1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #ifndef V8_IA32_MACRO_ASSEMBLER_IA32_H_
6 #define V8_IA32_MACRO_ASSEMBLER_IA32_H_
7
8 #include "src/assembler.h"
9 #include "src/frames.h"
10 #include "src/globals.h"
11
12 namespace v8 {
13 namespace internal {
14
15 // Convenience for platform-independent signatures. We do not normally
16 // distinguish memory operands from other operands on ia32.
17 typedef Operand MemOperand;
18
19 enum RememberedSetAction { EMIT_REMEMBERED_SET, OMIT_REMEMBERED_SET };
20 enum SmiCheck { INLINE_SMI_CHECK, OMIT_SMI_CHECK };
21 enum PointersToHereCheck {
22 kPointersToHereMaybeInteresting,
23 kPointersToHereAreAlwaysInteresting
24 };
25
26
27 enum RegisterValueType {
28 REGISTER_VALUE_IS_SMI,
29 REGISTER_VALUE_IS_INT32
30 };
31
32
33 bool AreAliased(Register r1, Register r2, Register r3, Register r4);
34
35
36 // MacroAssembler implements a collection of frequently used macros.
37 class MacroAssembler: public Assembler {
38 public:
39 // The isolate parameter can be NULL if the macro assembler should
40 // not use isolate-dependent functionality. In this case, it's the
41 // responsibility of the caller to never invoke such function on the
42 // macro assembler.
43 MacroAssembler(Isolate* isolate, void* buffer, int size);
44
45 void Load(Register dst, const Operand& src, Representation r);
46 void Store(Register src, const Operand& dst, Representation r);
47
48 // Operations on roots in the root-array.
49 void LoadRoot(Register destination, Heap::RootListIndex index);
50 void StoreRoot(Register source, Register scratch, Heap::RootListIndex index);
51 void CompareRoot(Register with, Register scratch, Heap::RootListIndex index);
52 // These methods can only be used with constant roots (i.e. non-writable
53 // and not in new space).
54 void CompareRoot(Register with, Heap::RootListIndex index);
55 void CompareRoot(const Operand& with, Heap::RootListIndex index);
56
57 // ---------------------------------------------------------------------------
58 // GC Support
59 enum RememberedSetFinalAction {
60 kReturnAtEnd,
61 kFallThroughAtEnd
62 };
63
64 // Record in the remembered set the fact that we have a pointer to new space
65 // at the address pointed to by the addr register. Only works if addr is not
66 // in new space.
67 void RememberedSetHelper(Register object, // Used for debug code.
68 Register addr,
69 Register scratch,
70 SaveFPRegsMode save_fp,
71 RememberedSetFinalAction and_then);
72
73 void CheckPageFlag(Register object,
74 Register scratch,
75 int mask,
76 Condition cc,
77 Label* condition_met,
78 Label::Distance condition_met_distance = Label::kFar);
79
80 void CheckPageFlagForMap(
81 Handle<Map> map,
82 int mask,
83 Condition cc,
84 Label* condition_met,
85 Label::Distance condition_met_distance = Label::kFar);
86
87 void CheckMapDeprecated(Handle<Map> map,
88 Register scratch,
89 Label* if_deprecated);
90
91 // Check if object is in new space. Jumps if the object is not in new space.
92 // The register scratch can be object itself, but scratch will be clobbered.
93 void JumpIfNotInNewSpace(Register object,
94 Register scratch,
95 Label* branch,
96 Label::Distance distance = Label::kFar) {
97 InNewSpace(object, scratch, zero, branch, distance);
98 }
99
100 // Check if object is in new space. Jumps if the object is in new space.
101 // The register scratch can be object itself, but it will be clobbered.
102 void JumpIfInNewSpace(Register object,
103 Register scratch,
104 Label* branch,
105 Label::Distance distance = Label::kFar) {
106 InNewSpace(object, scratch, not_zero, branch, distance);
107 }
108
109 // Check if an object has a given incremental marking color. Also uses ecx!
110 void HasColor(Register object,
111 Register scratch0,
112 Register scratch1,
113 Label* has_color,
114 Label::Distance has_color_distance,
115 int first_bit,
116 int second_bit);
117
118 void JumpIfBlack(Register object,
119 Register scratch0,
120 Register scratch1,
121 Label* on_black,
122 Label::Distance on_black_distance = Label::kFar);
123
124 // Checks the color of an object. If the object is already grey or black
125 // then we just fall through, since it is already live. If it is white and
126 // we can determine that it doesn't need to be scanned, then we just mark it
127 // black and fall through. For the rest we jump to the label so the
128 // incremental marker can fix its assumptions.
129 void EnsureNotWhite(Register object,
130 Register scratch1,
131 Register scratch2,
132 Label* object_is_white_and_not_data,
133 Label::Distance distance);
134
135 // Notify the garbage collector that we wrote a pointer into an object.
136 // |object| is the object being stored into, |value| is the object being
137 // stored. value and scratch registers are clobbered by the operation.
138 // The offset is the offset from the start of the object, not the offset from
139 // the tagged HeapObject pointer. For use with FieldOperand(reg, off).
140 void RecordWriteField(
141 Register object,
142 int offset,
143 Register value,
144 Register scratch,
145 SaveFPRegsMode save_fp,
146 RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
147 SmiCheck smi_check = INLINE_SMI_CHECK,
148 PointersToHereCheck pointers_to_here_check_for_value =
149 kPointersToHereMaybeInteresting);
150
151 // As above, but the offset has the tag presubtracted. For use with
152 // Operand(reg, off).
