• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGCXXABI.h"
16 #include "CGDebugInfo.h"
17 #include "CGObjCRuntime.h"
18 #include "CodeGenModule.h"
19 #include "clang/AST/ASTContext.h"
20 #include "clang/AST/DeclObjC.h"
21 #include "clang/AST/RecordLayout.h"
22 #include "clang/AST/StmtVisitor.h"
23 #include "clang/Basic/TargetInfo.h"
24 #include "clang/Frontend/CodeGenOptions.h"
25 #include "llvm/IR/CFG.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/DataLayout.h"
28 #include "llvm/IR/Function.h"
29 #include "llvm/IR/GlobalVariable.h"
30 #include "llvm/IR/Intrinsics.h"
31 #include "llvm/IR/Module.h"
32 #include <cstdarg>
33 
34 using namespace clang;
35 using namespace CodeGen;
36 using llvm::Value;
37 
38 //===----------------------------------------------------------------------===//
39 //                         Scalar Expression Emitter
40 //===----------------------------------------------------------------------===//
41 
42 namespace {
43 struct BinOpInfo {
44   Value *LHS;
45   Value *RHS;
46   QualType Ty;  // Computation Type.
47   BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform
48   bool FPContractable;
49   const Expr *E;      // Entire expr, for error unsupported.  May not be binop.
50 };
51 
MustVisitNullValue(const Expr * E)52 static bool MustVisitNullValue(const Expr *E) {
53   // If a null pointer expression's type is the C++0x nullptr_t, then
54   // it's not necessarily a simple constant and it must be evaluated
55   // for its potential side effects.
56   return E->getType()->isNullPtrType();
57 }
58 
59 class ScalarExprEmitter
60   : public StmtVisitor<ScalarExprEmitter, Value*> {
61   CodeGenFunction &CGF;
62   CGBuilderTy &Builder;
63   bool IgnoreResultAssign;
64   llvm::LLVMContext &VMContext;
65 public:
66 
ScalarExprEmitter(CodeGenFunction & cgf,bool ira=false)67   ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
68     : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
69       VMContext(cgf.getLLVMContext()) {
70   }
71 
72   //===--------------------------------------------------------------------===//
73   //                               Utilities
74   //===--------------------------------------------------------------------===//
75 
TestAndClearIgnoreResultAssign()76   bool TestAndClearIgnoreResultAssign() {
77     bool I = IgnoreResultAssign;
78     IgnoreResultAssign = false;
79     return I;
80   }
81 
ConvertType(QualType T)82   llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
EmitLValue(const Expr * E)83   LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
EmitCheckedLValue(const Expr * E,CodeGenFunction::TypeCheckKind TCK)84   LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) {
85     return CGF.EmitCheckedLValue(E, TCK);
86   }
87 
88   void EmitBinOpCheck(Value *Check, const BinOpInfo &Info);
89 
EmitLoadOfLValue(LValue LV,SourceLocation Loc)90   Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
91     return CGF.EmitLoadOfLValue(LV, Loc).getScalarVal();
92   }
93 
94   /// EmitLoadOfLValue - Given an expression with complex type that represents a
95   /// value l-value, this method emits the address of the l-value, then loads
96   /// and returns the result.
EmitLoadOfLValue(const Expr * E)97   Value *EmitLoadOfLValue(const Expr *E) {
98     return EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load),
99                             E->getExprLoc());
100   }
101 
102   /// EmitConversionToBool - Convert the specified expression value to a
103   /// boolean (i1) truth value.  This is equivalent to "Val != 0".
104   Value *EmitConversionToBool(Value *Src, QualType DstTy);
105 
106   /// \brief Emit a check that a conversion to or from a floating-point type
107   /// does not overflow.
108   void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType,
109                                 Value *Src, QualType SrcType,
110                                 QualType DstType, llvm::Type *DstTy);
111 
112   /// EmitScalarConversion - Emit a conversion from the specified type to the
113   /// specified destination type, both of which are LLVM scalar types.
114   Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy);
115 
116   /// EmitComplexToScalarConversion - Emit a conversion from the specified
117   /// complex type to the specified destination type, where the destination type
118   /// is an LLVM scalar type.
119   Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
120                                        QualType SrcTy, QualType DstTy);
121 
122   /// EmitNullValue - Emit a value that corresponds to null for the given type.
123   Value *EmitNullValue(QualType Ty);
124 
125   /// EmitFloatToBoolConversion - Perform an FP to boolean conversion.
EmitFloatToBoolConversion(Value * V)126   Value *EmitFloatToBoolConversion(Value *V) {
127     // Compare against 0.0 for fp scalars.
128     llvm::Value *Zero = llvm::Constant::getNullValue(V->getType());
129     return Builder.CreateFCmpUNE(V, Zero, "tobool");
130   }
131 
132   /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion.
EmitPointerToBoolConversion(Value * V)133   Value *EmitPointerToBoolConversion(Value *V) {
134     Value *Zero = llvm::ConstantPointerNull::get(
135                                       cast<llvm::PointerType>(V->getType()));
136     return Builder.CreateICmpNE(V, Zero, "tobool");
137   }
138 
EmitIntToBoolConversion(Value * V)139   Value *EmitIntToBoolConversion(Value *V) {
140     // Because of the type rules of C, we often end up computing a
141     // logical value, then zero extending it to int, then wanting it
142     // as a logical value again.  Optimize this common case.
143     if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) {
144       if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) {
145         Value *Result = ZI->getOperand(0);
146         // If there aren't any more uses, zap the instruction to save space.
147         // Note that there can be more uses, for example if this
148         // is the result of an assignment.
149         if (ZI->use_empty())
150           ZI->eraseFromParent();
151         return Result;
152       }
153     }
154 
155     return Builder.CreateIsNotNull(V, "tobool");
156   }
157 
158   //===--------------------------------------------------------------------===//
159   //                            Visitor Methods
160   //===--------------------------------------------------------------------===//
161 
Visit(Expr * E)162   Value *Visit(Expr *E) {
163     return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E);
164   }
165 
VisitStmt(Stmt * S)166   Value *VisitStmt(Stmt *S) {
167     S->dump(CGF.getContext().getSourceManager());
168     llvm_unreachable("Stmt can't have complex result type!");
169   }
170   Value *VisitExpr(Expr *S);
171 
VisitParenExpr(ParenExpr * PE)172   Value *VisitParenExpr(ParenExpr *PE) {
173     return Visit(PE->getSubExpr());
174   }
VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr * E)175   Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
176     return Visit(E->getReplacement());
177   }
VisitGenericSelectionExpr(GenericSelectionExpr * GE)178   Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
179     return Visit(GE->getResultExpr());
180   }
181 
182   // Leaves.
VisitIntegerLiteral(const IntegerLiteral * E)183   Value *VisitIntegerLiteral(const IntegerLiteral *E) {
184     return Builder.getInt(E->getValue());
185   }
VisitFloatingLiteral(const FloatingLiteral * E)186   Value *VisitFloatingLiteral(const FloatingLiteral *E) {
187     return llvm::ConstantFP::get(VMContext, E->getValue());
188   }
VisitCharacterLiteral(const CharacterLiteral * E)189   Value *VisitCharacterLiteral(const CharacterLiteral *E) {
190     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
191   }
VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr * E)192   Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
193     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
194   }
VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr * E)195   Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
196     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
197   }
VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr * E)198   Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
199     return EmitNullValue(E->getType());
200   }
VisitGNUNullExpr(const GNUNullExpr * E)201   Value *VisitGNUNullExpr(const GNUNullExpr *E) {
202     return EmitNullValue(E->getType());
203   }
204   Value *VisitOffsetOfExpr(OffsetOfExpr *E);
205   Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
VisitAddrLabelExpr(const AddrLabelExpr * E)206   Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
207     llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel());
208     return Builder.CreateBitCast(V, ConvertType(E->getType()));
209   }
210 
VisitSizeOfPackExpr(SizeOfPackExpr * E)211   Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) {
212     return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength());
213   }
214 
VisitPseudoObjectExpr(PseudoObjectExpr * E)215   Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) {
216     return CGF.EmitPseudoObjectRValue(E).getScalarVal();
217   }
218 
VisitOpaqueValueExpr(OpaqueValueExpr * E)219   Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) {
220     if (E->isGLValue())
221       return EmitLoadOfLValue(CGF.getOpaqueLValueMapping(E), E->getExprLoc());
222 
223     // Otherwise, assume the mapping is the scalar directly.
224     return CGF.getOpaqueRValueMapping(E).getScalarVal();
225   }
226 
227   // l-values.
VisitDeclRefExpr(DeclRefExpr * E)228   Value *VisitDeclRefExpr(DeclRefExpr *E) {
229     if (CodeGenFunction::ConstantEmission result = CGF.tryEmitAsConstant(E)) {
230       if (result.isReference())
231         return EmitLoadOfLValue(result.getReferenceLValue(CGF, E),
232                                 E->getExprLoc());
233       return result.getValue();
234     }
235     return EmitLoadOfLValue(E);
236   }
237 
VisitObjCSelectorExpr(ObjCSelectorExpr * E)238   Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
239     return CGF.EmitObjCSelectorExpr(E);
240   }
VisitObjCProtocolExpr(ObjCProtocolExpr * E)241   Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
242     return CGF.EmitObjCProtocolExpr(E);
243   }
VisitObjCIvarRefExpr(ObjCIvarRefExpr * E)244   Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
245     return EmitLoadOfLValue(E);
246   }
VisitObjCMessageExpr(ObjCMessageExpr * E)247   Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
248     if (E->getMethodDecl() &&
249         E->getMethodDecl()->getReturnType()->isReferenceType())
250       return EmitLoadOfLValue(E);
251     return CGF.EmitObjCMessageExpr(E).getScalarVal();
252   }
253 
VisitObjCIsaExpr(ObjCIsaExpr * E)254   Value *VisitObjCIsaExpr(ObjCIsaExpr *E) {
255     LValue LV = CGF.EmitObjCIsaExpr(E);
256     Value *V = CGF.EmitLoadOfLValue(LV, E->getExprLoc()).getScalarVal();
257     return V;
258   }
259 
260   Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
261   Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
262   Value *VisitConvertVectorExpr(ConvertVectorExpr *E);
263   Value *VisitMemberExpr(MemberExpr *E);
VisitExtVectorElementExpr(Expr * E)264   Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
VisitCompoundLiteralExpr(CompoundLiteralExpr * E)265   Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
266     return EmitLoadOfLValue(E);
267   }
268 
269   Value *VisitInitListExpr(InitListExpr *E);
270 
VisitImplicitValueInitExpr(const ImplicitValueInitExpr * E)271   Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
272     return EmitNullValue(E->getType());
273   }
VisitExplicitCastExpr(ExplicitCastExpr * E)274   Value *VisitExplicitCastExpr(ExplicitCastExpr *E) {
275     if (E->getType()->isVariablyModifiedType())
276       CGF.EmitVariablyModifiedType(E->getType());
277     return VisitCastExpr(E);
278   }
279   Value *VisitCastExpr(CastExpr *E);
280 
VisitCallExpr(const CallExpr * E)281   Value *VisitCallExpr(const CallExpr *E) {
282     if (E->getCallReturnType()->isReferenceType())
283       return EmitLoadOfLValue(E);
284 
285     return CGF.EmitCallExpr(E).getScalarVal();
286   }
287 
288   Value *VisitStmtExpr(const StmtExpr *E);
289 
290   // Unary Operators.
VisitUnaryPostDec(const UnaryOperator * E)291   Value *VisitUnaryPostDec(const UnaryOperator *E) {
292     LValue LV = EmitLValue(E->getSubExpr());
293     return EmitScalarPrePostIncDec(E, LV, false, false);
294   }
VisitUnaryPostInc(const UnaryOperator * E)295   Value *VisitUnaryPostInc(const UnaryOperator *E) {
296     LValue LV = EmitLValue(E->getSubExpr());
297     return EmitScalarPrePostIncDec(E, LV, true, false);
298   }
VisitUnaryPreDec(const UnaryOperator * E)299   Value *VisitUnaryPreDec(const UnaryOperator *E) {
300     LValue LV = EmitLValue(E->getSubExpr());
301     return EmitScalarPrePostIncDec(E, LV, false, true);
302   }
VisitUnaryPreInc(const UnaryOperator * E)303   Value *VisitUnaryPreInc(const UnaryOperator *E) {
304     LValue LV = EmitLValue(E->getSubExpr());
305     return EmitScalarPrePostIncDec(E, LV, true, true);
306   }
307 
308   llvm::Value *EmitAddConsiderOverflowBehavior(const UnaryOperator *E,
309                                                llvm::Value *InVal,
310                                                llvm::Value *NextVal,
311                                                bool IsInc);
312 
313   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
314                                        bool isInc, bool isPre);
315 
316 
VisitUnaryAddrOf(const UnaryOperator * E)317   Value *VisitUnaryAddrOf(const UnaryOperator *E) {
318     if (isa<MemberPointerType>(E->getType())) // never sugared
319       return CGF.CGM.getMemberPointerConstant(E);
320 
321     return EmitLValue(E->getSubExpr()).getAddress();
322   }
VisitUnaryDeref(const UnaryOperator * E)323   Value *VisitUnaryDeref(const UnaryOperator *E) {
324     if (E->getType()->isVoidType())
325       return Visit(E->getSubExpr()); // the actual value should be unused
326     return EmitLoadOfLValue(E);
327   }
VisitUnaryPlus(const UnaryOperator * E)328   Value *VisitUnaryPlus(const UnaryOperator *E) {
329     // This differs from gcc, though, most likely due to a bug in gcc.
330     TestAndClearIgnoreResultAssign();
331     return Visit(E->getSubExpr());
332   }
333   Value *VisitUnaryMinus    (const UnaryOperator *E);
334   Value *VisitUnaryNot      (const UnaryOperator *E);
335   Value *VisitUnaryLNot     (const UnaryOperator *E);
336   Value *VisitUnaryReal     (const UnaryOperator *E);
337   Value *VisitUnaryImag     (const UnaryOperator *E);
VisitUnaryExtension(const UnaryOperator * E)338   Value *VisitUnaryExtension(const UnaryOperator *E) {
339     return Visit(E->getSubExpr());
340   }
341 
342   // C++
VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr * E)343   Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) {
344     return EmitLoadOfLValue(E);
345   }
346 
VisitCXXDefaultArgExpr(CXXDefaultArgExpr * DAE)347   Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
348     return Visit(DAE->getExpr());
349   }
VisitCXXDefaultInitExpr(CXXDefaultInitExpr * DIE)350   Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
351     CodeGenFunction::CXXDefaultInitExprScope Scope(CGF);
352     return Visit(DIE->getExpr());
353   }
VisitCXXThisExpr(CXXThisExpr * TE)354   Value *VisitCXXThisExpr(CXXThisExpr *TE) {
355     return CGF.LoadCXXThis();
356   }
357 
VisitExprWithCleanups(ExprWithCleanups * E)358   Value *VisitExprWithCleanups(ExprWithCleanups *E) {
359     CGF.enterFullExpression(E);
360     CodeGenFunction::RunCleanupsScope Scope(CGF);
361     auto *V = Visit(E->getSubExpr());
362     if (CGDebugInfo *DI = CGF.getDebugInfo())
363       DI->EmitLocation(Builder, E->getLocEnd(), false);
364     return V;
365   }
VisitCXXNewExpr(const CXXNewExpr * E)366   Value *VisitCXXNewExpr(const CXXNewExpr *E) {
367     return CGF.EmitCXXNewExpr(E);
368   }
VisitCXXDeleteExpr(const CXXDeleteExpr * E)369   Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
370     CGF.EmitCXXDeleteExpr(E);
371     return nullptr;
372   }
373 
VisitTypeTraitExpr(const TypeTraitExpr * E)374   Value *VisitTypeTraitExpr(const TypeTraitExpr *E) {
375     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
376   }
377 
VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr * E)378   Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
379     return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue());
380   }
381 
VisitExpressionTraitExpr(const ExpressionTraitExpr * E)382   Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
383     return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue());
384   }
385 
VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr * E)386   Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
387     // C++ [expr.pseudo]p1:
388     //   The result shall only be used as the operand for the function call
389     //   operator (), and the result of such a call has type void. The only
390     //   effect is the evaluation of the postfix-expression before the dot or
391     //   arrow.
392     CGF.EmitScalarExpr(E->getBase());
393     return nullptr;
394   }
395 
VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr * E)396   Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
397     return EmitNullValue(E->getType());
398   }
399 
VisitCXXThrowExpr(const CXXThrowExpr * E)400   Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
401     CGF.EmitCXXThrowExpr(E);
402     return nullptr;
403   }
404 
VisitCXXNoexceptExpr(const CXXNoexceptExpr * E)405   Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
406     return Builder.getInt1(E->getValue());
407   }
408 
409   // Binary Operators.
EmitMul(const BinOpInfo & Ops)410   Value *EmitMul(const BinOpInfo &Ops) {
411     if (Ops.Ty->isSignedIntegerOrEnumerationType()) {
412       switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
413       case LangOptions::SOB_Defined:
414         return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
415       case LangOptions::SOB_Undefined:
416         if (!CGF.SanOpts->SignedIntegerOverflow)
417           return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
418         // Fall through.
