1 // Copyright 2011 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 // Features shared by parsing and pre-parsing scanners.
6
7 #ifndef V8_SCANNER_H_
8 #define V8_SCANNER_H_
9
10 #include "src/allocation.h"
11 #include "src/char-predicates.h"
12 #include "src/checks.h"
13 #include "src/globals.h"
14 #include "src/hashmap.h"
15 #include "src/list.h"
16 #include "src/token.h"
17 #include "src/unicode-inl.h"
18 #include "src/utils.h"
19
20 namespace v8 {
21 namespace internal {
22
23
24 class ParserRecorder;
25
26
27 // Returns the value (0 .. 15) of a hexadecimal character c.
28 // If c is not a legal hexadecimal character, returns a value < 0.
HexValue(uc32 c)29 inline int HexValue(uc32 c) {
30 c -= '0';
31 if (static_cast<unsigned>(c) <= 9) return c;
32 c = (c | 0x20) - ('a' - '0'); // detect 0x11..0x16 and 0x31..0x36.
33 if (static_cast<unsigned>(c) <= 5) return c + 10;
34 return -1;
35 }
36
37
38 // ---------------------------------------------------------------------
39 // Buffered stream of UTF-16 code units, using an internal UTF-16 buffer.
40 // A code unit is a 16 bit value representing either a 16 bit code point
41 // or one part of a surrogate pair that make a single 21 bit code point.
42
43 class Utf16CharacterStream {
44 public:
Utf16CharacterStream()45 Utf16CharacterStream() : pos_(0) { }
~Utf16CharacterStream()46 virtual ~Utf16CharacterStream() { }
47
48 // Returns and advances past the next UTF-16 code unit in the input
49 // stream. If there are no more code units, it returns a negative
50 // value.
Advance()51 inline uc32 Advance() {
52 if (buffer_cursor_ < buffer_end_ || ReadBlock()) {
53 pos_++;
54 return static_cast<uc32>(*(buffer_cursor_++));
55 }
56 // Note: currently the following increment is necessary to avoid a
57 // parser problem! The scanner treats the final kEndOfInput as
58 // a code unit with a position, and does math relative to that
59 // position.
60 pos_++;
61
62 return kEndOfInput;
63 }
64
65 // Return the current position in the code unit stream.
66 // Starts at zero.
pos()67 inline unsigned pos() const { return pos_; }
68
69 // Skips forward past the next code_unit_count UTF-16 code units
70 // in the input, or until the end of input if that comes sooner.
71 // Returns the number of code units actually skipped. If less
72 // than code_unit_count,
SeekForward(unsigned code_unit_count)73 inline unsigned SeekForward(unsigned code_unit_count) {
74 unsigned buffered_chars =
75 static_cast<unsigned>(buffer_end_ - buffer_cursor_);
76 if (code_unit_count <= buffered_chars) {
77 buffer_cursor_ += code_unit_count;
78 pos_ += code_unit_count;
79 return code_unit_count;
80 }
81 return SlowSeekForward(code_unit_count);
82 }
83
84 // Pushes back the most recently read UTF-16 code unit (or negative
85 // value if at end of input), i.e., the value returned by the most recent
86 // call to Advance.
87 // Must not be used right after calling SeekForward.
88 virtual void PushBack(int32_t code_unit) = 0;
89
90 protected:
91 static const uc32 kEndOfInput = -1;
92
93 // Ensures that the buffer_cursor_ points to the code_unit at
94 // position pos_ of the input, if possible. If the position
95 // is at or after the end of the input, return false. If there
96 // are more code_units available, return true.
97 virtual bool ReadBlock() = 0;
98 virtual unsigned SlowSeekForward(unsigned code_unit_count) = 0;
99
100 const uint16_t* buffer_cursor_;
101 const uint16_t* buffer_end_;
102 unsigned pos_;
103 };
104
105
106 // ---------------------------------------------------------------------
107 // Caching predicates used by scanners.