153 void RecordWriteContextSlot(
154 Register context,
155 int offset,
156 Register value,
157 Register scratch,
158 SaveFPRegsMode save_fp,
159 RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
160 SmiCheck smi_check = INLINE_SMI_CHECK,
161 PointersToHereCheck pointers_to_here_check_for_value =
162 kPointersToHereMaybeInteresting) {
163 RecordWriteField(context,
164 offset + kHeapObjectTag,
165 value,
166 scratch,
167 save_fp,
168 remembered_set_action,
169 smi_check,
170 pointers_to_here_check_for_value);
171 }
172
173 // Notify the garbage collector that we wrote a pointer into a fixed array.
174 // |array| is the array being stored into, |value| is the
175 // object being stored. |index| is the array index represented as a
176 // Smi. All registers are clobbered by the operation RecordWriteArray
177 // filters out smis so it does not update the write barrier if the
178 // value is a smi.
179 void RecordWriteArray(
180 Register array,
181 Register value,
182 Register index,
183 SaveFPRegsMode save_fp,
184 RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
185 SmiCheck smi_check = INLINE_SMI_CHECK,
186 PointersToHereCheck pointers_to_here_check_for_value =
187 kPointersToHereMaybeInteresting);
188
189 // For page containing |object| mark region covering |address|
190 // dirty. |object| is the object being stored into, |value| is the
191 // object being stored. The address and value registers are clobbered by the
192 // operation. RecordWrite filters out smis so it does not update the
193 // write barrier if the value is a smi.
194 void RecordWrite(
195 Register object,
196 Register address,
197 Register value,
198 SaveFPRegsMode save_fp,
199 RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
200 SmiCheck smi_check = INLINE_SMI_CHECK,
201 PointersToHereCheck pointers_to_here_check_for_value =
202 kPointersToHereMaybeInteresting);
203
204 // For page containing |object| mark the region covering the object's map
205 // dirty. |object| is the object being stored into, |map| is the Map object
206 // that was stored.
207 void RecordWriteForMap(
208 Register object,
209 Handle<Map> map,
210 Register scratch1,
211 Register scratch2,
212 SaveFPRegsMode save_fp);
213
214 // ---------------------------------------------------------------------------
215 // Debugger Support
216
217 void DebugBreak();
218
219 // Generates function and stub prologue code.
220 void StubPrologue();
221 void Prologue(bool code_pre_aging);
222
223 // Enter specific kind of exit frame. Expects the number of
224 // arguments in register eax and sets up the number of arguments in
225 // register edi and the pointer to the first argument in register
226 // esi.
227 void EnterExitFrame(bool save_doubles);
228
229 void EnterApiExitFrame(int argc);
230
231 // Leave the current exit frame. Expects the return value in
232 // register eax:edx (untouched) and the pointer to the first
233 // argument in register esi.
234 void LeaveExitFrame(bool save_doubles);
235
236 // Leave the current exit frame. Expects the return value in
237 // register eax (untouched).
238 void LeaveApiExitFrame(bool restore_context);
239
240 // Find the function context up the context chain.
241 void LoadContext(Register dst, int context_chain_length);
242
243 // Conditionally load the cached Array transitioned map of type
244 // transitioned_kind from the native context if the map in register
245 // map_in_out is the cached Array map in the native context of
246 // expected_kind.
247 void LoadTransitionedArrayMapConditional(
248 ElementsKind expected_kind,
249 ElementsKind transitioned_kind,
250 Register map_in_out,
251 Register scratch,
252 Label* no_map_match);
253
254 // Load the global function with the given index.
255 void LoadGlobalFunction(int index, Register function);
256
257 // Load the initial map from the global function. The registers
258 // function and map can be the same.
259 void LoadGlobalFunctionInitialMap(Register function, Register map);
260
261 // Push and pop the registers that can hold pointers.
PushSafepointRegisters()262 void PushSafepointRegisters() { pushad(); }
PopSafepointRegisters()263 void PopSafepointRegisters() { popad(); }
264 // Store the value in register/immediate src in the safepoint
265 // register stack slot for register dst.
266 void StoreToSafepointRegisterSlot(Register dst, Register src);
267 void StoreToSafepointRegisterSlot(Register dst, Immediate src);
268 void LoadFromSafepointRegisterSlot(Register dst, Register src);
269
270 void LoadHeapObject(Register result, Handle<HeapObject> object);
271 void CmpHeapObject(Register reg, Handle<HeapObject> object);
272 void PushHeapObject(Handle<HeapObject> object);
273
LoadObject(Register result,Handle<Object> object)274 void LoadObject(Register result, Handle<Object> object) {
275 AllowDeferredHandleDereference heap_object_check;
276 if (object->IsHeapObject()) {
277 LoadHeapObject(result, Handle<HeapObject>::cast(object));
278 } else {
279 Move(result, Immediate(object));
280 }
281 }
282
CmpObject(Register reg,Handle<Object> object)283 void CmpObject(Register reg, Handle<Object> object) {
284 AllowDeferredHandleDereference heap_object_check;
285 if (object->IsHeapObject()) {
286 CmpHeapObject(reg, Handle<HeapObject>::cast(object));
287 } else {
288 cmp(reg, Immediate(object));
289 }
290 }
291
292 // ---------------------------------------------------------------------------
293 // JavaScript invokes
294
295 // Invoke the JavaScript function code by either calling or jumping.
