {
36   // If we're already root, then allow test to proceed.
37   if (geteuid() == 0)
38     return;
39 
40   // Otherwise hope the kernel supports unprivileged namespaces.
41   if (unshare(CLONE_NEWUSER) == 0)
42     return;
43 
44   printf("Permission to use CLONE_NEWPID missing; skipping test.\n");
45   UnitTests::IgnoreThisTest();
46 }
47 
WaitForExit(pid_t pid)48 void WaitForExit(pid_t pid) {
49   int status;
50   CHECK_EQ(pid, HANDLE_EINTR(waitpid(pid, &status, 0)));
51   CHECK(WIFEXITED(status));
52   CHECK_EQ(0, WEXITSTATUS(status));
53 }
54 
GetParentProcessId(base::ProcessId pid)55 base::ProcessId GetParentProcessId(base::ProcessId pid) {
56   // base::GetParentProcessId() is defined as taking a ProcessHandle instead of
57   // a ProcessId, even though it's a POSIX-only function and IDs and Handles
58   // are both simply pid_t on POSIX... :/
59   base::ProcessHandle handle;
60   CHECK(base::OpenProcessHandle(pid, &handle));
61   base::ProcessId ret = base::GetParentProcessId(pid);
62   base::CloseProcessHandle(handle);
63   return ret;
64 }
65 
66 // SendHello sends a "hello" to socket fd, and then blocks until the recipient
67 // acknowledges it by calling RecvHello.
SendHello(int fd)68 void SendHello(int fd) {
69   int pipe_fds[2];
70   CHECK_EQ(0, pipe(pipe_fds));
71   base::ScopedFD read_pipe(pipe_fds[0]);
72   base::ScopedFD write_pipe(pipe_fds[1]);
73 
74   std::vector<int> send_fds;
75   send_fds.push_back(write_pipe.get());
76   CHECK(UnixDomainSocket::SendMsg(fd, kHello, sizeof(kHello), send_fds));
77 
78   write_pipe.reset();
79 
80   // Block until receiver closes their end of the pipe.
81   char ch;
82   CHECK_EQ(0, HANDLE_EINTR(read(read_pipe.get(), &ch, 1)));
83 }
84 
85 // RecvHello receives and acknowledges a "hello" on socket fd, and returns the
86 // process ID of the sender in sender_pid.  Optionally, write_pipe can be used
87 // to return a file descriptor, and the acknowledgement will be delayed until
88 // the descriptor is closed.
89 // (Implementation details: SendHello allocates a new pipe, sends us the writing
90 // end alongside the "hello" message, and then blocks until we close the writing
91 // end of the pipe.)
RecvHello(int fd,base::ProcessId * sender_pid,base::ScopedFD * write_pipe=NULL)92 void RecvHello(int fd,
93                base::ProcessId* sender_pid,
94                base::ScopedFD* write_pipe = NULL) {
95   // Extra receiving buffer space to make sure we really received only
96   // sizeof(kHello) bytes and it wasn't just truncated to fit the buffer.
97   char buf[sizeof(kHello) + 1];
98   ScopedVector<base::ScopedFD> message_fds;
99   ssize_t n = UnixDomainSocket::RecvMsgWithPid(
100       fd, buf, sizeof(buf), &message_fds, sender_pid);
101   CHECK_EQ(sizeof(kHello), static_cast<size_t>(n));
102   CHECK_EQ(0, memcmp(buf, kHello, sizeof(kHello)));
103   CHECK_EQ(1U, message_fds.size());
104   if (write_pipe)
105     write_pipe->swap(*message_fds[0]);
106 }
107 
108 // Check that receiving PIDs works across a fork().
SANDBOX_TEST(UnixDomainSocketTest,Fork)109 SANDBOX_TEST(UnixDomainSocketTest, Fork) {
110   int fds[2];
111   CHECK_EQ(0, socketpair(AF_UNIX, SOCK_SEQPACKET, 0, fds));
112   base::ScopedFD recv_sock(fds[0]);
113   base::ScopedFD send_sock(fds[1]);
114 
115   CHECK(UnixDomainSocket::EnableReceiveProcessId(recv_sock.get()));
116 
117   const pid_t pid = fork();
118   CHECK_NE(-1, pid);
119   if (pid == 0) {
120     // Child process.
121     recv_sock.reset();
122     SendHello(send_sock.get());
123     _exit(0);
124   }
125 
126   // Parent process.
127   send_sock.reset();
128 
129   base::ProcessId sender_pid;
130   RecvHello(recv_sock.get(), &sender_pid);
131   CHECK_EQ(pid, sender_pid);
132 
133   WaitForExit(pid);
134 }
135 
136 // Similar to Fork above, but forking the child into a new pid namespace.