108
109 class UnicodeCache {
110 public:
UnicodeCache()111 UnicodeCache() {}
112 typedef unibrow::Utf8Decoder<512> Utf8Decoder;
113
utf8_decoder()114 StaticResource<Utf8Decoder>* utf8_decoder() {
115 return &utf8_decoder_;
116 }
117
IsIdentifierStart(unibrow::uchar c)118 bool IsIdentifierStart(unibrow::uchar c) { return kIsIdentifierStart.get(c); }
IsIdentifierPart(unibrow::uchar c)119 bool IsIdentifierPart(unibrow::uchar c) { return kIsIdentifierPart.get(c); }
IsLineTerminator(unibrow::uchar c)120 bool IsLineTerminator(unibrow::uchar c) { return kIsLineTerminator.get(c); }
IsWhiteSpace(unibrow::uchar c)121 bool IsWhiteSpace(unibrow::uchar c) { return kIsWhiteSpace.get(c); }
IsWhiteSpaceOrLineTerminator(unibrow::uchar c)122 bool IsWhiteSpaceOrLineTerminator(unibrow::uchar c) {
123 return kIsWhiteSpaceOrLineTerminator.get(c);
124 }
125
126 private:
127 unibrow::Predicate<IdentifierStart, 128> kIsIdentifierStart;
128 unibrow::Predicate<IdentifierPart, 128> kIsIdentifierPart;
129 unibrow::Predicate<unibrow::LineTerminator, 128> kIsLineTerminator;
130 unibrow::Predicate<WhiteSpace, 128> kIsWhiteSpace;
131 unibrow::Predicate<WhiteSpaceOrLineTerminator, 128>
132 kIsWhiteSpaceOrLineTerminator;
133 StaticResource<Utf8Decoder> utf8_decoder_;
134
135 DISALLOW_COPY_AND_ASSIGN(UnicodeCache);
136 };
137
138
139 // ---------------------------------------------------------------------
140 // DuplicateFinder discovers duplicate symbols.
141
142 class DuplicateFinder {
143 public:
DuplicateFinder(UnicodeCache * constants)144 explicit DuplicateFinder(UnicodeCache* constants)
145 : unicode_constants_(constants),
146 backing_store_(16),
147 map_(&Match) { }
148
149 int AddOneByteSymbol(Vector<const uint8_t> key, int value);
150 int AddTwoByteSymbol(Vector<const uint16_t> key, int value);
151 // Add a a number literal by converting it (if necessary)
152 // to the string that ToString(ToNumber(literal)) would generate.
153 // and then adding that string with AddAsciiSymbol.
154 // This string is the actual value used as key in an object literal,
155 // and the one that must be different from the other keys.
156 int AddNumber(Vector<const uint8_t> key, int value);
157
158 private:
159 int AddSymbol(Vector<const uint8_t> key, bool is_one_byte, int value);
160 // Backs up the key and its length in the backing store.
161 // The backup is stored with a base 127 encoding of the
162 // length (plus a bit saying whether the string is one byte),
163 // followed by the bytes of the key.
164 uint8_t* BackupKey(Vector<const uint8_t> key, bool is_one_byte);
165
166 // Compare two encoded keys (both pointing into the backing store)
167 // for having the same base-127 encoded lengths and ASCII-ness,
168 // and then having the same 'length' bytes following.
169 static bool Match(void* first, void* second);
170 // Creates a hash from a sequence of bytes.
171 static uint32_t Hash(Vector<const uint8_t> key, bool is_one_byte);
172 // Checks whether a string containing a JS number is its canonical
173 // form.
174 static bool IsNumberCanonical(Vector<const uint8_t> key);
175
176 // Size of buffer. Sufficient for using it to call DoubleToCString in
177 // from conversions.h.
178 static const int kBufferSize = 100;
179
180 UnicodeCache* unicode_constants_;
181 // Backing store used to store strings used as hashmap keys.
182 SequenceCollector<unsigned char> backing_store_;
183 HashMap map_;
184 // Buffer used for string->number->canonical string conversions.
185 char number_buffer_[kBufferSize];
186 };
187
188
189 // ----------------------------------------------------------------------------
190 // LiteralBuffer - Collector of chars of literals.
