• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- X86Subtarget.h - Define Subtarget for the X86 ----------*- C++ -*--===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file declares the X86 specific subclass of TargetSubtargetInfo.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef X86SUBTARGET_H
15 #define X86SUBTARGET_H
16 
17 #include "X86FrameLowering.h"
18 #include "X86ISelLowering.h"
19 #include "X86InstrInfo.h"
20 #include "X86JITInfo.h"
21 #include "X86SelectionDAGInfo.h"
22 #include "llvm/ADT/Triple.h"
23 #include "llvm/IR/CallingConv.h"
24 #include "llvm/Target/TargetSubtargetInfo.h"
25 #include <string>
26 
27 #define GET_SUBTARGETINFO_HEADER
28 #include "X86GenSubtargetInfo.inc"
29 
30 namespace llvm {
31 class GlobalValue;
32 class StringRef;
33 class TargetMachine;
34 
35 /// PICStyles - The X86 backend supports a number of different styles of PIC.
36 ///
37 namespace PICStyles {
38 enum Style {
39   StubPIC,          // Used on i386-darwin in -fPIC mode.
40   StubDynamicNoPIC, // Used on i386-darwin in -mdynamic-no-pic mode.
41   GOT,              // Used on many 32-bit unices in -fPIC mode.
42   RIPRel,           // Used on X86-64 when not in -static mode.
43   None              // Set when in -static mode (not PIC or DynamicNoPIC mode).
44 };
45 }
46 
47 class X86Subtarget final : public X86GenSubtargetInfo {
48 
49 protected:
50   enum X86SSEEnum {
51     NoMMXSSE, MMX, SSE1, SSE2, SSE3, SSSE3, SSE41, SSE42, AVX, AVX2, AVX512F
52   };
53 
54   enum X863DNowEnum {
55     NoThreeDNow, ThreeDNow, ThreeDNowA
56   };
57 
58   enum X86ProcFamilyEnum {
59     Others, IntelAtom, IntelSLM
60   };
61 
62   /// X86ProcFamily - X86 processor family: Intel Atom, and others
63   X86ProcFamilyEnum X86ProcFamily;
64 
65   /// PICStyle - Which PIC style to use
66   ///
67   PICStyles::Style PICStyle;
68 
69   /// X86SSELevel - MMX, SSE1, SSE2, SSE3, SSSE3, SSE41, SSE42, or
70   /// none supported.
71   X86SSEEnum X86SSELevel;
72 
73   /// X863DNowLevel - 3DNow or 3DNow Athlon, or none supported.
74   ///
75   X863DNowEnum X863DNowLevel;
76 
77   /// HasCMov - True if this processor has conditional move instructions
78   /// (generally pentium pro+).
79   bool HasCMov;
80 
81   /// HasX86_64 - True if the processor supports X86-64 instructions.
82   ///
83   bool HasX86_64;
84 
85   /// HasPOPCNT - True if the processor supports POPCNT.
86   bool HasPOPCNT;
87 
88   /// HasSSE4A - True if the processor supports SSE4A instructions.
89   bool HasSSE4A;
90 
91   /// HasAES - Target has AES instructions
92   bool HasAES;
93 
94   /// HasPCLMUL - Target has carry-less multiplication
95   bool HasPCLMUL;
96 
97   /// HasFMA - Target has 3-operand fused multiply-add
98   bool HasFMA;
99 
100   /// HasFMA4 - Target has 4-operand fused multiply-add
101   bool HasFMA4;
102 
103   /// HasXOP - Target has XOP instructions
104   bool HasXOP;
105 
106   /// HasTBM - Target has TBM instructions.
107   bool HasTBM;
108 
109   /// HasMOVBE - True if the processor has the MOVBE instruction.
110   bool HasMOVBE;
111 
112   /// HasRDRAND - True if the processor has the RDRAND instruction.
113   bool HasRDRAND;
114 
115   /// HasF16C - Processor has 16-bit floating point conversion instructions.
116   bool HasF16C;
117 
118   /// HasFSGSBase - Processor has FS/GS base insturctions.
119   bool HasFSGSBase;
120 
121   /// HasLZCNT - Processor has LZCNT instruction.
122   bool HasLZCNT;
123 
124   /// HasBMI - Processor has BMI1 instructions.
125   bool HasBMI;
126 
127   /// HasBMI2 - Processor has BMI2 instructions.
128   bool HasBMI2;
129 
130   /// HasRTM - Processor has RTM instructions.
