• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #ifndef V8_ARM_MACRO_ASSEMBLER_ARM_H_
6 #define V8_ARM_MACRO_ASSEMBLER_ARM_H_
7 
8 #include "src/assembler.h"
9 #include "src/frames.h"
10 #include "src/globals.h"
11 
12 namespace v8 {
13 namespace internal {
14 
15 // ----------------------------------------------------------------------------
16 // Static helper functions
17 
18 // Generate a MemOperand for loading a field from an object.
FieldMemOperand(Register object,int offset)19 inline MemOperand FieldMemOperand(Register object, int offset) {
20   return MemOperand(object, offset - kHeapObjectTag);
21 }
22 
23 
24 // Give alias names to registers
25 const Register cp = { kRegister_r7_Code };  // JavaScript context pointer.
26 const Register pp = { kRegister_r8_Code };  // Constant pool pointer.
27 const Register kRootRegister = { kRegister_r10_Code };  // Roots array pointer.
28 
29 // Flags used for AllocateHeapNumber
30 enum TaggingMode {
31   // Tag the result.
32   TAG_RESULT,
33   // Don't tag
34   DONT_TAG_RESULT
35 };
36 
37 
38 enum RememberedSetAction { EMIT_REMEMBERED_SET, OMIT_REMEMBERED_SET };
39 enum SmiCheck { INLINE_SMI_CHECK, OMIT_SMI_CHECK };
40 enum PointersToHereCheck {
41   kPointersToHereMaybeInteresting,
42   kPointersToHereAreAlwaysInteresting
43 };
44 enum LinkRegisterStatus { kLRHasNotBeenSaved, kLRHasBeenSaved };
45 
46 
47 Register GetRegisterThatIsNotOneOf(Register reg1,
48                                    Register reg2 = no_reg,
49                                    Register reg3 = no_reg,
50                                    Register reg4 = no_reg,
51                                    Register reg5 = no_reg,
52                                    Register reg6 = no_reg);
53 
54 
55 #ifdef DEBUG
56 bool AreAliased(Register reg1,
57                 Register reg2,
58                 Register reg3 = no_reg,
59                 Register reg4 = no_reg,
60                 Register reg5 = no_reg,
61                 Register reg6 = no_reg);
62 #endif
63 
64 
65 enum TargetAddressStorageMode {
66   CAN_INLINE_TARGET_ADDRESS,
67   NEVER_INLINE_TARGET_ADDRESS
68 };
69 
70 // MacroAssembler implements a collection of frequently used macros.
71 class MacroAssembler: public Assembler {
72  public:
73   // The isolate parameter can be NULL if the macro assembler should
74   // not use isolate-dependent functionality. In this case, it's the
75   // responsibility of the caller to never invoke such function on the
76   // macro assembler.
77   MacroAssembler(Isolate* isolate, void* buffer, int size);
78 
79   // Jump, Call, and Ret pseudo instructions implementing inter-working.
80   void Jump(Register target, Condition cond = al);
81   void Jump(Address target, RelocInfo::Mode rmode, Condition cond = al);
82   void Jump(Handle<Code> code, RelocInfo::Mode rmode, Condition cond = al);
83   static int CallSize(Register target, Condition cond = al);
84   void Call(Register target, Condition cond = al);
85   int CallSize(Address target, RelocInfo::Mode rmode, Condition cond = al);
86   int CallStubSize(CodeStub* stub,
87                    TypeFeedbackId ast_id = TypeFeedbackId::None(),
88                    Condition cond = al);
89   static int CallSizeNotPredictableCodeSize(Isolate* isolate,
90                                             Address target,
91                                             RelocInfo::Mode rmode,
92                                             Condition cond = al);
93   void Call(Address target, RelocInfo::Mode rmode,
94             Condition cond = al,
95             TargetAddressStorageMode mode = CAN_INLINE_TARGET_ADDRESS);
96   int CallSize(Handle<Code> code,
97                RelocInfo::Mode rmode = RelocInfo::CODE_TARGET,
98                TypeFeedbackId ast_id = TypeFeedbackId::None(),
99                Condition cond = al);
100   void Call(Handle<Code> code,
101             RelocInfo::Mode rmode = RelocInfo::CODE_TARGET,
102             TypeFeedbackId ast_id = TypeFeedbackId::None(),
103             Condition cond = al,
104             TargetAddressStorageMode mode = CAN_INLINE_TARGET_ADDRESS);
105   void Ret(Condition cond = al);
106 
107   // Emit code to discard a non-negative number of pointer-sized elements
108   // from the stack, clobbering only the sp register.
109   void Drop(int count, Condition cond = al);
110 
111   void Ret(int drop, Condition cond = al);
112 
113   // Swap two registers.  If the scratch register is omitted then a slightly
114   // less efficient form using xor instead of mov is emitted.
115   void Swap(Register reg1,
116             Register reg2,
117             Register scratch = no_reg,
118             Condition cond = al);
119 
120   void Mls(Register dst, Register src1, Register src2, Register srcA,
121            Condition cond = al);
122   void And(Register dst, Register src1, const Operand& src2,
123            Condition cond = al);
124   void Ubfx(Register dst, Register src, int lsb, int width,
125             Condition cond = al);
126   void Sbfx(Register dst, Register src, int lsb, int width,
127             Condition cond = al);
128   // The scratch register is not used for ARMv7.
129   // scratch can be the same register as src (in which case it is trashed), but
130   // not the same as dst.
131   void Bfi(Register dst,
132            Register src,
133            Register scratch,
134            int lsb,
135            int width,
136            Condition cond = al);
137   void Bfc(Register dst, Register src, int lsb, int width, Condition cond = al);
138   void Usat(Register dst, int satpos, const Operand& src,
139             Condition cond = al);
140 
141   void Call(Label* target);
Push(Register src)142   void Push(Register src) { push(src); }
Pop(Register dst)143   void Pop(Register dst) { pop(dst); }
144 
145   // Register move. May do nothing if the registers are identical.
146   void Move(Register dst, Handle<Object> value);
147   void Move(Register dst, Register src, Condition cond = al);
148   void Move(DwVfpRegister dst, DwVfpRegister src);
149 
150   void Load(Register dst, const MemOperand& src, Representation r);
151   void Store(Register src, const MemOperand& dst, Representation r);
152 
153   // Load an object from the root table.
154   void LoadRoot(Register destination,
155                 Heap::RootListIndex index,
156                 Condition cond = al);
157   // Store an object to the root table.
158   void StoreRoot(Register source,
159                  Heap::RootListIndex index,
160                  Condition cond = al);
161 
162   // ---------------------------------------------------------------------------
163   // GC Support
164 
165   void IncrementalMarkingRecordWriteHelper(Register object,
166                                            Register value,
167                                            Register address);
168 
169   enum RememberedSetFinalAction {
170     kReturnAtEnd,
171     kFallThroughAtEnd
172   };
173 
174   // Record in the remembered set the fact that we have a pointer to new space
175   // at the address pointed to by the addr register.  Only works if addr is not
176   // in new space.
177   void RememberedSetHelper(Register object,  // Used for debug code.
178                            Register addr,
179                            Register scratch,
180                            SaveFPRegsMode save_fp,
181                            RememberedSetFinalAction and_then);
182 
183   void CheckPageFlag(Register object,
184                      Register scratch,
185                      int mask,
186                      Condition cc,
187                      Label* condition_met);
188 
189   void CheckMapDeprecated(Handle<Map> map,
190                           Register scratch,
191                           Label* if_deprecated);
192 
193   // Check if object is in new space.  Jumps if the object is not in new space.
194   // The register scratch can be object itself, but scratch will be clobbered.
JumpIfNotInNewSpace(Register object,Register scratch,Label * branch)195   void JumpIfNotInNewSpace(Register object,
196                            Register scratch,
197                            Label* branch) {
198     InNewSpace(object, scratch, ne, branch);
199   }
200 
201   // Check if object is in new space.  Jumps if the object is in new space.
202   // The register scratch can be object itself, but it will be clobbered.
JumpIfInNewSpace(Register object,Register scratch,Label * branch)203   void JumpIfInNewSpace(Register object,
204                         Register scratch,
205                         Label* branch) {
206     InNewSpace(object, scratch, eq, branch);
207   }
208 
209   // Check if an object has a given incremental marking color.
