1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "CodeGenFunction.h"
15 #include "CGCXXABI.h"
16 #include "CGDebugInfo.h"
17 #include "CGObjCRuntime.h"
18 #include "CodeGenModule.h"
19 #include "clang/AST/ASTContext.h"
20 #include "clang/AST/DeclObjC.h"
21 #include "clang/AST/RecordLayout.h"
22 #include "clang/AST/StmtVisitor.h"
23 #include "clang/Basic/TargetInfo.h"
24 #include "clang/Frontend/CodeGenOptions.h"
25 #include "llvm/IR/CFG.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/DataLayout.h"
28 #include "llvm/IR/Function.h"
29 #include "llvm/IR/GlobalVariable.h"
30 #include "llvm/IR/Intrinsics.h"
31 #include "llvm/IR/Module.h"
32 #include <cstdarg>
33
34 using namespace clang;
35 using namespace CodeGen;
36 using llvm::Value;
37
38 //===----------------------------------------------------------------------===//
39 // Scalar Expression Emitter
40 //===----------------------------------------------------------------------===//
41
42 namespace {
43 struct BinOpInfo {
44 Value *LHS;
45 Value *RHS;
46 QualType Ty; // Computation Type.
47 BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform
48 bool FPContractable;
49 const Expr *E; // Entire expr, for error unsupported. May not be binop.
50 };
51
MustVisitNullValue(const Expr * E)52 static bool MustVisitNullValue(const Expr *E) {
53 // If a null pointer expression's type is the C++0x nullptr_t, then
54 // it's not necessarily a simple constant and it must be evaluated
55 // for its potential side effects.
56 return E->getType()->isNullPtrType();
57 }
58
59 class ScalarExprEmitter
60 : public StmtVisitor<ScalarExprEmitter, Value*> {
61 CodeGenFunction &CGF;
62 CGBuilderTy &Builder;
63 bool IgnoreResultAssign;
64 llvm::LLVMContext &VMContext;
65 public:
66
ScalarExprEmitter(CodeGenFunction & cgf,bool ira=false)67 ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
68 : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
69 VMContext(cgf.getLLVMContext()) {
70 }
71
72 //===--------------------------------------------------------------------===//
73 // Utilities
74 //===--------------------------------------------------------------------===//
75
TestAndClearIgnoreResultAssign()76 bool TestAndClearIgnoreResultAssign() {
77 bool I = IgnoreResultAssign;
78 IgnoreResultAssign = false;
79 return I;
80 }
81
ConvertType(QualType T)82 llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
EmitLValue(const Expr * E)83 LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
EmitCheckedLValue(const Expr * E,CodeGenFunction::TypeCheckKind TCK)84 LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) {
85 return CGF.EmitCheckedLValue(E, TCK);
86 }
87
88 void EmitBinOpCheck(Value *Check, const BinOpInfo &Info);
89
EmitLoadOfLValue(LValue LV,SourceLocation Loc)90 Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
91 return CGF.EmitLoadOfLValue(LV, Loc).getScalarVal();
92 }
93
94 /// EmitLoadOfLValue - Given an expression with complex type that represents a
95 /// value l-value, this method emits the address of the l-value, then loads
96 /// and returns the result.
EmitLoadOfLValue(const Expr * E)97 Value *EmitLoadOfLValue(const Expr *E) {
98 return EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load),
99 E->getExprLoc());
100 }
101
102 /// EmitConversionToBool - Convert the specified expression value to a
103 /// boolean (i1) truth value. This is equivalent to "Val != 0".
104 Value *EmitConversionToBool(Value *Src, QualType DstTy);
105
106 /// \brief Emit a check that a conversion to or from a floating-point type
107 /// does not overflow.
108 void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType,
109 Value *Src, QualType SrcType,
110 QualType DstType, llvm::Type *DstTy);
111
112 /// EmitScalarConversion - Emit a conversion from the specified type to the
113 /// specified destination type, both of which are LLVM scalar types.
114 Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy);
115
116 /// EmitComplexToScalarConversion - Emit a conversion from the specified
117 /// complex type to the specified destination type, where the destination type
118 /// is an LLVM scalar type.
119 Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
120 QualType SrcTy, QualType DstTy);
121
122 /// EmitNullValue - Emit a value that corresponds to null for the given type.
123 Value *EmitNullValue(QualType Ty);
124
125 /// EmitFloatToBoolConversion - Perform an FP to boolean conversion.
EmitFloatToBoolConversion(Value * V)126 Value *EmitFloatToBoolConversion(Value *V) {
127 // Compare against 0.0 for fp scalars.
128 llvm::Value *Zero = llvm::Constant::getNullValue(V->getType());
129 return Builder.CreateFCmpUNE(V, Zero, "tobool");
130 }
131
132 /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion.
EmitPointerToBoolConversion(Value * V)133 Value *EmitPointerToBoolConversion(Value *V) {
134 Value *Zero = llvm::ConstantPointerNull::get(
135 cast<llvm::PointerType>(V->getType()));
136 return Builder.CreateICmpNE(V, Zero, "tobool");
137 }
138
EmitIntToBoolConversion(Value * V)139 Value *EmitIntToBoolConversion(Value *V) {
140 // Because of the type rules of C, we often end up computing a
141 // logical value, then zero extending it to int, then wanting it
142 // as a logical value again. Optimize this common case.
143 if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) {
144 if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) {
145 Value *Result = ZI->getOperand(0);
146 // If there aren't any more uses, zap the instruction to save space.
147 // Note that there can be more uses, for example if this
148 // is the result of an assignment.
149 if (ZI->use_empty())
150 ZI->eraseFromParent();
151 return Result;
152 }
153 }
154
155 return Builder.CreateIsNotNull(V, "tobool");
156 }
157
158 //===--------------------------------------------------------------------===//
159 // Visitor Methods
160 //===--------------------------------------------------------------------===//
161
Visit(Expr * E)162 Value *Visit(Expr *E) {
163 return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E);
164 }
165
VisitStmt(Stmt * S)166 Value *VisitStmt(Stmt *S) {
167 S->dump(CGF.getContext().getSourceManager());
168 llvm_unreachable("Stmt can't have complex result type!");
169 }
170 Value *VisitExpr(Expr *S);
171
VisitParenExpr(ParenExpr * PE)172 Value *VisitParenExpr(ParenExpr *PE) {
173 return Visit(PE->getSubExpr());
174 }
VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr * E)175 Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
176 return Visit(E->getReplacement());
177 }
VisitGenericSelectionExpr(GenericSelectionExpr * GE)178 Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
179 return Visit(GE->getResultExpr());
180 }
181
182 // Leaves.
VisitIntegerLiteral(const IntegerLiteral * E)183 Value *VisitIntegerLiteral(const IntegerLiteral *E) {
184 return Builder.getInt(E->getValue());
185 }
VisitFloatingLiteral(const FloatingLiteral * E)186 Value *VisitFloatingLiteral(const FloatingLiteral *E) {
187 return llvm::ConstantFP::get(VMContext, E->getValue());
188 }
VisitCharacterLiteral(const CharacterLiteral * E)189 Value *VisitCharacterLiteral(const CharacterLiteral *E) {
190 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
191 }
VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr * E)192 Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
193 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
194 }
VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr * E)195 Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
196 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
197 }
VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr * E)198 Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
199 return EmitNullValue(E->getType());
200 }
VisitGNUNullExpr(const GNUNullExpr * E)201 Value *VisitGNUNullExpr(const GNUNullExpr *E) {
202 return EmitNullValue(E->getType());
203 }
204 Value *VisitOffsetOfExpr(OffsetOfExpr *E);
205 Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
VisitAddrLabelExpr(const AddrLabelExpr * E)206 Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
207 llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel());
208 return Builder.CreateBitCast(V, ConvertType(E->getType()));
209 }
210
VisitSizeOfPackExpr(SizeOfPackExpr * E)211 Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) {
212 return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength());
213 }
214
VisitPseudoObjectExpr(PseudoObjectExpr * E)215 Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) {
216 return CGF.EmitPseudoObjectRValue(E).getScalarVal();
217 }
218
VisitOpaqueValueExpr(OpaqueValueExpr * E)219 Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) {
220 if (E->isGLValue())
221 return EmitLoadOfLValue(CGF.getOpaqueLValueMapping(E), E->getExprLoc());
222
223 // Otherwise, assume the mapping is the scalar directly.
224 return CGF.getOpaqueRValueMapping(E).getScalarVal();
225 }
226
227 // l-values.
VisitDeclRefExpr(DeclRefExpr * E)228 Value *VisitDeclRefExpr(DeclRefExpr *E) {
229 if (CodeGenFunction::ConstantEmission result = CGF.tryEmitAsConstant(E)) {
230 if (result.isReference())
231 return EmitLoadOfLValue(result.getReferenceLValue(CGF, E),
232 E->getExprLoc());
233 return result.getValue();
234 }
235 return EmitLoadOfLValue(E);
236 }
237
VisitObjCSelectorExpr(ObjCSelectorExpr * E)238 Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
239 return CGF.EmitObjCSelectorExpr(E);
240 }
VisitObjCProtocolExpr(ObjCProtocolExpr * E)241 Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
242 return CGF.EmitObjCProtocolExpr(E);
243 }
VisitObjCIvarRefExpr(ObjCIvarRefExpr * E)244 Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
245 return EmitLoadOfLValue(E);
246 }
VisitObjCMessageExpr(ObjCMessageExpr * E)247 Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
248 if (E->getMethodDecl() &&
249 E->getMethodDecl()->getReturnType()->isReferenceType())
250 return EmitLoadOfLValue(E);
251 return CGF.EmitObjCMessageExpr(E).getScalarVal();
252 }
253
VisitObjCIsaExpr(ObjCIsaExpr * E)254 Value *VisitObjCIsaExpr(ObjCIsaExpr *E) {
255 LValue LV = CGF.EmitObjCIsaExpr(E);
256 Value *V = CGF.EmitLoadOfLValue(LV, E->getExprLoc()).getScalarVal();
257 return V;
258 }
259
260 Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
261 Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
262 Value *VisitConvertVectorExpr(ConvertVectorExpr *E);
263 Value *VisitMemberExpr(MemberExpr *E);
VisitExtVectorElementExpr(Expr * E)264 Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
VisitCompoundLiteralExpr(CompoundLiteralExpr * E)265 Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
266 return EmitLoadOfLValue(E);
267 }
268
269 Value *VisitInitListExpr(InitListExpr *E);
270
VisitImplicitValueInitExpr(const ImplicitValueInitExpr * E)271 Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
272 return EmitNullValue(E->getType());
273 }
VisitExplicitCastExpr(ExplicitCastExpr * E)274 Value *VisitExplicitCastExpr(ExplicitCastExpr *E) {
275 if (E->getType()->isVariablyModifiedType())
276 CGF.EmitVariablyModifiedType(E->getType());
277 return VisitCastExpr(E);
278 }
279 Value *VisitCastExpr(CastExpr *E);
280
VisitCallExpr(const CallExpr * E)281 Value *VisitCallExpr(const CallExpr *E) {
282 if (E->getCallReturnType()->isReferenceType())
283 return EmitLoadOfLValue(E);
284
285 return CGF.EmitCallExpr(E).getScalarVal();
286 }
287
288 Value *VisitStmtExpr(const StmtExpr *E);
289
290 // Unary Operators.
VisitUnaryPostDec(const UnaryOperator * E)291 Value *VisitUnaryPostDec(const UnaryOperator *E) {
292 LValue LV = EmitLValue(E->getSubExpr());
293 return EmitScalarPrePostIncDec(E, LV, false, false);
294 }
VisitUnaryPostInc(const UnaryOperator * E)295 Value *VisitUnaryPostInc(const UnaryOperator *E) {
296 LValue LV = EmitLValue(E->getSubExpr());
297 return EmitScalarPrePostIncDec(E, LV, true, false);
298 }
VisitUnaryPreDec(const UnaryOperator * E)299 Value *VisitUnaryPreDec(const UnaryOperator *E) {
300 LValue LV = EmitLValue(E->getSubExpr());
301 return EmitScalarPrePostIncDec(E, LV, false, true);
302 }
VisitUnaryPreInc(const UnaryOperator * E)303 Value *VisitUnaryPreInc(const UnaryOperator *E) {
304 LValue LV = EmitLValue(E->getSubExpr());
305 return EmitScalarPrePostIncDec(E, LV, true, true);
306 }
307
308 llvm::Value *EmitAddConsiderOverflowBehavior(const UnaryOperator *E,
309 llvm::Value *InVal,
310 llvm::Value *NextVal,
311 bool IsInc);
312
313 llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
314 bool isInc, bool isPre);
315
316
VisitUnaryAddrOf(const UnaryOperator * E)317 Value *VisitUnaryAddrOf(const UnaryOperator *E) {
318 if (isa<MemberPointerType>(E->getType())) // never sugared
319 return CGF.CGM.getMemberPointerConstant(E);
320
321 return EmitLValue(E->getSubExpr()).getAddress();
322 }
VisitUnaryDeref(const UnaryOperator * E)323 Value *VisitUnaryDeref(const UnaryOperator *E) {
324 if (E->getType()->isVoidType())
325 return Visit(E->getSubExpr()); // the actual value should be unused
326 return EmitLoadOfLValue(E);
327 }
VisitUnaryPlus(const UnaryOperator * E)328 Value *VisitUnaryPlus(const UnaryOperator *E) {
329 // This differs from gcc, though, most likely due to a bug in gcc.
330 TestAndClearIgnoreResultAssign();
331 return Visit(E->getSubExpr());
332 }
333 Value *VisitUnaryMinus (const UnaryOperator *E);
334 Value *VisitUnaryNot (const UnaryOperator *E);
335 Value *VisitUnaryLNot (const UnaryOperator *E);
336 Value *VisitUnaryReal (const UnaryOperator *E);
337 Value *VisitUnaryImag (const UnaryOperator *E);
VisitUnaryExtension(const UnaryOperator * E)338 Value *VisitUnaryExtension(const UnaryOperator *E) {
339 return Visit(E->getSubExpr());
340 }
341
342 // C++
VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr * E)343 Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) {
344 return EmitLoadOfLValue(E);
345 }
346
VisitCXXDefaultArgExpr(CXXDefaultArgExpr * DAE)347 Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
348 return Visit(DAE->getExpr());
349 }
VisitCXXDefaultInitExpr(CXXDefaultInitExpr * DIE)350 Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
351 CodeGenFunction::CXXDefaultInitExprScope Scope(CGF);
352 return Visit(DIE->getExpr());
353 }
VisitCXXThisExpr(CXXThisExpr * TE)354 Value *VisitCXXThisExpr(CXXThisExpr *TE) {
355 return CGF.LoadCXXThis();
356 }
357
VisitExprWithCleanups(ExprWithCleanups * E)358 Value *VisitExprWithCleanups(ExprWithCleanups *E) {
359 CGF.enterFullExpression(E);
360 CodeGenFunction::RunCleanupsScope Scope(CGF);
361 auto *V = Visit(E->getSubExpr());
362 if (CGDebugInfo *DI = CGF.getDebugInfo())
363 DI->EmitLocation(Builder, E->getLocEnd(), false);
364 return V;
365 }
VisitCXXNewExpr(const CXXNewExpr * E)366 Value *VisitCXXNewExpr(const CXXNewExpr *E) {
367 return CGF.EmitCXXNewExpr(E);
368 }
VisitCXXDeleteExpr(const CXXDeleteExpr * E)369 Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
370 CGF.EmitCXXDeleteExpr(E);
371 return nullptr;
372 }
373
VisitTypeTraitExpr(const TypeTraitExpr * E)374 Value *VisitTypeTraitExpr(const TypeTraitExpr *E) {
375 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
376 }
377
VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr * E)378 Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
379 return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue());
380 }
381
VisitExpressionTraitExpr(const ExpressionTraitExpr * E)382 Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
383 return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue());
384 }
385
VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr * E)386 Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
387 // C++ [expr.pseudo]p1:
388 // The result shall only be used as the operand for the function call
389 // operator (), and the result of such a call has type void. The only
390 // effect is the evaluation of the postfix-expression before the dot or
391 // arrow.
392 CGF.EmitScalarExpr(E->getBase());
393 return nullptr;
394 }
395
VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr * E)396 Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
397 return EmitNullValue(E->getType());
398 }
399
VisitCXXThrowExpr(const CXXThrowExpr * E)400 Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
401 CGF.EmitCXXThrowExpr(E);
402 return nullptr;
403 }
404
VisitCXXNoexceptExpr(const CXXNoexceptExpr * E)405 Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
406 return Builder.getInt1(E->getValue());
407 }
408
409 // Binary Operators.
EmitMul(const BinOpInfo & Ops)410 Value *EmitMul(const BinOpInfo &Ops) {
411 if (Ops.Ty->isSignedIntegerOrEnumerationType()) {
412 switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
413 case LangOptions::SOB_Defined:
414 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
415 case LangOptions::SOB_Undefined:
416 if (!CGF.SanOpts->SignedIntegerOverflow)
417 return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
418 // Fall through.
