1 // Copyright (c) 1994-2006 Sun Microsystems Inc.
2 // All Rights Reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 // - Redistributions of source code must retain the above copyright notice,
9 // this list of conditions and the following disclaimer.
10 //
11 // - Redistribution in binary form must reproduce the above copyright
12 // notice, this list of conditions and the following disclaimer in the
13 // documentation and/or other materials provided with the distribution.
14 //
15 // - Neither the name of Sun Microsystems or the names of contributors may
16 // be used to endorse or promote products derived from this software without
17 // specific prior written permission.
18 //
19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
20 // IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
21 // THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
23 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
24 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
26 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
27 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
28 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
29 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30
31 // The original source code covered by the above license above has been
32 // modified significantly by Google Inc.
33 // Copyright 2011 the V8 project authors. All rights reserved.
34
35 // A light-weight IA32 Assembler.
36
37 #ifndef V8_X87_ASSEMBLER_X87_H_
38 #define V8_X87_ASSEMBLER_X87_H_
39
40 #include "src/isolate.h"
41 #include "src/serialize.h"
42
43 namespace v8 {
44 namespace internal {
45
46 // CPU Registers.
47 //
48 // 1) We would prefer to use an enum, but enum values are assignment-
49 // compatible with int, which has caused code-generation bugs.
50 //
51 // 2) We would prefer to use a class instead of a struct but we don't like
52 // the register initialization to depend on the particular initialization
53 // order (which appears to be different on OS X, Linux, and Windows for the
54 // installed versions of C++ we tried). Using a struct permits C-style
55 // "initialization". Also, the Register objects cannot be const as this
56 // forces initialization stubs in MSVC, making us dependent on initialization
57 // order.
58 //
59 // 3) By not using an enum, we are possibly preventing the compiler from
60 // doing certain constant folds, which may significantly reduce the
61 // code generated for some assembly instructions (because they boil down
62 // to a few constants). If this is a problem, we could change the code
63 // such that we use an enum in optimized mode, and the struct in debug
64 // mode. This way we get the compile-time error checking in debug mode
65 // and best performance in optimized code.
66 //
67 struct Register {
68 static const int kMaxNumAllocatableRegisters = 6;
NumAllocatableRegistersRegister69 static int NumAllocatableRegisters() {
70 return kMaxNumAllocatableRegisters;
71 }
72 static const int kNumRegisters = 8;
73
74 static inline const char* AllocationIndexToString(int index);
75
76 static inline int ToAllocationIndex(Register reg);
77
78 static inline Register FromAllocationIndex(int index);
79
from_codeRegister80 static Register from_code(int code) {
81 ASSERT(code >= 0);
82 ASSERT(code < kNumRegisters);
83 Register r = { code };
84 return r;
85 }
is_validRegister86 bool is_valid() const { return 0 <= code_ && code_ < kNumRegisters; }
isRegister87 bool is(Register reg) const { return code_ == reg.code_; }
88 // eax, ebx, ecx and edx are byte registers, the rest are not.
is_byte_registerRegister89 bool is_byte_register() const { return code_ <= 3; }
codeRegister90 int code() const {
91 ASSERT(is_valid());
92 return code_;
93 }
bitRegister94 int bit() const {
95 ASSERT(is_valid());
96 return 1 << code_;
97 }
98
99 // Unfortunately we can't make this private in a struct.
100 int code_;
101 };
102
103 const int kRegister_eax_Code = 0;
104 const int kRegister_ecx_Code = 1;
105 const int kRegister_edx_Code = 2;
106 const int kRegister_ebx_Code = 3;
107 const int kRegister_esp_Code = 4;
108 const int kRegister_ebp_Code = 5;
109 const int kRegister_esi_Code = 6;
110 const int kRegister_edi_Code = 7;
111 const int kRegister_no_reg_Code = -1;
112
113 const Register eax = { kRegister_eax_Code };
114 const Register ecx = { kRegister_ecx_Code };
115 const Register edx = { kRegister_edx_Code };
116 const Register ebx = { kRegister_ebx_Code };
117 const Register esp = { kRegister_esp_Code };
118 const Register ebp = { kRegister_ebp_Code };
119 const Register esi = { kRegister_esi_Code };
120 const Register edi = { kRegister_edi_Code };
121 const Register no_reg = { kRegister_no_reg_Code };
122
123
AllocationIndexToString(int index)124 inline const char* Register::AllocationIndexToString(int index) {
125 ASSERT(index >= 0 && index < kMaxNumAllocatableRegisters);
126 // This is the mapping of allocation indices to registers.
