1 //===-- X86Subtarget.h - Define Subtarget for the X86 ----------*- C++ -*--===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file declares the X86 specific subclass of TargetSubtargetInfo. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #ifndef X86SUBTARGET_H 15 #define X86SUBTARGET_H 16 17 #include "X86FrameLowering.h" 18 #include "X86ISelLowering.h" 19 #include "X86InstrInfo.h" 20 #include "X86JITInfo.h" 21 #include "X86SelectionDAGInfo.h" 22 #include "llvm/ADT/Triple.h" 23 #include "llvm/IR/CallingConv.h" 24 #include "llvm/Target/TargetSubtargetInfo.h" 25 #include <string> 26 27 #define GET_SUBTARGETINFO_HEADER 28 #include "X86GenSubtargetInfo.inc" 29 30 namespace llvm { 31 class GlobalValue; 32 class StringRef; 33 class TargetMachine; 34 35 /// PICStyles - The X86 backend supports a number of different styles of PIC. 36 /// 37 namespace PICStyles { 38 enum Style { 39 StubPIC, // Used on i386-darwin in -fPIC mode. 40 StubDynamicNoPIC, // Used on i386-darwin in -mdynamic-no-pic mode. 41 GOT, // Used on many 32-bit unices in -fPIC mode. 42 RIPRel, // Used on X86-64 when not in -static mode. 43 None // Set when in -static mode (not PIC or DynamicNoPIC mode). 44 }; 45 } 46 47 class X86Subtarget final : public X86GenSubtargetInfo { 48 49 protected: 50 enum X86SSEEnum { 51 NoMMXSSE, MMX, SSE1, SSE2, SSE3, SSSE3, SSE41, SSE42, AVX, AVX2, AVX512F 52 }; 53 54 enum X863DNowEnum { 55 NoThreeDNow, ThreeDNow, ThreeDNowA 56 }; 57 58 enum X86ProcFamilyEnum { 59 Others, IntelAtom, IntelSLM 60 }; 61 62 /// X86ProcFamily - X86 processor family: Intel Atom, and others 63 X86ProcFamilyEnum X86ProcFamily; 64 65 /// PICStyle - Which PIC style to use 66 /// 67 PICStyles::Style PICStyle; 68 69 /// X86SSELevel - MMX, SSE1, SSE2, SSE3, SSSE3, SSE41, SSE42, or 70 /// none supported. 71 X86SSEEnum X86SSELevel; 72 73 /// X863DNowLevel - 3DNow or 3DNow Athlon, or none supported. 74 /// 75 X863DNowEnum X863DNowLevel; 76 77 /// HasCMov - True if this processor has conditional move instructions 78 /// (generally pentium pro+). 79 bool HasCMov; 80 81 /// HasX86_64 - True if the processor supports X86-64 instructions. 82 /// 83 bool HasX86_64; 84 85 /// HasPOPCNT - True if the processor supports POPCNT. 86 bool HasPOPCNT; 87 88 /// HasSSE4A - True if the processor supports SSE4A instructions. 89 bool HasSSE4A; 90 91 /// HasAES - Target has AES instructions 92 bool HasAES; 93 94 /// HasPCLMUL - Target has carry-less multiplication 95 bool HasPCLMUL; 96 97 /// HasFMA - Target has 3-operand fused multiply-add 98 bool HasFMA; 99 100 /// HasFMA4 - Target has 4-operand fused multiply-add 101 bool HasFMA4; 102 103 /// HasXOP - Target has XOP instructions 104 bool HasXOP; 105 106 /// HasTBM - Target has TBM instructions. 107 bool HasTBM; 108 109 /// HasMOVBE - True if the processor has the MOVBE instruction. 110 bool HasMOVBE; 111 112 /// HasRDRAND - True if the processor has the RDRAND instruction. 113 bool HasRDRAND; 114 115 /// HasF16C - Processor has 16-bit floating point conversion instructions. 116 bool HasF16C; 117 118 /// HasFSGSBase - Processor has FS/GS base insturctions. 119 bool HasFSGSBase; 120 121 /// HasLZCNT - Processor has LZCNT instruction. 122 bool HasLZCNT; 123 124 /// HasBMI - Processor has BMI1 instructions. 125 bool HasBMI; 126 127 /// HasBMI2 - Processor has BMI2 instructions. 128 bool HasBMI2; 129 130 /// HasRTM - Processor has RTM instructions. 131 bool HasRTM; 132 133 /// HasHLE - Processor has HLE. 134 bool HasHLE; 135 136 /// HasADX - Processor has ADX instructions. 137 bool HasADX; 138 139 /// HasSHA - Processor has SHA instructions. 