InvokeCode(Register code,const ParameterCount & expected,const ParameterCount & actual,InvokeFlag flag,const CallWrapper & call_wrapper)296 void InvokeCode(Register code,
297 const ParameterCount& expected,
298 const ParameterCount& actual,
299 InvokeFlag flag,
300 const CallWrapper& call_wrapper) {
301 InvokeCode(Operand(code), expected, actual, flag, call_wrapper);
302 }
303
304 void InvokeCode(const Operand& code,
305 const ParameterCount& expected,
306 const ParameterCount& actual,
307 InvokeFlag flag,
308 const CallWrapper& call_wrapper);
309
310 // Invoke the JavaScript function in the given register. Changes the
311 // current context to the context in the function before invoking.
312 void InvokeFunction(Register function,
313 const ParameterCount& actual,
314 InvokeFlag flag,
315 const CallWrapper& call_wrapper);
316
317 void InvokeFunction(Register function,
318 const ParameterCount& expected,
319 const ParameterCount& actual,
320 InvokeFlag flag,
321 const CallWrapper& call_wrapper);
322
323 void InvokeFunction(Handle<JSFunction> function,
324 const ParameterCount& expected,
325 const ParameterCount& actual,
326 InvokeFlag flag,
327 const CallWrapper& call_wrapper);
328
329 // Invoke specified builtin JavaScript function. Adds an entry to
330 // the unresolved list if the name does not resolve.
331 void InvokeBuiltin(Builtins::JavaScript id,
332 InvokeFlag flag,
333 const CallWrapper& call_wrapper = NullCallWrapper());
334
335 // Store the function for the given builtin in the target register.
336 void GetBuiltinFunction(Register target, Builtins::JavaScript id);
337
338 // Store the code object for the given builtin in the target register.
339 void GetBuiltinEntry(Register target, Builtins::JavaScript id);
340
341 // Expression support
342 // cvtsi2sd instruction only writes to the low 64-bit of dst register, which
343 // hinders register renaming and makes dependence chains longer. So we use
344 // xorps to clear the dst register before cvtsi2sd to solve this issue.
Cvtsi2sd(XMMRegister dst,Register src)345 void Cvtsi2sd(XMMRegister dst, Register src) { Cvtsi2sd(dst, Operand(src)); }
346 void Cvtsi2sd(XMMRegister dst, const Operand& src);
347
348 // Support for constant splitting.
349 bool IsUnsafeImmediate(const Immediate& x);
350 void SafeMove(Register dst, const Immediate& x);
351 void SafePush(const Immediate& x);
352
353 // Compare object type for heap object.
354 // Incoming register is heap_object and outgoing register is map.
355 void CmpObjectType(Register heap_object, InstanceType type, Register map);
356
357 // Compare instance type for map.
358 void CmpInstanceType(Register map, InstanceType type);
359
360 // Check if a map for a JSObject indicates that the object has fast elements.
361 // Jump to the specified label if it does not.
362 void CheckFastElements(Register map,
363 Label* fail,
364 Label::Distance distance = Label::kFar);
365
366 // Check if a map for a JSObject indicates that the object can have both smi
367 // and HeapObject elements. Jump to the specified label if it does not.
368 void CheckFastObjectElements(Register map,
369 Label* fail,
370 Label::Distance distance = Label::kFar);
371
372 // Check if a map for a JSObject indicates that the object has fast smi only
373 // elements. Jump to the specified label if it does not.
374 void CheckFastSmiElements(Register map,
375 Label* fail,
376 Label::Distance distance = Label::kFar);
377
378 // Check to see if maybe_number can be stored as a double in
379 // FastDoubleElements. If it can, store it at the index specified by key in
380 // the FastDoubleElements array elements, otherwise jump to fail.
381 void StoreNumberToDoubleElements(Register maybe_number,
382 Register elements,
383 Register key,
384 Register scratch1,
385 XMMRegister scratch2,
386 Label* fail,
387 int offset = 0);
388
389 // Compare an object's map with the specified map.
390 void CompareMap(Register obj, Handle<Map> map);
391
392 // Check if the map of an object is equal to a specified map and branch to
393 // label if not. Skip the smi check if not required (object is known to be a
394 // heap object). If mode is ALLOW_ELEMENT_TRANSITION_MAPS, then also match
395 // against maps that are ElementsKind transition maps of the specified map.
396 void CheckMap(Register obj,
397 Handle<Map> map,
398 Label* fail,
399 SmiCheckType smi_check_type);
400
401 // Check if the map of an object is equal to a specified map and branch to a
402 // specified target if equal. Skip the smi check if not required (object is
403 // known to be a heap object)
404 void DispatchMap(Register obj,
405 Register unused,
406 Handle<Map> map,
407 Handle<Code> success,
408 SmiCheckType smi_check_type);
409
410 // Check if the object in register heap_object is a string. Afterwards the
411 // register map contains the object map and the register instance_type
412 // contains the instance_type. The registers map and instance_type can be the
413 // same in which case it contains the instance type afterwards. Either of the
414 // registers map and instance_type can be the same as heap_object.
415 Condition IsObjectStringType(Register heap_object,
416 Register map,
417 Register instance_type);
418
419 // Check if the object in register heap_object is a name. Afterwards the
420 // register map contains the object map and the register instance_type
421 // contains the instance_type. The registers map and instance_type can be the
422 // same in which case it contains the instance type afterwards. Either of the
423 // registers map and instance_type can be the same as heap_object.