210   void HasColor(Register object,
211                 Register scratch0,
212                 Register scratch1,
213                 Label* has_color,
214                 int first_bit,
215                 int second_bit);
216 
217   void JumpIfBlack(Register object,
218                    Register scratch0,
219                    Register scratch1,
220                    Label* on_black);
221 
222   // Checks the color of an object.  If the object is already grey or black
223   // then we just fall through, since it is already live.  If it is white and
224   // we can determine that it doesn't need to be scanned, then we just mark it
225   // black and fall through.  For the rest we jump to the label so the
226   // incremental marker can fix its assumptions.
227   void EnsureNotWhite(Register object,
228                       Register scratch1,
229                       Register scratch2,
230                       Register scratch3,
231                       Label* object_is_white_and_not_data);
232 
233   // Detects conservatively whether an object is data-only, i.e. it does need to
234   // be scanned by the garbage collector.
235   void JumpIfDataObject(Register value,
236                         Register scratch,
237                         Label* not_data_object);
238 
239   // Notify the garbage collector that we wrote a pointer into an object.
240   // |object| is the object being stored into, |value| is the object being
241   // stored.  value and scratch registers are clobbered by the operation.
242   // The offset is the offset from the start of the object, not the offset from
243   // the tagged HeapObject pointer.  For use with FieldOperand(reg, off).
244   void RecordWriteField(
245       Register object,
246       int offset,
247       Register value,
248       Register scratch,
249       LinkRegisterStatus lr_status,
250       SaveFPRegsMode save_fp,
251       RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
252       SmiCheck smi_check = INLINE_SMI_CHECK,
253       PointersToHereCheck pointers_to_here_check_for_value =
254           kPointersToHereMaybeInteresting);
255 
256   // As above, but the offset has the tag presubtracted.  For use with
257   // MemOperand(reg, off).
258   inline void RecordWriteContextSlot(
259       Register context,
260       int offset,
261       Register value,
262       Register scratch,
263       LinkRegisterStatus lr_status,
264       SaveFPRegsMode save_fp,
265       RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
266       SmiCheck smi_check = INLINE_SMI_CHECK,
267       PointersToHereCheck pointers_to_here_check_for_value =
268           kPointersToHereMaybeInteresting) {
269     RecordWriteField(context,
270                      offset + kHeapObjectTag,
271                      value,
272                      scratch,
273                      lr_status,
274                      save_fp,
275                      remembered_set_action,
276                      smi_check,
277                      pointers_to_here_check_for_value);
278   }
279 
280   void RecordWriteForMap(
281       Register object,
282       Register map,
283       Register dst,
284       LinkRegisterStatus lr_status,
285       SaveFPRegsMode save_fp);
286 
287   // For a given |object| notify the garbage collector that the slot |address|
288   // has been written.  |value| is the object being stored. The value and
289   // address registers are clobbered by the operation.
290   void RecordWrite(
291       Register object,
292       Register address,
293       Register value,
294       LinkRegisterStatus lr_status,
295       SaveFPRegsMode save_fp,
296       RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
297       SmiCheck smi_check = INLINE_SMI_CHECK,
298       PointersToHereCheck pointers_to_here_check_for_value =
299           kPointersToHereMaybeInteresting);
300 
301   // Push a handle.
302   void Push(Handle<Object> handle);
Push(Smi * smi)303   void Push(Smi* smi) { Push(Handle<Smi>(smi, isolate())); }
304 
305   // Push two registers.  Pushes leftmost register first (to highest address).
306   void Push(Register src1, Register src2, Condition cond = al) {
307     ASSERT(!src1.is(src2));
308     if (src1.code() > src2.code()) {
309       stm(db_w, sp, src1.bit() | src2.bit(), cond);
310     } else {
311       str(src1, MemOperand(sp, 4, NegPreIndex), cond);
312       str(src2, MemOperand(sp, 4, NegPreIndex), cond);
313     }
314   }
315 
316   // Push three registers.  Pushes leftmost register first (to highest address).
317   void Push(Register src1, Register src2, Register src3, Condition cond = al) {
318     ASSERT(!src1.is(src2));
319     ASSERT(!src2.is(src3));
320     ASSERT(!src1.is(src3));
321     if (src1.code() > src2.code()) {
322       if (src2.code() > src3.code()) {
323         stm(db_w, sp, src1.bit() | src2.bit() | src3.bit(), cond);
324       } else {
325         stm(db_w, sp, src1.bit() | src2.bit(), cond);
326         str(src3, MemOperand(sp, 4, NegPreIndex), cond);
327       }
328     } else {
329       str(src1, MemOperand(sp, 4, NegPreIndex), cond);
330       Push(src2, src3, cond);
331     }
332   }
333 
334   // Push four registers.  Pushes leftmost register first (to highest address).
335   void Push(Register src1,
336             Register src2,
337             Register src3,
338             Register src4,
339             Condition cond = al) {
340     ASSERT(!src1.is(src2));
341     ASSERT(!src2.is(src3));
342     ASSERT(!src1.is(src3));
343     ASSERT(!src1.is(src4));
344     ASSERT(!src2.is(src4));
345     ASSERT(!src3.is(src4));
346     if (src1.code() > src2.code()) {
347       if (src2.code() > src3.code()) {
348         if (src3.code() > src4.code()) {
349           stm(db_w,
350               sp,
351               src1.bit() | src2.bit() | src3.bit() | src4.bit(),
352               cond);
353         } else {
354           stm(db_w, sp, src1.bit() | src2.bit() | src3.bit(), cond);
355           str(src4, MemOperand(sp, 4, NegPreIndex), cond);
356         }
357       } else {
358         stm(db_w, sp, src1.bit() | src2.bit(), cond);
359         Push(src3, src4, cond);
360       }
361     } else {
362       str(src1, MemOperand(sp, 4, NegPreIndex), cond);
363       Push(src2, src3, src4, cond);
364     }
365   }
366 
367   // Pop two registers. Pops rightmost register first (from lower address).
368   void Pop(Register src1, Register src2, Condition cond = al) {
369     ASSERT(!src1.is(src2));
370     if (src1.code() > src2.code()) {
371       ldm(ia_w, sp, src1.bit() | src2.bit(), cond);
372     } else {
373       ldr(src2, MemOperand(sp, 4, PostIndex), cond);
374       ldr(src1, MemOperand(sp, 4, PostIndex), cond);
375     }
376   }
377 
378   // Pop three registers.  Pops rightmost register first (from lower address).
379   void Pop(Register src1, Register src2, Register src3, Condition cond = al) {
380     ASSERT(!src1.is(src2));
381     ASSERT(!src2.is(src3));
382     ASSERT(!src1.is(src3));
383     if (src1.code() > src2.code()) {
384       if (src2.code() > src3.code()) {
385         ldm(ia_w, sp, src1.bit() | src2.bit() | src3.bit(), cond);
386       } else {
387         ldr(src3, MemOperand(sp, 4, PostIndex), cond);
388         ldm(ia_w, sp, src1.bit() | src2.bit(), cond);
389       }
390     } else {
391       Pop(src2, src3, cond);
392       ldr(src1, MemOperand(sp, 4, PostIndex), cond);
393     }
394   }
395 
396   // Pop four registers.  Pops rightmost register first (from lower address).
397   void Pop(Register src1,
398            Register src2,
399            Register src3,
400            Register src4,
401            Condition cond = al) {
402     ASSERT(!src1.is(src2));
403     ASSERT(!src2.is(src3));
404     ASSERT(!src1.is(src3));
405     ASSERT(!src1.is(src4));
406     ASSERT(!src2.is(src4));
407     ASSERT(!src3.is(src4));
408     if (src1.code() > src2.code()) {
409       if (src2.code() > src3.code()) {
410         if (src3.code() > src4.code()) {
411           ldm(ia_w,
412               sp,
413               src1.bit() | src2.bit() | src3.bit() | src4.bit(),
414               cond);
415         } else {
416           ldr(src4, MemOperand(sp, 4, PostIndex), cond);
417           ldm(ia_w, sp, src1.bit() | src2.bit() | src3.bit(), cond);
418         }
419       } else {
420         Pop(src3, src4, cond);
421         ldm(ia_w, sp, src1.bit() | src2.bit(), cond);
422       }
423     } else {
424       Pop(src2, src3, src4, cond);
425       ldr(src1, MemOperand(sp, 4, PostIndex), cond);
426     }
427   }
428 
429   // Push a fixed frame, consisting of lr, fp, constant pool (if
430   // FLAG_enable_ool_constant_pool), context and JS function / marker id if
431   // marker_reg is a valid register.