131   bool HasRTM;
132 
133   /// HasHLE - Processor has HLE.
134   bool HasHLE;
135 
136   /// HasADX - Processor has ADX instructions.
137   bool HasADX;
138 
139   /// HasSHA - Processor has SHA instructions.
140   bool HasSHA;
141 
142   /// HasPRFCHW - Processor has PRFCHW instructions.
143   bool HasPRFCHW;
144 
145   /// HasRDSEED - Processor has RDSEED instructions.
146   bool HasRDSEED;
147 
148   /// IsBTMemSlow - True if BT (bit test) of memory instructions are slow.
149   bool IsBTMemSlow;
150 
151   /// IsSHLDSlow - True if SHLD instructions are slow.
152   bool IsSHLDSlow;
153 
154   /// IsUAMemFast - True if unaligned memory access is fast.
155   bool IsUAMemFast;
156 
157   /// HasVectorUAMem - True if SIMD operations can have unaligned memory
158   /// operands. This may require setting a feature bit in the processor.
159   bool HasVectorUAMem;
160 
161   /// HasCmpxchg16b - True if this processor has the CMPXCHG16B instruction;
162   /// this is true for most x86-64 chips, but not the first AMD chips.
163   bool HasCmpxchg16b;
164 
165   /// UseLeaForSP - True if the LEA instruction should be used for adjusting
166   /// the stack pointer. This is an optimization for Intel Atom processors.
167   bool UseLeaForSP;
168 
169   /// HasSlowDivide - True if smaller divides are significantly faster than
170   /// full divides and should be used when possible.
171   bool HasSlowDivide;
172 
173   /// PostRAScheduler - True if using post-register-allocation scheduler.
174   bool PostRAScheduler;
175 
176   /// PadShortFunctions - True if the short functions should be padded to prevent
177   /// a stall when returning too early.
178   bool PadShortFunctions;
179 
180   /// CallRegIndirect - True if the Calls with memory reference should be converted
181   /// to a register-based indirect call.
182   bool CallRegIndirect;
183   /// LEAUsesAG - True if the LEA instruction inputs have to be ready at
184   ///             address generation (AG) time.
185   bool LEAUsesAG;
186 
187   /// SlowLEA - True if the LEA instruction with certain arguments is slow
188   bool SlowLEA;
189 
190   /// SlowIncDec - True if INC and DEC instructions are slow when writing to flags
191   bool SlowIncDec;
192 
193   /// Processor has AVX-512 PreFetch Instructions
194   bool HasPFI;
195 
196   /// Processor has AVX-512 Exponential and Reciprocal Instructions
197   bool HasERI;
198 
199   /// Processor has AVX-512 Conflict Detection Instructions
200   bool HasCDI;
201 
202   /// stackAlignment - The minimum alignment known to hold of the stack frame on
203   /// entry to the function and which must be maintained by every function.
204   unsigned stackAlignment;
205 
206   /// Max. memset / memcpy size that is turned into rep/movs, rep/stos ops.
207   ///
208   unsigned MaxInlineSizeThreshold;
209 
210   /// TargetTriple - What processor and OS we're targeting.
211   Triple TargetTriple;
212 
213   /// Instruction itineraries for scheduling
214   InstrItineraryData InstrItins;
215 
216 private:
217   /// StackAlignOverride - Override the stack alignment.
218   unsigned StackAlignOverride;
219 
220   /// In64BitMode - True if compiling for 64-bit, false for 16-bit or 32-bit.
221   bool In64BitMode;
222 
223   /// In32BitMode - True if compiling for 32-bit, false for 16-bit or 64-bit.
224   bool In32BitMode;
225 
226   /// In16BitMode - True if compiling for 16-bit, false for 32-bit or 64-bit.
227   bool In16BitMode;
228 
229   // Calculates type size & alignment
230   const DataLayout DL;
231   X86SelectionDAGInfo TSInfo;
232   // Ordering here is important. X86InstrInfo initializes X86RegisterInfo which
233   // X86TargetLowering needs.
234   X86InstrInfo InstrInfo;
235   X86TargetLowering TLInfo;
236   X86FrameLowering FrameLowering;
237   X86JITInfo JITInfo;
238 
239 public:
240   /// This constructor initializes the data members to match that
241   /// of the specified triple.
