1 /*
2 * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
3 *
4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree.
9 */
10
11 #include "testing/gtest/include/gtest/gtest.h"
12 extern "C" {
13 #include "webrtc/modules/audio_processing/aec/aec_core.h"
14 }
15 #include "webrtc/modules/audio_processing/aec/echo_cancellation_internal.h"
16 #include "webrtc/modules/audio_processing/aec/include/echo_cancellation.h"
17 #include "webrtc/test/testsupport/gtest_disable.h"
18 #include "webrtc/typedefs.h"
19
20 namespace {
21
22 class SystemDelayTest : public ::testing::Test {
23 protected:
24 SystemDelayTest();
25 virtual void SetUp();
26 virtual void TearDown();
27
28 // Initialization of AEC handle with respect to |sample_rate_hz|. Since the
29 // device sample rate is unimportant we set that value to 48000 Hz.
30 void Init(int sample_rate_hz);
31
32 // Makes one render call and one capture call in that specific order.
33 void RenderAndCapture(int device_buffer_ms);
34
35 // Fills up the far-end buffer with respect to the default device buffer size.
36 int BufferFillUp();
37
38 // Runs and verifies the behavior in a stable startup procedure.
39 void RunStableStartup();
40
41 // Maps buffer size in ms into samples, taking the unprocessed frame into
42 // account.
43 int MapBufferSizeToSamples(int size_in_ms);
44
45 void* handle_;
46 aecpc_t* self_;
47 int samples_per_frame_;
48 // Dummy input/output speech data.
49 static const int kSamplesPerChunk = 160;
50 int16_t far_[kSamplesPerChunk];
51 float near_[kSamplesPerChunk];
52 float out_[kSamplesPerChunk];
53 };
54
SystemDelayTest()55 SystemDelayTest::SystemDelayTest()
56 : handle_(NULL), self_(NULL), samples_per_frame_(0) {
57 // Dummy input data are set with more or less arbitrary non-zero values.
58 memset(far_, 1, sizeof(far_));
59 for (int i = 0; i < kSamplesPerChunk; i++)
60 near_[i] = 514.0;
61 memset(out_, 0, sizeof(out_));
62 }
63
SetUp()64 void SystemDelayTest::SetUp() {
65 ASSERT_EQ(0, WebRtcAec_Create(&handle_));
66 self_ = reinterpret_cast<aecpc_t*>(handle_);
67 }
68
TearDown()69 void SystemDelayTest::TearDown() {
70 // Free AEC
71 ASSERT_EQ(0, WebRtcAec_Free(handle_));
72 handle_ = NULL;
73 }
74
75 // In SWB mode nothing is added to the buffer handling with respect to
76 // functionality compared to WB. We therefore only verify behavior in NB and WB.
77 static const int kSampleRateHz[] = {8000, 16000};
78 static const size_t kNumSampleRates =
79 sizeof(kSampleRateHz) / sizeof(*kSampleRateHz);
80
81 // Default audio device buffer size used.
82 static const int kDeviceBufMs = 100;
83
84 // Requirement for a stable device convergence time in ms. Should converge in
85 // less than |kStableConvergenceMs|.
86 static const int kStableConvergenceMs = 100;
87
88 // Maximum convergence time in ms. This means that we should leave the startup
89 // phase after |kMaxConvergenceMs| independent of device buffer stability
90 // conditions.
91 static const int kMaxConvergenceMs = 500;
92
Init(int sample_rate_hz)93 void SystemDelayTest::Init(int sample_rate_hz) {
94 // Initialize AEC
95 EXPECT_EQ(0, WebRtcAec_Init(handle_, sample_rate_hz, 48000));
96
97 // One frame equals 10 ms of data.
98 samples_per_frame_ = sample_rate_hz / 100;
99 }
100
RenderAndCapture(int device_buffer_ms)101 void SystemDelayTest::RenderAndCapture(int device_buffer_ms) {
102 EXPECT_EQ(0, WebRtcAec_BufferFarend(handle_, far_, samples_per_frame_));
103 EXPECT_EQ(0,
104 WebRtcAec_Process(handle_,
105 near_,
106 NULL,
107 out_,
108 NULL,
109 samples_per_frame_,
110 device_buffer_ms,
111 0));
112 }
113
BufferFillUp()114 int SystemDelayTest::BufferFillUp() {
115 // To make sure we have a full buffer when we verify stability we first fill
116 // up the far-end buffer with the same amount as we will report in through
117 // Process().