419       case LangOptions::SOB_Trapping:
420         return EmitOverflowCheckedBinOp(Ops);
421       }
422     }
423 
424     if (Ops.Ty->isUnsignedIntegerType() && CGF.SanOpts->UnsignedIntegerOverflow)
425       return EmitOverflowCheckedBinOp(Ops);
426 
427     if (Ops.LHS->getType()->isFPOrFPVectorTy())
428       return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
429     return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
430   }
431   /// Create a binary op that checks for overflow.
432   /// Currently only supports +, - and *.
433   Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
434 
435   // Check for undefined division and modulus behaviors.
436   void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops,
437                                                   llvm::Value *Zero,bool isDiv);
438   // Common helper for getting how wide LHS of shift is.
439   static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS);
440   Value *EmitDiv(const BinOpInfo &Ops);
441   Value *EmitRem(const BinOpInfo &Ops);
442   Value *EmitAdd(const BinOpInfo &Ops);
443   Value *EmitSub(const BinOpInfo &Ops);
444   Value *EmitShl(const BinOpInfo &Ops);
445   Value *EmitShr(const BinOpInfo &Ops);
EmitAnd(const BinOpInfo & Ops)446   Value *EmitAnd(const BinOpInfo &Ops) {
447     return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
448   }
EmitXor(const BinOpInfo & Ops)449   Value *EmitXor(const BinOpInfo &Ops) {
450     return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
451   }
EmitOr(const BinOpInfo & Ops)452   Value *EmitOr (const BinOpInfo &Ops) {
453     return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
454   }
455 
456   BinOpInfo EmitBinOps(const BinaryOperator *E);
457   LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
458                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &),
459                                   Value *&Result);
460 
461   Value *EmitCompoundAssign(const CompoundAssignOperator *E,
462                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
463 
464   // Binary operators and binary compound assignment operators.
465 #define HANDLEBINOP(OP) \
466   Value *VisitBin ## OP(const BinaryOperator *E) {                         \
467     return Emit ## OP(EmitBinOps(E));                                      \
468   }                                                                        \
469   Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) {       \
470     return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP);          \
471   }
472   HANDLEBINOP(Mul)
473   HANDLEBINOP(Div)
474   HANDLEBINOP(Rem)
475   HANDLEBINOP(Add)
476   HANDLEBINOP(Sub)
477   HANDLEBINOP(Shl)
478   HANDLEBINOP(Shr)
479   HANDLEBINOP(And)
480   HANDLEBINOP(Xor)
481   HANDLEBINOP(Or)
482 #undef HANDLEBINOP
483 
484   // Comparisons.
485   Value *EmitCompare(const BinaryOperator *E, unsigned UICmpOpc,
486                      unsigned SICmpOpc, unsigned FCmpOpc);
487 #define VISITCOMP(CODE, UI, SI, FP) \
488     Value *VisitBin##CODE(const BinaryOperator *E) { \
489       return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
490                          llvm::FCmpInst::FP); }
491   VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT)
492   VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT)
493   VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE)
494   VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE)
495   VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ)
496   VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE)
497 #undef VISITCOMP
498 
499   Value *VisitBinAssign     (const BinaryOperator *E);
500 
501   Value *VisitBinLAnd       (const BinaryOperator *E);
502   Value *VisitBinLOr        (const BinaryOperator *E);
503   Value *VisitBinComma      (const BinaryOperator *E);
504 
VisitBinPtrMemD(const Expr * E)505   Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); }
VisitBinPtrMemI(const Expr * E)506   Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); }
507 
508   // Other Operators.
509   Value *VisitBlockExpr(const BlockExpr *BE);
510   Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *);
511   Value *VisitChooseExpr(ChooseExpr *CE);
512   Value *VisitVAArgExpr(VAArgExpr *VE);
VisitObjCStringLiteral(const ObjCStringLiteral * E)513   Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
514     return CGF.EmitObjCStringLiteral(E);
515   }
VisitObjCBoxedExpr(ObjCBoxedExpr * E)516   Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) {
517     return CGF.EmitObjCBoxedExpr(E);
518   }
VisitObjCArrayLiteral(ObjCArrayLiteral * E)519   Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) {
520     return CGF.EmitObjCArrayLiteral(E);
521   }
VisitObjCDictionaryLiteral(ObjCDictionaryLiteral * E)522   Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) {
523     return CGF.EmitObjCDictionaryLiteral(E);
524   }
525   Value *VisitAsTypeExpr(AsTypeExpr *CE);
526   Value *VisitAtomicExpr(AtomicExpr *AE);
527 };
528 }  // end anonymous namespace.
529 
530 //===----------------------------------------------------------------------===//
531 //                                Utilities
532 //===----------------------------------------------------------------------===//
533 
534 /// EmitConversionToBool - Convert the specified expression value to a
535 /// boolean (i1) truth value.  This is equivalent to "Val != 0".
EmitConversionToBool(Value * Src,QualType SrcType)536 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
537   assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs");
538 
539   if (SrcType->isRealFloatingType())
540     return EmitFloatToBoolConversion(Src);
541 
542   if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType))
543     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT);
544 
545   assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
546          "Unknown scalar type to convert");
547 
548   if (isa<llvm::IntegerType>(Src->getType()))
549     return EmitIntToBoolConversion(Src);
550 
551   assert(isa<llvm::PointerType>(Src->getType()));
552   return EmitPointerToBoolConversion(Src);
553 }
554 
EmitFloatConversionCheck(Value * OrigSrc,QualType OrigSrcType,Value * Src,QualType SrcType,QualType DstType,llvm::Type * DstTy)555 void ScalarExprEmitter::EmitFloatConversionCheck(Value *OrigSrc,
556                                                  QualType OrigSrcType,
557                                                  Value *Src, QualType SrcType,
558                                                  QualType DstType,
559                                                  llvm::Type *DstTy) {
560   using llvm::APFloat;
561   using llvm::APSInt;
562 
563   llvm::Type *SrcTy = Src->getType();
564 
565   llvm::Value *Check = nullptr;
566   if (llvm::IntegerType *IntTy = dyn_cast<llvm::IntegerType>(SrcTy)) {
567     // Integer to floating-point. This can fail for unsigned short -> __half
568     // or unsigned __int128 -> float.
569     assert(DstType->isFloatingType());
570     bool SrcIsUnsigned = OrigSrcType->isUnsignedIntegerOrEnumerationType();
571 
572     APFloat LargestFloat =
573       APFloat::getLargest(CGF.getContext().getFloatTypeSemantics(DstType));
574     APSInt LargestInt(IntTy->getBitWidth(), SrcIsUnsigned);
575 
576     bool IsExact;
577     if (LargestFloat.convertToInteger(LargestInt, APFloat::rmTowardZero,
578                                       &IsExact) != APFloat::opOK)
579       // The range of representable values of this floating point type includes
580       // all values of this integer type. Don't need an overflow check.
581       return;
582 
583     llvm::Value *Max = llvm::ConstantInt::get(VMContext, LargestInt);
584     if (SrcIsUnsigned)
585       Check = Builder.CreateICmpULE(Src, Max);
586     else {
587       llvm::Value *Min = llvm::ConstantInt::get(VMContext, -LargestInt);
588       llvm::Value *GE = Builder.CreateICmpSGE(Src, Min);
589       llvm::Value *LE = Builder.CreateICmpSLE(Src, Max);
590       Check = Builder.CreateAnd(GE, LE);
591     }
592   } else {
593     const llvm::fltSemantics &SrcSema =
594       CGF.getContext().getFloatTypeSemantics(OrigSrcType);
595     if (isa<llvm::IntegerType>(DstTy)) {
596       // Floating-point to integer. This has undefined behavior if the source is
597       // +-Inf, NaN, or doesn't fit into the destination type (after truncation
598       // to an integer).
599       unsigned Width = CGF.getContext().getIntWidth(DstType);
600       bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType();
601 
602       APSInt Min = APSInt::getMinValue(Width, Unsigned);
603       APFloat MinSrc(SrcSema, APFloat::uninitialized);
604       if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) &
605           APFloat::opOverflow)
606         // Don't need an overflow check for lower bound. Just check for
607         // -Inf/NaN.
608         MinSrc = APFloat::getInf(SrcSema, true);
609       else
610         // Find the largest value which is too small to represent (before
611         // truncation toward zero).
612         MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative);
613 
614       APSInt Max = APSInt::getMaxValue(Width, Unsigned);
615       APFloat MaxSrc(SrcSema, APFloat::uninitialized);
616       if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) &
617           APFloat::opOverflow)
618         // Don't need an overflow check for upper bound. Just check for
619         // +Inf/NaN.
620         MaxSrc = APFloat::getInf(SrcSema, false);
621       else
622         // Find the smallest value which is too large to represent (before
623         // truncation toward zero).
624         MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive);
625 
626       // If we're converting from __half, convert the range to float to match
627       // the type of src.
628       if (OrigSrcType->isHalfType()) {
629         const llvm::fltSemantics &Sema =
630           CGF.getContext().getFloatTypeSemantics(SrcType);
631         bool IsInexact;
632         MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
633         MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
634       }
635 
636       llvm::Value *GE =
637         Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc));
638       llvm::Value *LE =
639         Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc));
640       Check = Builder.CreateAnd(GE, LE);
641     } else {
642       // FIXME: Maybe split this sanitizer out from float-cast-overflow.
643       //
644       // Floating-point to floating-point. This has undefined behavior if the
645       // source is not in the range of representable values of the destination
646       // type. The C and C++ standards are spectacularly unclear here. We
647       // diagnose finite out-of-range conversions, but allow infinities and NaNs
648       // to convert to the corresponding value in the smaller type.
649       //
650       // C11 Annex F gives all such conversions defined behavior for IEC 60559
651       // conforming implementations. Unfortunately, LLVM's fptrunc instruction
652       // does not.
653 
654       // Converting from a lower rank to a higher rank can never have
655       // undefined behavior, since higher-rank types must have a superset
656       // of values of lower-rank types.
657       if (CGF.getContext().getFloatingTypeOrder(OrigSrcType, DstType) != 1)
658         return;
659 
660       assert(!OrigSrcType->isHalfType() &&
661              "should not check conversion from __half, it has the lowest rank");
662 
663       const llvm::fltSemantics &DstSema =
664         CGF.getContext().getFloatTypeSemantics(DstType);
665       APFloat MinBad = APFloat::getLargest(DstSema, false);
666       APFloat MaxBad = APFloat::getInf(DstSema, false);
667 
668       bool IsInexact;
669       MinBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact);
670       MaxBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact);
671 
672       Value *AbsSrc = CGF.EmitNounwindRuntimeCall(
673         CGF.CGM.getIntrinsic(llvm::Intrinsic::fabs, Src->getType()), Src);
674       llvm::Value *GE =
675         Builder.CreateFCmpOGT(AbsSrc, llvm::ConstantFP::get(VMContext, MinBad));
676       llvm::Value *LE =
677         Builder.CreateFCmpOLT(AbsSrc, llvm::ConstantFP::get(VMContext, MaxBad));
678       Check = Builder.CreateNot(Builder.CreateAnd(GE, LE));
679     }
680   }
681 
682   // FIXME: Provide a SourceLocation.
683   llvm::Constant *StaticArgs[] = {
684     CGF.EmitCheckTypeDescriptor(OrigSrcType),
685     CGF.EmitCheckTypeDescriptor(DstType)
686   };
687   CGF.EmitCheck(Check, "float_cast_overflow", StaticArgs, OrigSrc,
688                 CodeGenFunction::CRK_Recoverable);
689 }
690 
691 /// EmitScalarConversion - Emit a conversion from the specified type to the
692 /// specified destination type, both of which are LLVM scalar types.
EmitScalarConversion(Value * Src,QualType SrcType,QualType DstType)693 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
694                                                QualType DstType) {
695   SrcType = CGF.getContext().getCanonicalType(SrcType);
696   DstType = CGF.getContext().getCanonicalType(DstType);
697   if (SrcType == DstType) return Src;
698 
699   if (DstType->isVoidType()) return nullptr;
700 
701   llvm::Value *OrigSrc = Src;
702   QualType OrigSrcType = SrcType;
703   llvm::Type *SrcTy = Src->getType();
704 
705   // If casting to/from storage-only half FP, use special intrinsics.
706   if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
707     Src = Builder.CreateCall(CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16), Src);
708     SrcType = CGF.getContext().FloatTy;
709     SrcTy = CGF.FloatTy;
710   }
711 
712   // Handle conversions to bool first, they are special: comparisons against 0.
713   if (DstType->isBooleanType())
714     return EmitConversionToBool(Src, SrcType);
715 
716   llvm::Type *DstTy = ConvertType(DstType);
717 
718   // Ignore conversions like int -> uint.
719   if (SrcTy == DstTy)
720     return Src;
721 
722   // Handle pointer conversions next: pointers can only be converted to/from
723   // other pointers and integers. Check for pointer types in terms of LLVM, as
724   // some native types (like Obj-C id) may map to a pointer type.
725   if (isa<llvm::PointerType>(DstTy)) {
726     // The source value may be an integer, or a pointer.
727     if (isa<llvm::PointerType>(SrcTy))
728       return Builder.CreateBitCast(Src, DstTy, "conv");
729 
730     assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
731     // First, convert to the correct width so that we control the kind of
732     // extension.
733     llvm::Type *MiddleTy = CGF.IntPtrTy;
734     bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
735     llvm::Value* IntResult =
736         Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
737     // Then, cast to pointer.
738     return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
739   }
740 
741   if (isa<llvm::PointerType>(SrcTy)) {
742     // Must be an ptr to int cast.
743     assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
744     return Builder.CreatePtrToInt(Src, DstTy, "conv");
745   }
746 
747   // A scalar can be splatted to an extended vector of the same element type
748   if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
749     // Cast the scalar to element type
750     QualType EltTy = DstType->getAs<ExtVectorType>()->getElementType();
751     llvm::Value *Elt = EmitScalarConversion(Src, SrcType, EltTy);
752 
753     // Splat the element across to all elements
754     unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
755     return Builder.CreateVectorSplat(NumElements, Elt, "splat");
756   }
757 
758   // Allow bitcast from vector to integer/fp of the same size.
759   if (isa<llvm::VectorType>(SrcTy) ||
760       isa<llvm::VectorType>(DstTy))
761     return Builder.CreateBitCast(Src, DstTy, "conv");
762 
763   // Finally, we have the arithmetic types: real int/float.
764   Value *Res = nullptr;
765   llvm::Type *ResTy = DstTy;
766 
767   // An overflowing conversion has undefined behavior if either the source type
768   // or the destination type is a floating-point type.
769   if (CGF.SanOpts->FloatCastOverflow &&
770       (OrigSrcType->isFloatingType() || DstType->isFloatingType()))
771     EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType,
772                              DstTy);
773 
774   // Cast to half via float
775   if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType)
776     DstTy = CGF.FloatTy;
777 
778   if (isa<llvm::IntegerType>(SrcTy)) {
779     bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
780     if (isa<llvm::IntegerType>(DstTy))
781       Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
782     else if (InputSigned)
783       Res = Builder.CreateSIToFP(Src, DstTy, "conv");
784     else
785       Res = Builder.CreateUIToFP(Src, DstTy, "conv");
786   } else if (isa<llvm::IntegerType>(DstTy)) {
787     assert(SrcTy->isFloatingPointTy() && "Unknown real conversion");
788     if (DstType->isSignedIntegerOrEnumerationType())
789       Res = Builder.CreateFPToSI(Src, DstTy, "conv");
790     else
791       Res = Builder.CreateFPToUI(Src, DstTy, "conv");
792   } else {
793     assert(SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy() &&
794            "Unknown real conversion");
795     if (DstTy->getTypeID() < SrcTy->getTypeID())
796       Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
797     else
798       Res = Builder.CreateFPExt(Src, DstTy, "conv");
799   }
800 
801   if (DstTy != ResTy) {
802     assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion");
803     Res = Builder.CreateCall(CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16), Res);
804   }
805 
806   return Res;
807 }
808 
809 /// EmitComplexToScalarConversion - Emit a conversion from the specified complex
810 /// type to the specified destination type, where the destination type is an
811 /// LLVM scalar type.
812 Value *ScalarExprEmitter::
EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,QualType SrcTy,QualType DstTy)813 EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
814                               QualType SrcTy, QualType DstTy) {
815   // Get the source element type.
816   SrcTy = SrcTy->castAs<ComplexType>()->getElementType();
817 
818   // Handle conversions to bool first, they are special: comparisons against 0.
819   if (DstTy->isBooleanType()) {
820     //  Complex != 0  -> (Real != 0) | (Imag != 0)
821     Src.first  = EmitScalarConversion(Src.first, SrcTy, DstTy);
822     Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy);
823     return Builder.CreateOr(Src.first, Src.second, "tobool");
824   }
825 
826   // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
827   // the imaginary part of the complex value is discarded and the value of the
828   // real part is converted according to the conversion rules for the
829   // corresponding real type.
830   return EmitScalarConversion(Src.first, SrcTy, DstTy);
831 }
832 
EmitNullValue(QualType Ty)833 Value *ScalarExprEmitter::EmitNullValue(QualType Ty) {
834   return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty);
835 }
836 
837 /// \brief Emit a sanitization check for the given "binary" operation (which
838 /// might actually be a unary increment which has been lowered to a binary
839 /// operation). The check passes if \p Check, which is an \c i1, is \c true.