242   ///
243   X86Subtarget(const std::string &TT, const std::string &CPU,
244                const std::string &FS, X86TargetMachine &TM,
245                unsigned StackAlignOverride);
246 
getTargetLowering()247   const X86TargetLowering *getTargetLowering() const { return &TLInfo; }
getInstrInfo()248   const X86InstrInfo *getInstrInfo() const { return &InstrInfo; }
getDataLayout()249   const DataLayout *getDataLayout() const { return &DL; }
getFrameLowering()250   const X86FrameLowering *getFrameLowering() const { return &FrameLowering; }
getSelectionDAGInfo()251   const X86SelectionDAGInfo *getSelectionDAGInfo() const { return &TSInfo; }
getJITInfo()252   X86JITInfo *getJITInfo() { return &JITInfo; }
253 
254   /// getStackAlignment - Returns the minimum alignment known to hold of the
255   /// stack frame on entry to the function and which must be maintained by every
256   /// function for this subtarget.
getStackAlignment()257   unsigned getStackAlignment() const { return stackAlignment; }
258 
259   /// getMaxInlineSizeThreshold - Returns the maximum memset / memcpy size
260   /// that still makes it profitable to inline the call.
getMaxInlineSizeThreshold()261   unsigned getMaxInlineSizeThreshold() const { return MaxInlineSizeThreshold; }
262 
263   /// ParseSubtargetFeatures - Parses features string setting specified
264   /// subtarget options.  Definition of function is auto generated by tblgen.
265   void ParseSubtargetFeatures(StringRef CPU, StringRef FS);
266 
267   /// \brief Reset the features for the X86 target.
268   void resetSubtargetFeatures(const MachineFunction *MF) override;
269 private:
270   /// \brief Initialize the full set of dependencies so we can use an initializer
271   /// list for X86Subtarget.
272   X86Subtarget &initializeSubtargetDependencies(StringRef CPU, StringRef FS);
273   void initializeEnvironment();
274   void resetSubtargetFeatures(StringRef CPU, StringRef FS);
275 public:
276   /// Is this x86_64? (disregarding specific ABI / programming model)
is64Bit()277   bool is64Bit() const {
278     return In64BitMode;
279   }
280 
is32Bit()281   bool is32Bit() const {
282     return In32BitMode;
283   }
284 
is16Bit()285   bool is16Bit() const {
286     return In16BitMode;
287   }
288 
289   /// Is this x86_64 with the ILP32 programming model (x32 ABI)?
isTarget64BitILP32()290   bool isTarget64BitILP32() const {
291     return In64BitMode && (TargetTriple.getEnvironment() == Triple::GNUX32 ||
292                            TargetTriple.getOS() == Triple::NaCl);
293   }
294 
295   /// Is this x86_64 with the LP64 programming model (standard AMD64, no x32)?
isTarget64BitLP64()296   bool isTarget64BitLP64() const {
297     return In64BitMode && (TargetTriple.getEnvironment() != Triple::GNUX32);
298   }
299 
getPICStyle()300   PICStyles::Style getPICStyle() const { return PICStyle; }
setPICStyle(PICStyles::Style Style)301   void setPICStyle(PICStyles::Style Style)  { PICStyle = Style; }
302 
hasCMov()303   bool hasCMov() const { return HasCMov; }
hasMMX()304   bool hasMMX() const { return X86SSELevel >= MMX; }
hasSSE1()305   bool hasSSE1() const { return X86SSELevel >= SSE1; }
hasSSE2()306   bool hasSSE2() const { return X86SSELevel >= SSE2; }
hasSSE3()307   bool hasSSE3() const { return X86SSELevel >= SSE3; }
hasSSSE3()308   bool hasSSSE3() const { return X86SSELevel >= SSSE3; }
hasSSE41()309   bool hasSSE41() const { return X86SSELevel >= SSE41; }
hasSSE42()310   bool hasSSE42() const { return X86SSELevel >= SSE42; }
hasAVX()311   bool hasAVX() const { return X86SSELevel >= AVX; }
hasAVX2()312   bool hasAVX2() const { return X86SSELevel >= AVX2; }
hasAVX512()313   bool hasAVX512() const { return X86SSELevel >= AVX512F; }
hasFp256()314   bool hasFp256() const { return hasAVX(); }
hasInt256()315   bool hasInt256() const { return hasAVX2(); }
hasSSE4A()316   bool hasSSE4A() const { return HasSSE4A; }
has3DNow()317   bool has3DNow() const { return X863DNowLevel >= ThreeDNow; }
has3DNowA()318   bool has3DNowA() const { return X863DNowLevel >= ThreeDNowA; }
hasPOPCNT()319   bool hasPOPCNT() const { return HasPOPCNT; }
hasAES()320   bool hasAES() const { return HasAES; }
hasPCLMUL()321   bool hasPCLMUL() const { return HasPCLMUL; }
hasFMA()322   bool hasFMA() const { return HasFMA; }
323   // FIXME: Favor FMA when both are enabled. Is this the right thing to do?