432   void PushFixedFrame(Register marker_reg = no_reg);
433   void PopFixedFrame(Register marker_reg = no_reg);
434 
435   // Push and pop the registers that can hold pointers, as defined by the
436   // RegList constant kSafepointSavedRegisters.
437   void PushSafepointRegisters();
438   void PopSafepointRegisters();
439   void PushSafepointRegistersAndDoubles();
440   void PopSafepointRegistersAndDoubles();
441   // Store value in register src in the safepoint stack slot for
442   // register dst.
443   void StoreToSafepointRegisterSlot(Register src, Register dst);
444   void StoreToSafepointRegistersAndDoublesSlot(Register src, Register dst);
445   // Load the value of the src register from its safepoint stack slot
446   // into register dst.
447   void LoadFromSafepointRegisterSlot(Register dst, Register src);
448 
449   // Load two consecutive registers with two consecutive memory locations.
450   void Ldrd(Register dst1,
451             Register dst2,
452             const MemOperand& src,
453             Condition cond = al);
454 
455   // Store two consecutive registers to two consecutive memory locations.
456   void Strd(Register src1,
457             Register src2,
458             const MemOperand& dst,
459             Condition cond = al);
460 
461   // Ensure that FPSCR contains values needed by JavaScript.
462   // We need the NaNModeControlBit to be sure that operations like
463   // vadd and vsub generate the Canonical NaN (if a NaN must be generated).
464   // In VFP3 it will be always the Canonical NaN.
465   // In VFP2 it will be either the Canonical NaN or the negative version
466   // of the Canonical NaN. It doesn't matter if we have two values. The aim
467   // is to be sure to never generate the hole NaN.
468   void VFPEnsureFPSCRState(Register scratch);
469 
470   // If the value is a NaN, canonicalize the value else, do nothing.
471   void VFPCanonicalizeNaN(const DwVfpRegister dst,
472                           const DwVfpRegister src,
473                           const Condition cond = al);
474   void VFPCanonicalizeNaN(const DwVfpRegister value,
475                           const Condition cond = al) {
476     VFPCanonicalizeNaN(value, value, cond);
477   }
478 
479   // Compare double values and move the result to the normal condition flags.
480   void VFPCompareAndSetFlags(const DwVfpRegister src1,
481                              const DwVfpRegister src2,
482                              const Condition cond = al);
483   void VFPCompareAndSetFlags(const DwVfpRegister src1,
484                              const double src2,
485                              const Condition cond = al);
486 
487   // Compare double values and then load the fpscr flags to a register.
488   void VFPCompareAndLoadFlags(const DwVfpRegister src1,
489                               const DwVfpRegister src2,
490                               const Register fpscr_flags,
491                               const Condition cond = al);
492   void VFPCompareAndLoadFlags(const DwVfpRegister src1,
493                               const double src2,
494                               const Register fpscr_flags,
495                               const Condition cond = al);
496 
497   void Vmov(const DwVfpRegister dst,
498             const double imm,
499             const Register scratch = no_reg);
500 
501   void VmovHigh(Register dst, DwVfpRegister src);
502   void VmovHigh(DwVfpRegister dst, Register src);
503   void VmovLow(Register dst, DwVfpRegister src);
504   void VmovLow(DwVfpRegister dst, Register src);
505 
506   // Loads the number from object into dst register.
507   // If |object| is neither smi nor heap number, |not_number| is jumped to
508   // with |object| still intact.
509   void LoadNumber(Register object,
510                   LowDwVfpRegister dst,
511                   Register heap_number_map,
512                   Register scratch,
513                   Label* not_number);
514 
515   // Loads the number from object into double_dst in the double format.
516   // Control will jump to not_int32 if the value cannot be exactly represented
517   // by a 32-bit integer.
518   // Floating point value in the 32-bit integer range that are not exact integer
519   // won't be loaded.
520   void LoadNumberAsInt32Double(Register object,
521                                DwVfpRegister double_dst,
522                                Register heap_number_map,
523                                Register scratch,
524                                LowDwVfpRegister double_scratch,
525                                Label* not_int32);
526 
527   // Loads the number from object into dst as a 32-bit integer.
528   // Control will jump to not_int32 if the object cannot be exactly represented
529   // by a 32-bit integer.
530   // Floating point value in the 32-bit integer range that are not exact integer
531   // won't be converted.
532   void LoadNumberAsInt32(Register object,
533                          Register dst,
534                          Register heap_number_map,
535                          Register scratch,
536                          DwVfpRegister double_scratch0,
537                          LowDwVfpRegister double_scratch1,
538                          Label* not_int32);
539 
540   // Generates function and stub prologue code.
541   void StubPrologue();
542   void Prologue(bool code_pre_aging);
543 
544   // Enter exit frame.
545   // stack_space - extra stack space, used for alignment before call to C.
546   void EnterExitFrame(bool save_doubles, int stack_space = 0);
547 
548   // Leave the current exit frame. Expects the return value in r0.
549   // Expect the number of values, pushed prior to the exit frame, to
550   // remove in a register (or no_reg, if there is nothing to remove).
551   void LeaveExitFrame(bool save_doubles,
552                       Register argument_count,
553                       bool restore_context);
554 
555   // Get the actual activation frame alignment for target environment.
556   static int ActivationFrameAlignment();
557 
558   void LoadContext(Register dst, int context_chain_length);
559 
560   // Conditionally load the cached Array transitioned map of type
561   // transitioned_kind from the native context if the map in register
562   // map_in_out is the cached Array map in the native context of
563   // expected_kind.
564   void LoadTransitionedArrayMapConditional(
565       ElementsKind expected_kind,
566       ElementsKind transitioned_kind,
567       Register map_in_out,
568       Register scratch,
569       Label* no_map_match);
570 
571   void LoadGlobalFunction(int index, Register function);
572 
573   // Load the initial map from the global function. The registers
574   // function and map can be the same, function is then overwritten.
575   void LoadGlobalFunctionInitialMap(Register function,
576                                     Register map,
577                                     Register scratch);
578 
InitializeRootRegister()579   void InitializeRootRegister() {
580     ExternalReference roots_array_start =
581         ExternalReference::roots_array_start(isolate());
582     mov(kRootRegister, Operand(roots_array_start));
583   }
584 
585   // ---------------------------------------------------------------------------
586   // JavaScript invokes
587 
588   // Invoke the JavaScript function code by either calling or jumping.
589   void InvokeCode(Register code,
590                   const ParameterCount& expected,
591                   const ParameterCount& actual,
592                   InvokeFlag flag,
593                   const CallWrapper& call_wrapper);
594 
595   // Invoke the JavaScript function in the given register. Changes the
596   // current context to the context in the function before invoking.
597   void InvokeFunction(Register function,
598                       const ParameterCount& actual,
599                       InvokeFlag flag,
600                       const CallWrapper& call_wrapper);
601 
602   void InvokeFunction(Register function,
603                       const ParameterCount& expected,
604                       const ParameterCount& actual,
605                       InvokeFlag flag,
606                       const CallWrapper& call_wrapper);
607 
608   void InvokeFunction(Handle<JSFunction> function,
609                       const ParameterCount& expected,
610                       const ParameterCount& actual,
611                       InvokeFlag flag,
612                       const CallWrapper& call_wrapper);
613 
614   void IsObjectJSObjectType(Register heap_object,
615                             Register map,
616                             Register scratch,
617                             Label* fail);
618 
619   void IsInstanceJSObjectType(Register map,
620                               Register scratch,
621                               Label* fail);
622 
623   void IsObjectJSStringType(Register object,
624                             Register scratch,
625                             Label* fail);
626 
627   void IsObjectNameType(Register object,
628                         Register scratch,
629                         Label* fail);
630 
631   // ---------------------------------------------------------------------------
632   // Debugger Support
633 
634   void DebugBreak();
635 
636   // ---------------------------------------------------------------------------
637   // Exception handling
638 
639   // Push a new try handler and link into try handler chain.