127 const char* const kNames[] = { "eax", "ecx", "edx", "ebx", "esi", "edi" };
128 return kNames[index];
129 }
130
131
ToAllocationIndex(Register reg)132 inline int Register::ToAllocationIndex(Register reg) {
133 ASSERT(reg.is_valid() && !reg.is(esp) && !reg.is(ebp));
134 return (reg.code() >= 6) ? reg.code() - 2 : reg.code();
135 }
136
137
FromAllocationIndex(int index)138 inline Register Register::FromAllocationIndex(int index) {
139 ASSERT(index >= 0 && index < kMaxNumAllocatableRegisters);
140 return (index >= 4) ? from_code(index + 2) : from_code(index);
141 }
142
143
144 struct X87Register {
145 static const int kMaxNumAllocatableRegisters = 8;
146 static const int kMaxNumRegisters = 8;
NumAllocatableRegistersX87Register147 static int NumAllocatableRegisters() {
148 return kMaxNumAllocatableRegisters;
149 }
150
ToAllocationIndexX87Register151 static int ToAllocationIndex(X87Register reg) {
152 return reg.code_;
153 }
154
AllocationIndexToStringX87Register155 static const char* AllocationIndexToString(int index) {
156 ASSERT(index >= 0 && index < kMaxNumAllocatableRegisters);
157 const char* const names[] = {
158 "stX_0", "stX_1", "stX_2", "stX_3", "stX_4",
159 "stX_5", "stX_6", "stX_7"
160 };
161 return names[index];
162 }
163
FromAllocationIndexX87Register164 static X87Register FromAllocationIndex(int index) {
165 ASSERT(index >= 0 && index < kMaxNumAllocatableRegisters);
166 X87Register result;
167 result.code_ = index;
168 return result;
169 }
170
is_validX87Register171 bool is_valid() const {
172 return 0 <= code_ && code_ < kMaxNumRegisters;
173 }
174
codeX87Register175 int code() const {
176 ASSERT(is_valid());
177 return code_;
178 }
179
isX87Register180 bool is(X87Register reg) const {
181 return code_ == reg.code_;
182 }
183
184 int code_;
185 };
186
187
188 typedef X87Register DoubleRegister;
189
190
191 const X87Register stX_0 = { 0 };
192 const X87Register stX_1 = { 1 };
193 const X87Register stX_2 = { 2 };
194 const X87Register stX_3 = { 3 };
195 const X87Register stX_4 = { 4 };
196 const X87Register stX_5 = { 5 };
197 const X87Register stX_6 = { 6 };
198 const X87Register stX_7 = { 7 };
199
200
201 enum Condition {
202 // any value < 0 is considered no_condition
203 no_condition = -1,
204
205 overflow = 0,
206 no_overflow = 1,
207 below = 2,
208 above_equal = 3,
209 equal = 4,
210 not_equal = 5,
211 below_equal = 6,
212 above = 7,
213 negative = 8,
214 positive = 9,
215 parity_even = 10,
216 parity_odd = 11,
217 less = 12,
218 greater_equal = 13,
219 less_equal = 14,
220 greater = 15,
221
222 // aliases
223 carry = below,
224 not_carry = above_equal,
225 zero = equal,
226 not_zero = not_equal,
227 sign = negative,
228 not_sign = positive
229 };
230
231
232 // Returns the equivalent of !cc.
233 // Negation of the default no_condition (-1) results in a non-default
234 // no_condition value (-2). As long as tests for no_condition check
235 // for condition < 0, this will work as expected.
NegateCondition(Condition cc)236 inline Condition NegateCondition(Condition cc) {
237 return static_cast<Condition>(cc ^ 1);
238 }
239
240
241 // Commute a condition such that {a cond b == b cond' a}.
CommuteCondition(Condition cc)242 inline Condition CommuteCondition(Condition cc) {
243 switch (cc) {
244 case below:
245 return above;
246 case above:
247 return below;
248 case above_equal:
249 return below_equal;
250 case below_equal:
251 return above_equal;
252 case less:
253 return greater;
254 case greater:
255 return less;
256 case greater_equal:
257 return less_equal;
258 case less_equal:
259 return greater_equal;
260 default:
261 return cc;
262 }
263 }
264
265
266 // -----------------------------------------------------------------------------
267 // Machine instruction Immediates
268
269 class Immediate BASE_EMBEDDED {
270 public:
271 inline explicit Immediate(int x);
272 inline explicit Immediate(const ExternalReference& ext);
273 inline explicit Immediate(Handle<Object> handle);
274 inline explicit Immediate(Smi* value);
275 inline explicit Immediate(Address addr);
276
CodeRelativeOffset(Label * label)277 static Immediate CodeRelativeOffset(Label* label) {
278 return Immediate(label);
279 }
280
is_zero()281 bool is_zero() const { return x_ == 0 && RelocInfo::IsNone(rmode_); }
is_int8()282 bool is_int8() const {
283 return -128 <= x_ && x_ < 128 && RelocInfo::IsNone(rmode_);
284 }
is_int16()285 bool is_int16() const {
286 return -32768 <= x_ && x_ < 32768 && RelocInfo::IsNone(rmode_);
287 }
288
289 private:
290 inline explicit Immediate(Label* value);
291
292 int x_;
293 RelocInfo::Mode rmode_;
294
295 friend class Assembler;
296 friend class MacroAssembler;
297 };
298
299
300 // -----------------------------------------------------------------------------