EmitBinOpCheck(Value * Check,const BinOpInfo & Info)840 void ScalarExprEmitter::EmitBinOpCheck(Value *Check, const BinOpInfo &Info) {
841   StringRef CheckName;
842   SmallVector<llvm::Constant *, 4> StaticData;
843   SmallVector<llvm::Value *, 2> DynamicData;
844 
845   BinaryOperatorKind Opcode = Info.Opcode;
846   if (BinaryOperator::isCompoundAssignmentOp(Opcode))
847     Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode);
848 
849   StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc()));
850   const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E);
851   if (UO && UO->getOpcode() == UO_Minus) {
852     CheckName = "negate_overflow";
853     StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType()));
854     DynamicData.push_back(Info.RHS);
855   } else {
856     if (BinaryOperator::isShiftOp(Opcode)) {
857       // Shift LHS negative or too large, or RHS out of bounds.
858       CheckName = "shift_out_of_bounds";
859       const BinaryOperator *BO = cast<BinaryOperator>(Info.E);
860       StaticData.push_back(
861         CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType()));
862       StaticData.push_back(
863         CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType()));
864     } else if (Opcode == BO_Div || Opcode == BO_Rem) {
865       // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1).
866       CheckName = "divrem_overflow";
867       StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
868     } else {
869       // Signed arithmetic overflow (+, -, *).
870       switch (Opcode) {
871       case BO_Add: CheckName = "add_overflow"; break;
872       case BO_Sub: CheckName = "sub_overflow"; break;
873       case BO_Mul: CheckName = "mul_overflow"; break;
874       default: llvm_unreachable("unexpected opcode for bin op check");
875       }
876       StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
877     }
878     DynamicData.push_back(Info.LHS);
879     DynamicData.push_back(Info.RHS);
880   }
881 
882   CGF.EmitCheck(Check, CheckName, StaticData, DynamicData,
883                 CodeGenFunction::CRK_Recoverable);
884 }
885 
886 //===----------------------------------------------------------------------===//
887 //                            Visitor Methods
888 //===----------------------------------------------------------------------===//
889 
VisitExpr(Expr * E)890 Value *ScalarExprEmitter::VisitExpr(Expr *E) {
891   CGF.ErrorUnsupported(E, "scalar expression");
892   if (E->getType()->isVoidType())
893     return nullptr;
894   return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
895 }
896 
VisitShuffleVectorExpr(ShuffleVectorExpr * E)897 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
898   // Vector Mask Case
899   if (E->getNumSubExprs() == 2 ||
900       (E->getNumSubExprs() == 3 && E->getExpr(2)->getType()->isVectorType())) {
901     Value *LHS = CGF.EmitScalarExpr(E->getExpr(0));
902     Value *RHS = CGF.EmitScalarExpr(E->getExpr(1));
903     Value *Mask;
904 
905     llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType());
906     unsigned LHSElts = LTy->getNumElements();
907 
908     if (E->getNumSubExprs() == 3) {
909       Mask = CGF.EmitScalarExpr(E->getExpr(2));
910 
911       // Shuffle LHS & RHS into one input vector.
912       SmallVector<llvm::Constant*, 32> concat;
913       for (unsigned i = 0; i != LHSElts; ++i) {
914         concat.push_back(Builder.getInt32(2*i));
915         concat.push_back(Builder.getInt32(2*i+1));
916       }
917 
918       Value* CV = llvm::ConstantVector::get(concat);
919       LHS = Builder.CreateShuffleVector(LHS, RHS, CV, "concat");
920       LHSElts *= 2;
921     } else {
922       Mask = RHS;
923     }
924 
925     llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType());
926     llvm::Constant* EltMask;
927 
928     EltMask = llvm::ConstantInt::get(MTy->getElementType(),
929                                      llvm::NextPowerOf2(LHSElts-1)-1);
930 
931     // Mask off the high bits of each shuffle index.
932     Value *MaskBits = llvm::ConstantVector::getSplat(MTy->getNumElements(),
933                                                      EltMask);
934     Mask = Builder.CreateAnd(Mask, MaskBits, "mask");
935 
936     // newv = undef
937     // mask = mask & maskbits
938     // for each elt
939     //   n = extract mask i
940     //   x = extract val n
941     //   newv = insert newv, x, i
942     llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(),
943                                                   MTy->getNumElements());
944     Value* NewV = llvm::UndefValue::get(RTy);
945     for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) {
946       Value *IIndx = llvm::ConstantInt::get(CGF.SizeTy, i);
947       Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx");
948 
949       Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt");
950       NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins");
951     }
952     return NewV;
953   }
954 
955   Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
956   Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
957 
958   SmallVector<llvm::Constant*, 32> indices;
959   for (unsigned i = 2; i < E->getNumSubExprs(); ++i) {
960     llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2);
961     // Check for -1 and output it as undef in the IR.
962     if (Idx.isSigned() && Idx.isAllOnesValue())
963       indices.push_back(llvm::UndefValue::get(CGF.Int32Ty));
964     else
965       indices.push_back(Builder.getInt32(Idx.getZExtValue()));
966   }
967 
968   Value *SV = llvm::ConstantVector::get(indices);
969   return Builder.CreateShuffleVector(V1, V2, SV, "shuffle");
970 }
971 
VisitConvertVectorExpr(ConvertVectorExpr * E)972 Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) {
973   QualType SrcType = E->getSrcExpr()->getType(),
974            DstType = E->getType();
975 
976   Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
977 
978   SrcType = CGF.getContext().getCanonicalType(SrcType);
979   DstType = CGF.getContext().getCanonicalType(DstType);
980   if (SrcType == DstType) return Src;
981 
982   assert(SrcType->isVectorType() &&
983          "ConvertVector source type must be a vector");
984   assert(DstType->isVectorType() &&
985          "ConvertVector destination type must be a vector");
986 
987   llvm::Type *SrcTy = Src->getType();
988   llvm::Type *DstTy = ConvertType(DstType);
989 
990   // Ignore conversions like int -> uint.
991   if (SrcTy == DstTy)
992     return Src;
993 
994   QualType SrcEltType = SrcType->getAs<VectorType>()->getElementType(),
995            DstEltType = DstType->getAs<VectorType>()->getElementType();
996 
997   assert(SrcTy->isVectorTy() &&
998          "ConvertVector source IR type must be a vector");
999   assert(DstTy->isVectorTy() &&
1000          "ConvertVector destination IR type must be a vector");
1001 
1002   llvm::Type *SrcEltTy = SrcTy->getVectorElementType(),
1003              *DstEltTy = DstTy->getVectorElementType();
1004 
1005   if (DstEltType->isBooleanType()) {
1006     assert((SrcEltTy->isFloatingPointTy() ||
1007             isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion");
1008 
1009     llvm::Value *Zero = llvm::Constant::getNullValue(SrcTy);
1010     if (SrcEltTy->isFloatingPointTy()) {
1011       return Builder.CreateFCmpUNE(Src, Zero, "tobool");
1012     } else {
1013       return Builder.CreateICmpNE(Src, Zero, "tobool");
1014     }
1015   }
1016 
1017   // We have the arithmetic types: real int/float.
1018   Value *Res = nullptr;
1019 
1020   if (isa<llvm::IntegerType>(SrcEltTy)) {
1021     bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType();
1022     if (isa<llvm::IntegerType>(DstEltTy))
1023       Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
1024     else if (InputSigned)
1025       Res = Builder.CreateSIToFP(Src, DstTy, "conv");
1026     else
1027       Res = Builder.CreateUIToFP(Src, DstTy, "conv");
1028   } else if (isa<llvm::IntegerType>(DstEltTy)) {
1029     assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion");
1030     if (DstEltType->isSignedIntegerOrEnumerationType())
1031       Res = Builder.CreateFPToSI(Src, DstTy, "conv");
1032     else
1033       Res = Builder.CreateFPToUI(Src, DstTy, "conv");
1034   } else {
1035     assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() &&
1036            "Unknown real conversion");
1037     if (DstEltTy->getTypeID() < SrcEltTy->getTypeID())
1038       Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
1039     else
1040       Res = Builder.CreateFPExt(Src, DstTy, "conv");
1041   }
1042 
1043   return Res;
1044 }
1045 
VisitMemberExpr(MemberExpr * E)1046 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) {
1047   llvm::APSInt Value;
1048   if (E->EvaluateAsInt(Value, CGF.getContext(), Expr::SE_AllowSideEffects)) {
1049     if (E->isArrow())
1050       CGF.EmitScalarExpr(E->getBase());
1051     else
1052       EmitLValue(E->getBase());
1053     return Builder.getInt(Value);
1054   }
1055 
1056   return EmitLoadOfLValue(E);
1057 }
1058 
VisitArraySubscriptExpr(ArraySubscriptExpr * E)1059 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
1060   TestAndClearIgnoreResultAssign();
1061 
1062   // Emit subscript expressions in rvalue context's.  For most cases, this just
1063   // loads the lvalue formed by the subscript expr.  However, we have to be
1064   // careful, because the base of a vector subscript is occasionally an rvalue,
1065   // so we can't get it as an lvalue.
1066   if (!E->getBase()->getType()->isVectorType())
1067     return EmitLoadOfLValue(E);
1068 
1069   // Handle the vector case.  The base must be a vector, the index must be an
1070   // integer value.
1071   Value *Base = Visit(E->getBase());
1072   Value *Idx  = Visit(E->getIdx());
1073   QualType IdxTy = E->getIdx()->getType();
1074 
1075   if (CGF.SanOpts->ArrayBounds)
1076     CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true);
1077 
1078   return Builder.CreateExtractElement(Base, Idx, "vecext");
1079 }
1080 
getMaskElt(llvm::ShuffleVectorInst * SVI,unsigned Idx,unsigned Off,llvm::Type * I32Ty)1081 static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
1082                                   unsigned Off, llvm::Type *I32Ty) {
1083   int MV = SVI->getMaskValue(Idx);
1084   if (MV == -1)
1085     return llvm::UndefValue::get(I32Ty);
1086   return llvm::ConstantInt::get(I32Ty, Off+MV);
1087 }
1088 
VisitInitListExpr(InitListExpr * E)1089 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
1090   bool Ignore = TestAndClearIgnoreResultAssign();
1091   (void)Ignore;
1092   assert (Ignore == false && "init list ignored");
1093   unsigned NumInitElements = E->getNumInits();
1094 
1095   if (E->hadArrayRangeDesignator())
1096     CGF.ErrorUnsupported(E, "GNU array range designator extension");
1097 
1098   llvm::VectorType *VType =
1099     dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
1100 
1101   if (!VType) {
1102     if (NumInitElements == 0) {
1103       // C++11 value-initialization for the scalar.
1104       return EmitNullValue(E->getType());
1105     }
1106     // We have a scalar in braces. Just use the first element.
1107     return Visit(E->getInit(0));
1108   }
1109 
1110   unsigned ResElts = VType->getNumElements();
1111 
1112   // Loop over initializers collecting the Value for each, and remembering
1113   // whether the source was swizzle (ExtVectorElementExpr).  This will allow
1114   // us to fold the shuffle for the swizzle into the shuffle for the vector
1115   // initializer, since LLVM optimizers generally do not want to touch
1116   // shuffles.
1117   unsigned CurIdx = 0;
1118   bool VIsUndefShuffle = false;
1119   llvm::Value *V = llvm::UndefValue::get(VType);
1120   for (unsigned i = 0; i != NumInitElements; ++i) {
1121     Expr *IE = E->getInit(i);
1122     Value *Init = Visit(IE);
1123     SmallVector<llvm::Constant*, 16> Args;
1124 
1125     llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
1126 
1127     // Handle scalar elements.  If the scalar initializer is actually one
1128     // element of a different vector of the same width, use shuffle instead of
1129     // extract+insert.
1130     if (!VVT) {
1131       if (isa<ExtVectorElementExpr>(IE)) {
1132         llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);
1133 
1134         if (EI->getVectorOperandType()->getNumElements() == ResElts) {
1135           llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
1136           Value *LHS = nullptr, *RHS = nullptr;
1137           if (CurIdx == 0) {
1138             // insert into undef -> shuffle (src, undef)
1139             Args.push_back(C);
1140             Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1141 
1142             LHS = EI->getVectorOperand();
1143             RHS = V;
1144             VIsUndefShuffle = true;
1145           } else if (VIsUndefShuffle) {
1146             // insert into undefshuffle && size match -> shuffle (v, src)
1147             llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
1148             for (unsigned j = 0; j != CurIdx; ++j)
1149               Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty));
1150             Args.push_back(Builder.getInt32(ResElts + C->getZExtValue()));
1151             Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1152 
1153             LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1154             RHS = EI->getVectorOperand();
1155             VIsUndefShuffle = false;
1156           }
1157           if (!Args.empty()) {
1158             llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1159             V = Builder.CreateShuffleVector(LHS, RHS, Mask);
1160             ++CurIdx;
1161             continue;
1162           }
1163         }
1164       }
1165       V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx),
1166                                       "vecinit");
1167       VIsUndefShuffle = false;
1168       ++CurIdx;
1169       continue;
1170     }
1171 
1172     unsigned InitElts = VVT->getNumElements();
1173 
1174     // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
1175     // input is the same width as the vector being constructed, generate an
1176     // optimized shuffle of the swizzle input into the result.
1177     unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
1178     if (isa<ExtVectorElementExpr>(IE)) {
1179       llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
1180       Value *SVOp = SVI->getOperand(0);
1181       llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType());
1182 
1183       if (OpTy->getNumElements() == ResElts) {
1184         for (unsigned j = 0; j != CurIdx; ++j) {
1185           // If the current vector initializer is a shuffle with undef, merge
1186           // this shuffle directly into it.
1187           if (VIsUndefShuffle) {
1188             Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0,
1189                                       CGF.Int32Ty));
1190           } else {
1191             Args.push_back(Builder.getInt32(j));
1192           }
1193         }
1194         for (unsigned j = 0, je = InitElts; j != je; ++j)
1195           Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty));
1196         Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1197 
1198         if (VIsUndefShuffle)
1199           V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1200 
1201         Init = SVOp;
1202       }
1203     }
1204 
1205     // Extend init to result vector length, and then shuffle its contribution
1206     // to the vector initializer into V.
1207     if (Args.empty()) {
1208       for (unsigned j = 0; j != InitElts; ++j)
1209         Args.push_back(Builder.getInt32(j));
1210       Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1211       llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1212       Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT),
1213                                          Mask, "vext");
1214 
1215       Args.clear();
1216       for (unsigned j = 0; j != CurIdx; ++j)
1217         Args.push_back(Builder.getInt32(j));
1218       for (unsigned j = 0; j != InitElts; ++j)
1219         Args.push_back(Builder.getInt32(j+Offset));
1220       Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1221     }
1222 
1223     // If V is undef, make sure it ends up on the RHS of the shuffle to aid
1224     // merging subsequent shuffles into this one.
1225     if (CurIdx == 0)
1226       std::swap(V, Init);
1227     llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1228     V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit");
1229     VIsUndefShuffle = isa<llvm::UndefValue>(Init);
1230     CurIdx += InitElts;
1231   }
1232 
1233   // FIXME: evaluate codegen vs. shuffling against constant null vector.
1234   // Emit remaining default initializers.
1235   llvm::Type *EltTy = VType->getElementType();
1236 
1237   // Emit remaining default initializers
1238   for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
1239     Value *Idx = Builder.getInt32(CurIdx);
1240     llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
1241     V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
1242   }
1243   return V;
1244 }
1245 
ShouldNullCheckClassCastValue(const CastExpr * CE)1246 static bool ShouldNullCheckClassCastValue(const CastExpr *CE) {
1247   const Expr *E = CE->getSubExpr();
1248 
1249   if (CE->getCastKind() == CK_UncheckedDerivedToBase)
1250     return false;
1251 
1252   if (isa<CXXThisExpr>(E)) {
1253     // We always assume that 'this' is never null.
1254     return false;
1255   }
1256 
1257   if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
1258     // And that glvalue casts are never null.
1259     if (ICE->getValueKind() != VK_RValue)
1260       return false;
1261   }
1262 
1263   return true;
1264 }
1265 
1266 // VisitCastExpr - Emit code for an explicit or implicit cast.  Implicit casts
1267 // have to handle a more broad range of conversions than explicit casts, as they
1268 // handle things like function to ptr-to-function decay etc.
VisitCastExpr(CastExpr * CE)1269 Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) {
1270   Expr *E = CE->getSubExpr();
1271   QualType DestTy = CE->getType();
1272   CastKind Kind = CE->getCastKind();
1273 
1274   if (!DestTy->isVoidType())
1275     TestAndClearIgnoreResultAssign();
1276 
1277   // Since almost all cast kinds apply to scalars, this switch doesn't have
1278   // a default case, so the compiler will warn on a missing case.  The cases
1279   // are in the same order as in the CastKind enum.