191
192 class LiteralBuffer {
193 public:
LiteralBuffer()194 LiteralBuffer() : is_one_byte_(true), position_(0), backing_store_() { }
195
~LiteralBuffer()196 ~LiteralBuffer() {
197 if (backing_store_.length() > 0) {
198 backing_store_.Dispose();
199 }
200 }
201
INLINE(void AddChar (uint32_t code_unit))202 INLINE(void AddChar(uint32_t code_unit)) {
203 if (position_ >= backing_store_.length()) ExpandBuffer();
204 if (is_one_byte_) {
205 if (code_unit <= unibrow::Latin1::kMaxChar) {
206 backing_store_[position_] = static_cast<byte>(code_unit);
207 position_ += kOneByteSize;
208 return;
209 }
210 ConvertToTwoByte();
211 }
212 ASSERT(code_unit < 0x10000u);
213 *reinterpret_cast<uint16_t*>(&backing_store_[position_]) = code_unit;
214 position_ += kUC16Size;
215 }
216
is_one_byte()217 bool is_one_byte() { return is_one_byte_; }
218
is_contextual_keyword(Vector<const char> keyword)219 bool is_contextual_keyword(Vector<const char> keyword) {
220 return is_one_byte() && keyword.length() == position_ &&
221 (memcmp(keyword.start(), backing_store_.start(), position_) == 0);
222 }
223
two_byte_literal()224 Vector<const uint16_t> two_byte_literal() {
225 ASSERT(!is_one_byte_);
226 ASSERT((position_ & 0x1) == 0);
227 return Vector<const uint16_t>(
228 reinterpret_cast<const uint16_t*>(backing_store_.start()),
229 position_ >> 1);
230 }
231
one_byte_literal()232 Vector<const uint8_t> one_byte_literal() {
233 ASSERT(is_one_byte_);
234 return Vector<const uint8_t>(
235 reinterpret_cast<const uint8_t*>(backing_store_.start()),
236 position_);
237 }
238
length()239 int length() {
240 return is_one_byte_ ? position_ : (position_ >> 1);
241 }
242
Reset()243 void Reset() {
244 position_ = 0;
245 is_one_byte_ = true;
246 }
247
248 private:
249 static const int kInitialCapacity = 16;
250 static const int kGrowthFactory = 4;
251 static const int kMinConversionSlack = 256;
252 static const int kMaxGrowth = 1 * MB;
NewCapacity(int min_capacity)253 inline int NewCapacity(int min_capacity) {
254 int capacity = Max(min_capacity, backing_store_.length());
255 int new_capacity = Min(capacity * kGrowthFactory, capacity + kMaxGrowth);
256 return new_capacity;
257 }
258
ExpandBuffer()259 void ExpandBuffer() {
260 Vector<byte> new_store = Vector<byte>::New(NewCapacity(kInitialCapacity));
261 MemCopy(new_store.start(), backing_store_.start(), position_);
262 backing_store_.Dispose();
263 backing_store_ = new_store;
264 }
265
ConvertToTwoByte()266 void ConvertToTwoByte() {
267 ASSERT(is_one_byte_);
268 Vector<byte> new_store;
269 int new_content_size = position_ * kUC16Size;
270 if (new_content_size >= backing_store_.length()) {
271 // Ensure room for all currently read code units as UC16 as well
272 // as the code unit about to be stored.
273 new_store = Vector<byte>::New(NewCapacity(new_content_size));
274 } else {
275 new_store = backing_store_;
276 }
277 uint8_t* src = backing_store_.start();
278 uint16_t* dst = reinterpret_cast<uint16_t*>(new_store.start());
279 for (int i = position_ - 1; i >= 0; i--) {
280 dst[i] = src[i];
281 }
282 if (new_store.start() != backing_store_.start()) {
283 backing_store_.Dispose();
284 backing_store_ = new_store;
285 }
286 position_ = new_content_size;
287 is_one_byte_ = false;
288 }
289
290 bool is_one_byte_;
291 int position_;
292 Vector<byte> backing_store_;
293
294 DISALLOW_COPY_AND_ASSIGN(LiteralBuffer);
295 };
296
297
298 // ----------------------------------------------------------------------------
299 // JavaScript Scanner.
300
301 class Scanner {
302 public:
303 // Scoped helper for literal recording. Automatically drops the literal
304 // if aborting the scanning before it's complete.
305 class LiteralScope {
306 public:
LiteralScope(Scanner * self)307 explicit LiteralScope(Scanner* self)
308 : scanner_(self), complete_(false) {
309 scanner_->StartLiteral();
310 }
~LiteralScope()311 ~LiteralScope() {
312 if (!complete_) scanner_->DropLiteral();
313 }
Complete()314 void Complete() {
315 scanner_->TerminateLiteral();
316 complete_ = true;
317 }
318
319 private:
320 Scanner* scanner_;
321 bool complete_;
322 };
323
324 // Representation of an interval of source positions.