424 Condition IsObjectNameType(Register heap_object,
425 Register map,
426 Register instance_type);
427
428 // Check if a heap object's type is in the JSObject range, not including
429 // JSFunction. The object's map will be loaded in the map register.
430 // Any or all of the three registers may be the same.
431 // The contents of the scratch register will always be overwritten.
432 void IsObjectJSObjectType(Register heap_object,
433 Register map,
434 Register scratch,
435 Label* fail);
436
437 // The contents of the scratch register will be overwritten.
438 void IsInstanceJSObjectType(Register map, Register scratch, Label* fail);
439
440 // FCmp is similar to integer cmp, but requires unsigned
441 // jcc instructions (je, ja, jae, jb, jbe, je, and jz).
442 void FCmp();
443
444 void ClampUint8(Register reg);
445
446 void ClampDoubleToUint8(XMMRegister input_reg,
447 XMMRegister scratch_reg,
448 Register result_reg);
449
450 void SlowTruncateToI(Register result_reg, Register input_reg,
451 int offset = HeapNumber::kValueOffset - kHeapObjectTag);
452
453 void TruncateHeapNumberToI(Register result_reg, Register input_reg);
454 void TruncateDoubleToI(Register result_reg, XMMRegister input_reg);
455
456 void DoubleToI(Register result_reg, XMMRegister input_reg,
457 XMMRegister scratch, MinusZeroMode minus_zero_mode,
458 Label* conversion_failed, Label::Distance dst = Label::kFar);
459
460 void TaggedToI(Register result_reg, Register input_reg, XMMRegister temp,
461 MinusZeroMode minus_zero_mode, Label* lost_precision);
462
463 // Smi tagging support.
SmiTag(Register reg)464 void SmiTag(Register reg) {
465 STATIC_ASSERT(kSmiTag == 0);
466 STATIC_ASSERT(kSmiTagSize == 1);
467 add(reg, reg);
468 }
SmiUntag(Register reg)469 void SmiUntag(Register reg) {
470 sar(reg, kSmiTagSize);
471 }
472
473 // Modifies the register even if it does not contain a Smi!
SmiUntag(Register reg,Label * is_smi)474 void SmiUntag(Register reg, Label* is_smi) {
475 STATIC_ASSERT(kSmiTagSize == 1);
476 sar(reg, kSmiTagSize);
477 STATIC_ASSERT(kSmiTag == 0);
478 j(not_carry, is_smi);
479 }
480
481 void LoadUint32(XMMRegister dst, Register src);
482
483 // Jump the register contains a smi.
484 inline void JumpIfSmi(Register value,
485 Label* smi_label,
486 Label::Distance distance = Label::kFar) {
487 test(value, Immediate(kSmiTagMask));
488 j(zero, smi_label, distance);
489 }
490 // Jump if the operand is a smi.
491 inline void JumpIfSmi(Operand value,
492 Label* smi_label,
493 Label::Distance distance = Label::kFar) {
494 test(value, Immediate(kSmiTagMask));
495 j(zero, smi_label, distance);
496 }
497 // Jump if register contain a non-smi.
498 inline void JumpIfNotSmi(Register value,
499 Label* not_smi_label,
500 Label::Distance distance = Label::kFar) {
501 test(value, Immediate(kSmiTagMask));
502 j(not_zero, not_smi_label, distance);
503 }
504
505 void LoadInstanceDescriptors(Register map, Register descriptors);
506 void EnumLength(Register dst, Register map);
507 void NumberOfOwnDescriptors(Register dst, Register map);
508
509 template<typename Field>
DecodeField(Register reg)510 void DecodeField(Register reg) {
511 static const int shift = Field::kShift;
512 static const int mask = Field::kMask >> Field::kShift;
513 if (shift != 0) {
514 sar(reg, shift);
515 }
516 and_(reg, Immediate(mask));
517 }
518
519 template<typename Field>
DecodeFieldToSmi(Register reg)520 void DecodeFieldToSmi(Register reg) {
521 static const int shift = Field::kShift;
522 static const int mask = (Field::kMask >> Field::kShift) << kSmiTagSize;
523 STATIC_ASSERT((mask & (0x80000000u >> (kSmiTagSize - 1))) == 0);
524 STATIC_ASSERT(kSmiTag == 0);
525 if (shift < kSmiTagSize) {
526 shl(reg, kSmiTagSize - shift);
527 } else if (shift > kSmiTagSize) {
528 sar(reg, shift - kSmiTagSize);
529 }
530 and_(reg, Immediate(mask));
531 }
532
533 void LoadPowerOf2(XMMRegister dst, Register scratch, int power);
534
535 // Abort execution if argument is not a number, enabled via --debug-code.
536 void AssertNumber(Register object);
537
538 // Abort execution if argument is not a smi, enabled via --debug-code.
539 void AssertSmi(Register object);
540
541 // Abort execution if argument is a smi, enabled via --debug-code.
542 void AssertNotSmi(Register object);
543
544 // Abort execution if argument is not a string, enabled via --debug-code.
545 void AssertString(Register object);
546
547 // Abort execution if argument is not a name, enabled via --debug-code.
548 void AssertName(Register object);
549
550 // Abort execution if argument is not undefined or an AllocationSite, enabled
551 // via --debug-code.
552 void AssertUndefinedOrAllocationSite(Register object);
553
554 // ---------------------------------------------------------------------------
555 // Exception handling
556
557 // Push a new try handler and link it into try handler chain.