419 case LangOptions::SOB_Trapping:
420 return EmitOverflowCheckedBinOp(Ops);
421 }
422 }
423
424 if (Ops.Ty->isUnsignedIntegerType() && CGF.SanOpts->UnsignedIntegerOverflow)
425 return EmitOverflowCheckedBinOp(Ops);
426
427 if (Ops.LHS->getType()->isFPOrFPVectorTy())
428 return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
429 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
430 }
431 /// Create a binary op that checks for overflow.
432 /// Currently only supports +, - and *.
433 Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
434
435 // Check for undefined division and modulus behaviors.
436 void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops,
437 llvm::Value *Zero,bool isDiv);
438 // Common helper for getting how wide LHS of shift is.
439 static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS);
440 Value *EmitDiv(const BinOpInfo &Ops);
441 Value *EmitRem(const BinOpInfo &Ops);
442 Value *EmitAdd(const BinOpInfo &Ops);
443 Value *EmitSub(const BinOpInfo &Ops);
444 Value *EmitShl(const BinOpInfo &Ops);
445 Value *EmitShr(const BinOpInfo &Ops);
EmitAnd(const BinOpInfo & Ops)446 Value *EmitAnd(const BinOpInfo &Ops) {
447 return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
448 }
EmitXor(const BinOpInfo & Ops)449 Value *EmitXor(const BinOpInfo &Ops) {
450 return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
451 }
EmitOr(const BinOpInfo & Ops)452 Value *EmitOr (const BinOpInfo &Ops) {
453 return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
454 }
455
456 BinOpInfo EmitBinOps(const BinaryOperator *E);
457 LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
458 Value *(ScalarExprEmitter::*F)(const BinOpInfo &),
459 Value *&Result);
460
461 Value *EmitCompoundAssign(const CompoundAssignOperator *E,
462 Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
463
464 // Binary operators and binary compound assignment operators.
465 #define HANDLEBINOP(OP) \
466 Value *VisitBin ## OP(const BinaryOperator *E) { \
467 return Emit ## OP(EmitBinOps(E)); \
468 } \
469 Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) { \
470 return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP); \
471 }
472 HANDLEBINOP(Mul)
473 HANDLEBINOP(Div)
474 HANDLEBINOP(Rem)
475 HANDLEBINOP(Add)
476 HANDLEBINOP(Sub)
477 HANDLEBINOP(Shl)
478 HANDLEBINOP(Shr)
479 HANDLEBINOP(And)
480 HANDLEBINOP(Xor)
481 HANDLEBINOP(Or)
482 #undef HANDLEBINOP
483
484 // Comparisons.
485 Value *EmitCompare(const BinaryOperator *E, unsigned UICmpOpc,
486 unsigned SICmpOpc, unsigned FCmpOpc);
487 #define VISITCOMP(CODE, UI, SI, FP) \
488 Value *VisitBin##CODE(const BinaryOperator *E) { \
489 return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
490 llvm::FCmpInst::FP); }
491 VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT)
492 VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT)
493 VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE)
494 VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE)
495 VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ)
496 VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE)
497 #undef VISITCOMP
498
499 Value *VisitBinAssign (const BinaryOperator *E);
500
501 Value *VisitBinLAnd (const BinaryOperator *E);
502 Value *VisitBinLOr (const BinaryOperator *E);
503 Value *VisitBinComma (const BinaryOperator *E);
504
VisitBinPtrMemD(const Expr * E)505 Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); }
VisitBinPtrMemI(const Expr * E)506 Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); }
507
508 // Other Operators.
509 Value *VisitBlockExpr(const BlockExpr *BE);
510 Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *);
511 Value *VisitChooseExpr(ChooseExpr *CE);
512 Value *VisitVAArgExpr(VAArgExpr *VE);
VisitObjCStringLiteral(const ObjCStringLiteral * E)513 Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
514 return CGF.EmitObjCStringLiteral(E);
515 }
VisitObjCBoxedExpr(ObjCBoxedExpr * E)516 Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) {
517 return CGF.EmitObjCBoxedExpr(E);
518 }
VisitObjCArrayLiteral(ObjCArrayLiteral * E)519 Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) {
520 return CGF.EmitObjCArrayLiteral(E);
521 }
VisitObjCDictionaryLiteral(ObjCDictionaryLiteral * E)522 Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) {
523 return CGF.EmitObjCDictionaryLiteral(E);
524 }
525 Value *VisitAsTypeExpr(AsTypeExpr *CE);
526 Value *VisitAtomicExpr(AtomicExpr *AE);
527 };
528 } // end anonymous namespace.
529
530 //===----------------------------------------------------------------------===//
531 // Utilities
532 //===----------------------------------------------------------------------===//
533
534 /// EmitConversionToBool - Convert the specified expression value to a
535 /// boolean (i1) truth value. This is equivalent to "Val != 0".
EmitConversionToBool(Value * Src,QualType SrcType)536 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
537 assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs");
538
539 if (SrcType->isRealFloatingType())
540 return EmitFloatToBoolConversion(Src);
541
542 if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType))
543 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT);
544
545 assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
546 "Unknown scalar type to convert");
547
548 if (isa<llvm::IntegerType>(Src->getType()))
549 return EmitIntToBoolConversion(Src);
550
551 assert(isa<llvm::PointerType>(Src->getType()));
552 return EmitPointerToBoolConversion(Src);
553 }
554
EmitFloatConversionCheck(Value * OrigSrc,QualType OrigSrcType,Value * Src,QualType SrcType,QualType DstType,llvm::Type * DstTy)555 void ScalarExprEmitter::EmitFloatConversionCheck(Value *OrigSrc,
556 QualType OrigSrcType,
557 Value *Src, QualType SrcType,
558 QualType DstType,
559 llvm::Type *DstTy) {
560 using llvm::APFloat;
561 using llvm::APSInt;
562
563 llvm::Type *SrcTy = Src->getType();
564
565 llvm::Value *Check = nullptr;
566 if (llvm::IntegerType *IntTy = dyn_cast<llvm::IntegerType>(SrcTy)) {
567 // Integer to floating-point. This can fail for unsigned short -> __half
568 // or unsigned __int128 -> float.
569 assert(DstType->isFloatingType());
570 bool SrcIsUnsigned = OrigSrcType->isUnsignedIntegerOrEnumerationType();
571
572 APFloat LargestFloat =
573 APFloat::getLargest(CGF.getContext().getFloatTypeSemantics(DstType));
574 APSInt LargestInt(IntTy->getBitWidth(), SrcIsUnsigned);
575
576 bool IsExact;
577 if (LargestFloat.convertToInteger(LargestInt, APFloat::rmTowardZero,
578 &IsExact) != APFloat::opOK)
579 // The range of representable values of this floating point type includes
580 // all values of this integer type. Don't need an overflow check.
581 return;
582
583 llvm::Value *Max = llvm::ConstantInt::get(VMContext, LargestInt);
584 if (SrcIsUnsigned)
585 Check = Builder.CreateICmpULE(Src, Max);
586 else {
587 llvm::Value *Min = llvm::ConstantInt::get(VMContext, -LargestInt);
588 llvm::Value *GE = Builder.CreateICmpSGE(Src, Min);
589 llvm::Value *LE = Builder.CreateICmpSLE(Src, Max);
590 Check = Builder.CreateAnd(GE, LE);
591 }
592 } else {
593 const llvm::fltSemantics &SrcSema =
594 CGF.getContext().getFloatTypeSemantics(OrigSrcType);
595 if (isa<llvm::IntegerType>(DstTy)) {
596 // Floating-point to integer. This has undefined behavior if the source is
597 // +-Inf, NaN, or doesn't fit into the destination type (after truncation
598 // to an integer).
599 unsigned Width = CGF.getContext().getIntWidth(DstType);
600 bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType();
601
602 APSInt Min = APSInt::getMinValue(Width, Unsigned);
603 APFloat MinSrc(SrcSema, APFloat::uninitialized);
604 if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) &
605 APFloat::opOverflow)
606 // Don't need an overflow check for lower bound. Just check for
607 // -Inf/NaN.
608 MinSrc = APFloat::getInf(SrcSema, true);
609 else
610 // Find the largest value which is too small to represent (before
611 // truncation toward zero).
612 MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative);
613
614 APSInt Max = APSInt::getMaxValue(Width, Unsigned);
615 APFloat MaxSrc(SrcSema, APFloat::uninitialized);
616 if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) &
617 APFloat::opOverflow)
618 // Don't need an overflow check for upper bound. Just check for
619 // +Inf/NaN.
620 MaxSrc = APFloat::getInf(SrcSema, false);
621 else
622 // Find the smallest value which is too large to represent (before
623 // truncation toward zero).
624 MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive);
625
626 // If we're converting from __half, convert the range to float to match
627 // the type of src.
628 if (OrigSrcType->isHalfType()) {
629 const llvm::fltSemantics &Sema =
630 CGF.getContext().getFloatTypeSemantics(SrcType);
631 bool IsInexact;
632 MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
633 MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
634 }
635
636 llvm::Value *GE =
637 Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc));
638 llvm::Value *LE =
639 Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc));
640 Check = Builder.CreateAnd(GE, LE);
641 } else {
642 // FIXME: Maybe split this sanitizer out from float-cast-overflow.
643 //
644 // Floating-point to floating-point. This has undefined behavior if the
645 // source is not in the range of representable values of the destination
646 // type. The C and C++ standards are spectacularly unclear here. We
647 // diagnose finite out-of-range conversions, but allow infinities and NaNs
648 // to convert to the corresponding value in the smaller type.
649 //
650 // C11 Annex F gives all such conversions defined behavior for IEC 60559
651 // conforming implementations. Unfortunately, LLVM's fptrunc instruction
652 // does not.
653
654 // Converting from a lower rank to a higher rank can never have
655 // undefined behavior, since higher-rank types must have a superset
656 // of values of lower-rank types.
657 if (CGF.getContext().getFloatingTypeOrder(OrigSrcType, DstType) != 1)
658 return;
659
660 assert(!OrigSrcType->isHalfType() &&
661 "should not check conversion from __half, it has the lowest rank");
662
663 const llvm::fltSemantics &DstSema =
664 CGF.getContext().getFloatTypeSemantics(DstType);
665 APFloat MinBad = APFloat::getLargest(DstSema, false);
666 APFloat MaxBad = APFloat::getInf(DstSema, false);
667
668 bool IsInexact;
669 MinBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact);
670 MaxBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact);
671
672 Value *AbsSrc = CGF.EmitNounwindRuntimeCall(
673 CGF.CGM.getIntrinsic(llvm::Intrinsic::fabs, Src->getType()), Src);
674 llvm::Value *GE =
675 Builder.CreateFCmpOGT(AbsSrc, llvm::ConstantFP::get(VMContext, MinBad));
676 llvm::Value *LE =
677 Builder.CreateFCmpOLT(AbsSrc, llvm::ConstantFP::get(VMContext, MaxBad));
678 Check = Builder.CreateNot(Builder.CreateAnd(GE, LE));
679 }
680 }
681
682 // FIXME: Provide a SourceLocation.
683 llvm::Constant *StaticArgs[] = {
684 CGF.EmitCheckTypeDescriptor(OrigSrcType),
685 CGF.EmitCheckTypeDescriptor(DstType)
686 };
687 CGF.EmitCheck(Check, "float_cast_overflow", StaticArgs, OrigSrc,
688 CodeGenFunction::CRK_Recoverable);
689 }
690
691 /// EmitScalarConversion - Emit a conversion from the specified type to the
692 /// specified destination type, both of which are LLVM scalar types.
EmitScalarConversion(Value * Src,QualType SrcType,QualType DstType)693 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
694 QualType DstType) {
695 SrcType = CGF.getContext().getCanonicalType(SrcType);
696 DstType = CGF.getContext().getCanonicalType(DstType);
697 if (SrcType == DstType) return Src;
698
699 if (DstType->isVoidType()) return nullptr;
700
701 llvm::Value *OrigSrc = Src;
702 QualType OrigSrcType = SrcType;
703 llvm::Type *SrcTy = Src->getType();
704
705 // If casting to/from storage-only half FP, use special intrinsics.
706 if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
707 Src = Builder.CreateCall(CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16), Src);
708 SrcType = CGF.getContext().FloatTy;
709 SrcTy = CGF.FloatTy;
710 }
711
712 // Handle conversions to bool first, they are special: comparisons against 0.
713 if (DstType->isBooleanType())
714 return EmitConversionToBool(Src, SrcType);
715
716 llvm::Type *DstTy = ConvertType(DstType);
717
718 // Ignore conversions like int -> uint.
719 if (SrcTy == DstTy)
720 return Src;
721
722 // Handle pointer conversions next: pointers can only be converted to/from
723 // other pointers and integers. Check for pointer types in terms of LLVM, as
724 // some native types (like Obj-C id) may map to a pointer type.
725 if (isa<llvm::PointerType>(DstTy)) {
726 // The source value may be an integer, or a pointer.
727 if (isa<llvm::PointerType>(SrcTy))
728 return Builder.CreateBitCast(Src, DstTy, "conv");
729
730 assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
731 // First, convert to the correct width so that we control the kind of
732 // extension.
733 llvm::Type *MiddleTy = CGF.IntPtrTy;
734 bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
735 llvm::Value* IntResult =
736 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
737 // Then, cast to pointer.
738 return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
739 }
740
741 if (isa<llvm::PointerType>(SrcTy)) {
742 // Must be an ptr to int cast.
743 assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
744 return Builder.CreatePtrToInt(Src, DstTy, "conv");
745 }
746
747 // A scalar can be splatted to an extended vector of the same element type
748 if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
749 // Cast the scalar to element type
750 QualType EltTy = DstType->getAs<ExtVectorType>()->getElementType();
751 llvm::Value *Elt = EmitScalarConversion(Src, SrcType, EltTy);
752
753 // Splat the element across to all elements
754 unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
755 return Builder.CreateVectorSplat(NumElements, Elt, "splat");
756 }
757
758 // Allow bitcast from vector to integer/fp of the same size.
759 if (isa<llvm::VectorType>(SrcTy) ||
760 isa<llvm::VectorType>(DstTy))
761 return Builder.CreateBitCast(Src, DstTy, "conv");
762
763 // Finally, we have the arithmetic types: real int/float.
764 Value *Res = nullptr;
765 llvm::Type *ResTy = DstTy;
766
767 // An overflowing conversion has undefined behavior if either the source type
768 // or the destination type is a floating-point type.
769 if (CGF.SanOpts->FloatCastOverflow &&
770 (OrigSrcType->isFloatingType() || DstType->isFloatingType()))
771 EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType,
772 DstTy);
773
774 // Cast to half via float
775 if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType)
776 DstTy = CGF.FloatTy;
777
778 if (isa<llvm::IntegerType>(SrcTy)) {
779 bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
780 if (isa<llvm::IntegerType>(DstTy))
781 Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
782 else if (InputSigned)
783 Res = Builder.CreateSIToFP(Src, DstTy, "conv");
784 else
785 Res = Builder.CreateUIToFP(Src, DstTy, "conv");
786 } else if (isa<llvm::IntegerType>(DstTy)) {
787 assert(SrcTy->isFloatingPointTy() && "Unknown real conversion");
788 if (DstType->isSignedIntegerOrEnumerationType())
789 Res = Builder.CreateFPToSI(Src, DstTy, "conv");
790 else
791 Res = Builder.CreateFPToUI(Src, DstTy, "conv");
792 } else {
793 assert(SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy() &&
794 "Unknown real conversion");
795 if (DstTy->getTypeID() < SrcTy->getTypeID())
796 Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
797 else
798 Res = Builder.CreateFPExt(Src, DstTy, "conv");
799 }
800
801 if (DstTy != ResTy) {
802 assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion");
803 Res = Builder.CreateCall(CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16), Res);
804 }
805
806 return Res;
807 }
808
809 /// EmitComplexToScalarConversion - Emit a conversion from the specified complex
810 /// type to the specified destination type, where the destination type is an
811 /// LLVM scalar type.
812 Value *ScalarExprEmitter::
EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,QualType SrcTy,QualType DstTy)813 EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
814 QualType SrcTy, QualType DstTy) {
815 // Get the source element type.
816 SrcTy = SrcTy->castAs<ComplexType>()->getElementType();
817
818 // Handle conversions to bool first, they are special: comparisons against 0.
819 if (DstTy->isBooleanType()) {
820 // Complex != 0 -> (Real != 0) | (Imag != 0)
821 Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy);
822 Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy);
823 return Builder.CreateOr(Src.first, Src.second, "tobool");
824 }
825
826 // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
827 // the imaginary part of the complex value is discarded and the value of the
828 // real part is converted according to the conversion rules for the
829 // corresponding real type.
830 return EmitScalarConversion(Src.first, SrcTy, DstTy);
831 }
832
EmitNullValue(QualType Ty)833 Value *ScalarExprEmitter::EmitNullValue(QualType Ty) {
834 return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty);
835 }
836
837 /// \brief Emit a sanitization check for the given "binary" operation (which
838 /// might actually be a unary increment which has been lowered to a binary
839 /// operation). The check passes if \p Check, which is an \c i1, is \c true.