140 bool HasSHA; 141 142 /// HasPRFCHW - Processor has PRFCHW instructions. 143 bool HasPRFCHW; 144 145 /// HasRDSEED - Processor has RDSEED instructions. 146 bool HasRDSEED; 147 148 /// IsBTMemSlow - True if BT (bit test) of memory instructions are slow. 149 bool IsBTMemSlow; 150 151 /// IsSHLDSlow - True if SHLD instructions are slow. 152 bool IsSHLDSlow; 153 154 /// IsUAMemFast - True if unaligned memory access is fast. 155 bool IsUAMemFast; 156 157 /// HasVectorUAMem - True if SIMD operations can have unaligned memory 158 /// operands. This may require setting a feature bit in the processor. 159 bool HasVectorUAMem; 160 161 /// HasCmpxchg16b - True if this processor has the CMPXCHG16B instruction; 162 /// this is true for most x86-64 chips, but not the first AMD chips. 163 bool HasCmpxchg16b; 164 165 /// UseLeaForSP - True if the LEA instruction should be used for adjusting 166 /// the stack pointer. This is an optimization for Intel Atom processors. 167 bool UseLeaForSP; 168 169 /// HasSlowDivide - True if smaller divides are significantly faster than 170 /// full divides and should be used when possible. 171 bool HasSlowDivide; 172 173 /// PostRAScheduler - True if using post-register-allocation scheduler. 174 bool PostRAScheduler; 175 176 /// PadShortFunctions - True if the short functions should be padded to prevent 177 /// a stall when returning too early. 178 bool PadShortFunctions; 179 180 /// CallRegIndirect - True if the Calls with memory reference should be converted 181 /// to a register-based indirect call. 182 bool CallRegIndirect; 183 /// LEAUsesAG - True if the LEA instruction inputs have to be ready at 184 /// address generation (AG) time. 185 bool LEAUsesAG; 186 187 /// SlowLEA - True if the LEA instruction with certain arguments is slow 188 bool SlowLEA; 189 190 /// SlowIncDec - True if INC and DEC instructions are slow when writing to flags 191 bool SlowIncDec; 192 193 /// Processor has AVX-512 PreFetch Instructions 194 bool HasPFI; 195 196 /// Processor has AVX-512 Exponential and Reciprocal Instructions 197 bool HasERI; 198 199 /// Processor has AVX-512 Conflict Detection Instructions 200 bool HasCDI; 201 202 /// stackAlignment - The minimum alignment known to hold of the stack frame on 203 /// entry to the function and which must be maintained by every function. 204 unsigned stackAlignment; 205 206 /// Max. memset / memcpy size that is turned into rep/movs, rep/stos ops. 207 /// 208 unsigned MaxInlineSizeThreshold; 209 210 /// TargetTriple - What processor and OS we're targeting. 211 Triple TargetTriple; 212 213 /// Instruction itineraries for scheduling 214 InstrItineraryData InstrItins; 215 216 private: 217 /// StackAlignOverride - Override the stack alignment. 218 unsigned StackAlignOverride; 219 220 /// In64BitMode - True if compiling for 64-bit, false for 16-bit or 32-bit. 221 bool In64BitMode; 222 223 /// In32BitMode - True if compiling for 32-bit, false for 16-bit or 64-bit. 224 bool In32BitMode; 225 226 /// In16BitMode - True if compiling for 16-bit, false for 32-bit or 64-bit. 227 bool In16BitMode; 228 229 // Calculates type size & alignment 230 const DataLayout DL; 231 X86SelectionDAGInfo TSInfo; 232 // Ordering here is important. X86InstrInfo initializes X86RegisterInfo which 233 // X86TargetLowering needs. 234 X86InstrInfo InstrInfo; 235 X86TargetLowering TLInfo; 236 X86FrameLowering FrameLowering; 237 X86JITInfo JITInfo; 238 239 public: 240 /// This constructor initializes the data members to match that 241 /// of the specified triple. 