hasFMA4()324   bool hasFMA4() const { return HasFMA4 && !HasFMA; }
hasXOP()325   bool hasXOP() const { return HasXOP; }
hasTBM()326   bool hasTBM() const { return HasTBM; }
hasMOVBE()327   bool hasMOVBE() const { return HasMOVBE; }
hasRDRAND()328   bool hasRDRAND() const { return HasRDRAND; }
hasF16C()329   bool hasF16C() const { return HasF16C; }
hasFSGSBase()330   bool hasFSGSBase() const { return HasFSGSBase; }
hasLZCNT()331   bool hasLZCNT() const { return HasLZCNT; }
hasBMI()332   bool hasBMI() const { return HasBMI; }
hasBMI2()333   bool hasBMI2() const { return HasBMI2; }
hasRTM()334   bool hasRTM() const { return HasRTM; }
hasHLE()335   bool hasHLE() const { return HasHLE; }
hasADX()336   bool hasADX() const { return HasADX; }
hasSHA()337   bool hasSHA() const { return HasSHA; }
hasPRFCHW()338   bool hasPRFCHW() const { return HasPRFCHW; }
hasRDSEED()339   bool hasRDSEED() const { return HasRDSEED; }
isBTMemSlow()340   bool isBTMemSlow() const { return IsBTMemSlow; }
isSHLDSlow()341   bool isSHLDSlow() const { return IsSHLDSlow; }
isUnalignedMemAccessFast()342   bool isUnalignedMemAccessFast() const { return IsUAMemFast; }
hasVectorUAMem()343   bool hasVectorUAMem() const { return HasVectorUAMem; }
hasCmpxchg16b()344   bool hasCmpxchg16b() const { return HasCmpxchg16b; }
useLeaForSP()345   bool useLeaForSP() const { return UseLeaForSP; }
hasSlowDivide()346   bool hasSlowDivide() const { return HasSlowDivide; }
padShortFunctions()347   bool padShortFunctions() const { return PadShortFunctions; }
callRegIndirect()348   bool callRegIndirect() const { return CallRegIndirect; }
LEAusesAG()349   bool LEAusesAG() const { return LEAUsesAG; }
slowLEA()350   bool slowLEA() const { return SlowLEA; }
slowIncDec()351   bool slowIncDec() const { return SlowIncDec; }
hasCDI()352   bool hasCDI() const { return HasCDI; }
hasPFI()353   bool hasPFI() const { return HasPFI; }
hasERI()354   bool hasERI() const { return HasERI; }
355 
isAtom()356   bool isAtom() const { return X86ProcFamily == IntelAtom; }
isSLM()357   bool isSLM() const { return X86ProcFamily == IntelSLM; }
358 
getTargetTriple()359   const Triple &getTargetTriple() const { return TargetTriple; }
360 
isTargetDarwin()361   bool isTargetDarwin() const { return TargetTriple.isOSDarwin(); }
isTargetFreeBSD()362   bool isTargetFreeBSD() const {
363     return TargetTriple.getOS() == Triple::FreeBSD;
364   }
isTargetSolaris()365   bool isTargetSolaris() const {
366     return TargetTriple.getOS() == Triple::Solaris;
367   }
368 
isTargetELF()369   bool isTargetELF() const { return TargetTriple.isOSBinFormatELF(); }
isTargetCOFF()370   bool isTargetCOFF() const { return TargetTriple.isOSBinFormatCOFF(); }
isTargetMacho()371   bool isTargetMacho() const { return TargetTriple.isOSBinFormatMachO(); }
372 
isTargetLinux()373   bool isTargetLinux() const { return TargetTriple.isOSLinux(); }
isTargetNaCl()374   bool isTargetNaCl() const { return TargetTriple.isOSNaCl(); }
isTargetNaCl32()375   bool isTargetNaCl32() const { return isTargetNaCl() && !is64Bit(); }
isTargetNaCl64()376   bool isTargetNaCl64() const { return isTargetNaCl() && is64Bit(); }
377 
isTargetWindowsMSVC()378   bool isTargetWindowsMSVC() const {
379     return TargetTriple.isWindowsMSVCEnvironment();
380   }
381 
isTargetKnownWindowsMSVC()382   bool isTargetKnownWindowsMSVC() const {
383     return TargetTriple.isKnownWindowsMSVCEnvironment();
384   }
385 
isTargetWindowsCygwin()386   bool isTargetWindowsCygwin() const {
387     return TargetTriple.isWindowsCygwinEnvironment();
388   }
389 
isTargetWindowsGNU()390   bool isTargetWindowsGNU() const {