301 // Machine instruction Operands
302
303 enum ScaleFactor {
304 times_1 = 0,
305 times_2 = 1,
306 times_4 = 2,
307 times_8 = 3,
308 times_int_size = times_4,
309 times_half_pointer_size = times_2,
310 times_pointer_size = times_4,
311 times_twice_pointer_size = times_8
312 };
313
314
315 class Operand BASE_EMBEDDED {
316 public:
317 // [disp/r]
318 INLINE(explicit Operand(int32_t disp, RelocInfo::Mode rmode));
319 // disp only must always be relocated
320
321 // [base + disp/r]
322 explicit Operand(Register base, int32_t disp,
323 RelocInfo::Mode rmode = RelocInfo::NONE32);
324
325 // [base + index*scale + disp/r]
326 explicit Operand(Register base,
327 Register index,
328 ScaleFactor scale,
329 int32_t disp,
330 RelocInfo::Mode rmode = RelocInfo::NONE32);
331
332 // [index*scale + disp/r]
333 explicit Operand(Register index,
334 ScaleFactor scale,
335 int32_t disp,
336 RelocInfo::Mode rmode = RelocInfo::NONE32);
337
StaticVariable(const ExternalReference & ext)338 static Operand StaticVariable(const ExternalReference& ext) {
339 return Operand(reinterpret_cast<int32_t>(ext.address()),
340 RelocInfo::EXTERNAL_REFERENCE);
341 }
342
StaticArray(Register index,ScaleFactor scale,const ExternalReference & arr)343 static Operand StaticArray(Register index,
344 ScaleFactor scale,
345 const ExternalReference& arr) {
346 return Operand(index, scale, reinterpret_cast<int32_t>(arr.address()),
347 RelocInfo::EXTERNAL_REFERENCE);
348 }
349
ForCell(Handle<Cell> cell)350 static Operand ForCell(Handle<Cell> cell) {
351 AllowDeferredHandleDereference embedding_raw_address;
352 return Operand(reinterpret_cast<int32_t>(cell.location()),
353 RelocInfo::CELL);
354 }
355
356 // Returns true if this Operand is a wrapper for the specified register.
357 bool is_reg(Register reg) const;
358
359 // Returns true if this Operand is a wrapper for one register.
360 bool is_reg_only() const;
361
362 // Asserts that this Operand is a wrapper for one register and returns the
363 // register.
364 Register reg() const;
365
366 private:
367 // reg
368 INLINE(explicit Operand(Register reg));
369
370 // Set the ModRM byte without an encoded 'reg' register. The
371 // register is encoded later as part of the emit_operand operation.
372 inline void set_modrm(int mod, Register rm);
373
374 inline void set_sib(ScaleFactor scale, Register index, Register base);
375 inline void set_disp8(int8_t disp);
376 inline void set_dispr(int32_t disp, RelocInfo::Mode rmode);
377
378 byte buf_[6];
379 // The number of bytes in buf_.
380 unsigned int len_;
381 // Only valid if len_ > 4.
382 RelocInfo::Mode rmode_;
383
384 friend class Assembler;
385 friend class MacroAssembler;
386 friend class LCodeGen;
387 };
388
389
390 // -----------------------------------------------------------------------------
391 // A Displacement describes the 32bit immediate field of an instruction which
392 // may be used together with a Label in order to refer to a yet unknown code
393 // position. Displacements stored in the instruction stream are used to describe
394 // the instruction and to chain a list of instructions using the same Label.
395 // A Displacement contains 2 different fields:
396 //
397 // next field: position of next displacement in the chain (0 = end of list)
398 // type field: instruction type
399 //
400 // A next value of null (0) indicates the end of a chain (note that there can
401 // be no displacement at position zero, because there is always at least one
402 // instruction byte before the displacement).
403 //
404 // Displacement _data field layout
405 //
406 // |31.....2|1......0|
407 // [ next | type |
408
409 class Displacement BASE_EMBEDDED {
410 public:
411 enum Type {
412 UNCONDITIONAL_JUMP,
413 CODE_RELATIVE,
414 OTHER
415 };
416
data()417 int data() const { return data_; }
type()418 Type type() const { return TypeField::decode(data_); }
next(Label * L)419 void next(Label* L) const {
420 int n = NextField::decode(data_);
421 n > 0 ? L->link_to(n) : L->Unuse();
422 }
link_to(Label * L)423 void link_to(Label* L) { init(L, type()); }
424
Displacement(int data)425 explicit Displacement(int data) { data_ = data; }
426
Displacement(Label * L,Type type)427 Displacement(Label* L, Type type) { init(L, type); }
428
print()429 void print() {
430 PrintF("%s (%x) ", (type() == UNCONDITIONAL_JUMP ? "jmp" : "[other]"),
431 NextField::decode(data_));
432 }
433
434 private:
435 int data_;
436
437 class TypeField: public BitField<Type, 0, 2> {};
438 class NextField: public BitField<int, 2, 32-2> {};
439
440 void init(Label* L, Type type);
441 };
442
443
444 class Assembler : public AssemblerBase {
445 private:
446 // We check before assembling an instruction that there is sufficient
447 // space to write an instruction and its relocation information.