118 int buffer_size = 0;
119 for (int i = 0; i < kDeviceBufMs / 10; i++) {
120 EXPECT_EQ(0, WebRtcAec_BufferFarend(handle_, far_, samples_per_frame_));
121 buffer_size += samples_per_frame_;
122 EXPECT_EQ(buffer_size, WebRtcAec_system_delay(self_->aec));
123 }
124 return buffer_size;
125 }
126
RunStableStartup()127 void SystemDelayTest::RunStableStartup() {
128 // To make sure we have a full buffer when we verify stability we first fill
129 // up the far-end buffer with the same amount as we will report in through
130 // Process().
131 int buffer_size = BufferFillUp();
132 // A stable device should be accepted and put in a regular process mode within
133 // |kStableConvergenceMs|.
134 int process_time_ms = 0;
135 for (; process_time_ms < kStableConvergenceMs; process_time_ms += 10) {
136 RenderAndCapture(kDeviceBufMs);
137 buffer_size += samples_per_frame_;
138 if (self_->startup_phase == 0) {
139 // We have left the startup phase.
140 break;
141 }
142 }
143 // Verify convergence time.
144 EXPECT_GT(kStableConvergenceMs, process_time_ms);
145 // Verify that the buffer has been flushed.
146 EXPECT_GE(buffer_size, WebRtcAec_system_delay(self_->aec));
147 }
148
MapBufferSizeToSamples(int size_in_ms)149 int SystemDelayTest::MapBufferSizeToSamples(int size_in_ms) {
150 // The extra 10 ms corresponds to the unprocessed frame.
151 return (size_in_ms + 10) * samples_per_frame_ / 10;
152 }
153
154 // The tests should meet basic requirements and not be adjusted to what is
155 // actually implemented. If we don't get good code coverage this way we either
156 // lack in tests or have unnecessary code.
157 // General requirements:
158 // 1) If we add far-end data the system delay should be increased with the same
159 // amount we add.
160 // 2) If the far-end buffer is full we should flush the oldest data to make room
161 // for the new. In this case the system delay is unaffected.
162 // 3) There should exist a startup phase in which the buffer size is to be
163 // determined. In this phase no cancellation should be performed.
164 // 4) Under stable conditions (small variations in device buffer sizes) the AEC
165 // should determine an appropriate local buffer size within
166 // |kStableConvergenceMs| ms.
167 // 5) Under unstable conditions the AEC should make a decision within
168 // |kMaxConvergenceMs| ms.
169 // 6) If the local buffer runs out of data we should stuff the buffer with older
170 // frames.
171 // 7) The system delay should within |kMaxConvergenceMs| ms heal from
172 // disturbances like drift, data glitches, toggling events and outliers.
173 // 8) The system delay should never become negative.
174
TEST_F(SystemDelayTest,CorrectIncreaseWhenBufferFarend)175 TEST_F(SystemDelayTest, CorrectIncreaseWhenBufferFarend) {
176 // When we add data to the AEC buffer the internal system delay should be
177 // incremented with the same amount as the size of data.
178 for (size_t i = 0; i < kNumSampleRates; i++) {
179 Init(kSampleRateHz[i]);
180
181 // Loop through a couple of calls to make sure the system delay increments
182 // correctly.
183 for (int j = 1; j <= 5; j++) {
184 EXPECT_EQ(0, WebRtcAec_BufferFarend(handle_, far_, samples_per_frame_));
185 EXPECT_EQ(j * samples_per_frame_, WebRtcAec_system_delay(self_->aec));
186 }
187 }
188 }
189
190 // TODO(bjornv): Add a test to verify behavior if the far-end buffer is full
191 // when adding new data.
192
TEST_F(SystemDelayTest,CorrectDelayAfterStableStartup)193 TEST_F(SystemDelayTest, CorrectDelayAfterStableStartup) {
194 // We run the system in a stable startup. After that we verify that the system
195 // delay meets the requirements.
196 for (size_t i = 0; i < kNumSampleRates; i++) {
197 Init(kSampleRateHz[i]);
198 RunStableStartup();
199
200 // Verify system delay with respect to requirements, i.e., the
201 // |system_delay| is in the interval [75%, 100%] of what's reported on the
202 // average.
203 int average_reported_delay = kDeviceBufMs * samples_per_frame_ / 10;
204 EXPECT_GE(average_reported_delay, WebRtcAec_system_delay(self_->aec));
205 EXPECT_LE(average_reported_delay * 3 / 4,
206 WebRtcAec_system_delay(self_->aec));
207 }
208 }
209
TEST_F(SystemDelayTest,CorrectDelayAfterUnstableStartup)210 TEST_F(SystemDelayTest, CorrectDelayAfterUnstableStartup) {
211 // In an unstable system we would start processing after |kMaxConvergenceMs|.