558 void PushTryHandler(StackHandler::Kind kind, int handler_index);
559
560 // Unlink the stack handler on top of the stack from the try handler chain.
561 void PopTryHandler();
562
563 // Throw to the top handler in the try hander chain.
564 void Throw(Register value);
565
566 // Throw past all JS frames to the top JS entry frame.
567 void ThrowUncatchable(Register value);
568
569 // ---------------------------------------------------------------------------
570 // Inline caching support
571
572 // Generate code for checking access rights - used for security checks
573 // on access to global objects across environments. The holder register
574 // is left untouched, but the scratch register is clobbered.
575 void CheckAccessGlobalProxy(Register holder_reg,
576 Register scratch1,
577 Register scratch2,
578 Label* miss);
579
580 void GetNumberHash(Register r0, Register scratch);
581
582 void LoadFromNumberDictionary(Label* miss,
583 Register elements,
584 Register key,
585 Register r0,
586 Register r1,
587 Register r2,
588 Register result);
589
590
591 // ---------------------------------------------------------------------------
592 // Allocation support
593
594 // Allocate an object in new space or old pointer space. If the given space
595 // is exhausted control continues at the gc_required label. The allocated
596 // object is returned in result and end of the new object is returned in
597 // result_end. The register scratch can be passed as no_reg in which case
598 // an additional object reference will be added to the reloc info. The
599 // returned pointers in result and result_end have not yet been tagged as
600 // heap objects. If result_contains_top_on_entry is true the content of
601 // result is known to be the allocation top on entry (could be result_end
602 // from a previous call). If result_contains_top_on_entry is true scratch
603 // should be no_reg as it is never used.
604 void Allocate(int object_size,
605 Register result,
606 Register result_end,
607 Register scratch,
608 Label* gc_required,
609 AllocationFlags flags);
610
611 void Allocate(int header_size,
612 ScaleFactor element_size,
613 Register element_count,
614 RegisterValueType element_count_type,
615 Register result,
616 Register result_end,
617 Register scratch,
618 Label* gc_required,
619 AllocationFlags flags);
620
621 void Allocate(Register object_size,
622 Register result,
623 Register result_end,
624 Register scratch,
625 Label* gc_required,
626 AllocationFlags flags);
627
628 // Undo allocation in new space. The object passed and objects allocated after
629 // it will no longer be allocated. Make sure that no pointers are left to the
630 // object(s) no longer allocated as they would be invalid when allocation is
631 // un-done.
632 void UndoAllocationInNewSpace(Register object);
633
634 // Allocate a heap number in new space with undefined value. The
635 // register scratch2 can be passed as no_reg; the others must be
636 // valid registers. Returns tagged pointer in result register, or
637 // jumps to gc_required if new space is full.
638 void AllocateHeapNumber(Register result,
639 Register scratch1,
640 Register scratch2,
641 Label* gc_required);
642
643 // Allocate a sequential string. All the header fields of the string object
644 // are initialized.
645 void AllocateTwoByteString(Register result,
646 Register length,
647 Register scratch1,
648 Register scratch2,
649 Register scratch3,
650 Label* gc_required);
651 void AllocateAsciiString(Register result,
652 Register length,
653 Register scratch1,
654 Register scratch2,
655 Register scratch3,
656 Label* gc_required);
657 void AllocateAsciiString(Register result,
658 int length,
659 Register scratch1,
660 Register scratch2,
661 Label* gc_required);
662
663 // Allocate a raw cons string object. Only the map field of the result is
664 // initialized.
665 void AllocateTwoByteConsString(Register result,
666 Register scratch1,
667 Register scratch2,
668 Label* gc_required);
669 void AllocateAsciiConsString(Register result,
670 Register scratch1,
671 Register scratch2,
672 Label* gc_required);
673
674 // Allocate a raw sliced string object. Only the map field of the result is
675 // initialized.
676 void AllocateTwoByteSlicedString(Register result,
677 Register scratch1,
678 Register scratch2,
679 Label* gc_required);
680 void AllocateAsciiSlicedString(Register result,
681 Register scratch1,
682 Register scratch2,
683 Label* gc_required);
684
685 // Copy memory, byte-by-byte, from source to destination. Not optimized for
686 // long or aligned copies.
687 // The contents of index and scratch are destroyed.
688 void CopyBytes(Register source,
689 Register destination,
690 Register length,
691 Register scratch);
692
693 // Initialize fields with filler values. Fields starting at |start_offset|
694 // not including end_offset are overwritten with the value in |filler|. At
695 // the end the loop, |start_offset| takes the value of |end_offset|.
696 void InitializeFieldsWithFiller(Register start_offset,
697 Register end_offset,
698 Register filler);
699
700 // ---------------------------------------------------------------------------
701 // Support functions.
702
703 // Check a boolean-bit of a Smi field.
704 void BooleanBitTest(Register object, int field_offset, int bit_index);
705
706 // Check if result is zero and op is negative.
707 void NegativeZeroTest(Register result, Register op, Label* then_label);
708
709 // Check if result is zero and any of op1 and op2 are negative.
710 // Register scratch is destroyed, and it must be different from op2.
711 void NegativeZeroTest(Register result, Register op1, Register op2,
712 Register scratch, Label* then_label);
713
714 // Try to get function prototype of a function and puts the value in
715 // the result register. Checks that the function really is a
716 // function and jumps to the miss label if the fast checks fail. The
717 // function register will be untouched; the other registers may be
718 // clobbered.