448 // The relocation writer's position must be kGap bytes above the end of
449 // the generated instructions. This leaves enough space for the
450 // longest possible ia32 instruction, 15 bytes, and the longest possible
451 // relocation information encoding, RelocInfoWriter::kMaxLength == 16.
452 // (There is a 15 byte limit on ia32 instruction length that rules out some
453 // otherwise valid instructions.)
454 // This allows for a single, fast space check per instruction.
455 static const int kGap = 32;
456
457 public:
458 // Create an assembler. Instructions and relocation information are emitted
459 // into a buffer, with the instructions starting from the beginning and the
460 // relocation information starting from the end of the buffer. See CodeDesc
461 // for a detailed comment on the layout (globals.h).
462 //
463 // If the provided buffer is NULL, the assembler allocates and grows its own
464 // buffer, and buffer_size determines the initial buffer size. The buffer is
465 // owned by the assembler and deallocated upon destruction of the assembler.
466 //
467 // If the provided buffer is not NULL, the assembler uses the provided buffer
468 // for code generation and assumes its size to be buffer_size. If the buffer
469 // is too small, a fatal error occurs. No deallocation of the buffer is done
470 // upon destruction of the assembler.
471 // TODO(vitalyr): the assembler does not need an isolate.
472 Assembler(Isolate* isolate, void* buffer, int buffer_size);
~Assembler()473 virtual ~Assembler() { }
474
475 // GetCode emits any pending (non-emitted) code and fills the descriptor
476 // desc. GetCode() is idempotent; it returns the same result if no other
477 // Assembler functions are invoked in between GetCode() calls.
478 void GetCode(CodeDesc* desc);
479
480 // Read/Modify the code target in the branch/call instruction at pc.
481 inline static Address target_address_at(Address pc,
482 ConstantPoolArray* constant_pool);
483 inline static void set_target_address_at(Address pc,
484 ConstantPoolArray* constant_pool,
485 Address target,
486 ICacheFlushMode icache_flush_mode =
487 FLUSH_ICACHE_IF_NEEDED);
target_address_at(Address pc,Code * code)488 static inline Address target_address_at(Address pc, Code* code) {
489 ConstantPoolArray* constant_pool = code ? code->constant_pool() : NULL;
490 return target_address_at(pc, constant_pool);
491 }
492 static inline void set_target_address_at(Address pc,
493 Code* code,
494 Address target,
495 ICacheFlushMode icache_flush_mode =
496 FLUSH_ICACHE_IF_NEEDED) {
497 ConstantPoolArray* constant_pool = code ? code->constant_pool() : NULL;
498 set_target_address_at(pc, constant_pool, target);
499 }
500
501 // Return the code target address at a call site from the return address
502 // of that call in the instruction stream.
503 inline static Address target_address_from_return_address(Address pc);
504
505 // This sets the branch destination (which is in the instruction on x86).
506 // This is for calls and branches within generated code.
deserialization_set_special_target_at(Address instruction_payload,Code * code,Address target)507 inline static void deserialization_set_special_target_at(
508 Address instruction_payload, Code* code, Address target) {
509 set_target_address_at(instruction_payload, code, target);
510 }
511
512 static const int kSpecialTargetSize = kPointerSize;
513
514 // Distance between the address of the code target in the call instruction
515 // and the return address
516 static const int kCallTargetAddressOffset = kPointerSize;
517 // Distance between start of patched return sequence and the emitted address
518 // to jump to.
519 static const int kPatchReturnSequenceAddressOffset = 1; // JMP imm32.
520
521 // Distance between start of patched debug break slot and the emitted address
522 // to jump to.
523 static const int kPatchDebugBreakSlotAddressOffset = 1; // JMP imm32.
524
525 static const int kCallInstructionLength = 5;
526 static const int kPatchDebugBreakSlotReturnOffset = kPointerSize;
527 static const int kJSReturnSequenceLength = 6;
528
529 // The debug break slot must be able to contain a call instruction.
530 static const int kDebugBreakSlotLength = kCallInstructionLength;
531
532 // One byte opcode for test al, 0xXX.
533 static const byte kTestAlByte = 0xA8;
534 // One byte opcode for nop.
535 static const byte kNopByte = 0x90;
536
537 // One byte opcode for a short unconditional jump.
538 static const byte kJmpShortOpcode = 0xEB;
539 // One byte prefix for a short conditional jump.