SANDBOX_TEST(UnixDomainSocketTest,Namespace)137 SANDBOX_TEST(UnixDomainSocketTest, Namespace) {
138   FakeRoot();
139 
140   int fds[2];
141   CHECK_EQ(0, socketpair(AF_UNIX, SOCK_SEQPACKET, 0, fds));
142   base::ScopedFD recv_sock(fds[0]);
143   base::ScopedFD send_sock(fds[1]);
144 
145   CHECK(UnixDomainSocket::EnableReceiveProcessId(recv_sock.get()));
146 
147   const pid_t pid = syscall(__NR_clone, CLONE_NEWPID | SIGCHLD, 0, 0, 0);
148   CHECK_NE(-1, pid);
149   if (pid == 0) {
150     // Child process.
151     recv_sock.reset();
152 
153     // Check that we think we're pid 1 in our new namespace.
154     CHECK_EQ(1, syscall(__NR_getpid));
155 
156     SendHello(send_sock.get());
157     _exit(0);
158   }
159 
160   // Parent process.
161   send_sock.reset();
162 
163   base::ProcessId sender_pid;
164   RecvHello(recv_sock.get(), &sender_pid);
165   CHECK_EQ(pid, sender_pid);
166 
167   WaitForExit(pid);
168 }
169 
170 // Again similar to Fork, but now with nested PID namespaces.
SANDBOX_TEST(UnixDomainSocketTest,DoubleNamespace)171 SANDBOX_TEST(UnixDomainSocketTest, DoubleNamespace) {
172   FakeRoot();
173 
174   int fds[2];
175   CHECK_EQ(0, socketpair(AF_UNIX, SOCK_SEQPACKET, 0, fds));
176   base::ScopedFD recv_sock(fds[0]);
177   base::ScopedFD send_sock(fds[1]);
178 
179   CHECK(UnixDomainSocket::EnableReceiveProcessId(recv_sock.get()));
180 
181   const pid_t pid = syscall(__NR_clone, CLONE_NEWPID | SIGCHLD, 0, 0, 0);
182   CHECK_NE(-1, pid);
183   if (pid == 0) {
184     // Child process.
185     recv_sock.reset();
186 
187     const pid_t pid2 = syscall(__NR_clone, CLONE_NEWPID | SIGCHLD, 0, 0, 0);
188     CHECK_NE(-1, pid2);
189 
190     if (pid2 != 0) {
191       // Wait for grandchild to run to completion; see comments below.
192       WaitForExit(pid2);
193 
194       // Fallthrough once grandchild has sent its hello and exited.
195     }
196 
197     // Check that we think we're pid 1.
198     CHECK_EQ(1, syscall(__NR_getpid));
199 
200     SendHello(send_sock.get());
201     _exit(0);
202   }
203 
204   // Parent process.
205   send_sock.reset();
206 
207   // We have two messages to receive: first from the grand-child,
208   // then from the child.
209   for (unsigned iteration = 0; iteration < 2; ++iteration) {
210     base::ProcessId sender_pid;
211     base::ScopedFD pipe_fd;
212     RecvHello(recv_sock.get(), &sender_pid, &pipe_fd);
213 
214     // We need our child and grandchild processes to both be alive for
215     // GetParentProcessId() to return a valid pid, hence the pipe trickery.
216     // (On the first iteration, grandchild is blocked reading from the pipe
217     // until we close it, and child is blocked waiting for grandchild to exit.)
218     switch (iteration) {
219       case 0:  // Grandchild's message
220         // Check that sender_pid refers to our grandchild by checking that pid
221         // (our child) is its parent.
222         CHECK_EQ(pid, GetParentProcessId(sender_pid));
223         break;
224       case 1:  // Child's message
225         CHECK_EQ(pid, sender_pid);
226         break;
227       default:
228         NOTREACHED();
229     }
230   }
231 
232   WaitForExit(pid);
233 }
234 
235 // Tests that GetPeerPid() returns 0 if the peer does not exist in caller's
236 // namespace.
SANDBOX_TEST(UnixDomainSocketTest,ImpossiblePid)237 SANDBOX_TEST(UnixDomainSocketTest, ImpossiblePid) {
238   FakeRoot();
239 
240   int fds[2];
241   CHECK_EQ(0, socketpair(AF_UNIX, SOCK_SEQPACKET, 0, fds));
242   base::ScopedFD send_sock(fds[0]);
243   base::ScopedFD recv_sock(fds[1]);
244 
245   CHECK(UnixDomainSocket::EnableReceiveProcessId(recv_sock.get()));
246 
247   const pid_t pid = syscall(__NR_clone, CLONE_NEWPID | SIGCHLD, 0, 0, 0);
248   CHECK_NE(-1, pid);
249   if (pid == 0) {
250     // Child process.
251     send_sock.reset();
252 
253     base::ProcessId sender_pid;
254     RecvHello(recv_sock.get(), &sender_pid);
255     CHECK_EQ(0, sender_pid);
256     _exit(0);
257   }
258 
259   // Parent process.
260   recv_sock.reset();
261   SendHello(send_sock.get());
262   WaitForExit(pid);
263 }
264 
265 }  // namespace
266 
267 }  // namespace sandbox
268