719 void TryGetFunctionPrototype(Register function,
720 Register result,
721 Register scratch,
722 Label* miss,
723 bool miss_on_bound_function = false);
724
725 // Picks out an array index from the hash field.
726 // Register use:
727 // hash - holds the index's hash. Clobbered.
728 // index - holds the overwritten index on exit.
729 void IndexFromHash(Register hash, Register index);
730
731 // ---------------------------------------------------------------------------
732 // Runtime calls
733
734 // Call a code stub. Generate the code if necessary.
735 void CallStub(CodeStub* stub, TypeFeedbackId ast_id = TypeFeedbackId::None());
736
737 // Tail call a code stub (jump). Generate the code if necessary.
738 void TailCallStub(CodeStub* stub);
739
740 // Return from a code stub after popping its arguments.
741 void StubReturn(int argc);
742
743 // Call a runtime routine.
744 void CallRuntime(const Runtime::Function* f,
745 int num_arguments,
746 SaveFPRegsMode save_doubles = kDontSaveFPRegs);
CallRuntimeSaveDoubles(Runtime::FunctionId id)747 void CallRuntimeSaveDoubles(Runtime::FunctionId id) {
748 const Runtime::Function* function = Runtime::FunctionForId(id);
749 CallRuntime(function, function->nargs, kSaveFPRegs);
750 }
751
752 // Convenience function: Same as above, but takes the fid instead.
753 void CallRuntime(Runtime::FunctionId id,
754 int num_arguments,
755 SaveFPRegsMode save_doubles = kDontSaveFPRegs) {
756 CallRuntime(Runtime::FunctionForId(id), num_arguments, save_doubles);
757 }
758
759 // Convenience function: call an external reference.
760 void CallExternalReference(ExternalReference ref, int num_arguments);
761
762 // Tail call of a runtime routine (jump).
763 // Like JumpToExternalReference, but also takes care of passing the number
764 // of parameters.
765 void TailCallExternalReference(const ExternalReference& ext,
766 int num_arguments,
767 int result_size);
768
769 // Convenience function: tail call a runtime routine (jump).
770 void TailCallRuntime(Runtime::FunctionId fid,
771 int num_arguments,
772 int result_size);
773
774 // Before calling a C-function from generated code, align arguments on stack.
775 // After aligning the frame, arguments must be stored in esp[0], esp[4],
776 // etc., not pushed. The argument count assumes all arguments are word sized.
777 // Some compilers/platforms require the stack to be aligned when calling
778 // C++ code.
779 // Needs a scratch register to do some arithmetic. This register will be
780 // trashed.
781 void PrepareCallCFunction(int num_arguments, Register scratch);
782
783 // Calls a C function and cleans up the space for arguments allocated
784 // by PrepareCallCFunction. The called function is not allowed to trigger a
785 // garbage collection, since that might move the code and invalidate the
786 // return address (unless this is somehow accounted for by the called
787 // function).
788 void CallCFunction(ExternalReference function, int num_arguments);
789 void CallCFunction(Register function, int num_arguments);
790
791 // Prepares stack to put arguments (aligns and so on). Reserves
792 // space for return value if needed (assumes the return value is a handle).
793 // Arguments must be stored in ApiParameterOperand(0), ApiParameterOperand(1)
794 // etc. Saves context (esi). If space was reserved for return value then
795 // stores the pointer to the reserved slot into esi.
796 void PrepareCallApiFunction(int argc);
797
798 // Calls an API function. Allocates HandleScope, extracts returned value
799 // from handle and propagates exceptions. Clobbers ebx, edi and
800 // caller-save registers. Restores context. On return removes
801 // stack_space * kPointerSize (GCed).
802 void CallApiFunctionAndReturn(Register function_address,
803 ExternalReference thunk_ref,
804 Operand thunk_last_arg,
805 int stack_space,
806 Operand return_value_operand,
807 Operand* context_restore_operand);
808
809 // Jump to a runtime routine.
810 void JumpToExternalReference(const ExternalReference& ext);
811
812 // ---------------------------------------------------------------------------
813 // Utilities
814
815 void Ret();
816
817 // Return and drop arguments from stack, where the number of arguments
818 // may be bigger than 2^16 - 1. Requires a scratch register.
819 void Ret(int bytes_dropped, Register scratch);
820
821 // Emit code to discard a non-negative number of pointer-sized elements
822 // from the stack, clobbering only the esp register.
823 void Drop(int element_count);
824
Call(Label * target)825 void Call(Label* target) { call(target); }
Push(Register src)826 void Push(Register src) { push(src); }
Pop(Register dst)827 void Pop(Register dst) { pop(dst); }
828
829 // Emit call to the code we are currently generating.
CallSelf()830 void CallSelf() {
831 Handle<Code> self(reinterpret_cast<Code**>(CodeObject().location()));
832 call(self, RelocInfo::CODE_TARGET);
833 }
834
835 // Move if the registers are not identical.
836 void Move(Register target, Register source);
837
838 // Move a constant into a destination using the most efficient encoding.
839 void Move(Register dst, const Immediate& x);
840 void Move(const Operand& dst, const Immediate& x);
841
842 // Move an immediate into an XMM register.
843 void Move(XMMRegister dst, double val);
844
845 // Push a handle value.