1280   switch (Kind) {
1281   case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
1282   case CK_BuiltinFnToFnPtr:
1283     llvm_unreachable("builtin functions are handled elsewhere");
1284 
1285   case CK_LValueBitCast:
1286   case CK_ObjCObjectLValueCast: {
1287     Value *V = EmitLValue(E).getAddress();
1288     V = Builder.CreateBitCast(V,
1289                           ConvertType(CGF.getContext().getPointerType(DestTy)));
1290     return EmitLoadOfLValue(CGF.MakeNaturalAlignAddrLValue(V, DestTy),
1291                             CE->getExprLoc());
1292   }
1293 
1294   case CK_CPointerToObjCPointerCast:
1295   case CK_BlockPointerToObjCPointerCast:
1296   case CK_AnyPointerToBlockPointerCast:
1297   case CK_BitCast: {
1298     Value *Src = Visit(const_cast<Expr*>(E));
1299     llvm::Type *SrcTy = Src->getType();
1300     llvm::Type *DstTy = ConvertType(DestTy);
1301     if (SrcTy->isPtrOrPtrVectorTy() && DstTy->isPtrOrPtrVectorTy() &&
1302         SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) {
1303       llvm::Type *MidTy = CGF.CGM.getDataLayout().getIntPtrType(SrcTy);
1304       return Builder.CreateIntToPtr(Builder.CreatePtrToInt(Src, MidTy), DstTy);
1305     }
1306     return Builder.CreateBitCast(Src, DstTy);
1307   }
1308   case CK_AddressSpaceConversion: {
1309     Value *Src = Visit(const_cast<Expr*>(E));
1310     return Builder.CreateAddrSpaceCast(Src, ConvertType(DestTy));
1311   }
1312   case CK_AtomicToNonAtomic:
1313   case CK_NonAtomicToAtomic:
1314   case CK_NoOp:
1315   case CK_UserDefinedConversion:
1316     return Visit(const_cast<Expr*>(E));
1317 
1318   case CK_BaseToDerived: {
1319     const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl();
1320     assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!");
1321 
1322     llvm::Value *V = Visit(E);
1323 
1324     llvm::Value *Derived =
1325       CGF.GetAddressOfDerivedClass(V, DerivedClassDecl,
1326                                    CE->path_begin(), CE->path_end(),
1327                                    ShouldNullCheckClassCastValue(CE));
1328 
1329     // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is
1330     // performed and the object is not of the derived type.
1331     if (CGF.sanitizePerformTypeCheck())
1332       CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(),
1333                         Derived, DestTy->getPointeeType());
1334 
1335     return Derived;
1336   }
1337   case CK_UncheckedDerivedToBase:
1338   case CK_DerivedToBase: {
1339     const CXXRecordDecl *DerivedClassDecl =
1340       E->getType()->getPointeeCXXRecordDecl();
1341     assert(DerivedClassDecl && "DerivedToBase arg isn't a C++ object pointer!");
1342 
1343     return CGF.GetAddressOfBaseClass(Visit(E), DerivedClassDecl,
1344                                      CE->path_begin(), CE->path_end(),
1345                                      ShouldNullCheckClassCastValue(CE));
1346   }
1347   case CK_Dynamic: {
1348     Value *V = Visit(const_cast<Expr*>(E));
1349     const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE);
1350     return CGF.EmitDynamicCast(V, DCE);
1351   }
1352 
1353   case CK_ArrayToPointerDecay: {
1354     assert(E->getType()->isArrayType() &&
1355            "Array to pointer decay must have array source type!");
1356 
1357     Value *V = EmitLValue(E).getAddress();  // Bitfields can't be arrays.
1358 
1359     // Note that VLA pointers are always decayed, so we don't need to do
1360     // anything here.
1361     if (!E->getType()->isVariableArrayType()) {
1362       assert(isa<llvm::PointerType>(V->getType()) && "Expected pointer");
1363       assert(isa<llvm::ArrayType>(cast<llvm::PointerType>(V->getType())
1364                                  ->getElementType()) &&
1365              "Expected pointer to array");
1366       V = Builder.CreateStructGEP(V, 0, "arraydecay");
1367     }
1368 
1369     // Make sure the array decay ends up being the right type.  This matters if
1370     // the array type was of an incomplete type.
1371     return CGF.Builder.CreatePointerCast(V, ConvertType(CE->getType()));
1372   }
1373   case CK_FunctionToPointerDecay:
1374     return EmitLValue(E).getAddress();
1375 
1376   case CK_NullToPointer:
1377     if (MustVisitNullValue(E))
1378       (void) Visit(E);
1379 
1380     return llvm::ConstantPointerNull::get(
1381                                cast<llvm::PointerType>(ConvertType(DestTy)));
1382 
1383   case CK_NullToMemberPointer: {
1384     if (MustVisitNullValue(E))
1385       (void) Visit(E);
1386 
1387     const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>();
1388     return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
1389   }
1390 
1391   case CK_ReinterpretMemberPointer:
1392   case CK_BaseToDerivedMemberPointer:
1393   case CK_DerivedToBaseMemberPointer: {
1394     Value *Src = Visit(E);
1395 
1396     // Note that the AST doesn't distinguish between checked and
1397     // unchecked member pointer conversions, so we always have to
1398     // implement checked conversions here.  This is inefficient when
1399     // actual control flow may be required in order to perform the
1400     // check, which it is for data member pointers (but not member
1401     // function pointers on Itanium and ARM).
1402     return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src);
1403   }
1404 
1405   case CK_ARCProduceObject:
1406     return CGF.EmitARCRetainScalarExpr(E);
1407   case CK_ARCConsumeObject:
1408     return CGF.EmitObjCConsumeObject(E->getType(), Visit(E));
1409   case CK_ARCReclaimReturnedObject: {
1410     llvm::Value *value = Visit(E);
1411     value = CGF.EmitARCRetainAutoreleasedReturnValue(value);
1412     return CGF.EmitObjCConsumeObject(E->getType(), value);
1413   }
1414   case CK_ARCExtendBlockObject:
1415     return CGF.EmitARCExtendBlockObject(E);
1416 
1417   case CK_CopyAndAutoreleaseBlockObject:
1418     return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType());
1419 
1420   case CK_FloatingRealToComplex:
1421   case CK_FloatingComplexCast:
1422   case CK_IntegralRealToComplex:
1423   case CK_IntegralComplexCast:
1424   case CK_IntegralComplexToFloatingComplex:
1425   case CK_FloatingComplexToIntegralComplex:
1426   case CK_ConstructorConversion:
1427   case CK_ToUnion:
1428     llvm_unreachable("scalar cast to non-scalar value");
1429 
1430   case CK_LValueToRValue:
1431     assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy));
1432     assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!");
1433     return Visit(const_cast<Expr*>(E));
1434 
1435   case CK_IntegralToPointer: {
1436     Value *Src = Visit(const_cast<Expr*>(E));
1437 
1438     // First, convert to the correct width so that we control the kind of
1439     // extension.
1440     llvm::Type *MiddleTy = CGF.IntPtrTy;
1441     bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType();
1442     llvm::Value* IntResult =
1443       Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
1444 
1445     return Builder.CreateIntToPtr(IntResult, ConvertType(DestTy));
1446   }
1447   case CK_PointerToIntegral:
1448     assert(!DestTy->isBooleanType() && "bool should use PointerToBool");
1449     return Builder.CreatePtrToInt(Visit(E), ConvertType(DestTy));
1450 
1451   case CK_ToVoid: {
1452     CGF.EmitIgnoredExpr(E);
1453     return nullptr;
1454   }
1455   case CK_VectorSplat: {
1456     llvm::Type *DstTy = ConvertType(DestTy);
1457     Value *Elt = Visit(const_cast<Expr*>(E));
1458     Elt = EmitScalarConversion(Elt, E->getType(),
1459                                DestTy->getAs<VectorType>()->getElementType());
1460 
1461     // Splat the element across to all elements
1462     unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
1463     return Builder.CreateVectorSplat(NumElements, Elt, "splat");
1464   }
1465 
1466   case CK_IntegralCast:
1467   case CK_IntegralToFloating:
1468   case CK_FloatingToIntegral:
1469   case CK_FloatingCast:
1470     return EmitScalarConversion(Visit(E), E->getType(), DestTy);
1471   case CK_IntegralToBoolean:
1472     return EmitIntToBoolConversion(Visit(E));
1473   case CK_PointerToBoolean:
1474     return EmitPointerToBoolConversion(Visit(E));
1475   case CK_FloatingToBoolean:
1476     return EmitFloatToBoolConversion(Visit(E));
1477   case CK_MemberPointerToBoolean: {
1478     llvm::Value *MemPtr = Visit(E);
1479     const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>();
1480     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT);
1481   }
1482 
1483   case CK_FloatingComplexToReal:
1484   case CK_IntegralComplexToReal:
1485     return CGF.EmitComplexExpr(E, false, true).first;
1486 
1487   case CK_FloatingComplexToBoolean:
1488   case CK_IntegralComplexToBoolean: {
1489     CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E);
1490 
1491     // TODO: kill this function off, inline appropriate case here
1492     return EmitComplexToScalarConversion(V, E->getType(), DestTy);
1493   }
1494 
1495   case CK_ZeroToOCLEvent: {
1496     assert(DestTy->isEventT() && "CK_ZeroToOCLEvent cast on non-event type");
1497     return llvm::Constant::getNullValue(ConvertType(DestTy));
1498   }
1499 
1500   }
1501 
1502   llvm_unreachable("unknown scalar cast");
1503 }
1504 
VisitStmtExpr(const StmtExpr * E)1505 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
1506   CodeGenFunction::StmtExprEvaluation eval(CGF);
1507   llvm::Value *RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(),
1508                                                 !E->getType()->isVoidType());
1509   if (!RetAlloca)
1510     return nullptr;
1511   return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()),
1512                               E->getExprLoc());
1513 }
1514 
1515 //===----------------------------------------------------------------------===//
1516 //                             Unary Operators
1517 //===----------------------------------------------------------------------===//
1518 
1519 llvm::Value *ScalarExprEmitter::
EmitAddConsiderOverflowBehavior(const UnaryOperator * E,llvm::Value * InVal,llvm::Value * NextVal,bool IsInc)1520 EmitAddConsiderOverflowBehavior(const UnaryOperator *E,
1521                                 llvm::Value *InVal,
1522                                 llvm::Value *NextVal, bool IsInc) {
1523   switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
1524   case LangOptions::SOB_Defined:
1525     return Builder.CreateAdd(InVal, NextVal, IsInc ? "inc" : "dec");
1526   case LangOptions::SOB_Undefined:
1527     if (!CGF.SanOpts->SignedIntegerOverflow)
1528       return Builder.CreateNSWAdd(InVal, NextVal, IsInc ? "inc" : "dec");
1529     // Fall through.
1530   case LangOptions::SOB_Trapping:
1531     BinOpInfo BinOp;
1532     BinOp.LHS = InVal;
1533     BinOp.RHS = NextVal;
1534     BinOp.Ty = E->getType();
1535     BinOp.Opcode = BO_Add;
1536     BinOp.FPContractable = false;
1537     BinOp.E = E;
1538     return EmitOverflowCheckedBinOp(BinOp);
1539   }
1540   llvm_unreachable("Unknown SignedOverflowBehaviorTy");
1541 }
1542 
1543 llvm::Value *
EmitScalarPrePostIncDec(const UnaryOperator * E,LValue LV,bool isInc,bool isPre)1544 ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
1545                                            bool isInc, bool isPre) {
1546 
1547   QualType type = E->getSubExpr()->getType();
1548   llvm::PHINode *atomicPHI = nullptr;
1549   llvm::Value *value;
1550   llvm::Value *input;
1551 
1552   int amount = (isInc ? 1 : -1);
1553 
1554   if (const AtomicType *atomicTy = type->getAs<AtomicType>()) {
1555     type = atomicTy->getValueType();
1556     if (isInc && type->isBooleanType()) {
1557       llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type);
1558       if (isPre) {
1559         Builder.Insert(new llvm::StoreInst(True,
1560               LV.getAddress(), LV.isVolatileQualified(),
1561               LV.getAlignment().getQuantity(),
1562               llvm::SequentiallyConsistent));
1563         return Builder.getTrue();
1564       }
1565       // For atomic bool increment, we just store true and return it for
1566       // preincrement, do an atomic swap with true for postincrement
1567         return Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg,
1568             LV.getAddress(), True, llvm::SequentiallyConsistent);
1569     }
1570     // Special case for atomic increment / decrement on integers, emit
1571     // atomicrmw instructions.  We skip this if we want to be doing overflow
1572     // checking, and fall into the slow path with the atomic cmpxchg loop.
1573     if (!type->isBooleanType() && type->isIntegerType() &&
1574         !(type->isUnsignedIntegerType() &&
1575          CGF.SanOpts->UnsignedIntegerOverflow) &&
1576         CGF.getLangOpts().getSignedOverflowBehavior() !=
1577          LangOptions::SOB_Trapping) {
1578       llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add :
1579         llvm::AtomicRMWInst::Sub;
1580       llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add :
1581         llvm::Instruction::Sub;
1582       llvm::Value *amt = CGF.EmitToMemory(
1583           llvm::ConstantInt::get(ConvertType(type), 1, true), type);
1584       llvm::Value *old = Builder.CreateAtomicRMW(aop,
1585           LV.getAddress(), amt, llvm::SequentiallyConsistent);
1586       return isPre ? Builder.CreateBinOp(op, old, amt) : old;
1587     }
1588     value = EmitLoadOfLValue(LV, E->getExprLoc());
1589     input = value;
1590     // For every other atomic operation, we need to emit a load-op-cmpxchg loop
1591     llvm::BasicBlock *startBB = Builder.GetInsertBlock();
1592     llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
1593     value = CGF.EmitToMemory(value, type);
1594     Builder.CreateBr(opBB);
1595     Builder.SetInsertPoint(opBB);
1596     atomicPHI = Builder.CreatePHI(value->getType(), 2);
1597     atomicPHI->addIncoming(value, startBB);
1598     value = atomicPHI;
1599   } else {
1600     value = EmitLoadOfLValue(LV, E->getExprLoc());
1601     input = value;
1602   }
1603 
1604   // Special case of integer increment that we have to check first: bool++.
1605   // Due to promotion rules, we get:
1606   //   bool++ -> bool = bool + 1
1607   //          -> bool = (int)bool + 1
1608   //          -> bool = ((int)bool + 1 != 0)
1609   // An interesting aspect of this is that increment is always true.
1610   // Decrement does not have this property.
1611   if (isInc && type->isBooleanType()) {
1612     value = Builder.getTrue();
1613 
1614   // Most common case by far: integer increment.
1615   } else if (type->isIntegerType()) {
1616 
1617     llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true);
1618 
1619     // Note that signed integer inc/dec with width less than int can't
1620     // overflow because of promotion rules; we're just eliding a few steps here.
1621     bool CanOverflow = value->getType()->getIntegerBitWidth() >=
1622                        CGF.IntTy->getIntegerBitWidth();
1623     if (CanOverflow && type->isSignedIntegerOrEnumerationType()) {
1624       value = EmitAddConsiderOverflowBehavior(E, value, amt, isInc);
1625     } else if (CanOverflow && type->isUnsignedIntegerType() &&
1626                CGF.SanOpts->UnsignedIntegerOverflow) {
1627       BinOpInfo BinOp;
1628       BinOp.LHS = value;
1629       BinOp.RHS = llvm::ConstantInt::get(value->getType(), 1, false);
1630       BinOp.Ty = E->getType();
1631       BinOp.Opcode = isInc ? BO_Add : BO_Sub;
1632       BinOp.FPContractable = false;
1633       BinOp.E = E;
1634       value = EmitOverflowCheckedBinOp(BinOp);
1635     } else
1636       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
1637 
1638   // Next most common: pointer increment.
1639   } else if (const PointerType *ptr = type->getAs<PointerType>()) {
1640     QualType type = ptr->getPointeeType();
1641 
1642     // VLA types don't have constant size.
1643     if (const VariableArrayType *vla
1644           = CGF.getContext().getAsVariableArrayType(type)) {
1645       llvm::Value *numElts = CGF.getVLASize(vla).first;
1646       if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize");
1647       if (CGF.getLangOpts().isSignedOverflowDefined())
1648         value = Builder.CreateGEP(value, numElts, "vla.inc");
1649       else
1650         value = Builder.CreateInBoundsGEP(value, numElts, "vla.inc");
1651 
1652     // Arithmetic on function pointers (!) is just +-1.
1653     } else if (type->isFunctionType()) {
1654       llvm::Value *amt = Builder.getInt32(amount);
1655 
1656       value = CGF.EmitCastToVoidPtr(value);
1657       if (CGF.getLangOpts().isSignedOverflowDefined())
1658         value = Builder.CreateGEP(value, amt, "incdec.funcptr");
1659       else
1660         value = Builder.CreateInBoundsGEP(value, amt, "incdec.funcptr");
1661       value = Builder.CreateBitCast(value, input->getType());
1662 
1663     // For everything else, we can just do a simple increment.
1664     } else {
1665       llvm::Value *amt = Builder.getInt32(amount);
1666       if (CGF.getLangOpts().isSignedOverflowDefined())
1667         value = Builder.CreateGEP(value, amt, "incdec.ptr");
1668       else
1669         value = Builder.CreateInBoundsGEP(value, amt, "incdec.ptr");
1670     }
1671 
1672   // Vector increment/decrement.