EmitBinOpCheck(Value * Check,const BinOpInfo & Info)840 void ScalarExprEmitter::EmitBinOpCheck(Value *Check, const BinOpInfo &Info) {
841 StringRef CheckName;
842 SmallVector<llvm::Constant *, 4> StaticData;
843 SmallVector<llvm::Value *, 2> DynamicData;
844
845 BinaryOperatorKind Opcode = Info.Opcode;
846 if (BinaryOperator::isCompoundAssignmentOp(Opcode))
847 Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode);
848
849 StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc()));
850 const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E);
851 if (UO && UO->getOpcode() == UO_Minus) {
852 CheckName = "negate_overflow";
853 StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType()));
854 DynamicData.push_back(Info.RHS);
855 } else {
856 if (BinaryOperator::isShiftOp(Opcode)) {
857 // Shift LHS negative or too large, or RHS out of bounds.
858 CheckName = "shift_out_of_bounds";
859 const BinaryOperator *BO = cast<BinaryOperator>(Info.E);
860 StaticData.push_back(
861 CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType()));
862 StaticData.push_back(
863 CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType()));
864 } else if (Opcode == BO_Div || Opcode == BO_Rem) {
865 // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1).
866 CheckName = "divrem_overflow";
867 StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
868 } else {
869 // Signed arithmetic overflow (+, -, *).
870 switch (Opcode) {
871 case BO_Add: CheckName = "add_overflow"; break;
872 case BO_Sub: CheckName = "sub_overflow"; break;
873 case BO_Mul: CheckName = "mul_overflow"; break;
874 default: llvm_unreachable("unexpected opcode for bin op check");
875 }
876 StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
877 }
878 DynamicData.push_back(Info.LHS);
879 DynamicData.push_back(Info.RHS);
880 }
881
882 CGF.EmitCheck(Check, CheckName, StaticData, DynamicData,
883 CodeGenFunction::CRK_Recoverable);
884 }
885
886 //===----------------------------------------------------------------------===//
887 // Visitor Methods
888 //===----------------------------------------------------------------------===//
889
VisitExpr(Expr * E)890 Value *ScalarExprEmitter::VisitExpr(Expr *E) {
891 CGF.ErrorUnsupported(E, "scalar expression");
892 if (E->getType()->isVoidType())
893 return nullptr;
894 return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
895 }
896
VisitShuffleVectorExpr(ShuffleVectorExpr * E)897 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
898 // Vector Mask Case
899 if (E->getNumSubExprs() == 2 ||
900 (E->getNumSubExprs() == 3 && E->getExpr(2)->getType()->isVectorType())) {
901 Value *LHS = CGF.EmitScalarExpr(E->getExpr(0));
902 Value *RHS = CGF.EmitScalarExpr(E->getExpr(1));
903 Value *Mask;
904
905 llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType());
906 unsigned LHSElts = LTy->getNumElements();
907
908 if (E->getNumSubExprs() == 3) {
909 Mask = CGF.EmitScalarExpr(E->getExpr(2));
910
911 // Shuffle LHS & RHS into one input vector.
912 SmallVector<llvm::Constant*, 32> concat;
913 for (unsigned i = 0; i != LHSElts; ++i) {
914 concat.push_back(Builder.getInt32(2*i));
915 concat.push_back(Builder.getInt32(2*i+1));
916 }
917
918 Value* CV = llvm::ConstantVector::get(concat);
919 LHS = Builder.CreateShuffleVector(LHS, RHS, CV, "concat");
920 LHSElts *= 2;
921 } else {
922 Mask = RHS;
923 }
924
925 llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType());
926 llvm::Constant* EltMask;
927
928 EltMask = llvm::ConstantInt::get(MTy->getElementType(),
929 llvm::NextPowerOf2(LHSElts-1)-1);
930
931 // Mask off the high bits of each shuffle index.
932 Value *MaskBits = llvm::ConstantVector::getSplat(MTy->getNumElements(),
933 EltMask);
934 Mask = Builder.CreateAnd(Mask, MaskBits, "mask");
935
936 // newv = undef
937 // mask = mask & maskbits
938 // for each elt
939 // n = extract mask i
940 // x = extract val n
941 // newv = insert newv, x, i
942 llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(),
943 MTy->getNumElements());
944 Value* NewV = llvm::UndefValue::get(RTy);
945 for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) {
946 Value *IIndx = llvm::ConstantInt::get(CGF.SizeTy, i);
947 Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx");
948
949 Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt");
950 NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins");
951 }
952 return NewV;
953 }
954
955 Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
956 Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
957
958 SmallVector<llvm::Constant*, 32> indices;
959 for (unsigned i = 2; i < E->getNumSubExprs(); ++i) {
960 llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2);
961 // Check for -1 and output it as undef in the IR.
962 if (Idx.isSigned() && Idx.isAllOnesValue())
963 indices.push_back(llvm::UndefValue::get(CGF.Int32Ty));
964 else
965 indices.push_back(Builder.getInt32(Idx.getZExtValue()));
966 }
967
968 Value *SV = llvm::ConstantVector::get(indices);
969 return Builder.CreateShuffleVector(V1, V2, SV, "shuffle");
970 }
971
VisitConvertVectorExpr(ConvertVectorExpr * E)972 Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) {
973 QualType SrcType = E->getSrcExpr()->getType(),
974 DstType = E->getType();
975
976 Value *Src = CGF.EmitScalarExpr(E->getSrcExpr());
977
978 SrcType = CGF.getContext().getCanonicalType(SrcType);
979 DstType = CGF.getContext().getCanonicalType(DstType);
980 if (SrcType == DstType) return Src;
981
982 assert(SrcType->isVectorType() &&
983 "ConvertVector source type must be a vector");
984 assert(DstType->isVectorType() &&
985 "ConvertVector destination type must be a vector");
986
987 llvm::Type *SrcTy = Src->getType();
988 llvm::Type *DstTy = ConvertType(DstType);
989
990 // Ignore conversions like int -> uint.
991 if (SrcTy == DstTy)
992 return Src;
993
994 QualType SrcEltType = SrcType->getAs<VectorType>()->getElementType(),
995 DstEltType = DstType->getAs<VectorType>()->getElementType();
996
997 assert(SrcTy->isVectorTy() &&
998 "ConvertVector source IR type must be a vector");
999 assert(DstTy->isVectorTy() &&
1000 "ConvertVector destination IR type must be a vector");
1001
1002 llvm::Type *SrcEltTy = SrcTy->getVectorElementType(),
1003 *DstEltTy = DstTy->getVectorElementType();
1004
1005 if (DstEltType->isBooleanType()) {
1006 assert((SrcEltTy->isFloatingPointTy() ||
1007 isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion");
1008
1009 llvm::Value *Zero = llvm::Constant::getNullValue(SrcTy);
1010 if (SrcEltTy->isFloatingPointTy()) {
1011 return Builder.CreateFCmpUNE(Src, Zero, "tobool");
1012 } else {
1013 return Builder.CreateICmpNE(Src, Zero, "tobool");
1014 }
1015 }
1016
1017 // We have the arithmetic types: real int/float.
1018 Value *Res = nullptr;
1019
1020 if (isa<llvm::IntegerType>(SrcEltTy)) {
1021 bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType();
1022 if (isa<llvm::IntegerType>(DstEltTy))
1023 Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
1024 else if (InputSigned)
1025 Res = Builder.CreateSIToFP(Src, DstTy, "conv");
1026 else
1027 Res = Builder.CreateUIToFP(Src, DstTy, "conv");
1028 } else if (isa<llvm::IntegerType>(DstEltTy)) {
1029 assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion");
1030 if (DstEltType->isSignedIntegerOrEnumerationType())
1031 Res = Builder.CreateFPToSI(Src, DstTy, "conv");
1032 else
1033 Res = Builder.CreateFPToUI(Src, DstTy, "conv");
1034 } else {
1035 assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() &&
1036 "Unknown real conversion");
1037 if (DstEltTy->getTypeID() < SrcEltTy->getTypeID())
1038 Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
1039 else
1040 Res = Builder.CreateFPExt(Src, DstTy, "conv");
1041 }
1042
1043 return Res;
1044 }
1045
VisitMemberExpr(MemberExpr * E)1046 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) {
1047 llvm::APSInt Value;
1048 if (E->EvaluateAsInt(Value, CGF.getContext(), Expr::SE_AllowSideEffects)) {
1049 if (E->isArrow())
1050 CGF.EmitScalarExpr(E->getBase());
1051 else
1052 EmitLValue(E->getBase());
1053 return Builder.getInt(Value);
1054 }
1055
1056 return EmitLoadOfLValue(E);
1057 }
1058
VisitArraySubscriptExpr(ArraySubscriptExpr * E)1059 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
1060 TestAndClearIgnoreResultAssign();
1061
1062 // Emit subscript expressions in rvalue context's. For most cases, this just
1063 // loads the lvalue formed by the subscript expr. However, we have to be
1064 // careful, because the base of a vector subscript is occasionally an rvalue,
1065 // so we can't get it as an lvalue.
1066 if (!E->getBase()->getType()->isVectorType())
1067 return EmitLoadOfLValue(E);
1068
1069 // Handle the vector case. The base must be a vector, the index must be an
1070 // integer value.
1071 Value *Base = Visit(E->getBase());
1072 Value *Idx = Visit(E->getIdx());
1073 QualType IdxTy = E->getIdx()->getType();
1074
1075 if (CGF.SanOpts->ArrayBounds)
1076 CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true);
1077
1078 return Builder.CreateExtractElement(Base, Idx, "vecext");
1079 }
1080
getMaskElt(llvm::ShuffleVectorInst * SVI,unsigned Idx,unsigned Off,llvm::Type * I32Ty)1081 static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
1082 unsigned Off, llvm::Type *I32Ty) {
1083 int MV = SVI->getMaskValue(Idx);
1084 if (MV == -1)
1085 return llvm::UndefValue::get(I32Ty);
1086 return llvm::ConstantInt::get(I32Ty, Off+MV);
1087 }
1088
VisitInitListExpr(InitListExpr * E)1089 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
1090 bool Ignore = TestAndClearIgnoreResultAssign();
1091 (void)Ignore;
1092 assert (Ignore == false && "init list ignored");
1093 unsigned NumInitElements = E->getNumInits();
1094
1095 if (E->hadArrayRangeDesignator())
1096 CGF.ErrorUnsupported(E, "GNU array range designator extension");
1097
1098 llvm::VectorType *VType =
1099 dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
1100
1101 if (!VType) {
1102 if (NumInitElements == 0) {
1103 // C++11 value-initialization for the scalar.
1104 return EmitNullValue(E->getType());
1105 }
1106 // We have a scalar in braces. Just use the first element.
1107 return Visit(E->getInit(0));
1108 }
1109
1110 unsigned ResElts = VType->getNumElements();
1111
1112 // Loop over initializers collecting the Value for each, and remembering
1113 // whether the source was swizzle (ExtVectorElementExpr). This will allow
1114 // us to fold the shuffle for the swizzle into the shuffle for the vector
1115 // initializer, since LLVM optimizers generally do not want to touch
1116 // shuffles.
1117 unsigned CurIdx = 0;
1118 bool VIsUndefShuffle = false;
1119 llvm::Value *V = llvm::UndefValue::get(VType);
1120 for (unsigned i = 0; i != NumInitElements; ++i) {
1121 Expr *IE = E->getInit(i);
1122 Value *Init = Visit(IE);
1123 SmallVector<llvm::Constant*, 16> Args;
1124
1125 llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
1126
1127 // Handle scalar elements. If the scalar initializer is actually one
1128 // element of a different vector of the same width, use shuffle instead of
1129 // extract+insert.
1130 if (!VVT) {
1131 if (isa<ExtVectorElementExpr>(IE)) {
1132 llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);
1133
1134 if (EI->getVectorOperandType()->getNumElements() == ResElts) {
1135 llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
1136 Value *LHS = nullptr, *RHS = nullptr;
1137 if (CurIdx == 0) {
1138 // insert into undef -> shuffle (src, undef)
1139 Args.push_back(C);
1140 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1141
1142 LHS = EI->getVectorOperand();
1143 RHS = V;
1144 VIsUndefShuffle = true;
1145 } else if (VIsUndefShuffle) {
1146 // insert into undefshuffle && size match -> shuffle (v, src)
1147 llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
1148 for (unsigned j = 0; j != CurIdx; ++j)
1149 Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty));
1150 Args.push_back(Builder.getInt32(ResElts + C->getZExtValue()));
1151 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1152
1153 LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1154 RHS = EI->getVectorOperand();
1155 VIsUndefShuffle = false;
1156 }
1157 if (!Args.empty()) {
1158 llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1159 V = Builder.CreateShuffleVector(LHS, RHS, Mask);
1160 ++CurIdx;
1161 continue;
1162 }
1163 }
1164 }
1165 V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx),
1166 "vecinit");
1167 VIsUndefShuffle = false;
1168 ++CurIdx;
1169 continue;
1170 }
1171
1172 unsigned InitElts = VVT->getNumElements();
1173
1174 // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
1175 // input is the same width as the vector being constructed, generate an
1176 // optimized shuffle of the swizzle input into the result.
1177 unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
1178 if (isa<ExtVectorElementExpr>(IE)) {
1179 llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
1180 Value *SVOp = SVI->getOperand(0);
1181 llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType());
1182
1183 if (OpTy->getNumElements() == ResElts) {
1184 for (unsigned j = 0; j != CurIdx; ++j) {
1185 // If the current vector initializer is a shuffle with undef, merge
1186 // this shuffle directly into it.
1187 if (VIsUndefShuffle) {
1188 Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0,
1189 CGF.Int32Ty));
1190 } else {
1191 Args.push_back(Builder.getInt32(j));
1192 }
1193 }
1194 for (unsigned j = 0, je = InitElts; j != je; ++j)
1195 Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty));
1196 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1197
1198 if (VIsUndefShuffle)
1199 V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1200
1201 Init = SVOp;
1202 }
1203 }
1204
1205 // Extend init to result vector length, and then shuffle its contribution
1206 // to the vector initializer into V.
1207 if (Args.empty()) {
1208 for (unsigned j = 0; j != InitElts; ++j)
1209 Args.push_back(Builder.getInt32(j));
1210 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1211 llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1212 Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT),
1213 Mask, "vext");
1214
1215 Args.clear();
1216 for (unsigned j = 0; j != CurIdx; ++j)
1217 Args.push_back(Builder.getInt32(j));
1218 for (unsigned j = 0; j != InitElts; ++j)
1219 Args.push_back(Builder.getInt32(j+Offset));
1220 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1221 }
1222
1223 // If V is undef, make sure it ends up on the RHS of the shuffle to aid
1224 // merging subsequent shuffles into this one.
1225 if (CurIdx == 0)
1226 std::swap(V, Init);
1227 llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1228 V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit");
1229 VIsUndefShuffle = isa<llvm::UndefValue>(Init);
1230 CurIdx += InitElts;
1231 }
1232
1233 // FIXME: evaluate codegen vs. shuffling against constant null vector.
1234 // Emit remaining default initializers.
1235 llvm::Type *EltTy = VType->getElementType();
1236
1237 // Emit remaining default initializers
1238 for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
1239 Value *Idx = Builder.getInt32(CurIdx);
1240 llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
1241 V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
1242 }
1243 return V;
1244 }
1245
ShouldNullCheckClassCastValue(const CastExpr * CE)1246 static bool ShouldNullCheckClassCastValue(const CastExpr *CE) {
1247 const Expr *E = CE->getSubExpr();
1248
1249 if (CE->getCastKind() == CK_UncheckedDerivedToBase)
1250 return false;
1251
1252 if (isa<CXXThisExpr>(E)) {
1253 // We always assume that 'this' is never null.
1254 return false;
1255 }
1256
1257 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
1258 // And that glvalue casts are never null.
1259 if (ICE->getValueKind() != VK_RValue)
1260 return false;
1261 }
1262
1263 return true;
1264 }
1265
1266 // VisitCastExpr - Emit code for an explicit or implicit cast. Implicit casts
1267 // have to handle a more broad range of conversions than explicit casts, as they
1268 // handle things like function to ptr-to-function decay etc.
VisitCastExpr(CastExpr * CE)1269 Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) {
1270 Expr *E = CE->getSubExpr();
1271 QualType DestTy = CE->getType();
1272 CastKind Kind = CE->getCastKind();
1273
1274 if (!DestTy->isVoidType())
1275 TestAndClearIgnoreResultAssign();
1276
1277 // Since almost all cast kinds apply to scalars, this switch doesn't have
1278 // a default case, so the compiler will warn on a missing case. The cases
1279 // are in the same order as in the CastKind enum.