540 static const byte kJccShortPrefix = 0x70;
541 static const byte kJncShortOpcode = kJccShortPrefix | not_carry;
542 static const byte kJcShortOpcode = kJccShortPrefix | carry;
543 static const byte kJnzShortOpcode = kJccShortPrefix | not_zero;
544 static const byte kJzShortOpcode = kJccShortPrefix | zero;
545
546
547 // ---------------------------------------------------------------------------
548 // Code generation
549 //
550 // - function names correspond one-to-one to ia32 instruction mnemonics
551 // - unless specified otherwise, instructions operate on 32bit operands
552 // - instructions on 8bit (byte) operands/registers have a trailing '_b'
553 // - instructions on 16bit (word) operands/registers have a trailing '_w'
554 // - naming conflicts with C++ keywords are resolved via a trailing '_'
555
556 // NOTE ON INTERFACE: Currently, the interface is not very consistent
557 // in the sense that some operations (e.g. mov()) can be called in more
558 // the one way to generate the same instruction: The Register argument
559 // can in some cases be replaced with an Operand(Register) argument.
560 // This should be cleaned up and made more orthogonal. The questions
561 // is: should we always use Operands instead of Registers where an
562 // Operand is possible, or should we have a Register (overloaded) form
563 // instead? We must be careful to make sure that the selected instruction
564 // is obvious from the parameters to avoid hard-to-find code generation
565 // bugs.
566
567 // Insert the smallest number of nop instructions
568 // possible to align the pc offset to a multiple
569 // of m. m must be a power of 2.
570 void Align(int m);
571 void Nop(int bytes = 1);
572 // Aligns code to something that's optimal for a jump target for the platform.
573 void CodeTargetAlign();
574
575 // Stack
576 void pushad();
577 void popad();
578
579 void pushfd();
580 void popfd();
581
582 void push(const Immediate& x);
583 void push_imm32(int32_t imm32);
584 void push(Register src);
585 void push(const Operand& src);
586
587 void pop(Register dst);
588 void pop(const Operand& dst);
589
590 void enter(const Immediate& size);
591 void leave();
592
593 // Moves
mov_b(Register dst,Register src)594 void mov_b(Register dst, Register src) { mov_b(dst, Operand(src)); }
595 void mov_b(Register dst, const Operand& src);
mov_b(Register dst,int8_t imm8)596 void mov_b(Register dst, int8_t imm8) { mov_b(Operand(dst), imm8); }
597 void mov_b(const Operand& dst, int8_t imm8);
598 void mov_b(const Operand& dst, Register src);
599
600 void mov_w(Register dst, const Operand& src);
601 void mov_w(const Operand& dst, Register src);
602 void mov_w(const Operand& dst, int16_t imm16);
603
604 void mov(Register dst, int32_t imm32);
605 void mov(Register dst, const Immediate& x);
606 void mov(Register dst, Handle<Object> handle);
607 void mov(Register dst, const Operand& src);
608 void mov(Register dst, Register src);
609 void mov(const Operand& dst, const Immediate& x);
610 void mov(const Operand& dst, Handle<Object> handle);
611 void mov(const Operand& dst, Register src);
612
movsx_b(Register dst,Register src)613 void movsx_b(Register dst, Register src) { movsx_b(dst, Operand(src)); }
614 void movsx_b(Register dst, const Operand& src);
615
movsx_w(Register dst,Register src)616 void movsx_w(Register dst, Register src) { movsx_w(dst, Operand(src)); }
617 void movsx_w(Register dst, const Operand& src);
618
movzx_b(Register dst,Register src)619 void movzx_b(Register dst, Register src) { movzx_b(dst, Operand(src)); }
620 void movzx_b(Register dst, const Operand& src);
621
movzx_w(Register dst,Register src)622 void movzx_w(Register dst, Register src) { movzx_w(dst, Operand(src)); }
623 void movzx_w(Register dst, const Operand& src);
624
625 // Flag management.
626 void cld();
627
628 // Repetitive string instructions.