1673   } else if (type->isVectorType()) {
1674     if (type->hasIntegerRepresentation()) {
1675       llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount);
1676 
1677       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
1678     } else {
1679       value = Builder.CreateFAdd(
1680                   value,
1681                   llvm::ConstantFP::get(value->getType(), amount),
1682                   isInc ? "inc" : "dec");
1683     }
1684 
1685   // Floating point.
1686   } else if (type->isRealFloatingType()) {
1687     // Add the inc/dec to the real part.
1688     llvm::Value *amt;
1689 
1690     if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1691       // Another special case: half FP increment should be done via float
1692       value =
1693     Builder.CreateCall(CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16),
1694                        input);
1695     }
1696 
1697     if (value->getType()->isFloatTy())
1698       amt = llvm::ConstantFP::get(VMContext,
1699                                   llvm::APFloat(static_cast<float>(amount)));
1700     else if (value->getType()->isDoubleTy())
1701       amt = llvm::ConstantFP::get(VMContext,
1702                                   llvm::APFloat(static_cast<double>(amount)));
1703     else {
1704       llvm::APFloat F(static_cast<float>(amount));
1705       bool ignored;
1706       F.convert(CGF.getTarget().getLongDoubleFormat(),
1707                 llvm::APFloat::rmTowardZero, &ignored);
1708       amt = llvm::ConstantFP::get(VMContext, F);
1709     }
1710     value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec");
1711 
1712     if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType)
1713       value =
1714        Builder.CreateCall(CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16),
1715                           value);
1716 
1717   // Objective-C pointer types.
1718   } else {
1719     const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>();
1720     value = CGF.EmitCastToVoidPtr(value);
1721 
1722     CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType());
1723     if (!isInc) size = -size;
1724     llvm::Value *sizeValue =
1725       llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity());
1726 
1727     if (CGF.getLangOpts().isSignedOverflowDefined())
1728       value = Builder.CreateGEP(value, sizeValue, "incdec.objptr");
1729     else
1730       value = Builder.CreateInBoundsGEP(value, sizeValue, "incdec.objptr");
1731     value = Builder.CreateBitCast(value, input->getType());
1732   }
1733 
1734   if (atomicPHI) {
1735     llvm::BasicBlock *opBB = Builder.GetInsertBlock();
1736     llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
1737     llvm::Value *pair = Builder.CreateAtomicCmpXchg(
1738         LV.getAddress(), atomicPHI, CGF.EmitToMemory(value, type),
1739         llvm::SequentiallyConsistent, llvm::SequentiallyConsistent);
1740     llvm::Value *old = Builder.CreateExtractValue(pair, 0);
1741     llvm::Value *success = Builder.CreateExtractValue(pair, 1);
1742     atomicPHI->addIncoming(old, opBB);
1743     Builder.CreateCondBr(success, contBB, opBB);
1744     Builder.SetInsertPoint(contBB);
1745     return isPre ? value : input;
1746   }
1747 
1748   // Store the updated result through the lvalue.
1749   if (LV.isBitField())
1750     CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value);
1751   else
1752     CGF.EmitStoreThroughLValue(RValue::get(value), LV);
1753 
1754   // If this is a postinc, return the value read from memory, otherwise use the
1755   // updated value.
1756   return isPre ? value : input;
1757 }
1758 
1759 
1760 
VisitUnaryMinus(const UnaryOperator * E)1761 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
1762   TestAndClearIgnoreResultAssign();
1763   // Emit unary minus with EmitSub so we handle overflow cases etc.
1764   BinOpInfo BinOp;
1765   BinOp.RHS = Visit(E->getSubExpr());
1766 
1767   if (BinOp.RHS->getType()->isFPOrFPVectorTy())
1768     BinOp.LHS = llvm::ConstantFP::getZeroValueForNegation(BinOp.RHS->getType());
1769   else
1770     BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType());
1771   BinOp.Ty = E->getType();
1772   BinOp.Opcode = BO_Sub;
1773   BinOp.FPContractable = false;
1774   BinOp.E = E;
1775   return EmitSub(BinOp);
1776 }
1777 
VisitUnaryNot(const UnaryOperator * E)1778 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
1779   TestAndClearIgnoreResultAssign();
1780   Value *Op = Visit(E->getSubExpr());
1781   return Builder.CreateNot(Op, "neg");
1782 }
1783 
VisitUnaryLNot(const UnaryOperator * E)1784 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
1785   // Perform vector logical not on comparison with zero vector.
1786   if (E->getType()->isExtVectorType()) {
1787     Value *Oper = Visit(E->getSubExpr());
1788     Value *Zero = llvm::Constant::getNullValue(Oper->getType());
1789     Value *Result;
1790     if (Oper->getType()->isFPOrFPVectorTy())
1791       Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp");
1792     else
1793       Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp");
1794     return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
1795   }
1796 
1797   // Compare operand to zero.
1798   Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
1799 
1800   // Invert value.
1801   // TODO: Could dynamically modify easy computations here.  For example, if
1802   // the operand is an icmp ne, turn into icmp eq.
1803   BoolVal = Builder.CreateNot(BoolVal, "lnot");
1804 
1805   // ZExt result to the expr type.
1806   return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
1807 }
1808 
VisitOffsetOfExpr(OffsetOfExpr * E)1809 Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) {
1810   // Try folding the offsetof to a constant.
1811   llvm::APSInt Value;
1812   if (E->EvaluateAsInt(Value, CGF.getContext()))
1813     return Builder.getInt(Value);
1814 
1815   // Loop over the components of the offsetof to compute the value.
1816   unsigned n = E->getNumComponents();
1817   llvm::Type* ResultType = ConvertType(E->getType());
1818   llvm::Value* Result = llvm::Constant::getNullValue(ResultType);
1819   QualType CurrentType = E->getTypeSourceInfo()->getType();
1820   for (unsigned i = 0; i != n; ++i) {
1821     OffsetOfExpr::OffsetOfNode ON = E->getComponent(i);
1822     llvm::Value *Offset = nullptr;
1823     switch (ON.getKind()) {
1824     case OffsetOfExpr::OffsetOfNode::Array: {
1825       // Compute the index
1826       Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex());
1827       llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr);
1828       bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType();
1829       Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv");
1830 
1831       // Save the element type
1832       CurrentType =
1833           CGF.getContext().getAsArrayType(CurrentType)->getElementType();
1834 
1835       // Compute the element size
1836       llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType,
1837           CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity());
1838 
1839       // Multiply out to compute the result
1840       Offset = Builder.CreateMul(Idx, ElemSize);
1841       break;
1842     }
1843 
1844     case OffsetOfExpr::OffsetOfNode::Field: {
1845       FieldDecl *MemberDecl = ON.getField();
1846       RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
1847       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
1848 
1849       // Compute the index of the field in its parent.
1850       unsigned i = 0;
1851       // FIXME: It would be nice if we didn't have to loop here!
1852       for (RecordDecl::field_iterator Field = RD->field_begin(),
1853                                       FieldEnd = RD->field_end();
1854            Field != FieldEnd; ++Field, ++i) {
1855         if (*Field == MemberDecl)
1856           break;
1857       }
1858       assert(i < RL.getFieldCount() && "offsetof field in wrong type");
1859 
1860       // Compute the offset to the field
1861       int64_t OffsetInt = RL.getFieldOffset(i) /
1862                           CGF.getContext().getCharWidth();
1863       Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
1864 
1865       // Save the element type.
1866       CurrentType = MemberDecl->getType();
1867       break;
1868     }
1869 
1870     case OffsetOfExpr::OffsetOfNode::Identifier:
1871       llvm_unreachable("dependent __builtin_offsetof");
1872 
1873     case OffsetOfExpr::OffsetOfNode::Base: {
1874       if (ON.getBase()->isVirtual()) {
1875         CGF.ErrorUnsupported(E, "virtual base in offsetof");
1876         continue;
1877       }
1878 
1879       RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
1880       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
1881 
1882       // Save the element type.
1883       CurrentType = ON.getBase()->getType();
1884 
1885       // Compute the offset to the base.
1886       const RecordType *BaseRT = CurrentType->getAs<RecordType>();
1887       CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
1888       CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD);
1889       Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity());
1890       break;
1891     }
1892     }
1893     Result = Builder.CreateAdd(Result, Offset);
1894   }
1895   return Result;
1896 }
1897 
1898 /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of
1899 /// argument of the sizeof expression as an integer.
1900 Value *
VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr * E)1901 ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr(
1902                               const UnaryExprOrTypeTraitExpr *E) {
1903   QualType TypeToSize = E->getTypeOfArgument();
1904   if (E->getKind() == UETT_SizeOf) {
1905     if (const VariableArrayType *VAT =
1906           CGF.getContext().getAsVariableArrayType(TypeToSize)) {
1907       if (E->isArgumentType()) {
1908         // sizeof(type) - make sure to emit the VLA size.
1909         CGF.EmitVariablyModifiedType(TypeToSize);
1910       } else {
1911         // C99 6.5.3.4p2: If the argument is an expression of type
1912         // VLA, it is evaluated.
1913         CGF.EmitIgnoredExpr(E->getArgumentExpr());
1914       }
1915 
1916       QualType eltType;
1917       llvm::Value *numElts;
1918       std::tie(numElts, eltType) = CGF.getVLASize(VAT);
1919 
1920       llvm::Value *size = numElts;
1921 
1922       // Scale the number of non-VLA elements by the non-VLA element size.
1923       CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType);
1924       if (!eltSize.isOne())
1925         size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), numElts);
1926 
1927       return size;
1928     }
1929   }
1930 
1931   // If this isn't sizeof(vla), the result must be constant; use the constant
1932   // folding logic so we don't have to duplicate it here.
1933   return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext()));
1934 }
1935 
VisitUnaryReal(const UnaryOperator * E)1936 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
1937   Expr *Op = E->getSubExpr();
1938   if (Op->getType()->isAnyComplexType()) {
1939     // If it's an l-value, load through the appropriate subobject l-value.
1940     // Note that we have to ask E because Op might be an l-value that
1941     // this won't work for, e.g. an Obj-C property.
1942     if (E->isGLValue())
1943       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
1944                                   E->getExprLoc()).getScalarVal();
1945 
1946     // Otherwise, calculate and project.
1947     return CGF.EmitComplexExpr(Op, false, true).first;
1948   }
1949 
1950   return Visit(Op);
1951 }
1952 
VisitUnaryImag(const UnaryOperator * E)1953 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
1954   Expr *Op = E->getSubExpr();
1955   if (Op->getType()->isAnyComplexType()) {
1956     // If it's an l-value, load through the appropriate subobject l-value.
1957     // Note that we have to ask E because Op might be an l-value that
1958     // this won't work for, e.g. an Obj-C property.
1959     if (Op->isGLValue())
1960       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
1961                                   E->getExprLoc()).getScalarVal();
1962 
1963     // Otherwise, calculate and project.
1964     return CGF.EmitComplexExpr(Op, true, false).second;
1965   }
1966 
1967   // __imag on a scalar returns zero.  Emit the subexpr to ensure side
1968   // effects are evaluated, but not the actual value.
1969   if (Op->isGLValue())
1970     CGF.EmitLValue(Op);
1971   else
1972     CGF.EmitScalarExpr(Op, true);
1973   return llvm::Constant::getNullValue(ConvertType(E->getType()));
1974 }
1975 
1976 //===----------------------------------------------------------------------===//
1977 //                           Binary Operators
1978 //===----------------------------------------------------------------------===//
1979 
EmitBinOps(const BinaryOperator * E)1980 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
1981   TestAndClearIgnoreResultAssign();
1982   BinOpInfo Result;
1983   Result.LHS = Visit(E->getLHS());
1984   Result.RHS = Visit(E->getRHS());
1985   Result.Ty  = E->getType();
1986   Result.Opcode = E->getOpcode();
1987   Result.FPContractable = E->isFPContractable();
1988   Result.E = E;
1989   return Result;
1990 }
1991 
EmitCompoundAssignLValue(const CompoundAssignOperator * E,Value * (ScalarExprEmitter::* Func)(const BinOpInfo &),Value * & Result)1992 LValue ScalarExprEmitter::EmitCompoundAssignLValue(
1993                                               const CompoundAssignOperator *E,
1994                         Value *(ScalarExprEmitter::*Func)(const BinOpInfo &),
1995                                                    Value *&Result) {
1996   QualType LHSTy = E->getLHS()->getType();
1997   BinOpInfo OpInfo;
1998 
1999   if (E->getComputationResultType()->isAnyComplexType())
2000     return CGF.EmitScalarCompooundAssignWithComplex(E, Result);
2001 
2002   // Emit the RHS first.  __block variables need to have the rhs evaluated
2003   // first, plus this should improve codegen a little.
2004   OpInfo.RHS = Visit(E->getRHS());
2005   OpInfo.Ty = E->getComputationResultType();
2006   OpInfo.Opcode = E->getOpcode();
2007   OpInfo.FPContractable = false;
2008   OpInfo.E = E;
2009   // Load/convert the LHS.
2010   LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
2011 
2012   llvm::PHINode *atomicPHI = nullptr;
2013   if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) {
2014     QualType type = atomicTy->getValueType();
2015     if (!type->isBooleanType() && type->isIntegerType() &&
2016          !(type->isUnsignedIntegerType() &&
2017           CGF.SanOpts->UnsignedIntegerOverflow) &&
2018          CGF.getLangOpts().getSignedOverflowBehavior() !=
2019           LangOptions::SOB_Trapping) {
2020       llvm::AtomicRMWInst::BinOp aop = llvm::AtomicRMWInst::BAD_BINOP;
2021       switch (OpInfo.Opcode) {
2022         // We don't have atomicrmw operands for *, %, /, <<, >>
2023         case BO_MulAssign: case BO_DivAssign:
2024         case BO_RemAssign:
2025         case BO_ShlAssign:
2026         case BO_ShrAssign:
2027           break;
2028         case BO_AddAssign:
2029           aop = llvm::AtomicRMWInst::Add;
2030           break;
2031         case BO_SubAssign:
2032           aop = llvm::AtomicRMWInst::Sub;
2033           break;
2034         case BO_AndAssign:
2035           aop = llvm::AtomicRMWInst::And;
2036           break;
2037         case BO_XorAssign:
2038           aop = llvm::AtomicRMWInst::Xor;
2039           break;
2040         case BO_OrAssign:
2041           aop = llvm::AtomicRMWInst::Or;
2042           break;
2043         default:
2044           llvm_unreachable("Invalid compound assignment type");
2045       }
2046       if (aop != llvm::AtomicRMWInst::BAD_BINOP) {
2047         llvm::Value *amt = CGF.EmitToMemory(EmitScalarConversion(OpInfo.RHS,
2048               E->getRHS()->getType(), LHSTy), LHSTy);
2049         Builder.CreateAtomicRMW(aop, LHSLV.getAddress(), amt,
2050             llvm::SequentiallyConsistent);
2051         return LHSLV;
2052       }
2053     }
2054     // FIXME: For floating point types, we should be saving and restoring the
2055     // floating point environment in the loop.
2056     llvm::BasicBlock *startBB = Builder.GetInsertBlock();
2057     llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
2058     OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
2059     OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type);
2060     Builder.CreateBr(opBB);
2061     Builder.SetInsertPoint(opBB);
2062     atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2);
2063     atomicPHI->addIncoming(OpInfo.LHS, startBB);
2064     OpInfo.LHS = atomicPHI;
2065   }
2066   else
2067     OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
2068 
2069   OpInfo.LHS = EmitScalarConversion(OpInfo.LHS, LHSTy,
2070                                     E->getComputationLHSType());
2071 
2072   // Expand the binary operator.
2073   Result = (this->*Func)(OpInfo);
2074 
2075   // Convert the result back to the LHS type.
2076   Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy);
2077 
2078   if (atomicPHI) {
2079     llvm::BasicBlock *opBB = Builder.GetInsertBlock();
2080     llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
2081     llvm::Value *pair = Builder.CreateAtomicCmpXchg(
2082         LHSLV.getAddress(), atomicPHI, CGF.EmitToMemory(Result, LHSTy),
2083         llvm::SequentiallyConsistent, llvm::SequentiallyConsistent);
2084     llvm::Value *old = Builder.CreateExtractValue(pair, 0);
2085     llvm::Value *success = Builder.CreateExtractValue(pair, 1);
2086     atomicPHI->addIncoming(old, opBB);
2087     Builder.CreateCondBr(success, contBB, opBB);
2088     Builder.SetInsertPoint(contBB);
2089     return LHSLV;
2090   }
2091 
2092   // Store the result value into the LHS lvalue. Bit-fields are handled
2093   // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
2094   // 'An assignment expression has the value of the left operand after the
2095   // assignment...'.
2096   if (LHSLV.isBitField())
2097     CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result);
2098   else
2099     CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV);
2100 
2101   return LHSLV;
2102 }
2103 
EmitCompoundAssign(const CompoundAssignOperator * E,Value * (ScalarExprEmitter::* Func)(const BinOpInfo &))2104 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
2105                       Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
2106   bool Ignore = TestAndClearIgnoreResultAssign();
2107   Value *RHS;
2108   LValue LHS = EmitCompoundAssignLValue(E, Func, RHS);
2109 
2110   // If the result is clearly ignored, return now.