391     return TargetTriple.isWindowsGNUEnvironment();
392   }
393 
isTargetCygMing()394   bool isTargetCygMing() const { return TargetTriple.isOSCygMing(); }
395 
isOSWindows()396   bool isOSWindows() const { return TargetTriple.isOSWindows(); }
397 
isTargetWin64()398   bool isTargetWin64() const {
399     return In64BitMode && TargetTriple.isOSWindows();
400   }
401 
isTargetWin32()402   bool isTargetWin32() const {
403     return !In64BitMode && (isTargetCygMing() || isTargetKnownWindowsMSVC());
404   }
405 
isPICStyleSet()406   bool isPICStyleSet() const { return PICStyle != PICStyles::None; }
isPICStyleGOT()407   bool isPICStyleGOT() const { return PICStyle == PICStyles::GOT; }
isPICStyleRIPRel()408   bool isPICStyleRIPRel() const { return PICStyle == PICStyles::RIPRel; }
409 
isPICStyleStubPIC()410   bool isPICStyleStubPIC() const {
411     return PICStyle == PICStyles::StubPIC;
412   }
413 
isPICStyleStubNoDynamic()414   bool isPICStyleStubNoDynamic() const {
415     return PICStyle == PICStyles::StubDynamicNoPIC;
416   }
isPICStyleStubAny()417   bool isPICStyleStubAny() const {
418     return PICStyle == PICStyles::StubDynamicNoPIC ||
419            PICStyle == PICStyles::StubPIC;
420   }
421 
isCallingConvWin64(CallingConv::ID CC)422   bool isCallingConvWin64(CallingConv::ID CC) const {
423     return (isTargetWin64() && CC != CallingConv::X86_64_SysV) ||
424            CC == CallingConv::X86_64_Win64;
425   }
426 
427   /// ClassifyGlobalReference - Classify a global variable reference for the
428   /// current subtarget according to how we should reference it in a non-pcrel
429   /// context.
430   unsigned char ClassifyGlobalReference(const GlobalValue *GV,
431                                         const TargetMachine &TM)const;
432 
433   /// ClassifyBlockAddressReference - Classify a blockaddress reference for the
434   /// current subtarget according to how we should reference it in a non-pcrel
435   /// context.
436   unsigned char ClassifyBlockAddressReference() const;
437 
438   /// IsLegalToCallImmediateAddr - Return true if the subtarget allows calls
439   /// to immediate address.
440   bool IsLegalToCallImmediateAddr(const TargetMachine &TM) const;
441 
442   /// This function returns the name of a function which has an interface
443   /// like the non-standard bzero function, if such a function exists on
444   /// the current subtarget and it is considered prefereable over
445   /// memset with zero passed as the second argument. Otherwise it
446   /// returns null.
447   const char *getBZeroEntry() const;
448 
449   /// This function returns true if the target has sincos() routine in its
450   /// compiler runtime or math libraries.
451   bool hasSinCos() const;
452 
453   /// Enable the MachineScheduler pass for all X86 subtargets.
enableMachineScheduler()454   bool enableMachineScheduler() const override { return true; }
455 
456   /// enablePostRAScheduler - run for Atom optimization.
457   bool enablePostRAScheduler(CodeGenOpt::Level OptLevel,
458                              TargetSubtargetInfo::AntiDepBreakMode& Mode,
459                              RegClassVector& CriticalPathRCs) const override;
460 
postRAScheduler()461   bool postRAScheduler() const { return PostRAScheduler; }
462 
463   bool enableEarlyIfConversion() const override;
464 
465   /// getInstrItins = Return the instruction itineraries based on the
466   /// subtarget selection.
getInstrItineraryData()467   const InstrItineraryData &getInstrItineraryData() const { return InstrItins; }
468 };
469 
470 } // End llvm namespace
471 
472 #endif
473