629 void rep_movs();
630 void rep_stos();
631 void stos();
632
633 // Exchange two registers
634 void xchg(Register dst, Register src);
635
636 // Arithmetics
637 void adc(Register dst, int32_t imm32);
638 void adc(Register dst, const Operand& src);
639
add(Register dst,Register src)640 void add(Register dst, Register src) { add(dst, Operand(src)); }
641 void add(Register dst, const Operand& src);
642 void add(const Operand& dst, Register src);
add(Register dst,const Immediate & imm)643 void add(Register dst, const Immediate& imm) { add(Operand(dst), imm); }
644 void add(const Operand& dst, const Immediate& x);
645
646 void and_(Register dst, int32_t imm32);
647 void and_(Register dst, const Immediate& x);
and_(Register dst,Register src)648 void and_(Register dst, Register src) { and_(dst, Operand(src)); }
649 void and_(Register dst, const Operand& src);
650 void and_(const Operand& dst, Register src);
651 void and_(const Operand& dst, const Immediate& x);
652
cmpb(Register reg,int8_t imm8)653 void cmpb(Register reg, int8_t imm8) { cmpb(Operand(reg), imm8); }
654 void cmpb(const Operand& op, int8_t imm8);
655 void cmpb(Register reg, const Operand& op);
656 void cmpb(const Operand& op, Register reg);
657 void cmpb_al(const Operand& op);
658 void cmpw_ax(const Operand& op);
659 void cmpw(const Operand& op, Immediate imm16);
660 void cmp(Register reg, int32_t imm32);
661 void cmp(Register reg, Handle<Object> handle);
cmp(Register reg0,Register reg1)662 void cmp(Register reg0, Register reg1) { cmp(reg0, Operand(reg1)); }
663 void cmp(Register reg, const Operand& op);
cmp(Register reg,const Immediate & imm)664 void cmp(Register reg, const Immediate& imm) { cmp(Operand(reg), imm); }
665 void cmp(const Operand& op, const Immediate& imm);
666 void cmp(const Operand& op, Handle<Object> handle);
667
668 void dec_b(Register dst);
669 void dec_b(const Operand& dst);
670
671 void dec(Register dst);
672 void dec(const Operand& dst);
673
674 void cdq();
675
676 void idiv(Register src);
677
678 // Signed multiply instructions.
679 void imul(Register src); // edx:eax = eax * src.
imul(Register dst,Register src)680 void imul(Register dst, Register src) { imul(dst, Operand(src)); }
681 void imul(Register dst, const Operand& src); // dst = dst * src.
682 void imul(Register dst, Register src, int32_t imm32); // dst = src * imm32.
683
684 void inc(Register dst);
685 void inc(const Operand& dst);
686
687 void lea(Register dst, const Operand& src);
688
689 // Unsigned multiply instruction.
690 void mul(Register src); // edx:eax = eax * reg.
691
692 void neg(Register dst);
693
694 void not_(Register dst);
695
696 void or_(Register dst, int32_t imm32);
or_(Register dst,Register src)697 void or_(Register dst, Register src) { or_(dst, Operand(src)); }
698 void or_(Register dst, const Operand& src);
699 void or_(const Operand& dst, Register src);
or_(Register dst,const Immediate & imm)700 void or_(Register dst, const Immediate& imm) { or_(Operand(dst), imm); }
701 void or_(const Operand& dst, const Immediate& x);
702
703 void rcl(Register dst, uint8_t imm8);
704 void rcr(Register dst, uint8_t imm8);
705 void ror(Register dst, uint8_t imm8);
706 void ror_cl(Register dst);
707
708 void sar(Register dst, uint8_t imm8);
709 void sar_cl(Register dst);
710
711 void sbb(Register dst, const Operand& src);
712
shld(Register dst,Register src)713 void shld(Register dst, Register src) { shld(dst, Operand(src)); }
714 void shld(Register dst, const Operand& src);
715
716 void shl(Register dst, uint8_t imm8);
717 void shl_cl(Register dst);
718
shrd(Register dst,Register src)719 void shrd(Register dst, Register src) { shrd(dst, Operand(src)); }
720 void shrd(Register dst, const Operand& src);
721
722 void shr(Register dst, uint8_t imm8);
723 void shr_cl(Register dst);
724
sub(Register dst,const Immediate & imm)725 void sub(Register dst, const Immediate& imm) { sub(Operand(dst), imm); }
726 void sub(const Operand& dst, const Immediate& x);
sub(Register dst,Register src)727 void sub(Register dst, Register src) { sub(dst, Operand(src)); }
728 void sub(Register dst, const Operand& src);
729 void sub(const Operand& dst, Register src);
730
731 void test(Register reg, const Immediate& imm);
test(Register reg0,Register reg1)732 void test(Register reg0, Register reg1) { test(reg0, Operand(reg1)); }
733 void test(Register reg, const Operand& op);
734 void test_b(Register reg, const Operand& op);
735 void test(const Operand& op, const Immediate& imm);
736 void test_b(Register reg, uint8_t imm8);
737 void test_b(const Operand& op, uint8_t imm8);
738
739 void xor_(Register dst, int32_t imm32);
xor_(Register dst,Register src)740 void xor_(Register dst, Register src) { xor_(dst, Operand(src)); }
741 void xor_(Register dst, const Operand& src);
742 void xor_(const Operand& dst, Register src);
xor_(Register dst,const Immediate & imm)743 void xor_(Register dst, const Immediate& imm) { xor_(Operand(dst), imm); }
744 void xor_(const Operand& dst, const Immediate& x);
745
746 // Bit operations.