1280 switch (Kind) {
1281 case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
1282 case CK_BuiltinFnToFnPtr:
1283 llvm_unreachable("builtin functions are handled elsewhere");
1284
1285 case CK_LValueBitCast:
1286 case CK_ObjCObjectLValueCast: {
1287 Value *V = EmitLValue(E).getAddress();
1288 V = Builder.CreateBitCast(V,
1289 ConvertType(CGF.getContext().getPointerType(DestTy)));
1290 return EmitLoadOfLValue(CGF.MakeNaturalAlignAddrLValue(V, DestTy),
1291 CE->getExprLoc());
1292 }
1293
1294 case CK_CPointerToObjCPointerCast:
1295 case CK_BlockPointerToObjCPointerCast:
1296 case CK_AnyPointerToBlockPointerCast:
1297 case CK_BitCast: {
1298 Value *Src = Visit(const_cast<Expr*>(E));
1299 llvm::Type *SrcTy = Src->getType();
1300 llvm::Type *DstTy = ConvertType(DestTy);
1301 if (SrcTy->isPtrOrPtrVectorTy() && DstTy->isPtrOrPtrVectorTy() &&
1302 SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) {
1303 llvm::Type *MidTy = CGF.CGM.getDataLayout().getIntPtrType(SrcTy);
1304 return Builder.CreateIntToPtr(Builder.CreatePtrToInt(Src, MidTy), DstTy);
1305 }
1306 return Builder.CreateBitCast(Src, DstTy);
1307 }
1308 case CK_AddressSpaceConversion: {
1309 Value *Src = Visit(const_cast<Expr*>(E));
1310 return Builder.CreateAddrSpaceCast(Src, ConvertType(DestTy));
1311 }
1312 case CK_AtomicToNonAtomic:
1313 case CK_NonAtomicToAtomic:
1314 case CK_NoOp:
1315 case CK_UserDefinedConversion:
1316 return Visit(const_cast<Expr*>(E));
1317
1318 case CK_BaseToDerived: {
1319 const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl();
1320 assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!");
1321
1322 llvm::Value *V = Visit(E);
1323
1324 llvm::Value *Derived =
1325 CGF.GetAddressOfDerivedClass(V, DerivedClassDecl,
1326 CE->path_begin(), CE->path_end(),
1327 ShouldNullCheckClassCastValue(CE));
1328
1329 // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is
1330 // performed and the object is not of the derived type.
1331 if (CGF.sanitizePerformTypeCheck())
1332 CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(),
1333 Derived, DestTy->getPointeeType());
1334
1335 return Derived;
1336 }
1337 case CK_UncheckedDerivedToBase:
1338 case CK_DerivedToBase: {
1339 const CXXRecordDecl *DerivedClassDecl =
1340 E->getType()->getPointeeCXXRecordDecl();
1341 assert(DerivedClassDecl && "DerivedToBase arg isn't a C++ object pointer!");
1342
1343 return CGF.GetAddressOfBaseClass(Visit(E), DerivedClassDecl,
1344 CE->path_begin(), CE->path_end(),
1345 ShouldNullCheckClassCastValue(CE));
1346 }
1347 case CK_Dynamic: {
1348 Value *V = Visit(const_cast<Expr*>(E));
1349 const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE);
1350 return CGF.EmitDynamicCast(V, DCE);
1351 }
1352
1353 case CK_ArrayToPointerDecay: {
1354 assert(E->getType()->isArrayType() &&
1355 "Array to pointer decay must have array source type!");
1356
1357 Value *V = EmitLValue(E).getAddress(); // Bitfields can't be arrays.
1358
1359 // Note that VLA pointers are always decayed, so we don't need to do
1360 // anything here.
1361 if (!E->getType()->isVariableArrayType()) {
1362 assert(isa<llvm::PointerType>(V->getType()) && "Expected pointer");
1363 assert(isa<llvm::ArrayType>(cast<llvm::PointerType>(V->getType())
1364 ->getElementType()) &&
1365 "Expected pointer to array");
1366 V = Builder.CreateStructGEP(V, 0, "arraydecay");
1367 }
1368
1369 // Make sure the array decay ends up being the right type. This matters if
1370 // the array type was of an incomplete type.
1371 return CGF.Builder.CreatePointerCast(V, ConvertType(CE->getType()));
1372 }
1373 case CK_FunctionToPointerDecay:
1374 return EmitLValue(E).getAddress();
1375
1376 case CK_NullToPointer:
1377 if (MustVisitNullValue(E))
1378 (void) Visit(E);
1379
1380 return llvm::ConstantPointerNull::get(
1381 cast<llvm::PointerType>(ConvertType(DestTy)));
1382
1383 case CK_NullToMemberPointer: {
1384 if (MustVisitNullValue(E))
1385 (void) Visit(E);
1386
1387 const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>();
1388 return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
1389 }
1390
1391 case CK_ReinterpretMemberPointer:
1392 case CK_BaseToDerivedMemberPointer:
1393 case CK_DerivedToBaseMemberPointer: {
1394 Value *Src = Visit(E);
1395
1396 // Note that the AST doesn't distinguish between checked and
1397 // unchecked member pointer conversions, so we always have to
1398 // implement checked conversions here. This is inefficient when
1399 // actual control flow may be required in order to perform the
1400 // check, which it is for data member pointers (but not member
1401 // function pointers on Itanium and ARM).
1402 return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src);
1403 }
1404
1405 case CK_ARCProduceObject:
1406 return CGF.EmitARCRetainScalarExpr(E);
1407 case CK_ARCConsumeObject:
1408 return CGF.EmitObjCConsumeObject(E->getType(), Visit(E));
1409 case CK_ARCReclaimReturnedObject: {
1410 llvm::Value *value = Visit(E);
1411 value = CGF.EmitARCRetainAutoreleasedReturnValue(value);
1412 return CGF.EmitObjCConsumeObject(E->getType(), value);
1413 }
1414 case CK_ARCExtendBlockObject:
1415 return CGF.EmitARCExtendBlockObject(E);
1416
1417 case CK_CopyAndAutoreleaseBlockObject:
1418 return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType());
1419
1420 case CK_FloatingRealToComplex:
1421 case CK_FloatingComplexCast:
1422 case CK_IntegralRealToComplex:
1423 case CK_IntegralComplexCast:
1424 case CK_IntegralComplexToFloatingComplex:
1425 case CK_FloatingComplexToIntegralComplex:
1426 case CK_ConstructorConversion:
1427 case CK_ToUnion:
1428 llvm_unreachable("scalar cast to non-scalar value");
1429
1430 case CK_LValueToRValue:
1431 assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy));
1432 assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!");
1433 return Visit(const_cast<Expr*>(E));
1434
1435 case CK_IntegralToPointer: {
1436 Value *Src = Visit(const_cast<Expr*>(E));
1437
1438 // First, convert to the correct width so that we control the kind of
1439 // extension.
1440 llvm::Type *MiddleTy = CGF.IntPtrTy;
1441 bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType();
1442 llvm::Value* IntResult =
1443 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
1444
1445 return Builder.CreateIntToPtr(IntResult, ConvertType(DestTy));
1446 }
1447 case CK_PointerToIntegral:
1448 assert(!DestTy->isBooleanType() && "bool should use PointerToBool");
1449 return Builder.CreatePtrToInt(Visit(E), ConvertType(DestTy));
1450
1451 case CK_ToVoid: {
1452 CGF.EmitIgnoredExpr(E);
1453 return nullptr;
1454 }
1455 case CK_VectorSplat: {
1456 llvm::Type *DstTy = ConvertType(DestTy);
1457 Value *Elt = Visit(const_cast<Expr*>(E));
1458 Elt = EmitScalarConversion(Elt, E->getType(),
1459 DestTy->getAs<VectorType>()->getElementType());
1460
1461 // Splat the element across to all elements
1462 unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
1463 return Builder.CreateVectorSplat(NumElements, Elt, "splat");
1464 }
1465
1466 case CK_IntegralCast:
1467 case CK_IntegralToFloating:
1468 case CK_FloatingToIntegral:
1469 case CK_FloatingCast:
1470 return EmitScalarConversion(Visit(E), E->getType(), DestTy);
1471 case CK_IntegralToBoolean:
1472 return EmitIntToBoolConversion(Visit(E));
1473 case CK_PointerToBoolean:
1474 return EmitPointerToBoolConversion(Visit(E));
1475 case CK_FloatingToBoolean:
1476 return EmitFloatToBoolConversion(Visit(E));
1477 case CK_MemberPointerToBoolean: {
1478 llvm::Value *MemPtr = Visit(E);
1479 const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>();
1480 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT);
1481 }
1482
1483 case CK_FloatingComplexToReal:
1484 case CK_IntegralComplexToReal:
1485 return CGF.EmitComplexExpr(E, false, true).first;
1486
1487 case CK_FloatingComplexToBoolean:
1488 case CK_IntegralComplexToBoolean: {
1489 CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E);
1490
1491 // TODO: kill this function off, inline appropriate case here
1492 return EmitComplexToScalarConversion(V, E->getType(), DestTy);
1493 }
1494
1495 case CK_ZeroToOCLEvent: {
1496 assert(DestTy->isEventT() && "CK_ZeroToOCLEvent cast on non-event type");
1497 return llvm::Constant::getNullValue(ConvertType(DestTy));
1498 }
1499
1500 }
1501
1502 llvm_unreachable("unknown scalar cast");
1503 }
1504
VisitStmtExpr(const StmtExpr * E)1505 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
1506 CodeGenFunction::StmtExprEvaluation eval(CGF);
1507 llvm::Value *RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(),
1508 !E->getType()->isVoidType());
1509 if (!RetAlloca)
1510 return nullptr;
1511 return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()),
1512 E->getExprLoc());
1513 }
1514
1515 //===----------------------------------------------------------------------===//
1516 // Unary Operators
1517 //===----------------------------------------------------------------------===//
1518
1519 llvm::Value *ScalarExprEmitter::
EmitAddConsiderOverflowBehavior(const UnaryOperator * E,llvm::Value * InVal,llvm::Value * NextVal,bool IsInc)1520 EmitAddConsiderOverflowBehavior(const UnaryOperator *E,
1521 llvm::Value *InVal,
1522 llvm::Value *NextVal, bool IsInc) {
1523 switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
1524 case LangOptions::SOB_Defined:
1525 return Builder.CreateAdd(InVal, NextVal, IsInc ? "inc" : "dec");
1526 case LangOptions::SOB_Undefined:
1527 if (!CGF.SanOpts->SignedIntegerOverflow)
1528 return Builder.CreateNSWAdd(InVal, NextVal, IsInc ? "inc" : "dec");
1529 // Fall through.
1530 case LangOptions::SOB_Trapping:
1531 BinOpInfo BinOp;
1532 BinOp.LHS = InVal;
1533 BinOp.RHS = NextVal;
1534 BinOp.Ty = E->getType();
1535 BinOp.Opcode = BO_Add;
1536 BinOp.FPContractable = false;
1537 BinOp.E = E;
1538 return EmitOverflowCheckedBinOp(BinOp);
1539 }
1540 llvm_unreachable("Unknown SignedOverflowBehaviorTy");
1541 }
1542
1543 llvm::Value *
EmitScalarPrePostIncDec(const UnaryOperator * E,LValue LV,bool isInc,bool isPre)1544 ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
1545 bool isInc, bool isPre) {
1546
1547 QualType type = E->getSubExpr()->getType();
1548 llvm::PHINode *atomicPHI = nullptr;
1549 llvm::Value *value;
1550 llvm::Value *input;
1551
1552 int amount = (isInc ? 1 : -1);
1553
1554 if (const AtomicType *atomicTy = type->getAs<AtomicType>()) {
1555 type = atomicTy->getValueType();
1556 if (isInc && type->isBooleanType()) {
1557 llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type);
1558 if (isPre) {
1559 Builder.Insert(new llvm::StoreInst(True,
1560 LV.getAddress(), LV.isVolatileQualified(),
1561 LV.getAlignment().getQuantity(),
1562 llvm::SequentiallyConsistent));
1563 return Builder.getTrue();
1564 }
1565 // For atomic bool increment, we just store true and return it for
1566 // preincrement, do an atomic swap with true for postincrement
1567 return Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg,
1568 LV.getAddress(), True, llvm::SequentiallyConsistent);
1569 }
1570 // Special case for atomic increment / decrement on integers, emit
1571 // atomicrmw instructions. We skip this if we want to be doing overflow
1572 // checking, and fall into the slow path with the atomic cmpxchg loop.
1573 if (!type->isBooleanType() && type->isIntegerType() &&
1574 !(type->isUnsignedIntegerType() &&
1575 CGF.SanOpts->UnsignedIntegerOverflow) &&
1576 CGF.getLangOpts().getSignedOverflowBehavior() !=
1577 LangOptions::SOB_Trapping) {
1578 llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add :
1579 llvm::AtomicRMWInst::Sub;
1580 llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add :
1581 llvm::Instruction::Sub;
1582 llvm::Value *amt = CGF.EmitToMemory(
1583 llvm::ConstantInt::get(ConvertType(type), 1, true), type);
1584 llvm::Value *old = Builder.CreateAtomicRMW(aop,
1585 LV.getAddress(), amt, llvm::SequentiallyConsistent);
1586 return isPre ? Builder.CreateBinOp(op, old, amt) : old;
1587 }
1588 value = EmitLoadOfLValue(LV, E->getExprLoc());
1589 input = value;
1590 // For every other atomic operation, we need to emit a load-op-cmpxchg loop
1591 llvm::BasicBlock *startBB = Builder.GetInsertBlock();
1592 llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
1593 value = CGF.EmitToMemory(value, type);
1594 Builder.CreateBr(opBB);
1595 Builder.SetInsertPoint(opBB);
1596 atomicPHI = Builder.CreatePHI(value->getType(), 2);
1597 atomicPHI->addIncoming(value, startBB);
1598 value = atomicPHI;
1599 } else {
1600 value = EmitLoadOfLValue(LV, E->getExprLoc());
1601 input = value;
1602 }
1603
1604 // Special case of integer increment that we have to check first: bool++.
1605 // Due to promotion rules, we get:
1606 // bool++ -> bool = bool + 1
1607 // -> bool = (int)bool + 1
1608 // -> bool = ((int)bool + 1 != 0)
1609 // An interesting aspect of this is that increment is always true.
1610 // Decrement does not have this property.
1611 if (isInc && type->isBooleanType()) {
1612 value = Builder.getTrue();
1613
1614 // Most common case by far: integer increment.
1615 } else if (type->isIntegerType()) {
1616
1617 llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true);
1618
1619 // Note that signed integer inc/dec with width less than int can't
1620 // overflow because of promotion rules; we're just eliding a few steps here.
1621 bool CanOverflow = value->getType()->getIntegerBitWidth() >=
1622 CGF.IntTy->getIntegerBitWidth();
1623 if (CanOverflow && type->isSignedIntegerOrEnumerationType()) {
1624 value = EmitAddConsiderOverflowBehavior(E, value, amt, isInc);
1625 } else if (CanOverflow && type->isUnsignedIntegerType() &&
1626 CGF.SanOpts->UnsignedIntegerOverflow) {
1627 BinOpInfo BinOp;
1628 BinOp.LHS = value;
1629 BinOp.RHS = llvm::ConstantInt::get(value->getType(), 1, false);
1630 BinOp.Ty = E->getType();
1631 BinOp.Opcode = isInc ? BO_Add : BO_Sub;
1632 BinOp.FPContractable = false;
1633 BinOp.E = E;
1634 value = EmitOverflowCheckedBinOp(BinOp);
1635 } else
1636 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
1637
1638 // Next most common: pointer increment.
1639 } else if (const PointerType *ptr = type->getAs<PointerType>()) {
1640 QualType type = ptr->getPointeeType();
1641
1642 // VLA types don't have constant size.
1643 if (const VariableArrayType *vla
1644 = CGF.getContext().getAsVariableArrayType(type)) {
1645 llvm::Value *numElts = CGF.getVLASize(vla).first;
1646 if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize");
1647 if (CGF.getLangOpts().isSignedOverflowDefined())
1648 value = Builder.CreateGEP(value, numElts, "vla.inc");
1649 else
1650 value = Builder.CreateInBoundsGEP(value, numElts, "vla.inc");
1651
1652 // Arithmetic on function pointers (!) is just +-1.
1653 } else if (type->isFunctionType()) {
1654 llvm::Value *amt = Builder.getInt32(amount);
1655
1656 value = CGF.EmitCastToVoidPtr(value);
1657 if (CGF.getLangOpts().isSignedOverflowDefined())
1658 value = Builder.CreateGEP(value, amt, "incdec.funcptr");
1659 else
1660 value = Builder.CreateInBoundsGEP(value, amt, "incdec.funcptr");
1661 value = Builder.CreateBitCast(value, input->getType());
1662
1663 // For everything else, we can just do a simple increment.
1664 } else {
1665 llvm::Value *amt = Builder.getInt32(amount);
1666 if (CGF.getLangOpts().isSignedOverflowDefined())
1667 value = Builder.CreateGEP(value, amt, "incdec.ptr");
1668 else
1669 value = Builder.CreateInBoundsGEP(value, amt, "incdec.ptr");
1670 }
1671
1672 // Vector increment/decrement.