212 // On the last frame the AEC buffer is adjusted to 60% of the last reported
213 // device buffer size.
214 // We construct an unstable system by altering the device buffer size between
215 // two values |kDeviceBufMs| +- 25 ms.
216 for (size_t i = 0; i < kNumSampleRates; i++) {
217 Init(kSampleRateHz[i]);
218
219 // To make sure we have a full buffer when we verify stability we first fill
220 // up the far-end buffer with the same amount as we will report in on the
221 // average through Process().
222 int buffer_size = BufferFillUp();
223
224 int buffer_offset_ms = 25;
225 int reported_delay_ms = 0;
226 int process_time_ms = 0;
227 for (; process_time_ms <= kMaxConvergenceMs; process_time_ms += 10) {
228 reported_delay_ms = kDeviceBufMs + buffer_offset_ms;
229 RenderAndCapture(reported_delay_ms);
230 buffer_size += samples_per_frame_;
231 buffer_offset_ms = -buffer_offset_ms;
232 if (self_->startup_phase == 0) {
233 // We have left the startup phase.
234 break;
235 }
236 }
237 // Verify convergence time.
238 EXPECT_GE(kMaxConvergenceMs, process_time_ms);
239 // Verify that the buffer has been flushed.
240 EXPECT_GE(buffer_size, WebRtcAec_system_delay(self_->aec));
241
242 // Verify system delay with respect to requirements, i.e., the
243 // |system_delay| is in the interval [60%, 100%] of what's last reported.
244 EXPECT_GE(reported_delay_ms * samples_per_frame_ / 10,
245 WebRtcAec_system_delay(self_->aec));
246 EXPECT_LE(reported_delay_ms * samples_per_frame_ / 10 * 3 / 5,
247 WebRtcAec_system_delay(self_->aec));
248 }
249 }
250
TEST_F(SystemDelayTest,CorrectDelayAfterStableBufferBuildUp)251 TEST_F(SystemDelayTest, CorrectDelayAfterStableBufferBuildUp) {
252 // In this test we start by establishing the device buffer size during stable
253 // conditions, but with an empty internal far-end buffer. Once that is done we
254 // verify that the system delay is increased correctly until we have reach an
255 // internal buffer size of 75% of what's been reported.
256
257 // This test assumes the reported delays are used.
258 WebRtcAec_enable_reported_delay(WebRtcAec_aec_core(handle_), 1);
259 for (size_t i = 0; i < kNumSampleRates; i++) {
260 Init(kSampleRateHz[i]);
261
262 // We assume that running |kStableConvergenceMs| calls will put the
263 // algorithm in a state where the device buffer size has been determined. We
264 // can make that assumption since we have a separate stability test.
265 int process_time_ms = 0;
266 for (; process_time_ms < kStableConvergenceMs; process_time_ms += 10) {
267 EXPECT_EQ(0,
268 WebRtcAec_Process(handle_,
269 near_,
270 NULL,
271 out_,
272 NULL,
273 samples_per_frame_,
274 kDeviceBufMs,
275 0));
276 }
277 // Verify that a buffer size has been established.
278 EXPECT_EQ(0, self_->checkBuffSize);
279
280 // We now have established the required buffer size. Let us verify that we
281 // fill up before leaving the startup phase for normal processing.
282 int buffer_size = 0;
283 int target_buffer_size = kDeviceBufMs * samples_per_frame_ / 10 * 3 / 4;
284 process_time_ms = 0;
285 for (; process_time_ms <= kMaxConvergenceMs; process_time_ms += 10) {
286 RenderAndCapture(kDeviceBufMs);
287 buffer_size += samples_per_frame_;
288 if (self_->startup_phase == 0) {
289 // We have left the startup phase.
290 break;
291 }
292 }
293 // Verify convergence time.
294 EXPECT_GT(kMaxConvergenceMs, process_time_ms);
295 // Verify that the buffer has reached the desired size.
296 EXPECT_LE(target_buffer_size, WebRtcAec_system_delay(self_->aec));
297
298 // Verify normal behavior (system delay is kept constant) after startup by
299 // running a couple of calls to BufferFarend() and Process().