640   void PushTryHandler(StackHandler::Kind kind, int handler_index);
641 
642   // Unlink the stack handler on top of the stack from the try handler chain.
643   // Must preserve the result register.
644   void PopTryHandler();
645 
646   // Passes thrown value to the handler of top of the try handler chain.
647   void Throw(Register value);
648 
649   // Propagates an uncatchable exception to the top of the current JS stack's
650   // handler chain.
651   void ThrowUncatchable(Register value);
652 
653   // ---------------------------------------------------------------------------
654   // Inline caching support
655 
656   // Generate code for checking access rights - used for security checks
657   // on access to global objects across environments. The holder register
658   // is left untouched, whereas both scratch registers are clobbered.
659   void CheckAccessGlobalProxy(Register holder_reg,
660                               Register scratch,
661                               Label* miss);
662 
663   void GetNumberHash(Register t0, Register scratch);
664 
665   void LoadFromNumberDictionary(Label* miss,
666                                 Register elements,
667                                 Register key,
668                                 Register result,
669                                 Register t0,
670                                 Register t1,
671                                 Register t2);
672 
673 
MarkCode(NopMarkerTypes type)674   inline void MarkCode(NopMarkerTypes type) {
675     nop(type);
676   }
677 
678   // Check if the given instruction is a 'type' marker.
679   // i.e. check if is is a mov r<type>, r<type> (referenced as nop(type))
680   // These instructions are generated to mark special location in the code,
681   // like some special IC code.
IsMarkedCode(Instr instr,int type)682   static inline bool IsMarkedCode(Instr instr, int type) {
683     ASSERT((FIRST_IC_MARKER <= type) && (type < LAST_CODE_MARKER));
684     return IsNop(instr, type);
685   }
686 
687 
GetCodeMarker(Instr instr)688   static inline int GetCodeMarker(Instr instr) {
689     int dst_reg_offset = 12;
690     int dst_mask = 0xf << dst_reg_offset;
691     int src_mask = 0xf;
692     int dst_reg = (instr & dst_mask) >> dst_reg_offset;
693     int src_reg = instr & src_mask;
694     uint32_t non_register_mask = ~(dst_mask | src_mask);
695     uint32_t mov_mask = al | 13 << 21;
696 
697     // Return <n> if we have a mov rn rn, else return -1.
698     int type = ((instr & non_register_mask) == mov_mask) &&
699                (dst_reg == src_reg) &&
700                (FIRST_IC_MARKER <= dst_reg) && (dst_reg < LAST_CODE_MARKER)
701                    ? src_reg
702                    : -1;
703     ASSERT((type == -1) ||
704            ((FIRST_IC_MARKER <= type) && (type < LAST_CODE_MARKER)));
705     return type;
706   }
707 
708 
709   // ---------------------------------------------------------------------------
710   // Allocation support
711 
712   // Allocate an object in new space or old pointer space. The object_size is
713   // specified either in bytes or in words if the allocation flag SIZE_IN_WORDS
714   // is passed. If the space is exhausted control continues at the gc_required
715   // label. The allocated object is returned in result. If the flag
716   // tag_allocated_object is true the result is tagged as as a heap object.
717   // All registers are clobbered also when control continues at the gc_required
718   // label.
719   void Allocate(int object_size,
720                 Register result,
721                 Register scratch1,
722                 Register scratch2,
723                 Label* gc_required,
724                 AllocationFlags flags);
725 
726   void Allocate(Register object_size,
727                 Register result,
728                 Register scratch1,
729                 Register scratch2,
730                 Label* gc_required,
731                 AllocationFlags flags);
732 
733   // Undo allocation in new space. The object passed and objects allocated after
734   // it will no longer be allocated. The caller must make sure that no pointers
735   // are left to the object(s) no longer allocated as they would be invalid when
736   // allocation is undone.
737   void UndoAllocationInNewSpace(Register object, Register scratch);
738 
739 
740   void AllocateTwoByteString(Register result,
741                              Register length,
742                              Register scratch1,
743                              Register scratch2,
744                              Register scratch3,
745                              Label* gc_required);
746   void AllocateAsciiString(Register result,
747                            Register length,
748                            Register scratch1,
749                            Register scratch2,
750                            Register scratch3,
751                            Label* gc_required);
752   void AllocateTwoByteConsString(Register result,
753                                  Register length,
754                                  Register scratch1,
755                                  Register scratch2,
756                                  Label* gc_required);
757   void AllocateAsciiConsString(Register result,
758                                Register length,
759                                Register scratch1,
760                                Register scratch2,
761                                Label* gc_required);
762   void AllocateTwoByteSlicedString(Register result,
763                                    Register length,
764                                    Register scratch1,
765                                    Register scratch2,
766                                    Label* gc_required);
767   void AllocateAsciiSlicedString(Register result,
768                                  Register length,
769                                  Register scratch1,
770                                  Register scratch2,
771                                  Label* gc_required);
772 
773   // Allocates a heap number or jumps to the gc_required label if the young
774   // space is full and a scavenge is needed. All registers are clobbered also
775   // when control continues at the gc_required label.
776   void AllocateHeapNumber(Register result,
777                           Register scratch1,
778                           Register scratch2,
779                           Register heap_number_map,
780                           Label* gc_required,
781                           TaggingMode tagging_mode = TAG_RESULT);
782   void AllocateHeapNumberWithValue(Register result,
783                                    DwVfpRegister value,
784                                    Register scratch1,
785                                    Register scratch2,
786                                    Register heap_number_map,
787                                    Label* gc_required);
788 
789   // Copies a fixed number of fields of heap objects from src to dst.
790   void CopyFields(Register dst,
791                   Register src,
792                   LowDwVfpRegister double_scratch,
793                   int field_count);
794 
795   // Copies a number of bytes from src to dst. All registers are clobbered. On
796   // exit src and dst will point to the place just after where the last byte was
797   // read or written and length will be zero.
798   void CopyBytes(Register src,
799                  Register dst,
800                  Register length,
801                  Register scratch);
802 
803   // Initialize fields with filler values.  Fields starting at |start_offset|
804   // not including end_offset are overwritten with the value in |filler|.  At
805   // the end the loop, |start_offset| takes the value of |end_offset|.
806   void InitializeFieldsWithFiller(Register start_offset,
807                                   Register end_offset,
808                                   Register filler);
809 
810   // ---------------------------------------------------------------------------
811   // Support functions.
812 
813   // Try to get function prototype of a function and puts the value in
814   // the result register. Checks that the function really is a
815   // function and jumps to the miss label if the fast checks fail. The
816   // function register will be untouched; the other registers may be
817   // clobbered.
818   void TryGetFunctionPrototype(Register function,
819                                Register result,
820                                Register scratch,
821                                Label* miss,
822                                bool miss_on_bound_function = false);
823 
824   // Compare object type for heap object.  heap_object contains a non-Smi
825   // whose object type should be compared with the given type.  This both
826   // sets the flags and leaves the object type in the type_reg register.
827   // It leaves the map in the map register (unless the type_reg and map register
828   // are the same register).  It leaves the heap object in the heap_object
829   // register unless the heap_object register is the same register as one of the
830   // other registers.
831   // Type_reg can be no_reg. In that case ip is used.
832   void CompareObjectType(Register heap_object,
833                          Register map,
834                          Register type_reg,
835                          InstanceType type);
836 
837   // Compare object type for heap object. Branch to false_label if type
838   // is lower than min_type or greater than max_type.
839   // Load map into the register map.
840   void CheckObjectTypeRange(Register heap_object,
841                             Register map,
842                             InstanceType min_type,
843                             InstanceType max_type,
844                             Label* false_label);
845 
846   // Compare instance type in a map.  map contains a valid map object whose
847   // object type should be compared with the given type.  This both
848   // sets the flags and leaves the object type in the type_reg register.
849   void CompareInstanceType(Register map,
850                            Register type_reg,
851                            InstanceType type);
852 
853 
854   // Check if a map for a JSObject indicates that the object has fast elements.
855   // Jump to the specified label if it does not.
856   void CheckFastElements(Register map,
857                          Register scratch,
858                          Label* fail);
859 
860   // Check if a map for a JSObject indicates that the object can have both smi
861   // and HeapObject elements.  Jump to the specified label if it does not.