242 /// 243 X86Subtarget(const std::string &TT, const std::string &CPU, 244 const std::string &FS, X86TargetMachine &TM, 245 unsigned StackAlignOverride); 246 getTargetLowering()247 const X86TargetLowering *getTargetLowering() const { return &TLInfo; } getInstrInfo()248 const X86InstrInfo *getInstrInfo() const { return &InstrInfo; } getDataLayout()249 const DataLayout *getDataLayout() const { return &DL; } getFrameLowering()250 const X86FrameLowering *getFrameLowering() const { return &FrameLowering; } getSelectionDAGInfo()251 const X86SelectionDAGInfo *getSelectionDAGInfo() const { return &TSInfo; } getJITInfo()252 X86JITInfo *getJITInfo() { return &JITInfo; } 253 254 /// getStackAlignment - Returns the minimum alignment known to hold of the 255 /// stack frame on entry to the function and which must be maintained by every 256 /// function for this subtarget. getStackAlignment()257 unsigned getStackAlignment() const { return stackAlignment; } 258 259 /// getMaxInlineSizeThreshold - Returns the maximum memset / memcpy size 260 /// that still makes it profitable to inline the call. getMaxInlineSizeThreshold()261 unsigned getMaxInlineSizeThreshold() const { return MaxInlineSizeThreshold; } 262 263 /// ParseSubtargetFeatures - Parses features string setting specified 264 /// subtarget options. Definition of function is auto generated by tblgen. 265 void ParseSubtargetFeatures(StringRef CPU, StringRef FS); 266 267 /// \brief Reset the features for the X86 target. 268 void resetSubtargetFeatures(const MachineFunction *MF) override; 269 private: 270 /// \brief Initialize the full set of dependencies so we can use an initializer 271 /// list for X86Subtarget. 272 X86Subtarget &initializeSubtargetDependencies(StringRef CPU, StringRef FS); 273 void initializeEnvironment(); 274 void resetSubtargetFeatures(StringRef CPU, StringRef FS); 275 public: 276 /// Is this x86_64? (disregarding specific ABI / programming model) is64Bit()277 bool is64Bit() const { 278 return In64BitMode; 279 } 280 is32Bit()281 bool is32Bit() const { 282 return In32BitMode; 283 } 284 is16Bit()285 bool is16Bit() const { 286 return In16BitMode; 287 } 288 289 /// Is this x86_64 with the ILP32 programming model (x32 ABI)? isTarget64BitILP32()290 bool isTarget64BitILP32() const { 291 return In64BitMode && (TargetTriple.getEnvironment() == Triple::GNUX32 || 292 TargetTriple.getOS() == Triple::NaCl); 293 } 294 295 /// Is this x86_64 with the LP64 programming model (standard AMD64, no x32)? isTarget64BitLP64()296 bool isTarget64BitLP64() const { 297 return In64BitMode && (TargetTriple.getEnvironment() != Triple::GNUX32); 298 } 299 getPICStyle()300 PICStyles::Style getPICStyle() const { return PICStyle; } setPICStyle(PICStyles::Style Style)301 void setPICStyle(PICStyles::Style Style) { PICStyle = Style; } 302 hasCMov()303 bool hasCMov() const { return HasCMov; } hasMMX()304 bool hasMMX() const { return X86SSELevel >= MMX; } hasSSE1()305 bool hasSSE1() const { return X86SSELevel >= SSE1; } hasSSE2()306 bool hasSSE2() const { return X86SSELevel >= SSE2; } hasSSE3()307 bool hasSSE3() const { return X86SSELevel >= SSE3; } hasSSSE3()308 bool hasSSSE3() const { return X86SSELevel >= SSSE3; } hasSSE41()309 bool hasSSE41() const { return X86SSELevel >= SSE41; } hasSSE42()310 bool hasSSE42() const { return X86SSELevel >= SSE42; } hasAVX()311 bool hasAVX() const { return X86SSELevel >= AVX; } hasAVX2()312 bool hasAVX2() const { return X86SSELevel >= AVX2; } hasAVX512()313 bool hasAVX512() const { return X86SSELevel >= AVX512F; } hasFp256()314 bool hasFp256() const { return hasAVX(); } hasInt256()315 bool hasInt256() const { return hasAVX2(); } hasSSE4A()316 bool hasSSE4A() const { return HasSSE4A; } has3DNow()317 bool has3DNow() const { return X863DNowLevel >= ThreeDNow; } has3DNowA()318 bool has3DNowA() const { return X863DNowLevel >= ThreeDNowA; } hasPOPCNT()319 bool hasPOPCNT() const { return HasPOPCNT; } hasAES()320 bool hasAES() const { return HasAES; } hasPCLMUL()321 bool hasPCLMUL() const { return HasPCLMUL; } hasFMA()322 bool hasFMA() const { return HasFMA; } 323 // FIXME: Favor FMA when both are enabled. Is this the right thing to do? hasFMA4()324 bool hasFMA4() const { return HasFMA4 && !HasFMA; } hasXOP()325 bool hasXOP() const { return HasXOP; } hasTBM()326 bool hasTBM() const { return HasTBM; } hasMOVBE()327 bool hasMOVBE() const { return HasMOVBE; } hasRDRAND()328 bool hasRDRAND() const { return HasRDRAND; } hasF16C()329 bool hasF16C() const { return HasF16C; } hasFSGSBase()330 bool hasFSGSBase() const { return HasFSGSBase; } hasLZCNT()331 bool hasLZCNT() const { return HasLZCNT; } hasBMI()332 bool hasBMI() const { return HasBMI; } hasBMI2()333 bool hasBMI2() const { return HasBMI2; } hasRTM()334 bool hasRTM() const { return HasRTM; } hasHLE()335 bool hasHLE() const { return HasHLE; } hasADX()336 bool hasADX() const { return HasADX; } hasSHA()337 bool hasSHA() const { return HasSHA; } hasPRFCHW()338 bool hasPRFCHW() const { return HasPRFCHW; } hasRDSEED()339 bool hasRDSEED() const { return HasRDSEED; } isBTMemSlow()340 bool isBTMemSlow() const { return IsBTMemSlow; } isSHLDSlow()341 bool isSHLDSlow() const { return IsSHLDSlow; } isUnalignedMemAccessFast()342 bool isUnalignedMemAccessFast() const { return IsUAMemFast; } hasVectorUAMem()343 bool hasVectorUAMem() const { return HasVectorUAMem; } hasCmpxchg16b()344 bool hasCmpxchg16b() const { return HasCmpxchg16b; } useLeaForSP()345 bool useLeaForSP() const { return UseLeaForSP; } hasSlowDivide()346 bool hasSlowDivide() const { return HasSlowDivide; } padShortFunctions()347 bool padShortFunctions() const { return PadShortFunctions; } callRegIndirect()348 bool callRegIndirect() const { return CallRegIndirect; } LEAusesAG()349 bool LEAusesAG() const { return LEAUsesAG; } slowLEA()350 bool slowLEA() const { return SlowLEA; } slowIncDec()351 bool slowIncDec() const { return SlowIncDec; } hasCDI()352 bool hasCDI() const { return HasCDI; } hasPFI()353 bool hasPFI() const { return HasPFI; } hasERI()354 bool hasERI() const { return HasERI; } 355 isAtom()356 bool isAtom() const { return X86ProcFamily == IntelAtom; } isSLM()357 bool isSLM() const { return X86ProcFamily == IntelSLM; } 358 getTargetTriple()359 const Triple &getTargetTriple() const { return TargetTriple; } 360 isTargetDarwin()361 bool isTargetDarwin() const { return TargetTriple.isOSDarwin(); } isTargetFreeBSD()362 bool isTargetFreeBSD() const { 363 return TargetTriple.getOS() == Triple::FreeBSD; 364 } isTargetSolaris()365 bool isTargetSolaris() const { 366 return TargetTriple.getOS() == Triple::Solaris; 367 } 368 isTargetELF()369 bool isTargetELF() const { return TargetTriple.isOSBinFormatELF(); } isTargetCOFF()370 bool isTargetCOFF() const { return TargetTriple.isOSBinFormatCOFF(); } isTargetMacho()371 bool isTargetMacho() const { return TargetTriple.isOSBinFormatMachO(); } 372 isTargetLinux()373 bool isTargetLinux() const { return TargetTriple.isOSLinux(); } isTargetNaCl()374 bool isTargetNaCl() const { return TargetTriple.isOSNaCl(); } isTargetNaCl32()375 bool isTargetNaCl32() const { return isTargetNaCl() && !is64Bit(); } isTargetNaCl64()376 bool isTargetNaCl64() const { return isTargetNaCl() && is64Bit(); } 377 isTargetWindowsMSVC()378 bool isTargetWindowsMSVC() const { 379 return TargetTriple.isWindowsMSVCEnvironment(); 380 } 381 isTargetKnownWindowsMSVC()382 bool