300 for (int j = 0; j < 6; j++) {
301 int system_delay_before_calls = WebRtcAec_system_delay(self_->aec);
302 RenderAndCapture(kDeviceBufMs);
303 EXPECT_EQ(system_delay_before_calls, WebRtcAec_system_delay(self_->aec));
304 }
305 }
306 }
307
TEST_F(SystemDelayTest,CorrectDelayWhenBufferUnderrun)308 TEST_F(SystemDelayTest, CorrectDelayWhenBufferUnderrun) {
309 // Here we test a buffer under run scenario. If we keep on calling
310 // WebRtcAec_Process() we will finally run out of data, but should
311 // automatically stuff the buffer. We verify this behavior by checking if the
312 // system delay goes negative.
313 for (size_t i = 0; i < kNumSampleRates; i++) {
314 Init(kSampleRateHz[i]);
315 RunStableStartup();
316
317 // The AEC has now left the Startup phase. We now have at most
318 // |kStableConvergenceMs| in the buffer. Keep on calling Process() until
319 // we run out of data and verify that the system delay is non-negative.
320 for (int j = 0; j <= kStableConvergenceMs; j += 10) {
321 EXPECT_EQ(0,
322 WebRtcAec_Process(handle_,
323 near_,
324 NULL,
325 out_,
326 NULL,
327 samples_per_frame_,
328 kDeviceBufMs,
329 0));
330 EXPECT_LE(0, WebRtcAec_system_delay(self_->aec));
331 }
332 }
333 }
334
TEST_F(SystemDelayTest,CorrectDelayDuringDrift)335 TEST_F(SystemDelayTest, CorrectDelayDuringDrift) {
336 // This drift test should verify that the system delay is never exceeding the
337 // device buffer. The drift is simulated by decreasing the reported device
338 // buffer size by 1 ms every 100 ms. If the device buffer size goes below 30
339 // ms we jump (add) 10 ms to give a repeated pattern.
340
341 // This test assumes the reported delays are used.
342 WebRtcAec_enable_reported_delay(WebRtcAec_aec_core(handle_), 1);
343 for (size_t i = 0; i < kNumSampleRates; i++) {
344 Init(kSampleRateHz[i]);
345 RunStableStartup();
346
347 // We have now left the startup phase and proceed with normal processing.
348 int jump = 0;
349 for (int j = 0; j < 1000; j++) {
350 // Drift = -1 ms per 100 ms of data.
351 int device_buf_ms = kDeviceBufMs - (j / 10) + jump;
352 int device_buf = MapBufferSizeToSamples(device_buf_ms);
353
354 if (device_buf_ms < 30) {
355 // Add 10 ms data, taking affect next frame.
356 jump += 10;
357 }
358 RenderAndCapture(device_buf_ms);
359
360 // Verify that the system delay does not exceed the device buffer.
361 EXPECT_GE(device_buf, WebRtcAec_system_delay(self_->aec));
362
363 // Verify that the system delay is non-negative.
364 EXPECT_LE(0, WebRtcAec_system_delay(self_->aec));
365 }
366 }
367 }
368
TEST_F(SystemDelayTest,ShouldRecoverAfterGlitch)369 TEST_F(SystemDelayTest, ShouldRecoverAfterGlitch) {
370 // This glitch test should verify that the system delay recovers if there is
371 // a glitch in data. The data glitch is constructed as 200 ms of buffering
372 // after which the stable procedure continues. The glitch is never reported by
373 // the device.
374 // The system is said to be in a non-causal state if the difference between
375 // the device buffer and system delay is less than a block (64 samples).
376
377 // This test assumes the reported delays are used.
378 WebRtcAec_enable_reported_delay(WebRtcAec_aec_core(handle_), 1);
379 for (size_t i = 0; i < kNumSampleRates; i++) {
380 Init(kSampleRateHz[i]);
381 RunStableStartup();
382 int device_buf = MapBufferSizeToSamples(kDeviceBufMs);
383 // Glitch state.
384 for (int j = 0; j < 20; j++) {
385 EXPECT_EQ(0, WebRtcAec_BufferFarend(handle_, far_, samples_per_frame_));
386 // No need to verify system delay, since that is done in a separate test.
387 }
388 // Verify that we are in a non-causal state, i.e.,
389 // |system_delay| > |device_buf|.
390 EXPECT_LT(device_buf, WebRtcAec_system_delay(self_->aec));
391
392 // Recover state. Should recover at least 4 ms of data per 10 ms, hence a
393 // glitch of 200 ms will take at most 200 * 10 / 4 = 500 ms to recover from.
394 bool non_causal = true; // We are currently in a non-causal state.