747 void bt(const Operand& dst, Register src);
bts(Register dst,Register src)748 void bts(Register dst, Register src) { bts(Operand(dst), src); }
749 void bts(const Operand& dst, Register src);
bsr(Register dst,Register src)750 void bsr(Register dst, Register src) { bsr(dst, Operand(src)); }
751 void bsr(Register dst, const Operand& src);
752
753 // Miscellaneous
754 void hlt();
755 void int3();
756 void nop();
757 void ret(int imm16);
758
759 // Label operations & relative jumps (PPUM Appendix D)
760 //
761 // Takes a branch opcode (cc) and a label (L) and generates
762 // either a backward branch or a forward branch and links it
763 // to the label fixup chain. Usage:
764 //
765 // Label L; // unbound label
766 // j(cc, &L); // forward branch to unbound label
767 // bind(&L); // bind label to the current pc
768 // j(cc, &L); // backward branch to bound label
769 // bind(&L); // illegal: a label may be bound only once
770 //
771 // Note: The same Label can be used for forward and backward branches
772 // but it may be bound only once.
773
774 void bind(Label* L); // binds an unbound label L to the current code position
775
776 // Calls
777 void call(Label* L);
778 void call(byte* entry, RelocInfo::Mode rmode);
779 int CallSize(const Operand& adr);
call(Register reg)780 void call(Register reg) { call(Operand(reg)); }
781 void call(const Operand& adr);
782 int CallSize(Handle<Code> code, RelocInfo::Mode mode);
783 void call(Handle<Code> code,
784 RelocInfo::Mode rmode,
785 TypeFeedbackId id = TypeFeedbackId::None());
786
787 // Jumps
788 // unconditional jump to L
789 void jmp(Label* L, Label::Distance distance = Label::kFar);
790 void jmp(byte* entry, RelocInfo::Mode rmode);
jmp(Register reg)791 void jmp(Register reg) { jmp(Operand(reg)); }
792 void jmp(const Operand& adr);
793 void jmp(Handle<Code> code, RelocInfo::Mode rmode);
794
795 // Conditional jumps
796 void j(Condition cc,
797 Label* L,
798 Label::Distance distance = Label::kFar);
799 void j(Condition cc, byte* entry, RelocInfo::Mode rmode);
800 void j(Condition cc, Handle<Code> code);
801
802 // Floating-point operations
803 void fld(int i);
804 void fstp(int i);
805
806 void fld1();
807 void fldz();
808 void fldpi();
809 void fldln2();
810
811 void fld_s(const Operand& adr);
812 void fld_d(const Operand& adr);
813
814 void fstp_s(const Operand& adr);
815 void fst_s(const Operand& adr);
816 void fstp_d(const Operand& adr);
817 void fst_d(const Operand& adr);
818
819 void fild_s(const Operand& adr);
820 void fild_d(const Operand& adr);
821
822 void fist_s(const Operand& adr);
823
824 void fistp_s(const Operand& adr);
825 void fistp_d(const Operand& adr);
826
827 // The fisttp instructions require SSE3.
828 void fisttp_s(const Operand& adr);
829 void fisttp_d(const Operand& adr);
830
831 void fabs();
832 void fchs();
833 void fcos();
834 void fsin();
835 void fptan();
836 void fyl2x();
837 void f2xm1();
838 void fscale();
839 void fninit();
840
841 void fadd(int i);
842 void fadd_i(int i);
843 void fsub(int i);
844 void fsub_i(int i);
845 void fmul(int i);
846 void fmul_i(int i);
847 void fdiv(int i);
848 void fdiv_i(int i);
849
850 void fisub_s(const Operand& adr);
851
852 void faddp(int i = 1);
853 void fsubp(int i = 1);
854 void fsubrp(int i = 1);
855 void fmulp(int i = 1);
856 void fdivp(int i = 1);
857 void fprem();
858 void fprem1();
859
860 void fxch(int i = 1);
861 void fincstp();
862 void ffree(int i = 0);
863
864 void ftst();
865 void fucomp(int i);
866 void fucompp();
867 void fucomi(int i);
868 void fucomip();
869 void fcompp();
870 void fnstsw_ax();
871 void fwait();
872 void fnclex();
873
874 void frndint();
875
876 void sahf();
877 void setcc(Condition cc, Register reg);
878
879 void cpuid();
880
881 // TODO(lrn): Need SFENCE for movnt?
882
883 // Debugging
884 void Print();
885
886 // Check the code size generated from label to here.
SizeOfCodeGeneratedSince(Label * label)887 int SizeOfCodeGeneratedSince(Label* label) {
888 return pc_offset() - label->pos();
889 }
890
891 // Mark address of the ExitJSFrame code.
892 void RecordJSReturn();
893
894 // Mark address of a debug break slot.
895 void RecordDebugBreakSlot();
896
897 // Record a comment relocation entry that can be used by a disassembler.
898 // Use --code-comments to enable, or provide "force = true" flag to always
899 // write a comment.
900 void RecordComment(const char* msg, bool force = false);
901
902 // Writes a single byte or word of data in the code stream. Used for
903 // inline tables, e.g., jump-tables.