862   void CheckFastObjectElements(Register map,
863                                Register scratch,
864                                Label* fail);
865 
866   // Check if a map for a JSObject indicates that the object has fast smi only
867   // elements.  Jump to the specified label if it does not.
868   void CheckFastSmiElements(Register map,
869                             Register scratch,
870                             Label* fail);
871 
872   // Check to see if maybe_number can be stored as a double in
873   // FastDoubleElements. If it can, store it at the index specified by key in
874   // the FastDoubleElements array elements. Otherwise jump to fail.
875   void StoreNumberToDoubleElements(Register value_reg,
876                                    Register key_reg,
877                                    Register elements_reg,
878                                    Register scratch1,
879                                    LowDwVfpRegister double_scratch,
880                                    Label* fail,
881                                    int elements_offset = 0);
882 
883   // Compare an object's map with the specified map and its transitioned
884   // elements maps if mode is ALLOW_ELEMENT_TRANSITION_MAPS. Condition flags are
885   // set with result of map compare. If multiple map compares are required, the
886   // compare sequences branches to early_success.
887   void CompareMap(Register obj,
888                   Register scratch,
889                   Handle<Map> map,
890                   Label* early_success);
891 
892   // As above, but the map of the object is already loaded into the register
893   // which is preserved by the code generated.
894   void CompareMap(Register obj_map,
895                   Handle<Map> map,
896                   Label* early_success);
897 
898   // Check if the map of an object is equal to a specified map and branch to
899   // label if not. Skip the smi check if not required (object is known to be a
900   // heap object). If mode is ALLOW_ELEMENT_TRANSITION_MAPS, then also match
901   // against maps that are ElementsKind transition maps of the specified map.
902   void CheckMap(Register obj,
903                 Register scratch,
904                 Handle<Map> map,
905                 Label* fail,
906                 SmiCheckType smi_check_type);
907 
908 
909   void CheckMap(Register obj,
910                 Register scratch,
911                 Heap::RootListIndex index,
912                 Label* fail,
913                 SmiCheckType smi_check_type);
914 
915 
916   // Check if the map of an object is equal to a specified map and branch to a
917   // specified target if equal. Skip the smi check if not required (object is
918   // known to be a heap object)
919   void DispatchMap(Register obj,
920                    Register scratch,
921                    Handle<Map> map,
922                    Handle<Code> success,
923                    SmiCheckType smi_check_type);
924 
925 
926   // Compare the object in a register to a value from the root list.
927   // Uses the ip register as scratch.
928   void CompareRoot(Register obj, Heap::RootListIndex index);
929 
930 
931   // Load and check the instance type of an object for being a string.
932   // Loads the type into the second argument register.
933   // Returns a condition that will be enabled if the object was a string
934   // and the passed-in condition passed. If the passed-in condition failed
935   // then flags remain unchanged.
936   Condition IsObjectStringType(Register obj,
937                                Register type,
938                                Condition cond = al) {
939     ldr(type, FieldMemOperand(obj, HeapObject::kMapOffset), cond);
940     ldrb(type, FieldMemOperand(type, Map::kInstanceTypeOffset), cond);
941     tst(type, Operand(kIsNotStringMask), cond);
942     ASSERT_EQ(0, kStringTag);
943     return eq;
944   }
945 
946 
947   // Picks out an array index from the hash field.
948   // Register use:
949   //   hash - holds the index's hash. Clobbered.
950   //   index - holds the overwritten index on exit.
951   void IndexFromHash(Register hash, Register index);
952 
953   // Get the number of least significant bits from a register
954   void GetLeastBitsFromSmi(Register dst, Register src, int num_least_bits);
955   void GetLeastBitsFromInt32(Register dst, Register src, int mun_least_bits);
956 
957   // Load the value of a smi object into a double register.
958   // The register value must be between d0 and d15.
959   void SmiToDouble(LowDwVfpRegister value, Register smi);
960 
961   // Check if a double can be exactly represented as a signed 32-bit integer.
962   // Z flag set to one if true.
963   void TestDoubleIsInt32(DwVfpRegister double_input,
964                          LowDwVfpRegister double_scratch);
965 
966   // Try to convert a double to a signed 32-bit integer.
967   // Z flag set to one and result assigned if the conversion is exact.
968   void TryDoubleToInt32Exact(Register result,
969                              DwVfpRegister double_input,
970                              LowDwVfpRegister double_scratch);
971 
972   // Floor a double and writes the value to the result register.
973   // Go to exact if the conversion is exact (to be able to test -0),
974   // fall through calling code if an overflow occurred, else go to done.
975   // In return, input_high is loaded with high bits of input.
976   void TryInt32Floor(Register result,
977                      DwVfpRegister double_input,
978                      Register input_high,
979                      LowDwVfpRegister double_scratch,
980                      Label* done,
981                      Label* exact);
982 
983   // Performs a truncating conversion of a floating point number as used by
984   // the JS bitwise operations. See ECMA-262 9.5: ToInt32. Goes to 'done' if it
985   // succeeds, otherwise falls through if result is saturated. On return
986   // 'result' either holds answer, or is clobbered on fall through.
987   //
988   // Only public for the test code in test-code-stubs-arm.cc.
989   void TryInlineTruncateDoubleToI(Register result,
990                                   DwVfpRegister input,
991                                   Label* done);
992 
993   // Performs a truncating conversion of a floating point number as used by
994   // the JS bitwise operations. See ECMA-262 9.5: ToInt32.
995   // Exits with 'result' holding the answer.
996   void TruncateDoubleToI(Register result, DwVfpRegister double_input);
997 
998   // Performs a truncating conversion of a heap number as used by
999   // the JS bitwise operations. See ECMA-262 9.5: ToInt32. 'result' and 'input'
1000   // must be different registers.  Exits with 'result' holding the answer.
1001   void TruncateHeapNumberToI(Register result, Register object);
1002 
1003   // Converts the smi or heap number in object to an int32 using the rules
1004   // for ToInt32 as described in ECMAScript 9.5.: the value is truncated
1005   // and brought into the range -2^31 .. +2^31 - 1. 'result' and 'input' must be
1006   // different registers.
1007   void TruncateNumberToI(Register object,
1008                          Register result,
1009                          Register heap_number_map,
1010                          Register scratch1,
1011                          Label* not_int32);
1012 
1013   // Check whether d16-d31 are available on the CPU. The result is given by the
1014   // Z condition flag: Z==0 if d16-d31 available, Z==1 otherwise.
1015   void CheckFor32DRegs(Register scratch);
1016 
1017   // Does a runtime check for 16/32 FP registers. Either way, pushes 32 double
1018   // values to location, saving [d0..(d15|d31)].
1019   void SaveFPRegs(Register location, Register scratch);
1020 
1021   // Does a runtime check for 16/32 FP registers. Either way, pops 32 double
1022   // values to location, restoring [d0..(d15|d31)].
1023   void RestoreFPRegs(Register location, Register scratch);
1024 
1025   // ---------------------------------------------------------------------------
1026   // Runtime calls
1027 
1028   // Call a code stub.
1029   void CallStub(CodeStub* stub,
1030                 TypeFeedbackId ast_id = TypeFeedbackId::None(),
1031                 Condition cond = al);
1032 
1033   // Call a code stub.
1034   void TailCallStub(CodeStub* stub, Condition cond = al);
1035 
1036   // Call a runtime routine.
1037   void CallRuntime(const Runtime::Function* f,
1038                    int num_arguments,
1039                    SaveFPRegsMode save_doubles = kDontSaveFPRegs);
CallRuntimeSaveDoubles(Runtime::FunctionId id)1040   void CallRuntimeSaveDoubles(Runtime::FunctionId id) {
1041     const Runtime::Function* function = Runtime::FunctionForId(id);
1042     CallRuntime(function, function->nargs, kSaveFPRegs);
1043   }
1044 
1045   // Convenience function: Same as above, but takes the fid instead.
1046   void CallRuntime(Runtime::FunctionId id,
1047                    int num_arguments,
1048                    SaveFPRegsMode save_doubles = kDontSaveFPRegs) {
1049     CallRuntime(Runtime::FunctionForId(id), num_arguments, save_doubles);
1050   }
1051 
1052   // Convenience function: call an external reference.
1053   void CallExternalReference(const ExternalReference& ext,
1054                              int num_arguments);
1055 
1056   // Tail call of a runtime routine (jump).