325 struct Location {
LocationLocation326 Location(int b, int e) : beg_pos(b), end_pos(e) { }
LocationLocation327 Location() : beg_pos(0), end_pos(0) { }
328
IsValidLocation329 bool IsValid() const {
330 return beg_pos >= 0 && end_pos >= beg_pos;
331 }
332
invalidLocation333 static Location invalid() { return Location(-1, -1); }
334
335 int beg_pos;
336 int end_pos;
337 };
338
339 // -1 is outside of the range of any real source code.
340 static const int kNoOctalLocation = -1;
341
342 explicit Scanner(UnicodeCache* scanner_contants);
343
344 void Initialize(Utf16CharacterStream* source);
345
346 // Returns the next token and advances input.
347 Token::Value Next();
348 // Returns the current token again.
current_token()349 Token::Value current_token() { return current_.token; }
350 // Returns the location information for the current token
351 // (the token last returned by Next()).
location()352 Location location() const { return current_.location; }
353
354 // Similar functions for the upcoming token.
355
356 // One token look-ahead (past the token returned by Next()).
peek()357 Token::Value peek() const { return next_.token; }
358
peek_location()359 Location peek_location() const { return next_.location; }
360
literal_contains_escapes()361 bool literal_contains_escapes() const {
362 Location location = current_.location;
363 int source_length = (location.end_pos - location.beg_pos);
364 if (current_.token == Token::STRING) {
365 // Subtract delimiters.
366 source_length -= 2;
367 }
368 return current_.literal_chars->length() != source_length;
369 }
is_literal_contextual_keyword(Vector<const char> keyword)370 bool is_literal_contextual_keyword(Vector<const char> keyword) {
371 ASSERT_NOT_NULL(current_.literal_chars);
372 return current_.literal_chars->is_contextual_keyword(keyword);
373 }
is_next_contextual_keyword(Vector<const char> keyword)374 bool is_next_contextual_keyword(Vector<const char> keyword) {
375 ASSERT_NOT_NULL(next_.literal_chars);
376 return next_.literal_chars->is_contextual_keyword(keyword);
377 }
378
379 Handle<String> AllocateNextLiteralString(Isolate* isolate,
380 PretenureFlag tenured);
381 Handle<String> AllocateInternalizedString(Isolate* isolate);
382
383 double DoubleValue();
UnescapedLiteralMatches(const char * data,int length)384 bool UnescapedLiteralMatches(const char* data, int length) {
385 if (is_literal_one_byte() &&
386 literal_length() == length &&
387 !literal_contains_escapes()) {
388 const char* token =
389 reinterpret_cast<const char*>(literal_one_byte_string().start());
390 return !strncmp(token, data, length);
391 }
392 return false;
393 }
IsGetOrSet(bool * is_get,bool * is_set)394 void IsGetOrSet(bool* is_get, bool* is_set) {
395 if (is_literal_one_byte() &&
396 literal_length() == 3 &&
397 !literal_contains_escapes()) {
398 const char* token =
399 reinterpret_cast<const char*>(literal_one_byte_string().start());
400 *is_get = strncmp(token, "get", 3) == 0;
401 *is_set = !*is_get && strncmp(token, "set", 3) == 0;
402 }
403 }
404
405 int FindNumber(DuplicateFinder* finder, int value);
406 int FindSymbol(DuplicateFinder* finder, int value);
407
unicode_cache()408 UnicodeCache* unicode_cache() { return unicode_cache_; }
409
410 // Returns the location of the last seen octal literal.
octal_position()411 Location octal_position() const { return octal_pos_; }
clear_octal_position()412 void clear_octal_position() { octal_pos_ = Location::invalid(); }
413
414 // Seek forward to the given position. This operation does not
415 // work in general, for instance when there are pushed back
416 // characters, but works for seeking forward until simple delimiter
417 // tokens, which is what it is used for.