2111   if (Ignore)
2112     return nullptr;
2113 
2114   // The result of an assignment in C is the assigned r-value.
2115   if (!CGF.getLangOpts().CPlusPlus)
2116     return RHS;
2117 
2118   // If the lvalue is non-volatile, return the computed value of the assignment.
2119   if (!LHS.isVolatileQualified())
2120     return RHS;
2121 
2122   // Otherwise, reload the value.
2123   return EmitLoadOfLValue(LHS, E->getExprLoc());
2124 }
2125 
EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo & Ops,llvm::Value * Zero,bool isDiv)2126 void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck(
2127     const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) {
2128   llvm::Value *Cond = nullptr;
2129 
2130   if (CGF.SanOpts->IntegerDivideByZero)
2131     Cond = Builder.CreateICmpNE(Ops.RHS, Zero);
2132 
2133   if (CGF.SanOpts->SignedIntegerOverflow &&
2134       Ops.Ty->hasSignedIntegerRepresentation()) {
2135     llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType());
2136 
2137     llvm::Value *IntMin =
2138       Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth()));
2139     llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL);
2140 
2141     llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin);
2142     llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne);
2143     llvm::Value *Overflow = Builder.CreateOr(LHSCmp, RHSCmp, "or");
2144     Cond = Cond ? Builder.CreateAnd(Cond, Overflow, "and") : Overflow;
2145   }
2146 
2147   if (Cond)
2148     EmitBinOpCheck(Cond, Ops);
2149 }
2150 
EmitDiv(const BinOpInfo & Ops)2151 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
2152   if ((CGF.SanOpts->IntegerDivideByZero ||
2153        CGF.SanOpts->SignedIntegerOverflow) &&
2154       Ops.Ty->isIntegerType()) {
2155     llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
2156     EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true);
2157   } else if (CGF.SanOpts->FloatDivideByZero &&
2158              Ops.Ty->isRealFloatingType()) {
2159     llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
2160     EmitBinOpCheck(Builder.CreateFCmpUNE(Ops.RHS, Zero), Ops);
2161   }
2162 
2163   if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
2164     llvm::Value *Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
2165     if (CGF.getLangOpts().OpenCL) {
2166       // OpenCL 1.1 7.4: minimum accuracy of single precision / is 2.5ulp
2167       llvm::Type *ValTy = Val->getType();
2168       if (ValTy->isFloatTy() ||
2169           (isa<llvm::VectorType>(ValTy) &&
2170            cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy()))
2171         CGF.SetFPAccuracy(Val, 2.5);
2172     }
2173     return Val;
2174   }
2175   else if (Ops.Ty->hasUnsignedIntegerRepresentation())
2176     return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
2177   else
2178     return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
2179 }
2180 
EmitRem(const BinOpInfo & Ops)2181 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
2182   // Rem in C can't be a floating point type: C99 6.5.5p2.
2183   if (CGF.SanOpts->IntegerDivideByZero) {
2184     llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
2185 
2186     if (Ops.Ty->isIntegerType())
2187       EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false);
2188   }
2189 
2190   if (Ops.Ty->hasUnsignedIntegerRepresentation())
2191     return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
2192   else
2193     return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
2194 }
2195 
EmitOverflowCheckedBinOp(const BinOpInfo & Ops)2196 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
2197   unsigned IID;
2198   unsigned OpID = 0;
2199 
2200   bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType();
2201   switch (Ops.Opcode) {
2202   case BO_Add:
2203   case BO_AddAssign:
2204     OpID = 1;
2205     IID = isSigned ? llvm::Intrinsic::sadd_with_overflow :
2206                      llvm::Intrinsic::uadd_with_overflow;
2207     break;
2208   case BO_Sub:
2209   case BO_SubAssign:
2210     OpID = 2;
2211     IID = isSigned ? llvm::Intrinsic::ssub_with_overflow :
2212                      llvm::Intrinsic::usub_with_overflow;
2213     break;
2214   case BO_Mul:
2215   case BO_MulAssign:
2216     OpID = 3;
2217     IID = isSigned ? llvm::Intrinsic::smul_with_overflow :
2218                      llvm::Intrinsic::umul_with_overflow;
2219     break;
2220   default:
2221     llvm_unreachable("Unsupported operation for overflow detection");
2222   }
2223   OpID <<= 1;
2224   if (isSigned)
2225     OpID |= 1;
2226 
2227   llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
2228 
2229   llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy);
2230 
2231   Value *resultAndOverflow = Builder.CreateCall2(intrinsic, Ops.LHS, Ops.RHS);
2232   Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
2233   Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
2234 
2235   // Handle overflow with llvm.trap if no custom handler has been specified.
2236   const std::string *handlerName =
2237     &CGF.getLangOpts().OverflowHandler;
2238   if (handlerName->empty()) {
2239     // If the signed-integer-overflow sanitizer is enabled, emit a call to its
2240     // runtime. Otherwise, this is a -ftrapv check, so just emit a trap.
2241     if (!isSigned || CGF.SanOpts->SignedIntegerOverflow)
2242       EmitBinOpCheck(Builder.CreateNot(overflow), Ops);
2243     else
2244       CGF.EmitTrapCheck(Builder.CreateNot(overflow));
2245     return result;
2246   }
2247 
2248   // Branch in case of overflow.
2249   llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
2250   llvm::Function::iterator insertPt = initialBB;
2251   llvm::BasicBlock *continueBB = CGF.createBasicBlock("nooverflow", CGF.CurFn,
2252                                                       std::next(insertPt));
2253   llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
2254 
2255   Builder.CreateCondBr(overflow, overflowBB, continueBB);
2256 
2257   // If an overflow handler is set, then we want to call it and then use its
2258   // result, if it returns.
2259   Builder.SetInsertPoint(overflowBB);
2260 
2261   // Get the overflow handler.
2262   llvm::Type *Int8Ty = CGF.Int8Ty;
2263   llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty };
2264   llvm::FunctionType *handlerTy =
2265       llvm::FunctionType::get(CGF.Int64Ty, argTypes, true);
2266   llvm::Value *handler = CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName);
2267 
2268   // Sign extend the args to 64-bit, so that we can use the same handler for
2269   // all types of overflow.
2270   llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty);
2271   llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty);
2272 
2273   // Call the handler with the two arguments, the operation, and the size of
2274   // the result.
2275   llvm::Value *handlerArgs[] = {
2276     lhs,
2277     rhs,
2278     Builder.getInt8(OpID),
2279     Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth())
2280   };
2281   llvm::Value *handlerResult =
2282     CGF.EmitNounwindRuntimeCall(handler, handlerArgs);
2283 
2284   // Truncate the result back to the desired size.
2285   handlerResult = Builder.CreateTrunc(handlerResult, opTy);
2286   Builder.CreateBr(continueBB);
2287 
2288   Builder.SetInsertPoint(continueBB);
2289   llvm::PHINode *phi = Builder.CreatePHI(opTy, 2);
2290   phi->addIncoming(result, initialBB);
2291   phi->addIncoming(handlerResult, overflowBB);
2292 
2293   return phi;
2294 }
2295 
2296 /// Emit pointer + index arithmetic.
emitPointerArithmetic(CodeGenFunction & CGF,const BinOpInfo & op,bool isSubtraction)2297 static Value *emitPointerArithmetic(CodeGenFunction &CGF,
2298                                     const BinOpInfo &op,
2299                                     bool isSubtraction) {
2300   // Must have binary (not unary) expr here.  Unary pointer
2301   // increment/decrement doesn't use this path.
2302   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
2303 
2304   Value *pointer = op.LHS;
2305   Expr *pointerOperand = expr->getLHS();
2306   Value *index = op.RHS;
2307   Expr *indexOperand = expr->getRHS();
2308 
2309   // In a subtraction, the LHS is always the pointer.
2310   if (!isSubtraction && !pointer->getType()->isPointerTy()) {
2311     std::swap(pointer, index);
2312     std::swap(pointerOperand, indexOperand);
2313   }
2314 
2315   unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth();
2316   if (width != CGF.PointerWidthInBits) {
2317     // Zero-extend or sign-extend the pointer value according to
2318     // whether the index is signed or not.
2319     bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType();
2320     index = CGF.Builder.CreateIntCast(index, CGF.PtrDiffTy, isSigned,
2321                                       "idx.ext");
2322   }
2323 
2324   // If this is subtraction, negate the index.
2325   if (isSubtraction)
2326     index = CGF.Builder.CreateNeg(index, "idx.neg");
2327 
2328   if (CGF.SanOpts->ArrayBounds)
2329     CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(),
2330                         /*Accessed*/ false);
2331 
2332   const PointerType *pointerType
2333     = pointerOperand->getType()->getAs<PointerType>();
2334   if (!pointerType) {
2335     QualType objectType = pointerOperand->getType()
2336                                         ->castAs<ObjCObjectPointerType>()
2337                                         ->getPointeeType();
2338     llvm::Value *objectSize
2339       = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType));
2340 
2341     index = CGF.Builder.CreateMul(index, objectSize);
2342 
2343     Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
2344     result = CGF.Builder.CreateGEP(result, index, "add.ptr");
2345     return CGF.Builder.CreateBitCast(result, pointer->getType());
2346   }
2347 
2348   QualType elementType = pointerType->getPointeeType();
2349   if (const VariableArrayType *vla
2350         = CGF.getContext().getAsVariableArrayType(elementType)) {
2351     // The element count here is the total number of non-VLA elements.
2352     llvm::Value *numElements = CGF.getVLASize(vla).first;
2353 
2354     // Effectively, the multiply by the VLA size is part of the GEP.
2355     // GEP indexes are signed, and scaling an index isn't permitted to
2356     // signed-overflow, so we use the same semantics for our explicit
2357     // multiply.  We suppress this if overflow is not undefined behavior.
2358     if (CGF.getLangOpts().isSignedOverflowDefined()) {
2359       index = CGF.Builder.CreateMul(index, numElements, "vla.index");
2360       pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr");
2361     } else {
2362       index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index");
2363       pointer = CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr");
2364     }
2365     return pointer;
2366   }
2367 
2368   // Explicitly handle GNU void* and function pointer arithmetic extensions. The
2369   // GNU void* casts amount to no-ops since our void* type is i8*, but this is
2370   // future proof.
2371   if (elementType->isVoidType() || elementType->isFunctionType()) {
2372     Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
2373     result = CGF.Builder.CreateGEP(result, index, "add.ptr");
2374     return CGF.Builder.CreateBitCast(result, pointer->getType());
2375   }
2376 
2377   if (CGF.getLangOpts().isSignedOverflowDefined())
2378     return CGF.Builder.CreateGEP(pointer, index, "add.ptr");
2379 
2380   return CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr");
2381 }
2382 
2383 // Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and
2384 // Addend. Use negMul and negAdd to negate the first operand of the Mul or
2385 // the add operand respectively. This allows fmuladd to represent a*b-c, or
2386 // c-a*b. Patterns in LLVM should catch the negated forms and translate them to
2387 // efficient operations.
buildFMulAdd(llvm::BinaryOperator * MulOp,Value * Addend,const CodeGenFunction & CGF,CGBuilderTy & Builder,bool negMul,bool negAdd)2388 static Value* buildFMulAdd(llvm::BinaryOperator *MulOp, Value *Addend,
2389                            const CodeGenFunction &CGF, CGBuilderTy &Builder,
2390                            bool negMul, bool negAdd) {
2391   assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set.");
2392 
2393   Value *MulOp0 = MulOp->getOperand(0);
2394   Value *MulOp1 = MulOp->getOperand(1);
2395   if (negMul) {
2396     MulOp0 =
2397       Builder.CreateFSub(
2398         llvm::ConstantFP::getZeroValueForNegation(MulOp0->getType()), MulOp0,
2399         "neg");
2400   } else if (negAdd) {
2401     Addend =
2402       Builder.CreateFSub(
2403         llvm::ConstantFP::getZeroValueForNegation(Addend->getType()), Addend,
2404         "neg");
2405   }
2406 
2407   Value *FMulAdd =
2408     Builder.CreateCall3(
2409       CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()),
2410                            MulOp0, MulOp1, Addend);
2411    MulOp->eraseFromParent();
2412 
2413    return FMulAdd;
2414 }
2415 
2416 // Check whether it would be legal to emit an fmuladd intrinsic call to
2417 // represent op and if so, build the fmuladd.
2418 //
2419 // Checks that (a) the operation is fusable, and (b) -ffp-contract=on.
2420 // Does NOT check the type of the operation - it's assumed that this function
2421 // will be called from contexts where it's known that the type is contractable.
tryEmitFMulAdd(const BinOpInfo & op,const CodeGenFunction & CGF,CGBuilderTy & Builder,bool isSub=false)2422 static Value* tryEmitFMulAdd(const BinOpInfo &op,
2423                          const CodeGenFunction &CGF, CGBuilderTy &Builder,
2424                          bool isSub=false) {
2425 
2426   assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign ||
2427           op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) &&
2428          "Only fadd/fsub can be the root of an fmuladd.");
2429 
2430   // Check whether this op is marked as fusable.
2431   if (!op.FPContractable)
2432     return nullptr;
2433 
2434   // Check whether -ffp-contract=on. (If -ffp-contract=off/fast, fusing is
2435   // either disabled, or handled entirely by the LLVM backend).
2436   if (CGF.CGM.getCodeGenOpts().getFPContractMode() != CodeGenOptions::FPC_On)
2437     return nullptr;
2438 
2439   // We have a potentially fusable op. Look for a mul on one of the operands.
2440   if (llvm::BinaryOperator* LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) {
2441     if (LHSBinOp->getOpcode() == llvm::Instruction::FMul) {
2442       assert(LHSBinOp->getNumUses() == 0 &&
2443              "Operations with multiple uses shouldn't be contracted.");
2444       return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub);
2445     }
2446   } else if (llvm::BinaryOperator* RHSBinOp =
2447                dyn_cast<llvm::BinaryOperator>(op.RHS)) {
2448     if (RHSBinOp->getOpcode() == llvm::Instruction::FMul) {
2449       assert(RHSBinOp->getNumUses() == 0 &&
2450              "Operations with multiple uses shouldn't be contracted.");
2451       return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false);
2452     }
2453   }
2454 
2455   return nullptr;
2456 }
2457 
EmitAdd(const BinOpInfo & op)2458 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) {
2459   if (op.LHS->getType()->isPointerTy() ||
2460       op.RHS->getType()->isPointerTy())
2461     return emitPointerArithmetic(CGF, op, /*subtraction*/ false);
2462 
2463   if (op.Ty->isSignedIntegerOrEnumerationType()) {
2464     switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
2465     case LangOptions::SOB_Defined:
2466       return Builder.CreateAdd(op.LHS, op.RHS, "add");
2467     case LangOptions::SOB_Undefined:
2468       if (!CGF.SanOpts->SignedIntegerOverflow)
2469         return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
2470       // Fall through.
2471     case LangOptions::SOB_Trapping:
2472       return EmitOverflowCheckedBinOp(op);
2473     }
2474   }
2475 
2476   if (op.Ty->isUnsignedIntegerType() && CGF.SanOpts->UnsignedIntegerOverflow)
2477     return EmitOverflowCheckedBinOp(op);
2478 
2479   if (op.LHS->getType()->isFPOrFPVectorTy()) {
2480     // Try to form an fmuladd.
2481     if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder))
2482       return FMulAdd;
2483 
2484     return Builder.CreateFAdd(op.LHS, op.RHS, "add");
2485   }
2486 
2487   return Builder.CreateAdd(op.LHS, op.RHS, "add");
2488 }
2489 
EmitSub(const BinOpInfo & op)2490 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) {
2491   // The LHS is always a pointer if either side is.
2492   if (!op.LHS->getType()->isPointerTy()) {
2493     if (op.Ty->isSignedIntegerOrEnumerationType()) {
2494       switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
2495       case LangOptions::SOB_Defined:
2496         return Builder.CreateSub(op.LHS, op.RHS, "sub");
2497       case LangOptions::SOB_Undefined:
2498         if (!CGF.SanOpts->SignedIntegerOverflow)
2499           return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
2500         // Fall through.
2501       case LangOptions::SOB_Trapping:
2502         return EmitOverflowCheckedBinOp(op);
2503       }
2504     }
2505 
2506     if (op.Ty->isUnsignedIntegerType() && CGF.SanOpts->UnsignedIntegerOverflow)
2507       return EmitOverflowCheckedBinOp(op);
2508 
2509     if (op.LHS->getType()->isFPOrFPVectorTy()) {
2510       // Try to form an fmuladd.
2511       if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true))
2512         return FMulAdd;
2513       return Builder.CreateFSub(op.LHS, op.RHS, "sub");
2514     }
2515 
2516     return Builder.CreateSub(op.LHS, op.RHS, "sub");
2517   }
2518 
2519   // If the RHS is not a pointer, then we have normal pointer
2520   // arithmetic.
2521   if (!op.RHS->getType()->isPointerTy())
2522     return emitPointerArithmetic(CGF, op, /*subtraction*/ true);
2523 
2524   // Otherwise, this is a pointer subtraction.
2525 
2526   // Do the raw subtraction part.
2527   llvm::Value *LHS
2528     = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast");
2529   llvm::Value *RHS
2530     = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast");
2531   Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
2532 
2533   // Okay, figure out the element size.