1057   // Like JumpToExternalReference, but also takes care of passing the number
1058   // of parameters.
1059   void TailCallExternalReference(const ExternalReference& ext,
1060                                  int num_arguments,
1061                                  int result_size);
1062 
1063   // Convenience function: tail call a runtime routine (jump).
1064   void TailCallRuntime(Runtime::FunctionId fid,
1065                        int num_arguments,
1066                        int result_size);
1067 
1068   int CalculateStackPassedWords(int num_reg_arguments,
1069                                 int num_double_arguments);
1070 
1071   // Before calling a C-function from generated code, align arguments on stack.
1072   // After aligning the frame, non-register arguments must be stored in
1073   // sp[0], sp[4], etc., not pushed. The argument count assumes all arguments
1074   // are word sized. If double arguments are used, this function assumes that
1075   // all double arguments are stored before core registers; otherwise the
1076   // correct alignment of the double values is not guaranteed.
1077   // Some compilers/platforms require the stack to be aligned when calling
1078   // C++ code.
1079   // Needs a scratch register to do some arithmetic. This register will be
1080   // trashed.
1081   void PrepareCallCFunction(int num_reg_arguments,
1082                             int num_double_registers,
1083                             Register scratch);
1084   void PrepareCallCFunction(int num_reg_arguments,
1085                             Register scratch);
1086 
1087   // There are two ways of passing double arguments on ARM, depending on
1088   // whether soft or hard floating point ABI is used. These functions
1089   // abstract parameter passing for the three different ways we call
1090   // C functions from generated code.
1091   void MovToFloatParameter(DwVfpRegister src);
1092   void MovToFloatParameters(DwVfpRegister src1, DwVfpRegister src2);
1093   void MovToFloatResult(DwVfpRegister src);
1094 
1095   // Calls a C function and cleans up the space for arguments allocated
1096   // by PrepareCallCFunction. The called function is not allowed to trigger a
1097   // garbage collection, since that might move the code and invalidate the
1098   // return address (unless this is somehow accounted for by the called
1099   // function).
1100   void CallCFunction(ExternalReference function, int num_arguments);
1101   void CallCFunction(Register function, int num_arguments);
1102   void CallCFunction(ExternalReference function,
1103                      int num_reg_arguments,
1104                      int num_double_arguments);
1105   void CallCFunction(Register function,
1106                      int num_reg_arguments,
1107                      int num_double_arguments);
1108 
1109   void MovFromFloatParameter(DwVfpRegister dst);
1110   void MovFromFloatResult(DwVfpRegister dst);
1111 
1112   // Calls an API function.  Allocates HandleScope, extracts returned value
1113   // from handle and propagates exceptions.  Restores context.  stack_space
1114   // - space to be unwound on exit (includes the call JS arguments space and
1115   // the additional space allocated for the fast call).
1116   void CallApiFunctionAndReturn(Register function_address,
1117                                 ExternalReference thunk_ref,
1118                                 int stack_space,
1119                                 MemOperand return_value_operand,
1120                                 MemOperand* context_restore_operand);
1121 
1122   // Jump to a runtime routine.
1123   void JumpToExternalReference(const ExternalReference& builtin);
1124 
1125   // Invoke specified builtin JavaScript function. Adds an entry to
1126   // the unresolved list if the name does not resolve.
1127   void InvokeBuiltin(Builtins::JavaScript id,
1128                      InvokeFlag flag,
1129                      const CallWrapper& call_wrapper = NullCallWrapper());
1130 
1131   // Store the code object for the given builtin in the target register and
1132   // setup the function in r1.
1133   void GetBuiltinEntry(Register target, Builtins::JavaScript id);
1134 
1135   // Store the function for the given builtin in the target register.
1136   void GetBuiltinFunction(Register target, Builtins::JavaScript id);
1137 
CodeObject()1138   Handle<Object> CodeObject() {
1139     ASSERT(!code_object_.is_null());
1140     return code_object_;
1141   }
1142 
1143 
1144   // Emit code for a truncating division by a constant. The dividend register is
1145   // unchanged and ip gets clobbered. Dividend and result must be different.
1146   void TruncatingDiv(Register result, Register dividend, int32_t divisor);
1147 
1148   // ---------------------------------------------------------------------------
1149   // StatsCounter support
1150 
1151   void SetCounter(StatsCounter* counter, int value,
1152                   Register scratch1, Register scratch2);
1153   void IncrementCounter(StatsCounter* counter, int value,
1154                         Register scratch1, Register scratch2);
1155   void DecrementCounter(StatsCounter* counter, int value,
1156                         Register scratch1, Register scratch2);
1157 
1158 
1159   // ---------------------------------------------------------------------------
1160   // Debugging
1161 
1162   // Calls Abort(msg) if the condition cond is not satisfied.
1163   // Use --debug_code to enable.
1164   void Assert(Condition cond, BailoutReason reason);
1165   void AssertFastElements(Register elements);
1166 
1167   // Like Assert(), but always enabled.
1168   void Check(Condition cond, BailoutReason reason);
1169 
1170   // Print a message to stdout and abort execution.
1171   void Abort(BailoutReason msg);
1172 
1173   // Verify restrictions about code generated in stubs.
set_generating_stub(bool value)1174   void set_generating_stub(bool value) { generating_stub_ = value; }
generating_stub()1175   bool generating_stub() { return generating_stub_; }
set_has_frame(bool value)1176   void set_has_frame(bool value) { has_frame_ = value; }
has_frame()1177   bool has_frame() { return has_frame_; }
1178   inline bool AllowThisStubCall(CodeStub* stub);
1179 
1180   // EABI variant for double arguments in use.
use_eabi_hardfloat()1181   bool use_eabi_hardfloat() {
1182 #ifdef __arm__
1183     return OS::ArmUsingHardFloat();
1184 #elif USE_EABI_HARDFLOAT
1185     return true;
1186 #else
1187     return false;
1188 #endif
1189   }
1190 
1191   // ---------------------------------------------------------------------------
1192   // Number utilities
1193 
1194   // Check whether the value of reg is a power of two and not zero. If not
1195   // control continues at the label not_power_of_two. If reg is a power of two
1196   // the register scratch contains the value of (reg - 1) when control falls
1197   // through.
1198   void JumpIfNotPowerOfTwoOrZero(Register reg,
1199                                  Register scratch,
1200                                  Label* not_power_of_two_or_zero);
1201   // Check whether the value of reg is a power of two and not zero.
1202   // Control falls through if it is, with scratch containing the mask
1203   // value (reg - 1).
1204   // Otherwise control jumps to the 'zero_and_neg' label if the value of reg is
1205   // zero or negative, or jumps to the 'not_power_of_two' label if the value is
1206   // strictly positive but not a power of two.
1207   void JumpIfNotPowerOfTwoOrZeroAndNeg(Register reg,
1208                                        Register scratch,
1209                                        Label* zero_and_neg,
1210                                        Label* not_power_of_two);
1211 
1212   // ---------------------------------------------------------------------------
1213   // Smi utilities
1214 
1215   void SmiTag(Register reg, SBit s = LeaveCC) {
1216     add(reg, reg, Operand(reg), s);
1217   }
1218   void SmiTag(Register dst, Register src, SBit s = LeaveCC) {
1219     add(dst, src, Operand(src), s);
1220   }
1221 
1222   // Try to convert int32 to smi. If the value is to large, preserve
1223   // the original value and jump to not_a_smi. Destroys scratch and
1224   // sets flags.
TrySmiTag(Register reg,Label * not_a_smi)1225   void TrySmiTag(Register reg, Label* not_a_smi) {
1226     TrySmiTag(reg, reg, not_a_smi);
1227   }
TrySmiTag(Register reg,Register src,Label * not_a_smi)1228   void TrySmiTag(Register reg, Register src, Label* not_a_smi) {
1229     SmiTag(ip, src, SetCC);
1230     b(vs, not_a_smi);
1231     mov(reg, ip);
1232   }
1233 
1234 
1235   void SmiUntag(Register reg, SBit s = LeaveCC) {
1236     mov(reg, Operand::SmiUntag(reg), s);
1237   }
1238   void SmiUntag(Register dst, Register src, SBit s = LeaveCC) {
1239     mov(dst, Operand::SmiUntag(src), s);
1240   }
1241 
1242   // Untag the source value into destination and jump if source is a smi.