Push(Handle<Object> handle)846 void Push(Handle<Object> handle) { push(Immediate(handle)); }
Push(Smi * smi)847 void Push(Smi* smi) { Push(Handle<Smi>(smi, isolate())); }
848
CodeObject()849 Handle<Object> CodeObject() {
850 ASSERT(!code_object_.is_null());
851 return code_object_;
852 }
853
854 // Emit code for a truncating division by a constant. The dividend register is
855 // unchanged, the result is in edx, and eax gets clobbered.
856 void TruncatingDiv(Register dividend, int32_t divisor);
857
858 // ---------------------------------------------------------------------------
859 // StatsCounter support
860
861 void SetCounter(StatsCounter* counter, int value);
862 void IncrementCounter(StatsCounter* counter, int value);
863 void DecrementCounter(StatsCounter* counter, int value);
864 void IncrementCounter(Condition cc, StatsCounter* counter, int value);
865 void DecrementCounter(Condition cc, StatsCounter* counter, int value);
866
867
868 // ---------------------------------------------------------------------------
869 // Debugging
870
871 // Calls Abort(msg) if the condition cc is not satisfied.
872 // Use --debug_code to enable.
873 void Assert(Condition cc, BailoutReason reason);
874
875 void AssertFastElements(Register elements);
876
877 // Like Assert(), but always enabled.
878 void Check(Condition cc, BailoutReason reason);
879
880 // Print a message to stdout and abort execution.
881 void Abort(BailoutReason reason);
882
883 // Check that the stack is aligned.
884 void CheckStackAlignment();
885
886 // Verify restrictions about code generated in stubs.
set_generating_stub(bool value)887 void set_generating_stub(bool value) { generating_stub_ = value; }
generating_stub()888 bool generating_stub() { return generating_stub_; }
set_has_frame(bool value)889 void set_has_frame(bool value) { has_frame_ = value; }
has_frame()890 bool has_frame() { return has_frame_; }
891 inline bool AllowThisStubCall(CodeStub* stub);
892
893 // ---------------------------------------------------------------------------
894 // String utilities.
895
896 // Generate code to do a lookup in the number string cache. If the number in
897 // the register object is found in the cache the generated code falls through
898 // with the result in the result register. The object and the result register
899 // can be the same. If the number is not found in the cache the code jumps to
900 // the label not_found with only the content of register object unchanged.
901 void LookupNumberStringCache(Register object,
902 Register result,
903 Register scratch1,
904 Register scratch2,
905 Label* not_found);
906
907 // Check whether the instance type represents a flat ASCII string. Jump to the
908 // label if not. If the instance type can be scratched specify same register
909 // for both instance type and scratch.
910 void JumpIfInstanceTypeIsNotSequentialAscii(Register instance_type,
911 Register scratch,
912 Label* on_not_flat_ascii_string);
913
914 // Checks if both objects are sequential ASCII strings, and jumps to label
915 // if either is not.
916 void JumpIfNotBothSequentialAsciiStrings(Register object1,
917 Register object2,
918 Register scratch1,
919 Register scratch2,
920 Label* on_not_flat_ascii_strings);
921
922 // Checks if the given register or operand is a unique name
923 void JumpIfNotUniqueName(Register reg, Label* not_unique_name,
924 Label::Distance distance = Label::kFar) {
925 JumpIfNotUniqueName(Operand(reg), not_unique_name, distance);
926 }
927
928 void JumpIfNotUniqueName(Operand operand, Label* not_unique_name,
929 Label::Distance distance = Label::kFar);
930
931 void EmitSeqStringSetCharCheck(Register string,
932 Register index,
933 Register value,
934 uint32_t encoding_mask);
935
SafepointRegisterStackIndex(Register reg)936 static int SafepointRegisterStackIndex(Register reg) {
937 return SafepointRegisterStackIndex(reg.code());
938 }
939
940 // Activation support.
941 void EnterFrame(StackFrame::Type type);
942 void LeaveFrame(StackFrame::Type type);
943
944 // Expects object in eax and returns map with validated enum cache
945 // in eax. Assumes that any other register can be used as a scratch.
946 void CheckEnumCache(Label* call_runtime);
947
948 // AllocationMemento support. Arrays may have an associated
949 // AllocationMemento object that can be checked for in order to pretransition
950 // to another type.
951 // On entry, receiver_reg should point to the array object.
952 // scratch_reg gets clobbered.
953 // If allocation info is present, conditional code is set to equal.
954 void TestJSArrayForAllocationMemento(Register receiver_reg,
955 Register scratch_reg,
956 Label* no_memento_found);
957
JumpIfJSArrayHasAllocationMemento(Register receiver_reg,Register scratch_reg,Label * memento_found)958 void JumpIfJSArrayHasAllocationMemento(Register receiver_reg,
959 Register scratch_reg,
960 Label* memento_found) {
961 Label no_memento_found;
962 TestJSArrayForAllocationMemento(receiver_reg, scratch_reg,
963 &no_memento_found);
964 j(equal, memento_found);
965 bind(&no_memento_found);
966 }
967
968 // Jumps to found label if a prototype map has dictionary elements.
969 void JumpIfDictionaryInPrototypeChain(Register object, Register scratch0,
970 Register scratch1, Label* found);
971
972 private:
973 bool generating_stub_;
974 bool has_frame_;
975 // This handle will be patched with the code object on installation.
976 Handle<Object> code_object_;
977
978 // Helper functions for generating invokes.