418 void SeekForward(int pos);
419
HarmonyScoping()420 bool HarmonyScoping() const {
421 return harmony_scoping_;
422 }
SetHarmonyScoping(bool scoping)423 void SetHarmonyScoping(bool scoping) {
424 harmony_scoping_ = scoping;
425 }
HarmonyModules()426 bool HarmonyModules() const {
427 return harmony_modules_;
428 }
SetHarmonyModules(bool modules)429 void SetHarmonyModules(bool modules) {
430 harmony_modules_ = modules;
431 }
HarmonyNumericLiterals()432 bool HarmonyNumericLiterals() const {
433 return harmony_numeric_literals_;
434 }
SetHarmonyNumericLiterals(bool numeric_literals)435 void SetHarmonyNumericLiterals(bool numeric_literals) {
436 harmony_numeric_literals_ = numeric_literals;
437 }
438
439 // Returns true if there was a line terminator before the peek'ed token,
440 // possibly inside a multi-line comment.
HasAnyLineTerminatorBeforeNext()441 bool HasAnyLineTerminatorBeforeNext() const {
442 return has_line_terminator_before_next_ ||
443 has_multiline_comment_before_next_;
444 }
445
446 // Scans the input as a regular expression pattern, previous
447 // character(s) must be /(=). Returns true if a pattern is scanned.
448 bool ScanRegExpPattern(bool seen_equal);
449 // Returns true if regexp flags are scanned (always since flags can
450 // be empty).
451 bool ScanRegExpFlags();
452
453 private:
454 // The current and look-ahead token.
455 struct TokenDesc {
456 Token::Value token;
457 Location location;
458 LiteralBuffer* literal_chars;
459 };
460
461 static const int kCharacterLookaheadBufferSize = 1;
462
463 // Scans octal escape sequence. Also accepts "\0" decimal escape sequence.
464 uc32 ScanOctalEscape(uc32 c, int length);
465
466 // Call this after setting source_ to the input.
Init()467 void Init() {
468 // Set c0_ (one character ahead)
469 STATIC_ASSERT(kCharacterLookaheadBufferSize == 1);
470 Advance();
471 // Initialize current_ to not refer to a literal.
472 current_.literal_chars = NULL;
473 }
474
475 // Literal buffer support
StartLiteral()476 inline void StartLiteral() {
477 LiteralBuffer* free_buffer = (current_.literal_chars == &literal_buffer1_) ?
478 &literal_buffer2_ : &literal_buffer1_;
479 free_buffer->Reset();
480 next_.literal_chars = free_buffer;
481 }
482
INLINE(void AddLiteralChar (uc32 c))483 INLINE(void AddLiteralChar(uc32 c)) {
484 ASSERT_NOT_NULL(next_.literal_chars);
485 next_.literal_chars->AddChar(c);
486 }
487
488 // Complete scanning of a literal.
TerminateLiteral()489 inline void TerminateLiteral() {
490 // Does nothing in the current implementation.
491 }
492
493 // Stops scanning of a literal and drop the collected characters,
494 // e.g., due to an encountered error.
DropLiteral()495 inline void DropLiteral() {
496 next_.literal_chars = NULL;
497 }
498
AddLiteralCharAdvance()499 inline void AddLiteralCharAdvance() {
500 AddLiteralChar(c0_);
501 Advance();
502 }
503
504 // Low-level scanning support.
Advance()505 void Advance() { c0_ = source_->Advance(); }
PushBack(uc32 ch)506 void PushBack(uc32 ch) {
507 source_->PushBack(c0_);
508 c0_ = ch;
509 }
510
Select(Token::Value tok)511 inline Token::Value Select(Token::Value tok) {
512 Advance();
513 return tok;
514 }
515
Select(uc32 next,Token::Value then,Token::Value else_)516 inline Token::Value Select(uc32 next, Token::Value then, Token::Value else_) {
517 Advance();
518 if (c0_ == next) {
519 Advance();
520 return then;
521 } else {
522 return else_;
523 }
524 }
525
526 // Returns the literal string, if any, for the current token (the
527 // token last returned by Next()). The string is 0-terminated.
528 // Literal strings are collected for identifiers, strings, and
529 // numbers.