1243   // Souce and destination can be the same register.
1244   void UntagAndJumpIfSmi(Register dst, Register src, Label* smi_case);
1245 
1246   // Untag the source value into destination and jump if source is not a smi.
1247   // Souce and destination can be the same register.
1248   void UntagAndJumpIfNotSmi(Register dst, Register src, Label* non_smi_case);
1249 
1250   // Test if the register contains a smi (Z == 0 (eq) if true).
SmiTst(Register value)1251   inline void SmiTst(Register value) {
1252     tst(value, Operand(kSmiTagMask));
1253   }
NonNegativeSmiTst(Register value)1254   inline void NonNegativeSmiTst(Register value) {
1255     tst(value, Operand(kSmiTagMask | kSmiSignMask));
1256   }
1257   // Jump if the register contains a smi.
JumpIfSmi(Register value,Label * smi_label)1258   inline void JumpIfSmi(Register value, Label* smi_label) {
1259     tst(value, Operand(kSmiTagMask));
1260     b(eq, smi_label);
1261   }
1262   // Jump if either of the registers contain a non-smi.
JumpIfNotSmi(Register value,Label * not_smi_label)1263   inline void JumpIfNotSmi(Register value, Label* not_smi_label) {
1264     tst(value, Operand(kSmiTagMask));
1265     b(ne, not_smi_label);
1266   }
1267   // Jump if either of the registers contain a non-smi.
1268   void JumpIfNotBothSmi(Register reg1, Register reg2, Label* on_not_both_smi);
1269   // Jump if either of the registers contain a smi.
1270   void JumpIfEitherSmi(Register reg1, Register reg2, Label* on_either_smi);
1271 
1272   // Abort execution if argument is a smi, enabled via --debug-code.
1273   void AssertNotSmi(Register object);
1274   void AssertSmi(Register object);
1275 
1276   // Abort execution if argument is not a string, enabled via --debug-code.
1277   void AssertString(Register object);
1278 
1279   // Abort execution if argument is not a name, enabled via --debug-code.
1280   void AssertName(Register object);
1281 
1282   // Abort execution if argument is not undefined or an AllocationSite, enabled
1283   // via --debug-code.
1284   void AssertUndefinedOrAllocationSite(Register object, Register scratch);
1285 
1286   // Abort execution if reg is not the root value with the given index,
1287   // enabled via --debug-code.
1288   void AssertIsRoot(Register reg, Heap::RootListIndex index);
1289 
1290   // ---------------------------------------------------------------------------
1291   // HeapNumber utilities
1292 
1293   void JumpIfNotHeapNumber(Register object,
1294                            Register heap_number_map,
1295                            Register scratch,
1296                            Label* on_not_heap_number);
1297 
1298   // ---------------------------------------------------------------------------
1299   // String utilities
1300 
1301   // Generate code to do a lookup in the number string cache. If the number in
1302   // the register object is found in the cache the generated code falls through
1303   // with the result in the result register. The object and the result register
1304   // can be the same. If the number is not found in the cache the code jumps to
1305   // the label not_found with only the content of register object unchanged.
1306   void LookupNumberStringCache(Register object,
1307                                Register result,
1308                                Register scratch1,
1309                                Register scratch2,
1310                                Register scratch3,
1311                                Label* not_found);
1312 
1313   // Checks if both objects are sequential ASCII strings and jumps to label
1314   // if either is not. Assumes that neither object is a smi.
1315   void JumpIfNonSmisNotBothSequentialAsciiStrings(Register object1,
1316                                                   Register object2,
1317                                                   Register scratch1,
1318                                                   Register scratch2,
1319                                                   Label* failure);
1320 
1321   // Checks if both objects are sequential ASCII strings and jumps to label
1322   // if either is not.
1323   void JumpIfNotBothSequentialAsciiStrings(Register first,
1324                                            Register second,
1325                                            Register scratch1,
1326                                            Register scratch2,
1327                                            Label* not_flat_ascii_strings);
1328 
1329   // Checks if both instance types are sequential ASCII strings and jumps to
1330   // label if either is not.
1331   void JumpIfBothInstanceTypesAreNotSequentialAscii(
1332       Register first_object_instance_type,
1333       Register second_object_instance_type,
1334       Register scratch1,
1335       Register scratch2,
1336       Label* failure);
1337 
1338   // Check if instance type is sequential ASCII string and jump to label if
1339   // it is not.
1340   void JumpIfInstanceTypeIsNotSequentialAscii(Register type,
1341                                               Register scratch,
1342                                               Label* failure);
1343 
1344   void JumpIfNotUniqueName(Register reg, Label* not_unique_name);
1345 
1346   void EmitSeqStringSetCharCheck(Register string,
1347                                  Register index,
1348                                  Register value,
1349                                  uint32_t encoding_mask);
1350 
1351   // ---------------------------------------------------------------------------
1352   // Patching helpers.
1353 
1354   // Get the location of a relocated constant (its address in the constant pool)
1355   // from its load site.
1356   void GetRelocatedValueLocation(Register ldr_location,
1357                                  Register result);
1358 
1359 
1360   void ClampUint8(Register output_reg, Register input_reg);
1361 
1362   void ClampDoubleToUint8(Register result_reg,
1363                           DwVfpRegister input_reg,
1364                           LowDwVfpRegister double_scratch);
1365 
1366 
1367   void LoadInstanceDescriptors(Register map, Register descriptors);
1368   void EnumLength(Register dst, Register map);
1369   void NumberOfOwnDescriptors(Register dst, Register map);
1370 
1371   template<typename Field>
DecodeField(Register dst,Register src)1372   void DecodeField(Register dst, Register src) {
1373     Ubfx(dst, src, Field::kShift, Field::kSize);
1374   }
1375 
1376   template<typename Field>
DecodeField(Register reg)1377   void DecodeField(Register reg) {
1378     DecodeField<Field>(reg, reg);
1379   }
1380 
1381   template<typename Field>
DecodeFieldToSmi(Register dst,Register src)1382   void DecodeFieldToSmi(Register dst, Register src) {
1383     static const int shift = Field::kShift;
1384     static const int mask = Field::kMask >> shift << kSmiTagSize;
1385     STATIC_ASSERT((mask & (0x80000000u >> (kSmiTagSize - 1))) == 0);
1386     STATIC_ASSERT(kSmiTag == 0);
1387     if (shift < kSmiTagSize) {
1388       mov(dst, Operand(src, LSL, kSmiTagSize - shift));
1389       and_(dst, dst, Operand(mask));
1390     } else if (shift > kSmiTagSize) {
1391       mov(dst, Operand(src, LSR, shift - kSmiTagSize));
1392       and_(dst, dst, Operand(mask));
1393     } else {
1394       and_(dst, src, Operand(mask));
1395     }
1396   }
1397 
1398   template<typename Field>
DecodeFieldToSmi(Register reg)1399   void DecodeFieldToSmi(Register reg) {
1400     DecodeField<Field>(reg, reg);
1401   }
1402 
1403   // Activation support.
1404   void EnterFrame(StackFrame::Type type, bool load_constant_pool = false);
1405   // Returns the pc offset at which the frame ends.
1406   int LeaveFrame(StackFrame::Type type);
1407 
1408   // Expects object in r0 and returns map with validated enum cache
1409   // in r0.  Assumes that any other register can be used as a scratch.
1410   void CheckEnumCache(Register null_value, Label* call_runtime);
1411 
1412   // AllocationMemento support. Arrays may have an associated
1413   // AllocationMemento object that can be checked for in order to pretransition
1414   // to another type.
1415   // On entry, receiver_reg should point to the array object.
1416   // scratch_reg gets clobbered.
1417   // If allocation info is present, condition flags are set to eq.
1418   void TestJSArrayForAllocationMemento(Register receiver_reg,
1419                                        Register scratch_reg,
1420                                        Label* no_memento_found);
1421 
JumpIfJSArrayHasAllocationMemento(Register receiver_reg,Register scratch_reg,Label * memento_found)1422   void JumpIfJSArrayHasAllocationMemento(Register receiver_reg,
1423                                          Register scratch_reg,
1424                                          Label* memento_found) {
1425     Label no_memento_found;
1426     TestJSArrayForAllocationMemento(receiver_reg, scratch_reg,
1427                                     &no_memento_found);
1428     b(eq, memento_found);
1429     bind(&no_memento_found);
1430   }
1431 
1432   // Jumps to found label if a prototype map has dictionary elements.