isTargetKnownWindowsMSVC() const { 383 return TargetTriple.isKnownWindowsMSVCEnvironment(); 384 } 385 isTargetWindowsCygwin()386 bool isTargetWindowsCygwin() const { 387 return TargetTriple.isWindowsCygwinEnvironment(); 388 } 389 isTargetWindowsGNU()390 bool isTargetWindowsGNU() const { 391 return TargetTriple.isWindowsGNUEnvironment(); 392 } 393 isTargetCygMing()394 bool isTargetCygMing() const { return TargetTriple.isOSCygMing(); } 395 isOSWindows()396 bool isOSWindows() const { return TargetTriple.isOSWindows(); } 397 isTargetWin64()398 bool isTargetWin64() const { 399 return In64BitMode && TargetTriple.isOSWindows(); 400 } 401 isTargetWin32()402 bool isTargetWin32() const { 403 return !In64BitMode && (isTargetCygMing() || isTargetKnownWindowsMSVC()); 404 } 405 isPICStyleSet()406 bool isPICStyleSet() const { return PICStyle != PICStyles::None; } isPICStyleGOT()407 bool isPICStyleGOT() const { return PICStyle == PICStyles::GOT; } isPICStyleRIPRel()408 bool isPICStyleRIPRel() const { return PICStyle == PICStyles::RIPRel; } 409 isPICStyleStubPIC()410 bool isPICStyleStubPIC() const { 411 return PICStyle == PICStyles::StubPIC; 412 } 413 isPICStyleStubNoDynamic()414 bool isPICStyleStubNoDynamic() const { 415 return PICStyle == PICStyles::StubDynamicNoPIC; 416 } isPICStyleStubAny()417 bool isPICStyleStubAny() const { 418 return PICStyle == PICStyles::StubDynamicNoPIC || 419 PICStyle == PICStyles::StubPIC; 420 } 421 isCallingConvWin64(CallingConv::ID CC)422 bool isCallingConvWin64(CallingConv::ID CC) const { 423 return (isTargetWin64() && CC != CallingConv::X86_64_SysV) || 424 CC == CallingConv::X86_64_Win64; 425 } 426 427 /// ClassifyGlobalReference - Classify a global variable reference for the 428 /// current subtarget according to how we should reference it in a non-pcrel 429 /// context. 430 unsigned char ClassifyGlobalReference(const GlobalValue *GV, 431 const TargetMachine &TM)const; 432 433 /// ClassifyBlockAddressReference - Classify a blockaddress reference for the 434 /// current subtarget according to how we should reference it in a non-pcrel 435 /// context. 436 unsigned char ClassifyBlockAddressReference() const; 437 438 /// IsLegalToCallImmediateAddr - Return true if the subtarget allows calls 439 /// to immediate address. 440 bool IsLegalToCallImmediateAddr(const TargetMachine &TM) const; 441 442 /// This function returns the name of a function which has an interface 443 /// like the non-standard bzero function, if such a function exists on 444 /// the current subtarget and it is considered prefereable over 445 /// memset with zero passed as the second argument. Otherwise it 446 /// returns null. 447 const char *getBZeroEntry() const; 448 449 /// This function returns true if the target has sincos() routine in its 450 /// compiler runtime or math libraries. 451 bool hasSinCos() const; 452 453 /// Enable the MachineScheduler pass for all X86 subtargets. enableMachineScheduler()454 bool enableMachineScheduler() const override { return true; } 455 456 /// enablePostRAScheduler - run for Atom optimization. 457 bool enablePostRAScheduler(CodeGenOpt::Level OptLevel, 458 TargetSubtargetInfo::AntiDepBreakMode& Mode, 459 RegClassVector& CriticalPathRCs) const override; 460 postRAScheduler()461 bool postRAScheduler() const { return PostRAScheduler; } 462 463 bool enableEarlyIfConversion() const override; 464 465 /// getInstrItins = Return the instruction itineraries based on the 466 /// subtarget selection. getInstrItineraryData()467 const InstrItineraryData &getInstrItineraryData() const { return InstrItins; } 468 }; 469 470 } // End llvm namespace 471 472 #endif 473