2534   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
2535   QualType elementType = expr->getLHS()->getType()->getPointeeType();
2536 
2537   llvm::Value *divisor = nullptr;
2538 
2539   // For a variable-length array, this is going to be non-constant.
2540   if (const VariableArrayType *vla
2541         = CGF.getContext().getAsVariableArrayType(elementType)) {
2542     llvm::Value *numElements;
2543     std::tie(numElements, elementType) = CGF.getVLASize(vla);
2544 
2545     divisor = numElements;
2546 
2547     // Scale the number of non-VLA elements by the non-VLA element size.
2548     CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType);
2549     if (!eltSize.isOne())
2550       divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor);
2551 
2552   // For everything elese, we can just compute it, safe in the
2553   // assumption that Sema won't let anything through that we can't
2554   // safely compute the size of.
2555   } else {
2556     CharUnits elementSize;
2557     // Handle GCC extension for pointer arithmetic on void* and
2558     // function pointer types.
2559     if (elementType->isVoidType() || elementType->isFunctionType())
2560       elementSize = CharUnits::One();
2561     else
2562       elementSize = CGF.getContext().getTypeSizeInChars(elementType);
2563 
2564     // Don't even emit the divide for element size of 1.
2565     if (elementSize.isOne())
2566       return diffInChars;
2567 
2568     divisor = CGF.CGM.getSize(elementSize);
2569   }
2570 
2571   // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
2572   // pointer difference in C is only defined in the case where both operands
2573   // are pointing to elements of an array.
2574   return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div");
2575 }
2576 
GetWidthMinusOneValue(Value * LHS,Value * RHS)2577 Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) {
2578   llvm::IntegerType *Ty;
2579   if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType()))
2580     Ty = cast<llvm::IntegerType>(VT->getElementType());
2581   else
2582     Ty = cast<llvm::IntegerType>(LHS->getType());
2583   return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1);
2584 }
2585 
EmitShl(const BinOpInfo & Ops)2586 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
2587   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
2588   // RHS to the same size as the LHS.
2589   Value *RHS = Ops.RHS;
2590   if (Ops.LHS->getType() != RHS->getType())
2591     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
2592 
2593   if (CGF.SanOpts->Shift && !CGF.getLangOpts().OpenCL &&
2594       isa<llvm::IntegerType>(Ops.LHS->getType())) {
2595     llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, RHS);
2596     llvm::Value *Valid = Builder.CreateICmpULE(RHS, WidthMinusOne);
2597 
2598     if (Ops.Ty->hasSignedIntegerRepresentation()) {
2599       llvm::BasicBlock *Orig = Builder.GetInsertBlock();
2600       llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
2601       llvm::BasicBlock *CheckBitsShifted = CGF.createBasicBlock("check");
2602       Builder.CreateCondBr(Valid, CheckBitsShifted, Cont);
2603 
2604       // Check whether we are shifting any non-zero bits off the top of the
2605       // integer.
2606       CGF.EmitBlock(CheckBitsShifted);
2607       llvm::Value *BitsShiftedOff =
2608         Builder.CreateLShr(Ops.LHS,
2609                            Builder.CreateSub(WidthMinusOne, RHS, "shl.zeros",
2610                                              /*NUW*/true, /*NSW*/true),
2611                            "shl.check");
2612       if (CGF.getLangOpts().CPlusPlus) {
2613         // In C99, we are not permitted to shift a 1 bit into the sign bit.
2614         // Under C++11's rules, shifting a 1 bit into the sign bit is
2615         // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't
2616         // define signed left shifts, so we use the C99 and C++11 rules there).
2617         llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1);
2618         BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One);
2619       }
2620       llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0);
2621       llvm::Value *SecondCheck = Builder.CreateICmpEQ(BitsShiftedOff, Zero);
2622       CGF.EmitBlock(Cont);
2623       llvm::PHINode *P = Builder.CreatePHI(Valid->getType(), 2);
2624       P->addIncoming(Valid, Orig);
2625       P->addIncoming(SecondCheck, CheckBitsShifted);
2626       Valid = P;
2627     }
2628 
2629     EmitBinOpCheck(Valid, Ops);
2630   }
2631   // OpenCL 6.3j: shift values are effectively % word size of LHS.
2632   if (CGF.getLangOpts().OpenCL)
2633     RHS = Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shl.mask");
2634 
2635   return Builder.CreateShl(Ops.LHS, RHS, "shl");
2636 }
2637 
EmitShr(const BinOpInfo & Ops)2638 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
2639   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
2640   // RHS to the same size as the LHS.
2641   Value *RHS = Ops.RHS;
2642   if (Ops.LHS->getType() != RHS->getType())
2643     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
2644 
2645   if (CGF.SanOpts->Shift && !CGF.getLangOpts().OpenCL &&
2646       isa<llvm::IntegerType>(Ops.LHS->getType()))
2647     EmitBinOpCheck(Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS)), Ops);
2648 
2649   // OpenCL 6.3j: shift values are effectively % word size of LHS.
2650   if (CGF.getLangOpts().OpenCL)
2651     RHS = Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shr.mask");
2652 
2653   if (Ops.Ty->hasUnsignedIntegerRepresentation())
2654     return Builder.CreateLShr(Ops.LHS, RHS, "shr");
2655   return Builder.CreateAShr(Ops.LHS, RHS, "shr");
2656 }
2657 
2658 enum IntrinsicType { VCMPEQ, VCMPGT };
2659 // return corresponding comparison intrinsic for given vector type
GetIntrinsic(IntrinsicType IT,BuiltinType::Kind ElemKind)2660 static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT,
2661                                         BuiltinType::Kind ElemKind) {
2662   switch (ElemKind) {
2663   default: llvm_unreachable("unexpected element type");
2664   case BuiltinType::Char_U:
2665   case BuiltinType::UChar:
2666     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
2667                             llvm::Intrinsic::ppc_altivec_vcmpgtub_p;
2668   case BuiltinType::Char_S:
2669   case BuiltinType::SChar:
2670     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
2671                             llvm::Intrinsic::ppc_altivec_vcmpgtsb_p;
2672   case BuiltinType::UShort:
2673     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
2674                             llvm::Intrinsic::ppc_altivec_vcmpgtuh_p;
2675   case BuiltinType::Short:
2676     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
2677                             llvm::Intrinsic::ppc_altivec_vcmpgtsh_p;
2678   case BuiltinType::UInt:
2679   case BuiltinType::ULong:
2680     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
2681                             llvm::Intrinsic::ppc_altivec_vcmpgtuw_p;
2682   case BuiltinType::Int:
2683   case BuiltinType::Long:
2684     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
2685                             llvm::Intrinsic::ppc_altivec_vcmpgtsw_p;
2686   case BuiltinType::Float:
2687     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p :
2688                             llvm::Intrinsic::ppc_altivec_vcmpgtfp_p;
2689   }
2690 }
2691 
EmitCompare(const BinaryOperator * E,unsigned UICmpOpc,unsigned SICmpOpc,unsigned FCmpOpc)2692 Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,unsigned UICmpOpc,
2693                                       unsigned SICmpOpc, unsigned FCmpOpc) {
2694   TestAndClearIgnoreResultAssign();
2695   Value *Result;
2696   QualType LHSTy = E->getLHS()->getType();
2697   if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) {
2698     assert(E->getOpcode() == BO_EQ ||
2699            E->getOpcode() == BO_NE);
2700     Value *LHS = CGF.EmitScalarExpr(E->getLHS());
2701     Value *RHS = CGF.EmitScalarExpr(E->getRHS());
2702     Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison(
2703                    CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE);
2704   } else if (!LHSTy->isAnyComplexType()) {
2705     Value *LHS = Visit(E->getLHS());
2706     Value *RHS = Visit(E->getRHS());
2707 
2708     // If AltiVec, the comparison results in a numeric type, so we use
2709     // intrinsics comparing vectors and giving 0 or 1 as a result
2710     if (LHSTy->isVectorType() && !E->getType()->isVectorType()) {
2711       // constants for mapping CR6 register bits to predicate result
2712       enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6;
2713 
2714       llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic;
2715 
2716       // in several cases vector arguments order will be reversed
2717       Value *FirstVecArg = LHS,
2718             *SecondVecArg = RHS;
2719 
2720       QualType ElTy = LHSTy->getAs<VectorType>()->getElementType();
2721       const BuiltinType *BTy = ElTy->getAs<BuiltinType>();
2722       BuiltinType::Kind ElementKind = BTy->getKind();
2723 
2724       switch(E->getOpcode()) {
2725       default: llvm_unreachable("is not a comparison operation");
2726       case BO_EQ:
2727         CR6 = CR6_LT;
2728         ID = GetIntrinsic(VCMPEQ, ElementKind);
2729         break;
2730       case BO_NE:
2731         CR6 = CR6_EQ;
2732         ID = GetIntrinsic(VCMPEQ, ElementKind);
2733         break;
2734       case BO_LT:
2735         CR6 = CR6_LT;
2736         ID = GetIntrinsic(VCMPGT, ElementKind);
2737         std::swap(FirstVecArg, SecondVecArg);
2738         break;
2739       case BO_GT:
2740         CR6 = CR6_LT;
2741         ID = GetIntrinsic(VCMPGT, ElementKind);
2742         break;
2743       case BO_LE:
2744         if (ElementKind == BuiltinType::Float) {
2745           CR6 = CR6_LT;
2746           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
2747           std::swap(FirstVecArg, SecondVecArg);
2748         }
2749         else {
2750           CR6 = CR6_EQ;
2751           ID = GetIntrinsic(VCMPGT, ElementKind);
2752         }
2753         break;
2754       case BO_GE:
2755         if (ElementKind == BuiltinType::Float) {
2756           CR6 = CR6_LT;
2757           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
2758         }
2759         else {
2760           CR6 = CR6_EQ;
2761           ID = GetIntrinsic(VCMPGT, ElementKind);
2762           std::swap(FirstVecArg, SecondVecArg);
2763         }
2764         break;
2765       }
2766 
2767       Value *CR6Param = Builder.getInt32(CR6);
2768       llvm::Function *F = CGF.CGM.getIntrinsic(ID);
2769       Result = Builder.CreateCall3(F, CR6Param, FirstVecArg, SecondVecArg, "");
2770       return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType());
2771     }
2772 
2773     if (LHS->getType()->isFPOrFPVectorTy()) {
2774       Result = Builder.CreateFCmp((llvm::CmpInst::Predicate)FCmpOpc,
2775                                   LHS, RHS, "cmp");
2776     } else if (LHSTy->hasSignedIntegerRepresentation()) {
2777       Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)SICmpOpc,
2778                                   LHS, RHS, "cmp");
2779     } else {
2780       // Unsigned integers and pointers.
2781       Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
2782                                   LHS, RHS, "cmp");
2783     }
2784 
2785     // If this is a vector comparison, sign extend the result to the appropriate
2786     // vector integer type and return it (don't convert to bool).
2787     if (LHSTy->isVectorType())
2788       return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
2789 
2790   } else {
2791     // Complex Comparison: can only be an equality comparison.
2792     CodeGenFunction::ComplexPairTy LHS = CGF.EmitComplexExpr(E->getLHS());
2793     CodeGenFunction::ComplexPairTy RHS = CGF.EmitComplexExpr(E->getRHS());
2794 
2795     QualType CETy = LHSTy->getAs<ComplexType>()->getElementType();
2796 
2797     Value *ResultR, *ResultI;
2798     if (CETy->isRealFloatingType()) {
2799       ResultR = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
2800                                    LHS.first, RHS.first, "cmp.r");
2801       ResultI = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
2802                                    LHS.second, RHS.second, "cmp.i");
2803     } else {
2804       // Complex comparisons can only be equality comparisons.  As such, signed
2805       // and unsigned opcodes are the same.
2806       ResultR = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
2807                                    LHS.first, RHS.first, "cmp.r");
2808       ResultI = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
2809                                    LHS.second, RHS.second, "cmp.i");
2810     }
2811 
2812     if (E->getOpcode() == BO_EQ) {
2813       Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
2814     } else {
2815       assert(E->getOpcode() == BO_NE &&
2816              "Complex comparison other than == or != ?");
2817       Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
2818     }
2819   }
2820 
2821   return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType());
2822 }
2823 
VisitBinAssign(const BinaryOperator * E)2824 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
2825   bool Ignore = TestAndClearIgnoreResultAssign();
2826 
2827   Value *RHS;
2828   LValue LHS;
2829 
2830   switch (E->getLHS()->getType().getObjCLifetime()) {
2831   case Qualifiers::OCL_Strong:
2832     std::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore);
2833     break;
2834 
2835   case Qualifiers::OCL_Autoreleasing:
2836     std::tie(LHS, RHS) = CGF.EmitARCStoreAutoreleasing(E);
2837     break;
2838 
2839   case Qualifiers::OCL_Weak:
2840     RHS = Visit(E->getRHS());
2841     LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
2842     RHS = CGF.EmitARCStoreWeak(LHS.getAddress(), RHS, Ignore);
2843     break;
2844 
2845   // No reason to do any of these differently.
2846   case Qualifiers::OCL_None:
2847   case Qualifiers::OCL_ExplicitNone:
2848     // __block variables need to have the rhs evaluated first, plus
2849     // this should improve codegen just a little.
2850     RHS = Visit(E->getRHS());
2851     LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
2852 
2853     // Store the value into the LHS.  Bit-fields are handled specially
2854     // because the result is altered by the store, i.e., [C99 6.5.16p1]
2855     // 'An assignment expression has the value of the left operand after
2856     // the assignment...'.
2857     if (LHS.isBitField())
2858       CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS);
2859     else
2860       CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS);
2861   }
2862 
2863   // If the result is clearly ignored, return now.
2864   if (Ignore)
2865     return nullptr;
2866 
2867   // The result of an assignment in C is the assigned r-value.
2868   if (!CGF.getLangOpts().CPlusPlus)
2869     return RHS;
2870 
2871   // If the lvalue is non-volatile, return the computed value of the assignment.
2872   if (!LHS.isVolatileQualified())
2873     return RHS;
2874 
2875   // Otherwise, reload the value.
2876   return EmitLoadOfLValue(LHS, E->getExprLoc());
2877 }
2878 
VisitBinLAnd(const BinaryOperator * E)2879 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
2880   RegionCounter Cnt = CGF.getPGORegionCounter(E);
2881 
2882   // Perform vector logical and on comparisons with zero vectors.
2883   if (E->getType()->isVectorType()) {
2884     Cnt.beginRegion(Builder);
2885 
2886     Value *LHS = Visit(E->getLHS());
2887     Value *RHS = Visit(E->getRHS());
2888     Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
2889     if (LHS->getType()->isFPOrFPVectorTy()) {
2890       LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
2891       RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
2892     } else {
2893       LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
2894       RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
2895     }
2896     Value *And = Builder.CreateAnd(LHS, RHS);
2897     return Builder.CreateSExt(And, ConvertType(E->getType()), "sext");
2898   }
2899 
2900   llvm::Type *ResTy = ConvertType(E->getType());
2901 
2902   // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
2903   // If we have 1 && X, just emit X without inserting the control flow.
2904   bool LHSCondVal;
2905   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
2906     if (LHSCondVal) { // If we have 1 && X, just emit X.
2907       Cnt.beginRegion(Builder);
2908 
2909       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2910       // ZExt result to int or bool.
2911       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
2912     }
2913 
2914     // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
2915     if (!CGF.ContainsLabel(E->getRHS()))
2916       return llvm::Constant::getNullValue(ResTy);
2917   }
2918 
2919   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
2920   llvm::BasicBlock *RHSBlock  = CGF.createBasicBlock("land.rhs");
2921 
2922   CodeGenFunction::ConditionalEvaluation eval(CGF);
2923 
2924   // Branch on the LHS first.  If it is false, go to the failure (cont) block.
2925   CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock, Cnt.getCount());
2926 
2927   // Any edges into the ContBlock are now from an (indeterminate number of)
2928   // edges from this first condition.  All of these values will be false.  Start
2929   // setting up the PHI node in the Cont Block for this.
2930   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
2931                                             "", ContBlock);
2932   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
2933        PI != PE; ++PI)
2934     PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
2935 
2936   eval.begin(CGF);
2937   CGF.EmitBlock(RHSBlock);
2938   Cnt.beginRegion(Builder);
2939   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2940   eval.end(CGF);
2941 
2942   // Reaquire the RHS block, as there may be subblocks inserted.
2943   RHSBlock = Builder.GetInsertBlock();
2944 
2945   // Emit an unconditional branch from this block to ContBlock.  Insert an entry
2946   // into the phi node for the edge with the value of RHSCond.
2947   if (CGF.getDebugInfo())
2948     // There is no need to emit line number for unconditional branch.
2949     Builder.SetCurrentDebugLocation(llvm::DebugLoc());
2950   CGF.EmitBlock(ContBlock);
2951   PN->addIncoming(RHSCond, RHSBlock);
2952 
2953   // ZExt result to int.
2954   return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
2955 }
2956 
VisitBinLOr(const BinaryOperator * E)2957 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
2958   RegionCounter Cnt = CGF.getPGORegionCounter(E);
2959 
2960   // Perform vector logical or on comparisons with zero vectors.