1433   void JumpIfDictionaryInPrototypeChain(Register object, Register scratch0,
1434                                         Register scratch1, Label* found);
1435 
1436  private:
1437   void CallCFunctionHelper(Register function,
1438                            int num_reg_arguments,
1439                            int num_double_arguments);
1440 
1441   void Jump(intptr_t target, RelocInfo::Mode rmode, Condition cond = al);
1442 
1443   // Helper functions for generating invokes.
1444   void InvokePrologue(const ParameterCount& expected,
1445                       const ParameterCount& actual,
1446                       Handle<Code> code_constant,
1447                       Register code_reg,
1448                       Label* done,
1449                       bool* definitely_mismatches,
1450                       InvokeFlag flag,
1451                       const CallWrapper& call_wrapper);
1452 
1453   void InitializeNewString(Register string,
1454                            Register length,
1455                            Heap::RootListIndex map_index,
1456                            Register scratch1,
1457                            Register scratch2);
1458 
1459   // Helper for implementing JumpIfNotInNewSpace and JumpIfInNewSpace.
1460   void InNewSpace(Register object,
1461                   Register scratch,
1462                   Condition cond,  // eq for new space, ne otherwise.
1463                   Label* branch);
1464 
1465   // Helper for finding the mark bits for an address.  Afterwards, the
1466   // bitmap register points at the word with the mark bits and the mask
1467   // the position of the first bit.  Leaves addr_reg unchanged.
1468   inline void GetMarkBits(Register addr_reg,
1469                           Register bitmap_reg,
1470                           Register mask_reg);
1471 
1472   // Helper for throwing exceptions.  Compute a handler address and jump to
1473   // it.  See the implementation for register usage.
1474   void JumpToHandlerEntry();
1475 
1476   // Compute memory operands for safepoint stack slots.
1477   static int SafepointRegisterStackIndex(int reg_code);
1478   MemOperand SafepointRegisterSlot(Register reg);
1479   MemOperand SafepointRegistersAndDoublesSlot(Register reg);
1480 
1481   // Loads the constant pool pointer (pp) register.
1482   void LoadConstantPoolPointerRegister();
1483 
1484   bool generating_stub_;
1485   bool has_frame_;
1486   // This handle will be patched with the code object on installation.
1487   Handle<Object> code_object_;
1488 
1489   // Needs access to SafepointRegisterStackIndex for compiled frame
1490   // traversal.
1491   friend class StandardFrame;
1492 };
1493 
1494 
1495 // The code patcher is used to patch (typically) small parts of code e.g. for
1496 // debugging and other types of instrumentation. When using the code patcher
1497 // the exact number of bytes specified must be emitted. It is not legal to emit
1498 // relocation information. If any of these constraints are violated it causes
1499 // an assertion to fail.
1500 class CodePatcher {
1501  public:
1502   enum FlushICache {
1503     FLUSH,
1504     DONT_FLUSH
1505   };
1506 
1507   CodePatcher(byte* address,
1508               int instructions,
1509               FlushICache flush_cache = FLUSH);
1510   virtual ~CodePatcher();
1511 
1512   // Macro assembler to emit code.
masm()1513   MacroAssembler* masm() { return &masm_; }
1514 
1515   // Emit an instruction directly.
1516   void Emit(Instr instr);
1517 
1518   // Emit an address directly.
1519   void Emit(Address addr);
1520 
1521   // Emit the condition part of an instruction leaving the rest of the current
1522   // instruction unchanged.
1523   void EmitCondition(Condition cond);
1524 
1525  private:
1526   byte* address_;  // The address of the code being patched.
1527   int size_;  // Number of bytes of the expected patch size.
1528   MacroAssembler masm_;  // Macro assembler used to generate the code.
1529   FlushICache flush_cache_;  // Whether to flush the I cache after patching.
1530 };
1531 
1532 
1533 class FrameAndConstantPoolScope {
1534  public:
FrameAndConstantPoolScope(MacroAssembler * masm,StackFrame::Type type)1535   FrameAndConstantPoolScope(MacroAssembler* masm, StackFrame::Type type)
1536       : masm_(masm),
1537         type_(type),
1538         old_has_frame_(masm->has_frame()),
1539         old_constant_pool_available_(masm->is_constant_pool_available())  {
1540     // We only want to enable constant pool access for non-manual frame scopes
1541     // to ensure the constant pool pointer is valid throughout the scope.
1542     ASSERT(type_ != StackFrame::MANUAL && type_ != StackFrame::NONE);
1543     masm->set_has_frame(true);
1544     masm->set_constant_pool_available(true);
1545     masm->EnterFrame(type, !old_constant_pool_available_);
1546   }
1547 
~FrameAndConstantPoolScope()1548   ~FrameAndConstantPoolScope() {
1549     masm_->LeaveFrame(type_);
1550     masm_->set_has_frame(old_has_frame_);
1551     masm_->set_constant_pool_available(old_constant_pool_available_);
1552   }
1553 
1554   // Normally we generate the leave-frame code when this object goes
1555   // out of scope.  Sometimes we may need to generate the code somewhere else
1556   // in addition.  Calling this will achieve that, but the object stays in
1557   // scope, the MacroAssembler is still marked as being in a frame scope, and
1558   // the code will be generated again when it goes out of scope.
GenerateLeaveFrame()1559   void GenerateLeaveFrame() {
1560     ASSERT(type_ != StackFrame::MANUAL && type_ != StackFrame::NONE);
1561     masm_->LeaveFrame(type_);
1562   }
1563 
1564  private:
1565   MacroAssembler* masm_;
1566   StackFrame::Type type_;
1567   bool old_has_frame_;
1568   bool old_constant_pool_available_;
1569 
1570   DISALLOW_IMPLICIT_CONSTRUCTORS(FrameAndConstantPoolScope);
1571 };
1572 
1573 
1574 // Class for scoping the the unavailability of constant pool access.
1575 class ConstantPoolUnavailableScope {
1576  public:
ConstantPoolUnavailableScope(MacroAssembler * masm)1577   explicit ConstantPoolUnavailableScope(MacroAssembler* masm)
1578      : masm_(masm),
1579        old_constant_pool_available_(masm->is_constant_pool_available()) {
1580     if (FLAG_enable_ool_constant_pool) {
1581       masm_->set_constant_pool_available(false);
1582     }
1583   }
~ConstantPoolUnavailableScope()1584   ~ConstantPoolUnavailableScope() {
1585     if (FLAG_enable_ool_constant_pool) {
1586      masm_->set_constant_pool_available(old_constant_pool_available_);
1587     }
1588   }
1589 
1590  private:
1591   MacroAssembler* masm_;
1592   int old_constant_pool_available_;
1593 
1594   DISALLOW_IMPLICIT_CONSTRUCTORS(ConstantPoolUnavailableScope);
1595 };
1596 
1597 
1598 // -----------------------------------------------------------------------------
1599 // Static helper functions.
1600 
ContextOperand(Register context,int index)1601 inline MemOperand ContextOperand(Register context, int index) {
1602   return MemOperand(context, Context::SlotOffset(index));
1603 }
1604 
1605 
GlobalObjectOperand()1606 inline MemOperand GlobalObjectOperand()  {
1607   return ContextOperand(cp, Context::GLOBAL_OBJECT_INDEX);
1608 }
1609 
1610 
1611 #ifdef GENERATED_CODE_COVERAGE
1612 #define CODE_COVERAGE_STRINGIFY(x) #x
1613 #define CODE_COVERAGE_TOSTRING(x) CODE_COVERAGE_STRINGIFY(x)
1614 #define __FILE_LINE__ __FILE__ ":" CODE_COVERAGE_TOSTRING(__LINE__)
1615 #define ACCESS_MASM(masm) masm->stop(__FILE_LINE__); masm->
1616 #else
1617 #define ACCESS_MASM(masm) masm->
1618 #endif
1619 
1620 
1621 } }  // namespace v8::internal
1622 
1623 #endif  // V8_ARM_MACRO_ASSEMBLER_ARM_H_
1624