904 void db(uint8_t data);
905 void dd(uint32_t data);
906
907 // Check if there is less than kGap bytes available in the buffer.
908 // If this is the case, we need to grow the buffer before emitting
909 // an instruction or relocation information.
buffer_overflow()910 inline bool buffer_overflow() const {
911 return pc_ >= reloc_info_writer.pos() - kGap;
912 }
913
914 // Get the number of bytes available in the buffer.
available_space()915 inline int available_space() const { return reloc_info_writer.pos() - pc_; }
916
917 static bool IsNop(Address addr);
918
positions_recorder()919 PositionsRecorder* positions_recorder() { return &positions_recorder_; }
920
relocation_writer_size()921 int relocation_writer_size() {
922 return (buffer_ + buffer_size_) - reloc_info_writer.pos();
923 }
924
925 // Avoid overflows for displacements etc.
926 static const int kMaximalBufferSize = 512*MB;
927
byte_at(int pos)928 byte byte_at(int pos) { return buffer_[pos]; }
set_byte_at(int pos,byte value)929 void set_byte_at(int pos, byte value) { buffer_[pos] = value; }
930
931 // Allocate a constant pool of the correct size for the generated code.
932 Handle<ConstantPoolArray> NewConstantPool(Isolate* isolate);
933
934 // Generate the constant pool for the generated code.
935 void PopulateConstantPool(ConstantPoolArray* constant_pool);
936
937 protected:
addr_at(int pos)938 byte* addr_at(int pos) { return buffer_ + pos; }
939
940
941 private:
long_at(int pos)942 uint32_t long_at(int pos) {
943 return *reinterpret_cast<uint32_t*>(addr_at(pos));
944 }
long_at_put(int pos,uint32_t x)945 void long_at_put(int pos, uint32_t x) {
946 *reinterpret_cast<uint32_t*>(addr_at(pos)) = x;
947 }
948
949 // code emission
950 void GrowBuffer();
951 inline void emit(uint32_t x);
952 inline void emit(Handle<Object> handle);
953 inline void emit(uint32_t x,
954 RelocInfo::Mode rmode,
955 TypeFeedbackId id = TypeFeedbackId::None());
956 inline void emit(Handle<Code> code,
957 RelocInfo::Mode rmode,
958 TypeFeedbackId id = TypeFeedbackId::None());
959 inline void emit(const Immediate& x);
960 inline void emit_w(const Immediate& x);
961
962 // Emit the code-object-relative offset of the label's position
963 inline void emit_code_relative_offset(Label* label);
964
965 // instruction generation
966 void emit_arith_b(int op1, int op2, Register dst, int imm8);
967
968 // Emit a basic arithmetic instruction (i.e. first byte of the family is 0x81)
969 // with a given destination expression and an immediate operand. It attempts
970 // to use the shortest encoding possible.
971 // sel specifies the /n in the modrm byte (see the Intel PRM).
972 void emit_arith(int sel, Operand dst, const Immediate& x);
973
974 void emit_operand(Register reg, const Operand& adr);
975
976 void emit_farith(int b1, int b2, int i);
977
978 // labels
979 void print(Label* L);
980 void bind_to(Label* L, int pos);
981
982 // displacements
983 inline Displacement disp_at(Label* L);
984 inline void disp_at_put(Label* L, Displacement disp);
985 inline void emit_disp(Label* L, Displacement::Type type);
986 inline void emit_near_disp(Label* L);
987
988 // record reloc info for current pc_
989 void RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data = 0);
990
991 friend class CodePatcher;
992 friend class EnsureSpace;
993
994 // code generation
995 RelocInfoWriter reloc_info_writer;
996
997 PositionsRecorder positions_recorder_;
998 friend class PositionsRecorder;
999 };
1000
1001
1002 // Helper class that ensures that there is enough space for generating
1003 // instructions and relocation information. The constructor makes
1004 // sure that there is enough space and (in debug mode) the destructor
1005 // checks that we did not generate too much.
1006 class EnsureSpace BASE_EMBEDDED {
1007 public:
EnsureSpace(Assembler * assembler)1008 explicit EnsureSpace(Assembler* assembler) : assembler_(assembler) {
1009 if (assembler_->buffer_overflow()) assembler_->GrowBuffer();
1010 #ifdef DEBUG
1011 space_before_ = assembler_->available_space();
1012 #endif
1013 }
1014
1015 #ifdef DEBUG
~EnsureSpace()1016 ~EnsureSpace() {
1017 int bytes_generated = space_before_ - assembler_->available_space();
1018 ASSERT(bytes_generated < assembler_->kGap);
1019 }
1020 #endif
1021
1022 private:
1023 Assembler* assembler_;
1024 #ifdef DEBUG
1025 int space_before_;
1026 #endif
1027 };
1028
1029 } } // namespace v8::internal
1030
1031 #endif // V8_X87_ASSEMBLER_X87_H_
1032