2961   if (E->getType()->isVectorType()) {
2962     Cnt.beginRegion(Builder);
2963 
2964     Value *LHS = Visit(E->getLHS());
2965     Value *RHS = Visit(E->getRHS());
2966     Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
2967     if (LHS->getType()->isFPOrFPVectorTy()) {
2968       LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
2969       RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
2970     } else {
2971       LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
2972       RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
2973     }
2974     Value *Or = Builder.CreateOr(LHS, RHS);
2975     return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext");
2976   }
2977 
2978   llvm::Type *ResTy = ConvertType(E->getType());
2979 
2980   // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
2981   // If we have 0 || X, just emit X without inserting the control flow.
2982   bool LHSCondVal;
2983   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
2984     if (!LHSCondVal) { // If we have 0 || X, just emit X.
2985       Cnt.beginRegion(Builder);
2986 
2987       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2988       // ZExt result to int or bool.
2989       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
2990     }
2991 
2992     // 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
2993     if (!CGF.ContainsLabel(E->getRHS()))
2994       return llvm::ConstantInt::get(ResTy, 1);
2995   }
2996 
2997   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
2998   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
2999 
3000   CodeGenFunction::ConditionalEvaluation eval(CGF);
3001 
3002   // Branch on the LHS first.  If it is true, go to the success (cont) block.
3003   CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock,
3004                            Cnt.getParentCount() - Cnt.getCount());
3005 
3006   // Any edges into the ContBlock are now from an (indeterminate number of)
3007   // edges from this first condition.  All of these values will be true.  Start
3008   // setting up the PHI node in the Cont Block for this.
3009   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
3010                                             "", ContBlock);
3011   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
3012        PI != PE; ++PI)
3013     PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
3014 
3015   eval.begin(CGF);
3016 
3017   // Emit the RHS condition as a bool value.
3018   CGF.EmitBlock(RHSBlock);
3019   Cnt.beginRegion(Builder);
3020   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
3021 
3022   eval.end(CGF);
3023 
3024   // Reaquire the RHS block, as there may be subblocks inserted.
3025   RHSBlock = Builder.GetInsertBlock();
3026 
3027   // Emit an unconditional branch from this block to ContBlock.  Insert an entry
3028   // into the phi node for the edge with the value of RHSCond.
3029   CGF.EmitBlock(ContBlock);
3030   PN->addIncoming(RHSCond, RHSBlock);
3031 
3032   // ZExt result to int.
3033   return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
3034 }
3035 
VisitBinComma(const BinaryOperator * E)3036 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
3037   CGF.EmitIgnoredExpr(E->getLHS());
3038   CGF.EnsureInsertPoint();
3039   return Visit(E->getRHS());
3040 }
3041 
3042 //===----------------------------------------------------------------------===//
3043 //                             Other Operators
3044 //===----------------------------------------------------------------------===//
3045 
3046 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
3047 /// expression is cheap enough and side-effect-free enough to evaluate
3048 /// unconditionally instead of conditionally.  This is used to convert control
3049 /// flow into selects in some cases.
isCheapEnoughToEvaluateUnconditionally(const Expr * E,CodeGenFunction & CGF)3050 static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E,
3051                                                    CodeGenFunction &CGF) {
3052   // Anything that is an integer or floating point constant is fine.
3053   return E->IgnoreParens()->isEvaluatable(CGF.getContext());
3054 
3055   // Even non-volatile automatic variables can't be evaluated unconditionally.
3056   // Referencing a thread_local may cause non-trivial initialization work to
3057   // occur. If we're inside a lambda and one of the variables is from the scope
3058   // outside the lambda, that function may have returned already. Reading its
3059   // locals is a bad idea. Also, these reads may introduce races there didn't
3060   // exist in the source-level program.
3061 }
3062 
3063 
3064 Value *ScalarExprEmitter::
VisitAbstractConditionalOperator(const AbstractConditionalOperator * E)3065 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
3066   TestAndClearIgnoreResultAssign();
3067 
3068   // Bind the common expression if necessary.
3069   CodeGenFunction::OpaqueValueMapping binding(CGF, E);
3070   RegionCounter Cnt = CGF.getPGORegionCounter(E);
3071 
3072   Expr *condExpr = E->getCond();
3073   Expr *lhsExpr = E->getTrueExpr();
3074   Expr *rhsExpr = E->getFalseExpr();
3075 
3076   // If the condition constant folds and can be elided, try to avoid emitting
3077   // the condition and the dead arm.
3078   bool CondExprBool;
3079   if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
3080     Expr *live = lhsExpr, *dead = rhsExpr;
3081     if (!CondExprBool) std::swap(live, dead);
3082 
3083     // If the dead side doesn't have labels we need, just emit the Live part.
3084     if (!CGF.ContainsLabel(dead)) {
3085       if (CondExprBool)
3086         Cnt.beginRegion(Builder);
3087       Value *Result = Visit(live);
3088 
3089       // If the live part is a throw expression, it acts like it has a void
3090       // type, so evaluating it returns a null Value*.  However, a conditional
3091       // with non-void type must return a non-null Value*.
3092       if (!Result && !E->getType()->isVoidType())
3093         Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));
3094 
3095       return Result;
3096     }
3097   }
3098 
3099   // OpenCL: If the condition is a vector, we can treat this condition like
3100   // the select function.
3101   if (CGF.getLangOpts().OpenCL
3102       && condExpr->getType()->isVectorType()) {
3103     Cnt.beginRegion(Builder);
3104 
3105     llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
3106     llvm::Value *LHS = Visit(lhsExpr);
3107     llvm::Value *RHS = Visit(rhsExpr);
3108 
3109     llvm::Type *condType = ConvertType(condExpr->getType());
3110     llvm::VectorType *vecTy = cast<llvm::VectorType>(condType);
3111 
3112     unsigned numElem = vecTy->getNumElements();
3113     llvm::Type *elemType = vecTy->getElementType();
3114 
3115     llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy);
3116     llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec);
3117     llvm::Value *tmp = Builder.CreateSExt(TestMSB,
3118                                           llvm::VectorType::get(elemType,
3119                                                                 numElem),
3120                                           "sext");
3121     llvm::Value *tmp2 = Builder.CreateNot(tmp);
3122 
3123     // Cast float to int to perform ANDs if necessary.
3124     llvm::Value *RHSTmp = RHS;
3125     llvm::Value *LHSTmp = LHS;
3126     bool wasCast = false;
3127     llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType());
3128     if (rhsVTy->getElementType()->isFloatingPointTy()) {
3129       RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType());
3130       LHSTmp = Builder.CreateBitCast(LHS, tmp->getType());
3131       wasCast = true;
3132     }
3133 
3134     llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2);
3135     llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp);
3136     llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond");
3137     if (wasCast)
3138       tmp5 = Builder.CreateBitCast(tmp5, RHS->getType());
3139 
3140     return tmp5;
3141   }
3142 
3143   // If this is a really simple expression (like x ? 4 : 5), emit this as a
3144   // select instead of as control flow.  We can only do this if it is cheap and
3145   // safe to evaluate the LHS and RHS unconditionally.
3146   if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) &&
3147       isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) {
3148     Cnt.beginRegion(Builder);
3149 
3150     llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr);
3151     llvm::Value *LHS = Visit(lhsExpr);
3152     llvm::Value *RHS = Visit(rhsExpr);
3153     if (!LHS) {
3154       // If the conditional has void type, make sure we return a null Value*.
3155       assert(!RHS && "LHS and RHS types must match");
3156       return nullptr;
3157     }
3158     return Builder.CreateSelect(CondV, LHS, RHS, "cond");
3159   }
3160 
3161   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
3162   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
3163   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
3164 
3165   CodeGenFunction::ConditionalEvaluation eval(CGF);
3166   CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock, Cnt.getCount());
3167 
3168   CGF.EmitBlock(LHSBlock);
3169   Cnt.beginRegion(Builder);
3170   eval.begin(CGF);
3171   Value *LHS = Visit(lhsExpr);
3172   eval.end(CGF);
3173 
3174   LHSBlock = Builder.GetInsertBlock();
3175   Builder.CreateBr(ContBlock);
3176 
3177   CGF.EmitBlock(RHSBlock);
3178   eval.begin(CGF);
3179   Value *RHS = Visit(rhsExpr);
3180   eval.end(CGF);
3181 
3182   RHSBlock = Builder.GetInsertBlock();
3183   CGF.EmitBlock(ContBlock);
3184 
3185   // If the LHS or RHS is a throw expression, it will be legitimately null.
3186   if (!LHS)
3187     return RHS;
3188   if (!RHS)
3189     return LHS;
3190 
3191   // Create a PHI node for the real part.
3192   llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond");
3193   PN->addIncoming(LHS, LHSBlock);
3194   PN->addIncoming(RHS, RHSBlock);
3195   return PN;
3196 }
3197 
VisitChooseExpr(ChooseExpr * E)3198 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
3199   return Visit(E->getChosenSubExpr());
3200 }
3201 
VisitVAArgExpr(VAArgExpr * VE)3202 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
3203   QualType Ty = VE->getType();
3204   if (Ty->isVariablyModifiedType())
3205     CGF.EmitVariablyModifiedType(Ty);
3206 
3207   llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr());
3208   llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType());
3209 
3210   // If EmitVAArg fails, we fall back to the LLVM instruction.
3211   if (!ArgPtr)
3212     return Builder.CreateVAArg(ArgValue, ConvertType(VE->getType()));
3213 
3214   // FIXME Volatility.
3215   return Builder.CreateLoad(ArgPtr);
3216 }
3217 
VisitBlockExpr(const BlockExpr * block)3218 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) {
3219   return CGF.EmitBlockLiteral(block);
3220 }
3221 
VisitAsTypeExpr(AsTypeExpr * E)3222 Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) {
3223   Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
3224   llvm::Type *DstTy = ConvertType(E->getType());
3225 
3226   // Going from vec4->vec3 or vec3->vec4 is a special case and requires
3227   // a shuffle vector instead of a bitcast.
3228   llvm::Type *SrcTy = Src->getType();
3229   if (isa<llvm::VectorType>(DstTy) && isa<llvm::VectorType>(SrcTy)) {
3230     unsigned numElementsDst = cast<llvm::VectorType>(DstTy)->getNumElements();
3231     unsigned numElementsSrc = cast<llvm::VectorType>(SrcTy)->getNumElements();
3232     if ((numElementsDst == 3 && numElementsSrc == 4)
3233         || (numElementsDst == 4 && numElementsSrc == 3)) {
3234 
3235 
3236       // In the case of going from int4->float3, a bitcast is needed before
3237       // doing a shuffle.
3238       llvm::Type *srcElemTy =
3239       cast<llvm::VectorType>(SrcTy)->getElementType();
3240       llvm::Type *dstElemTy =
3241       cast<llvm::VectorType>(DstTy)->getElementType();
3242 
3243       if ((srcElemTy->isIntegerTy() && dstElemTy->isFloatTy())
3244           || (srcElemTy->isFloatTy() && dstElemTy->isIntegerTy())) {
3245         // Create a float type of the same size as the source or destination.
3246         llvm::VectorType *newSrcTy = llvm::VectorType::get(dstElemTy,
3247                                                                  numElementsSrc);
3248 
3249         Src = Builder.CreateBitCast(Src, newSrcTy, "astypeCast");
3250       }
3251 
3252       llvm::Value *UnV = llvm::UndefValue::get(Src->getType());
3253 
3254       SmallVector<llvm::Constant*, 3> Args;
3255       Args.push_back(Builder.getInt32(0));
3256       Args.push_back(Builder.getInt32(1));
3257       Args.push_back(Builder.getInt32(2));
3258 
3259       if (numElementsDst == 4)
3260         Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
3261 
3262       llvm::Constant *Mask = llvm::ConstantVector::get(Args);
3263 
3264       return Builder.CreateShuffleVector(Src, UnV, Mask, "astype");
3265     }
3266   }
3267 
3268   return Builder.CreateBitCast(Src, DstTy, "astype");
3269 }
3270 
VisitAtomicExpr(AtomicExpr * E)3271 Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) {
3272   return CGF.EmitAtomicExpr(E).getScalarVal();
3273 }
3274 
3275 //===----------------------------------------------------------------------===//
3276 //                         Entry Point into this File
3277 //===----------------------------------------------------------------------===//
3278 
3279 /// EmitScalarExpr - Emit the computation of the specified expression of scalar
3280 /// type, ignoring the result.
EmitScalarExpr(const Expr * E,bool IgnoreResultAssign)3281 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
3282   assert(E && hasScalarEvaluationKind(E->getType()) &&
3283          "Invalid scalar expression to emit");
3284 
3285   if (isa<CXXDefaultArgExpr>(E))
3286     disableDebugInfo();
3287   Value *V = ScalarExprEmitter(*this, IgnoreResultAssign)
3288     .Visit(const_cast<Expr*>(E));
3289   if (isa<CXXDefaultArgExpr>(E))
3290     enableDebugInfo();
3291   return V;
3292 }
3293 
3294 /// EmitScalarConversion - Emit a conversion from the specified type to the
3295 /// specified destination type, both of which are LLVM scalar types.
EmitScalarConversion(Value * Src,QualType SrcTy,QualType DstTy)3296 Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
3297                                              QualType DstTy) {
3298   assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) &&
3299          "Invalid scalar expression to emit");
3300   return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy);
3301 }
3302 
3303 /// EmitComplexToScalarConversion - Emit a conversion from the specified complex
3304 /// type to the specified destination type, where the destination type is an
3305 /// LLVM scalar type.
EmitComplexToScalarConversion(ComplexPairTy Src,QualType SrcTy,QualType DstTy)3306 Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
3307                                                       QualType SrcTy,
3308                                                       QualType DstTy) {
3309   assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) &&
3310          "Invalid complex -> scalar conversion");
3311   return ScalarExprEmitter(*this).EmitComplexToScalarConversion(Src, SrcTy,
3312                                                                 DstTy);
3313 }
3314 
3315 
3316 llvm::Value *CodeGenFunction::
EmitScalarPrePostIncDec(const UnaryOperator * E,LValue LV,bool isInc,bool isPre)3317 EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
3318                         bool isInc, bool isPre) {
3319   return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre);
3320 }
3321 
EmitObjCIsaExpr(const ObjCIsaExpr * E)3322 LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) {
3323   llvm::Value *V;
3324   // object->isa or (*object).isa
3325   // Generate code as for: *(Class*)object
3326   // build Class* type
3327   llvm::Type *ClassPtrTy = ConvertType(E->getType());
3328 
3329   Expr *BaseExpr = E->getBase();
3330   if (BaseExpr->isRValue()) {
3331     V = CreateMemTemp(E->getType(), "resval");
3332     llvm::Value *Src = EmitScalarExpr(BaseExpr);
3333     Builder.CreateStore(Src, V);
3334     V = ScalarExprEmitter(*this).EmitLoadOfLValue(
3335       MakeNaturalAlignAddrLValue(V, E->getType()), E->getExprLoc());
3336   } else {
3337     if (E->isArrow())
3338       V = ScalarExprEmitter(*this).EmitLoadOfLValue(BaseExpr);
3339     else
3340       V = EmitLValue(BaseExpr).getAddress();
3341   }
3342 
3343   // build Class* type
3344   ClassPtrTy = ClassPtrTy->getPointerTo();
3345   V = Builder.CreateBitCast(V, ClassPtrTy);
3346   return MakeNaturalAlignAddrLValue(V, E->getType());
3347 }
3348 
3349 
EmitCompoundAssignmentLValue(const CompoundAssignOperator * E)3350 LValue CodeGenFunction::EmitCompoundAssignmentLValue(
3351                                             const CompoundAssignOperator *E) {
3352   ScalarExprEmitter Scalar(*this);
3353   Value *Result = nullptr;
3354   switch (E->getOpcode()) {
3355 #define COMPOUND_OP(Op)                                                       \
3356     case BO_##Op##Assign:                                                     \
3357       return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \
3358                                              Result)
3359   COMPOUND_OP(Mul);
3360   COMPOUND_OP(Div);
3361   COMPOUND_OP(Rem);
3362   COMPOUND_OP(Add);
3363   COMPOUND_OP(Sub);
3364   COMPOUND_OP(Shl);
3365   COMPOUND_OP(Shr);
3366   COMPOUND_OP(And);
3367   COMPOUND_OP(Xor);
3368   COMPOUND_OP(Or);
3369 #undef COMPOUND_OP
3370 
3371   case BO_PtrMemD:
3372   case BO_PtrMemI:
3373   case BO_Mul:
3374   case BO_Div:
3375   case BO_Rem:
3376   case BO_Add:
3377   case BO_Sub:
3378   case BO_Shl:
3379   case BO_Shr:
3380   case BO_LT:
3381   case BO_GT:
3382   case BO_LE:
3383   case BO_GE:
3384   case BO_EQ:
3385   case BO_NE:
3386   case BO_And:
3387   case BO_Xor:
3388   case BO_Or:
3389   case BO_LAnd:
3390   case BO_LOr:
3391   case BO_Assign:
3392   case BO_Comma:
3393     llvm_unreachable("Not valid compound assignment operators");
3394   }
3395 
3396   llvm_unreachable("Unhandled compound assignment operator");
3397 }
3398