395 for (int j = 0; j < 50; j++) {
396 int system_delay_before = WebRtcAec_system_delay(self_->aec);
397 RenderAndCapture(kDeviceBufMs);
398 int system_delay_after = WebRtcAec_system_delay(self_->aec);
399
400 // We have recovered if |device_buf| - |system_delay_after| >= 64 (one
401 // block). During recovery |system_delay_after| < |system_delay_before|,
402 // otherwise they are equal.
403 if (non_causal) {
404 EXPECT_LT(system_delay_after, system_delay_before);
405 if (device_buf - system_delay_after >= 64) {
406 non_causal = false;
407 }
408 } else {
409 EXPECT_EQ(system_delay_before, system_delay_after);
410 }
411 // Verify that the system delay is non-negative.
412 EXPECT_LE(0, WebRtcAec_system_delay(self_->aec));
413 }
414 // Check that we have recovered.
415 EXPECT_FALSE(non_causal);
416 }
417 }
418
TEST_F(SystemDelayTest,UnaffectedWhenSpuriousDeviceBufferValues)419 TEST_F(SystemDelayTest, UnaffectedWhenSpuriousDeviceBufferValues) {
420 // This spurious device buffer data test aims at verifying that the system
421 // delay is unaffected by large outliers.
422 // The system is said to be in a non-causal state if the difference between
423 // the device buffer and system delay is less than a block (64 samples).
424 for (size_t i = 0; i < kNumSampleRates; i++) {
425 Init(kSampleRateHz[i]);
426 RunStableStartup();
427 int device_buf = MapBufferSizeToSamples(kDeviceBufMs);
428
429 // Normal state. We are currently not in a non-causal state.
430 bool non_causal = false;
431
432 // Run 1 s and replace device buffer size with 500 ms every 100 ms.
433 for (int j = 0; j < 100; j++) {
434 int system_delay_before_calls = WebRtcAec_system_delay(self_->aec);
435 int device_buf_ms = kDeviceBufMs;
436 if (j % 10 == 0) {
437 device_buf_ms = 500;
438 }
439 RenderAndCapture(device_buf_ms);
440
441 // Check for non-causality.
442 if (device_buf - WebRtcAec_system_delay(self_->aec) < 64) {
443 non_causal = true;
444 }
445 EXPECT_FALSE(non_causal);
446 EXPECT_EQ(system_delay_before_calls, WebRtcAec_system_delay(self_->aec));
447
448 // Verify that the system delay is non-negative.
449 EXPECT_LE(0, WebRtcAec_system_delay(self_->aec));
450 }
451 }
452 }
453
TEST_F(SystemDelayTest,CorrectImpactWhenTogglingDeviceBufferValues)454 TEST_F(SystemDelayTest, CorrectImpactWhenTogglingDeviceBufferValues) {
455 // This test aims at verifying that the system delay is "unaffected" by
456 // toggling values reported by the device.
457 // The test is constructed such that every other device buffer value is zero
458 // and then 2 * |kDeviceBufMs|, hence the size is constant on the average. The
459 // zero values will force us into a non-causal state and thereby lowering the
460 // system delay until we basically runs out of data. Once that happens the
461 // buffer will be stuffed.
462 // TODO(bjornv): This test will have a better impact if we verified that the
463 // delay estimate goes up when the system delay goes done to meet the average
464 // device buffer size.
465 for (size_t i = 0; i < kNumSampleRates; i++) {
466 Init(kSampleRateHz[i]);
467 RunStableStartup();
468 int device_buf = MapBufferSizeToSamples(kDeviceBufMs);
469
470 // Normal state. We are currently not in a non-causal state.
471 bool non_causal = false;
472
473 // Loop through 100 frames (both render and capture), which equals 1 s of
474 // data. Every odd frame we set the device buffer size to 2 * |kDeviceBufMs|
475 // and even frames we set the device buffer size to zero.
476 for (int j = 0; j < 100; j++) {
477 int system_delay_before_calls = WebRtcAec_system_delay(self_->aec);
478 int device_buf_ms = 2 * (j % 2) * kDeviceBufMs;
479 RenderAndCapture(device_buf_ms);
480
481 // Check for non-causality, compared with the average device buffer size.
482 non_causal |= (device_buf - WebRtcAec_system_delay(self_->aec) < 64);
483 EXPECT_GE(system_delay_before_calls, WebRtcAec_system_delay(self_->aec));
484
485 // Verify that the system delay is non-negative.
486 EXPECT_LE(0, WebRtcAec_system_delay(self_->aec));
487 }
488 // Verify we are not in a non-causal state.
489 EXPECT_FALSE(non_causal);
490 }
491 }
492
493 } // namespace
494