1673 } else if (type->isVectorType()) {
1674 if (type->hasIntegerRepresentation()) {
1675 llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount);
1676
1677 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
1678 } else {
1679 value = Builder.CreateFAdd(
1680 value,
1681 llvm::ConstantFP::get(value->getType(), amount),
1682 isInc ? "inc" : "dec");
1683 }
1684
1685 // Floating point.
1686 } else if (type->isRealFloatingType()) {
1687 // Add the inc/dec to the real part.
1688 llvm::Value *amt;
1689
1690 if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1691 // Another special case: half FP increment should be done via float
1692 value =
1693 Builder.CreateCall(CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16),
1694 input);
1695 }
1696
1697 if (value->getType()->isFloatTy())
1698 amt = llvm::ConstantFP::get(VMContext,
1699 llvm::APFloat(static_cast<float>(amount)));
1700 else if (value->getType()->isDoubleTy())
1701 amt = llvm::ConstantFP::get(VMContext,
1702 llvm::APFloat(static_cast<double>(amount)));
1703 else {
1704 llvm::APFloat F(static_cast<float>(amount));
1705 bool ignored;
1706 F.convert(CGF.getTarget().getLongDoubleFormat(),
1707 llvm::APFloat::rmTowardZero, &ignored);
1708 amt = llvm::ConstantFP::get(VMContext, F);
1709 }
1710 value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec");
1711
1712 if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType)
1713 value =
1714 Builder.CreateCall(CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16),
1715 value);
1716
1717 // Objective-C pointer types.
1718 } else {
1719 const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>();
1720 value = CGF.EmitCastToVoidPtr(value);
1721
1722 CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType());
1723 if (!isInc) size = -size;
1724 llvm::Value *sizeValue =
1725 llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity());
1726
1727 if (CGF.getLangOpts().isSignedOverflowDefined())
1728 value = Builder.CreateGEP(value, sizeValue, "incdec.objptr");
1729 else
1730 value = Builder.CreateInBoundsGEP(value, sizeValue, "incdec.objptr");
1731 value = Builder.CreateBitCast(value, input->getType());
1732 }
1733
1734 if (atomicPHI) {
1735 llvm::BasicBlock *opBB = Builder.GetInsertBlock();
1736 llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
1737 llvm::Value *pair = Builder.CreateAtomicCmpXchg(
1738 LV.getAddress(), atomicPHI, CGF.EmitToMemory(value, type),
1739 llvm::SequentiallyConsistent, llvm::SequentiallyConsistent);
1740 llvm::Value *old = Builder.CreateExtractValue(pair, 0);
1741 llvm::Value *success = Builder.CreateExtractValue(pair, 1);
1742 atomicPHI->addIncoming(old, opBB);
1743 Builder.CreateCondBr(success, contBB, opBB);
1744 Builder.SetInsertPoint(contBB);
1745 return isPre ? value : input;
1746 }
1747
1748 // Store the updated result through the lvalue.
1749 if (LV.isBitField())
1750 CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value);
1751 else
1752 CGF.EmitStoreThroughLValue(RValue::get(value), LV);
1753
1754 // If this is a postinc, return the value read from memory, otherwise use the
1755 // updated value.
1756 return isPre ? value : input;
1757 }
1758
1759
1760
VisitUnaryMinus(const UnaryOperator * E)1761 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
1762 TestAndClearIgnoreResultAssign();
1763 // Emit unary minus with EmitSub so we handle overflow cases etc.
1764 BinOpInfo BinOp;
1765 BinOp.RHS = Visit(E->getSubExpr());
1766
1767 if (BinOp.RHS->getType()->isFPOrFPVectorTy())
1768 BinOp.LHS = llvm::ConstantFP::getZeroValueForNegation(BinOp.RHS->getType());
1769 else
1770 BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType());
1771 BinOp.Ty = E->getType();
1772 BinOp.Opcode = BO_Sub;
1773 BinOp.FPContractable = false;
1774 BinOp.E = E;
1775 return EmitSub(BinOp);
1776 }
1777
VisitUnaryNot(const UnaryOperator * E)1778 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
1779 TestAndClearIgnoreResultAssign();
1780 Value *Op = Visit(E->getSubExpr());
1781 return Builder.CreateNot(Op, "neg");
1782 }
1783
VisitUnaryLNot(const UnaryOperator * E)1784 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
1785 // Perform vector logical not on comparison with zero vector.
1786 if (E->getType()->isExtVectorType()) {
1787 Value *Oper = Visit(E->getSubExpr());
1788 Value *Zero = llvm::Constant::getNullValue(Oper->getType());
1789 Value *Result;
1790 if (Oper->getType()->isFPOrFPVectorTy())
1791 Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp");
1792 else
1793 Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp");
1794 return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
1795 }
1796
1797 // Compare operand to zero.
1798 Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
1799
1800 // Invert value.
1801 // TODO: Could dynamically modify easy computations here. For example, if
1802 // the operand is an icmp ne, turn into icmp eq.
1803 BoolVal = Builder.CreateNot(BoolVal, "lnot");
1804
1805 // ZExt result to the expr type.
1806 return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
1807 }
1808
VisitOffsetOfExpr(OffsetOfExpr * E)1809 Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) {
1810 // Try folding the offsetof to a constant.
1811 llvm::APSInt Value;
1812 if (E->EvaluateAsInt(Value, CGF.getContext()))
1813 return Builder.getInt(Value);
1814
1815 // Loop over the components of the offsetof to compute the value.
1816 unsigned n = E->getNumComponents();
1817 llvm::Type* ResultType = ConvertType(E->getType());
1818 llvm::Value* Result = llvm::Constant::getNullValue(ResultType);
1819 QualType CurrentType = E->getTypeSourceInfo()->getType();
1820 for (unsigned i = 0; i != n; ++i) {
1821 OffsetOfExpr::OffsetOfNode ON = E->getComponent(i);
1822 llvm::Value *Offset = nullptr;
1823 switch (ON.getKind()) {
1824 case OffsetOfExpr::OffsetOfNode::Array: {
1825 // Compute the index
1826 Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex());
1827 llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr);
1828 bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType();
1829 Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv");
1830
1831 // Save the element type
1832 CurrentType =
1833 CGF.getContext().getAsArrayType(CurrentType)->getElementType();
1834
1835 // Compute the element size
1836 llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType,
1837 CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity());
1838
1839 // Multiply out to compute the result
1840 Offset = Builder.CreateMul(Idx, ElemSize);
1841 break;
1842 }
1843
1844 case OffsetOfExpr::OffsetOfNode::Field: {
1845 FieldDecl *MemberDecl = ON.getField();
1846 RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
1847 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
1848
1849 // Compute the index of the field in its parent.
1850 unsigned i = 0;
1851 // FIXME: It would be nice if we didn't have to loop here!
1852 for (RecordDecl::field_iterator Field = RD->field_begin(),
1853 FieldEnd = RD->field_end();
1854 Field != FieldEnd; ++Field, ++i) {
1855 if (*Field == MemberDecl)
1856 break;
1857 }
1858 assert(i < RL.getFieldCount() && "offsetof field in wrong type");
1859
1860 // Compute the offset to the field
1861 int64_t OffsetInt = RL.getFieldOffset(i) /
1862 CGF.getContext().getCharWidth();
1863 Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
1864
1865 // Save the element type.
1866 CurrentType = MemberDecl->getType();
1867 break;
1868 }
1869
1870 case OffsetOfExpr::OffsetOfNode::Identifier:
1871 llvm_unreachable("dependent __builtin_offsetof");
1872
1873 case OffsetOfExpr::OffsetOfNode::Base: {
1874 if (ON.getBase()->isVirtual()) {
1875 CGF.ErrorUnsupported(E, "virtual base in offsetof");
1876 continue;
1877 }
1878
1879 RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
1880 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
1881
1882 // Save the element type.
1883 CurrentType = ON.getBase()->getType();
1884
1885 // Compute the offset to the base.
1886 const RecordType *BaseRT = CurrentType->getAs<RecordType>();
1887 CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
1888 CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD);
1889 Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity());
1890 break;
1891 }
1892 }
1893 Result = Builder.CreateAdd(Result, Offset);
1894 }
1895 return Result;
1896 }
1897
1898 /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of
1899 /// argument of the sizeof expression as an integer.
1900 Value *
VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr * E)1901 ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr(
1902 const UnaryExprOrTypeTraitExpr *E) {
1903 QualType TypeToSize = E->getTypeOfArgument();
1904 if (E->getKind() == UETT_SizeOf) {
1905 if (const VariableArrayType *VAT =
1906 CGF.getContext().getAsVariableArrayType(TypeToSize)) {
1907 if (E->isArgumentType()) {
1908 // sizeof(type) - make sure to emit the VLA size.
1909 CGF.EmitVariablyModifiedType(TypeToSize);
1910 } else {
1911 // C99 6.5.3.4p2: If the argument is an expression of type
1912 // VLA, it is evaluated.
1913 CGF.EmitIgnoredExpr(E->getArgumentExpr());
1914 }
1915
1916 QualType eltType;
1917 llvm::Value *numElts;
1918 std::tie(numElts, eltType) = CGF.getVLASize(VAT);
1919
1920 llvm::Value *size = numElts;
1921
1922 // Scale the number of non-VLA elements by the non-VLA element size.
1923 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType);
1924 if (!eltSize.isOne())
1925 size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), numElts);
1926
1927 return size;
1928 }
1929 }
1930
1931 // If this isn't sizeof(vla), the result must be constant; use the constant
1932 // folding logic so we don't have to duplicate it here.
1933 return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext()));
1934 }
1935
VisitUnaryReal(const UnaryOperator * E)1936 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
1937 Expr *Op = E->getSubExpr();
1938 if (Op->getType()->isAnyComplexType()) {
1939 // If it's an l-value, load through the appropriate subobject l-value.
1940 // Note that we have to ask E because Op might be an l-value that
1941 // this won't work for, e.g. an Obj-C property.
1942 if (E->isGLValue())
1943 return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
1944 E->getExprLoc()).getScalarVal();
1945
1946 // Otherwise, calculate and project.
1947 return CGF.EmitComplexExpr(Op, false, true).first;
1948 }
1949
1950 return Visit(Op);
1951 }
1952
VisitUnaryImag(const UnaryOperator * E)1953 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
1954 Expr *Op = E->getSubExpr();
1955 if (Op->getType()->isAnyComplexType()) {
1956 // If it's an l-value, load through the appropriate subobject l-value.
1957 // Note that we have to ask E because Op might be an l-value that
1958 // this won't work for, e.g. an Obj-C property.
1959 if (Op->isGLValue())
1960 return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
1961 E->getExprLoc()).getScalarVal();
1962
1963 // Otherwise, calculate and project.
1964 return CGF.EmitComplexExpr(Op, true, false).second;
1965 }
1966
1967 // __imag on a scalar returns zero. Emit the subexpr to ensure side
1968 // effects are evaluated, but not the actual value.
1969 if (Op->isGLValue())
1970 CGF.EmitLValue(Op);
1971 else
1972 CGF.EmitScalarExpr(Op, true);
1973 return llvm::Constant::getNullValue(ConvertType(E->getType()));
1974 }
1975
1976 //===----------------------------------------------------------------------===//
1977 // Binary Operators
1978 //===----------------------------------------------------------------------===//
1979
EmitBinOps(const BinaryOperator * E)1980 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
1981 TestAndClearIgnoreResultAssign();
1982 BinOpInfo Result;
1983 Result.LHS = Visit(E->getLHS());
1984 Result.RHS = Visit(E->getRHS());
1985 Result.Ty = E->getType();
1986 Result.Opcode = E->getOpcode();
1987 Result.FPContractable = E->isFPContractable();
1988 Result.E = E;
1989 return Result;
1990 }
1991
EmitCompoundAssignLValue(const CompoundAssignOperator * E,Value * (ScalarExprEmitter::* Func)(const BinOpInfo &),Value * & Result)1992 LValue ScalarExprEmitter::EmitCompoundAssignLValue(
1993 const CompoundAssignOperator *E,
1994 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &),
1995 Value *&Result) {
1996 QualType LHSTy = E->getLHS()->getType();
1997 BinOpInfo OpInfo;
1998
1999 if (E->getComputationResultType()->isAnyComplexType())
2000 return CGF.EmitScalarCompooundAssignWithComplex(E, Result);
2001
2002 // Emit the RHS first. __block variables need to have the rhs evaluated
2003 // first, plus this should improve codegen a little.
2004 OpInfo.RHS = Visit(E->getRHS());
2005 OpInfo.Ty = E->getComputationResultType();
2006 OpInfo.Opcode = E->getOpcode();
2007 OpInfo.FPContractable = false;
2008 OpInfo.E = E;
2009 // Load/convert the LHS.
2010 LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
2011
2012 llvm::PHINode *atomicPHI = nullptr;
2013 if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) {
2014 QualType type = atomicTy->getValueType();
2015 if (!type->isBooleanType() && type->isIntegerType() &&
2016 !(type->isUnsignedIntegerType() &&
2017 CGF.SanOpts->UnsignedIntegerOverflow) &&
2018 CGF.getLangOpts().getSignedOverflowBehavior() !=
2019 LangOptions::SOB_Trapping) {
2020 llvm::AtomicRMWInst::BinOp aop = llvm::AtomicRMWInst::BAD_BINOP;
2021 switch (OpInfo.Opcode) {
2022 // We don't have atomicrmw operands for *, %, /, <<, >>
2023 case BO_MulAssign: case BO_DivAssign:
2024 case BO_RemAssign:
2025 case BO_ShlAssign:
2026 case BO_ShrAssign:
2027 break;
2028 case BO_AddAssign:
2029 aop = llvm::AtomicRMWInst::Add;
2030 break;
2031 case BO_SubAssign:
2032 aop = llvm::AtomicRMWInst::Sub;
2033 break;
2034 case BO_AndAssign:
2035 aop = llvm::AtomicRMWInst::And;
2036 break;
2037 case BO_XorAssign:
2038 aop = llvm::AtomicRMWInst::Xor;
2039 break;
2040 case BO_OrAssign:
2041 aop = llvm::AtomicRMWInst::Or;
2042 break;
2043 default:
2044 llvm_unreachable("Invalid compound assignment type");
2045 }
2046 if (aop != llvm::AtomicRMWInst::BAD_BINOP) {
2047 llvm::Value *amt = CGF.EmitToMemory(EmitScalarConversion(OpInfo.RHS,
2048 E->getRHS()->getType(), LHSTy), LHSTy);
2049 Builder.CreateAtomicRMW(aop, LHSLV.getAddress(), amt,
2050 llvm::SequentiallyConsistent);
2051 return LHSLV;
2052 }
2053 }
2054 // FIXME: For floating point types, we should be saving and restoring the
2055 // floating point environment in the loop.
2056 llvm::BasicBlock *startBB = Builder.GetInsertBlock();
2057 llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
2058 OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
2059 OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type);
2060 Builder.CreateBr(opBB);
2061 Builder.SetInsertPoint(opBB);
2062 atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2);
2063 atomicPHI->addIncoming(OpInfo.LHS, startBB);
2064 OpInfo.LHS = atomicPHI;
2065 }
2066 else
2067 OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
2068
2069 OpInfo.LHS = EmitScalarConversion(OpInfo.LHS, LHSTy,
2070 E->getComputationLHSType());
2071
2072 // Expand the binary operator.
2073 Result = (this->*Func)(OpInfo);
2074
2075 // Convert the result back to the LHS type.
2076 Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy);
2077
2078 if (atomicPHI) {
2079 llvm::BasicBlock *opBB = Builder.GetInsertBlock();
2080 llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
2081 llvm::Value *pair = Builder.CreateAtomicCmpXchg(
2082 LHSLV.getAddress(), atomicPHI, CGF.EmitToMemory(Result, LHSTy),
2083 llvm::SequentiallyConsistent, llvm::SequentiallyConsistent);
2084 llvm::Value *old = Builder.CreateExtractValue(pair, 0);
2085 llvm::Value *success = Builder.CreateExtractValue(pair, 1);
2086 atomicPHI->addIncoming(old, opBB);
2087 Builder.CreateCondBr(success, contBB, opBB);
2088 Builder.SetInsertPoint(contBB);
2089 return LHSLV;
2090 }
2091
2092 // Store the result value into the LHS lvalue. Bit-fields are handled
2093 // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
2094 // 'An assignment expression has the value of the left operand after the
2095 // assignment...'.
2096 if (LHSLV.isBitField())
2097 CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result);
2098 else
2099 CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV);
2100
2101 return LHSLV;
2102 }
2103
EmitCompoundAssign(const CompoundAssignOperator * E,Value * (ScalarExprEmitter::* Func)(const BinOpInfo &))2104 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
2105 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
2106 bool Ignore = TestAndClearIgnoreResultAssign();
2107 Value *RHS;
2108 LValue LHS = EmitCompoundAssignLValue(E, Func, RHS);
2109
2110 // If the result is clearly ignored, return now.
2111 if (Ignore)
2112 return nullptr;
2113
2114 // The result of an assignment in C is the assigned r-value.