979 void InvokePrologue(const ParameterCount& expected,
980 const ParameterCount& actual,
981 Handle<Code> code_constant,
982 const Operand& code_operand,
983 Label* done,
984 bool* definitely_mismatches,
985 InvokeFlag flag,
986 Label::Distance done_distance,
987 const CallWrapper& call_wrapper = NullCallWrapper());
988
989 void EnterExitFramePrologue();
990 void EnterExitFrameEpilogue(int argc, bool save_doubles);
991
992 void LeaveExitFrameEpilogue(bool restore_context);
993
994 // Allocation support helpers.
995 void LoadAllocationTopHelper(Register result,
996 Register scratch,
997 AllocationFlags flags);
998
999 void UpdateAllocationTopHelper(Register result_end,
1000 Register scratch,
1001 AllocationFlags flags);
1002
1003 // Helper for implementing JumpIfNotInNewSpace and JumpIfInNewSpace.
1004 void InNewSpace(Register object,
1005 Register scratch,
1006 Condition cc,
1007 Label* condition_met,
1008 Label::Distance condition_met_distance = Label::kFar);
1009
1010 // Helper for finding the mark bits for an address. Afterwards, the
1011 // bitmap register points at the word with the mark bits and the mask
1012 // the position of the first bit. Uses ecx as scratch and leaves addr_reg
1013 // unchanged.
1014 inline void GetMarkBits(Register addr_reg,
1015 Register bitmap_reg,
1016 Register mask_reg);
1017
1018 // Helper for throwing exceptions. Compute a handler address and jump to
1019 // it. See the implementation for register usage.
1020 void JumpToHandlerEntry();
1021
1022 // Compute memory operands for safepoint stack slots.
1023 Operand SafepointRegisterSlot(Register reg);
1024 static int SafepointRegisterStackIndex(int reg_code);
1025
1026 // Needs access to SafepointRegisterStackIndex for compiled frame
1027 // traversal.
1028 friend class StandardFrame;
1029 };
1030
1031
1032 // The code patcher is used to patch (typically) small parts of code e.g. for
1033 // debugging and other types of instrumentation. When using the code patcher
1034 // the exact number of bytes specified must be emitted. Is not legal to emit
1035 // relocation information. If any of these constraints are violated it causes
1036 // an assertion.
1037 class CodePatcher {
1038 public:
1039 CodePatcher(byte* address, int size);
1040 virtual ~CodePatcher();
1041
1042 // Macro assembler to emit code.
masm()1043 MacroAssembler* masm() { return &masm_; }
1044
1045 private:
1046 byte* address_; // The address of the code being patched.
1047 int size_; // Number of bytes of the expected patch size.
1048 MacroAssembler masm_; // Macro assembler used to generate the code.
1049 };
1050
1051
1052 // -----------------------------------------------------------------------------
1053 // Static helper functions.
1054
1055 // Generate an Operand for loading a field from an object.
FieldOperand(Register object,int offset)1056 inline Operand FieldOperand(Register object, int offset) {
1057 return Operand(object, offset - kHeapObjectTag);
1058 }
1059
1060
1061 // Generate an Operand for loading an indexed field from an object.
FieldOperand(Register object,Register index,ScaleFactor scale,int offset)1062 inline Operand FieldOperand(Register object,
1063 Register index,
1064 ScaleFactor scale,
1065 int offset) {
1066 return Operand(object, index, scale, offset - kHeapObjectTag);
1067 }
1068
1069
1070 inline Operand FixedArrayElementOperand(Register array,
1071 Register index_as_smi,
1072 int additional_offset = 0) {
1073 int offset = FixedArray::kHeaderSize + additional_offset * kPointerSize;
1074 return FieldOperand(array, index_as_smi, times_half_pointer_size, offset);
1075 }
1076
1077
ContextOperand(Register context,int index)1078 inline Operand ContextOperand(Register context, int index) {
1079 return Operand(context, Context::SlotOffset(index));
1080 }
1081
1082
GlobalObjectOperand()1083 inline Operand GlobalObjectOperand() {
1084 return ContextOperand(esi, Context::GLOBAL_OBJECT_INDEX);
1085 }
1086
1087
1088 // Generates an Operand for saving parameters after PrepareCallApiFunction.
1089 Operand ApiParameterOperand(int index);
1090
1091
1092 #ifdef GENERATED_CODE_COVERAGE
1093 extern void LogGeneratedCodeCoverage(const char* file_line);
1094 #define CODE_COVERAGE_STRINGIFY(x) #x
1095 #define CODE_COVERAGE_TOSTRING(x) CODE_COVERAGE_STRINGIFY(x)
1096 #define __FILE_LINE__ __FILE__ ":" CODE_COVERAGE_TOSTRING(__LINE__)
1097 #define ACCESS_MASM(masm) { \
1098 byte* ia32_coverage_function = \
1099 reinterpret_cast<byte*>(FUNCTION_ADDR(LogGeneratedCodeCoverage)); \
1100 masm->pushfd(); \
1101 masm->pushad(); \
1102 masm->push(Immediate(reinterpret_cast<int>(&__FILE_LINE__))); \
1103 masm->call(ia32_coverage_function, RelocInfo::RUNTIME_ENTRY); \
1104 masm->pop(eax); \
1105 masm->popad(); \
1106 masm->popfd(); \
1107 } \
1108 masm->
1109 #else
1110 #define ACCESS_MASM(masm) masm->
1111 #endif
1112
1113
1114 } } // namespace v8::internal
1115
1116 #endif // V8_IA32_MACRO_ASSEMBLER_IA32_H_
1117