530 // These functions only give the correct result if the literal
531 // was scanned between calls to StartLiteral() and TerminateLiteral().
literal_one_byte_string()532 Vector<const uint8_t> literal_one_byte_string() {
533 ASSERT_NOT_NULL(current_.literal_chars);
534 return current_.literal_chars->one_byte_literal();
535 }
literal_two_byte_string()536 Vector<const uint16_t> literal_two_byte_string() {
537 ASSERT_NOT_NULL(current_.literal_chars);
538 return current_.literal_chars->two_byte_literal();
539 }
is_literal_one_byte()540 bool is_literal_one_byte() {
541 ASSERT_NOT_NULL(current_.literal_chars);
542 return current_.literal_chars->is_one_byte();
543 }
literal_length()544 int literal_length() const {
545 ASSERT_NOT_NULL(current_.literal_chars);
546 return current_.literal_chars->length();
547 }
548 // Returns the literal string for the next token (the token that
549 // would be returned if Next() were called).
next_literal_one_byte_string()550 Vector<const uint8_t> next_literal_one_byte_string() {
551 ASSERT_NOT_NULL(next_.literal_chars);
552 return next_.literal_chars->one_byte_literal();
553 }
next_literal_two_byte_string()554 Vector<const uint16_t> next_literal_two_byte_string() {
555 ASSERT_NOT_NULL(next_.literal_chars);
556 return next_.literal_chars->two_byte_literal();
557 }
is_next_literal_one_byte()558 bool is_next_literal_one_byte() {
559 ASSERT_NOT_NULL(next_.literal_chars);
560 return next_.literal_chars->is_one_byte();
561 }
next_literal_length()562 int next_literal_length() const {
563 ASSERT_NOT_NULL(next_.literal_chars);
564 return next_.literal_chars->length();
565 }
566
567 uc32 ScanHexNumber(int expected_length);
568
569 // Scans a single JavaScript token.
570 void Scan();
571
572 bool SkipWhiteSpace();
573 Token::Value SkipSingleLineComment();
574 Token::Value SkipMultiLineComment();
575 // Scans a possible HTML comment -- begins with '<!'.
576 Token::Value ScanHtmlComment();
577
578 void ScanDecimalDigits();
579 Token::Value ScanNumber(bool seen_period);
580 Token::Value ScanIdentifierOrKeyword();
581 Token::Value ScanIdentifierSuffix(LiteralScope* literal);
582
583 Token::Value ScanString();
584
585 // Scans an escape-sequence which is part of a string and adds the
586 // decoded character to the current literal. Returns true if a pattern
587 // is scanned.
588 bool ScanEscape();
589 // Decodes a Unicode escape-sequence which is part of an identifier.
590 // If the escape sequence cannot be decoded the result is kBadChar.
591 uc32 ScanIdentifierUnicodeEscape();
592 // Scans a Unicode escape-sequence and adds its characters,
593 // uninterpreted, to the current literal. Used for parsing RegExp
594 // flags.
595 bool ScanLiteralUnicodeEscape();
596
597 // Return the current source position.
source_pos()598 int source_pos() {
599 return source_->pos() - kCharacterLookaheadBufferSize;
600 }
601
602 UnicodeCache* unicode_cache_;
603
604 // Buffers collecting literal strings, numbers, etc.
605 LiteralBuffer literal_buffer1_;
606 LiteralBuffer literal_buffer2_;
607
608 TokenDesc current_; // desc for current token (as returned by Next())
609 TokenDesc next_; // desc for next token (one token look-ahead)
610
611 // Input stream. Must be initialized to an Utf16CharacterStream.
612 Utf16CharacterStream* source_;
613
614
615 // Start position of the octal literal last scanned.
616 Location octal_pos_;
617
618 // One Unicode character look-ahead; c0_ < 0 at the end of the input.
619 uc32 c0_;
620
621 // Whether there is a line terminator whitespace character after
622 // the current token, and before the next. Does not count newlines
623 // inside multiline comments.
624 bool has_line_terminator_before_next_;
625 // Whether there is a multi-line comment that contains a
626 // line-terminator after the current token, and before the next.
627 bool has_multiline_comment_before_next_;
628 // Whether we scan 'let' as a keyword for harmony block-scoped let bindings.
629 bool harmony_scoping_;
630 // Whether we scan 'module', 'import', 'export' as keywords.
631 bool harmony_modules_;
632 // Whether we scan 0o777 and 0b111 as numbers.
633 bool harmony_numeric_literals_;
634 };
635
636 } } // namespace v8::internal
637
638 #endif // V8_SCANNER_H_
639