2115 if (!CGF.getLangOpts().CPlusPlus)
2116 return RHS;
2117
2118 // If the lvalue is non-volatile, return the computed value of the assignment.
2119 if (!LHS.isVolatileQualified())
2120 return RHS;
2121
2122 // Otherwise, reload the value.
2123 return EmitLoadOfLValue(LHS, E->getExprLoc());
2124 }
2125
EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo & Ops,llvm::Value * Zero,bool isDiv)2126 void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck(
2127 const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) {
2128 llvm::Value *Cond = nullptr;
2129
2130 if (CGF.SanOpts->IntegerDivideByZero)
2131 Cond = Builder.CreateICmpNE(Ops.RHS, Zero);
2132
2133 if (CGF.SanOpts->SignedIntegerOverflow &&
2134 Ops.Ty->hasSignedIntegerRepresentation()) {
2135 llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType());
2136
2137 llvm::Value *IntMin =
2138 Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth()));
2139 llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL);
2140
2141 llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin);
2142 llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne);
2143 llvm::Value *Overflow = Builder.CreateOr(LHSCmp, RHSCmp, "or");
2144 Cond = Cond ? Builder.CreateAnd(Cond, Overflow, "and") : Overflow;
2145 }
2146
2147 if (Cond)
2148 EmitBinOpCheck(Cond, Ops);
2149 }
2150
EmitDiv(const BinOpInfo & Ops)2151 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
2152 if ((CGF.SanOpts->IntegerDivideByZero ||
2153 CGF.SanOpts->SignedIntegerOverflow) &&
2154 Ops.Ty->isIntegerType()) {
2155 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
2156 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true);
2157 } else if (CGF.SanOpts->FloatDivideByZero &&
2158 Ops.Ty->isRealFloatingType()) {
2159 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
2160 EmitBinOpCheck(Builder.CreateFCmpUNE(Ops.RHS, Zero), Ops);
2161 }
2162
2163 if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
2164 llvm::Value *Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
2165 if (CGF.getLangOpts().OpenCL) {
2166 // OpenCL 1.1 7.4: minimum accuracy of single precision / is 2.5ulp
2167 llvm::Type *ValTy = Val->getType();
2168 if (ValTy->isFloatTy() ||
2169 (isa<llvm::VectorType>(ValTy) &&
2170 cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy()))
2171 CGF.SetFPAccuracy(Val, 2.5);
2172 }
2173 return Val;
2174 }
2175 else if (Ops.Ty->hasUnsignedIntegerRepresentation())
2176 return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
2177 else
2178 return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
2179 }
2180
EmitRem(const BinOpInfo & Ops)2181 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
2182 // Rem in C can't be a floating point type: C99 6.5.5p2.
2183 if (CGF.SanOpts->IntegerDivideByZero) {
2184 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
2185
2186 if (Ops.Ty->isIntegerType())
2187 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false);
2188 }
2189
2190 if (Ops.Ty->hasUnsignedIntegerRepresentation())
2191 return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
2192 else
2193 return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
2194 }
2195
EmitOverflowCheckedBinOp(const BinOpInfo & Ops)2196 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
2197 unsigned IID;
2198 unsigned OpID = 0;
2199
2200 bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType();
2201 switch (Ops.Opcode) {
2202 case BO_Add:
2203 case BO_AddAssign:
2204 OpID = 1;
2205 IID = isSigned ? llvm::Intrinsic::sadd_with_overflow :
2206 llvm::Intrinsic::uadd_with_overflow;
2207 break;
2208 case BO_Sub:
2209 case BO_SubAssign:
2210 OpID = 2;
2211 IID = isSigned ? llvm::Intrinsic::ssub_with_overflow :
2212 llvm::Intrinsic::usub_with_overflow;
2213 break;
2214 case BO_Mul:
2215 case BO_MulAssign:
2216 OpID = 3;
2217 IID = isSigned ? llvm::Intrinsic::smul_with_overflow :
2218 llvm::Intrinsic::umul_with_overflow;
2219 break;
2220 default:
2221 llvm_unreachable("Unsupported operation for overflow detection");
2222 }
2223 OpID <<= 1;
2224 if (isSigned)
2225 OpID |= 1;
2226
2227 llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
2228
2229 llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy);
2230
2231 Value *resultAndOverflow = Builder.CreateCall2(intrinsic, Ops.LHS, Ops.RHS);
2232 Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
2233 Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
2234
2235 // Handle overflow with llvm.trap if no custom handler has been specified.
2236 const std::string *handlerName =
2237 &CGF.getLangOpts().OverflowHandler;
2238 if (handlerName->empty()) {
2239 // If the signed-integer-overflow sanitizer is enabled, emit a call to its
2240 // runtime. Otherwise, this is a -ftrapv check, so just emit a trap.
2241 if (!isSigned || CGF.SanOpts->SignedIntegerOverflow)
2242 EmitBinOpCheck(Builder.CreateNot(overflow), Ops);
2243 else
2244 CGF.EmitTrapCheck(Builder.CreateNot(overflow));
2245 return result;
2246 }
2247
2248 // Branch in case of overflow.
2249 llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
2250 llvm::Function::iterator insertPt = initialBB;
2251 llvm::BasicBlock *continueBB = CGF.createBasicBlock("nooverflow", CGF.CurFn,
2252 std::next(insertPt));
2253 llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
2254
2255 Builder.CreateCondBr(overflow, overflowBB, continueBB);
2256
2257 // If an overflow handler is set, then we want to call it and then use its
2258 // result, if it returns.
2259 Builder.SetInsertPoint(overflowBB);
2260
2261 // Get the overflow handler.
2262 llvm::Type *Int8Ty = CGF.Int8Ty;
2263 llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty };
2264 llvm::FunctionType *handlerTy =
2265 llvm::FunctionType::get(CGF.Int64Ty, argTypes, true);
2266 llvm::Value *handler = CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName);
2267
2268 // Sign extend the args to 64-bit, so that we can use the same handler for
2269 // all types of overflow.
2270 llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty);
2271 llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty);
2272
2273 // Call the handler with the two arguments, the operation, and the size of
2274 // the result.
2275 llvm::Value *handlerArgs[] = {
2276 lhs,
2277 rhs,
2278 Builder.getInt8(OpID),
2279 Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth())
2280 };
2281 llvm::Value *handlerResult =
2282 CGF.EmitNounwindRuntimeCall(handler, handlerArgs);
2283
2284 // Truncate the result back to the desired size.
2285 handlerResult = Builder.CreateTrunc(handlerResult, opTy);
2286 Builder.CreateBr(continueBB);
2287
2288 Builder.SetInsertPoint(continueBB);
2289 llvm::PHINode *phi = Builder.CreatePHI(opTy, 2);
2290 phi->addIncoming(result, initialBB);
2291 phi->addIncoming(handlerResult, overflowBB);
2292
2293 return phi;
2294 }
2295
2296 /// Emit pointer + index arithmetic.
emitPointerArithmetic(CodeGenFunction & CGF,const BinOpInfo & op,bool isSubtraction)2297 static Value *emitPointerArithmetic(CodeGenFunction &CGF,
2298 const BinOpInfo &op,
2299 bool isSubtraction) {
2300 // Must have binary (not unary) expr here. Unary pointer
2301 // increment/decrement doesn't use this path.
2302 const BinaryOperator *expr = cast<BinaryOperator>(op.E);
2303
2304 Value *pointer = op.LHS;
2305 Expr *pointerOperand = expr->getLHS();
2306 Value *index = op.RHS;
2307 Expr *indexOperand = expr->getRHS();
2308
2309 // In a subtraction, the LHS is always the pointer.
2310 if (!isSubtraction && !pointer->getType()->isPointerTy()) {
2311 std::swap(pointer, index);
2312 std::swap(pointerOperand, indexOperand);
2313 }
2314
2315 unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth();
2316 if (width != CGF.PointerWidthInBits) {
2317 // Zero-extend or sign-extend the pointer value according to
2318 // whether the index is signed or not.
2319 bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType();
2320 index = CGF.Builder.CreateIntCast(index, CGF.PtrDiffTy, isSigned,
2321 "idx.ext");
2322 }
2323
2324 // If this is subtraction, negate the index.
2325 if (isSubtraction)
2326 index = CGF.Builder.CreateNeg(index, "idx.neg");
2327
2328 if (CGF.SanOpts->ArrayBounds)
2329 CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(),
2330 /*Accessed*/ false);
2331
2332 const PointerType *pointerType
2333 = pointerOperand->getType()->getAs<PointerType>();
2334 if (!pointerType) {
2335 QualType objectType = pointerOperand->getType()
2336 ->castAs<ObjCObjectPointerType>()
2337 ->getPointeeType();
2338 llvm::Value *objectSize
2339 = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType));
2340
2341 index = CGF.Builder.CreateMul(index, objectSize);
2342
2343 Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
2344 result = CGF.Builder.CreateGEP(result, index, "add.ptr");
2345 return CGF.Builder.CreateBitCast(result, pointer->getType());
2346 }
2347
2348 QualType elementType = pointerType->getPointeeType();
2349 if (const VariableArrayType *vla
2350 = CGF.getContext().getAsVariableArrayType(elementType)) {
2351 // The element count here is the total number of non-VLA elements.
2352 llvm::Value *numElements = CGF.getVLASize(vla).first;
2353
2354 // Effectively, the multiply by the VLA size is part of the GEP.
2355 // GEP indexes are signed, and scaling an index isn't permitted to
2356 // signed-overflow, so we use the same semantics for our explicit
2357 // multiply. We suppress this if overflow is not undefined behavior.
2358 if (CGF.getLangOpts().isSignedOverflowDefined()) {
2359 index = CGF.Builder.CreateMul(index, numElements, "vla.index");
2360 pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr");
2361 } else {
2362 index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index");
2363 pointer = CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr");
2364 }
2365 return pointer;
2366 }
2367
2368 // Explicitly handle GNU void* and function pointer arithmetic extensions. The
2369 // GNU void* casts amount to no-ops since our void* type is i8*, but this is
2370 // future proof.
2371 if (elementType->isVoidType() || elementType->isFunctionType()) {
2372 Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
2373 result = CGF.Builder.CreateGEP(result, index, "add.ptr");
2374 return CGF.Builder.CreateBitCast(result, pointer->getType());
2375 }
2376
2377 if (CGF.getLangOpts().isSignedOverflowDefined())
2378 return CGF.Builder.CreateGEP(pointer, index, "add.ptr");
2379
2380 return CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr");
2381 }
2382
2383 // Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and
2384 // Addend. Use negMul and negAdd to negate the first operand of the Mul or
2385 // the add operand respectively. This allows fmuladd to represent a*b-c, or
2386 // c-a*b. Patterns in LLVM should catch the negated forms and translate them to
2387 // efficient operations.
buildFMulAdd(llvm::BinaryOperator * MulOp,Value * Addend,const CodeGenFunction & CGF,CGBuilderTy & Builder,bool negMul,bool negAdd)2388 static Value* buildFMulAdd(llvm::BinaryOperator *MulOp, Value *Addend,
2389 const CodeGenFunction &CGF, CGBuilderTy &Builder,
2390 bool negMul, bool negAdd) {
2391 assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set.");
2392
2393 Value *MulOp0 = MulOp->getOperand(0);
2394 Value *MulOp1 = MulOp->getOperand(1);
2395 if (negMul) {
2396 MulOp0 =
2397 Builder.CreateFSub(
2398 llvm::ConstantFP::getZeroValueForNegation(MulOp0->getType()), MulOp0,
2399 "neg");
2400 } else if (negAdd) {
2401 Addend =
2402 Builder.CreateFSub(
2403 llvm::ConstantFP::getZeroValueForNegation(Addend->getType()), Addend,
2404 "neg");
2405 }
2406
2407 Value *FMulAdd =
2408 Builder.CreateCall3(
2409 CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()),
2410 MulOp0, MulOp1, Addend);
2411 MulOp->eraseFromParent();
2412
2413 return FMulAdd;
2414 }
2415
2416 // Check whether it would be legal to emit an fmuladd intrinsic call to
2417 // represent op and if so, build the fmuladd.
2418 //
2419 // Checks that (a) the operation is fusable, and (b) -ffp-contract=on.
2420 // Does NOT check the type of the operation - it's assumed that this function
2421 // will be called from contexts where it's known that the type is contractable.
tryEmitFMulAdd(const BinOpInfo & op,const CodeGenFunction & CGF,CGBuilderTy & Builder,bool isSub=false)2422 static Value* tryEmitFMulAdd(const BinOpInfo &op,
2423 const CodeGenFunction &CGF, CGBuilderTy &Builder,
2424 bool isSub=false) {
2425
2426 assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign ||
2427 op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) &&
2428 "Only fadd/fsub can be the root of an fmuladd.");
2429
2430 // Check whether this op is marked as fusable.
2431 if (!op.FPContractable)
2432 return nullptr;
2433
2434 // Check whether -ffp-contract=on. (If -ffp-contract=off/fast, fusing is
2435 // either disabled, or handled entirely by the LLVM backend).
2436 if (CGF.CGM.getCodeGenOpts().getFPContractMode() != CodeGenOptions::FPC_On)
2437 return nullptr;
2438
2439 // We have a potentially fusable op. Look for a mul on one of the operands.
2440 if (llvm::BinaryOperator* LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) {
2441 if (LHSBinOp->getOpcode() == llvm::Instruction::FMul) {
2442 assert(LHSBinOp->getNumUses() == 0 &&
2443 "Operations with multiple uses shouldn't be contracted.");
2444 return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub);
2445 }
2446 } else if (llvm::BinaryOperator* RHSBinOp =
2447 dyn_cast<llvm::BinaryOperator>(op.RHS)) {
2448 if (RHSBinOp->getOpcode() == llvm::Instruction::FMul) {
2449 assert(RHSBinOp->getNumUses() == 0 &&
2450 "Operations with multiple uses shouldn't be contracted.");
2451 return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false);
2452 }
2453 }
2454
2455 return nullptr;
2456 }
2457
EmitAdd(const BinOpInfo & op)2458 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) {
2459 if (op.LHS->getType()->isPointerTy() ||
2460 op.RHS->getType()->isPointerTy())
2461 return emitPointerArithmetic(CGF, op, /*subtraction*/ false);
2462
2463 if (op.Ty->isSignedIntegerOrEnumerationType()) {
2464 switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
2465 case LangOptions::SOB_Defined:
2466 return Builder.CreateAdd(op.LHS, op.RHS, "add");
2467 case LangOptions::SOB_Undefined:
2468 if (!CGF.SanOpts->SignedIntegerOverflow)
2469 return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
2470 // Fall through.
2471 case LangOptions::SOB_Trapping:
2472 return EmitOverflowCheckedBinOp(op);
2473 }
2474 }
2475
2476 if (op.Ty->isUnsignedIntegerType() && CGF.SanOpts->UnsignedIntegerOverflow)
2477 return EmitOverflowCheckedBinOp(op);
2478
2479 if (op.LHS->getType()->isFPOrFPVectorTy()) {
2480 // Try to form an fmuladd.
2481 if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder))
2482 return FMulAdd;
2483
2484 return Builder.CreateFAdd(op.LHS, op.RHS, "add");
2485 }
2486
2487 return Builder.CreateAdd(op.LHS, op.RHS, "add");
2488 }
2489
EmitSub(const BinOpInfo & op)2490 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) {
2491 // The LHS is always a pointer if either side is.
2492 if (!op.LHS->getType()->isPointerTy()) {
2493 if (op.Ty->isSignedIntegerOrEnumerationType()) {
2494 switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
2495 case LangOptions::SOB_Defined:
2496 return Builder.CreateSub(op.LHS, op.RHS, "sub");
2497 case LangOptions::SOB_Undefined:
2498 if (!CGF.SanOpts->SignedIntegerOverflow)
2499 return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
2500 // Fall through.
2501 case LangOptions::SOB_Trapping:
2502 return EmitOverflowCheckedBinOp(op);
2503 }
2504 }
2505
2506 if (op.Ty->isUnsignedIntegerType() && CGF.SanOpts->UnsignedIntegerOverflow)
2507 return EmitOverflowCheckedBinOp(op);
2508
2509 if (op.LHS->getType()->isFPOrFPVectorTy()) {
2510 // Try to form an fmuladd.
2511 if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true))
2512 return FMulAdd;
2513 return Builder.CreateFSub(op.LHS, op.RHS, "sub");
2514 }
2515
2516 return Builder.CreateSub(op.LHS, op.RHS, "sub");
2517 }
2518
2519 // If the RHS is not a pointer, then we have normal pointer
2520 // arithmetic.
2521 if (!op.RHS->getType()->isPointerTy())
2522 return emitPointerArithmetic(CGF, op, /*subtraction*/ true);
2523
2524 // Otherwise, this is a pointer subtraction.
2525
2526 // Do the raw subtraction part.
2527 llvm::Value *LHS
2528 = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast");
2529 llvm::Value *RHS
2530 = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast");
2531 Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
2532
2533 // Okay, figure out the element size.
2534 const BinaryOperator *expr = cast<BinaryOperator>(op.E);
2535 QualType elementType = expr->getLHS()->getType()->getPointeeType();
2536
2537 llvm::Value *divisor = nullptr;
2538
2539 // For a variable-length array, this is going to be non-constant.
2540 if (const VariableArrayType *vla
2541 = CGF.getContext().getAsVariableArrayType(elementType)) {
2542 llvm::Value *numElements;
2543 std::tie(numElements, elementType) = CGF.getVLASize(vla);
2544
2545 divisor = numElements;
2546
2547 // Scale the number of non-VLA elements by the non-VLA element size.
2548 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType);
2549 if (!eltSize.isOne())
2550 divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor);
2551
2552 // For everything elese, we can just compute it, safe in the
2553 // assumption that Sema won't let anything through that we can't
2554 // safely compute the size of.
2555 } else {
2556 CharUnits elementSize;
2557 // Handle GCC extension for pointer arithmetic on void* and
2558 // function pointer types.
2559 if (elementType->isVoidType() || elementType->isFunctionType())
2560 elementSize = CharUnits::One();
2561 else
2562 elementSize = CGF.getContext().getTypeSizeInChars(elementType);
2563
2564 // Don't even emit the divide for element size of 1.
2565 if (elementSize.isOne())
2566 return diffInChars;
2567
2568 divisor = CGF.CGM.getSize(elementSize);
2569 }
2570
2571 // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
2572 // pointer difference in C is only defined in the case where both operands
2573 // are pointing to elements of an array.
2574 return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div");
2575 }
2576
GetWidthMinusOneValue(Value * LHS,Value * RHS)2577 Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) {
2578 llvm::IntegerType *Ty;
2579 if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType()))
2580 Ty = cast<llvm::IntegerType>(VT->getElementType());
2581 else
2582 Ty = cast<llvm::IntegerType>(LHS->getType());
2583 return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1);
2584 }
2585
EmitShl(const BinOpInfo & Ops)2586 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
2587 // LLVM requires the LHS and RHS to be the same type: promote or truncate the
2588 // RHS to the same size as the LHS.
2589 Value *RHS = Ops.RHS;
2590 if (Ops.LHS->getType() != RHS->getType())
2591 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
2592
2593 if (CGF.SanOpts->Shift && !CGF.getLangOpts().OpenCL &&
2594 isa<llvm::IntegerType>(Ops.LHS->getType())) {
2595 llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, RHS);
2596 llvm::Value *Valid = Builder.CreateICmpULE(RHS, WidthMinusOne);
2597
2598 if (Ops.Ty->hasSignedIntegerRepresentation()) {
2599 llvm::BasicBlock *Orig = Builder.GetInsertBlock();
2600 llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
2601 llvm::BasicBlock *CheckBitsShifted = CGF.createBasicBlock("check");
2602 Builder.CreateCondBr(Valid, CheckBitsShifted, Cont);
2603
2604 // Check whether we are shifting any non-zero bits off the top of the
2605 // integer.
2606 CGF.EmitBlock(CheckBitsShifted);
2607 llvm::Value *BitsShiftedOff =
2608 Builder.CreateLShr(Ops.LHS,
2609 Builder.CreateSub(WidthMinusOne, RHS, "shl.zeros",
2610 /*NUW*/true, /*NSW*/true),
2611 "shl.check");
2612 if (CGF.getLangOpts().CPlusPlus) {
2613 // In C99, we are not permitted to shift a 1 bit into the sign bit.
2614 // Under C++11's rules, shifting a 1 bit into the sign bit is
2615 // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't
2616 // define signed left shifts, so we use the C99 and C++11 rules there).
2617 llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1);
2618 BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One);
2619 }
2620 llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0);
2621 llvm::Value *SecondCheck = Builder.CreateICmpEQ(BitsShiftedOff, Zero);
2622 CGF.EmitBlock(Cont);
2623 llvm::PHINode *P = Builder.CreatePHI(Valid->getType(), 2);
2624 P->addIncoming(Valid, Orig);
2625 P->addIncoming(SecondCheck, CheckBitsShifted);
2626 Valid = P;
2627 }
2628
2629 EmitBinOpCheck(Valid, Ops);
2630 }
2631 // OpenCL 6.3j: shift values are effectively % word size of LHS.
2632 if (CGF.getLangOpts().OpenCL)
2633 RHS = Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shl.mask");
2634
2635 return Builder.CreateShl(Ops.LHS, RHS, "shl");
2636 }
2637
EmitShr(const BinOpInfo & Ops)2638 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
2639 // LLVM requires the LHS and RHS to be the same type: promote or truncate the
2640 // RHS to the same size as the LHS.
2641 Value *RHS = Ops.RHS;
2642 if (Ops.LHS->getType() != RHS->getType())
2643 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
2644
2645 if (CGF.SanOpts->Shift && !CGF.getLangOpts().OpenCL &&
2646 isa<llvm::IntegerType>(Ops.LHS->getType()))
2647 EmitBinOpCheck(Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS)), Ops);
2648
2649 // OpenCL 6.3j: shift values are effectively % word size of LHS.
2650 if (CGF.getLangOpts().OpenCL)
2651 RHS = Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shr.mask");
2652
2653 if (Ops.Ty->hasUnsignedIntegerRepresentation())
2654 return Builder.CreateLShr(Ops.LHS, RHS, "shr");
2655 return Builder.CreateAShr(Ops.LHS, RHS, "shr");
2656 }
2657
2658 enum IntrinsicType { VCMPEQ, VCMPGT };
2659 // return corresponding comparison intrinsic for given vector type
GetIntrinsic(IntrinsicType IT,BuiltinType::Kind ElemKind)2660 static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT,
2661 BuiltinType::Kind ElemKind) {
2662 switch (ElemKind) {
2663 default: llvm_unreachable("unexpected element type");
2664 case BuiltinType::Char_U:
2665 case BuiltinType::UChar:
2666 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
2667 llvm::Intrinsic::ppc_altivec_vcmpgtub_p;
2668 case BuiltinType::Char_S:
2669 case BuiltinType::SChar:
2670 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
2671 llvm::Intrinsic::ppc_altivec_vcmpgtsb_p;
2672 case BuiltinType::UShort:
2673 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
2674 llvm::Intrinsic::ppc_altivec_vcmpgtuh_p;
2675 case BuiltinType::Short:
2676 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
2677 llvm::Intrinsic::ppc_altivec_vcmpgtsh_p;
2678 case BuiltinType::UInt:
2679 case BuiltinType::ULong:
2680 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
2681 llvm::Intrinsic::ppc_altivec_vcmpgtuw_p;
2682 case BuiltinType::Int:
2683 case BuiltinType::Long:
2684 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
2685 llvm::Intrinsic::ppc_altivec_vcmpgtsw_p;
2686 case BuiltinType::Float:
2687 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p :
2688 llvm::Intrinsic::ppc_altivec_vcmpgtfp_p;
2689 }
2690 }
2691
EmitCompare(const BinaryOperator * E,unsigned UICmpOpc,unsigned SICmpOpc,unsigned FCmpOpc)2692 Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,unsigned UICmpOpc,
2693 unsigned SICmpOpc, unsigned FCmpOpc) {
2694 TestAndClearIgnoreResultAssign();
2695 Value *Result;
2696 QualType LHSTy = E->getLHS()->getType();
2697 if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) {
2698 assert(E->getOpcode() == BO_EQ ||
2699 E->getOpcode() == BO_NE);
2700 Value *LHS = CGF.EmitScalarExpr(E->getLHS());
2701 Value *RHS = CGF.EmitScalarExpr(E->getRHS());
2702 Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison(
2703 CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE);
2704 } else if (!LHSTy->isAnyComplexType()) {
2705 Value *LHS = Visit(E->getLHS());
2706 Value *RHS = Visit(E->getRHS());
2707
2708 // If AltiVec, the comparison results in a numeric type, so we use
2709 // intrinsics comparing vectors and giving 0 or 1 as a result
2710 if (LHSTy->isVectorType() && !E->getType()->isVectorType()) {
2711 // constants for mapping CR6 register bits to predicate result
2712 enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6;
2713
2714 llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic;
2715
2716 // in several cases vector arguments order will be reversed
2717 Value *FirstVecArg = LHS,
2718 *SecondVecArg = RHS;
2719
2720 QualType ElTy = LHSTy->getAs<VectorType>()->getElementType();
2721 const BuiltinType *BTy = ElTy->getAs<BuiltinType>();
2722 BuiltinType::Kind ElementKind = BTy->getKind();
2723
2724 switch(E->getOpcode()) {
2725 default: llvm_unreachable("is not a comparison operation");
2726 case BO_EQ:
2727 CR6 = CR6_LT;
2728 ID = GetIntrinsic(VCMPEQ, ElementKind);
2729 break;
2730 case BO_NE:
2731 CR6 = CR6_EQ;
2732 ID = GetIntrinsic(VCMPEQ, ElementKind);
2733 break;
2734 case BO_LT:
2735 CR6 = CR6_LT;
2736 ID = GetIntrinsic(VCMPGT, ElementKind);
2737 std::swap(FirstVecArg, SecondVecArg);
2738 break;
2739 case BO_GT:
2740 CR6 = CR6_LT;
2741 ID = GetIntrinsic(VCMPGT, ElementKind);
2742 break;
2743 case BO_LE:
2744 if (ElementKind == BuiltinType::Float) {
2745 CR6 = CR6_LT;
2746 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
2747 std::swap(FirstVecArg, SecondVecArg);
2748 }
2749 else {
2750 CR6 = CR6_EQ;
2751 ID = GetIntrinsic(VCMPGT, ElementKind);
2752 }
2753 break;
2754 case BO_GE:
2755 if (ElementKind == BuiltinType::Float) {
2756 CR6 = CR6_LT;
2757 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
2758 }
2759 else {
2760 CR6 = CR6_EQ;
2761 ID = GetIntrinsic(VCMPGT, ElementKind);
2762 std::swap(FirstVecArg, SecondVecArg);
2763 }
2764 break;
2765 }
2766
2767 Value *CR6Param = Builder.getInt32(CR6);
2768 llvm::Function *F = CGF.CGM.getIntrinsic(ID);
2769 Result = Builder.CreateCall3(F, CR6Param, FirstVecArg, SecondVecArg, "");
2770 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType());
2771 }
2772
2773 if (LHS->getType()->isFPOrFPVectorTy()) {
2774 Result = Builder.CreateFCmp((llvm::CmpInst::Predicate)FCmpOpc,
2775 LHS, RHS, "cmp");
2776 } else if (LHSTy->hasSignedIntegerRepresentation()) {
2777 Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)SICmpOpc,
2778 LHS, RHS, "cmp");
2779 } else {
2780 // Unsigned integers and pointers.
2781 Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
2782 LHS, RHS, "cmp");
2783 }
2784
2785 // If this is a vector comparison, sign extend the result to the appropriate
2786 // vector integer type and return it (don't convert to bool).
2787 if (LHSTy->isVectorType())
2788 return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
2789
2790 } else {
2791 // Complex Comparison: can only be an equality comparison.
2792 CodeGenFunction::ComplexPairTy LHS = CGF.EmitComplexExpr(E->getLHS());
2793 CodeGenFunction::ComplexPairTy RHS = CGF.EmitComplexExpr(E->getRHS());
2794
2795 QualType CETy = LHSTy->getAs<ComplexType>()->getElementType();
2796
2797 Value *ResultR, *ResultI;
2798 if (CETy->isRealFloatingType()) {
2799 ResultR = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
2800 LHS.first, RHS.first, "cmp.r");
2801 ResultI = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
2802 LHS.second, RHS.second, "cmp.i");
2803 } else {
2804 // Complex comparisons can only be equality comparisons. As such, signed
2805 // and unsigned opcodes are the same.
2806 ResultR = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
2807 LHS.first, RHS.first, "cmp.r");
2808 ResultI = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
2809 LHS.second, RHS.second, "cmp.i");
2810 }
2811
2812 if (E->getOpcode() == BO_EQ) {
2813 Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
2814 } else {
2815 assert(E->getOpcode() == BO_NE &&
2816 "Complex comparison other than == or != ?");
2817 Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
2818 }
2819 }
2820
2821 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType());
2822 }
2823
VisitBinAssign(const BinaryOperator * E)2824 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
2825 bool Ignore = TestAndClearIgnoreResultAssign();
2826
2827 Value *RHS;
2828 LValue LHS;
2829
2830 switch (E->getLHS()->getType().getObjCLifetime()) {
2831 case Qualifiers::OCL_Strong:
2832 std::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore);
2833 break;
2834
2835 case Qualifiers::OCL_Autoreleasing:
2836 std::tie(LHS, RHS) = CGF.EmitARCStoreAutoreleasing(E);
2837 break;
2838
2839 case Qualifiers::OCL_Weak:
2840 RHS = Visit(E->getRHS());
2841 LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
2842 RHS = CGF.EmitARCStoreWeak(LHS.getAddress(), RHS, Ignore);
2843 break;
2844
2845 // No reason to do any of these differently.
2846 case Qualifiers::OCL_None:
2847 case Qualifiers::OCL_ExplicitNone:
2848 // __block variables need to have the rhs evaluated first, plus
2849 // this should improve codegen just a little.
2850 RHS = Visit(E->getRHS());
2851 LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
2852
2853 // Store the value into the LHS. Bit-fields are handled specially
2854 // because the result is altered by the store, i.e., [C99 6.5.16p1]
2855 // 'An assignment expression has the value of the left operand after
2856 // the assignment...'.
2857 if (LHS.isBitField())
2858 CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS);
2859 else
2860 CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS);
2861 }
2862
2863 // If the result is clearly ignored, return now.
2864 if (Ignore)
2865 return nullptr;
2866
2867 // The result of an assignment in C is the assigned r-value.
2868 if (!CGF.getLangOpts().CPlusPlus)
2869 return RHS;
2870
2871 // If the lvalue is non-volatile, return the computed value of the assignment.
2872 if (!LHS.isVolatileQualified())
2873 return RHS;
2874
2875 // Otherwise, reload the value.
2876 return EmitLoadOfLValue(LHS, E->getExprLoc());
2877 }
2878
VisitBinLAnd(const BinaryOperator * E)2879 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
2880 RegionCounter Cnt = CGF.getPGORegionCounter(E);
2881
2882 // Perform vector logical and on comparisons with zero vectors.
2883 if (E->getType()->isVectorType()) {
2884 Cnt.beginRegion(Builder);
2885
2886 Value *LHS = Visit(E->getLHS());
2887 Value *RHS = Visit(E->getRHS());
2888 Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
2889 if (LHS->getType()->isFPOrFPVectorTy()) {
2890 LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
2891 RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
2892 } else {
2893 LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
2894 RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
2895 }
2896 Value *And = Builder.CreateAnd(LHS, RHS);
2897 return Builder.CreateSExt(And, ConvertType(E->getType()), "sext");
2898 }
2899
2900 llvm::Type *ResTy = ConvertType(E->getType());
2901
2902 // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
2903 // If we have 1 && X, just emit X without inserting the control flow.
2904 bool LHSCondVal;
2905 if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
2906 if (LHSCondVal) { // If we have 1 && X, just emit X.
2907 Cnt.beginRegion(Builder);
2908
2909 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2910 // ZExt result to int or bool.
2911 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
2912 }
2913
2914 // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
2915 if (!CGF.ContainsLabel(E->getRHS()))
2916 return llvm::Constant::getNullValue(ResTy);
2917 }
2918
2919 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
2920 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("land.rhs");
2921
2922 CodeGenFunction::ConditionalEvaluation eval(CGF);
2923
2924 // Branch on the LHS first. If it is false, go to the failure (cont) block.
2925 CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock, Cnt.getCount());
2926
2927 // Any edges into the ContBlock are now from an (indeterminate number of)
2928 // edges from this first condition. All of these values will be false. Start
2929 // setting up the PHI node in the Cont Block for this.
2930 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
2931 "", ContBlock);
2932 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
2933 PI != PE; ++PI)
2934 PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
2935
2936 eval.begin(CGF);
2937 CGF.EmitBlock(RHSBlock);
2938 Cnt.beginRegion(Builder);
2939 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2940 eval.end(CGF);
2941
2942 // Reaquire the RHS block, as there may be subblocks inserted.
2943 RHSBlock = Builder.GetInsertBlock();
2944
2945 // Emit an unconditional branch from this block to ContBlock. Insert an entry
2946 // into the phi node for the edge with the value of RHSCond.
2947 if (CGF.getDebugInfo())
2948 // There is no need to emit line number for unconditional branch.
2949 Builder.SetCurrentDebugLocation(llvm::DebugLoc());
2950 CGF.EmitBlock(ContBlock);
2951 PN->addIncoming(RHSCond, RHSBlock);
2952
2953 // ZExt result to int.
2954 return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
2955 }
2956
VisitBinLOr(const BinaryOperator * E)2957 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
2958 RegionCounter Cnt = CGF.getPGORegionCounter(E);
2959
2960 // Perform vector logical or on comparisons with zero vectors.
2961 if (E->getType()->isVectorType()) {
2962 Cnt.beginRegion(Builder);
2963
2964 Value *LHS = Visit(E->getLHS());
2965 Value *RHS = Visit(E->getRHS());
2966 Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
2967 if (LHS->getType()->isFPOrFPVectorTy()) {
2968 LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
2969 RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
2970 } else {
2971 LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
2972 RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
2973 }
2974 Value *Or = Builder.CreateOr(LHS, RHS);
2975 return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext");
2976 }
2977
2978 llvm::Type *ResTy = ConvertType(E->getType());
2979
2980 // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
2981 // If we have 0 || X, just emit X without inserting the control flow.
2982 bool LHSCondVal;
2983 if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
2984 if (!LHSCondVal) { // If we have 0 || X, just emit X.
2985 Cnt.beginRegion(Builder);
2986
2987 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2988 // ZExt result to int or bool.
2989 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
2990 }
2991
2992 // 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
2993 if (!CGF.ContainsLabel(E->getRHS()))
2994 return llvm::ConstantInt::get(ResTy, 1);
2995 }
2996
2997 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
2998 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
2999
3000 CodeGenFunction::ConditionalEvaluation eval(CGF);
3001
3002 // Branch on the LHS first. If it is true, go to the success (cont) block.
3003 CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock,
3004 Cnt.getParentCount() - Cnt.getCount());
3005
3006 // Any edges into the ContBlock are now from an (indeterminate number of)
3007 // edges from this first condition. All of these values will be true. Start
3008 // setting up the PHI node in the Cont Block for this.
3009 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
3010 "", ContBlock);
3011 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
3012 PI != PE; ++PI)
3013 PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
3014
3015 eval.begin(CGF);
3016
3017 // Emit the RHS condition as a bool value.
3018 CGF.EmitBlock(RHSBlock);
3019 Cnt.beginRegion(Builder);
3020 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
3021
3022 eval.end(CGF);
3023
3024 // Reaquire the RHS block, as there may be subblocks inserted.
3025 RHSBlock = Builder.GetInsertBlock();
3026
3027 // Emit an unconditional branch from this block to ContBlock. Insert an entry
3028 // into the phi node for the edge with the value of RHSCond.
3029 CGF.EmitBlock(ContBlock);
3030 PN->addIncoming(RHSCond, RHSBlock);
3031
3032 // ZExt result to int.
3033 return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
3034 }
3035
VisitBinComma(const BinaryOperator * E)3036 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
3037 CGF.EmitIgnoredExpr(E->getLHS());
3038 CGF.EnsureInsertPoint();
3039 return Visit(E->getRHS());
3040 }
3041
3042 //===----------------------------------------------------------------------===//
3043 // Other Operators
3044 //===----------------------------------------------------------------------===//
3045
3046 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
3047 /// expression is cheap enough and side-effect-free enough to evaluate
3048 /// unconditionally instead of conditionally. This is used to convert control
3049 /// flow into selects in some cases.
isCheapEnoughToEvaluateUnconditionally(const Expr * E,CodeGenFunction & CGF)3050 static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E,
3051 CodeGenFunction &CGF) {
3052 // Anything that is an integer or floating point constant is fine.
3053 return E->IgnoreParens()->isEvaluatable(CGF.getContext());
3054
3055 // Even non-volatile automatic variables can't be evaluated unconditionally.
3056 // Referencing a thread_local may cause non-trivial initialization work to
3057 // occur. If we're inside a lambda and one of the variables is from the scope
3058 // outside the lambda, that function may have returned already. Reading its
3059 // locals is a bad idea. Also, these reads may introduce races there didn't
3060 // exist in the source-level program.
3061 }
3062
3063
3064 Value *ScalarExprEmitter::
VisitAbstractConditionalOperator(const AbstractConditionalOperator * E)3065 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
3066 TestAndClearIgnoreResultAssign();
3067
3068 // Bind the common expression if necessary.
3069 CodeGenFunction::OpaqueValueMapping binding(CGF, E);
3070 RegionCounter Cnt = CGF.getPGORegionCounter(E);
3071
3072 Expr *condExpr = E->getCond();
3073 Expr *lhsExpr = E->getTrueExpr();
3074 Expr *rhsExpr = E->getFalseExpr();
3075
3076 // If the condition constant folds and can be elided, try to avoid emitting
3077 // the condition and the dead arm.
3078 bool CondExprBool;
3079 if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
3080 Expr *live = lhsExpr, *dead = rhsExpr;
3081 if (!CondExprBool) std::swap(live, dead);
3082
3083 // If the dead side doesn't have labels we need, just emit the Live part.
3084 if (!CGF.ContainsLabel(dead)) {
3085 if (CondExprBool)
3086 Cnt.beginRegion(Builder);
3087 Value *Result = Visit(live);
3088
3089 // If the live part is a throw expression, it acts like it has a void
3090 // type, so evaluating it returns a null Value*. However, a conditional
3091 // with non-void type must return a non-null Value*.
3092 if (!Result && !E->getType()->isVoidType())
3093 Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));
3094
3095 return Result;
3096 }
3097 }
3098
3099 // OpenCL: If the condition is a vector, we can treat this condition like
3100 // the select function.
3101 if (CGF.getLangOpts().OpenCL
3102 && condExpr->getType()->isVectorType()) {
3103 Cnt.beginRegion(Builder);
3104
3105 llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
3106 llvm::Value *LHS = Visit(lhsExpr);
3107 llvm::Value *RHS = Visit(rhsExpr);
3108
3109 llvm::Type *condType = ConvertType(condExpr->getType());
3110 llvm::VectorType *vecTy = cast<llvm::VectorType>(condType);
3111
3112 unsigned numElem = vecTy->getNumElements();
3113 llvm::Type *elemType = vecTy->getElementType();
3114
3115 llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy);
3116 llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec);
3117 llvm::Value *tmp = Builder.CreateSExt(TestMSB,
3118 llvm::VectorType::get(elemType,
3119 numElem),
3120 "sext");
3121 llvm::Value *tmp2 = Builder.CreateNot(tmp);
3122
3123 // Cast float to int to perform ANDs if necessary.
3124 llvm::Value *RHSTmp = RHS;
3125 llvm::Value *LHSTmp = LHS;
3126 bool wasCast = false;
3127 llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType());
3128 if (rhsVTy->getElementType()->isFloatingPointTy()) {
3129 RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType());
3130 LHSTmp = Builder.CreateBitCast(LHS, tmp->getType());
3131 wasCast = true;
3132 }
3133
3134 llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2);
3135 llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp);
3136 llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond");
3137 if (wasCast)
3138 tmp5 = Builder.CreateBitCast(tmp5, RHS->getType());
3139
3140 return tmp5;
3141 }
3142
3143 // If this is a really simple expression (like x ? 4 : 5), emit this as a
3144 // select instead of as control flow. We can only do this if it is cheap and
3145 // safe to evaluate the LHS and RHS unconditionally.
3146 if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) &&
3147 isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) {
3148 Cnt.beginRegion(Builder);
3149
3150 llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr);
3151 llvm::Value *LHS = Visit(lhsExpr);
3152 llvm::Value *RHS = Visit(rhsExpr);
3153 if (!LHS) {
3154 // If the conditional has void type, make sure we return a null Value*.
3155 assert(!RHS && "LHS and RHS types must match");
3156 return nullptr;
3157 }
3158 return Builder.CreateSelect(CondV, LHS, RHS, "cond");
3159 }
3160
3161 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
3162 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
3163 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
3164
3165 CodeGenFunction::ConditionalEvaluation eval(CGF);
3166 CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock, Cnt.getCount());
3167
3168 CGF.EmitBlock(LHSBlock);
3169 Cnt.beginRegion(Builder);
3170 eval.begin(CGF);
3171 Value *LHS = Visit(lhsExpr);
3172 eval.end(CGF);
3173
3174 LHSBlock = Builder.GetInsertBlock();
3175 Builder.CreateBr(ContBlock);
3176
3177 CGF.EmitBlock(RHSBlock);
3178 eval.begin(CGF);
3179 Value *RHS = Visit(rhsExpr);
3180 eval.end(CGF);
3181
3182 RHSBlock = Builder.GetInsertBlock();
3183 CGF.EmitBlock(ContBlock);
3184
3185 // If the LHS or RHS is a throw expression, it will be legitimately null.
3186 if (!LHS)
3187 return RHS;
3188 if (!RHS)
3189 return LHS;
3190
3191 // Create a PHI node for the real part.
3192 llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond");
3193 PN->addIncoming(LHS, LHSBlock);
3194 PN->addIncoming(RHS, RHSBlock);
3195 return PN;
3196 }
3197
VisitChooseExpr(ChooseExpr * E)3198 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
3199 return Visit(E->getChosenSubExpr());
3200 }
3201
VisitVAArgExpr(VAArgExpr * VE)3202 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
3203 QualType Ty = VE->getType();
3204 if (Ty->isVariablyModifiedType())
3205 CGF.EmitVariablyModifiedType(Ty);
3206
3207 llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr());
3208 llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType());
3209
3210 // If EmitVAArg fails, we fall back to the LLVM instruction.
3211 if (!ArgPtr)
3212 return Builder.CreateVAArg(ArgValue, ConvertType(VE->getType()));
3213
3214 // FIXME Volatility.
3215 return Builder.CreateLoad(ArgPtr);
3216 }
3217
VisitBlockExpr(const BlockExpr * block)3218 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) {
3219 return CGF.EmitBlockLiteral(block);
3220 }
3221
VisitAsTypeExpr(AsTypeExpr * E)3222 Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) {
3223 Value *Src = CGF.EmitScalarExpr(E->getSrcExpr());
3224 llvm::Type *DstTy = ConvertType(E->getType());
3225
3226 // Going from vec4->vec3 or vec3->vec4 is a special case and requires
3227 // a shuffle vector instead of a bitcast.
3228 llvm::Type *SrcTy = Src->getType();
3229 if (isa<llvm::VectorType>(DstTy) && isa<llvm::VectorType>(SrcTy)) {
3230 unsigned numElementsDst = cast<llvm::VectorType>(DstTy)->getNumElements();
3231 unsigned numElementsSrc = cast<llvm::VectorType>(SrcTy)->getNumElements();
3232 if ((numElementsDst == 3 && numElementsSrc == 4)
3233 || (numElementsDst == 4 && numElementsSrc == 3)) {
3234
3235
3236 // In the case of going from int4->float3, a bitcast is needed before
3237 // doing a shuffle.
3238 llvm::Type *srcElemTy =
3239 cast<llvm::VectorType>(SrcTy)->getElementType();
3240 llvm::Type *dstElemTy =
3241 cast<llvm::VectorType>(DstTy)->getElementType();
3242
3243 if ((srcElemTy->isIntegerTy() && dstElemTy->isFloatTy())
3244 || (srcElemTy->isFloatTy() && dstElemTy->isIntegerTy())) {
3245 // Create a float type of the same size as the source or destination.
3246 llvm::VectorType *newSrcTy = llvm::VectorType::get(dstElemTy,
3247 numElementsSrc);
3248
3249 Src = Builder.CreateBitCast(Src, newSrcTy, "astypeCast");
3250 }
3251
3252 llvm::Value *UnV = llvm::UndefValue::get(Src->getType());
3253
3254 SmallVector<llvm::Constant*, 3> Args;
3255 Args.push_back(Builder.getInt32(0));
3256 Args.push_back(Builder.getInt32(1));
3257 Args.push_back(Builder.getInt32(2));
3258
3259 if (numElementsDst == 4)
3260 Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
3261
3262 llvm::Constant *Mask = llvm::ConstantVector::get(Args);
3263
3264 return Builder.CreateShuffleVector(Src, UnV, Mask, "astype");
3265 }
3266 }
3267
3268 return Builder.CreateBitCast(Src, DstTy, "astype");
3269 }
3270
VisitAtomicExpr(AtomicExpr * E)3271 Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) {
3272 return CGF.EmitAtomicExpr(E).getScalarVal();
3273 }
3274
3275 //===----------------------------------------------------------------------===//
3276 // Entry Point into this File
3277 //===----------------------------------------------------------------------===//
3278
3279 /// EmitScalarExpr - Emit the computation of the specified expression of scalar
3280 /// type, ignoring the result.
EmitScalarExpr(const Expr * E,bool IgnoreResultAssign)3281 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
3282 assert(E && hasScalarEvaluationKind(E->getType()) &&
3283 "Invalid scalar expression to emit");
3284
3285 if (isa<CXXDefaultArgExpr>(E))
3286 disableDebugInfo();
3287 Value *V = ScalarExprEmitter(*this, IgnoreResultAssign)
3288 .Visit(const_cast<Expr*>(E));
3289 if (isa<CXXDefaultArgExpr>(E))
3290 enableDebugInfo();
3291 return V;
3292 }
3293
3294 /// EmitScalarConversion - Emit a conversion from the specified type to the
3295 /// specified destination type, both of which are LLVM scalar types.
EmitScalarConversion(Value * Src,QualType SrcTy,QualType DstTy)3296 Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
3297 QualType DstTy) {
3298 assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) &&
3299 "Invalid scalar expression to emit");
3300 return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy);
3301 }
3302
3303 /// EmitComplexToScalarConversion - Emit a conversion from the specified complex
3304 /// type to the specified destination type, where the destination type is an
3305 /// LLVM scalar type.
EmitComplexToScalarConversion(ComplexPairTy Src,QualType SrcTy,QualType DstTy)3306 Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
3307 QualType SrcTy,
3308 QualType DstTy) {
3309 assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) &&
3310 "Invalid complex -> scalar conversion");
3311 return ScalarExprEmitter(*this).EmitComplexToScalarConversion(Src, SrcTy,
3312 DstTy);
3313 }
3314
3315
3316 llvm::Value *CodeGenFunction::
EmitScalarPrePostIncDec(const UnaryOperator * E,LValue LV,bool isInc,bool isPre)3317 EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
3318 bool isInc, bool isPre) {
3319 return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre);
3320 }
3321
EmitObjCIsaExpr(const ObjCIsaExpr * E)3322 LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) {
3323 llvm::Value *V;
3324 // object->isa or (*object).isa
3325 // Generate code as for: *(Class*)object
3326 // build Class* type
3327 llvm::Type *ClassPtrTy = ConvertType(E->getType());
3328
3329 Expr *BaseExpr = E->getBase();
3330 if (BaseExpr->isRValue()) {
3331 V = CreateMemTemp(E->getType(), "resval");
3332 llvm::Value *Src = EmitScalarExpr(BaseExpr);
3333 Builder.CreateStore(Src, V);
3334 V = ScalarExprEmitter(*this).EmitLoadOfLValue(
3335 MakeNaturalAlignAddrLValue(V, E->getType()), E->getExprLoc());
3336 } else {
3337 if (E->isArrow())
3338 V = ScalarExprEmitter(*this).EmitLoadOfLValue(BaseExpr);
3339 else
3340 V = EmitLValue(BaseExpr).getAddress();
3341 }
3342
3343 // build Class* type
3344 ClassPtrTy = ClassPtrTy->getPointerTo();
3345 V = Builder.CreateBitCast(V, ClassPtrTy);
3346 return MakeNaturalAlignAddrLValue(V, E->getType());
3347 }
3348
3349
EmitCompoundAssignmentLValue(const CompoundAssignOperator * E)3350 LValue CodeGenFunction::EmitCompoundAssignmentLValue(
3351 const CompoundAssignOperator *E) {
3352 ScalarExprEmitter Scalar(*this);
3353 Value *Result = nullptr;
3354 switch (E->getOpcode()) {
3355 #define COMPOUND_OP(Op) \
3356 case BO_##Op##Assign: \
3357 return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \
3358 Result)
3359 COMPOUND_OP(Mul);
3360 COMPOUND_OP(Div);
3361 COMPOUND_OP(Rem);
3362 COMPOUND_OP(Add);
3363 COMPOUND_OP(Sub);
3364 COMPOUND_OP(Shl);
3365 COMPOUND_OP(Shr);
3366 COMPOUND_OP(And);
3367 COMPOUND_OP(Xor);
3368 COMPOUND_OP(Or);
3369 #undef COMPOUND_OP
3370
3371 case BO_PtrMemD:
3372 case BO_PtrMemI:
3373 case BO_Mul:
3374 case BO_Div:
3375 case BO_Rem:
3376 case BO_Add:
3377 case BO_Sub:
3378 case BO_Shl:
3379 case BO_Shr:
3380 case BO_LT:
3381 case BO_GT:
3382 case BO_LE:
3383 case BO_GE:
3384 case BO_EQ:
3385 case BO_NE:
3386 case BO_And:
3387 case BO_Xor:
3388 case BO_Or:
3389 case BO_LAnd:
3390 case BO_LOr:
3391 case BO_Assign:
3392 case BO_Comma:
3393 llvm_unreachable("Not valid compound assignment operators");
3394 }
3395
3396 llvm_unreachable("Unhandled compound assignment operator");
3397 }
3398